30738

National Library Bibl.iothbme nationale
of Canada du Canada

\

AN

1
DI .

Robert K. Lee

TNESES CANADIENNES
SUR MICROFICHE

CANADIAN THESES
ON MICROFICHE

NAME OF AUTHOR/NOM DE L AUTEUR

Optimal Parallel Computations for

STMD Computers

TITLE OF THESIS/T/TRE DE LA THESE

[. ,.
" UNIVERSITY/univers ré_University of Alberta

DEGREE FOR WHICH THESIS WAS PRESENTED/

" GRADE POUR LEQUEL CETTE THESE FUT PRESENTEE

YEAR THIS DEGREE CONFERRED/ANNEE D'OBTENTION DE CE DEGRE

Doctor of Philosophv

Fall 1976

NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THEse DT . Stanlev Cabav

Permission is hereby granted to the NATIONAL u,aﬁAmr OF
CANADA to microfilm this thesis and to lend or sell copies
of the film. |

The" author reser'ves othér publication rights, and neither the
thesis nor 'e*ténsive extm(‘:xs' from it may be prihted or other-

wise reproduced without the author’s written permission.

L°autorisation est, par la prédsente, accordée 3 /a H/BL/OiTHE"_ '
OUE NATIONALE DU CANADA de microfilmer cette Ihése at
de préter ou de vehd/a des exemplaires du film. |

L'auﬁur' se rdtarve. ./es autres droits de pub/iéation_,’ nila
thd;a ni. dq /oqgs airra:'ts de calle-ci ne doivent étre imprimds

* ou autrement reproduits sans 1’sutorisation écrite de I'auteur.

DATED/DATE _September 10, 1976 _ SIGNED/S/IGNE.
N N °

* PERMANENT ADDRESS/RESIDENCE FIXE_:

At Lo

oad. reipei, TAIWAN

NL=91 (11.73)

INFORMATION TO USERS

TINS DISSERTATION HAS BEEN
- * MICRORILMED EXACTLY'AS RECEIVED

opy was produced from a micro-
copy of the or1g1na] document.
The-quality of the copy is heavily
/F_/;///’Hépendent upon the quality of the
P "~ original thesis submitted for
mi¢crofilming. Every effort has

been made to ensure the highest
quality of reproduction possible.

/

PLEASE NOTE: Some pages may have
indistinct print. Filmed as
received. '

~ Canadian Theses Division
Cataloguing Branch
National Library of Canada
Ottawa, Canada K1A ON4

AVIS AUX USAGERS T

LA THESE A ETE MICROFIINLL
TELLE QUE NOUS L“AVONS (ECUE

Cette copie a 6té faite * martir

~d'une microfiche du docume::!
original. La qualité de 1la copie.
depen grandement de la qualite

de la thése soumise pour le
microfilmage. Nous avons tout
fait pour assurer une. qualité
supérieure de reproduction.

NOTA BENE: La qualité d'impression

" de certaines pages peut laisser a

désirer. Microfilmee telle que
nous 1'avons regue.

Division des théses canadiennes
Direction du catalogage
Bibliotheque nationale du Canada
Ottawa, Canada - KTA ON4

THE UNIVERSITY OF ALBERTA
OPTIMAL PARALLEL CONPUTATIONS POR SIND COMPUTERS

by. . !

‘ ' (:::>ﬂBERT KAI-SHUAN LEE

A THESIS ' .

L4

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL PULFILMENT OF THE REQUIREHENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY
" DEPARTMENT OF COMPUTING SCIENCE

[y
\

B - EDMONTON, ALBERTA

"PALL, 1976

; " THE UNIVERSITY OF ALBERTA

FACULTY OF GRMDUATE STUDIES ARD RESEARCH

The undersigned certify that they haie'teéd, and

reconnénd,to the Faculty of Graduate Studies and Research,’

for acceptanCe, 2 thesis éntitled R R R R R PR R

"Optimal Parallel Computatlons for SIMQ Coqputers |

....0.".............' l........ﬂ..i

'..I..'.......‘......‘..'l...‘......‘.‘.....Q.....-.....'....d
i . .

Robéert K. Lee

submitted by ..'.............'....‘.......‘.....'..‘.0.....

1'in partial fulfilment of the reguirenents for;the_degree of

Doctor of'Philcsopﬂ}. - : .

(ﬁ /,//,”‘ ~ - B
/;J O ({)r‘(R
een oo -‘.o\ooo 007910'1-.-....

7 Supervisor-

/K/W7

Y O X S

» oo Pe L *e e o000 ® 5000000
y . > .

Examiner

- . ’ . .

—

LQDATE... ...l5a.¥ Q.;....J...{. I - "

-

I

- TO MY PARENTS AND MY WIFE

«

N

%3

iv

. , ABSTRACT

s
\

Efficient parallel - algorithms for- { SIMD™ (S*ngle'

Instruction stream - Multiple Data s reély paralleL
computers are coﬁsidered_fqr’a variety of probleas. Included

are efficient parallel algorithms for performing integer .
"arithmetic, polynomial arithmetic - and modular arithmetic.
' ' /

A Theser parallel algoriyﬁns lead to “efficient QZ

\\:fthods for soi/ﬁyg the following e\\\;

1) pafalle; integer arithnétic: 7

/
/

(asynptoticallyi optima
probleas:. o
| J

-addition, subtractlon, multiplication and division

'of nultlple precision 1ntegers. | |
2) pgtallel pokynomial arithmetic:

éddiyion; subtraction, nultiblicafion, divigionﬂand
‘. éialuggioﬁ, of poifhélials, ~and evalqaﬁion ,'?f

eleqéhtary synietric‘funCtions.'. ‘
3)4é;ra11e1 -oaﬁiar arifhgetié: J
residué evaluatioh» of nultiple—precision idtegé:s
and of polynonxals, the Chlnese reu@inﬂer 'p?oblén,
polynonlal lnterpolatlon, 'and thé’solutioﬁiof full(
linear systels of equations by nodular methods. |

Among theAparallel a;gorxthns vglven in ‘this the51s,:

fhtee vﬁroad élassééi‘can be identified‘aCCording to their -
level of parallelisn'i' | '

5 1) parallel algorlthls,; assnning ' 1i;eq§1§' bounded

parallelxsn,. 'e.g., "addition and ‘subtraction of

3f

.polynomlals, /90%1HOIIEL\ 1nter8b1qt1on,, and = the

N
: !
Y 5

I
|
o
integers, addition and snbtnaction of polynOllals.

- \
parallel algorithas assunlng polynom;ally bounded

-

parallelisa, e.g{, nultlpllcatlon \of 1ntegef§,

nultiplication of polynonials, re51due evaluatlon of;

)

»

evaluatlog of eleuentary sgnmelrxc functxons.' =

'parallelz\algorlthns assunlng exponen%lally bounded

(

parallellsn, €.g., division . of 1ntegeds, division-df
/

g

-polynomlals, residuae evaluatlonﬁb/of‘ multiple-

precision integers, the Chinese remainder problen,
‘ !

~and ‘the solation of full linear systeas “of

3

' equations.

)

Jvi

Ay

Y
ACKNOWLEDSEMENTS ¢

|

P
i
|
I
o
|
|
1
1

I wish to express By gratitude_to;ny supeﬁvisocs, Dr.
. :

S. Cabay and Dr. I. N. Chen, fox their 'guidance throughout

the preparation of this thesis.

v

The financial assistance provided by the University. of

Alberta, in the form: of a. Dissertation Pellowship, 1s

gratefully adknowledged.

vii

TABLE OF CONTENTS

X f : o , .
CHAPTER B : : R : PAGE
1. INTRODUCTION wueuesounnanionnansnsabosnnnnannnns 1
1.1 Classification of Parallel Computers 3 -

1.2 Complexity aof Parallel AlgOrithms .cceveeean 7

*" . 1.3 Contributions ;.‘,.....;;...;...weg...;..... 12

.

2. .TECHNIQUES FOR PROVING PARALLEL LOWER BOUNDS ... " 14

B . \ . -
2n1 Pan-in Atgument 'f""""""""""""" 15
2.2 Growth ACQURENt weeweiicececvancocncanaacaaan 20
.2.3'Sub§{itution Argumént;...,.....L.:;.... 22

'V

4:3.@PARALLEL POLYNOEIAL;ARITHHETIC,-;-.{.oocq;an---. 526

3.1 Evaluakﬁon of Polyhomials;..;.:n.....:. 28
3.2 Slnple Polynonlal Arlthnetlc ceeccescesescns 31

3. 3 g}v151on of Polynonlals;....;...‘ 35

;\q E;emqwfacy Synletrxc Functloqﬁ cecavrscesevas 41

5. pARhLLEL'IkTEGgR ARITHNETIC «oevuvenennnnranione - 48

4.1 Addxtlon and Subtractlon of Integers cevesee 46

?

u 2 uultxpllcatlon of Integers .,.........;.....f 52

S viii ' D

»

\ i ‘un3 DiViSi‘On of Il)tegers -‘\ ."--.--..o..-o’.------o‘ 58
5. PARALLEL MODULAR ARTITHMETIC - v cvvmeccocoennnnn.. ?2

A

\ ‘ : ‘
5 1 Polynonlal Modular Transfotms, 65“1
. _ ' ~/’/,;
5 Q Integet Modular Transforms ...eceeececsnnuan V;lo d
: 2 }_ N Y P

4

' /g) TN v
5. 3\Exact Solution of Llnear Systnms Neecceiu . ;gig\\%\v
1 5 w' 2, o

.5 4 Polynomlal Dlv1510n Rev151ted ..L.:ﬁq.....ﬁL

\ » , N
A\ _ ’ S
. X

6. CONCL ﬁions I PP P P - A

REFERENCES .'[“'...-..'..‘.-.'..‘........‘Q-/;‘.'.I-.........'. 88

4

b4 . .
- TABLE OF NOTATIONS

|A|‘.“- ; tﬂe cardinality df_anj set A

A(i}j) : 'tﬁe‘(iij) cofactor of any.matrix A

Adj(A) the adjoint matrix of ‘any matrix A

det (A) N the deée;ﬁinant.bf anj nattixbx

b B ' the‘ﬁése'(oritahixf of'posifibnal intéggrs

vdeg(f) : the degrge'gf‘any poiyponial'f- | _

P - -fan afbit:ary.algébrdically compieté'fiéld

F[x,}] o " the cing of polyno;ialé in i;and,g-bvé;‘f

F(x,y) | . the fieIdﬂbf rafionai'fuﬁgtidné in x and y;f

over F : S e - St Ty
w - e ko

ers modulo ‘a prime p .

6F (p)

Y

taken base éi"""

1log n ‘the logarithm of "

nj-' : the féCtorial °. anyindq-negative“igﬁggér'n ‘

.6(f(n{) of order f(n) o " | o .f’

Lf /g ~ the quotlent of £ d1v1ded by g, whére'f and'g:

i “are in any . Euclxdean donaln:" o a

£ nbdﬁg ,' ; thevrenalnder of £ dlvldei by g, where‘f and g

ére in any. Enclldean donaln S

s (n, k) s tﬂé elelentaryzsymmetric function,bf dégrée K' :ﬂ
- 1n n 1ndetern1nai>s B :

|i|f ”,."') the absolute value of any nunber X

Lxs : | - the gceatest 1nteger_£*the>nuqber x ..

fi, | ; "the sn;1igst'integér;z‘théihﬁﬁber x

_I‘n_t_rszdn;tieu' A

The central theme of this the51s is optinal' parallel
conputatlons for SIHD (Srngle Instructlon stream - Hultlple,f
1AData streal) parallel computers. (Cf. Sectlon 1 1). Hany\
people,‘thxnk that parallel computatlons are exten51ons of
j:sequentlal computatxons. ThlS vxev 1s qu1te wrong.' Para11e1~7

'conputatlons glvé rlse to unlque problems and 1ssues beyond
e~those of sequent1a1 conputat;ons [Stone ’1973, Newell and .
'Robertson 1975]. In fact, sone mlstakes of earller rese:fch‘b
‘(and‘ ,1nq3uding : sone- }reCEnt '.research) ;in" parallef
”cdnbutatibﬁs +can be dxrectly contrlbuted to this v1ew. For"
o!example,tlt is not surpr151ng that adaptlng the"c1a551catf
vfalgorlthns : such' . as Gauss*Jordan a ellmilatlon, . LDU
:.factorxzatlon, or leens reductxon on’ parallel conputers ish
Zfar fron optlnal. _ | | ‘ |
o

In order to prepare dlscu551on for subsequent chapters,

'<=this chapter his” 1ntended to clarlfy sone 1nportant polnts‘

'fand deflne our obje tlves.',"h

-

': In Sectlon 1«1 we classxfy parallel conputers accordlng; '
“to. Flynn s stream concept. Tvo broad categorles can. behr,
-obtalned’ the SIHD parallel computers and the quD (Hultlplef

'”Instructlon _ strean' - Hultlp;e' Data streanj_ parallel
'1conputers.”'ief'explain'.uhy ‘SiHD' parallel computers are
| fa#orea Cin this the51s. Also, fin_ this sectlon, the

characterlst1CS of 1deallzed SIHD parallel couputers, which‘

1

I :
12
[;. .
) ' .
serve as the basis ofn_all parallel algorithms in the
' " . . " , .
subsequent chapters, are descrxbed.) -

In Sectlon - 1.2 'models ‘of parallel computation and
\ ‘ . .
measurements of parallel conplexxty are g1ven. Since the aim

of thxs study is to gain 1nsight 1nto parallel conputat%ﬂnal
complexlty, we‘”on eubrate on the optlnallty and asynptotle

behaV1or of pacallel algorlthns.
‘j., ’ ’ . : v . . ‘
tn Section 1. 3 wve brlefly sumnarlze the contributions

'of thls thesxs.‘: - S o o]
- R
> ".’:"-‘ [‘ N ‘

1.1 Classifjcation 2f Parallel Computers

K¢ .
Many computers now exist which are capable of gxecutipq'

more than ome instruction si-qltaneously‘[Barnes et a1_1968;
Hintz € Tate 1972, Johnson 1972, Rudolph 1972, Watson 1972,
Wulf § Bell 1972]. Althoughfall these computers are grossly
tgraed as parallel conputq;é, Athere are significant
functional and architectural differences ’befveen. any two
pacailel coamputers. A nunber. of .different‘approachés fo
c}assification of parallel computers afé péssible’[Thnrber'G

Wald - 1975]). _Mgost techniques use global = architectural

" -

properfies and are thus valid only within limited ranges.
For the purpose of studying parallel comp\tations, gFlynn's
strean '¢oncep£ (1966,'1972] will be'adopted; sgggg!vih this
 context simply seans a sequenée of instguctionS'oc data - as
execu£ed or ‘operatéd"on byfa processor. Tﬁé advantage of
this apprdaéhAis that it éescribeé a parallel cdlpnﬁer fros
a iacnoscopic_péidt of viév; and yet avoids the pitfalls of

‘relating such descriptions to a partiéula: problen.

.

. Using .the stream concer., . arallel computers are
categorized by the magnitud- (either im space or time:

multiplex) of intgraﬁtions of t »ir instruction and data -

streams. The two major categories are:

1) The Single Lnéﬁructiod stréag - Multiple-pata §£;§é!

2
<

(SIND) .phrallél;fgolpntErsl'have‘ohly one stream of
instructions in,exebqti@n at any time, but each

" instruction may ' affect many different data. These

paréllel computers can be fu:xhét categorized as
being |
a)’parallel in. space, as are structured array
o computers (1) (ILLIAC IV, OMEN-60, SINDA};
b) unstructured linear afray computers, or ensembles
<2)” (PEPE, Goodyear STARAN S);
c) parallel érinarily “in time, as are piPeline
computers (CDC STAR-100, TI ASC);
d) assoc“tive conputers, vhose memories are
addressed by contents rathef than by addresses

(Goodyear STARAN S, PEPE, OMEN-60, SIMDA).

2) The Multiple Imstruction stream - Hultiple Data

tream (HLNMD) parailel coaputers ﬁave more than one
sttéal_of iuétrnctiohs, in'fact;,as lany‘instfuction'
.- streams as there are data stfeais.’ These paféllel
COnpute:s are esseatially ihterc;nnected sequential

computers, usually called ‘multiprocessors (UNIVAC.

1108 multiprocessor systeam, C.mmp 3>, INP).

. The MIMD parallel conphters_thap'have been bpilt'so far .

¢1) A structured array computer has a ‘high level .of

interconnectivity such as exhibited by ILLIAC IV's four’

nearest neighbor connections. -

€2) AB énsenble" such asv PEPE tends not to havé much

.interprocessor.Hconnectivity,.e1cept by‘tranS|ission to. the
"control unit and retransaission to the appropriate

processor.

(3) C.mamp %ohsiéfé\bf 16. PDP-11 computers connected through
a crosspoint switchjfb 16 primary-memory ports. -

tend to.havé only 2, 4, or in rare instances 16 processors
(C.qip); wvhereas the SIND parallel ‘conputers have an
effectiye parallelism as small as 64 (ILLIAC IV) to .upwards

of 288 (PEPE) and 1024 (STARAK 5) (4>. In addition, it is

s

likely that lthe scale gap will beconme greate and \greater

due 'to’ the'\recent ‘microprocessor [/ . com uter-of-a-chip

revolution [Soucek 1976]. .Unfortuhately, s vreseardh

pceviously donme in the area of paralhgl;/égiputatiéns. is
. // " " .

-

strongly oriented tovards'HIHB/ggnpﬁ%ations.

/

., Sincé 1t is ev1denb/that ‘technology for SIHD parallel
,cnnputers is approaching ma urxty\%nd a good number of large
" scale SIMD parallgl co-puters ifé/ available, there "is an
urgent need for ”efficient‘ parallel algo:itﬂns designed
specifically for SInD-parallellconphtersf Without efficient‘
éarallel algorithas these golputer‘giﬁnts‘are just ordinary

dvarfs, and hacdvare. worth. lilliohs of éollars is just

"another engiqeeriﬁ&ispectacle. Therefore, in this thesis wé
are sdlely interested in designing parélle}‘ algotithns for
SIMD ﬁarallelvconputers. ¢(s) proposed parallel algofithns

are assumed ,to be executed on ’ idealfged SIND parallel

computers which can be characterized as follows:

N

- () STARAN has a potential_ parallellsn as 1arge as . 8192 1n
the most advanced nodel. , :

s) Any parallel algor1thl designed for .SIND parallel
computers can easily e adapted for MIMD parallel computers,
- but not conversely.

