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Abstract

Despite the proposal of numerous tree-based structures for high-dimensional similarity searches, tech-
niques based on a sequential scan, such as the VA-File, have been shown to be quite effective. In this thesis
we present three new access structures which use sequential access patterns to ef£ciently answer similarity
queries for high-dimensional vector and metric data. Two of these access structures are designed to answer
range queries, while the third access method is intended for nearest neighbor queries. The three access meth-
ods organize preprocessed data and reorder the original data sequentially on disk. At query time, portions of
the data are read sequentially to prevent expensive random disk I/Os that prevent many access methods for
high-dimensional data and metric data from being ef£cient.

Experimental results show the £rst two proposed access structures can process range queries up to 24 times
faster than the VA-File and up to 69 times faster than a sequential scan of the data set. The third proposed
method is designed for nearest neighbor queries and is up to 15 times faster than the VA-File method and more
than 40 times faster than a sequential scan of the data set. Unlike the VA-File, the access structures presented
in this thesis work in general metric spaces, in addition to vector space (under a metric distance), scale well
with increasing the radius of range queries and the number of nearest neighbors retrieved for nearest neighbor
queries, and can be easily implemented.

1 Introduction

Managing and querying high-dimensional data is important in many domains such as time sequence data [2],
protein sequence data [22], density-based clustering algorithms [15] and multimedia data [24]. For instance,
images have features such as color and texture, which are typically mapped onto high-dimensional vectors for
facilitating similarity searches. It is common for an image to be represented by a D-dimensional global color
histogram (GCH), e.g., [31, 32], where D is typically large. GCHs represent images by their color distribution,
images are considered more similar if they have similar GCHs. In Figure 1, images (a) and (b) will have more
similar GCHs than images (b) and (c). In Figure 1, we can see (using the L1 metric) the distance between
images (a) and (b) is 0.125 while the distance between images (b) and (c) is 0.750. When processing high-
dimensional similarity queries, an ef£cient access method is needed because a full linear scan on the raw data set
is typically not practical. On the other hand, techniques based on a linear scan of preprocessed data have been
quite successful.

Most access methods require the distance function (or similarity function) to be a metric. Given a set of
objects si ∈ S, a distance function d( ) is a metric if it obeys the following properties:

1. Symmetry: d(sa, sb) = d(sb, sa)
2. Non-negativity: 0 ≤ d(sa, sb) <∞
3. Re¤exivity: d(a, a) = 0
4. Triangular inequality: d(sa, sb) ≤ d(sa, sc) + d(sb, sc)
A Similarity Search is de£ned as searching in a set of objects for the most similar objects to the query object

based on some criteria or similarity function. The two most important types of queries for similarity search
in high-dimensional data and metric data are range queries (RQ) and nearest neighbor queries (NN). Given a
query object q and a database S, range queries are de£ned as RQ(q, r) = {s i ∈ S|∀si ∈ S : d(si, q) ≤ r}
where r is the radius (range) of search and d(i, j) is a metric distance function which measures the distance
between database objects i and j. In Figure 2(a), the answer to range query q would be to return all objects which
are less than distance r to q, i.e., all objects inside the ring around q. The nearest neighbor of q is de£ned as
NN(q) = {sNN ∈ S|∀si ∈ S : d(sNN , q) ≤ d(si, q)}. Nearest neighbor queries can also be generalized to
retrieve the K-nearest objects to the query object. In Figure 2(b), K = 3, therefore the 3 nearest objects to q will
be returned as the answer.

Indexing high-dimensional data is a hard problem due to the dimensionality curse. Often, as the dimen-
sionality of the feature space increases, the ratio of the distance of the nearest neighbor and the distance of the
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Figure 2: (a)Range Query (radius = r) (b)K-Nearest Neighbor Query (K=3)

farthest neighbor decreases [8]. This makes the problem dif£cult because many access methods attempt to dis-
card objects based on their approximate distances to the query object while processing similarity queries. As
the ratio of the distance of the nearest objects and the distance of the farthest objects decreases, access methods
have a more dif£cult time differentiating between the objects close to the query object and those far away from
the query object. In [34] the authors show that many access methods may degenerate to a sequential scan once
the number of dimensions is suf£ciently large. There are two main reasons why this occurs. One is that the cost
of random disk I/Os is much greater than the cost of sequential disk I/Os. If an access method with a random
access pattern does not access relatively few data pages, a sequential scan may be faster. It is also argued in [34]
that a sequential reading of a set of pages on disk is faster than randomly reading as few as 20% of the same
pages, which can likely be the case for high-dimensional data. In an interview with ACM Queue, Jim Gray says
“Certainly we have to convert from random disk access to sequential access patterns. Disks will give you 200
accesses per second, so if you read a few kilobytes in each access, you’re in the megabyte-per-second realm, and
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it will take a year to read a 20-terabyte disk. If you go to sequential access of larger chunks of the disk, you will
get 500 times more bandwidth–you can read or write the disk in a day. So programmers have to start thinking of
the disk as a sequential device rather than a random access device” [27]. This illustrates the importance of access
methods using sequential access patterns as opposed to random access patterns. Yet another reason is that most
access methods use a tree-like structure with hierarchical minimum bounding regions to index objects. Minimum
bounding regions are de£ned as the smallest region which contains a set of objects. The overlap and volume of
these bounding regions increase sharply with the increase in the dimensionality, causing many branches of the
tree to be searched; as well, the fanout of the indexing tree decreases, yielding taller and thinner search trees.

The main contribution of this thesis are three new access methods aimed at providing a solution to the problem
of ef£cient similarity search for high-dimensional data and metric data.

Motivation for our £rst two approaches comes from examining the OMNI-Sequential (OSEQ) algorithm
which makes use of the OMNI Access method [16]. This method reduces the dimensionality of the feature
space into a lower dimension, determined by a number of reference points (referred to as pivots). Pivot objects,
which are selected from the data set, and OMNI-coordinates (precomputed distances from the data objects to the
pivot objects) are used to increase the performance of similarity queries.

In this thesis we introduce two new access methods, the OMNI-Sequential+ (OSEQ+) and the OMNI-Sequential∗

(OSEQ∗). Using the OSEQ+, the time required to answer a similarity query can be further decreased by (1) identi-
fying the best pivot object and by (2) changing the order the OMNI-coordinates are stored. The OSEQ∗ algorithm
builds on the OSEQ+. In this algorithm we propose to select more pivot objects than will be used at query time
and at query time only use the best pivot objects to improve the performance of the OSEQ∗. In Section 3.3 we
will explain how to select these pivot objects. We show that for a vector space, Principal Component Analysis
(PCA) selects better pivot objects than the pivot objects selected by the algorithms proposed in [12] and [16].
Our experimental evaluation using real and synthetic data sets shows that one can achieve up to three times faster
query processing when compared to the original OSEQ at the cost of little storage overhead. We also show ex-
perimentally that the OSEQ+ method is up to 24 times faster than the VA-File when processing range queries
and up to 69 times faster than a sequential scan of the data set.

Motivation for our third access method comes from further examination of the VA-File [34]. The VA-File
is arguably the most ef£cient access method for similarity search in high-dimensional data. It partitions the
data space into a grid and creates approximations of the data objects based on the cells in the grid containing
the objects. Its main advantage is it sequentially scans the £le containing these approximations, which is much
smaller than the size of the original data £le.

The third contribution of this thesis is we show how to construct a grid1 for any metric space (including
of course Euclidean space) and perform ef£cient similarity searches. Such a grid is used to cluster the objects
ef£ciently using any clustering algorithm, even if the data set is not vectorial. We will show how the clusters can
be searched ef£ciently for similarity search queries and how the correctness of the answer set is guaranteed by
the properties of the grid. Our experimental results show that we can perform query processing up to 42 times
faster with our access method than a sequential scan of the original data set and up to 10 times faster than the
VA-File. In addition, our method works in all metric spaces, can be easily implemented and scales well with
increasing the number of nearest neighbors retrieved.

1.1 Thesis Outline

This thesis is structured as follows. Section 2 discusses the related work to indexing high-dimensional data
and metric data. Section 3 details the OSEQ+ and OSEQ∗ methods and the experimental results showing the
ef£ciency of our proposed methods. The Metric Grid is described in Section 4, along with how the grid can be

1The grid is actually a pseudo-grid. It is not possible to construct a real grid in general metric space because there may be no actual
data space with actual dimensions to be partitioned.
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used to perform ef£cient similarity search and experiments are displayed comparing the M-Grid to the VA-File
and a sequential scan of the data set. A conclusion and summary of this thesis will be given in Section 5.

2 Related Work

There are many proposed methods attempting to solve the problem of ef£cient similarity search for high-dimensional
data sets and general metric data sets. Most methods suffer from the dimensionality curse, the one notable excep-
tion is the VA-File, or cannot index metric data. In this section we present an overview of access methods which
can be used for high-dimensional data sets and/or metric data sets.

The proposed indexing structures described in this section either use a tree-based structure, a linear scan-
based structure or a combination of the two. Tree-based structures try to group objects which reside closest to
each other in the data space. These groups of objects are typically stored as minimum bounding regions which
are de£ned as the smallest region which contains the set of objects. Minimum bounding regions are stored in a
hierarchical manner for similarity search. The tree structure (Figure 3) is searched by visiting branches in the
tree which intersect the query region. For range queries, the volume of the query region remains constant with
radius r, while for nearest neighbor queries, the volume will decrease as nearer objects to the query object are
found, reducing the radius of the query region. Trees exhibit random access patterns, therefore if a tree-based
access structure cannot access relatively few data pages, a sequential scan of the same set of pages may be faster.
This is often the case for high-dimensional data sets and metric data sets.

Disk Pages

Figure 3: Organizing data in a tree structure for similarity search

Linear Scan-based approaches preprocess and store the data in sequential £les (Figure 4). At query time
portions of the preprocessed data are read sequentially. Although this can mean accessing more disk pages,
sequential disk accesses are much less expensive than random disk accesses, therefore the ef£ciency of similarity
search can be increased even if more disk pages are accessed. Two possible linear scan-based approaches to
tackle the problem of high-dimensional and/or metric similarity searches are: to reduce the dimensionality of the
feature space or to reduce the granularity of the feature space. Reducing the dimensionality of the feature space is
achieved by mapping objects from the original feature space into a lower dimensional space. The coordinates of
each object in the lower dimensional space can be read sequentially. The mapping into a lower dimensional space
preserves the relative distances of the objects so similarity search can still be preformed while still guaranteeing
the correctness of the answer. Reducing the granularity of the feature space requires approximating the position
of objects in the data space. This approach sequentially reads the approximations of the objects (which requires
less storage space than the original feature vectors) and performs a re£nement step to guarantee the correctness
of the answer.
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Disk Pages

Figure 4: Storing preprocessed data for similarity search in a sequential £le

2.1 Indexing Structures for Vector Data

Vector data has the property that all attributes of an object are numerical. This gives positional information about
the data objects in a vector space that can be used for indexing. There are many indexing structures proposed
which can only index vector data because they require information about the position of each object in the data
space in order to create approximations and minimum bounding regions of groups of objects. Two partitioning
strategies for vector data are data partitioning and space partitioning. The indexing structures partition the data
space in order to obtain approximations of where objects lie in the data space. This allows sub-regions to be
accessed in the data space and to discard objects or groups of objects from the answer set without computing the
actual distance between the query object and every object in the data set.

2.1.1 Data Partitioning Structures

Indexing structures using the data partitioning strategy divide the objects in a hierarchical manner depending on
the distribution of the data set. The objects are partitioned into cells or minimum bounding regions which are
stored in nodes of equal size. Indexing structures which use the data partitioning strategy are the R-tree, the
R∗-tree, the TV-tree, the SS-tree, the X-tree and the SR-tree.

The R-tree [17] is a multi-dimensional indexing structure. It was originally designed for 2D spatial data
(though it can be easily generalized to multi-dimensional space) and can handle rectangles and point data. The
data in a R-tree is partitioned into minimum bounding rectangles (MBRs) in a hierarchical manner and attempts
to minimize the area of the MBRs. As it will be clear shortly, it is important to minimize the area of the MBRs
because the larger their area, the greater the probability an MBR will intersect the query region, leading to
accessing more nodes during similarity search.

The R-tree is height-balanced tree, meaning each leaf node is the same distance from the root node. Each
leaf node has the form (ObjID,Rt) where ObjID is a pointer to the actual object in the database and Rt is the
MBR that contains the object. Non-leaf nodes are composed of (ChdP,Rt) where ChdP is a pointer to a child
node and Rt is the MBR that contains all the objects in its sub-tree. An example R-tree is shown in Figure 5(a)
and refers to the points in Figure 5(b). Rectangle R1 completely covers rectangles A, B and C which are situated
in R1’s sub-tree.

The R-tree is a dynamic indexing structure, objects can be inserted and deleted from the tree without com-
pletely rebuilding the tree. Each node in the R-tree corresponds to one disk page and must contain between m
and M objects except the root node. The root node must be able to have less than m children because when
beginning to build the R-tree, initially there are no objects and the only node is the root node. The nodes in the
R-tree are not usually completely full as it is unlikely for all nodes to have M objects because objects are inserted
into the node in the tree for which the volume of the MBR increases the least, not the node which has the least
objects. The reason for creating a lower bound m and an upper bound M on the number of objects in a node is
prevent storage utilization from being too low but still maintain the tree structure. The value of M is dependent
on how many objects can £t on one disk page because it is assumed the complete R-tree is too large to £t in
main memory and must be stored in secondary memory. The value of m is less than or equal to M

2
because if a

node splits during the insertion of an object and m > M
2

, the objects would not be able to be split into two new
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nodes and have at least m objects in each of the two new nodes. Nodes can over¤ow or under¤ow as objects are
inserted or deleted from the R-tree. If a node over¤ows, i.e., the number of objects in the node becomes greater
then M , the node is split and the split propagates towards the root node maintaining the height of the tree. For
deleting objects, if a node under¤ows, i.e., the number of objects in the node becomes less than m, all the objects
in the node are reinserted into the tree.

The search algorithm for the R-tree begins at the root node and descends toward the leaf level. At each node
the distance between the query object and the MBR is computed as the minimum distance to any point in the
MBR (Figure 6). If the MBR of the node intersects the query region, its sub-tree is also searched. The query
region can intersect more than one MBR so many sub-trees and branches may have to be searched. In Figure 5(a)
and (b), the distance from MBRs R1, R2 and R3 will be computed to the query object. If the MBRs intersect
the query region, their sub-trees will also have to searched. Sub-trees of MBRs not intersecting the query region
do not have to be searched because no objects in the sub-tree can be in the answer set to the query. The reason
for this is the MBR contains all objects in its sub-tree, therefore if the MBR does not intersect the query region,
no objects inside the MBR can either. The search algorithm ends when all leaf nodes which intersect the query
region have been accessed.

d(q,MBR)

q

Figure 6: Computing the distance from the query object to MBRs in the R-tree

For NN queries, the search algorithm for the R-tree (Figure 7) begins by computing the distance from the
query object to each MBR in the root node. The distances are stored in a sorted list called the Active Node List
(Anl). The MBR closest to the query object is searched £rst and this process continues recursively down to the
leaf level. If a leaf node is accessed, the actual distance from the query object to each object in the leaf node is
computed and the nearest neighbor distance (NNdist) is updated if a nearer object to the query object is found.
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R-tree NN Search Algorithm: Find the nearest neighbor to the query object
Input : Query Object q, Active Node List Anl = [root], Nodes in the R-tree ni ∈ N , Objects in the data

set si ∈ S

Output : Nearest Neighbor (NN) to q

NN = Null

NNdist =∞

while Anl Not Empty do
ni = £rst node in Anl

if ni is leaf node then
foreach si ∈ ni do

if d(q, si) < NNdist then
NN = si

NNdist = d(q, si)

Prune Anl with NNdist

else
/*ni is an internal node*/

foreach Child Node ci in ni do
if d(q, ci) < NNdist then

Insert ci into Anl

Figure 7: R-tree Nearest Neighbor Query Search Algorithm

Nodes in the Anl are pruned and removed if their minimum distance to the query object is not less than the current
NNdist. Each Node in the Anl must be searched to guarantee the answer is correct, the algorithm stops when the
Anl is empty, indicating there are no more MBRs closer than the NNdist to the query object.

For range queries, the search algorithm (Figure 8) is slightly different because the radius r of the query is
known in advance unlike the actual NN distance. The search algorithm computes the distance to each MBR in
the root node from the query object. Each MBR whose distance to the query object is less than or equal to r
is placed in the Anl and must be searched. This continues until all nodes in the R-tree have been searched or
pruned.

The R-tree is ef£cient for a small number of dimensions but is shown to perform poorly for high-dimensional
data (dimensionality greater than 10) [7]. This occurs because in high-dimensional space, the volume and overlap
of the MBRs increase sharply causing many branches in the tree to be searched for each query, as well, the fanout
of the tree decreases. The importance of the R-tree is it laid a foundation for others to build upon. As will be
seen shortly, many proposed indexing structures are based on the R-tree.