N

vl

i)

2)

3)

4)

i

There are an ‘indefinite number ¢8) 'qf ilentical
pfoeessors, <ach able to exectte the | usual
aritﬁ;etic, Boolean, relational (1;e{, copp;rison},‘
and . control Ope;atiens, and each vith tits‘.own
memory.

All prbeassors ' obtain their instructions
simultaneously . from a -single instrdetion streanm

broadcast by the centrol unit. Thus, all proteSsdrsv

execute the same instruction,,but operate on data

stored in their own memories.

Each processor has a distinct number by which it may
be identified by the control unit or referenced by

an instructiop.

Any processor iai be disabled . from performing an

'_1nsttuctxon.'The enabling or dxsabllng of 1nd1v1dua1

5)

prqcessors is effected accordlng to the result of
some local test.
All processors, can excbange data with each other

over predaﬁlned data paths (ILLIAC IV) or through A

data‘perlutatlon network (STARAN S).

(0)

However, this number is bounded [Kuck & Nuraoka 1974,

Kuck & Haruyama 1975, Chen & Kuck 1975].

1.2 Compléxity of Parallel Algocithas

-~y

If alqorithas for solving certain pcoelems‘ are to be

analyzed and if lover bounds for solvxng these problels are

‘ , fo be obtained, odels of computation a*d neasurenents of
lcO-plexity must be first given. The folﬁpving defxeitxon is
evolved from. a seguential computationai model .:Einograd

1970j. A parallel model similar to this one is proposed by

_Munro and Paterson [1973].)

Definition 1_2 "Given any three sets A, B aﬁi R, a

-'gggggggg;gg' of R in A given B is a finite sequence of non-
{ . i , t ‘
empty sets SivC R, 0 < i< t,‘such that S0 = B, R c i—O Si

and for each i-> 0, if X e Si then x =/iy op z),'vhere;Y; z
i-1 o
U0 S and op ¢ 0. The set,o contalns the types of all
=0 3. 1 . : ‘

operations used for obtaining S ;- 'The nteger t is the

nupber of operations required for- the conputetion. The

elements in R are the rCesalts of the conputatlon.

i

- Note that in the above definition ail the intermediate
resultsvsi,A1 <i<t, are contaided in»the_set A. In fACt;
“this is often a convenient ﬁay' td‘express the types of
opecat1ons whlch are allowed:in a computatxen.’For example,
‘let F be an arbltrary algebrelcally conplete fleld f75_ and
{ X, | 1_iSn } be the 1nput arguments. If arithmetic ‘and
only arithmetic opetagxous a:e allowed fog ‘a conputation,

i

3 X . . - X) v
(7) Throughout this thesis F denotes an algebraically
complete field. = , AN ’ S

then the set A can‘be expressed as the (symbolic) catiomal

field F(x e X ...,'x). On the other'hand, if the set -A is

/

2"
-spec1fied as the ring F[xl, xz,‘ «eer X_], ‘then this 1is
‘1lplxc1tly saying that division is not allowed. In .the 'more
general pase. hovever, all .arlthnptlc. | Boolean &dd
felationai operations are aliowed‘(Cf. éecﬁion 1.1) and a

'defiﬁition‘qf the set A is normally oiitted.

Example. Let w be a prluitfve—a—%ﬁ—fﬁeigrf unity in -F.

: Then the following identity holds:

n-1 i) i : l n | ’
r w / (x-w) =n/ (x -1).
i=0 { : '

Based on this identity, the following seqﬁence of sets il a

computation for evaluatiﬁg x® in P(x) given:F U (x} %&6;3

1974 7. : | .

Sets S ' Comments

Sg = E v\, o . initially given.

Sl,= {Ai<efx-wi,|,15138}. 01'=a[-}; x ﬁvéo. wi E‘S(y
S, = (By<- w'/ Ay | 118}, 0, = (/). | :
S, = (Ci<- B+ Byy | 1SiS8}, * 05 = (¥}.

S4= D<= Chr Cpy | 156<2), 0, = [+}.

S = (E <- D+ Db, 05 = (4}

Sg= (G <- 8/ Bls 05 = (/1. Be S

S 7‘= [G;j}r ' 0y = (’jr 1 €_’<S‘0-.

The number of opetatlons requlred for thlS co-pntatlon is 7.

Also, note that . all (and only) arithmetic operatxons are'

used‘invtﬁe'CGIPQtatioﬁ,\Thus, the computation is indeed in \
. o T S ' e

F(x).

gg_gi g 1. g 2 A éo-butation is cﬁlled a sequ gg;; al

‘ggggg_gtx_g if and only if ISl = 1 for alk\i’) 0; otheru1se

it ié Cdlled a ggrallel putgt;pn. (Gf‘_ \

Note that in. the above example, since IS | = B8, the

' f'conputation is a pa;allel,COlputation.

‘ Qggigit;on 1.2.3 b pérallel conputat%on ié called a

-4

lm

In gguggtat;o if'and only’if.lo.l = 1 fot ‘all-li' > 0;

otherwise 1t is called a gIn‘ cg;gg ionm.

Note. that in the abO§e exauple,'since |.O,|'_'= 1 for all

- the parallel computatlon is a SIMD computatlon.

Pérallelvalgorithns c§n ﬁa,§easuréd by a vapietyv of
criteria (Cf. [Stone. 1973]. v or. alternative critériaf.
.éfinarily, we are lntecested in’ the rate of growth "of - fhel
_nuubet‘ of parallel operatlons. requlred -for 501V1ng very

large 1dbtances of a problen. The nunber of.‘parallel.

'»‘arlthmetlc and Boolean operatxons <9) regulred by a parallel

algotlthn expressed as an 1nteger functlon of the ggg;gggg_

[

(8) Given any set A, IAI der the cardinality of ..

'¢9) '§e ignore all over%ea' - memory -access and data
exchange [Kung 1974, Brent 197« Chen & Kuck 975, Kack &
" Maraoka. 1975, Kuck & HMaru-ar 19757. This assunptlon is
justifiable because: overhead is & .shly Jroportlonal to- the
~nuamber of parallel operations -7 %0" sed and ignoring it
affects the parallel conplex1tv by = cons-:ant factor only.

(e.g., the precision of an integer, the size of a vector,

the order of -a matrix, etc.) of the input arguments is

called the parallel complexity of the parallel algorithm.

Let f(n)/ﬁg the pacrallel complexity of a parallel
‘algorithm’ for . solving a certain probleh- with a single
attribute and g(n) be the parallel lover bound for solving

the prbblén. The parallel algoritha is.said to be‘gggi!gl if

‘g(n) + 0(1) and asymptotically optimal if

‘and only if f(a)

(L3

and only if £ (n) 0(g(n)). §10) The (asymptotic) optiﬁality,.
. of a,pa:allel ﬁlgocithn with more than one attribute can - be

I4

- similarly defined. - /

MWQL emphasize.-thaf, jusé asvis‘thé case in.alnbst all
research done in sequentiﬁl cdmpdtational couplexity'(ﬂho et
~al 1974, Bofodiq S.Hunro'1975],,rather th#n Ettelpting to
- pcovide the beét‘bractiéal parallel aigbrithné, tﬂe aim of
this study is to gain“insiéht’ihto the intrinsic d;fficqltj,'
for 561ving. varipus problems . on SinD parallei épnputers; L
Tﬁis enéhasis'léads us td{concgntrate oﬁ the OPtinalit]"gnd
' the'vasyiptpiic béhavioc' of ;parallel,algoritbns.‘Thus,vin
.céftainl'instaqéas,‘ nol matter “hoﬁl‘ stpaiqhtfoswa:d_ or’
inpfactidaivlfhe"paralleiA algorithas are, ‘they are still
,giién and analyzed :inply . to »éhoy “that theée baréllél'
_ algorithns are:(asynpt0t16511y) optimal or that the paral}éi{?

- Lo . i ’ '

~

AN

© (10 Given tﬁo sequehCeS‘ (i.e., functions defined on

'~integers) f(n) and g(n) such -that g(n) 2 0 for all n, ‘we
write f(n) = O(g(n)) if and only if there Qxists‘a constant

K > 0 such that |f(n){| < Keg(n) for -all n.

lower bounds\can be attained. Of

the paralleﬂ algorithms given

also practically useful.

A

‘course, in other instances,

are not only intricate but

1.3 ans.ihgsiga§

-

The problens we are concerned with ace the fundamental
. processes for d01ng different kinds of arxthletlc 1nc1ud1ng

-intéger‘ arithmetic, polynomial arithmetic and modular

arithmetic. ' . .

on sequential computers, _ythe | subject has vbéél
thoroughly covered in Chapter 4 of Knuth's book [1969]. * On
parallel conputers,lexcapt for a few lsolated results, very

little_fesearch has been done.

The main contrzbutxons of thlS thesis are effic jent or
(asynptotlcally) optimal parallel algorlthus ‘for ‘the
following problems:

.?/

1) parallel 1nt§ger'arithmetici _
" a) hdd;tion ot subtracti6n 6f.n~digit integers can
" . be computed in O}loé ﬁ) parallel operétibﬁs, |
b) multiplidation of an ' m-digit integer by an n-

digitjinteéér can ‘be coignted‘,in,.pglog(n+n)),

: ?aréylél operations. I
c) divigion of an (m#¢n) dlglt 1nteger by an n- d1q1t‘
integer .can be conputed in O(Log(n+n)),_para11e1
bperatlons..' s |

-2) patallel modular, arlthmeflc'
~ay polynonlal 1nterpolaf10n atl.n'_points‘ é;n be
‘conputed in o(log nj paréliel operéiions.

by the Chln=se renalnder prohlem with n moduli Cani

‘be solved in 0(1og n) parallel_operationé.

g)”full linear. systems of order n can be solved

»

~exactly in ©(log n) parallel operations.
" 3) parallel pblyn#iial arithmetic:

a) division of a polynomial ‘of, degree am+n by a
(o, . ‘
polynomial of degree n caa be computed in

0(log(a+1)) parallel operations:
Other cdntributiphs‘include ‘the derivation of ~tight
parallel lower bounds for the evaluation of polynomials and

elementary symnéttic funqtions. , : o .

Presently, technlques for prov1ng parallel lower bounds
ate‘not only scarce but also immature. Among the fev‘
reported parallel lower bounds, ‘results' are eitnerlleft
unproved or proved in an ad hocv manner;’ More .seriOuslf,
exlstlng techniques fall to give tight, parallel lower bqundsl
for even very common problels. The pucpose of this chapterﬂ

isito,discuss techniques for‘flndlng t1ghter parallel loqer

bounds.

- The fan 1n atgunent, which. glves a relatlonshlp betveenlﬁ
‘the nuamber of input arguments, or the minimal nunber of
sequential~operations,’and the nininal number of parallel
operations, .is illustrated' in Section .2.1- thef,groﬁth"
_ argument, uhxch deternlnes a relatlonshlp between the grovth
of a. result and the llnlmal number of parallel operatlons,t
in Sectlon 2.2; and the substltutlon argunent, vhxch nges a.’

4
relatlonshlp between classes pf probleis, in Sectlon 2 3.

S

Sectlon 2. 3 is concluded wlth an example to demonstrate

- how _the three argunents are conblned to obtaln a. tlghter'n

- parallel lower bound.

- v

Urleast,rlog ny. (11) (12) T - [/'f

2.1 EQB:iQ.LEQEBQQE‘

Parallel'"onputatlons are freqnently’ represented by

oy

b nary trees or, pore’ generally, Elnary forests (i. e.,'

collectlon of trees), ‘ln vhich 'the roots correSpond to

mtresults, ‘the 1eaves (or external nodes) éorrespond t6 inpat

_argunents, the "(internal) nodes correspond to operations.

perforled on . previously arailablebﬂresults, argunents, or .

constants and the height of the~ tree orresponds' to ‘the

"nunber of parallel operations perforued ﬁy thls analogy,f

i
propertles about blnary trees can be 1nnediadely transforned'

~_lnto propertles about parallel computatlons. dThe' followlng

fact about;blnary trees ;seuell-knovn.

_Fagt The height of a binary tree vwith n leaves is at
h . . . ”~ '

L4

Using. this fact, a 51up1e 'relationship’between the_

nunber of lnput ar%ulents and the nlnlnal number of pafallel

9

operatlons requlred can be establlshed.

<

ngna 2-1.1°At least rlog n4 parallel' operations are_

'requlred to conpute a result vhlch depends on n argunents.T

i

- Tne technlque, generally called the gan-ln @rgu!_gt@
was flrst adopted by W1nograd (1965, 1967] to _prove’ loder

o

f<!1) Thro ghout ‘this thesis all logarlthns are taken base 2,
unless ot rulse stated.,v - -

rcnza leen any - nnnber x, X1 denotes the snéllest 1nteger 72

and txd denotes the greatest integer. < x. - .

Lo

Nt e RS TN AP ST T T T SN et e -

(g

~ T e L .. . B . - =

) .

':coupute E;‘_u } ,

bounds 'for‘ logicall circults. Varlations of this lelna are
either vstatéd (Kuck & - uuraoka 197“], proved [nunro 5
Patetsoh i97jﬁ, or 51nply‘ used inplicltly in many papers
whlch deal with - parnllel conputttlons. To illustrate the use
of-_ this lelma,' ve ‘apply it to shov some . uell known
fundamental resalts. The fxrst 15 the sumlatlou of several'

nunbets;

Lg!_g g 1. ; At least rlog n, ‘parallél operations, are

requlred to conpute the sun of n nunbers,

L

.in“F(x xz; ceee xa) glven P O {xlf X, ""_xn}f

-

Furthernore, this bound can be attalned. ‘

.")

‘ \ :
proof. Since E depends on n 1nput argunents, 'by Lella .

———

'2.1,1, at le .t rlog ny parallel operatlons are neququd to

~

We construct a conputation tree for E such that { X, ,‘|f‘

1<1<n } are at the botton level, xli x2 x3# x4 ‘.. are - at ”

v

_the next level, xlt x2+ 13+ x4, xS+ x6+ x7+ Xge .f; Hare at

‘vthe st111 next level, and S0 on,-untll the hlghest 1eve1 is-

0bv10usly, the helght of the tree xs rlog n,. Thus,‘ the‘
%

'parallel louer bound 1s attaxned.v'._ : ' o ~H Q.E.D,

-~

h parallel algocith-‘ given' i the above lemna xs -

'ucalled the }oq-sun a;qotlthl 1n the ILEIAC IV 11terature.

'Slnilar : parallel 'i algoclthn,' called . é ':log—groduct

3

‘{g;g_rlthl, can be de51gned foc the uultlpllcatlon of several.

fnunbers.,

'product.of‘tgo,natriées.

Inner products are common operations in linear algebra.

17

Matrix multiplication, for example, ¢an be regarded as the

conputétion“'of many inner products simultaneously. The

following theorem gives a parallel lower bound for computing

inner products, and cohéequently,,_also ' for. computing the

.-.\ .]x

——— e

b

are required to :onpufe the inner product,

B X2Y2.0- .- ’f-xnyn'

in Flx ., Yi" cere X oo ¥] givén F U (xi} .U '.[yi}.

Furthermore, this bound can be attained;

’

Proof. 'Sin:a‘E'depends on 2n input.arguients, by Lemma

‘2.1af,‘at least rlog (2n)y = rlog ny+1 paralle1‘~opa:5tions

- . .
are required. : o s

-
'Thef,parallel “algoritha to achiéve the parallel lower

bound is guite similar to the usual ome. The n products,

'xiyi,'1 <is< n, ang’computed in one parallel mulﬁiplicatiod

ai he products are then summed ‘in ¢log ny, parallel

13.° _ons by the log-sSum algorithm. ~° Q.E.D.

‘.ggggLLarz 2.1.4 At least (log n,+1 parallel operations‘

are required7 to compute matrix-matrix, matrix-vector, or

vector-matrix multiplications of order n. Furthééﬁore, this

bound can be attained. .
. -
Reiationships between the number of $eguéntia1

operations requiréd and the number of parallél operations

¢

3 At least 'plog ny+1 parallel oberati6né‘"”

{0

~

teqqiréd.aén be»estéblished by first observing the,fglloqing
fact.about binary trees. | T
4 ’ ,"
Fact. The nunber‘oﬁ internal nodes in a binary tree. is
. _ ong less than'tﬁe number of leaves.
! G)

'Using this fact and Lemma 2.1.1, and also recalling the
. . _, : _
* cortespondence between - -binary trees and parallel

computations, the ¥ollowing lemma follows dmmediately.
\: '

L]

nggg~2.1.5!A£ 1east“rlo§(n+1)1 parallel operatioﬂs are
required to compute a result which requires at’ least n

sequential’ operations. (13)

‘ .~ Provided that the sequential lower bound fof certain
problem 1is known, the above Jlemma immediately yields‘a

/*‘fparallel lower bound. In 'fact, an alternative proof for

¢ /

*Theorem 2.1.3 usind‘ this'idea.dppears in [Borodin & ﬁunro
19757.

. . v v B 1 ,) o
_The following lemma due to Kedem and Kirkpatrick [1974]

gives the sc -sential lover bound' for the sunnation of n

.numbers.

(13) It is interesting to note the dual of Leama 2;1;5:

Lemma 2.1.5' At most 2" -1 sequential foperations are
required to .coapute a result ‘which can be coaputed in n
parallel operations. ‘ T e

) 7 , - o _ . | S
The lemma establishes a relationship hetween parallel apper
bounds and segquential upper bounds, but we do not explore
this direction any further. : : . : K

19

1 2 < n v ' .
in F(xlf X o ...,'xﬁ)'given FU [xl, xzf ...,.xn}.