An indexing structure very similar to the R-tree is the R∗-tree [5]. The R∗-tree improves on the R-tree by not
only minimizing the area of the MBRs, but also minimizing the overlap of the MBRs and increasing the storage
utilization of the MBRs. Minimizing the overlap is important because if two MBRs exhibit high overlap, there is
a high probability they will have to be both accessed for the same queries. Increasing the storage utilization will
mean the disk pages are more full and the height of the tree will be less. This will reduce the number of nodes
needing to be accessed to reach the leaf level of the tree and to answer similarity queries. The R∗-tree employs
the notion of forced reinsert which reinserts all entries of a node that over¤ows during the insertion of an object.
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R-tree Range Query Search Algorithm: Find all the objects within distance r of the query object
Input : Query Object q, Query Radius r, Active Node List Anl = [root], Nodes in the R-tree ni ∈ N ,

Objects in the data set si ∈ S

Output : List of objects whose distance to q is less than r, rList

while Anl Not Empty do
ni = £rst node in Anl

if ni is leaf node then
foreach si ∈ ni do

if d(q, si) ≤ r then
Insert si into rList

else
/*ni is an internal node*/

foreach Child Node ci in ni do
if d(q, ci) ≤ r then

Insert ci into Anl

Figure 8: R-tree Range Query Search Algorithm

This has been shown to increase the ef£ciency of the R∗-tree because it provides an opportunity for dissimilar
objects originally placed in the same node to be placed in different nodes as more similar objects are inserted into
the tree. The R∗-tree is shown to outperform the R-tree, but like the R-tree still suffers from the dimensionality
curse.

The TV-tree (Telescopic-Vector tree) [23] is one of the £rst indexing structures proposed speci£cally for
high-dimensional data. The TV-tree proposes to use only a few features to distinguish between objects in the
database at each level of the tree. By using a few features, the tree suffers less from the dimensionality curse.

The TV-tree uses a hierarchical structure (Figure 9(a)) similar to the R-tree. Feature vectors are stored in
the leaf nodes and the parent (internal) nodes contain the TMBR (telescopic minimum bounding region) of its
children, this continues recursively until the root node. The authors note that TMBRs can be stored as any shape,
but in the paper spheres are used as they can be represented more simply by just storing the centroid and the
radius of the sphere. The TMBR of a node contracts or extends depending on the objects inserted into or deleted
from the region. The TV-tree uses less dimensions close to the root and more dimensions as we descend down the
tree to distinguish between objects. Techniques such as Karhunen Loeve transform, Discrete Cosine transfrom
and Discrete Fourier transform can be used to £nd the dimensions which exhibit the most discriminative power.
These dimensions are used at higher levels of the TV-tree when searching because the distance between objects
can be distinguished more accurately using these dimensions than the dimensions with less discriminative power.
This can prevent searching to the leaf level for many branches of the tree and allows the TV-tree to have a higher
fanout in the higher levels of the tree because only a few of the most important dimensions are stored.

As the tree grows, the leaf levels may consist of some objects which agree on their £rst k dimensions, these
dimensions are considered inactive. The dimensions the objects differ on are the active dimensions and are used
to distinguish between objects in the same nodes. In Figure 9(b) only one active dimension is used. The active
dimension for objects A and B is D1, while for objects E and F, the active dimension is D3. This means the
TV-tree will only be able to distinguish between objects A and B using dimension D1. The TV-tree can however
use more than one active dimension. TMBRs in the tree can overlap each other and like MBRs in the R-tree, it is
more ef£cient to minimize the overlap of the TMBRs to minimize the number of branches to be accessed during
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similarity search.
Searching of the TV-tree is similar to the R-tree and always starts at the root node and follows the branches

which intersect the query region. For NN queries, the most promising branches are searched £rst, i.e., the
branches closest to the query object. This allows nearer objects to the query object to be found £rst and branches
far away can be pruned. Objects are inserted into the most suitable branches of the TV-tree using the following
criteria; (1) minimizing the overlap of the TMBRs, (2) the new object agrees on as many coordinates as possible
in the sub-tree, (3) minimize the increase in the radius of the TMBR and (4) minimize the distance to the center
of the TMBR. If the chosen node is full, leaf nodes are reinserted once and then split if the node over¤ows again,
while internal nodes are always split. Deletion is straight forward, if the node under¤ows, the node is deleted and
all the objects in the node are reinserted into the TV-tree.

The TV-tree has been shown to be more ef£cient than the R∗-tree, but relies on two assumptions. There
must be an “order of importance” of the dimensions of the data space. If all dimensions are equally important,
the TV-tree will not be able to discriminate effectively between objects in the tree at high levels. The second
assumption is that sets of feature vectors will tend to exactly match on some dimensions, especially on the
important dimensions. This assumption often does not hold for real-valued data sets. The reason is that objects
from real data sets, while they are often clustered, they will rarely have an exact match on many dimensions unless
a discrete value distance function is used. If these two assumptions fail to hold for the TV-tree, its ef£ciency will
sharply decline.

The SS-tree (Similarity Search tree) [35] is a R-tree variant designed for similarity search in high-dimensional
spaces. The main design of the SS-tree is very similar to the R∗-tree except minimum bounding spheres (MBS)
are used instead of minimum bounding rectangles to index the data space. Like the R-tree and the R∗-tree, the
SS-tree is a dynamic indexing structure for vector data.

The structure of the SS-tree is shown in Figure 10(a). The objects are grouped together by spheres in a
hierarchical manner where the parent nodes sphere completely bounds all the spheres of the nodes beneath it in
the tree (Figure 10(b)). Each internal node keeps track of the centroid and the radius of the sphere and the number
of children in the subtree. This allows the SS-tree to have a larger fanout than the R∗-tree because spheres can
be stored in half the space of rectangles. Minimum bounding rectangles have to store two coordinates for each
dimension while minimum bounding spheres only need to store the centroid which requires one coordinate for
each dimension plus the radius of the sphere. The radius of the sphere is the distance to the furthest object from
the centroid.

The algorithm to search the SS-tree is also similar to the R∗-tree. The closest nodes to the query object are
visited £rst for nearest neighbor queries. The distance between each MBS and the query object is computed as
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Figure 10: The SS-tree Structure

the minimum distance from the query object to the MBS. The algorithm stops when all nodes (MBSs) have been
either visited or pruned. The SS-tree also uses the same insertion algorithm as the R∗-tree. The concept of forced
insert is used and each node has a minimum of m and maximum of M children. To insert an object into the
SS-tree, the tree is traversed until the object’s leaf node is found and all nodes along the way are updated by
adjusting the radius of the node. The rule is to insert the objects into the subtree whose centroid is closest to the
object. If the node over¤ows, the objects are reinserted into the tree. If the objects in the node have already been
reinserted and the node over¤ows again, the parent node is split. The split algorithm searches for the dimension
with the highest variance and then chooses a split location, this minimizes the variance in each of the new nodes.

The SS-tree is compared to the R∗-tree and is shown to be more ef£cient. One reason for this is the SS-tree
has a larger fanout than the R∗-tree. This allows more MBSs to be stored in each node, decreasing the number of
nodes which have to be accessed from disk during similarity search.

The X-tree (eXtended node tree) [7] is also an adaptation of the R∗-tree and is intended for high-dimensional
data. The X-tree attempts to deal with the shortfall of the R∗-tree that the overlap of directories becomes large
as the dimensionality of the data space increases. This causes many directories in the tree to be searched for
the same queries because if two MBRs have a high degree of overlap, often both MBRs will intersect the query
region for the same queries.

The solution the X-tree provides is to avoid splitting nodes in which the two nodes will exhibit a high degree
of overlap. Instead of splitting a node and introducing two nodes with high overlap, the node is extended to create
a supernode. In Figure 11 the shaded nodes indicate supernodes. Supernodes allow portions of the data to be
organized sequentially on disk. If both nodes will have to be searched anyway, a sequential scan of the supernode
is performed to avoid using a random disk access to access each of the nodes that would have resulted if the
node had been split. The size of supernodes are multiples of the size of ordinary nodes. Results have shown the
number of supernodes in the X-tree increases with the dimensionality. The storage utilization of the X-tree also
increases because there are less nodes in the tree, reducing the space which is not used.

The insertion algorithm for the X-tree is also similar to the R∗-tree. The algorithm determines the node to
insert the object in the same way as the R∗-tree and inserts the object in this node. If the node splits, the split
algorithm attempts to £nd a good split. If the split algorithm can not £nd a good split in which each of the new
nodes will contain at least m MBRs, the split algorithm terminates without splitting the node and the current
node is extended to a supernode. The deletion of objects is similar to the R∗-tree.

The X-tree has two special cases. For data sets which exhibit no overlap, no supernodes will be created and
the X-tree will be very similar to the R∗-tree. For high-dimensional data with high overlap, the complete directory
could become one large supernode and the X-tree would be equivalent to a sequential scan of the data set. Most
data sets will create an X-tree similar to Figure 11 with a portion of nodes being extended to supernodes. The
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Figure 12: The SR-tree Structure

X-tree is shown to be up to two orders of magnitude more ef£cient than the R∗-tree tree for high-dimensional data
sets. The X-tree, like the R∗-tree, still suffers from the dimensionality curse, but delays it to higher dimensions
than the R∗-tree.

The SR-tree (Square/Rectangle tree) [20] is an R-tree variant designed to overcome the de£ciencies of the R∗-
tree and the SS-tree for high-dimensional data. The main difference in the structure of the SR-tree from the R∗-
tree and the SS-tree is the SR-tree uses minimum bounding spheres (MBSs) and minimum bounding rectangles
(MBRs). An example SR-tree is shown in Figure 12(a) and refers to the points in Figure 12(b). Minimum
bounding regions in the SR-tree are de£ned by the intersection of MBRs and MBSs. This is to decrease the
volume of the minimum bounding regions and improve the disjointness between the regions. Figure 13(a) and
(b) illustrate this concept as the shaded regions show the intersection of the MBRs and MBSs. By using both
MBSs and MBRs, nodes E and F do not exhibit any overlap (Figure 13(a)) and the minimum bounding regions
of all nodes are reduced.

The R∗-tree and SS-tree have been shown to perform poorly in high-dimensional spaces because the directo-
ries in the trees tend to exhibit high overlap causing many directories to be searched for each query. The intuition
behind the SR-tree is the diameter of hyperspheres tend to be much shorter than the diagonal of hyperrectangles
in high-dimensional space, but the volumes of hyperspheres are much larger. By using both spheres and rectan-
gles, the SR-tree inherits the bene£ts of both the minimum bounding spheres of the SS-tree and the minimum
bounding rectangles of the R∗-tree. The SR-tree can prune sub-trees more effectively using MBSs and MBRs
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and prevent having to access a large portion of the leaf level of the tree.
The insertion algorithm for the SR-tree is based on the SS-tree and chooses the subtree whose centroid is

closest to the object being inserted. The authors choose to insert objects into the SR-tree based on the centroids
of the MBSs rather than use the MBRs because experimental results show this method to be more effective.
When a leaf node over¤ows, a portion of the entries are reinserted into the tree. The node is split if the entries
are reinserted into the same nodes. The deletion of objects is performed the same way as the R-tree, if a node
under¤ows, the entries in the node are reinserted into the tree. For the deletion and insertion of objects in the
SR-tree, both the minimum bounding spheres and minimum bounding rectangles have to be updated.

The nearest neighbor search algorithm used for the SR-tree is very similar to the R∗-tree and the SS-tree. One
difference is the R∗-tree computes the distance between the query object q and the MBR as the minimum distance
to the MBR (Figure 14(a)) and the SS-tree computes the distance between q and the MBS as the minimum
distance to the MBS (Figure 14(b)). Since the SR-tree stores MBRs and MBSs in each node, the distance from
the query object to the bounding region R is computed as the longer of the minimum distance to the MBR and
the MBS. This allows the distances to regions to be estimated more accurately. In the example in Figure 14(c),
the distance to the minimum bounding region for the SR-tree (d(q,R)) will be equal to d(q,MBR) and not
d(q,MBS) because is this example d(q,MBR) > d(q,MBS).

Nodes in the SR-tree contain a smaller number of entries than the SS-tree and R∗-tree because it stores a MBR
and a MBS for each minimum bounding region in each node. This causes the SR-tree to have a smaller fanout.
The SR-tree on the other hand prunes branches more ef£ciently than the R∗-tree and the SS-tree because the
minimum bounding regions of the SR-tree have a smaller volume. This occurs because the minimum bounding
regions of the SR-tree are formed by the intersection of the MBRs and the MBSs (shaded regions in Figure 13).
The SR-tree requires far fewer disk accesses at the leaf level because more branches of the tree are pruned at
higher levels of the SR-tree because the minimum bounding regions have a smaller hyper-volume. The SR-tree
has been shown to outperform the R∗-tree and the SS-tree but still suffers from the dimensionality curse.

2.1.2 Space Partitioning Structures

Unlike the data partitioning strategy, space partitioning strategies partition the data space into cells or a grid. The
objects are indexed depending on the cell in the grid that contains the object. Here we will present two access
methods which use the space partitioning strategy, the VA-File and Clindex.

The VA-File (Vector Approximation File) [34] is proposed for similarity search in high-dimensional spaces.
The VA-File method does not use a tree structure but instead stores an approximation of the feature vector of each
object in a sequential £le and performs a sequential scan of the vector approximations. The vector approximations
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are compressed representations of the original feature vectors and are typically 25% of the size of the original
feature vectors.

To obtain the vector approximations, the data space is divided 2l times along each dimension where l is
the number of bits used per dimension. This divides the data space into 2l×D hyperrectangular cells where D
is the dimensionality of the data space and each object is approximated by the bit string of the cell where it
lies. In the example in Figure 15, two bits are used per dimension resulting in 16 (22×2) hyperrectangular cells
(l = 2, D = 2). In the example, object B can be approximated by (01, 11) (4 bits of storage) instead of the
original values of (0.299, 0.783), which will require two ¤oats to store the values. The bit string is used to
compute the approximation of each object because the partitions in each dimension are stored.

For each query the VA-File is read sequentially and a lower bound and upper bound on the actual distance
between the approximate feature vector of each object and the query object is computed. This is illustrated in
Figure 16. The lower bound distance is computed from the query object to the nearest point in the object’s cell
and the upper bound is computed as the distance from the query object to the farthest point in the object’s cell.
Objects with lower bounds greater than the query radius (for range queries) or the current kth smallest upper
bound (for K-nearest neighbor queries) are pruned from the candidate set because their actual distance to the
query object must be too large for the object to be in the answer set. This allows many objects to be pruned from
the candidate answer set without having to retrieve the object’s full feature vector. To guarantee the correctness
of the answer, a re£nement step is performed where the actual distance between objects not pruned and the query
object is computed. Typically, if l is chosen to be large enough, this method only requires retrieving a small
number of actual feature vectors in the re£nement step.

One problem with the VA-File is l has to be chosen before the VA-File is constructed. If l is chosen poorly,
it can severely limit the performance of the VA-File. If l is too small, a large number of feature vectors will
have to be retrieved from the original data £le. This is expensive because each feature vector must be accessed
randomly because there is no order in the original data £le. If l is chosen to be too large, there will be very little
savings over a sequential scan of the original data set because the entire VA-File is read for every query. The
VA-File must also compute a large number of high-dimensional distance calculations. The number of distance
calculations is linear with the cardinality of the data set.

The VA-File has been shown to exhibit linear performance with respect to the cardinality and dimensionality
of the data set. It should be noted the VA-File can only index vector spaces because a grid of the data space
must be constructed. In high-dimensional spaces, the VA-File has been shown to outperform the R∗-tree and the
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X-tree.
An Access method which partitions the data space into a grid and clusters the data set is Clindex [21]. Clindex

answers approximate similarity search queries, i.e., it does not guarantee the correct answer. By answering
approximate similarity queries, Clindex trades accuracy for ef£ciency. Each dimension is divided into strips
which form cells and the cells are grouped into clusters using a simpli£ed version of the CLIQUE clustering
algorithm [3]. The clusters are stored sequentially on disk and an index is built to provide fast access to the
clusters. This enables the algorithm to perform approximate similarity search by visiting a few clusters and
reading all the objects sequentially within the visited clusters.

For similarity search, the cell the query object belongs to is £rst identi£ed by mapping the query object’s
feature vector to the ID of the cell that contains it. The cell containing the query object is looked up in the
mapping table (Figure 17). Only cells containing objects are stored in the mapping table, if the cell contains any
objects, then the cluster it belongs to is accessed. If the cell is empty, then the distance from the query object to
the centroid of each cluster is computed to determine the closest clusters.

Cluster ID
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2

2

7

Cluster Directory

filename = file1

centroid = (...)

filename = file2

centroid = (...)

filename = file7

centroid = (...)

0 0 0 1 1
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0 1 0 1 0

1 0 0 1 1

Mapping Table

Cell ID

Disk

Figure 17: Clindex

Clindex provides approximate similarity search so the answer set is not exact. The authors say approximately
90% of the exact answer set is returned on average after retrieving only a few of the closest clusters to the query
object. The effectiveness of this method will also depend on how good the clustering algorithm is and the size of
the clusters. The authors only test Clindex on vector data, and it is shown to be more ef£cient than other methods,
but because it does not return the exact answer, its effectiveness is not guaranteed.