Proof. Cf. Borodin d Munco [1975, pp- 12-15). - Q.E.D.

. Lemma 2.112 states that vat,.least' ¢rlog n, parallel
operatiods, are required to compute E. But on nany‘occqsions
we are more intekested in the specific types of operations
iﬁvolved,w'i.e. édditions, vsubtractions, ’multiplicationé,
divisions, ‘or Boolean operations. on a SIND parallel
combhtef, ‘although qnany oPe;atngs Acan be performed
si;ultaneously, oﬁiy one t}pé of operation can be 'perfbfled
~at any tinme. This point is'illdstfated.by provihg~a stronger

version of Cenia 2.122.

Theorem 2.1.7 - At least flog n, paréilel additions are
required to coapute- ‘

1 2 : n

E =X '+ X, + ecce-+ X ,
in F(Xye X0 ever X)) given F U {xl; Xor wees X }-

~

Proof. The theorenlis an immediate conseguence.of Lemma _

O;

2.1.5 and Lemma 2.1.6. s : - 0.E.

v

20

2.2 Growth Argument

The fan-in argument aé illustrated in the previous
sectionx is a ubiquitous -'yet simple technique for providg
parallel 1dver bghnds.,HOWever, there are severe 1imita£ions_
in dsing it alone. Very oftén the bounds obtained from it
éren too . trivial to be useful. For eiampié; the fan-in
arqgument cén be uséd to prove the followiﬁg result: |

At least log 1 = 0 pafallei' operatioh 'is requiréd to
cojpute x".

The result, however, is‘hardly u§efu1§

The growth argument can complement the fan-in argument

for obtaining lore'useful'parallel,1owerbbbunds, Unlike cthe

\ 1

fan=-in “argument, it establishes a relatipnship between the
growth of a result and the niﬁimain number of parallél
opefations,_requirsd; We ‘proceed to illustrate the grovwth’

)argument by proving the following lemma.

Lemma 2.2.1 At least ¢log n, parallel operations are
required’ to compute x" in P(x) given P U {x}-. Phrtﬁerporé,:

this bound can be attained. (1%

Proof. The parallel lover bound is proved by induction
on n, the degree of x'. First, the parallel- lower bound is

" obviously true for mn = 1, SuppoSe'that the lemma holds for n

N o ' A '

B , o -
(14) The sequential coipiexity of this probiem is rlog n, +
O0((log n)/(log log n)) [Knuth 1969]. This is one example of

a problem where there is very llttle advantage in solv1ng it
on a parallel vo-puter.

21
< 2k, i.e.s Kk patallel{operationé'&re required. Since only
rational functioas (including povwers of x) of degfee < 2k
can be computed, then any function computed at the (k+1) -st
parallel opération é@n not exceed degree 2k+1. (13) Thus,

the parallel lower bound holds for all a.

4
4

The parallel lower\bohnd is attained by using the 1log*

|
}

product 'algorithm. o ' ‘ Q.E.D.

' Theorem 2,2.2 At least rlog m parallel pultiplications

are required to compute x" in F(x] given F U {x}.

Proof. Since in the ring F(x], deg(fxg) = deg (£f) tdeg (9g)

 and deg(ftg) < {deg(f),deg(g)}. The only’ope:ation yhicﬁ can
| iﬁcqr any increase in degree,i§ nultiplicétién;‘ : Q.E.D.

‘ ‘ ‘ \\\ - ‘

- the that the theorea is ngg true if the in@ernediate
résults are not confined to \F[x], In fact,.Kung.[197u]‘
preséﬁts alparéliel algocith» in F(Xx) given F U- {x} which
conpﬁtes- x? in 2 paraliél divisions and'rlbg n1;2 paréllel’

additions and no lultiplication (Cf.\exaible in Chaptef 1) .

‘C15) Any rational function f(x) .in F(x) can be expressed as
a -formal quotient of two relatively priae polynomials f(x) =
a(x)/b(x), and the degree of f is defined as .deg(f) = max
- {deg (a) ,deg (b) }. By this definition the following inegquality

holds R , .
deg(f op g) < deg(f) + deglqg).

for any rational functions f and g and wvhere op is. any of
the operations *, -, */ and /.

22

2.3 Substitution Argument

The results obtained from the fan—inrargunent and the
‘grovwth argulent in the last two sections 'are very simple
" ones. For sllghtly more conpllcated problels the «téchniques
 are deened 1nsuff1c1ent. Houever, a 51lp1e 1dea whlch can

boost the power of the prev1ous technlques works as follou5°.

Let A be any algorithm for solving a class of
problems, P. If we substltute some of the input
arquments of the: algorlthm A wlth spec1f1c values, then
A is transformed-lnto another algorithm A' for solving
a'claés of reduced'problens,—P'. But, since A'.dOesioof'

A |
use more operations than A, any 1035? bound for P' must
also be a lower\bound‘for,P.)

Thus, provided that the parallel‘loﬁer'bound for p?! is:
known, 1t 1nned1ately ylelds a parallel lover bound for oP.
Tﬁe techn;que, generally called the subs ;tutlon grgg!ggg,
is a widely used‘ftechniqué‘ for provino _sequent1a1 lover

bounds [Borodin & nunro 1975]. But the technique'HOes not

raly on any part1cu1ar conputatlon model, whether sequentlal'

or parallel. It prlnarlly establxshes a relatlonshlp betveen
two classes of problems. To illustrate the technique, ve use:
it to prove the parallel lower bound for wmuYtiplying 'n

numbers.

Theorea 2.3.1 At least ¢log n, parallel multiplicatiomns
are required to compute L . T -

E =3‘xl X,k ..l kX,

in F[xl, Xov =cev 'xn] giyen F 'O {xl, X, ..s,‘xn}:

a-

FurthernOre;,tpis bound can be attained.

Proof. Byfthe substitution argument, let x; <- x;.1'S'i

< n. The problem is then teduced to evaluating x" which, by

Theorem :~2a2.2; requires at least rlog n, papallel,

"multiplications.

The parallel lower bound is attained by using the log-,,‘

produot algorithm. ' ‘ N - ' Q;E.U.

In. order -to " obtain tight oarallel lower bounds,. one

must frequently conblne all three technlques. To demonstrate

this point, ve will prove é, parallel lower bonnd for

evaluating Boolean recurrence equations which will be needed .

in Chapten 4. o - ,

b

:Consider the 'following first-order Boolean tecurrence'

problem. Given any 2n+1” Boolean constants {ao,.al, cevs a_,

n
1, ---0 by}, evaluate the Boolean varlables { xy | 0<isn }
defined by
Xo 7 20"
X3 '-:.ai +b,ex; ;.1 <150

vhere the operatocs !41 and . 'e' are natucally‘intetpteted as

"belng Boolean addxtlon andb nultiplication, respectively.-

First xi can be expanded as follovs'
Xi.'—'-' ai"(bi,ai—l+ .'-+(bibif -.-b)a +(b b '-.bl,a'oo

We observe that x is a sum of 1+1 products. An obvious

parallel algorlthn for evaluatlng { X, f OSiSn'} is first to

forn. ‘the : products in ,rlog(n+1)1 ‘parallel Boolean“

%

Muller [1976].

/S o

nultiplications; This 1is possible because no product has

"mdre‘than n+1 atoms and a Booleaﬁ vérsion of the log-product
* algoritha ﬁill‘do.A Next, we can form all the sums of

'pnoducts -in clog (n+1) 4 paréllel Boolean additions by a

L A

‘Boolean version of the log-sum algorithm. (16)

since “there are -2n+1 input arguments, by the fan-in

'acgument, at_'least rldg(2n+1){' < 'rlog(n+1)1+1 paréllel
Boolean operations are required; On the other hand, since

each term in any x . contains no more than n+1 atoms, by the

growth argunent, at least rlog(n+1y, paréllell Boolean
operatlons are required. Thus,,nelther the fan-in argqument
nor the gcowth argunent ¢can show that the nuuber of Boolean

operatlons requlredbfor the. bove parallel algorlthn is

optimal.

' Theoremv'z;Bzz At least log(n+1), parallel'Booiean

additioné_and rlog(n#1)1 parallel ‘Boolean inultiplidations/
are 'teqﬂited to‘.evaiuate v[x, |“0ih } on SIMD parallel

computers «17), if no other Boolean operations except

#

"addition and multiplication are‘perpittEd. Furthermore, this

_bound can be attained. = ' -

(16) This .parallel algorithm uses 0(n3) . processors but
another parallel algorxthn "based on the blnary spllttlng
technlque uses only n+1 processors [Kogge 1974].

(17) On MIND parallel computers, evaluatlon of Boolean

recurrence equations has been ‘studied by Brent [1970], and

evaluation of general Boolean expre551ons by Preparata and

< , X - ~

25

Proof. Pirst, subStitute .all the b, *s by the Boolean

kY

value 1. whereby evaluatlng x 1is reduced to evaluating a ¢

a + ... * + a,. This, by the fan-in arqument, requlres

al‘
at = least rlog(n+1)y, ~ parallel Boolean operations.
Furthermore, by the groﬁth argument, sinee any Boolean
/

multiplication would increase the number of atoms in a teras,

"all of ‘these operations must be Boolean additions.

‘Next, substitute all the ai's, ‘except a s py tfe
Booleen velue 0 whereby evaluating x, iS' reduced to’
evaluatieg the single term b, b, ; <.. b aO.IBy a similar
reasoning, Athis requirés ‘at. least rlog(n#1)% ' parallel
Boolean .nultiplications,- sinceflany'Boolean addition uould

increase the’number_of terms.

/
’

Finally,ﬁby ihe definition ofvSIHD'computation, Boolean
addltlons and nultlpllcatLOns can not‘ be performed

51nultaneously. Thus, the parallel lower bound is proved.

Q.E.D.

ﬁotel first fhar the fan 1n argnnent, growth argument

"and substitution argﬁment are ‘all enployed“ 1n the above
proof. Also, ‘a restrlctlon 1s placed on the types of Boolean

Operations peraitted. In fact, the last theoren 1s contrlved

'stric;ly . for illusrratioo purposes. If arbltrary Boolean
operatioos-oan'be osed,:tﬁen Booleen 'addltlons or Boolean

?Lultlpllcatlons are not needed at all. For exalple, the NAND
(or NOR) operatron can be used exclusﬂvely to express any

Boolean function. .

N

LB R = A e ——-——

In this chapter ve con51der univariate and nultlvarlate

“polynomials with coefficients in F. On the one hand,

polynoulals may be v1ewed as being functions which can be

evaluated, and on the other, as being algebralc entities’

. which may theaselves . be added, subtracted, multiplied.and

divided. Both points of view are considered in this chapterf.

The evaluatlon of polynomlals is c0n51dered in Settien
3.1. A tight parallel lower bound for this ‘problem is glven.
From the proof it follous that a very early parallel

~

polynonlal evaluatlon Valgorithm designed by Estrln is

.optimal on SIHD parallel conputers.

4

In Section 3.2 some simple polynomial acrithmetic

'inciuding addition, subtraction and - multiplication is
'considered. Parallel' aigorithnS'for.sblving these problems

nare presented and their optlnallty proved. Most . of these

results -are trlvlal and are 1ncluded prlmarlly for future

references.

DlVlSlon of polynonlals is cons1dered in Section »3.3.

~An. efficient parallel algorlthm for solving thls problem 1s

presented. A- parallel lower bound for polynonlal lelsxon,
whloh is. of the same conplex1ty as. the parallel lover bound

for polynomial nultiplicatiqn, is derived.

In the last sectionj’ Section 3.4, we consider ‘the

27

Chapter 5. An efficient para
all elementary syametric

optimality proved.

. . 28,

§

o e e S ——— o > o e

"Given a polynomial of degree n
- . n
f(x).f f0¢ flx LR fnx . |
the optimal seQuential algorithm for evaluating f(x) is the
well-known Hornet's' rule wvhich requires n additions and‘n
nultiplications.-ln fact, this a1§orithi is uniguely'optinal'

on sequential computers [Borodin 1971].

“The first-parallei aléorithm‘for evaluating‘polyanials‘»
vas désigned‘bf Estrin {1960). It uses the binary splitting
“techﬁigue, na;ely, it first conpuﬁes . o |

f0+ flx, f2+ f3x, ...,.xzi
and then if0+flk)f(f2+f3xyx§, (£, 4E53) #{EGHEX) X2, oanp XY,
e and so on.
This para11é1 algoc1thm _ requires rlog(n+1){.,;gtallel'
, gdditions and rlog(n+1), parallel multlélxcatlons, stdling

.

L(n+1)/24 processors are available.
' ' ¢ . '

LVafibus,éther paral}ei‘algorithms Aré gevéloped‘p;\Dorn
f1962]-;'ﬂunro and.Paterson [1973]; uaruyéhai[i953]'ind‘£ﬁng
_ [197&]1 Dorﬁ's algorlthn is essentlally a generallzatlon‘ of

_Hprnér's rule. uunro and Paterson's algor:thn and Haruyama (S
T algorithm both assume a HIHD conputat10nal model._.-“

o In 'ihig,'sectionJ it isAéhoun_;hat,fifﬁdivision is not.
alloﬁed,‘ at least rlog(n+1),_. parallel additi&ﬁs-._and
rlog(n+1)1 parallel multlpllcatléns are. requ ired’ to. evaluate<'
f(x) :on: "SIMD parallel conputers. Thus, on SIHD parallel{

S . , - . A
_computers, Estrin's oldest parallel algorlthn is in fact

29

optimal (in P(X, £y, f . --es £ D). This is probably one

good example of why 'a’ systematic approach to deriving

Ry

. parallel lower bounds_is important.

Theorém 3.1.1 At least (log(n+1), parallel additions
,and.rlog(n+1f1‘ paralléll nult;plicationsl are -required- to.
_evaluate f(x) in F[k,ffo;"fl, «--¢ £.] given F'U'{x, f6, fl;

“eoy fn} on'SIuD parallel computeErs.

roof. Using the'substitution'argument, first consider

1o

the case x <- 1. The problem is reduced to the summation of
the nt+1 indetérninates; f0+'fl+‘;..+ fn;!By Theorem 2.1.7,

at least rlog(n+1), parailelfadditions_ate required to do

‘the summafion.

Next, cbnside; the case'fg <- x and £, f—_O,‘fatfall’i”
< n. Thé'ptoblén islﬁoy reduced to éhét’.éf evaluating; the
ppyg:,'xﬁ+i,i §y”ThéQ;em 2.2.2,.a£ 1east-,—1§g(h+1f1 éafa%lel
, mulfiplications qte ;éqhired to do}the},evaluatiOn in F(x,

fvo’f fl',-.‘"' fn]‘ : - B __//,

Finaiif,' ‘by | the,:dgfinition‘ of - éiHDv conputatiTn,
paréliel additions aﬁd multipiications qan‘notAbe..perforhed
siuultangouély;vThus;_étfleast flbg(nfj{, paraliel additidné
_and'rlog(n%rf{ pafaiiel ﬁultiplications are’teqﬁired; Q;E.D;

P

'Uhlike :Hqcner‘§ .;g1e' for ~§équehtigl computation,.
-hoﬁeveﬁ,’jEStfihfs éaralléi "algorithm is ;not:.‘uniqﬁeiy
ﬂopﬁimal; 'qu eiénple;~'%ldifferéntvpq:alleip§1gotithm ﬁith
,phe §aié operation boddd,c&ntbe obt&ined'as:folloﬁé: vFirstp

" d1l' the. n+1 terms of f(})'can be con,uted'in }l3g(q+1)1

30
6 . ‘ ’
patallel nultxpllcatlons and then the tecms can’ be added in

rlog(n+1)1 parallel a ddltlons.

In addltxon, if computation is not restricted to F[i,
jf "fi' cees f], then a parahlel algorlthm whlch requlres 6
parallel multlpllcatlons / div131ons and 2¢log n, ¢+ 6

parallel addltlons can be desxgned (Kung 197&].

.

Eaomla sl ini—han mmm e e

In this section we discuss some simple polynnnial
o] erqfions, inclnding addition, | subtraction and
multiplication of poljnomials. Some of the resnlts are
tqiviai, and ane inclnded for.futnre reference and for the
sake of completeness. |
‘ .
¢) . . . o v
The " simplest operations on polynomials are
nu;tipliéation and division of a poiynonial; saf» £, by a
(nfsitivey'nowen of x, i.e., fxxk and f/xk. Theée operations
‘can be regarded as being "scaling" of polynomials, just as
integets can ne{scaLed»by povers of b, vhere b is the baSe
(or redix)/{cf. x'ava et };_\‘1 197&];.- v'l‘he highest (n+1)-st
cdefficients of faxK afe“exactly the same as thqsev of‘-f,
whereas 1the' renaining k lower order coefficienfe are all .
~-z2ros. The coeff1c1ents of‘the quotlent bf f/xk are the sanme

as the flrst n-k+1 coeff1c1ents of f. and the coeff1~1ents of

the renainder of f/xk are exactly the 10vest k terms of f.

f% - There ‘nay be. hxdden ‘costs "aésociated with the
: nulklpllcatloh and fdlv151on by powers of x (as far as

progralnlng is concerned) bnt "there are no explicit

vfnciﬁhnetic -operatlons .perfotned. Indeed, when poljnonials
| ‘ - -
are\scaled as part. of a nore complex precess, the cost of

thlS scallng v111 nocnally be negllglble and can usually be

-

o 1qndred. * o
_ /T
‘Multiplication °?'ancL division of a- quynonialf @Y’ea;

L

constant polynomial - are also -easy to perfbrn. The

32

multipiication (or division) of a polynomial of degree n,
F(x) = £+ £ x Yoo v £ 27,
by a constant 'polynomial c . is "the multiplication ‘(or

division) of its coefficients b :.

Theorem 3.2.1 The nultiplication (or division) of the
polynonlal f by a constant polynomlal c can be computed in 1
- parallel -ultlpllcatlon (or division) Qn' a SIMD parallel,

computer with n+1 processors, Furthermbre,' the parallel

operation bound is optimal.
Proof. ~The parallel operation bound a@d ptocessor
“réQuiDenents are obvious.

Since fix. C (or fi/'c) is not in F U (f;} U (c}, at

" least one parallel ope:ation is reqhiréd. Thus, the parallel

operation bound is optisal. -) Q.E.D.

The.addrtiod (or subtraction) of two polynomials

]

F(x) = £g+ £4Xx ¢ oo ¢ £ X

It

and g(x) = gyt gX ..o + g x°
is the addition (or subtraction) of their corresponding

coefficients.

,Théorgﬁ 3.2.2 The addition (or ‘subtraction) of the

'poiynoniais flaﬁd g‘can be computed in 1 ,parallél ,addition
(ot subtraction) om -a Squ"'parallel' computer ‘with n+1
proceSSOrs. Furtherndre,,the barallgl_ operation ,boundf is
optimal. |

A\

‘Proof. “rhe 'paraliel dperation'.bound and. prOCessor

33

requiremernts are obvious.

| ,Sincg fi+ 9y (qc'fjf gi) is not in F U ?fi}] (gi}, at
least one parallel operation is required. Thus, the parallel

operation bound is optimal. h S Q.E.D.

The multiplication of general polynomials is also quite

 straightforward. Givem two polynomials of degree m and n

f (x) | fot £ x 4 ... ¥ fmxm

and g(x) g+ g x *+ ... v g x",
0 1 n

their product (often called the convolution produgg) is a

polynomial of degree a+n

h(x) = h+ h x + ... +h xmen,
0o 1 . ‘mtn

whete h = f g+ fg _*+ ...t f g, 0<i<mtn. ¥ote that
i 071 17i-1 i~ 0

'fk (or gk) is tacitly assumed to'be'zero if k' < 0 or k >nm

{(or k > n).

Fast sequential polygoaial multiplication algorithms

are based on ‘the FPast Fouwrjer Transform (FFT) and aEe of

-compiexity o(n log n) [Aho et al 1974, Borodin & th:o'
1975). These algorithms are much maore complicated than the
classical nultiply—and-add algorithm. "It is therefore

important. to .note that on parallel computers the classical

polynomial lultiplicatiOn.algorithm is indeed optimal.

Theorem 3.2.3 If m 2 n, thep the ptpducf_ of the. two
polynomials £ and g can be computed in .1 , parallel
nﬁltiplication and ¢log{n+¢t1), parallel additions.op é SIMD

parallelivcbnputer "with (m+1) (n+1) processors. Furthermore,

- the parallel operation bbund is optimal.

34

v (,

_____ I 0D £i<m, 0Z%5

‘j < n, in one parallel multiplication with » (m+1) (n+1) .

S | - _ LT
rocessors. Then compute the coefficients h,; = fyg;+ £9; ;¢

+ fijgg by the log-sum algoritha. Since’fkgi_k = 0

vhenever i - k > n, there are at most n+1 nonzero suamands
"in each hi' Q € i < m¢n. Thus, the coefficients can be added
‘in clog(n+1), parallel additions. Obviously, (m+1) (n+1)

processors are sufficient for doing the summations.

Note that h_ may be viewed as being the inner product
of tvo (n+1)-vectors. By Theoren 2.1.3,' at 1least
rlog(n¢1),+1 parallel operations are required to compute

just h_. Thus, the_parallel operation bound is'optimal.

Q.E.D.

35

L ==

3.3 Division of P}l mials

Given two p::xFomials, one of degree m+n
f (x) = f + f x + ... + € xmén
0 "1 Co m+n

and one of degree n, n‘2‘1, C18)
g(x) = gj+ g X * --- + ggx“.
there exist unijue polyno-ials’g and r such ghat
f = q g + 1, deg(rf~< deg (g) . ”
where q is a:polynqnial of degree m,

q(x) = gp* 4T e-et g x"-

The polynonlal g is called the quotient and denoted by

—_.—-q.

_Lf/gs, and r is ”alled the renalnder and denoted by f mod g.

.Fbr any integer k 2 0, the quotlent Lxk+“/gJ is called the

ceciprocal of g of degree k. (192 N

The ‘existence of ¢ and ¢ can'be proved constructively
by *'long division';.i.e., a nul£ip1e of g is successiéely
. subtracted from £ until the final remaining polynonia1~hes
degree 1ess than that of g. If there are« n+1 processors
vavallable, then thehQunbe¢\Vf parallel operatlons requlred
by long dllelon is proport;onal -to m+1, the number of

coefficients in the- guotient (. Note 'particularly'that

explicit division of tiwe coefficients is perforned' only . by

(18) Since we have discussed division. by' constant '

polynomials and powers of x in Section 3.2, we assuae that
the .divisors are non-trivial and of dagree 2 1 throughout
this section. : : ‘ : '

€19) This definition is slightly more general than that
given in [Aho et al 1974].) :

1

«

36

g . so that if g 1is momnic, no ‘d;visibn is actually

performed.

A fasﬁer parallel polynomial division algorithm can be
obtaine@ from thé pcoduct of f and the reciprocal of g (50).
First, observe that it sﬁffices to compute the“quotient q,
since the remainder r can ‘be obtained in ome polynoamial
'nultiplicatiﬁn and dne polyn@nial subtfaction. Next, only
tﬁe first m+1 coefficients of f and- g are relevant to the
computation of q. Hoce‘precise}y, the quofient q is given Dby
the fdlloying fornulé: | |

q =.L(Lf/xnl*L[mﬁﬂ/gj)/xmj' (éti
- i.e., the véoefficients of q are the first m+1 coefficients
of ‘the product' obéaineq by ‘nultipiyiﬁg tﬁei first m+1

coefficients of f vith the reciprocal of g of degree m. -

Examples. Let g = 2x+1. Denote the reciprocal of g of:
degree k.by u¢kd. Then, u¢0) = 1/2, all) = x/2-1/4,

.u<3?‘= x3/2-x2/u+x/8—1/16.

1. For f = 3x+1, Let
v = LE/xixuC0) = 3s(1/2) = 3/2.

_Then

-

—

S o) .

(20) In fact, if the divisor will be used more than once
(such as in the 'case of modular arithametic), then it is more
efficient to compute the reciprocal first and saje it for
future use. This is called precomputed diViSiWS in [Kung -
1973). . C ' o -

¢21) This formulation is eguivalent_to those'of (Kung 1973]
~and (Borodin & Munro 1975]. o ' .

q = Lv/xo.l = 3/2.

2. For f =‘2x2+3x+3, let

37

v = LE/xixuC1) = (2x¢3) (x/2-1/8) = x2+x-3/4.

Then

q =]iv/x1 = x+1.

. 3. FPor £ = x*+5x2+3x+1, let

v o= LE/xixul3) = (x3+5x+3) (x3/2-x2/44x/8-1/16)

= x6/2-x5/4+21x%/8+3x3 /16-x2/8+4x/16-3/16.

q = tv/x31 = x3/2-x2/4+21x/843/16.

- The reciprocal tx™#"/gs of degree = can

iteratively.as follows [Aho et al 1974 }:

be coeputed

'The reciprocal of degree 0 is given trivially by

Ltx/gs = 1/gn.

Hav1ng obtained u, the reciprocal of degree k= (21-1)—1

then, u*, the reciprocal of degree 2k+1

- be computed by means of

v <- 2ux3k+x-- ung/xn—zk-lJ

‘ut <- tysxzke,
Ekgngleg. Let g.=,x’-;6+x5+2x‘—x3-3x2+x+u.
reciprocal of g of degree k'by_u(k). Then,
0oy = 1794 - 1. B
To ‘find u19: |
v = 2u<o)xi - (u€0dy2ig/x6s
= 2x - (x-1) = x+1.

u¢1) = Ly/x03 = y = x+1. -

= (21)-1,‘can

- Denote the

38

To £ind u¢3):

2u(1)i¢v_u(u(1))zgg/xdj

v =
=‘2(x01)x? - (x+1)2 (x3-x24x+2)
'= ‘xS+x4-3x2-5x-2

u€¢3) = Lty/x23°= i3+x2—3.

: . i C
To find u¢7): ‘ .

)

v = 2u¢3)x10 - (u¢3r)2Lg/x04
= x134x12~3x:0-4x24+3x8+15x7+12x%
—02x553ux‘+39x3+51x2-9x+36.
aC?7) = Ly/x62 = x7*i°—3x*—ux3¥3x2+15x+12;

" And so on.

o s e et e e st e S —

cdnpdted in O(rlbg(n+1),rlog(n+1f1) parallél additions - /
subtractions and O(rlog(n+1)1y~'parallel nultiplications./'
.ivisions on a SIMD parallel coamputer with (nf1)(n#1)

-prdcessors. -
' Proof. " “The iterative formula for - computing the
teéiprocals'of g; at eath' stage, entaiis _twvo polyaoiial
nultiplications ‘ani fone 'pplyhomial subtracyion; Thug, the’
number of parallel operations TiZ‘%m;1) reqdired to éoipute‘
:_the the reciprocal satisfiés, ai‘the i—ih stégé,
T(éi) < T(zi¥l) + 2'nu1tip11ca£ions : (1a)
.*v2r109(n*111 additionsvf 1 subtraction.
iﬁ(particﬂlar, _
(20) = 1 division. o © (1b)
From the;>recdrrence relation. (1y, ve céudlude that the

) . \
reciprocal of -degree ' nm .can be computed- in

\39

O(rlog (m+1)ylog(net1),) additions / subtractions and

0(rlog (m+1),) nultiplications / divisions.

Within the parallel algorithm, the process using the
greatest nunbér of processors is polynomial multiplication.

At the i-th stage, it 'is easy to observe that at “most

21 (n+1) - processors (vhere 2t < 'm+1) are used. Thus,
(m+1)(n+1)-'processocs are sufficient for the entire
conputation.) o ~ Q.E.D.

- — -

divided'by g can be ¢oiputed in O(rlog(n+1)1rlbg(n+1),y
parallel operations on a SiHD parallel "computer - with

(u+1)(n+1)’prdcésso;s.

We now derive a parallel 1lower bound ‘for polynoamial
division. Without 1loss of ‘genérality: assume that the

nic. From the identity f = g * g +'r; it then

¢ ———— — e

follows that the coefficients of q'aré given by the linear
recurrence equation:
= f .
4 m - min ’ N

,qm:l = fm+n—l,‘ T 919 }

. = - . ‘ _ . < v
qm—i fm+r1-i gn__]_ qm—i+1 eeey -1 > M,

Observe that q , 0 £1i < m, is a pdlynomigl of degree i in
. m-1 .

g . In particular, g is a polynomial of'degree min .q Q
n-1 ' " 0 , _ n-1

 Theorem 3,3.3 At least clog(m+1), parallel additions

and rlog(m+1), parallel multiplications are ,requirédv to

ompute t otient in P Y e '
compu e_ he_ quotien q in ﬁLfO' - fm+n, go,. v gn_lJ

40

given F U {f } U {9, on SIMD parallel computers.

-

oof. €22) Since q is a polynomial of degree m, by
. 0) . X

Theorem 3.1.1, to evaluate it alone requires at least

rlog (m+ 1) 4 parallel additions and log(m+1), parallei

apl QeE-D-

multiplications in.F[ﬁ).'..., f e g I |

m+n 0’

Note that the parallel lower bound can be attained only
when g is of the fltst degree. In Chapter %ouever, we
give a more efficient paraLlel algorithm (thch depends on
cesults yet to follow) for all n. The parellel aigorithm
given there ls not pcactlcal since it assumes exponentlally
boundedvparallellsu. ‘However, in the case of unbounded
parallelism at least, we will have shown that polynomial’
lﬁltiplication' ani divisionf“gre of the “same peraliel

complexity.

p,

¢22) An alternative proof can be given by using the
substitution argument. : ,
, ;

41

——— e = mn T el e i e B e

== F P}

Let s(m,k), 0 < k < n, be the elementary symmetrié'
‘function of degree k in n indeterminatés { Y, | 1<i<n }. The
elementary symmetric funétions { s(n,k) | O0<k<n } are

formally define& to satisfy:

hi(x) (x+y)) (x+y)) ---(x*y) _

= x0 % s(n,1)xﬁﬂr+-...+ s(n,hf1)x 4's(n,n).
(the'that'stn,O' is‘alvaysiI fegardlessiof thé Qalue‘of'n.)
_'Each s(n,k) is the sﬁm of all k%combin@t&ons (or produéts)
formedifrqm th% n indetérmihates. Therefore the number of
_producté inf.s(n,k) is C{(n,k) = nl/kl(n~k)!.v Horébvér,
s(n,Ln/z{)-has.the gfeatest number of products; C(h,tn/2‘) =
kany’ produ:ts.v Thérefore, if - the 'elementary §7mnetric
functions arefconédted as the summatibn_df produc{s;'then,at
leést E O(n)ﬂlba:allei opeaﬁians afe ‘required,"which ‘bp

parallel computers is deemed inefficient.

A difeCt;expansion qf'h(i[leads to a- more .effiéienf
pdréllél algorithe. If h is eipandediby for;inq.products'of."
2 factors; then‘products'of u faciors, and so on (23);‘thén,
as: J the polfnomial mdifipiiéaﬁion_ meth6d' discussed in
Section 2,'the numbar of»_parallél' obe;atiéné fequired is
O(logéh)'on a batailél'computgt with:n?>processois,‘Ih-fact,
this fbérallel ioperatioﬁ béﬁnd is the best ‘previously

repor* -4 result [Goyal 1975]. In Theorem . 3.4.2 below, we

(23) products formed in this manner are called supermodu.i
in [Moenck & Borodin 1972]. : SEEEEEST

Y.
give | a \pdrailel' algorithm which Treguires ohly{O(log‘n)

parallel operations.

Lemma 3.4.1 Given n, the setiof povers {x2, x3, '.;.;-,
x"} can be computed in rlog N, parallel multiplicétions on a

SIMD parellel computer wifh.tn/21‘prosessors.

Ptoof. [Borodln & Munro 1975, bp. 128].v Q.E.D.

The following"theorem, due to Csanky (1974], gives an
efficient parallel algorithm for computing the elementary
symmetrlc functlons.' In his developuent, ho#évef, 6éanky

'~Lgnores the cost of computlng powers of the Fourler poxnts.'

Theorem 3.4.2 'The _elementary symhetric,"functions

{ s(n,k)‘l ‘0<ks<n } of n lndetermlnates { y 1 15i£n } can be

computed in F[yl, Yz'_"" ¥,] glven F .U (Y, ¢ ¥, ..;,yﬁ}‘in‘j.

rlog(n+1),+1 parallel' addltlons,' ‘rlog-n1+1 ‘parellel
multiplioations and:1:para11el scalarv_division on a _SiﬁD
,parellel computer’ \'tith‘(nﬂ).2 proCeSso;s} Furtﬁefaore,'the

.paraliel operation bouﬁd is optimél. |

Proof. FPirst, evaluate h (x) and'{x2;'x3, eees X"}J. at

the - hf1o.Foorier poines ‘[wi}; 0 < i = n, where v is a
prlmltlve (n+1)—st root-of-uﬁi&yl‘ Obviously;‘ this can. be
done- in 1 parallel addition (n(n+1) processors) and rlog N+

:rallel nultlpllcatlons (2(n+1)‘-n/2J processors)._Next, the

e’emeqtary; s{hmetrlc functlons-,ate obtalned from . the

following formula:

e :
e =]
o .

sk = [hquiysu-lal0] / (s, 0 € k € ne

43

This wcan . be conputed in 1 parallel multlpllcatxon {(n+1) 2

processors), ¢log(n¢l), parallel ‘additions ((n+1)L(n+1)/21’

processérs) and 1 parallel scalar division (n+1 processors) .

Since s (n, T) le Yot .- + yn; by Theorem 2.1.7, at

least rlog n4 parallel additions are vrequired. Similarly,'

Y

‘51nce s(n,n) b LA A BEEERE y' by Theorem’2.3.1 at least

: +log Ny parallel multlpllcatlons are requlred. Thus, by the

definition of SIMD computation,, the optlmallty follows.

Q0.E. D.

4

Note that the‘ above parallei algorithm is based on

discrete Fourier , transforms whlch re special. cases of

‘evaluation -and interpolation (Cf.: Chapter 5) since the
Fourier p01nts [wli, 0 < i ‘S,‘n,f are’ special. \Although

dlscrete AFourLer_ transforms in general requlre 2rlog(n+1)f

parallel operatlons to compute (Cf. Sectlon;1 on evaluatlon
of polynomlals), the evaluatlon ~and- 1nterpolat10n lu the'
above theoren are lade espec1ally easy due to the faﬂt that
h(x) 4is_ already factorlzed and that the powers of {wl} can

be computed before the eva ,at;on‘ofAs(n,k) beglns.

¢

'In addition, the above algorlthn is not 'suitable‘ifor

seqaeatial computatlon, since it req01res O(nz) sequential

"operatlons. The _best sequentlal algorithm ‘requires only

O(n logzn) operatlons [Borodln & nunro 1975].

.

CHAPTER FQUR

Parallel Integer Arithmetic

Denote'an n4digit, base-b (where b 2 '2) integec.x'by

1'x(iy « bo-1, 0 < x(i) £ b-1.

»
it
[{lashe]

1

The inteder x given in the above form is said to be in

e e e ———-—

In this chapter we study‘-the' paraliel compleiitz of -
pgrforming the Tfoll&ﬁiné ptocésses on . SIND parallél
;ombuters: » ‘ o

v.1) addition'or subtfaction‘of n-digit integers} giving

' -an n-digit result plus a possible’carfy:

.2)‘mu1tipiiéatio; ‘of - an m~digi£'integer.by anvn~digit

f;htegéc,'giving an'(m¥n)?digit product{' |

3) division of an (m+n)¥digit integer by, épl n-digit .