2.1.3 Hybrid Partitioning Structures

In an attempt to increase ef£ciency, some access methods have combined the data and space partitioning strate-
gies. We will describe two indexing structures which use both partitioning strategies, the A-tree and the IQ-tree.

The A-tree (Approximation Tree) [29] is designed from studying the SR-tree and the VA-File. The authors of
the A-tree attempt to use the best attributes of both structures to create an index structure ef£cient for similarity
search in high-dimensional spaces. The A-tree partitions the data into minimum bounding regions, but also
partitions the data space inside MBRs to create approximations of the child MBRs. Like the VA-File and SR-
tree, the A-tree is only suitable for indexing vector space.

The A-tree uses a tree structure similar to the R-tree family of data structures. The main distinction of the
A-tree is it uses Virtual Bounding Regions (VBR) to approximate MBRs which can be stored more compactly
to increase the fanout of the tree. In Figure 18, Rectangle B (RB) is approximated by VB which can be stored
using less space, i.e., using less bytes than the absolute coordinates of RB because the coordinates of VB are
stored as binary sub-codes and the actual coordinates of RB are stored as ¤oats. The VBRs in the A-tree are
calculated using the sub-codes and the coordinates of the parent MBR. This is possible because each node in
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the A-tree contains the MBR of the node and the VBRs of each childnode. The data space of the parent MBR
is partitioned allowing the coordinates of the VBRs to be computed from the sub-codes. In this example, each
sub-code of VB can be stored using 4 bits, while each coordinate of RB will be stored using 1 ¤oat (32 bits).
Unlike the VA-File which uses absolute vector approximations and uses the same level of accuracy throughout
the data space, the approximations in the A-tree adapt to the data distribution. This allows VBRs in more dense
regions to be approximated by more bits and increases the accuracy of the VBRs.

Like the SR-tree, the A-tree uses minimum bounding spheres (MBS) to insert objects. The A-tree does
not use the MBSs for similarity search because experiments have shown they are not as effective as MBRs for
pruning branches in high-dimensional spaces. In high-dimensional spaces the hyper-volume of MBSs increase
more rapidly than MBRs which increases the probability of visiting the node. Updating the A-tree is similar to
the SR-tree, the main difference is the VBRs have to be updated and the MBSs are stored separately as they are
only used for the insertion of objects.

Nodes in the A-tree consist of one MBR and its children VBRs. This allows each node to contain information
about two levels of the tree as each VBR in a node covers its entire subtree. VBRs approximate MBRs using less
bits, but to ensure an exact answer, each VBR completely contains the MBR it approximates, e.g., in Figure 18,
VB completely contains RB .

Searching the A-tree is similar to the R-tree. For similarity search nodes are visited in order of the minimum
distance to its MBRs so the nearest sub-trees are searched £rst. Nodes are only pruned if the query region does
not intersect the VBR of a node. If the VBR of a node intersects the query region, then the node containing the
actual MBR that the VBR approximates is accessed. This process continues down to the leaf level of the tree.

In most tree index structures, the number of entries in a node is less than the maximum number of entries, so
there is space not being used in nodes. The A-tree employs full utilization to make full use of all storage in a node.
The empty space is used to increase the accuracy of the approximations (VBRs) and reduce the approximation
error. This makes it less likely to access a sub-tree because the query region intersects the VBR, but does not
intersect the MBR. Performance tests have shown the A-tree to access less disk pages than the VA-File and
SR-tree for high-dimensional data.

It has been shown that hierarchical, directory based indexing structures are more ef£cient in low-dimensional
spaces. These indexing structures tend to exhibit the dimensionality curse and are outperformed by a simple
sequential scan of the original data set in higher dimensions. Linear scan-based compression techniques are
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more effective in high-dimensional data spaces as they tend not to suffer from the dimensionality curse, i.e, the
VA-File. The IQ-tree [6] is designed from examining the R∗-tree and the VA-File. The IQ-tree’s intention is to
perform well in both low-dimensional and high-dimensional spaces by using the data partitioning strategy of the
R-tree family of indexing structures and the space partitioning strategy used by the VA-File.

The IQ-tree is a combination of the R∗-tree and the VA-File and tries to combine the bene£ts of both. It
consists of 3 levels. The £rst level is a ¤at directory of MBRs (Figure 19(a)). As in the R ∗-tree, the MBRs
describe the region containing all the objects in its subtree. The main difference is the IQ-tree does not use
a tree structure to store the MBRs as the R∗-tree does, but instead uses a ¤at directory £le which can be read
sequentially to prevent expensive random disk accesses. The MBRs are also not constructed down to the leaf
level, i.e., the data is only partitioned as far as it is considered bene£cial. The stopping point is chosen based on a
cost model to maximize the ef£ciency of the IQ-tree. The second level of the IQ-tree is similar to the VA-File and
consists of quantized data pages (Figure 19(b)). At this level the IQ-tree partitions the data space containing the
objects (the MBRs). Unlike the VA-File, the IQ-tree uses different compression rates, i.e., variable bit encoding
is used. This allows higher density regions of the data space to use more bits and increase the accuracy of the
approximations when required. The data pages are a £xed length so the number of approximations stored on
each page depends on the accuracy of the approximations. The third level of the IQ-tree (Figure 19(c)) consists
of the original data pages of the feature vectors of the objects. The actual feature vectors of objects not pruned
must be accessed in the re£nement step. In Figure 19(b), the quantized data page with 32 bits has a null pointer
because when it is determined the approximation should be quantized to 32 bits, the original feature vector is
stored instead, therefore the original feature vector will be accessed in level 2 and is omitted from level 3. A cost
model is derived for the IQ-tree and is used to determine the compression rate and accuracy of the approximations
which provides the most ef£cient similarity search for the data set. The goal is to £nd the lowest compression
rate which provides suf£cient accuracy to prune most objects not in the answer set to prevent having to access
many objects in the third level of the tree.
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For similarity search, the IQ-tree begins by sequentially reading the entire ¤at directory £le of MBRs. The
distance to the MBRs is computed in the same way as the R∗-tree. MBRs not intersecting the query region are
pruned and the objects in these MBRs are not considered further. The approximations in the second level of the
tree are in the same order as the MBRs in the £rst level and the approximations of objects in MBRs not pruned
are read sequentially. Each time a pruned object is reached, the IQ-tree calculates where the next object to be read
is located. The IQ-tree either reads the pruned objects or skips over them depending on which is more ef£cient.
The reason is it can be faster to read a few pruned objects sequentially rather than use a more expensive random
disk access to skip to the next object not pruned. The third level of the IQ-tree is used for the re£nement step and
all points which have not been pruned in the £rst two levels are accessed.

The IQ-tree has been shown to outperform the X-tree and the VA-File in uniform and clustered data sets. The
IQ-tree combines both the tree structure and the minimum bounding regions of the R∗-tree and the approxima-
tions of the VA-File to make an indexing structure useful for both low and high dimensional spaces.

2.2 Indexing Structures for General Metric Data

General Metric data, unlike vector data, does not have to consist of all attributes being numerical, nor does the
number of attributes have to be constant for each object, i.e., video clips, audio clips, £nger prints, etc. The
only information available to index metric data is the distance between all data objects can be computed. Metric
Access Methods (MAM) require the distance function is a metric so objects can be pruned using the triangular
inequality property.

In metric spaces objects can be pruned during similarity search using the triangular inequality property.
By using precomputed distances between objects and pivots, objects which are far away from the query object
can be discarded without computing the object’s actual distance to the query object. For a query object q and
a query radius r, the pruning ring for a pivot pi is de£ned by two radii, d(pi, q) − r and d(pi, q) + r. In
Figure 20, O1 lies outside p1’s pruning ring. As such, O1 can be pruned because the triangular inequality says
that d(q,O1) + d(p1, q) ≥ d(p1, O1), hence d(q,O1) > r and therefore O1 cannot be a possible answer to query
q. This way, by using d(p1, q) and d(p1, O1) (which is precomputed), the computation of d(q,O1) is avoided.

Metric Access Methods (MAMs) can prune objects or groups of objects from the answer set without com-
puting the object’s actual distance to the query object using the triangular inequality property. To make use of
the triangular inequality property, MAMs use pivots and precompute distances from the data objects to the pivot
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objects. The methods for selecting pivots for different MAMs differ considerably and many pivot selection tech-
niques have been proposed. For general metric spaces it may be impossible to arti£cially create pivots, i.e. £nger
prints, therefore pivots must be chosen from the data set. For vector spaces, pivots can be created arti£cially
inside or outside the data space and techniques speci£c to vector spaces can be applied.

The most simple method to select pivots is using the random pivot selection technique. This method arbitrar-
ily chooses objects in the data set and uses them as pivots. Selecting pivots in this manner can produce pivots
with high pruning power and pivots with low pruning power. Generally this method does not select pivots as
good as other pivot selection techniques.

The authors in [16] propose to select pivots from the data set using the HF algorithm. The HF algorithm
begins by randomly choosing an object sr in the data set and the object farthest from sr is selected to be the £rst
pivot p1. The second pivot object is chosen to be the object farthest from p1. Additional pivot objects are found
by calculating the following error:

errori =
k

∑

j=1

|d(p1, p2)− d(pj , si)|

for each object not yet chosen as a pivot object, where k is the number of pivots already chosen. The object
that minimizes the errori is selected as the next pivot. In Figure 21, if sr is the randomly selected object in the
data set, the HF algorithm will choose p1 and p2 as pivots because p1 is the farthest object from sr and p2 is the
farthest object from p1. A similar method is proposed in [25] except the £rst pivot object is chosen randomly.

2

1

Sr

p

p

Figure 21: The pivots chosen with the HF algorithm

The authors state that pivots should be chosen to be “orthogonal, far apart, and with the origin coinciding
with the query center”. However, the HF algorithm cannot guarantee the pivot objects will be orthogonal to each
other. The HF algorithm selects pivots with higher pruning power than randomly selecting pivots but does not
guarantee all the pivots will be good.

The Incremental Selection algorithm (ISA) is proposed in [12] to select pivots for MAMs. ISA selects pivots
that best distinguish the distances between pairs of objects chosen from the data set. In Figure 22 ISA will select
p2 rather than p1 because |d21 − d22| > |d11 − d12|. The pivot p1 would be considered a poor pivot because
d11 ≈ d12, i.e., p1 cannot distinguish any difference in the position of O1 and O2 because in metric space only
the distance between objects in known.

The Incremental Selection Algorithm selects the pivots which maximize the following equation: D{pi}([Ar], [A
′
r]), 1 ≤

r ≤ AwhereA is the number of pairs of objects selected from the data set andD{pi}([Ar], [A
′
r]) is

∑

|d(Ar, pi)−
d(A′

r, pi)|, 1 ≤ r ≤ A. ISA selects the £rst pivot as the one which maximizes this criterion. Additional pivots are
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chosen which maximize the distance between the same pairs of objects considering the £rst i−1 pivots are £xed.
This is given by the following equation: D{p1,...,pi}([Ar], [A

′
r] = max(D{p1,...,pi−1}([Ar], [A

′
r], D{pi}([Ar], A

′
r])).

Based on experiments in [12] and from our own experiments, we have found this method to select pivots with
higher pruning power than the other pivot selection techniques for general metric spaces. By selecting the objects
in the data set as pivots which best distinguish the distances between pairs of objects in the data set, these pivots
have a higher probability of distinguishing the distance between objects in the data set and the query objects.
This allows a greater number of objects to be pruned at query time, decreasing the time required for MAMs to
answer similarity queries.

For general metric spaces, the Incremental Selection algorithm is effective for selecting pivots with high
pruning power. A pivot selection technique proposed for data sets in the vector space is Principal Component
Analysis (PCA) [10]. PCA is shown to select pivots which exhibit higher pruning power and takes advantage of
the properties of vector space.

PCA identi£es the axes in a D-dimensional data set which exhibit the greatest variance. The principal axes
of the data set are orthogonal to each other and by choosing pivot objects on the principal axis, the pivots will be
orthogonal to each other. This is one of the desired properties stated in [16], as the volume of the intersection of
the pruning rings is reduced in this situation.

To perform PCA on a data set, the dispersion matrix is determined by tij = (1/N)
∑N

i=0 [(xi− x̄i) (xj− x̄j)]
where x̄j is the average value of the xj’s. The eigenvectors (φi) and associated eigenvalues (λi) of the dispersion
matrix can be determined by singular value decomposition. The £rst principal axis is given by the eigenvector
associated with the largest eigenvalue, the second principal axis is given by the eigenvector associated with the
second largest eigenvalue, so on and so forth. After the principal axes are found, the pivots are created as arti£cial
points outside the data space on the principal axes [10]. The pivot objects should be outside the data space so
that the section of the pruning ring that intersects the data space will resemble a stripe which is perpendicular to
the principal axes (see Figure 23). If the pivot objects are not chosen outside the data space, the pivots may not
be orthogonal for every query object. In Figure 24 the pivot objects are chosen to occur on the principal axes of
the data set but inside the data space. In this example we can see that even though the pivots are selected on the
principal axes of the data set, the pivots may not be orthogonal with respect to the query object. This also may
cause the intersection of the pruning rings to be larger, the intersection of the pruning rings in Figure 24 is much
larger than the intersection of the pruning rings in Figure 23. By selecting the pivots outside the data space, the
pivots will be orthogonal for all query objects.

Choosing the set of pivots based on PCA results in the £rst pivot object having on average greater pruning
ability than the other pivot objects. This is because the £rst pivot object occurs on the £rst principal axis and

20



2p

r
q

1p

Figure 23: Comparing the pruning power of pivots on each of the principal axes selected outside the data space,
the pruning ring of p1 is perpendicular to the £rst principal axis of the data set

therefore its pruning ring will intersect the major axis of the data set. Figure 23 illustrates this concept. The
pruning ring of p1 prunes many more objects than the pruning ring of p2 because the portion of p1’s pruning ring,
which intersects the data set, cuts perpendicularly through the principal axis of the data set.

The indexing structures proposed for vector data cannot index all general metric data sets as they rely on the
spatial information of the objects. On the other hand, MAMs can index and perform similarity search on vector
data because often a Lp-metric is used as the distance function. This allows MAM to treat vector data as if it is
general metric data and index the data set using only the distance between objects and not information about the
spatial distribution of the objects in the data set. Next we describe a few popular Metric Access Methods, the
BK-tree, the FQ-tree, the Fixed Height FQ-tree, the FQ-array, the MVP-tree, the M-tree, the Slim-tree, Multiple
Similarity Queries and the OMNI access method.

The £rst metric tree based on the triangular inequality property is the BK-tree (Burkhard-Keller tree) [11].
The authors developed an indexing structure to minimize the number of distance calculations required to answer
a similarity query for general metric data. Only discrete distance functions are considered for the BK-tree and
the number of disk accesses is not considered as an ef£ciency measure.

The BK-tree arbitrarily chooses a pivot from the data set and divides all objects into subsets by their distance
to the pivot. Since a discrete distance function is used, all objects in the same sub-tree are exactly the same
distance from the pivot object at the root of the BK-tree. Additional pivots can be chosen from each subset and
the tree can be built recursively with the subsets of objects being divided into smaller and smaller subsets. An
example BK-tree is shown in Figure 25(a) and refers to the points in Figure 25(b). The stopping condition for
building the BK-tree is when each branch has less than m objects in its sub-tree. In the example in Figure 25(a),
m = 2, so the branches are divided into smaller groups until there are no more than two objects in each sub-tree.
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Figure 24: Choosing pivot objects inside the data space cannot guarantee the pivots will be orthogonal for every
query object

This leads to leaf nodes being at different heights in the tree.
For similarity search, the search algorithm for the BK-tree (Figure 26) begins by computing the distance

between the query object q and the pivot at the root (object 9 in Figure 25(a)) and initially setting the NN to the
root pivot pr and the nearest neighbor distance NNdist to d(q, pr). The £rst branch in the BK-tree to be searched
is the branch containing objects the same distance from pr as q. This increases the probability the NN will be
found quickly and the NN distance will be decreased so more branches in the tree can be pruned. Branches of
the tree are pruned if they are not in the range d(q, pi)±NNdist where q is the query object and pi is the pivot.
For each sub-tree not pruned, the distance between the query object and the pivot at the root of the sub-tree is
computed. Branches in this sub-tree are then pruned in the same way as branches are pruned by the pivot at the
root of the BK-tree. This process continues recursively until the leaf level of the sub-tree is reached. The distance
between all objects in branches not pruned and the query object is computed. This re£nement step is necessary
because although the method will not prune any objects in the answer set, objects not in the answer set may not
be pruned. As nearer objects to the query object are found, NNdist is updated and more branches can be pruned
using the new NNdist. For range queries, the radius is constant so the order the sub-trees are visited will not
matter.

The Fixed-Queries tree (FQ-tree) [4] is similar to the BK-tree and is also based on the use of the triangular
inequality property. The FQ-tree also tries to minimize the number of distance calculations for answering sim-
ilarity queries and ignores the cost of disk accesses. The paper focuses on proximity (range) queries and only
discrete distance functions are considered.