‘ ,_infeget,f‘giiing an (m+1) -digit quotient ihd'an n-

digit:'-renair'lder. | ¥
We assﬁné tﬁat‘the‘fgilqwing (binary) ;oper;tions_ ape7
primitives | | |
1)vaddition or subttactionf6f:1#digif{in£egers,'giving,
a'1—d;g{£ result and a‘céfry: | L |
'2) multiplication of a 1-digit integer by fandiberfuif
© digit iﬁteggr, gi#ing.a.z#aiQit‘bfédgcti - .

3ylaooiéah‘-dﬂiition (OR—ing)_Cop‘ﬁultipiicaiion (AED~-

»

' ing),of'ﬁwp'bi;s,fgiving a'1~bit'tesult; R 'T S

Thus, for example, if-x and y are 1-digit integers,

A - s s :
then it is assumed that addition yields the values

s (x + y) mod b,

and C L (x +y) /bt

K

In Section u.i, a parallel a}gocithm for perf&rning
integer addition is considered.. The concept of pseudo-
»pqsitional intégers (inteyers wvhose digits are bounded by
2b*2:tather'than b-1) iS"ihgfoducéd. gsing this concept,
integer addition is reduced to,convérsibn of integer from

pseudo-positional to positional notation.

In Section 4.2, a parallel algorithm for perforning
'integér-'nulfiplitation is described. Pseudo-addition 1is

crucial to the design of an efficient parallel integer

multip}ication*algocithm.

In Section 4.3, parallel algorithms for performing
integer divigion are considered. A tradeoff betwveen the
number of pafallel operations required and the number of

n

processors used is observed.

For all problems efficient or ‘asymptotically optimal

papaylel algorithas are givén.

.y

46

—_—m Rl R LA mmem—m e e ——

x = ¥ x(i) * b1, 0 < x(i) < b-1,
i=1 . .)
n

y = (& y(i) » b™1, 0 < y(i) < b-1,

i=

their sum is an n-digit result plus é’possible carry

s = 2 s(iy % b"1i, 0 < s(i) < b-1.
i=0
r—~. Let c(i) 1enote the carry at the i-th pqsifioﬁ. Then,
sn) = (x(ﬂ) +.y(n) J nod b, (1a)
) =t xm) +ym 1/D . (1b)

and for i = n-1, «.., 2, 1, s(i) can be computed iteratively
by means of: " : \ .
s(i) = [i(i) ¢ y(i) + c(i+1)] mod b, ey
c(i) = L[x(i) + y@) + c(i+n 1/ b+ (1Q)
. The O-th'di@it; s (0), is .given by

s(0) = c(M. : . (e) -

. . U ' . ‘ d
This iterative addition algorithm requires 0(n)
‘parallel operations and therefore is too inefficient on
. > .
parallel c .mput:rs.

%

on tae -+ hand, ¢ nce polynomial addition is gquite

E)

cheap, the =»um S Ci b. computed as if x and y wvere

polynomials in b: €(24)

47
n //

= I ; n- 1 g
s & w(i) = b ’ .

where w(i) = x(i) ¢ y(i), 1 £ 1 < n. Note, in icular,
that the coefficients of tﬁe polynomial sum are - bounded by
2b-2 raéher ‘than b-1. This motivates the notion of pseudo-

positional integers:

w(i) % b1, 0 < w(i) < 2b-2.

[4
]
[
il aslel
e

The integer w given in the above form is said to be 1in

pseudo-positional natation.

Thus, addition of intgegers is reduced to the conversion

of integers from pseudo—positiohal notation to positional

notation.vrThis switching of views is particularly

-

fundamental in the design of efficiént parallel addition and

multiplication algorithems discussed in sebsequeht sections.

N

It is then this problem to which we now turm attention.

.Since all pseulo-positional integers appearing in this
chapter arerbtained.as intermediate results, it is assumed

that both digits in the representation of each w(i),

- (24) As a matter of fact, all arithmetic on eultiple-
precision integers can be viewed as being polynomial
arithmetic [Aho et al 1974, Borodin & Munro 1975]. However,
the correct results must be recovered from the polynomial -
results by releasing the carries [Borodin & Munro 1975. pp.
090-913. . :

48

s' (i) = w(i) mod b,

c' (i} t w(i) / b4, 1 <1 <n,

are available wvithout any additional cost. The iterative

addition algorithm - (1) given above then can be interpreted
as being a conversion algorithm:

s' (a), | (2a)

s(n) =
L e =, | ~ (2b)
for i = n-1, cees 2,1,
s(i) = [s'(i) *+ c(i+1)] mod b, | (2¢c)
c(i) = c'(i) + v [s'(i) ¢+ c(i+1)]/ b 1, (2&)
and s(0) = c(1). | ' . ‘(Ze)
) This _conversion . algorithm is still inhérently'

sequentiél due ‘to its iterative nature. The first key to a
fas rallel conversion algorithm is the observation that
at t one carry is possible in each digit position during

the additioh of positinnal integers {Knuth 1969, p. 231].

This observation 1is rephtased in more general fora in the

lemma below.

/

Lemama 4.1.2 Given any pseudo-positional intéger, during

the coniersion to'positional notation, the <carry at =« !
position is either 0 or 1.
! ¢

The vector of'carties c = (c(), c(2)s «e-p c(n)) can

therefore be vieied as being a Boolean vector.

"The next observation 'is that, by formulae (2b) and

(2&),_‘0!(1) implies c(i), 1 < i < n, but not conversely. In-

’other‘words,,the vector ¢' is Booleanr and indicates a Agg_tx

generating condition. Furthermore, by formula (2d4), a carry

1]

at ihe (i+1)-st position, i-.e-, c(i+1) 1, will ©propagate
to the next position if and only if
| s (i) + c(i+1) = s'(i) +# 1 = bs
or, equivalently, if and only if
s' (1) = b-1.
Denote this géggz propagating céndition,as a Boolean vector
, ‘

p(i) = 1 iff s*'(i) = b-1, 1 £ i < n-1.

Then, formulae (2b) and (2d) can be revwritten as:

“c{n) c'(n) | (3a)

ct(i) + p(i) ® c(i*1), 1 € i < n-1. (3b)

c (i)
That is, by dsing»two auxiliary Boolean vectors, the carries
{ c(i) | 1<€i<n } have been shown to satisfy a Booleah first-

order recurrence equation.

Lenma _;1=§. The conversioh of aﬁ n-digit pseudo-
positional integer to its positibnai notation 'can' be
computed in 2,log n, parallel Boolean oéerations and 1
paralleléﬁaddition on a ‘SIMD parallel «computer with n.

processors.

ggggg, By Theorem 2.3.2, the Boolean recurrence E
equafion (3) can be computed in 2,log n, -parallel Boolean

operations with n processors.

Once the carries { c¢(i) | 2<i<n } are available, by
‘foramula (2¢), the digits { s(i) | *<i<n-1 } can be :ohputed

in 1 parallel addition (n-1 processors). B Q.E.D.

Theorea 4.1.4 The sum of two non-negative n-digit

o2V

integers can be computed -in- 2 parallel additions and
2}10g n, parallel Boolean operations on a SIMD patallel
computer with n processors. Furthermore, the parallel

operation bound is asymptotically optimal.

roof. By Theorem 3.2.2, the polynomial sum of two
integers can be computed. in 1 parallel addition. (n
proceésors). Since the polynomial sum is,a‘pSeugo—positidnal

integer, by Lenm; u;1.3, it cadlbe converted fé positional/
notation in 2,log ﬁ{ pagallelv Boolean operations and 1

parallel addition.

Since s(0) is a function of the 2n inputs { x(ii; vy (1)
f1£i<n }, by the fan-in arqument, at least rlog(Zﬁ)1 =
rld§ ny+1 parallel opefations are needed to coﬁpute just

s(0). Thus, the asymptotic optimality follows. -~ Q.E.D.
' . Ay . N a.- '- .

It is important to note that alihough _the techniques
used in this section is purely number:thepteticéi,_the‘
vpéraliel addition algorithm develobed' above inc1udés the
carry look-ahead adder [Flores 1963], which is derived from

" switching fupction theory, as a'sbegial;cdse (i.e;,'when b =

2) ..

' '

NOTE: Tﬁe,above results can easily ' be ~extended‘"to
include fhe addition or subtraction of negative integers.
For exapple,'the tcue gggglggggg (i.e;, bts coﬁplement) of‘
any n-digit integer = can be computed in 1 parallel single—'

precision subtraction and 1 n-precision addition. ¢2%) (28)

-~

(25) The sign-digit of the b's complement of any integer
- must be interpreted and operated on as a binary digit. -

' «26) oOverflow is determined by the usual rule that if the '
carry out of the sign-digit position and the carry out of
the first digit position disagree, then an overflow occurs.

4.2 Multiplication of Integers

Given two non-negative integers, namely, an m-digit

multiplicand

~x{i) * bm-i, 0 < x(i) < b-1,

=]
i

et

o 3

and an n-digit multiplier

1A
o
I
—
-

y() + b1, 0 < y(i)

~
I
B | sl

their product is an (m+n)-digit result

min.
w = I

L w(i) = bmn-i_ 0 < w(i) < b-1.
i= .
" The classical papér-and-pencil algorithm for computing
v is first to compute the n partial progggg§‘
P(3) =.x « y(d), 1.€ 3 < n..
Fach partial product p(j) is -then normally converted to

positional notation

p(i,3) * bm=i, 0 < p(i,J) < b-1.

o
o1

p(3} =

Next, the sum of the scaledvpaftial'prdducts yields

’

.7 a. C L
w = y bn—-J-
! j;l P(j) *
Since frequent conversions:tb positional notation are
expensive, the strategy, should be to avoid the use"off
‘positional integers during the calculation of intermediates

e

results, thereby postponing conversions to . positional
integers until the last. stage of the computation. This
consideration leads us to take a @dre serious look at

_pseudo-positional arithmetic.

 Definition 4.2.1 Define the pseudo-sum of two pseudo-

positional integers

x(i) % bn-i, 0 < x(i) < 2b-2,

bl

i
e
ne 3
=

n

L y(i) * bn-i, 0 < y(i) < 2b-2,

-
'
IA

- and L L
1 1—

P

to be the pséudo-positional integer

0n
n
s

s(i) % bn-i, 0 < s € 2b-2,.

i=0

- .where s = x + Y.

The process of obtainiang the pseudo-sum s is called

pseudo-addition.

Algorithm P. (Pseudo-Addition) -

P1. Set s(0) <= 0,
s(i) <- x(i) + y(i), 1 € i < n.
P2. If s(i) € 2b-2, 0 € i € n, then terminate.

P3. Otherwise, release .one round of carries:

H

(let c*'(i) = ¢+ s(i) / b 1

and st* (i)

s(i) mod b) o ;/'

S&t: s (n) <.— st (n),

S(i) <~ s" (i) + c'(i*1), 0 < i < n-1.

Go to step P2.

Lemma 4.2.2 Tﬁe. éseudo-addition of two pseundo-
pdsitional in£égecs can be computed in at most 3 parallel
‘additions (the - ficrst “of which ‘m#y be double-precision
aldition) on a SIMD parallel conpﬁter with n+1 processOrs.
Furtherﬁore, if b 2 3, only 2 parallel additions are

sufficient.

Proof. At the end of step P1,
0 € s(i) = x(i) + y(i) < 4b-u..

v

Thus,

IA -

2, if b . 3,

il
8]
~

c' (i) = . s(i) / b 2

IA

. 3, if b 2 4.
» + :
Ot; equivalently,

c'(i) < b, if b = 2,

< b-1, if b 2.3.

We next examine the number of times the loop P2 = P3
must be repeated. The first time through ‘P3 yields

s(i) < (b-1) + C'(i¥i$ S-Zb—1,‘if b =2,

< 2b-2, if b > 3.
Thus if b > 3, only one -iteration of steps P2 - P3 is
.sufficient.
' . N , _
If b = 2, one wmore loop through P2 - P3 results in

(noté that ct(i) €1 =b-1) - -
- S(i) € (b-1) + (b=1) = 2b-2.°

, — | | N . B
Thus, for b = 2, at most two iterations-of loop P2 - P3 are

a2

sufficient. _
. ’ !

N

Now since step P1 can be computed in 1 parallél
addition (double-precisidn, according to the definition of
primitive addition given previously), and step P3 can be

computed in 1 parallel (single-precision) addition, the

legma follows. :) | | ©Q-E.D.

Note that the number of parallél operations required to

t regardless of how many

digits the pseudo-positiona:; ‘fa%ge. Thus, by using

psendo-addition, not onl fawth ofs the intermediate
By . e e . '
results during mualtiplica¥l i 3rﬁlledfgput also the cost-

of combining ‘the -partial prodﬁéé'“is,reduced.\

'The fastest sequential inteéer multipiicatinn algorithm
is one »giQen by,Aqupénhagé and Strassen [1971] and is of
complexity o(n 1og n log log h). Basically it uses the idea
of discrete Pourier transforus.ﬁvgn disadvantége:'of the
‘algorithnm is that it is difficult to code and its benefits
are realized only For n sufficiently large [Knuth 1969, Aho
et al 197u]. |

‘f\\\\ >
N . i . R
' The fastest previous known parallel integer

multiplication algorithm is one given by Ai:ubini[1965] and
is of parallel compigxityyo(n) on a lin;ar' iterative ‘array
‘with n modules [Knuth 1969]. The pamallél integer
}_nultiplication_ algocithi"given' below is eSsen€;ally, a
paralleliZed,'fversion' of the classical paper-and-pencil

’algoritﬁm. It differs primarily in that, at all intetnediate

PR

r

stepé, conversion is made to pseudo-positional rather than

e

positional notation.

A;gggiggg M. (Hultiplication of Non-negativé Integers)

4

M1. Compute the digit-byfdigit products

{x(i) * y(3), | 15i<my 1<3<n).
M2. Convert the n partial products

p(i) 7

IA
BN
IA
=)

x(i) * y(j) * bm-i, 1

T
[ash=]
—

to pseufo-positional notation, -

»

pr(d = 'go p*(i,§) * bm—i, 0 < p'(i,) < 2b-2.
_ izo T (-,

Yo

¥3. Compute the pseudo-sum v =

T~

"p'(j§) * bn-J.
j=1 _

"Hu.;ggnvert w to positional notation.

'Thggggﬁ ‘a.é.a The product of an_h-digit'nultiplicand
U@nd}an n-digit nultipliervcan be compdted in 1 parallel’
multiplicatiop, _3(16g ny+2 :parallelv édditidné and
2rlo§(i+n)1 parallel Booiean operations on a SIMD parailel.
| computer with mn 'proceésdrs.’ Furthermore, the parallel

bpecatiouAbound is'asymptotically optimal..

Proof. It is obvious that step M1 can be couputed in 1

‘parallel nultlpllcatlon Hlth mn prooessors.

, AR
In step N2, 0 < x() * y(J1 % (b-1)2 < b(b-1) implies
that all carrzes are boaunded by b-2. Therefore, after one
vround of carry releasing, all dlglts are bounded by (b—-
'1)+(b"2)‘= 2b—3i<'2b~2 ,(i,e;, after one round of: carry
releasing,' the result ’is~ in'pseudo-posiﬁionaL hotatibny.
Thue, seep M2 can be computed in] parallel'addition witg‘mn

-

processors.

o . v Lo ,
In step H3, using a generalized log-sunm algorithm, the

pseudO*sum w can be computed in rlog 4 bseudo-additioqs. By
Lemma 4.2.2, each’pseudo—addltlon can ba'éomputed in at most
3 patailel additions. Thus}"step 43 can be computed in a
total of 3rlog ny parallel addltlons. Since ‘each éseu50a
posxtlonal xnteger has at most m+n dlglts and at nost tn/24

pseudo-sums are formed at any tlne, a total of (m+n)Ln/21 <

mn (if a 2 n) processors is suff1c1ent ‘for conputlng w.

Finaily, ’tﬁe converéiéh of w to positional»xftation in
step uu, by Lemma 4.1.3, “can bé bbmputed in 1 parallgl,
t*addition and - érlog(m#n)1 ,parallei Booleah.operafigns'(m+n
‘.pro¢es$er5). , | |

v

‘The total opetatibh count is - therefore '1’ parallel
-multiplicétion{ 3rlog nqt+2 parallel 'addltlons ~and

v'2rlog(m+n)1 parallel Boolean operatlons with mn processors.

The a?ymptotlc optlmallty is obvious, since the ptodpct

depends on all m¢n inputs. Sl ' : : Q.E.D.

AT IR T

58

bl

4.3 pivision of Integers ' .

. B , -

Let a and c be‘any (s+tn)-digit and n-digit positive '

integers, tespectively. We wish to find a quotient q and a
. ne " ‘ quo

et e T i e

a = q *xc +r, 0<r <c.

<

As usual, once a fast parallel mu1t1p11catlon algorithm
is given, it can be used for the design of a fast parallel
lelsxon algorlthm as follows: Flrst, it sufflces ta compute

the ~quotient g only, since then r_can be obtalned by .means

~of r = a‘— q * c. Second, let 1/c denote the "rec1procal"'of o

- with (m+1)(m+n) pcooessors-

c. . Then finding g = a x (1/c) oan be reduced ﬁo E

multlpllcatlon and rec1procal approx1mat10n [Knuth 1969, Aho“

pel

et ‘al- 197u Borodln and Munro 1975]. The Newton 1terat10n

fotmulé, ,
= - 2 - .

Yipp 2(Y) (y) 2¢c, . » o |

fot exanple, can be used to conpute the rec1proca1 of c.

o .

gheo em 4.3.1 The d1v151on of an (n+n) -digit integer by

o et~ , ——

an n—digit Integec can be computed j,i.‘n 0(log2(mf1)y +

0 (log (m+n)) parallel operatlons on a SIMD parallel computer‘%

Proof. The above Newton 1terat10n foc-ula éﬁtaiiér-tﬁo
(nultlple—prec1510n ~ integer) multlpllcatlons ~ and 4onev

subtraction. In this case, the numbér of pqrallel operatloﬂs,

_T(2k=m+1) pequlred to compute the reciprocal satlsfles, at

. ‘) ‘ A
the i-th stage : : . , o
5 h stage, : L 5
r(21) = r(2i-1) ¢+ o(i),

&

1a ots

59

ghere

T(20) = 1. .
Thus, T(2K) = 0(k?), and the .(m+1)-digit reciprocal can
therefore be computed in 0(log2 (mt1)) ;;rallel operations.

’

The number of processors used at the i-th stage is 21n.

Thus, a total of (mat1)n < (m+1) (mtn) processors is

sufficient for computing the reciprocai.

Iy

v

Next, by Theorem 4.2.3, the quotient ¢ = a » (1/c) can

be 'EOIputed in O(log(ntn)) | pa#ellel operations with

(a+1) (m+n) processors.

Finally, the remainder r = a - g % c can otriously be

co-puted in 0(log(m+n)) parallel_operations .ch at1) (mtn) -

processars. ' : _ « Q.E.D.

Corollary 4.3.2 The divigion of an m-digit integer by a

1-digit . :-nteger can be computed in 0(log2m) parallel

Afoperationg on a SIMD parallel conputér-with B2 Processors.

-
The parallel integer division algOC1thl glven above is

- slowep than the parallel 1nteger multlpllcatlon algorlthm.v

This is 'in contrast thh. our experlence on sequentlal

conputéts, vhere 1nteger division and nultlpllcatlon are of

;hé”s :e qp}plexlty. Hovever, the above lteratlve algorlthl’
5,008 _ﬁe ?astest p0551b1e parallel algorlthm.) e

~F

Eggreh &.;_ The division of'an (iin)—digitfihtegét by

niﬁlglt 1nteger can be computed in 0(log(n+n)) parallel'

Dpecatxons on,gi“SIHD parallel - computer with bm*1(m+1)ﬁ

y

N

I

‘a+1 digAts, do the following:

-'*

é&

w‘*

60

processors.

proof. First recall that the division of an (m+n) -digit

—— e s o

integer by an n-digit integer results ~an (m+1) -digit

quotient and an n-digit remainder.

For all integers x, 0 < X < bmet, i.e., x has at most

- l." '\3

»

« Compute x * C. : - “

ﬁlnce ve are concetned ~only with integers dhich are

candidates for the qmo(hant, we:cOmpute only the least m+n

)Gignificant digits 'of x ffc and discard all x such that

X % C excée@s n&nf)digits. This, b§ Theorem u.2.3, can

’cectalnly be”’ ddne in O(loj(n+n)): pgrallel operations

,(bm+l(l+1)n processofs).

2. Compute a - x % C- o . (
,ThlS‘ can certainly -be done in 0(log (m+n)) parallel
.opecatlons (bm*l(n+n) proces ars) . . f

3. If 0 % a3 - x « ¢ < c then @ = X and r = a - x * C.
It 1s ea511y seen that compatlson of n- dlglt 1nteger:‘can be

Lcduced to subtraction of. .n,dlglt, 1ntegers (bT+1n

processors). : o i 4.(X:£
, 4 R (

i

The existence and unigueness of g and r are ‘gniranteed
by the Integer Division Alggrithm: - Q.E.D.

. | | e R
Cor llary g;;;g The division of an a-digit integer by 2a

1-digit . 1nteger 'can' be 'conputed in 0{log m) parallel
operatlons op a SIMD parallel couputer v1th bm' processors.

61

; Itlmay appear therefore that on parallel computers the
Question regarding the -parallel «complexity of integer "
division has finally been resolved.‘ The above parallel
algorithm fequires 0(log(m+43) "1 <'lel operations and a
fan-in argurm-at can be used -to éﬁ:u tha- at least 1log(m#n)

.

parallel operatidns are requireg 2 parallel algorithm,

however, functions wvith a strange pecularity. In the fina
step (step .3 .in the proof of Tﬁeotem 4.3.3), the parallel
algorithm uses unrestricted fgn-in to select one specifal’
processor fronm iﬁdefinitely ?many. This capability may{be
viewed as beiﬂg a mdltiple' operand. operation 'anﬁ fan-
arguuehts are ’therefore, no 'longer applicable. The lower
bound of loc +n) paralle%ﬁoperations for division op such a
¢ mputational modei is £hefefoce no 1ohger valid. "However,
the above integer division(algorithm still sérves a useful
purposé.l-On Tpafallel Tomputers sﬁéﬁ as STARAN, the
'capability of determining the locgtion of the first active
: pcoées;;r is _vailable. 'This parallel. algorﬂghn .night
therefore vbe an efficient onevto,inplenenf 6n such paraliel

-

computers at least forisufficiently small probleams. -

i

62

RS mm——

There are many applications in wvhich it is~ ‘'much more

\
efficient to do ,arlthuetlc in "nodular representatlon"

Examples of such applications include multiple-precision

- integer arithmetic (Schoenhage & Strassen 1971, Chapter 4],
. . . B s

integer and polynomial 1inear'systems [Young & Gregory 1973,
()} .

HcClellan 19731, polynomial GCDs [Brown 1971, collins . 1971,

Moses & Yun 1973] and polynomlal factorlzatxons [Berlekanp

1968, Musser 1975, Wang & Rothschild 1973].

The advantnges of nodular representation are that
addition, subtractlon and multlpllcaticn are very simple.. In
addition; on parallel computers conputatlons correspondlng.”‘
to‘different‘moduii can all be done at the. same time. The
same kind of ‘efficiency can not be achieved by the usgdl

arithmetic discussed in Chapter 4, since carry propagatx'pg

must be considered.

The general scheme of"aE:nodularvlethod consists cf
three’steps,and is ontlined as‘foiloﬁs: |
1) Convert all the input arguments ‘into their modular
representation.
‘2)‘Perforn the regquired conpntatiens ’in rhe podulo
classes.

'3) Convert ‘the results back to “ the ordinary,,

-~

\ ‘s

representation.

63

Thus the use of asdular arithmetic can be justified only if
efficient algorithms for conversion into and out of the

modular representation are available.’
. 17‘

In Section 5.1 we consider polynomial modular
transforms. The forward polynomial . transform (i.e., the
evaluation of polynomials of degreé's n-1 at n points) c¢an

be done in .rlog n, parallel additions and rloq n, parallel

'

multiplications and this parallel opération bound 1is
‘optimal. The in?érse,.polynomial transform (i. €., tHe
'T'('\J \\I -

polynomlal 1nterpolat10n at n points) can be done in rlog(n—'
1)a+ slog ny+1 parallel additions and rlog(n-1)1+3 parallel

multiplications / divisions 'and this parallel opetation

~bound 1is asymptotically optimal. Both parallel algbrithms

assume polynomially bound2d parallelisn.

'In Section 5.2 wve consider integer modular transforms.

Efficient parallet? qlgotithms_ are given to find the n

-residues of an m-digit integer and the inverse problem (i.e.

\

the 'Chinese' remainder problem). in d(log n) pérallel
opérafiods.-,Aéain,' as. in the division'bf‘integers, a mbte
powerful conputatibdal uédei is usgd.‘ fhesé “parallel
algorithas are distinguishgd by’ the fact that_a}l assuhe:

exponentially’bounded parallelism.

In Sectxon 5.3 we conslder the exa t solutlon of linear
. L .
systems. By u51ng nodulaf‘nﬁ}hods and the results obtalned

$1n Sectlon 5 2, funl linear qgstens of order n-can be solved

!

exactly in 0(log n) parallel operatxons with exponentlally

bounded pafallelisl, Conseqherkly,' multlpllcatlon of

-

64
matrices and solution of 1linear systems are 6f the sanme

parallel complexity.

. In Section 5.4, by using results of Section h5.3, an
efficient parallel algorifﬁu 'is given for the division of
polynomials. Tt will be sﬁoun £hat the qqotient and the
remainder of a polynomial of xdegfée m¢n divided bj a
polynomial of degreé n caﬁ be computed . in 0(1qg(m+1))
parallél \operafioné Qith exponentially bounded parallélisn.
anséquently, polynomiai multiplication and-division are of

the same parallel complexity.

residues { r; | 1<i<n } 'is called the modular representati

/

Furthermore, the process is revers

" 65

= SSEanaao s

Given any polynomial f(x) and any monic lineaf

‘polynomial x—a,.bf the Polynomial Division Algorithm, there

exist unique polynomials q(x) and r(x sucﬁ tﬁat (
£(x) = g(x) (x-a) ¢ £(x), deg(f(x)) < deg(x-a)=1.
The rer: .nder rix)' isl called the £g§;ggg‘of f modulo the
rodulus x-a. Note that thg degrée ofvr(xi is _less than 1.
Therefore the polyﬁomial' r(x) is a constant. Substituting
the-constgnt a into both‘éideslof fhev aboyev equality, it
follows iimediately that~ ¢ |
r(x) = f(a).-
Thus, find%kg 'the' residue of a pdlynomialﬁmodulo a monic

linear polynomial_is Equivalent to evaluéting a polynomial.

.- b}l-“:e.

.Interpglation Theorem. Given n residaes {rc, |
) . 1

1<i<n } corrésponding4to n :moduli { x-a; '} 1<i%n },

theré;e;iéts a uni;‘b'polynbmial f(x) of at most degree -

n-1 such that

IA
P
1A
=]
.

‘. f(al’ =ril 1

Thus, any’ polyhouial ‘£ of at'vuost ‘degree n-1 can be

. represented uniquely by a set of' n residues. The set of

+

-

an

';bf fA-iodu1o‘ {,i-ai 1 1€i<n }. The process of finding the

moddlar representation fbr; a polynomial is T;alled_ the

forward polgmomjal modular tramsform.

The classicalr'sequential yaléorithn"for evaluating

66

polynomials at many points uses Horner's rule and requires a
total of 2n2 operations. Fast Sequential algorithms for 'the
same problen peffdrm‘ successive di'visions by supermoduli
(Cf. Chapter 3% ‘[Piduccia 1972, Hoenck & Borodin 1972} and
require a total of O(n log2n) operations. On parallel
computers, it turns out that straightforward evaiuations-are
optimal. '— : : | | X | |

, 8 . .

Theorem 5.1.1 The n residues of a polynomial f(x)

-

degree n-1-can be computed in (lOg D, parallel additions and

clog n, parallel multiplications on a SIHD parallel computer

with n2 processors. FPurthermore, the parallel operation'

bound is optimal.
' ‘ &

Proof.. Since the . computation_ of - each residue is
vindependent',of 'theb other, the n résidues can be‘eValuated

fsiuultaneously. Thus, the parailel operation:bound and its
optiuality” follow frou Theoter 3.1.71. on - evaluation of
polynomials. A total of n? processors is sufficient Mbecausep

evaluation of £ at each point uses only n processors. Q.E.ng

“The process of recovering the poiynomial from its .
nodular'representation, i;e. exact interpolation; is calied
the inverse polymomi i, modular transfor "A The classical
sequential algorithms for polynonial 1nterpolation"nornaily'
use the Lagrangiau or Nevtonian 1nterpolat10n formula and
require 0 (n?) operations [Lipson ,1971]. Fast sequential
algorithns reduce polynonial interpolation to evaluation and .
nultlplicetlon .and 'require O(n log2n) operations [Horov1tz

1974, Moenck & Borodin. 1972]. On- parallel : computers

67

polynomial interpolation can be solved efficiently by means

of the Lagrangian interpolation formula:

h
~
lal
——
1}
=
.o
[
7;!'1
=

[(x-a,) /(3 -a;) 1

'Alggriggglg. (Polynorial Interpolation) -

1A
VA
1A

I1. Compute O-a,, -a;, 1 # k and 1 n,
p ke % ir .)

1 € k-< n.
12. Compute A, <~ % (a -a), 1 <k < n.
, T i
I3. Compute B, <~ t, / Ak; 1 <k € n.

I4. Compute Ck(x} <- ”%k (x+(-ai)), 1 £k =<n.

] ' 1+

I5. Compute Dk(x)-<— Bka(x); 1 £k € n.

n
I6. Compute)y D, (x).
P: R K (x)

gggg:gg §11;2'§olynomial interpblatioh ét n points- can
e be computed in rlog(n-i),#,log) pé;alle1~addi£iéns /
stbtractions and 2rlog(n UERLE pardllel ﬁulfiplications /
di#isibns oﬁ'-a - SIMD parallel computer with n3 proc essors.
“;:Furthernore, ﬁheApa:allel operatlon bound is asynptotlcally”
. obtinal; \. : | ') ;;>. | ‘
o ' R o e V4
| Proof. SteQS' 1 - I3 can dbviously beVCOEPQ?éi in 1::

parallel subtraction (n2 pProcessors), rlog(n—151"para11él

AL

. .‘
;}'.
-

al

- I4. A careful -reaﬁzzﬁgeméni' of ' the parallei algocrithnm,
- / !

68

nultiplications (nt(n-1) /21 processors) and 1 parallel
division (n processors), respectively.

i .
! \
{ !

Step I4, by Theorem 3.4.2 _on elementary synmetric‘

functions, can be computed in rlog(n-1),+1 parallel

additions, clog(n-1)q+1 parallel multiplications and 1

parallel division. Since the computation of each C _(x) uses

n2 processors, a total of n3 pifcessors_is sufficient.

\)

Step iS, By Theorem 3.2.1, can be computed in 1
parallel,multiplicatiﬁhf"@jnce the computation of,each D, (x)
uses n processors'(note ;hat each Dk(x)’has degree n-1), a
total "of n2 érocessors is sufficieqt, |

Step I6 can be obtained by cbmputing the sums of the

corresponding coefficients of all Dk(x)'s vhich in turn are

obtained by using the log-sum algorithm. Therefore, this

Step can be computed in flog n, parallei additions (ntn/24

processors).

On'-sunmingl the "parallel- operafions, the . Iparallel

operation bound follows. A trivial lower bound (obtainead,

for example, by the fan-in arguaent) for this problem is

rlog'n1. . Therefore, the = para’ 1 operation bound is

aSyﬁptdtically optimal. o _ Q.E.D.

Thevpatgllel,élgorithh given above faithfully reflects
the Lagrangian intetpolation forngla. But on_ a close

efamination, One-ihmédiately observes thétlthetlcomputatiohé

in steps I1 - I3 are ihdepepdedt of the computations in step |

-

&

\

o

requiring steps I1 - I3 to be m$:::; with =t I4, yields a

slightly faster parallellaiqorithmﬁ

Theorem Qlegi The exact polynomial interpolation at n
points can be computed in’ rlog(n—1j,+rlog n,#1 parallel-
additions and . ¢log(n-1),+3 parallel multiplications /

divisions on .a SIND parallel cdnputer with n3 processors.

o~

70

5.2 l_g_ger Hodular Transforms

The . previous discussion about 'polynomial modular

arithmetic has a strong analogy 1in the integer settind.

"Given any integer a andnanyfinteger c > 0, by the Integer

Division Algorithm, therle exist unigue integers g anil r such
that .
a=q#sxc+r, 051 <ec.

—

The remainder ¢ is called the residue of a, modulo the

e

ngdulus c, and denoted by r = a mod c. y

The analogue of the Interpolation Theorem 1in -the
integer case is the Chinese Remainder Theorenm:

P Chinese Re malnder Theor Given n'residur fc

e =

1<i<n 18 EOrtespond}ng to n mutually rela*1ve1y prlme
moduli'{ m; | 1£§Sn }, there exists a unique integer u,

...m_, such that

=)
V\
.
A
=
1

S)

)
[t}
=

n
mod m,, 1 £i £ n.
)

- S " . ’.

.Thus, any 1nteger can“be_ represented Vuniquely by a

o suff1c1ently 1arge set of re51dues. The set of re51dues { r'

| \W<i<n } 1s called the mognlar repreSQntat;on of u modulo;

{ my | A%isn }o
. By. analogy Hlth the Lagranglan 'interpolation' formula,
the Lagranglan Chinese renalnder foruula can be wtltten as:

— . - L

u = I r a b, mod M,

PRS-
precision) integers.

| processors. . . ®

11

]
=
=7
o8
[}
-~
=
[N
~——
!
3
=]
o
=%
=]
=

Although the Chlnese Remalnder Theorem does not explicitly
require the modu11 to be prlne, normally they are so choson

since in practice multiplicative invarses are .requirecz at

intermediate steps. In addition, for the sake of effi ency,

the primes are“cnpsen to be 1arge 1-digit (i.e., single

W

The'_process of'finding the modular representation'for

an integer is calledcthe forward integer _godnlar transform

and its recovery - from the residues the inverse integer

59@2.1_13:. ‘itraq,sr.f.gra.- '

It is obv1ous that forward integerv-modular transform

‘requires no more. parallel operatlons ‘than does integer

: o . . S '
:division. Consequently, as for division, -we give two

parallel aIQOrithus; one assuming poiynonially' bounded

parallellsm and the other exponentlally bounded.

Theoren 5 2.1 The n residues of an integer: with at most

m dlglts nodulo n 1- digit. nodull can be computed 1n 0(1og2n)

’

parallel operatlons on a: SIHD parallell computer Hlth m2n

~
- -
7

i
t

oof. Since, by Corollary 4.3.2, each resxdue can be-

yrcomputed in o(logzn) parallel operatlons on a SIMD. parallelc"

rcomputer ,wlth m2 processors, the n re51dnes can ‘be’ computed

PR .

- ‘parallel operations is cequlred.

& 72

in 0(log2m) parallel operations on a SIMD parallel' computer

gggggg 5. 2 2 The n fesidues of an integer with at most
}
m dlgxts modulo 1- d1g1t modull ~an be computed in 0(log m)

i

parallelu operations on a SIHD parallel computer with bmnn

~ processors.

Proof. ‘.;mcn by Corollary 4.3.4, each residue can be

computed in 0(log m) parallel operations on-a SIMD parallel -

‘computer with b™m processors, the n residues can be computed

in. 0 (log m) paralleljoperatiohs.on a SIND parallel computer
with bTmn proceSsoré. o o Q.E.D.
, \ ' . ' ‘ '
e
Next, we show = that 1nv=;se 1nteger modular transform
\\ .) N N
requires' no ' more parallel' operatloqs than does 1nteger

N,

division. We’ " give. two parallel ‘algorithms, aéaln,_ one

with m2n processors. : . . i ' Q.E.D.

assumlng polynomlally bounded parallellsm and thef other .

exponentlplly bounded. Flrst ve prove the following lemma.‘
‘ . L]

r,Lean i5.2.3 The product of 611—digit‘iﬁtegec§ can. be

computed 'th(log?n)qurallelvoperetions on-a SIMD parallef

: com,puter‘w‘ith‘n2 ptocessors.