The FQ-tree, like the BK-tree arranges objects in a tree by their distance to an arbitrarily selected pivot from
the data set. The major distinction of the FQ-tree is only one pivot is used at each level of the tree, each sub-tree
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Figure 25: The BK-tree Structure

BK-tree NN Search Algorithm: Find the nearest neighbor to the query object
Input : Query Object q, Nodes in the BK-tree pi ∈ P , Objects in the data set si ∈ S

Output : Nearest Neighbor to q NN

NN = root pivot pr

NN dist = d(q, pr)

j = NN dist

foreach k = j,j+1,j-1,j+2,j-2... do
if |k − j| < NN dist then

Search Sub(sub-tree at distance k from pr, NN, NN dist, q) // see Figure 27

return NN

Figure 26: BK-tree Nearest Neighbor Query Search Algorithm

Search Sub Algorithm: Search the sub-tree
Input : Nodes in the sub-tree to be searched pi, Nearest Neighbor NN, Nearest Neighbor distance NN dist,

Query object q

if At leaf level of sub-tree then
foreach si ∈ leaf node do

if d(q, si) < NN dist then
NN = si

NN dist = d(q, si)

else
/* Not at leaf level of sub-tree */

j = d(q, pi)

foreach k=j,j+1,j-1,j+2,j-2,... do
if |k − j| < NN dist then

Search Sub(sub-tree at distance k from pi, NN, NN dist, q)

Figure 27: The Search sub-tree Function for the BK-tree

in the BK-tree at the same level uses separate pivots. In Figure 28 we can see object 9 is used as the pivot at
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the root of the FQ-tree and object 10 is used as the pivot for all sub-trees at level 2. For the BK-tree (Figure 25)
objects 7, 10 and 4 are all used as pivots for different sub-trees at level 2. The authors explain that when the
distance function is expensive, traversing trees can be expensive because computing the distance between the
query object and each pivot is costly. Only having one pivot per level makes it inexpensive to follow many paths
of the tree.

Searching the FQ-tree is similar to searching the BK-tree. The FQ-tree is searched by inspecting each branch
of the tree. Any branches which do not fall in the range d(q, pi) ± r can be pruned by the triangular inequality
property where q is the query object, r is the radius range of search and pi is the pivot at the ith level of the
tree. The distance between all objects in branches not pruned and the query object have to be computed in the
re£nement step to determine the £nal answer to the query. As mentioned for the BK-tree, the order branches are
searched for range queries does not matter.

Like the BK-tree, sub-trees are only divided while there is greater than m elements in the sub-tree. In
Figure 28, m = 2, therefore all the leaves of the tree contain no more than two objects. The authors mention
the tree can be modi£ed so all branches traverse to the same leaf level. This creates the Fixed-Height FQ-tree
(Figure 29) and allows all objects to be pruned by all pivots. In the FQ-tree, if there are less than m objects
in a sub-tree, the sub-tree is not divided further using more pivots, even if other sub-trees need to be divided
further. If the distance function is expensive, the Fixed-Height FQ-tree should be more ef£cient than the FQ-tree
because more objects can be pruned using pivots in the branches of the FQ-tree that were previously not sub-
divided further. In Figure 28, object 6 can only be pruned using pivot 9, while in Figure 29, object 6 can also be
pruned using pivot 10. Pivots in the FQ-tree and the Fixed-Height FQ-tree can be chosen other than randomly.
Choosing pivots with higher pruning power will result in more branches in the tree being pruned and less distance
calculations needing to be computed.

The FQ-array (Fixed Queries Array) was proposed in [13] and is very similar to a Fixed-Height FQ-tree. It
consists of a two dimensional array of k distances from each object in the database to each of the pivots. In the
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example in Figure 30, k = 2, i.e., there are two pivots. The £rst pivot P1 is object 9 and the second pivot P2
is object 10 in Figure 25(b), this example uses the same pivots as the Fixed-Height FQ-tree does (Figure 29). A
discrete distance function is used for the FQ-array as well and the objects are sorted by their distance to each of
the pivots. In Figure 30, the distances from P1 to each object (d(P1, Oi)) are sorted. Likewise, the distances
form P2 to each object (d(P2, Oi)) are sorted recursively with the distances to P1, i.e., if two objects have the
same distance to P1, they are then sorted by their distance to P2. We can see in Figure 30, objects 5 and 11 are
both distance 2 from P1, but object 5 occurs £rst in the FQ-array because it is closer to P2. The ordering of the
objects in the array is the same as if we traversed a £xed-height FQ-tree from left to right (Figure 29).

Searching the FQ-array is also similar to the Fixed-Height FQ-tree as d(q, pi) is computed for each pivot pi.
The authors only consider range queries, so searching the FQ-array consists of £nding the ranges d(q, p i)± r for
each pi in the linear array. A binary search can be used to £nd the intervals for each pivot because the distances
in the array are sorted. Like the BK-tree and the FQ-tree, the actual distance between all objects not pruned and
the query object must be computed to determine the £nal answer.

In that paper the measure of ef£ciency is also the number of distance calculations so adding more pivots
should increase the ef£ciency as long as adding one extra pivot results in more than one additional object being
pruned. The reason for this is for each pivot added, one more distance calculation needs to be computed (between
the pivot and the query object). The authors say the performance is dependent on the number of pivots and the
precision used to store the distance as they suggest if the distance function is discrete, a smaller precision may
be used to store the distances. The number of disk accesses is not considered, therefore using a smaller level
of precision is only useful if the amount of main memory is £xed. The FQ-array can also be adapted to use a
continuous distance function.

The authors in [9] propose a static, height-balanced tree called the multi-vantage point tree (MVP-tree). The
MVP-tree is an extension of the VP-tree [33] and attempts to provide a solution to some of the problems of
the VP-tree. Like all the distance-based (metric) indexing structures, the MVP-tree requires a metric distance
function, i.e., one that obeys the triangular inequality.

The MVP-tree arbitrarily selects a vantage point (pivot) from the data set and partitions the objects into two
groups of equal cardinality, those closest to the vantage point and those farthest away. This is indicated by curve
B in Figure 31(a). A second vantage point is then selected and the two groups are each divided into two more
groups of equal cardinality (curves A and C), obtaining four branches in the tree (Figure 31(b)), one to represent
each of the four partitions in Figure 31(a). This continues recursively until there are less than m objects in each
sub-tree. The distances to the £rst p vantage points are stored for each object in the leaf level of the MVP-tree.
These p distances are stored so they can be used as an additional £lter to prune objects individually in branches
which can not pruned. The MVP-tree can also be modi£ed to hold more than 2 vantage points in each node.

The algorithm to answer range queries using the MVP-tree begins by computing the distance to the vantage
points in the £rst node. Each branch in the tree which intersects the query region, i.e., branches in the range
d(q, pi) ± r, where q is the query object, r is the radius of the range query and pi is the vantage point, must
be traversed to guarantee the correctness of the answer. The goal of the MVP-tree is to hopefully prune a
signi£cant number of branches quickly. When the search reaches the leaf level, the algorithm tries to prune
objects individually using the stored distances to each of the £rst p vantage points using the triangular inequality
property. The actual distance is computed to q for each object which cannot be pruned.

25



P1

O4

O5

O3

O10

O1

O2

O7

O8

O9

O6

P2

(a)

P1

O1,O10,O3 O4,O5 O9,O6 O2,O7,O8

1 Level

A

C

B
(b)

P2

Figure 31: The MVP-tree Structure

The MVP-tree differs in a number of ways from the VP-tree. In the VP-tree, each branch uses a different
vantage point, this requires one distance calculation each time we traverse a node in the tree. The MVP-tree
uses two vantage points in each node of the tree and each level of the MVP-tree corresponds to two levels of the
VP-tree. This allows the second pivot in the node to be used by all branches, whereas the VP-tree would use a
separate pivot for each sub-tree. An advantage of this characteristic is the MVP-tree can have larger fanouts while
still utilizing the same number of vantage points. Constructing the VP-tree also requires one distance calculation
between every data object and each vantage point in its path in the tree but does not store these distances to
provide additional pruning. The MVP-tree stores the £rst p of these distances to provide additional pruning at
the leaf level and save additional distance calculations.

The £rst vantage point at each level in the MVP-tree is chosen arbitrarily from the set of data objects in the
sub-tree. The second pivot is chosen to be the farthest object from the £rst pivot in the subtree. The authors
mention that any optomization technique to £nd pivots can be applied to the MVP-tree. The MVP-tree also does
not consider the number of disk accesses as an ef£ciency measure, just the number of distance calculations.

The metric access methods previously discussed fail to consider the cost of disk I/Os for similarity searches
in general metric spaces. The M-tree [14] is designed to minimize the number of distance calculations as well as
the number of disk accesses. It is a paged, dynamic, height-balanced tree which uses only the distance between
objects for indexing.

The M-tree consists of leaf nodes and internal nodes. Leaf nodes contain the actual data objects while internal
nodes contain routing objects (similar to pivots). Each routing object is associated with a covering radius which
is equal to the distance from the routing object to the farthest object in the sub-tree. Every object in the sub-tree
of each node has to be within the covering radius (r(Oi)) of the routing object. This allows the M-tree to be able
to apply the triangular inequality property to prune entire nodes using the distance to the routing object and the
covering radius. The distance from the routing object to its parent is also stored in each node and can be useful
for pruning branches without computing the actual distance between the query object and the routing object of
the node when searching the M-tree.

In the example in Figure 32(a), the entire sub-tree of Op can be pruned for q1 by only computing d(Op, q1)
because the sphere de£ned by Op and its covering radius (r(Op)) does not intersect the query region of q1,
i.e., |d(Op, q1) − r(Op)| > rq1

. For q2, the entire sub-tree of Op can not be pruned by computing d(Op, q2)
alone because d(Op, q2) − r(Op) < rq2

, i.e., there are objects far enough away from Op which could be in
the answer set to the query. This means each child node of Op (Ori) must be compared to the query object
individually. Since each sub-tree stores the distance to Op, Or3 can be pruned without computing d(q2, Or3)
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because the distance from a routing object to its parent is stored and can be used to prune nodes. In the example
|(d(Op, Or3) + r(Or3)) − d(Op, q2)| > rq2

, i.e., it can be determined Or3 does not intersect the query region
of q2 based on the distance between Or3 and Op. The distance to the remaining Ori and the query object must
be computed. After computing d(Ori, q2) for each ri, Or1 and Or2 can be pruned while Or4 can not. The
node containing Or4 must be accessed to determine if objects in its sub-tree are in the answer set to q2 because
|d(q2, Or4)− r(Or4)| < rq2

.
The M-tree is suitable for range queries and K-nearest neighbor (K-NN) queries. For range queries, all

subtrees which cannot be pruned based on the covering radius and the distance between its routing object and
the query object must be traversed to determine the £nal answer. For K-NN queries, like the R∗-tree, subtrees
are visited in order of the minimum lower bound distance to the query object. In Figure 32(b), Or1 would be
searched £rst even though d(q,Or1) > d(q,Or2) because d1 < d2, i.e., the lower bound distance of Or1 is less
than the lower bound distance of Or2. The current K-NN distance is used as the radius to prune subtrees. The
search algorithm stops when all subtrees have either been visited or pruned.

The M-tree is built by inserting objects into the most suitable sub-tree at each level of the tree. The criteria
for the insertion algorithm is to follow the sub-tree for which the covering radius does not need to be increased
and the second criterion is to choose the subtree which has the closest routing object. It is better to insert
objects into sub-trees which do not have to be enlarged because the smaller the covering radius of sub-trees, the
smaller the probability of visiting the node during similarity search. If the covering radius must be enlarged, the
subtree which minimizes the enlargement is selected. When inserting objects leads to nodes being split, the split
algorithm minimizes the covering radius and overlap of the two new split nodes. Although designed for general
metric spaces, the M-tree has been shown to outperform the R∗-tree in vector space.

The Slim-tree [19] is a dynamic indexing structure for metric data sets and is very similar to the M-tree. The
triangular inequality property is used to prune sub-trees which do not intersect the query region. The main intent
of the Slim-tree is to minimize the amount of overlap between nodes at the same level of the tree. This is to
reduce the probability of having to access two sub-trees for the same queries and to reduce the time required to
process similarity queries. The authors use the number of distance calculations and disk accesses as an ef£ciency
measure.

The main structure of the Slim-tree is similar to the M-tree. The objects are stored in the leaves and the
indexing nodes contain representative objects (similar to pivots and routing objects) which are the center of a
minimum bounding regions which cover the objects in the sub-tree. Objects are inserted into the Slim-tree by
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locating the node at each level of the tree that covers it or the one whose representative object is closest. This
is applied recursively at each level of the tree until the leaf level is reached. Minimum Spanning trees are used
for splitting nodes which over¤ow during insertion to reduce the cost of splitting nodes. Results have shown
Minimum Spanning trees produce trees as good as considering all pairs of objects for splitting nodes at only a
fraction of the cost.

Regions in the tree can overlap each other, but the Slim-tree tries to minimize the overlap of nodes. In vector
space, the overlap of two nodes is computed as the volume of common space shared by two nodes. There may
be no concept of actual space with dimensions for metric data, so the volume of common space shared can not
be computed. The authors de£ne the amount of overlap for a metric tree as the number of objects which are
covered by more than one sub-tree at the same level of the tree. The authors note good trees should have little
or no overlap among nodes at the same level as this may lead to searching additional branches of the tree during
similarity search.

A Slim-down algorithm is presented which decreases the amount of overlap in the tree producing tighter trees
to reduce the total search time. The Slim-down algorithm selects a node i in the tree and £nds the furthest object
c from the representative object of the node. The algorithm searches all other nodes at the same level of the tree
for a node that also covers object c. If another node j does cover object c and is not full, c is removed from
node i and inserted into node j. If node i is not empty, its covering radius is corrected. If node i is empty, then
it is deleted. This can lead to fewer nodes and higher storage utilization because fewer nodes are used to index
the same data set. The Slim-down algorithm is applied to all nodes of the tree and if any objects move during
a full round of the algorithm, then the algorithm is applied again to all nodes at this level of the tree. Figure 33
illustrates the algorithm. Object c is the farthest object from the representative in node i and node j also covers
object c. The algorithm moves object c to node j and node i’s radius is corrected. After the correction, nodes i
and j do not have any objects which are covered by both nodes.

Experiments have shown the Slim-tree requires fewer disk accesses and distance calculations compared to
the M-tree. One reason this occurs is the Slim-tree has higher storage utilization of nodes and therefore requires
less nodes to index the same data set. The main reason for this is the Slim-down algorithm is applied once the
tree is built to rearrange parts of the tree making similarity search more ef£cient.

The authors in [10] propose to speedup similarity search processing in metric databases by using information
computed from previous queries. By storing distances computed to the previous queries, the triangular inequality
property can be used to prune objects which are far away from the query object.

This method is very similar to the techniques proposed in [4, 11, 13]. The method computes the distance
from the current query object to the previous query objects and uses the previous query objects as pivots pi. The
objects in the data set are processed sequentially. For each object, if |d(pj , si) − d(q, pj)| > r, where q is the
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query object, si is an object in the data set and r is the query radius, then object si is pruned from the answer set.
The actual distance between the query object and all objects not pruned must be computed to determine the £nal
answer.

The authors also suggest that reference objects (pivots) can be selected prior to any queries and used to prune
objects instead of using previous queries. Reference objects should be selected to be orthogonal to each other
in order to prune the most objects. A method is given to select the best reference objects for vector space using
Principal Component Analysis (PCA). The reference objects are selected to occur on the major axis of the data
set which are orthogonal to each other. This method is also shown to achieve linear speedup when used in a
parallel shared-nothing environment. The paper also proposes that queries can be processed in sets so data pages
only have to be read once for a set of queries, this reduces the time required for similarity search per query.

Another MAM very similar to [10] is the OMNI Access method [16]. The main idea is to reduce the cost of
similarity search by quickly £ltering a large portion of objects which are not part of the answer set.

The OMNI Access method [16] selects pivot objects using the HF algorithm. It should be noted that any
pivot selection technique can be used with the OMNI Access method. The distances between each object in the
database and each pivot object is computed and stored on disk. These distances are used to prune objects during
similarity search. Three methods are proposed which use the OMNI-Access method.

The £rst method (OMNI-sequential) begins by computing the distances between the query object and each
pivot object. All the precomputed distances are read sequentially and each object not in the range |d(q, pj) −
d(si, pj)| > r for each pivot object pj , query object q, data object si and radius r, is pruned using the triangular
inequality property. This produces a candidate set for which a re£nement step is needed to determine the £nal
answer. During the re£nement step, each object not pruned is accessed from the original data £le and the actual
distance to the query object is computed. For K-nearest neighbor queries, the current K-NN distance is used
to prune objects. The current K-NN distance is updated as nearer objects to the query object are found. The
OMNI-sequential method for K-nearest neighbor queries is not as ef£cient because there is no initial radius to
use for pruning and the nearest neighbor radius can only be re£ned by computing the distance between the query
object and the actual data objects in the database. In the beginning the algorithm will have to read all the actual
data objects until the K-NN distance becomes small enough for objects to be pruned.

The second and third methods use existing index structures. The second method (OMNI B-tree) uses k B-
trees, one to store the distances to the data objects for each of the pivot objects. The B-trees are then used to
£nd all the objects in the range |d(q, pj) − d(si, pj)| > r for each pivot object pj . A list of candidate objects
(objects not pruned) are produced from each B-tree and are merged together to produce one candidate set. A
re£nement step is also necessary to determine the £nal answer. For K-nearest neighbor queries an initial radius
is approximated, if the resulting answer set does not produce at least K answers, the radius is enlarged until at
least K-nearest neighbors are retrieved.

The third method (OMNI R-tree) uses an R-tree, the coordinates are the distances to each of the pivot objects.
For range queries, all branches in the OMNI R-tree intersecting the query region are searched. When the leaf
level of the tree is reached, the distance to all objects in the leaf node must be computed to the query object
to determine the £nal answer. For K-NN queries, an initial radius can be estimated and enlarged if less than
K-nearest neighbors are retrieved like the OMNI B-tree does. A second method is to perform K-NN search in the
OMNI R-tree by searching the nearest sub-trees to the query object £rst. The K-NN distance is updated as nearer
objects to the query object are found. Each time the K-NN distance is updated, branches in the OMNI R-tree are
pruned.

The OMNI Access methods can be used with any metric distance function. It has been shown to be quite
ef£cient, e.g., it outperforms the Slim-tree. In the following section the OSEQ access method will be described in
greater detail because it forms the basis for two of our access methods, the OSEQ+ and the OSEQ∗. We choose to
base two of our access methods on the OSEQ because it is simple to implement, linear scan-based and ef£cient.
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3 The OSEQ+ and the OSEQ* Access Methods for High-Dimensional Data and
Metric Data

3.1 OMNI Access Method

The OMNI Access method has been recently proposed in [16] and resulted in the family of OMNI structures. Its
noteworthy mentioning that variations of the same idea have also been proposed and used in [4, 10, 11]. Table 1
summarizes the notation that will be used in this section.

Table 1: Summary of notation

P set of pivots {p1, p2, ..., pk}

S database of objects (si)
d(x, y) distance between objects x and y
N number of objects in the data set
D number of dimensions in the data set
q query object
r query radius for a range query

dmin(pj) d(pj , q)− r

dmax(pj) d(pj , q) + r

P preferential pivot
k number of pivots

The main idea behind the OMNI Access method is to reduce the cost of similarity search by quickly £ltering
a large portion of objects which are not part of the answer set. The OMNI Access method uses a set of piv-
ots, P = {p1, p2, ..., pk}, for which the distance between the pivot objects and every object in the database is
precomputed. Each distance d(pj , si) is referred to as an OMNI-coordinate and the set of distances {d(p1, si),
d(p2, si), ... , d(pk, si)} for each object si in the database S, is referred to as the OMNI-vector of the object.
These sets of distances are used to prune candidate objects for a range query as follows. For a query ob-
ject q, query radius r and pj ∈ P , pj’s pruning ring is de£ned by two radii, dmin(pj) and dmax(pj), where
dmin(pj) = d(pj , q)− r and dmax(pj) = d(pj , q) + r. An object si ∈ S is pruned if |d(pj , si)− d(pj , q)| > r,
where d(i, j) is a metric distance function that measures the distance between objects i and j. For instance, in
Figure 34(a), for the query object q and query radius r, O4 lies outside p1’s pruning ring (shaded area) and can
be pruned because by the triangular inequality (d(p1, q)+ d(q,O4) ≥ d(p1, O4)), d(q,O4) > r and therefore O4

cannot be a possible answer to query q. This way, by using d(p1, q) and d(p1, O4) (which is precomputed), the
computation of the actual distance d(q,O4) is avoided. One should note that reducing the number of distance cal-
culations can be very important since the distance function can be expensive, (e.g., [28, 30]), where the distance
is obtained via the solution of a network transportation problem. In Figure 34(b) we can see that the candidate
space (shaded area) can be reduced further by using additional pivot objects; for instance by adding pivot p2, O1

is now also pruned.
The OMNI Access method does not prune any objects which are part of the answer set, but it may yield

false positives, requiring a re£nement step to determine the exact answer. In Figure 34(b), only O2 is in the
answer set to the query object q and query radius r, but O3 cannot be pruned because |d(p1, O3)− d(p1, q)| < r
and |d(p2, O3) − d(p2, q)| < r, i.e., O3 lies in the shaded region in Figure 34(b). The actual distance between
the query object and each object not pruned must be computed to determine which objects are part of the £nal
answer. Only after this re£nement step will object O3 be eliminated as a possible answer to the query. Hence, it
is important to reduce the size of the candidate set as much as possible because retrieving objects from disk and
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Figure 34: Pruning candidate objects using pivots

computing distance calculations in the re£nement step can be expensive.
In order to prune objects using pivots, a radius is required. For nearest neighbor search in the R-tree family of

index structures, the radius can be re£ned as the tree is traversed up and down. The OSEQ + and OSEQ∗ methods
are based on a single scan of the OMNI-£le and the data £le. To determine the actual nearest neighbor radius by
re£ning the radius during the sequential scan, will require computing the actual distance of many objects to the
query object while scanning the OMNI-£le, which we want to avoid because it is expensive. For this reason we
focus on range queries, which have a £xed radius, for the OSEQ + and OSEQ∗ methods.

The OMNI Access method selects pivots from the data set using the HF algorithm [16]. Like many Met-
ric Access methods (MAM), the OMNI Access method can use pivots selected with any of the pivot selection
techniques described in Section 2.2. The authors state that pivots should be “orthogonal, far apart, and with the
origin coinciding with the query center.” In Figure 34(b), the HF algorithm will likely choose p1 and p2 as pivots
because these are the objects in the data set which are the farthest from each other2. Furthermore, the authors
suggest that the number of pivots should be chosen based on the intrinsic (fractal) dimensionality (δ) of the data
set [26] and should be between dδe + 1 and 2 × dδe + 1. Based on our experiments, we observed that pivots
should indeed be orthogonal, origin coinciding with the query center, but not necessarily far apart, rather the best
pivots are closest to the query object. We explore this observation in Sections 3.2 and 3.3.

The algorithm to build the OMNI-£le (the £le containing the OMNI-vector for each object) for the OMNI-
sequential method (OSEQ) is shown in Figure 35. The algorithm begins by selecting pivots using the HF algo-
rithm. The distances between each pivot and each data object (the OMNI-coordinates) are computed and stored
in the OMNI-£le.

The OMNI-Sequential Search algorithm for range queries [16] is shown in Figure 36. The algorithm at-
tempts to prune each object using their OMNI-coordinates (d(pj , si)) and processes the objects sequentially in
the database. The OMNI-vector for each object is typically much smaller than the actual size of the feature vector
of the object and the entire OMNI-£le is read sequentially from disk. This ultimately allows many objects to
be pruned by reading a small number of pages from disk and consequently yielding a fast sequential scan. As
discussed above, the algorithm initially £nds a candidate set which needs to be further veri£ed. The re£nement
step for the algorithm is expensive, hence the goal is to prune as many objects as possible. In the re£nement step,
the distance between each object not pruned and the query object is computed. There is no order in the data £le

2This will also depend on which object is arbitrarily selected from the data set to start the algorithm
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OSEQ Build Algorithm: Building the OMNI-£le
Input : The data set si ∈ S, the number of pivots k
Output : Pivot set pj ∈ P , the OMNI-£le

Select the set of pivots P with the HF algorithm

foreach si ∈ S do
foreach pj ∈ P do

compute d(pj , si) and store in the OMNI-£le

Figure 35: OSEQ Build Algorithm

so the objects are accessed from disk using random disk I/Os.

OSEQ Search Algorithm: Find all answers to a given range query
Input : The data set si ∈ S, Pivot set pj ∈ P , query object q, query radius r, the OMNI-coordinates

(d(pj , si))

Output : answer set A to the range query

Initialize candidate set C to contain all si ∈ S

foreach pj ∈ P do
calculate d(pj , q)

dmin(pj) = d(pj , q)− r

dmax(pj) = d(pj , q) + r

foreach si ∈ C do
foreach pj ∈ P do

if d(pj , si) < dmin(pj) or d(pj , si) > dmax(pj) then
remove si from C and break inner loop

foreach si ∈ C do
calculate d(si, q)

if d(si, q) ≤ r then
place si in answer set A

return A

Figure 36: OSEQ Search Algorithm

A few observations that can be explored about the OSEQ method are:

1. The pivot objects selected with the HF algorithm are not equally good, some have higher pruning ability
than others.

2. The OSEQ Search algorithm reads the entire OMNI-£le from disk because the OMNI-vector for each object
is stored together on the same disk page.

3. The OSEQ Search algorithm requires a large number random disk accesses in the re£nement step to access
the actual feature vectors of the candidate objects. This occurs because the actual distances of objects not
pruned by the pivots have to be computed requiring the feature vectors of objects, which occur randomly
in the data £le, be read from disk.
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In the following sections we describe techniques that address these problems.

3.2 Restructuring the OMNI-File – OSEQ+

The OMNI Sequential+ (OSEQ+) method is designed to resolve some of the problems of the OSEQ method
pointed out above and further decrease the time required to answer range queries for high-dimensional data and
metric data. It improves on the original OSEQ by:

1. Finding a preferential pivot, i.e., a pivot object which on average prunes more objects than other pivots.

2. Restructuring the OMNI-£le so that the OMNI-coordinates of each object are ordered and do not reside on
the same disk page (and thus can be accessed independently).

3. Presorting the OMNI-£le and the data £le such that the objects not pruned are stored closer together on
disk.

3.2.1 Preferential Pivot

If we can £nd a preferential pivot (one that prunes more effectively), denoted as P , which can prune a signi£cant
number of objects, the remainder of the OMNI-coordinates of these objects will not be needed. These OMNI-
coordinates will not have to be read from disk, which will speed up similarity query processing.

We conducted experiments using two data sets to test the pruning power of pivot objects selected by different
pivot selection algorithms. The £rst data set is real and consists of 59,652 global color histograms (GCH), each
having 64 dimensions, obtained from images in a set a of Corel CDROMS and will be referred to as the COREL
data set. The second data set is synthetic and contains 1,000,000 uniformly distributed, 64-dimensional GCHs,
hereafter this data set will be denoted as 1MGCH. For pivot selection algorithms such as the HF algorithm, where
the order in which the pivots are selected does not indicate any importance, i.e., the main criteria is pivots are
chosen to be far apart from each other, P is chosen to be the pivot which is closest on average to all objects in the
database. Figure 37 shows the percentage of objects pruned by pivots selected with the HF algorithm. The pivot
objects on the x-axis are sorted by their average distance to all objects in the data set. We can see the pivots which
are closer on average to other objects in the data set prune more objects than the pivots farther away. One reason
this occurs is pivot objects close to other objects better approximate the actual distance between these objects and
the query object. Therefore, for the HF algorithm we select P as the pivot object whose average distance to all
objects in the database is smallest.

For pivot selection techniques such as Principal Component Analysis and the Incremental Selection algo-
rithm, the order the pivots are selected in is important. For these algorithms, we select P as the most important
pivot determined by the algorithm. For PCA, the most important pivot is p1. Pivot p1 is created on the £rst
principal axis of the data set, i.e., the axis with the greatest variance, this causes the pruning ring of p1 to be
perpendicular to the £rst principal axis of the data set which is a desirable characteristic. In Figure 38, the pivots
objects are in the order they are created using the PCA pivot selection technique. The curve for 1MGCH re-
mains fairly stable and all the pivots have similar pruning ability because the data set is composed of uniformly
distributed GCH. This means all dimensions in the data set are of approximately equal importance, therefore all
the pivots have similar pruning power. For real data sets, i.e., COREL, often the data set is correlated so some
dimensions are more important than others causing pivots to have different pruning ability. For the Incremental
Selection algorithm, p1 is also the most important pivot because it is chosen as the object which best distinguishes
the distances between pairs of objects in the data set. Since p1 is chosen as the pivot which overall best distin-
guishes the distances between objects in the data set, it should have the highest pruning ability. In Figure 39
we can see the £rst pivot selected with the Incremental Selection algorithm prunes more objects than the other
pivots. The reason is each pivot selected with the Incremental Selection algorithm takes into consideration the
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Figure 37: Pruning power of pivots selected by the HF algorithm and sorted by the pivots’ average distance to all
objects in the database

pivots previously chosen. This means additional pivots are selected which distinguish well between objects in
the data set that previous pivots cannot differentiate well between. An advantage of selecting P in this manner is
P is selected independent of the query object and is chosen of¤ine.
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Figure 38: Pruning power of pivots selected using PCA and the pivots are sorted by the order they are created

3.2.2 Restructuring the OMNI-£le

The OMNI-£le contains the OMNI-coordinates for every object in the database. In order to bene£t from P having
better pruning power, the OMNI-£le has to be restructured to prevent a complete sequential scan of the whole
£le as the OSEQ method does. The improved OMNI+-£le stores each of the OMNI-coordinates of an object
on separate disk pages. This allows for one OMNI-coordinate of an object to be independently accessed from
disk without retrieving the entire OMNI-vector for each object. This prevents a complete sequential scan of the
OMNI+-£le for each query.

The OMNI-coordinates are also sorted by each object’s distance to P . This causes the OMNI-coordinates
of all objects not pruned by P to occur adjacent to each other on disk because all the objects which can not be
pruned by P will occur in the range d(P, q) ± r. This allows the OMNI-coordinates relating to the remaining
pivots to be read sequentially.
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Figure 39: Pruning power of pivots selected with the Incremental Selection algorithm and the pivots are sorted
in the order they are selected

2

1

3

2

3

1
DP1

DP2

DP3

DP4

DP5

DP6

DP7

DP8

DP9

p 3 p 3

DP1 DP2 DP3 DP4 DP5

DP6 DP7 DP8 DP9

maxd
maxd

mind
mind

maxd

mind

(a) OMNI−File Structure

O
O
O
O
O

O
O
O
O

O

O

O
1

2

3

4

5

6

7

9

O

8

10

11

12

13

14

15

O

O 15
16
12
10

12
12

13
14
13

18
14
12
15
12
14
15
14
12
13

p 1

O
O
O
O

O
O
O
O
O
O
O
O
O

10
12
12
12
15
16

15
13
12
14
12

15
11
13
14
18
12
14
13

9

2

8

3

12

1

7

6

10

11

4

5

O 14

O

p p1 2

14

13

2 3 3 5 5 6 7 8 8 10 12 12 12 15 16

(c) OMNI  −File Structure (Physical view)+

query radius

r = 2

14

14
10

13

16

10

15

14
16
10
10

13

14

+(b) OMNI  −File Structure (logical view)

11

p 2

DP
DP
DP

DP

DP
DP
DP
DP
DP
DP
DP

DP

DP

DP
DP

(p  ) = 15

(p  ) = 11

(p  ) = 3

(p  ) = 11

9

8

7

6

5

4

3

2

1

15

14

13

12

11

10

DP DP

DP

DP

DP

DP

10 15

14

13

12

11

61314121814131115141212 141315

DP

1332424668101016 81414

DPDPDPDPDP

10

1514131211

(p  ) = 7

(p  ) = 78

3

2
4

4
2
6
8

6

6

8
5
6
7

2
3

5
3
8 2

3
3
5
5
6
7
8
8

6

8
6
8
6
4
2
4
2
3

Figure 40: The (Improved) OMNI+-File Structure

Figures 40(a) and (b) show an example of the original OMNI-£le structure and the logical view of the im-
proved OMNI+-£le structure. The shaded pages refer to the disk pages which will be accessed for the example
query which refers to the objects in Figure 41. The original OMNI-£le structure stores all the OMNI-coordinates

35



O1

O4

O

O

r

O

O
O

5

2

14

13

q
O7

6

O11

O15

O3 O
9

p 2

p 3

1p

O

O
10O

8

12
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of an object on the same disk page. This results in the complete OMNI-£le needing to be read (15 pages accesses
in the example of Figure 40(a)) for the OSEQ method because at least one OMNI-coordinate of each object must
be compared for every query. The improved OMNI+-£le structure avoids reading every page containing the re-
maining OMNI-coordinates because the OMNI-coordinates are stored together by pivots, not by object. Thus,
one OMNI-coordinate of an object can be read without reading every disk page containing OMNI-coordinates of
that object from disk. This allows us to access the OMNI-coordinates individually for each object and not access
many OMNI-coordinates which can not help prune additional objects.