\ £ . ,
' “L ‘
| . Py . '\

gg of. 051ng the "log ptoduct" algotlthm, fqru ptoducts

of 2 factors, then products of u factors, and so on. At the

5,

k-th- stage when focmlng terns Hlth 2k factors (1 e., when

taking products of . teras wlth 2k -1 factors), log(zk-l+2k-¥)

'k parallel opecatlons are requlred Thus, a total of

i 2 + ... * rlog n1v rlog 012/2 + rlog n1/2

1

<

i . Rk v ’ . . o
v 44 ‘ ; .
Ta e PR : , k.
N SO : - : D : 73
. N ; v N .
p o

In addxtlon, at the k:th,-stoge, the tn/2. !

factorslweach using 2k—142k-1 = 22k-2 processor o compute.

Thus, a total of nx2k-2 < n2/4 processors'is sufficient.

Theorem 5.2.4 Given n residues modulo n 1—digit moduli,

the ;nverse 1nteger modular transforn can be computed in.

0(10g2(n~1)) parallel operatlons on a“SIMD parallel computqtl-
3 , * qu

with n3 processocs. ’ : ‘ o e

s "8

L . gﬁggf. 051ng the same notatxon glven in the Lagranglan‘

f? Chinese remaipder formula above, each a is a product of n-1

s
+

‘1-digit integers. By Lemma 5.2.3, { a, | 1<k<an } car be

&, 1§9 éb;puted in O(Iogz(nr1)) parallel operdtionsss({ 1y -

A . o ;
. processors). Slnce each. a; has at most n- 1 digx Jd
1 , _ o A
o _omy .|ﬂﬁd$kfn } can be computed “in another '0(10 2(n—1))
P : [. . " v . : - r#,,\.'
pargilel operatiogs ((n-1)2n processors). - N e
} T ' T ""s |
L v S In additionm, 51nce eadh‘ nodulus_ nku prxne, by.
Lo W o QQL?? , S R
SR Fermat's Theorean, bk'can be obtalned &gﬁ '
R fwb% =‘(ak) 1. nod P &? j i
i s ' . Y : ‘
; 7 = (3, nod.nk)_l mod nkl o .
,5 e S
‘ 4 k Ilk ~ k* . :

Thus A by SN 1<k<p } can be conmputed from { a, mod lg‘l

- o . " . , e : Q.E.D.“

R 1<k<n } 1n at’ nost rlog (max { m -2/} 1<k<n } o) parél}el .

lultzpllcatlons (n pcocessors).

"Finally, 'iﬁ\ is: obvio&s‘ that the,products { rkh#b; |
L , . :

n } anp«sthe &sunlatxon ’of\ thea - can be'-co-puted- in
\J . . : R

: o(log n) parallel opetagions (2(n 1)n processors). Slnce the

’-i.“}»“» :

)

~.l)

s

An . ' ‘. : . '
' “H’ ‘ . ’ ‘) 7 q

v\,‘_‘ S v -
‘,A" Y @

Quiﬁ*‘s atlhost nilogbn digits, its residue taken modulo ‘M =

mom, ﬁﬁw can- be computed in at.most 0(log2(n-1)) parallel
operation% (0(n2) processors). / v Q0.E.D.
3 (' - |

R Tb fem 5;2;5 The 1nversd‘1nteger modular transform of

‘Theore- ‘\B?Q,QI‘ can gy 5{ computed in O(log n) parallel“

. , N * .
operations on a SIMD r' with 2 processors.
e £ - . .
o Proof. Por all 1nteger x, 0 x < M B Ro...m , do the
* K . L e
following: sz ;:3; . B L
‘ . ‘ v
1. Define n residue functions, . . , .
u.(x)=xnodi;’~’1'5-iSn. ﬁ%
BV . -1 i - g ey »
, ; e R T R
By Corollary M4.3.4,% this can be conputed ‘ingﬁgfkog~p[
Q" ' ‘. S o Dan
_parallel operat1ons (Mbnn2 processors). Lo . @uid-pﬁ
. - ’ .) w . J o m). o P
v 2. Define n Boolean.funCtions, i = ”%f'tg.}
, _ , T . A
. = 1 < <’ <, o o R
| } b (X) 1 1ff u (x) ri,’1 < ; 7“nay) ‘ e
This - can beg cénputed ~im 1 parallel ° (51ngle pcecxsxon)
.compariQOn (Mn- processors). - ' -
: % _) . .
A B ' - “ 3
. 4 o
3. Com@hié the Boblean product, ‘
ﬁx) b (x) e b (x) e _;0‘ bn (x)-. v

'This.Can be conputed in’ rlog n, "parallel ANDS '(ﬂ:n/zl
-processors). ‘ "
4. If c(x) = 1 then u = x. -

»

' The - ex1stence and unlqueness of u is guaranteed by the
Chlnese Renalnder Theorel.“\ ' o _ S 'I' ',ﬂz)'
SusEing up all the parallel Qpéréfions we have 0.(Llog,#)

cpe Lt
c e

«

>
n

of

4

total parallel operations. Since M is

processor bound f#llovgu
. / .

'
- . :
n
. e
‘ >
- { N 4‘\‘,,,
«<
~ o
CT
‘,\&, -
A v s 'pl\
iy - .
. .
i
. o
>
5
s
7%
Rad
PO
- . . s
\r——"’ \
.”‘
s 5.
~
N

Cmangew

75

bounded Dby

“

a .
~
. .
" .
.
. .
. -4
v e,
_— s !
Ta'e X
.
<
Y
*
¥
. ’
v 2
O"" 1 - o M. ,
! I
Y ¢
"')'.I‘Q, wo U N
s .
- .y S
: A
- QPR .
- e AT

- . B

-
i »-4' N - S
v /
* ~
"
) .
e
. = , it
. 2\
N
-

Y
PaY

@

5.3 Eyact Solutio of Linear Systems

A ‘ A
.requires 0(18g2n) parallel operations.)

algorithnm

76

“ Full linear systems of order 'n can be solved on

parallel computers in (n) parallel. operations by Gauss-

)

Jordan eliminatior { Borodin & Munro. _ 197517, LDU
factorization, or ens reduction { Sameh %. K 1975]. In
. : r , : "y N\ . :

addition, certair structured sparse lindar Systems can be

solved uauch . more efficiently, e.qg., triangulag ~ linear
systems can be solved in ‘D(log2n) parallel ogérations

(Heller 1974, Hyafil & Kung 1974, Chen & Kuck 1975, Orcutt

1974], and tridiagonal linear Systems can be solved in

0(log n) parallel operations (Bunamanp 1969, Stone 1973].

- . At

A

Despite rthéSep- facts, researéhers . pgesent = no
sig;ificantly faster pafalle1 algéfithm& tﬂ&ﬂv'the-Ganss—
J an ,elilinatiod> for the_'soluiidh .of igegerai liﬁéér

;ltemsx [Pease *1969, -Sameh 6 Kuck. 1975, Csanky 19787

(Recently,-lesany' presghts .a-igarallel algorithnm which

. (A

N o

- 20
] M .

.

& . .
for so;ving.grll lihgar.systeMSm Thus, as 1s . the
#o ’ :) ' '
case‘}for, sequential .computers :[Borodin & Munro 1975},
; _ DS j o . - @

' ’

melpiplication and inmversion of matrices are of the same
. . D ‘ . S b
parallel _,qSKpléxity;) b8th requiring O(lag n) parallel
: e _— o . ' LA
operations. The parallgl algorithe; given belov is a modhlar

method ~which gives exact solutidh-éf linear systeams. Using

ﬂnodp;ar nethod;' all ‘conputations' performed, except " the

» -

_initjal and final conversions, qrgﬁﬁawtiilarithﬁetic:

1) (atb) mod p = (a mod p t b mod" p) “mod p. -

In this section -we presént an 0 (log n) parallel -

o

77

P “",."-‘,'x." i . » ’

2) (axb) mod p'#fﬁ“la mod p) * (b mod p)] mod p. ~ V
3) If a ¥ 0 mod p, then a-! exists and

a-1 mod p = (a mod p)P-2 mod p.

‘In doing wmodular arithmetic, it is not clear hoy many
u basic machine' instructions are needed to impleme t one
- modular operation, since this is a highly machine dependent
featuré.‘But, for any paroicular computer,'the total . number
of machine_insﬁrﬁctions‘execqted must be propontional to the
number of’ modﬁ*hr operations perfonded. Hehoe,'in the rest

of Egis chgpter, all operations »ind}ogged are implicitly

assumed to be modular operations.

B
g_ggg‘m 5.3.1 Given any n by n matrix A in G¥(p), the

' ' 1hver3§ A mod p can be cdmpJ?gd in‘@%1-: pafallelo
- multlplltitlon,"rlog:n1 para}lel ;odlg%ons and Zrlog hl

) parallel ANDs “on 1 sImp parallel cogguger with . ;“nz_
';.[f : prOcés$ors. ' d S S o

Proof. Let V(n) be the set 6 of allﬁn—vectqrs with

e e

o conponents in GF(p). Obviously, IV {n) i, pU. For each n-
'vectar x in V(n), do the following:

Lw"‘w" ..

’

1. Compute a vector function v (x) X % A.xof

MLl

6 . .

'By Corollary 2~f u, this can*bbe nputed 1ﬁ “1 parallel'
"ﬁultlpllcatlbn and rlog n, parallel additions. Since each

',vector—matrlx produvt uses n? processors to compute, a total

,;’

o -of p!ln2 processors is’ sufflc
. Q.'»' x wc S . .
: L % L e e
.) o 2. Define n vector Boolead functlong

Lo D i@ =ik L1k,

0

v

P

wor

1w

T

»~

. - ,
comparison: (p™n2 processors).

‘vectot g.',

- fields and is duweyto Csanky7 [f97aj. wé_

78

_ where i(kf is the k-th rov vector of the identity matrix I

(of order n). These functions can be obtained im 1 parallel

~

~

3. pefide n scalar Boolean functions, .
cy (x) = fhe Bbbléanhﬁgoduct_of the Boolean wectop
b (x), *5 k <. -

For each k and eacﬁ-g; the Boolean product can be computed

in ¢log ny parallel ANDs (tn/24 processors) by usiﬁg;a.

Boolean version of the log-préduct algoritth K total of

~

p'nti/zs processors is sufficient for computing these

functions. ’ ; . A PR
. P P .-
9

1 them x(k) = x and d(k) =1, 1 € k < n,

by

4. If ¢y (x)

G
e

where x (k) constitutes the k-th row vector of a matrix X anmd

d = (), a2, .., d@) i -‘:Boolean vector (initially
all of “which ‘are false). N T Rgu‘ o

5. .Cbmgxle e = the Boolean product of the Boolean

v

This can,ceftqinlyrbe computed in (log m, _paralleli ANDs

(tn/24 processors).

6. 3f.e =.1 then the Ynverse ‘of A+ exists énd_A*l = X.

Otispﬂise,”the inverse of A does not exist. v

~

.”?

~J.

LY

. AT i

. N - o) v : L : L

. . Counting all the parallel operations and) processors, -
the - 1llel operation and prézjjsdr bounds follows.: Q.E.D.

Thgllébéééﬁigérillel .dlgofifhﬁf"

3
PR
“

egtrdcﬁédito finite

use it.-beLowl'to>

AT e

e e

{i:‘j.

:j C - }f"

design ' an

field.

For any n by n matrix A,

Avadopted‘ '
a(l.j)‘
Ai,d)
AdJ(R)

dek (n) - !A

The 4011ow1ng 1dent1ty is well known"'

efficient

.79

»

~. .
paraltel algorithm over the rational

the »l1lowing notations are

‘the (i,3) entry of A

/

the cofactor of a(i, j)

tbe ad301nt of A

RS

the determlnant of 1.

’ A * Aﬁj(n)‘e det(A) * I . ‘(18) ¢
o A=t = adj(A) / det(n). | ().

B

" of A -as follows:

— o
vigive an

. - MR RO
the determimant of ‘K.

effigight Fpaf@lielﬁ»algori;hi’ for

PiPst, Jefine ' n submatrices

L&

[

A

AC1) = o
. P . |
AC2) = the mlnor of. a(l)(1.1), 1 .y the subnatrlx
aptained ,ﬁroﬁ A ‘by deletlng the flrst row and the first
column. = | L W
: o ; A |
o ACk+#1) = the -.minor of aC(kKd)(1,1), i.e., - the
sypmatrix obtained frdq/f>by deleting¢the first k rows and
the first k columns. = = ° S N
- Obviously, _ '
3 ACn) = (@(n.m)y. det(A(n’)\i a(n n)
Cand o ACK(1,1) "= det (ACk+1I), 1S k € n-1.
5 o B e .
‘Theorem 5.3,2 Let s<k> = (A<k>)—l 1<k <'n-1. If 11'

tHev { B‘k) i

.
L2

1<k<n-1 } are known then the determlnant of

‘(A moa ‘p) . can‘be\conputed 1n rlog(n Y. additlonal parallel

e

80

! -q' ‘ v
;lnnfbiplications and .1 parallel division. *
' 5"v"3 ' ’ : Q‘T B . ; K %

' -

»

—_————

det(A) = ACL (1, 1) Y ba (1,1

dat (ACZ)) 7 bC1) (1,1).

Thus, .the identity (1b) can be applied again and again

det(a) = AC2)(1,1) / b1 (1,1)«b¢2) (144 =
= afp,n) / bCLY (1, 1) #b€2) (1,1) % —..xbD=1) (1, 1),

whefe each bC(k)(1,1) is ‘the (1,1) entry of BUO. This

expression ‘k27)' can obviously be computed in ¢log(n- 1)1
b -
para&;el multlpllcaltons and 1 pgrallel d1v1510n. Q.E.D.
7 - R v - . .
Once'wenhave det(A) the solution oﬁ‘the linear. systen
Ax=b | Lh
can be found immediately from: &> ,
R - - N .
x = A=1.b = (ARdF(A)% A det (A)
L - .
=3 / det (A}, ‘
10 . : ' s (. . 7 . §
‘ whece 1 = Adj(A) * b. Thus,_an eff1¢1ent- solutlon of the
llneat system relles on an eff101ent solntion of 1.:
Lemma 5.3.3 Let z = (A mod ip)=1 = (b mod p). Then (¥
’ ‘mod p) =.(det(A){nod p) % z. Hence Y nod p can be computed .
, - . from Z in_1-parallel,nultipliCation. L j&fa
o ‘ . e - . . . |] “‘ - ';.' ‘ ..—-—4;(. —
. ggg_g ‘e f1rst part can be found in [Young & Gregory
I .
-1973]. The second ﬁg%t is a tr1v1a1 consequence of . the first
v o part. . . : ;. | e Q-E.D-
,.\) = !

- €27) This _exptession is true in,;any field,,not-just in .
e e L e

-and y is propottional to 0(log n). - - 7

81

'Théyiastvremaining problem in a modular method 1is the
numaber of prime ~moduli needed to guarantee ' the unigque

representationﬁbf det (a) and y..

Let a(i) be the i-th row vector of A, then we can
. -

choose the méduli { Py | 1€i<m } such that'[Young & Gregori

1973] : | o S

. \ .
! . \ .
P Pgee-Pp 2 2 LI2(N II*E12(2) [1+-aoxlia(n) Lixibl,

where |jgll is the 2—norm,(i.e., Euclidean nbrn) and 1.1 1is
the 1-norm. In parallel computation the ‘exact number of
moduli geeﬁed is . not as crucial here as in the sequential

case, because computations corresponding to each modulus can

3\

. be: ﬁerfotﬁed siqultaneously.»wThe Limpoctant‘thing herp‘is

—~ »

. that the precision of the above bound is roughly

propértional to n, the ordeér of A. Thus, by Theorem 5.2.5,
- N) . n " . ‘,il- .
the nrmber of parallel operations required to Testore det (A)

t

We now can proceed to give the complete algorithm:

”,

’ Algorithm L. (pxact Solution of LinearASystensr,

r

For each modulus p, do the following:

L1. Pind (A mod ‘p) and (b mod p).,(zai

R v - . .
. 4} ~L2. Compute BC(k) = [*(A mod p)¢k>]-1, 1 < k S n-1.°

‘ L3. Compute'det(g) mod p. ST v»,x()' o
L4. Compute g'=f(xlnodlpl;"* ¢b mod p). - -

. L5. Corrnte zbmod p.= (det (A) iodvpi_* Z.

82

L6. Recover det(A) and y.

The solution is the quotient of y and debﬂﬂ), and the

AQ
ac tualjﬁtviiion may or may not necessarily ba @ rried out.

’4{‘- . ®
(.

* : Eneorem S. ; 5 Full linear systenm of order n can be
solved exactly in o(log n) parallel operations on a SIMD

,parallei computer with exponentially bounded parallelism.

L]

Proof. The only multiple-precision arithmetic performed
are imy etep fL1>'end step L6.'Step L1 can be computed in a
constant number of parallel operations. Step L6 can be
computed in o0(log u) parallel . operations - as comnented'

previously,

b \h Steps L2 - L4 each can be computed in 0(log n) parallel

-y ope ations by ‘Theorem 5. 3 1, Theyrem 5. 3. and- Corollary
~i¢ L - ' A
o 2.1.4, reSpectively. Step L5 qufLerCOlp in 1 parallel
1" o - » ;"‘. %*.’ E\ /, . * V".~) N . . .
4uultiplicat10n by Lemma 5.3.3. 'f*t,gé -
P N ") W . .
vThus; tte' complete algorithm 'can be computed in
-) 0(log n) parallel operations. Both step .L2 and step L6
;ﬁ " assume exponentially bounded parallelism.' o . _ Q< E. D.
Ti ~ . A Theoren ;3;5 Matrix multiplication; a{trixC?fgversion,
i o .° determinant .calculation *and solution of linear systems are .
?4 : o7 ;Bf‘the same parallel complexity;‘ :
. é: “ _ a . 7 . 4 , . . ' | :
- | S . o |
SR (28> The fact that Ac anf’b must. he. integral is no serious

H "Postriction due to the fact that if. the entries of A and the
§ N o . - components' of b are. rational nambers, they can be converted
N | A

i to 1ntegers 51mply by scaling, : :

v . . : T T
v .) . - . . S

e I

83

!