The OMNI-coordinates in the OMNI+-£le are presorted by their distance to p1 (which is also denoted by
P). All objects Oi where dmin(p1) > d(p1, Oi) or dmax(p1) < d(p1, Oi), i.e., all objects which reside outside
of p1’s pruning ring, are pruned and the rest of the OMNI-coordinates for the pruned objects are not required.
In Figure 40(b), by using the improved OMNI+-£le structure, disk pages DP6, DP7, DP10, DP11, DP12, and
DP15 will never be read from disk using the OSEQ+ Access method because the disk pages only contain OMNI-
coordinates for objects which have already been pruned. By examining Figure 41, we can see objects O12, O15

and O7 cannot be pruned by any of the pivots as they are located in the intersection of the three pruning rings
(shaded area). Their actual distances must be computed to determine whether they belong to the answer set. Even
in this trivial example, the improved OMNI+-£le structure reads only 9 pages of OMNI-coordinates from disk
compared to the original OMNI-£le structure which requires reading all 15 disk pages. The OMNI +-£le allows
many less pages to be read and the only additional cost it incurs is one random disk access is required to jump to
the start of the OMNI-coordinates of the objects not yet pruned for each pivot object. This is more ef£cient than
reading the entire OMNI+-£le because there are many pages in the OMNI+-£le which will not have to be read.
In the example in Figure 40(b), a random disk access would be required to jump from DP5 to DP8 and from
DP9 to DP13. Since the number of pivot objects is small, this cost is negligible. Hence, the OSEQ+ algorithm
potentially (and typically, as our experiments show) avoids a full scan of the OMNI+-£le and still performs all
but a few I/Os sequentially. In Figure 40(c) we can see a physical view of the OMNI+-£le. On disk the OMNI-
coordinates pertaining to p1 occur sequentially followed by the OMNI-coordinates of p2 and p3. The OSEQ+ in
the example reads the sets of pages DP1 −DP5, DP8 −DP9 and DP13 −DP14.
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3.2.3 Sorting the Data File

The data £le for the OSEQ+ method is also sorted by each object’s distance to P and therefore is in the same
order as the OMNI+-£le. Sorting the data £le improves the performance of the OSEQ + considerably by reducing
the number of disk pages accessed and not using random disk I/Os to access the data £le. The reason this results
in reducing the cost of accessing the candidates’ feature vectors is the candidates occur closer together in the data
£le and do not occur randomly. This allows the objects to be read sequentially from disk as opposed to using
more expensive random disk I/Os for each object. In the example in Figure 40(b), objects O12, O15, and O7

cannot be pruned by any pivot object and therefore the actual feature vectors of these objects have to be retrieved
from disk. The OSEQ method will require one random disk access to retrieve the feature vectors of O12, O15 and
O7, whereas the OSEQ+ would read O12, O15, O1 and O7 sequentially from disk. Even while some objects that
are already pruned will be read, i.e., O1, and not be needed, it is more ef£cient to do so than to force random disk
accesses for each object not pruned because sequential disk I/Os are much less expensive than random disk I/Os.
Unless the number of objects not pruned is extremely small, the OSEQ method will not be ef£cient.

3.2.4 Building and Searching - OSeq+ Method

The OSEQ+ build algorithm (Figure 42), builds the OMNI+-£le of¤ine and the pivots can be chosen using any
pivot selection technique such as the HF algorithm, the Incremental Selection algorithm or using PCA in vector
spaces. P (p1) is selected as the most important pivot object, i.e., the closest pivot on average to every object in the
database for the HF algorithm or for PCA and the Incremental Selection algorithm, the £rst pivot selected by the
algorithm. The OMNI+-£le and the data £le are sorted by each object’s distance to P . As mentioned previously,
one of the main advantages of the OSEQ+ method compared to the OSEQ method is it uses sequential disk I/Os
to access the OMNI-coordinates and to access the data objects in the re£nement step. This is possible because
the objects are sorted by their distance to P , therefore the objects occur close together in the data £le and can be
read sequentially.

OSEQ+ Build Algorithm: Building the OMNI+-£le
Input : The data set si ∈ S, the number of pivots k

Output : Pivot set pj ∈ P , the OMNI+-£le, the sorted data £le

Select pivot objects with a pivot selection algorithm

Select p1 as the most important pivot depending on the pivot selection algorithm

foreach pj do
foreach si do

compute d(pj , si) and store in OMNI+-£le

Sort the OMNI+-£le by each object’s distance to p1

Sort the data £le by each object’s distance to p1

Figure 42: OSEQ+ Build Algorithm

The search algorithm for the OSEQ+ (Figure 43) is similar to the OSEQ search algorithm. Its main advantages
are the format of the OMNI+-£le and the data £le, and how both £les are accessed. The search algorithm computes
the distance from each pivot object to the query object and calculates dmin(pj) and dmax(pj) for each pj . The
algorithm prunes by P and sequentially reads the OMNI-coordinates pertaining to P . It should be noted that
objects can also be pruned by P using a B+-tree to £nd dmin(P) and dmax(P). All the objects not pruned by
P occur adjacent to each other in the OMNI+-£le because the OMNI+-£le is sorted by the objects’ distances
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to P . This allows the algorithm to jump to the £rst candidate object not pruned by previous pivots with one
random disk access for each pivot and read the OMNI-coordinates of the objects not pruned by previous pivots
sequentially. This may lead to reading some OMNI-coordinates of objects already pruned, but it is more ef£cient
to use sequential rather than random disk I/Os and read a few unnecessary OMNI-coordinates. After all the
objects have been pruned by each pivot, the actual distance is computed between each candidate object and the
query object. The feature vectors of the candidate objects are read sequentially because the data £le is sorted.
One random disk access is required to £nd the feature vector of the £rst object not pruned.

OSEQ+ Search Algorithm: Find all answers to a given range query
Input : The data set si ∈ S sorted by P , Set of pivots pj ∈ P , OMNI+-£le sorted by P , query object q

and query radius r
Output : Answer Set A to the range query

Initialize Candidate Set C to contain all si ∈ S

foreach pj ∈ P do
calculate d(pj , q)

dmin(pj) = d(pj , q)− r

dmax(pj) = d(pj , q) + r

foreach pj ∈ P do
foreach si ∈ C do

if d(pj , si) < dmin(pj) or d(pj , si) > dmax(pj) then
remove si from C

foreach si ∈ C do
calculate d(si, q)

if d(si, q) ≤ r then
place si in Answer set A

return A

Figure 43: OSEQ+ Search Algorithm

The OSEQ+ method performs all but k (k << D) of its disk I/Os sequentially to avoid expensive random
disk accesses. The number of random I/Os is equal to the number of pivot objects used, which is much less
than the size of the candidate set, making the OSEQ+ method more ef£cient than the OSEQ method. As can be
seen in Figure 40(c), the data pages are read sequentially, only one random disk access is required to £nd the
OMNI-coordinate of the £rst object which has not been pruned for each remaining pivot object. This makes the
OSEQ+ method very fast and yet simple to implement.

3.3 Using Only a Few Good Pivots – OSEQ∗

The OSEQ+ method chooses P such that the £rst pivot on average has higher pruning power than the other pivot
objects. However, the OSEQ+ method does not address the problem that the order the pivots are selected by the
HF algorithm and the Incremental Selection algorithm does not indicate they will be equally good for all queries,
i.e., reading their OMNI-coordinates is not justi£ed by their pruning ability for every query object. A solution to
this problem is to select more pivots than are needed for pruning (oversampling the pivot set) and at query time
only choose a small number of pivots, those which are closest to the query object. As mentioned in Section 3.2,
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by using more pivot objects closer to the query object, the pivot objects used better approximate the position of
the query object. Choosing pivot objects closer to the query object also results in reducing the hyper-volume
of the intersection of the pruning rings of the selected pivot objects. This allows more objects to be pruned and
results in less disk accesses and less distance calculations needing to be computed to answer similarity queries. In
Figure 44 we can see the advantage of having pivot objects closer to the query object. The area of the intersection
of the pruning rings of pivot objects A and B is much smaller than that of pivot objects C and D. To illustrate
this, consider again Figure 40, and assume that in addition to P = p1, only one additional pivot is used. Since
p3 is closer to q than p2, p3 is used and all pages related to p2 (DP6 −DP10) will never be accessed, reducing
even further the number of pages accessed. The choice of better pivot objects per query reduces the candidate set
size and increases the ef£ciency of processing similarity queries, this is con£rmed by our experimental results.
If we again consider Figure 37, we can see the pivot objects selected with the HF algorithm which are closer on
average to other objects in the database have higher pruning power. For PCA, the pivots are created arti£cially
on the principal axes of the data set outside the data space. Therefore the OSEQ∗ method will be the same as
the OSEQ+ method when selecting pivots using PCA because the notion of closeness does not apply because
as explained in Section 2.2, all pivots are created the same distance outside the data space. For the Incremental
Selection algorithm, the same result occurs as with the HF algorithm. In Figure 45, we can see the pivot objects
selected with ISA that are on average closer to other objects in the data set have higher pruning power. The
OSEQ∗ attempts to select the pivots with higher pruning power to be used to prune the candidate set for each
query. The additional cost of this method compared to the OSEQ method and the OSEQ+ method is that there is
an overhead of extra disk space to store the OMNI-coordinates of the extra pivots. However, no additional cost
is incurred at query time because the same number of pivots or less are used for pruning as with the OSEQ+

algorithm, the ef£ciency is actually increased because pivots with higher pruning power are used for pruning.

C A B Dqr

Figure 44: The effect of having pivots closer to the query object

The build algorithm for the OSEQ∗ method is exactly the same as for the OSEQ+ method. The difference is
the build algorithm for the OSEQ∗ method selects more pivots than will be used at query time and oversamples
the pivot set, while the OSEQ+ build algorithm selects the same number of pivots as the search algorithm uses
for similarity search.

As with the OSEQ+ Search algorithm, the OSEQ∗ Search algorithm (Figure 46) requires that the OMNI+-£le
is presorted by P , where P is still chosen to be the pivot which is most important. Unlike the OSEQ+ method,
the OSEQ∗ method oversamples the pivot set and selects more pivots than it will use at query time (K pivots).
At query time, the algorithm computes the distance between the query object and each of the K pivot objects.
Besides P , the OSEQ∗ search algorithm selects the k − 1 pivots (k − 1 < K) which are closest to the query
object. Note that unlike the case for P , these pivots are query-dependent, i.e., they are chosen based on the query
object. The remainder of the OSEQ∗ Search algorithm is similar to the OSEQ+ Search algorithm once the k − 1
pivot objects are selected.
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Figure 45: Pruning power of pivots selected with the Incremental Selection Algorithm and the pivots are sorted
by the pivots’ average distance to all objects in the database

OSEQ∗ Search Algorithm: Find all answers to a given range query
Input : The data set si ∈ S sorted by P , set of pivots pj ∈ P (|P | = K, oversampled), OMNI+-£le sorted

by P , query object q, query radius r, number of pivots to use k
Output : Answer Set A to the range query

Initialize Candidate Set C to contain all si ∈ S

foreach pj ∈ P do
calculate d(pj , q)

Choose the k − 1 closest pj ∈ {P−P} to q and place in PC (pcj ∈ PC)

Sort PC by distance to q and place P in PC as pc1

foreach pcj ∈ PC do
dmin(pcj) = d(pcj , q)− r

dmax(pcj) = d(pcj , q) + r

Find all si ∈ S such that dmin(P) ≤ d(P, si) ≤ dmax(P), place si which satis£es the above inequality in
Candidate Set C

foreach pcj ∈ PC do
foreach si ∈ C do

if d(pcj , si) < dmin(pcj) or d(pcj , si) > dmax(pcj) then
remove si from C

foreach si ∈ C do
calculate d(si, q)

if d(si, q) ≤ r then
place si in Answer set A

return A

Figure 46: OSEQ∗ Search Algorithm
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3.4 Experimental Results

We test the ef£ciency of the OSEQ+ and the OSEQ∗ methods using the same two data sets described in the
previous section. The 1MGCH data set is created to test the scalability of our algorithms on large data sets. We
select a sample of 100 random query objects from each of the data sets to use in our experiments. Our measure of
ef£ciency is the speedup in terms of I/Os and simulated time3 required to process a range query. To calculate the
simulated time, we perform experiments using the facilities offered by our experimental environment4 to obtain
the cost (in seconds) of distance calculations, comparisons, absolute values, sequential disk I/Os and random
disk I/Os. The results are shown in Table 2. Although others have used the number of distance calculations as
a measure of query cost [9, 16, 19], we choose time because it combines the total cost of answering similarity
queries, i.e., random and sequential disk accesses, distance calculations, absolute values and comparisons.

Table 2: Costs

1 64D distance calculation 655.4 nsecs
1 comparison 1.3 nsecs
1 absolute value 1.3 nsecs
1 sequential disk I/O 105,300 nsecs
1 random disk I/O 1,852,000 nsecs

We use the L1 metric distance because it has been shown to be more effective in high-dimensional spaces
than the Euclidean distance (L2 norm) [1]. As opposed to NN-queries, a range query cannot guarantee an answer
size, thus, for our experiments, we £x r so that an average answer size between 15 and 45 is obtained. The page
size is set to 4Kb.

Initially we designed an experiment to verify our intuition about the existence of a preferential pivot (P) with
higher pruning capability for pivots selected by the HF algorithm, Incremental Selection algorithm and PCA.
The results for these experiments are detailed in Section 3.2.1 and provide evidence that it is bene£cial to explore
the notion of a preferential pivot, and that such a pivot should indeed be the one which is closest on average to
every other object in the data set if there is no order of importance imposed by the pivot selection algorithm (HF
algorithm). If pivots are selected with an order of importance (ISA and PCA), then P should be chosen as the
most important pivot. Recall that P can be found a priori yielding no overhead at query time.

Figures 47 and 48 show the performance of the OSEQ+ method and the OSEQ∗ method compared to the
OSEQ method and a sequential scan (SeqScan) of the data set. The HF algorithm is used to select the pivot
objects for the OSEQ, OSEQ+ and OSEQ∗ methods. It should be noted that the pivot objects used by the OSEQ+

method are the £rst k pivot objects selected by the HF algorithm, P is chosen from these k pivots. For the OSEQ ∗

method, 16 pivot objects are always selected by the HF algorithm, this makes the OMNI+-£le 25% of the size
of the original data £le. From these 16 pivot objects, P is selected and in addition to P , the k − 1 pivot objects
closest to the query object are also selected for each query. In Figures 47(a) and (b) the OSEQ+ method processes
range queries faster than the OSEQ and a sequential scan (SeqScan) of the data set (curves SeqScan/OSEQ+ and
OSEQ/OSEQ+). The curve SeqScan/OSEQ+ represents the number of disk accesses of the SeqScan divided by
the total number of I/Os of the OSEQ+ to obtain the speedup of the OSEQ+ compared to the SeqScan. The
OSEQ∗ method requires the least disk accesses and query processing time. The speedup of the OSEQ∗ method
compared to the OSEQ+ is on top of the savings the OSEQ+ already achieves over the OSEQ and SeqScan. This
is expected as both methods use the preferential pivot P , the OMNI+-£le and sort the data £le by P . This means
fewer OMNI-coordinates have to be accessed for the OSEQ+ and OSEQ∗ compared to the OSEQ method and the
actual feature vectors of candidate objects occur closer together in the data £le. This results in accessing up to

3Due to caching management issues, we were unable to accurately measure real time, therefore we report simulated time
41600 MHz PC, AMD Athlon processor, Seagate ST360021A disk, RedHat Linux 9 and gcc-3.4.0

41



60% and 80% fewer data pages from disk than the OSEQ for the OSEQ+ and OSEQ∗ methods respectively. In
Figure 48 we can see the time for the OSEQ+ method and OSEQ∗ method compared to the OSEQ and SeqScan
to process range queries. The actual number of disk accesses for all methods follows a similar curve because
each of these methods are I/O bound.
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Figure 47: The speedup in terms of the number of disk accesses of the proposed sequential metric access methods
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Figure 48: The query performance of the proposed sequential metric access methods in terms of simulated time

All the OMNI-based methods use k pivots at query time. The difference is the OSEQ and OSEQ+ methods
use the £rst k pivot objects initially selected by the HF algorithm, whereas the OSEQ ∗ selects K pivots (in our
experiments K = 16) with the HF algorithm and in addition to P , at query time it chooses the k − 1 pivots
(k − 1 < K) which are closest to the query object. We can see in Figure 47 that the OSEQ∗ accesses fewer
disk pages as the closer pivot objects prune more candidates. When more pivot objects are used, the methods are
using a larger common set of pivots, this is why the curves approach each other as k increases in Figure 48. At
k = 16, both the OSEQ+ and the OSEQ∗ methods are using the same set of pivots. In Figure 48, the curve for
the OSEQ∗ method rises slightly as more pivot objects are used (k > 4) because reading the OMNI-coordinates
of additional pivot objects is not justi£ed by the number of additional data objects which are pruned. The initial
closest pivot objects for the OSEQ∗ method prune so many objects that the last pivot objects can not prune any
further. This observation will also occur for the OSEQ method and OSEQ+ method if a greater number of pivot
objects are used.

For the case of the Euclidean space, we want to test the effectiveness of selecting pivots using PCA compared
to the HF algorithm and ISA. Figure 49(b) shows that the OSEQ+ saves up to 27 times the number of disk
accesses by selecting pivots with PCA compared to using pivots selected with the HF algorithm and saves up
to 20 times the number disk I/Os compared to using pivots selected with the Incremental Selection algorithm.
The savings in time are displayed in Figure 50. Pivots selected with PCA prune more objects as pivot objects
are selected to lie on the principal axes of the data set and are orthogonal to each other as shown by the authors
in [10]. We do not show results for the OSEQ∗ method using PCA to choose the pivot objects because the pivot
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objects selected with PCA are all created the same distance outside the data set so the notion of closest does not
apply. Figures 49 and 50 also show the pivot objects selected by the Incremental Selection algorithm are better
than the pivots selected with the HF algorithm. The OSEQ+ using ISA to select the pivots is up to 1.6 times
faster. This provides evidence that for general metric spaces it will be bene£cial to use the Incremental Selection
algorithm compared to the HF algorithm.
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Figure 49: The speedup in terms of the number of disk accesses of the OSEQ+ method using different pivot
selection algorithms
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Figure 50: The elapsed time of the OSEQ+ method using different pivot selection algorithms

Next we compare the OSEQ+ method using PCA to select the pivots (OSEQ+ (PCA)), the OSEQ∗ method
using ISA to select the pivots (OSEQ∗ (ISA)) and the VA-File in Euclidean space. Figure 51 shows the speedup
of the OSEQ+ (PCA) method compared to the SeqScan, the VA-File and the OSEQ∗ (ISA) in terms of I/Os and
Figure 52 shows the time required to answer range queries for the OSEQ+ (PCA) method, the OSEQ∗ (ISA), the
VA-File method and the sequential scan. The OSEQ+ (PCA) method is up to 24 times faster than the VA-File
method in terms of time. While it is true that more ef£cient implementations of absolute values, comparisons and
distance calculations would bene£t the VA-File more than the OSEQ+ (PCA) method, Figure 51 shows that the
OSEQ+ (PCA) method requires fewer disk accesses for both data sets when the number of pivots is greater than
8. This means that no matter how much faster the implementation, the VA-File will still be less ef£cient than the
OSEQ+ (PCA) method because both methods use sequential access patterns and avoid random disk I/Os, while
the VA-File requires a substantial amount of CPU time. In Figure 51 we can also see the OSEQ∗ (ISA) and the
VA-File have similar performances in terms of the number of disk accesses. In terms of time (Figure 52), the
OSEQ∗ (ISA) is faster than the VA-File for both data sets because of the large amount of CPU time required for
the VA-File. Figures 51 and 52 also show that in Euclidean space, the OSEQ+ (PCA) is more ef£cient than the
OSEQ∗ (ISA). The OSEQ∗ (ISA) outperforms the OSEQ+ (ISA), we can see the speedups in Figure 49 are larger
for the OSEQ+ (PCA) compared to the OSEQ+ (ISA) then in Figure 51 for the OSEQ+ (PCA) compared to the
OSEQ∗ (ISA).
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Figure 51: The performance of the SeqScan, the VA-File and the OSEQ∗ (ISA) in terms of disk accesses com-
pared to the OSEQ+ (PCA)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2  4  8  12  16

T
im

e 
(s

ec
s)

Number of Pivots Used

(a) COREL

SeqScan
VA-File

OSeq+(PCA)
OSeq*(ISA)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  8  12  16

T
im

e 
(s

ec
s)

Number of Pivots Used

(b) 1MGCH

SeqScan
VA-File

OSeq+(PCA)
OSeq*(ISA)

Figure 52: The performance of the SeqScan, the VA-File, the OSEQ∗ (ISA) and the OSEQ+ (PCA) in terms of
time (secs)

It is interesting to note that even though the sequential scan of the data set accesses approximately four times
more disk pages than the VA-File, the VA-File is not even twice as fast in terms of time as the sequential scan for
the COREL data set and only about 2.8 times faster for the 1MGCH data set. This supports our argument that
high-dimensional index structures must be ef£cient not only with respect to disk accesses but CPU operations as
well.

The number of random disk I/Os increases rapidly for the VA-File as the radius of the range query increases.
In Figures 53(a) and (b), we can see that the time required for the VA-File to process range queries increases
quickly due to the increase in the number of random disk I/Os in the re£nement step. This occurs because as the
radius increases, the number of objects returned and the number of objects which can not be pruned based on their
approximations for the VA-File increases, while the VA-File requires one random disk access for each candidate
object in the re£nement step. For this reason we do not show the speedup in terms of disk accesses for these
experiments. The comparison in terms of the number of disk accesses is unfair because the VA-File is no longer
primarily a sequential access method as the radius of a range query increases. In contrast, the OSEQ+ (PCA)
method uses sequential disk I/Os in the re£nement step. Therefore, as the radius of the range query increases, the
time required for the OSEQ+ (PCA) method to process range queries increases at a much smaller rate.

4 The Metric Grid

It is a known result, e.g., [4, 11], that when processing similarity queries in a general metric space, objects can
be pruned using the triangular inequality property. All one needs is a set of pivots, the distance from all objects
in the database to the pivots and a query range. That is, the actual distance from the query object to the objects in
the data set need not be computed for a potentially large set of pruned objects. Given that the actual distance can
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Figure 54: The rings splitting up the data space into a grid-like structure

be computationally expensive, this is an important gain.
The VA-File partitions the data space by dividing it into a grid of cells. This allows objects to be approximated

by the cells where they lie. These approximations require less storage than the original feature vectors of the
objects. One drawback of the VA-File is it can only be applied to vector data spaces because each dimension is
divided into slices to form a grid. For general metric data, the only information available is the distances between
objects, there may be no concept of dimensions, thus we cannot partition each dimension into slices to form
cells. Nevertheless, the idea of creating a pseudo-grid can be generalized to a metric data space. An actual grid
cannot be created in all metric spaces because there may be no actual dimensions, but a grid-like structure can be
constructed. Instead of dividing each dimension into slices, pivots in the data set can be selected and rings can
be formed based on the distances from the pivots. In Figure 54 the pivot objects are p1 and p2 and the rings are
created based on the radii distances to the pivots.

For the VA-File, each object is approximated by the cell in which it lies, the size of these approximations
is smaller than the original feature vectors. Objects cannot be approximated for general metric data because
there are often no feature vectors for objects, but the object’s position on a pseudo-grid can be approximated
by its distance to each of the pivots. In effect, the data set is mapped into a low-dimensional vector space and
the objects can be clustered based on their positions in the grid. The intuition is that objects close together in
the original data space will also be close together on the grid in the low-dimensional mapped space. Using this
notion, we propose to cluster the data objects by their distances to the pivots. Any clustering algorithm can be
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used because the distances to the pivots are numerical (vectorial). Clustering high-dimensional data and metric
data is typically a complex and expensive task. Using a small number of distances to the pivots to cluster the data
objects makes the clustering much more ef£cient.

Objects can be pruned using their distances to pivots and the triangular inequality property. Further, we can
think of clusters as objects. Clusters can be pruned in the same manner as objects using the triangular inequality
property, that is, clusters that do not touch pruning rings can be safely discarded. In Figure 54, for query q and
radius r, the shaded cells intersect the query region, i.e., the region de£ned by the circle around q. By employing
the notion of a grid, a cluster can be pruned if the cluster does not intersect any cells which also intersect the
query region. Only clusters C and E intersect cells intersecting the query region and therefore clusters A, B, D,
F and G can be pruned from the answer set without computing any of the actual distances between objects in the
cluster and the query object.

Given this rationale we can now propose a new access method for both vector data (under a metric distance)
and general metric data. We call this method the M-Grid. The M-Grid is a dynamic, metric access structure and
is designed to reduce the processing time of similarity search queries for high-dimensional data sets and metric
data sets, in particular for data sets that present some inherent clustered structure. The M-Grid clusters objects
by their positions in a pseudo-grid based on their distances to the pivot objects. The pivots are selected from the
data set because it is often not possible to arti£cially create pivots for metric data sets. For vector space however,
we can create arti£cial pivots with higher pruning power using PCA to select pivots on the major axis of the data
set, e.g., [10]. Cells in the grid are determined by the distance the rings are from the pivots (Figure 54) which
allows a cluster to be pruned if the cluster does not occupy any cells that intersect the query region. In order to
take advantage of sequential disk accesses, the M-Grid performs most of its disk accesses sequentially within the
clusters, being an I/O ef£cient metric access method. In addition the M-Grid is computationally inexpensive as
the computation of the actual, and potentially expensive, distance functions are avoided for most objects.

4.1 Building the M-Grid

The algorithm to build the M-Grid is shown in Figure 56. To begin building the M-Grid, the pivot objects must
£rst be selected. Pivots can be selected in a variety of different ways for metric data, i.e., selecting objects
randomly from the data set, selecting objects with the HF algorithm [16], using the Incremental Selection algo-
rithm [12], etc. We have found (Section 3.4) that a very effective way to select pivots for general metric spaces is
with the Incremental Selection algorithm.

The Incremental Selection algorithm selects pivots that best distinguish the distances between pairs of ran-
domly chosen objects from the data set. The intuition behind this is if the pivots can distinguish well the distances
between arbitrarily selected objects in the data set, they will better be able to distinguish the distances between the
query object and the objects in the data set. Being able to distinguish the distance between the query object and
objects in the data set is important because only the triangular inequality property can be used to prune objects
in metric spaces which are non-vectorial. If the distance between the query object and the pivot is the same as an
object’s distance to the pivot, the object will not be able to be pruned from the answer set.

The distance from each object in the data set to all the pivots must be computed. The rings are selected so
there is an equal number of objects in each ring for each pivot, this allows more dense regions of the data space to
be covered by more rings and increases the number of objects pruned during similarity search. The intersection
of the rings form cells in the low-dimensional mapped space, a pseudo-grid for metric data (see Figure 54 for a
2-D example).

The objects are clustered using the K-means clustering algorithm [18] for simplicity. It is important to note
however, that this is not a requirement. Any clustering algorithm for vector data can be used because the distances
from objects to pivots are numerical (vector), hence forming a feature vector. Since the number of pivots tends
to be small, the data set can be clustered ef£ciently. Objects are clustered based on their distances to pivots so
objects occurring in the same rings will be placed in the same clusters. The clusters closest to the cell containing
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the query object are retrieved during similarity search and the clusters which do not intersect the query region are
not accessed.

The main structure of the Metric Grid consists of three levels. The £rst level of the M-Grid contains the
pivots, the distances the rings are from each pivot and the mean of each cluster. The number of pivots, k, tends
to be small, in the range of δ to 2δ where δ is equal to the fractal (intrinsic) dimensionality of the data set [16].
As a direct consequence the data set can be clustered ef£ciently. The data objects of the pivots, the distances to
the rings from the pivots and the mean of each cluster on the metric grid can be stored in a small number of disk
pages. Since the storage space for this level is small, it is assumed that it can be stored in main memory.

The second level consists of the Cluster Cell-Array (CC-Array) (Figure 55). Each cell is represented in the
CC-Array by a structure (Cell[].ptr, Cell[].Obit) where Cell[].ptr is a pointer to the cluster the cell belongs to
and Cell[].Obit is one bit which indicates if the cell is empty or contains objects (Figure 55(a)). This level is also
assumed to £t in main memory. In Section 4.4 we show good performance is obtained using four pivots and ten
rings per pivot which is equivalent to 20 Kb, which can be easily stored in main memory.

The closest cluster to each cell is determined by computing the distance from the center of each cell to the
mean of each cluster. The structure for empty cells also point to the nearest clusters because the £rst cluster to
visit is determined by the cell the query object is in, even if the cell is empty. Also, the pointers are used for
the insertion and deletion algorithms to determine the cluster to insert or delete the object. In Figure 55(a) we
can see the structures in the CC-Array contain pointers to one cluster and one bit indicating if the cell is empty.
In the example, Cell 1 contains zero objects but points to cluster B, while the Cell[].Obit for Cell 3 is equal to
1, indicating Cell 3 contains at least one object and the pointer for the cell points to cluster D. Storing whether
each cell contains any objects (or is empty), is useful to prevent visiting clusters based on a cell that does not
contain any objects but intersects the query region and points to a cluster that would not otherwise be visited. In
Figure 54, the dark-shaded cell is empty but intersects the query region and its pointer will point to Cluster D (its
nearest cluster). By using 1 bit for the cell to indicate the cell is empty, we can avoid visiting Cluster D in this
example. It should be noted that each cell can only point to one cluster, i.e., the cluster it is closest to in the metric
grid. While a cell can only belong to one cluster, several different cells can point to the same cluster, there is not
just one cluster stored for each cell in the grid. The actual number of objects in each cell is stored separately on
disk and is only used to aid inserting and deleting objects from the M-Grid.

The third level of the M-Grid contains the original objects in the data set. The data for each object in the
same cluster is stored sequentially on disk. This is to allow clusters to be accessed using sequential disk accesses
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during the NN search algorithm.
The pseudo-code for the algorithm to build the M-Grid is shown in Figure 56.

Build Algorithm: Constructing the M-Grid
Input : The number of pivots, the data set of objects (si ∈ S), the number of rings no rings
Output : The set of pivots pj ∈ P , the ring distances, the clusters, the cell pointers, the number of objects

in each cell num per cell[]

Select the set of pivots (pj ∈ P )

foreach si ∈ S do
foreach pj ∈ P do

compute d(si, pj)

Determine the ring distances for each pivot such that each ring contains the same number of objects

Cluster the objects using the cells in the grid to represent the objects

Compute the mean of each cluster

foreach cell do
foreach cluster (cli ∈ C) do

compute d(cell, cli)

Set cell pointer to nearest cluster

Count the number of objects in each cell

Figure 56: The algorithm to build the M-Grid

4.2 Similarity Search in the M-Grid

The K-Nearest Neighbor Search algorithm for the M-Grid visits clusters in order depending on their distance to
the query’s position on the metric grid with the closest clusters being visited £rst. A good initial radius can be
found quickly visiting only a few clusters as the closest clusters usually contain the closest objects to the query
object. This current nearest neighbor radius is then used to prune clusters which are farther from the query object
and do not intersect the query region.

The K-Nearest Neighbor search algorithm for the M-Grid is shown in Figure 57. The £rst step is to compute
the distance between the query object and each pivot. The cell containing the query object (q cell) is determined
by calculating which ring for each pivot that the query object belongs to by its distance to each of the pivots.
The pointer for the cell containing the query object is accessed (in the CC-Array) to determine the £rst cluster
to visit. The algorithm calls the Visit Cluster() function (Figure 58) and sequentially retrieves all the objects in
the £rst cluster. The distance between the query object and each object in the cluster is computed. Using the
distance from the query object to the Kth nearest object found so far (KNN dist[K]), the rings intersecting the
query region are identi£ed. Any clusters not intersecting cells which intersect the query region, are pruned and
never visited.

After the £rst cluster is visited and the clusters are pruned using KNN dist[K], the K-NN search algorithm
computes the distance from q cell to the mean of each cluster which has not been pruned or visited and stores
the distances in the Cluster Distances Array (CDA). The CDA is sorted in ascending order and the clusterIDs
of each cluster are placed and sorted in the same order in the Active Cluster List (Acl) as the CDA. The £rst
cluster in the Acl which has not been pruned is then visited. Like the £rst cluster visited, the distance between
the query object and all objects in the cluster are computed. If a closer object is found than KNN[K], the closer
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K-NN Search Algorithm: Searching the M-Grid
Input : The set of pivots (pj ∈ P ), the ring distances, the query object q, the clusters, the cluster means

cmi ∈ CM , the cell pointers, the number of nearest neighbors K
Output : The K-NN objects to q

Active Cluster List (Acl) = [Null]

Cluster Distances Array (CDA) = [Null]

i=1

while i ≤ K do
KNN dist[i] =∞

i++

foreach pj ∈ P do
compute d(q, pj)

Calculate the cell the query object lies in (q cell)

Visit Cluster(The cluster containing q cell, KNN dist[ ], KNN[ ], K) // see Figure 58

Prune clusters not intersecting the query region using the KNN dist[K] and the CC-Array

foreach Cluster not pruned or visited do
CDA[i] = d(q cell, cmi)

Sort the CDA in ascending order

Place the clusterIDs of each cluster in the Acl and sort the Acl in the same order as the CDA

curr KNN dist = KNN dist[K]

i = 1

while i ≤ number of clusters do
if Acl[i] is not pruned then

Visit Cluster(Acl[i], KNN dist[ ], KNN[ ], K) // see Figure 58

if KNN dist[K] < curr KNN dist then
curr KNN dist = KNN dist[K]

Prune clusters not intersecting the query region using the KNN dist[K] and the CC-Array

i++

Figure 57: The K-Nearest Neighbor Search algorithm for the M-Grid

object is placed in KNN[K] and its distance is placed in KNN dist[K]. KNN[ ] and KNN dist[ ] are then placed
in ascending order by KNN dist[ ] and clusters are pruned again by determining the cells intersecting the new
query region de£ned by the new KNN dist[K]. This process continues until every cluster has been either visited
or pruned. Note that once a cluster has been pruned, it never has to be considered again because for K-NN
queries, the query region can only get smaller. The search algorithm continues to visit clusters in the Acl until
every cluster has been either pruned or visited to guarantee the exact answer.

The correct answer to each similarity query is guaranteed by the properties of the grid. The triangular in-
equality can be used to prune objects which are far away from the query object using precomputed distances to
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Visit Cluster Function: Visit the cluster and compute the distance between the query object and every object
in the cluster
Input : Cluster of objects si ∈ C, KNN dist[ ], KNN[ ], K

foreach si ∈ C do
if d(q, si) < KNN dist[K] then

KNN[K] = si

KNN dist[K] = d(q, si)

Place KNN[ ] and KNN dist[ ] in ascending order of KNN dist[ ]

Figure 58: Visit Cluster Function

pivots. Clusters can be considered large objects and the triangular inequality can be used to prune clusters on the
M-Grid. Since we know the cells which intersect (belong to) each cluster from the CC-Array, we only need to
identify the cells which intersect the query region. The pointers for these cells can be looked up in the CC-Array
and all clusters these cells point to are identi£ed. This allows us to prune only clusters which are outside the
cells which intersect the query region and guarantee the correctness of the answer. As mentioned earlier, only
non-empty cells are used to identify clusters intersecting the query region. Using empty cells to determine the
clusters to visit can lead to visiting additional clusters which do not contain any objects which also intersect the
query region. The pointers for empty cells are used to £nd the £rst cluster to visit, e.g., if the query object lies in
an empty cell. It is also useful to have the pointers for empty cells stored when new objects are inserted into or
deleted from the M-Grid, this way we know which cluster to access for the object.

The M-Grid reduces the number of disk accesses of feature vectors of objects and keeps the number of
random disk accesses small. Clusters are stored sequentially on disk, so the objects in each cluster are accessed
sequentially. Only one random disk access is needed to £nd the beginning of the cluster on disk, therefore the
number of random disk accesses is equal to the number of clusters visited. The M-Grid is designed for K-nearest
neighbor queries but can be easily modi£ed to process range queries. To process range queries, the algorithm can
be changed so the K-NN radius is equal to the radius of the range query and unlike K-NN queries, the radius is
£xed. All clusters intersecting the radius of the range query will be retrieved and all objects less than the radius
will be returned as the answer to the range query.

4.3 Inserting and Deleting Objects

As mentioned earlier, the M-Grid is a dynamic indexing structure. The algorithm for inserting objects into the
M-Grid is shown in Figure 59. To insert an object into the M-Grid, the cell containing the object (Cell[Oinsert])
must be identi£ed by its distances to each of the pivots. The cluster to insert the object is determined by looking
up in the CC-Array the cluster Cell[Oinsert] belongs to. If the object bit for the cell containing the object
(Cell[Oinsert].Obit) is equal to 0, then the bit must be set to 1 to indicate the cell contains at least one object.
The number of objects in the cell is also incremented by 1. The object is inserted into the closest cluster to
Cell[Oinsert] and the mean of the cluster is recomputed.

Objects can be easily deleted from the M-Grid by removing the object from its cluster. Similar to an insert,
the cell containing the object to be deleted (Odelete) is identi£ed and the cell is looked up in the CC-Array to
determine the cluster containing Odelete. The number of objects in the cell is decremented by 1 and if no other
objects reside in the cell, i.e., num per cell[Cell[Odelete]] = 0, Cell[Odelete].Obit is set to 0. The mean of the
cluster is then recomputed.
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M-Grid Insertion Algorithm: Inserting Objects into the M-Grid
Input : The set of pivots pj ∈ P , insertion objectOinsert, the ring distances, the cluster means cmi ∈ CM ,

the clusters, the cell pointers, object bits of cells Cell[].Obit

Output : Object inserted into M-Grid

foreach pj ∈ P do
compute d(Oinsert, pj)

Determine the cell (Cell[Oinsert]) containing Oinsert

Find the cluster Cell[Oinsert] belongs to

Insert Oinsert into this cluster

if num per cell[Cell[Oinsert]] = 0 then
Set Cell[Oinsert].Obit to 1

num per cell[Cell[Oinsert]] + +

Recompute mean of the cluster

Figure 59: M-Grid Insertion Algorithm

4.4 Experimental Results

We tested the performance of the M-Grid using a variety of synthetic data sets. The data sets are designed to test
the scalability of the M-Grid with respect to varying the cardinality (nobj) of the data set, the number of clusters
(no cl), the percentage of noise (noise), the number of dimensions (dim), the maximum distance (max d) of
objects in each cluster to the seed of the cluster, the number of pivots (no pivots) and the number of rings
(no rings) used in the M-Grid and the number of nearest neighbors (K) retrieved during similarity search. The
default values for the data sets are shown in Table 3.

Table 3: Default values of the data sets

nobj 250,000
no cl 100
noise 20%
dim 64
max d 1% of dim
no pivots 4
no rings 10
K 10

We assigned objects to clusters non-uniformly. It should be noted the M-Grid is designed for data sets which
exhibit some clustered structure. Some clusters in the data set contain more objects than others to simulate
real data sets. An example of the distribution of how many objects are in each of the 100 clusters is shown in
Figure 60. Note that changing the number of objects or the number of clusters in the data set does not affect the
distribution of the number of objects in each cluster, it just changes the average number of objects in each of the
clusters. The distance the objects are from the seeds of the clusters also follows the distribution in Figure 60. We
use the L1 metric distance in our experiments and all data sets are generated in the unit cube. The default value
for the maximum distance from the seeds of the clusters is set to 1% of the maximum possible distance objects
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Figure 60: An example distribution for the number of objects in each cluster. The average number of objects in
each cluster is 2500 or 1% of the total number of objects when using the default values shown in Table 3. The
distance objects are from the seeds of the clusters follows the same distribution

can be apart in the data set.
For each data set, we generate a sample of 100 queries the same way we generate objects in the data sets

to use in our experiments. Our measure of ef£ciency is the number of disk accesses and the simulated time 5

required to process a K-nearest neighbor query and the page size for all experiments was set to 4KB. To evaluate
the ef£ciency of the M-Grid, we compare it to the VA-File and a sequential scan (SeqScan) of the data set. For
each experiment we show the results in a graph where the number of disk accesses for the sequential scan and the
VA-File are divided by the number of disk accesses of the M-Grid to show the speedup of the M-Grid, as well, the
simulated time is also shown. Using the number of disk accesses as an ef£ciency measure is fair because the VA-
File and the M-Grid both use sequential access patterns and only a few random disk I/Os. For all experiments, 10
data sets are generated the same way (following the same distribution) and the average number of disk accesses
is used for the M-Grid and the VA-File. For the sequential scan, the number of disk accesses is constant for each
experiment.

The £rst experiment is designed to test the scalability of the M-Grid while varying the cardinality of the data
set. In Figure 61(a) we can see the speedup of the M-Grid compared to a sequential scan of the data set is stable
at approximately 20 with a slight increase in performance of the M-Grid as the number of objects in the data set
is increased. This occurs because as the number of objects in the data set is increased and the number of clusters
remains the same, there are more objects in each cluster. This results in a slight increase in performance of the
M-Grid because the K-NN distance is reduced slightly for most queries, resulting in accessing slightly fewer
clusters. For the same reason, the speedup of the M-Grid compared to the VA-File increases slightly to greater
than 5. Figure 61(b) indicates the same results. The time for all three access methods to answer K-NN queries
increases linearly with increasing the number of objects in the data set.

The next set of experiments test the performance of the M-Grid while varying the number of clusters. As
expected, increasing the number of clusters improves the performance of the M-Grid. When decreasing the
number of clusters, the number of objects per cluster increases and if any part of the cluster intersects the query
region, the entire cluster is retrieved from disk. Dividing a cluster into two smaller clusters can mean retrieving
only half the objects if only one of the two clusters now intersects the query region. Dividing clusters into smaller
clusters is only bene£cial to a certain extent. At some point the same objects will still need to be retrieved, just
more clusters (with fewer objects per cluster) will be visited. Figure 62(a) shows the M-Grid is more than 40
times faster than a sequential scan of the data set and up to 10 times faster in terms of disk accesses than the

5We use the same cost values as shown in Table 2 to compute the simulated time
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Figure 61: The effect of varying the number of objects in the data set
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Figure 62: The effect of varying the number of clusters in the data set

VA-File when the number of clusters the M-Grid divides the data set into is increased to 400. In Figure 62(b)
we can see the performance of the VA-File and the SeqScan remains constant while increasing the number of
clusters in the data set, while the performance of the M-Grid increases. In Figure 62(b) the M-Grid is up to 15
times faster in terms of time because the M-Grid requires far fewer CPU operations. Note that even when the
number of clusters is very small, the M-Grid is still faster than the VA-File.

Noise in the data set are objects which are created randomly in the data set and are not part of any cluster. By
using noise, one can investigate the resiliency of an access structure. Figures 63(a) and (b) show the M-Grid is
resistant to increasing the percentage of noise in the data set and the performance of the M-Grid only decreases
slightly when the amount of noise in the data set is increased to 80% of the total number of objects in the data
set. This means the M-Grid can perform nearest neighbor search ef£ciently as long as the data set contains some
objects which are clustered. At 100% of the data set being noise, the distribution of the data set is uniform as all
the objects in the data set are generated randomly. Since the M-Grid is designed for data which has some sort
of clustered structure, it cannot improve on the performance yielded by a sequential scan, and it is outperformed
by the VA-File. This occurs because the VA-File approximates the actual distance of every object in the data
set and actually performs the best for uniform data sets because the objects in the dataset are farther from each
other. This reduces the likelihood of objects occurring in the same cell for the VA-File and thus having the same
approximations. For a reasonable amount of noise, say 50%, the M-Grid is about 5 times faster than the VA-File
and 20 times faster than the sequential scan respectively.

The performance of the M-Grid was also tested against varying the dimensionality of the data set while
keeping the remaining parameters of the data set constant. The results for varying the dimensionality between 32
and 512 are shown in Figure 64. The maximum distance (max d) objects can be from the seeds of the clusters
also remains constant at 1%. However, when the dimensionality of the data set is increased, 1% of the maximum
possible distance between two objects will also increase. Figure 64(a) shows the M-Grid is more than three times
faster than the VA-File when the number of dimensions is 256. For dimensionalities of 32 and 64, the M-Grid
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Figure 63: The effect of varying the percentage of noise in the data set
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Figure 64: The effect of varying the dimensionality of the data set

is £ve times faster than the VA-File in terms of disk accesses. The relative performance of the M-Grid decreases
slightly as the dimensionality increases compared to a sequential scan of the data set and the VA-File. One reason
for this is the maximum distance objects in clusters can be by default is 1%. Therefore the size of the clusters
increases when increasing the dimensionality and the total hyper-volume of the clusters increases faster than the
maximum distance. Although the total hypervolume of the data space also increases, each dimension is still in
the range, zero to one. This causes the chance of clusters overlapping to be higher and increases the chance of
visiting additional clusters.

Figure 65 shows the performance of the M-Grid decreases as max d increases. The main reason for this is as
max d increases, the distribution of the objects in the data set becomes more uniform. This causes the K-nearest
neighbor distance to increase signi£cantly, reducing the ability of the pivots to prune clusters. It should be noted
that if the data set can be clustered more effectively, the M-Grid would be able to prune more clusters and increase
its ef£ciency. Even when max d reaches 10%, the VA-File and the M-Grid exhibit the same performance and the
M-Grid is still a little more than two times faster than a sequential scan of the data set.

The M-Grid has two main input parameters for building the metric grid, the number of pivots and the number
of rings. Both of these parameters affect the performance of the M-Grid. Figure 66 shows the affect of varying
the number of pivots. Increasing the number of pivots results in more clusters being pruned. This occurs because
the more pivots we use, the greater the probability that clusters will not intersect rings which the query region
intersects, for at least one pivot. This results in visiting less clusters and retrieving less objects from disk which
reduces the query processing time for the M-Grid (Figure 66(b)). Increasing the number of pivots used by the
M-Grid can only increase the performance up to a certain extent, at some point using more pivots will not result
in pruning more clusters. This occurs because there is always going to be at least one cluster for every query
which must be visited and clusters which intersect the query region can not be pruned no matter how many pivots
we use. The speedup of the M-Grid compared to a sequential scan of the original data set increases to 33 and to
8 for the VA-File when the number of pivots is equal to 8 (Figure 66(a)).
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Figure 65: The effect of varying the maximum distance objects in a cluster can be from the seed of the cluster
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Figure 66: The effect of varying the number of pivots used by the M-Grid

Figure 67 shows increasing the number of rings also increases the performance of the M-Grid compared to a
sequential scan of the data set and the VA-File. Increasing the number of rings divides the data space into a £ner
grid which makes approximating objects and clusters by the cells they intersect more accurate. This allows some
clusters which just border the query region to be pruned and not be visited. Similar to increasing the number of
pivots, increasing the number of rings also increases the number of clusters pruned and improves the ef£ciency
of the M-Grid. As noted above for increasing the number of pivots, for every data set there will be some limit
at which increasing the number of rings can not result in pruning more clusters as some clusters will have to be
visited anyway.

Next, we test the effect of varying the number of nearest neighbors K retrieved. Figure 68(a) shows the
largest advantage for the M-Grid is achieved when K = 1. The reason for this is for small values of K, only 1
or 2 clusters have to be retrieved (or 1%− 2% of the data set) for the M-Grid. Increasing the number of nearest
neighbors retrieved past 10 has very little impact on the performance of the M-Grid because often the additional
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Figure 67: The effect of varying the number of rings used by the M-Grid
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Figure 68: The effect of varying the number of nearest neighbors retrieved by the M-Grid

nearest neighbors retrieved are found in the clusters already accessed and additional clusters do not have to be
visited. The K-nearest neighbor distance usually does not increase rapidly when K is larger than 10. This causes
the number of disk accesses to increase slowly with increasing K. It should be noted that as K is increased, the
additional disk accesses for the VA-File are random disk accesses. This is why in Figure 68(b) the curve for the
VA-File is increasing at a faster rate than the M-Grid, while in Figure 68(a) it appears the performance of the
M-Grid is decreasing compared to the VA-File as K is increased. As K is increased, the total number of disk
accesses for the VA-File and the M-Grid is comparable, but because these additional disk accesses for the VA-
File occur in the re£nement step and are random disk I/Os, the performance of the M-Grid increases compared
to the VA-File in actual query processing time. This means the actual time required for the VA-File to perform
K-NN search will increase rapidly as K increases, even if the total number of disk accesses does not increase as
quickly.

5 Conclusion

5.1 Summary and Contributions

In this thesis we have examined the challenges of creating ef£cient access methods for high-dimensional data
and general metric data. We have proposed three new access structures for ef£cient similarity search. The £rst
two structures, the OSEQ+ method and the OSEQ∗ method, speedup range query processing with a number of
improvements over the OSEQ method. The proposed methods restructure the OMNI-£le and employ the notion
of a preferential pivot P to be used as the £rst pivot to prune objects. The OSEQ + and OSEQ∗ methods also
sort the OMNI+-£le and the data £le resulting in substantial savings by allowing the two £les to be accessed
sequentially and also reduce the total number of disk accesses. In addition, we have shown that it is bene£cial to
oversample the pivot set when the order the pivots are selected does not indicate their pruning ability, and then at
query time, choose a small portion, i.e., those which are closest to the query object.

Our experimental results show that with often less than 25% storage overhead, the OSEQ∗ method can process
similarity queries up to £ve times faster than the OSEQ for metric data. The OSEQ + and OSEQ∗ methods
work in high-dimensional vector spaces as well as general metric spaces. We have shown in vector spaces, the
OSEQ+ method using the PCA pivot selection technique, clearly outperforms the VA-File by a large margin
when processing range queries, up to 24 times faster and is up to 69 times faster than a sequential scan of the data
set.

The third access method we have proposed is the M-Grid. We have shown how to construct a pseudo-grid
structure for any metric space, including Euclidean space, and use the metric grid to cluster the data objects using
any clustering algorithm, even if the original data is not vectorial. The M-Grid performs ef£cient similarity search
in high-dimensional spaces and general metric spaces by searching the clusters sequentially while the properties
of the metric grid guarantee the correctness of the answer.
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Our experimental results show the M-Grid can perform nearest neighbor search up to 40 times faster than
a sequential scan of the data set and up to 15 times faster than the VA-File. In addition, our method works for
all metric spaces, not just vector spaces, can be easily implemented and scales well with increasing the number
of nearest neighbors retrieved. We have further veri£ed that it is critical to not only limit the number of disk
accesses, but to perform most I/O sequentially and to reduce the number of CPU operations to create an ef£cient
access method.

5.2 Future Research

This thesis explores the challenges of creating an ef£cient access method for both high-dimensional data and
general metric data. Some interesting research issues for future work include:

• determining an optimal oversampling rate and the number of pivots to use at query time for the OSEQ∗

algorithm.

• Modifying the OSEQ+ and OSEQ∗ algorithms to process nearest neighbor queries, speci£cally, a good
method is needed to estimate the nearest neighbor distance.

• Determining an optimal algorithm for selecting P independent of the pivot selection algorithm for the
OSEQ+ and OSEQ∗ methods.

• Exploring the effectiveness and ef£ciency of the clustering using the metric grid and comparing it to other
state-of-the-art clustering algorithms.

• Optimally selecting the number of rings and pivots to use for each data set when building the metric grid.

• Determining new ways to store the CC-Array so the number of rings and pivots can be increased without
increasing the storage of the CC-Array.

• Investigating if the distribution of the data set changes through insertions and deletions, how will this affect
the performance of the M-Grid and how can we detect this problem.
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