Y.

- ; of. It 18 known that 1nver51on of mﬁtrlces, solutlon

of lindgsjgxgﬁﬁas and calculatlon of determlnaﬁts&are all of

\

the same{paraL}el complexity (Csanky 1974, Borodin and Munro
! *%975]. By Theorem 5.3.8 and Corollary 2.,1.4, the solution of

lipear systems and matrlx multxpllcatlon are of the Same

h)
~

parallel coaplexity; nanely, 0(log n). Therefore, all three

of the above problems and matrlx multlpllcatlon are of ‘the
same pars.lel coamplexity. _ : ' o Q.E.D.

.

' d .
J
$.
s, - N
AV,
! - . %\' .
. . ;
. f o .
e
'
. ‘ s
N -
Tire ¥

-
%

® v
ey
w
LW
P .

Y
P

K4

: . 84
v

-

5.4 Polypomial Division Bgzigig%@

Let £ and g be any two polynomials of dégree m+n and n,

respectively, and "q and r be the quotient and remaih@er,
v) v - : ' : .

respectively, of £ divided@ by g. By using the results

obtained in the last section, a very efficient parallel
algorithm for computing g and r can be derived.
| | , - | : o - |
Theorem 5.4.1 The qudtient g and ‘the remainder r of f

dividqdv‘by,,g can - be Tgomputed~ in O0(log(m+1)) parallel

operations on- a SIHD paratbQl ' computer assuming
3eiponentially bounded parallelism. ¢29) 5
: B (,

— s s e

Proof. 1In Sectiom 3.3, a linear recurrence equatiom is

derived for the coeffic%ents of q. As is,well—knagp a linear -
‘recurrence equation can be viewed as being a triangular -
' . N ' !) | . v» ’ ! ') . ‘-4. t‘!‘“;:‘u,’.) ‘ . o
linear systenm: C EE
- 2 °

T R , : : ,
a.“ '_ G q= £, : a ' o , , ..‘\
- ‘. o : : L . o N &y

where . ¢ .and f- are the (m+1)-vectors formed by the ¢

cnefficien£s of q and the filtst me1. coefficients of f,

v

,-_respectiwély, and G is a given matrix of order'h+1,Jxﬁén,,py

Theorem '5.3.4, q (bonséquently ‘the . polin&niél q). can be-L
solved ih 0(10§(n+1)j - parallel opgratibhs» (assﬁming <

‘ exponeﬁtially bound2d parallelism).

‘ Next, g % gv can "be 3.c0nputed'c;in'r 1 | parpallel.
. . R © ’ L . o

. - ST . 2
: : - e N

e — - S
Lo R St e ‘\t';A ' Lo - .
- £29) 7 In Corollary 3.3.2 a parallel algorithm requiring
O(log(m+1)log(n+l1)) - parallel operations - .but _ assuming -
“polynomially’ bounded paralfelism is given. T -

A

;
5

¥

2 .
:“..)
M 7

F v
: .
§ N

Y

Voo

t /

' :

‘multiplication - and no more than clog(m+1), parallel
uitip L f

additions.

Finally,. the cénainder, r = ﬁ:7 g.* g, can be computed

in 1 additional parallel subtractién; Q.E.D.

.) . | ’

——— v — ——

corollary S.Q.Z'Poljnqnial multiplication and division

are dffthe same parallel complgtitf.

K 3 ’ o 1. .
.] 4
<y . . ’
X
0
{
' -
. .
. L o - .
ST e : %‘ e
' LG - ; T
» >
M v
. ()\::y@ - [Y < g 2 R v"
: w M 1] -’ S
i aaa
. « o ~
. K
"‘ - .
B \ ' 4
' s
B .
. Lo . Lo
) ‘3" . . N b
:I .
o
. n
>
‘ .
;
N .
> -
hv
g
5
o :
v
- o o
¢ o S , %
&
P
o R o
BN
\ - S .
'
\\< i
| . \ . r.

5}

IS W

Sy

AR
2%y

P
v

Fal

86 .

The main objective of this thes¥s vas to find the best

rh;s, _possible patallel .algorithns (in the sense deﬁingd in

~

-~

& . Qbapter 1N for 1nteger arxthnetlc, polynonial arithmetic and

’
v

mbdular ~arithmetic. It - . turns out ‘that‘there_e;ists very
Aeff1c1ent parallel algbrithws-_for -all probleus etudied.

'Thus, he maln objecﬁlve of th&s thesis has been achleved.

. /

" We . observe, hovever. that in _nost-cases there is a

g : : ; ‘ :

» ¢ iy ’ - .) ! :
',tﬁadeoff betueen the nhmbe of:parallel operations'ﬁerfz;ned

. X, ‘

~and the nqnber of -proc 50rs requlred. If the level ogv

=22== =
3 “3

; '
. 419arallellsm f' a parallel algocxthm (i. e., the number of

Ce

prOCessors requxped by the parallel algorithm) is uSed tb‘".

’ cla551fy patallel algorlthns,,then among all beSt posﬁlble

_ patallel algorxthmé’studled in thxs thesxs ﬁheneware clearly -

t

three broad classeS' L o | - ft'\

T 1) parailel algorxthns aSSnniné llnearly banded‘.v

'parallellsn,,.eng., polynomlal ad<lon ana 1nfeger

vaddltlon. o ;;_-‘7f lj: ;CL'

. "ZlEparallel algorlthms:'assunlng‘ polynomlally‘ ounded

;o - jparallellsm. re.g..' pOlYnomxal multlpllqagybn, ana‘
el e , LT

Sy 1ntegec nulplpllcatlon. S "f J"} /

o

L o———— N

v S 3) parallel aigorlthns assumlng f“jzonentzally ﬂboﬁnded
. « o
parallela n,',e.g,,~ polynonlal
4 %

- . I

'\

"&1v1510n. 1‘43 Y e _“j' o -]fl'“~'&_'7« T

f

The three classes of parallel algbrlthgs can be- ¢?nsidered" >

Lo,

ivision ard. 1nteger 5/}

87
increasingly more difficult }f level of paralleliém is

‘adopted as the measure of parallel- complexity.

For future research .the following probleas are
therefore sdggesbed?

1) Qesign (asymptotically) optimal parallel algorithms

e assuming polynoiially (or linearly) bounded

parallelism for polynoyial division, ;nteger

division, ﬁhe Chinese reﬁainder prohlem and the

-
solution of full linear systenms,

2) Prove parallel lower bounds under 3 priori .

polynomially (or linearly) bounded parallelism for

various problems.

3) Study traizoffs between the number of parallel
" .

operations performed and the nuamber of processors

reqdired ?3F\xvarious problems (especially those

listed in 1 above).

4

10.

11.

12.

13.

14.

15.

¢ REFPERENCES

Hopcroft and J. D. Ullman, The Design

. V. Aho E.
nd Analysis of Computer Algbrithms, Addison~Wesley 1974

J. Atrcubin, "A One Dlmen51onal Real—'zm\\f*e ative
Multiplier," IEEE EC-14 1965 pp 394-399 boormo

m—mme A e

G. H. Barnes, R. A.‘Stokes, R. M. Brown, . Kato, .« J
Kuck ' and D. L. Slotnick, "The ILLIAC IV Ccoapv® -, " IEE
C-17,8 Aug 1968 pp 746-757 , |

Itz o

K. E. Batcher, = "STARAN (:;rallel Processor System

E. R. Berlekamp,. glggggg;grgodlng Igeory, HCGEav-Hlll
1968 .

’ .
A. Borodin, "#iorner's Rule 1is Unlquely Optimal,* in

D AP~ PP}

Theory of Machines and Computation, Z. Kohavi and A. Paz
(ed) Academic Press 1971) '

A. Borodin and I. Munro, The Comgutgtlon§; Complexity g;
Rlgebrajc and Numeric Probleams, American Elsevier 1975

R. Brent, "On the Addition of Binary Numbers," IEEE C-
19,8 Aug 1972 pp 758-759

R. Brent, ©D. Kuck. and K. Maruyama, "The Parallel
Evaluation of Arithemetic Expressiong\vithout Division,™"
IEEE C-22,5 May 1973 pp 532-534 |

R. PB. Brent, ."The Parallel 'Evaluationf,ofzy;}enéral
Arithmetic Expressions," JACN 21,2 Apr 1974 ppS201-206

W. S. Brown, "On Euclid's Algorithm and the Computation
of Polynomial Greatest Common Divisors," JACH 1§¢g Oct

1971 pp 478-50u4

S
0. Buneman, J'A Compact Non- IteratiVe Poisson Solver,"

SUIPR Rep No 294 Imstitute for Plasnma Reaearch ~Stanford
,Unlv May 1969

S. C. Chen and D. J. Kuck, "Time and Parallel Processor .

Bounds for Linear Recurrence Systems," -IEEE C-24,7 Jul
1975 pp 701-717 . -

G. E. Colllns, "The- CaICulatlon of nultlvarlate'

L. Csanky, "On the parallel Complexity . of Some

Computational Problems," Ph D Thesis Dept Electrical

Engineering and Computer Science Univ of California

Berkeley 1974

14

16.

17.

18.

89

W. S. Dorn, "Generalizations of Horner's Rule for
Polynomial Evaluation," IBHM J Research and Development 6
1962 pp 239-245 .

G. Estrin, "Organization of Computer System - The Fixed

plus Variable Structure Computer," AFIPS Conference Proc

., 2 hc G amamamem—m ————

1960 wJCCL pp 33-40 :

'C. M. Fiduccia, "Polynomial Evaluatioh via the pivision

Algorithm - the Past Fourier Transfornm Revisited," PrLog

. 4th Anngal ACH Symposium on Theory of Computing 1572 pp

19.
20.
21.

22.

24,

25.

26.

27,

28.

29.

i

30.

88-93

I. Flores, The gggig of Computer Arithmetic,. Prentice

Hall 1963 » . '

M. J. PFlyan, "Very High-Speed Computing systens," Proc
IEEE 54,12 Dec 1966 pp 1901-1909 . ,

M. J. Flynn, - "Some Computer Organizations and Their
Effectiveness," IEEE C-21,9 Sep 1972 pp 948-960 -

D. K. Goyal, "parallel ,Evaluation of Elementary

Symmetric Functions," Tech Rep No .184 Dept of Electrical
Engineering Princeton Univ Apr 1975

F. *Heller, "On the Efficient Computation of.
Recuxrence Relations," ICASE Report NASA Langley
h Center Hampton Va Jun 1974 - ‘ 3

R. G. Hfintz anq'rD. P. Tate, "Control Data STAR-100
Processpr Desiga," Digest of Papers COMPCON 72 Sep 1972

pp 1-4

itz, nA Unified View of the Complexity of
Evaluation and Interpolation," Acta Informatica 3 1974
pp 123-133 , -

‘L. Hyafil and H. T. Kung, "Parailel Klgorithms for

Solving Triangularc Linear Systenms with Small.
Parallelism," Rep Dept Computer Science Car'negie-Mellon

Univ Oct 1974

M. D. Johnson, "The Architecture and Ippleméntation of a
Parallel Element Processing Ensemble," Digest of Papers
WESCON 72 1972 ' -

7. Kedem and D. Kirkpatrick, "Addition Requirements of
Rational Expressions," Unpubliched manuscript 1974

D. E. - Knuth, 'The Art of -Computer Proqranming s
Seminumerical ‘Algorithms, Addison-Wesley 1969 ;

P. M. Kogge and H. S. Stone, "A Parallél Algorithnm for
the Efficient-Splution of a Gemeral Class .0f Recurrence
Equations," TEEE C:22,8 Aug 1973 pp 786-793

"y

31.

. 32-,

33.

34.

35.'

36.

40,

41.

u2.

43.

“ sciences 1 1973 pp 189-198

au.

~45. .

‘Q‘— .) ' . .

pP. M. Kogge, "Parallel solation of Recurrence Problems,"
IBM J Research and Development 18 1974 pp 138-1u48

D. gECK ‘and Y. Muraoka, "Bounds, ‘on the parallel
EvalYation of Arithmetic Expressions Using Associativity
and Commutativity," Acta Lgﬁgggg&igg 3,3 1974 pp 203-216
D. J. Kuck and K. Maruyama, wrime Bounds on the Parallel
Fvaluation of Arithmetic, Expréssions," SIAN J Computing
4,2 Jan 1975 pp 147-162 ‘ .

H. T. Kung, "Fast. Evaluation and Interp01ation," Rep
Dept Computer Science Carnegie Hellon.Univ.JaQ 1973

H. T. Kung, "New Algorithms and Lower Bounds for the
parallel ﬁvaluation_of Certain Rational Expressions,"

Proc 6th Anpual ACH Symposium-on Theory of Computing Apr
1974 : o : o

J. J. Lambiotte Jr. and R. G. Voigt, "The Solution of
Tridiagonal Linear Systems on the tnc STAR-100
Computer," ACH Transactions on Mathematical Software 1.4

SATL R oy e e o e

Dec 1975 pp 308-329

LN

J. Lipson, "Chinese Reuéindef and -Interpolation
Algorithms," Proc 2nd Symposium - oR. Symbolic - and
Al8ebraic- Mapipalation 1971 pp 372-391% . '

M. T. McClellan, "The Exact Solution of'Systéns of
. Linear Equations with Polynomial Coefficients," 'JACH-

20,4 Oct 1973 pp 563-588

K. uaruyamar’//;Bn . the parallel Evaluation of .
Polynomials,™ IEEE C-22,1 Jan 1973 pp 2-5 I

#. L. Miranker, "A SurVey?of‘ parallelism 1in yunefigal;
Analysis," SIAM Review 13,4 Ooct 1971 pp 524-547 o

] . . R T S
R. -Maenck and A. B. Boroiin, "Fast Modular. Traansfocras
via Division,"™ Conference Record IEEE 13th Annual
Symposium on switching and Automata Theory 1972 pp 142-
151 : T)

5. Moses and D. Y. Y. Yun, "The EZ GCD Algorithm," Proc

1973 ACHM National Copnference pp 159-166

I. HMunro and M. Paterson, "Optimall Algorithms for
parallel Polynomial Evaluation,".J Computer and System

y. Muraoka’ ani D. J. Kuctk, "On the Time Regquired for a
Sequence oﬁ'natrix products," CACM 16,1 Jan 1973 pp. 22- -

26 . :

-
(Y

p. R.—HNusser, "Hulti#ariate;éolynoniél'Factorization,?
JACH 22,2 Apr 1975 pp 291-308 : .

-

3

u6.

u7.

!

u8.

49,

50.

51.

- Q “
A. Newell and G. Robertson, nSome Issyes in Programmaing
Multi-Mini Processors," Research Rep Dept Camputer
Sciente Carnegie Mellon Univ Jan,

v

s. E. Orcutt Jr., “"parallel
Triangular Linear Systems ©O Equations," Report 77

Digital. Systems Laboratory Stantord @niv

M. C. Pease, “Inversion Sf Matrices by Partitiqning,"
JACH 16,2 Apr 1969 pp 302-314 : :

F. ©P. Preparata and p. E. Muller, {*Efficient Parallel
Evaluation of Boolean Expressiof:?:tg;gg C-25,5 May 1976
_ pp Su8-549 L |

J. A. Rudolph, "A Production Implementation .of an
Associative -Array Processor - STARAN," AFIPS Conference.
Proc 1972 FJCC pp 229-241 ’

A. H. Sameh and D. J. Kuck, "[inear System Solvers for

" parallel Computers,"™ Rep No. UIUCDCS-R-75-701 ' Dept

52‘
53,

54.

55.

JACH 20,1 Jan 1973 p

"Computer Sciepce Univ of Illinois Peb 1975

A. oenhage aﬁd V. Skrassen, wschnelle nultipiikation
grosser~zahlen," Computing 71971 pp 28)-292 '

Ll

B. .Soucek, ~Microprocessors and Microcomputers, John
Wiley. and Soas 1976 . ‘ ' .

"H. S. Stone, "An Efficient Parallel Algorithm for the

Solution of a. Tridiagonal; Linear System:-of Equations,"

‘pp 27-38'

H. S. Stone, <*Problenms of . Parallel Computation," in’

- complexity of Segdential and ~ Parallel Numerical

- 56,

57.

53-

y 99

\

60.

2lgorithas J. F. Traub ' (ed) Academic Press 1973 pp 1-16

"H. S. Stome, "Parallel rridiagonal = ‘Solvers,". ACH
Trapsactions on Mathematical = Software 1,3 Dec 1975 pp

-289-307

’

K. J. Thurbec and P. C. Patton, "The Future éf Parallel
Processing," ILEEE C-22,12 Dec 1973 pp 1140-1143 .

K. J. Thurber and L. D. Wald, FAssociativé and_Paraliel
Processors," ACN Computing Sutveys Z.4 Dec-1975 pp 215~
255, ; ‘ ' T)

P. Wang and L. Rothschild, "Pactoring ‘Multivariate |
Polynomials over the Integers," SIGSAM Bulletin 28 1973 ..
pp 21-29 . o T R

W. J. HWatson, "The TI ASC: - A Highiy Hbauléf and
Flexible Super Computer Architecture," AFIPS Conference
Proc 1972 FJCC pp 221-228 I ‘ R

‘Solution Methods Pes—

61.
62.
63.

€4.

65.

-

{

S. Winograd, "On the Time Required to Perform Addiiiong"
JACH 12,2 ApF 1965 pp 277-285 o :

5. Winograd, "On the Tize Requiréd' to Perform
Multiplication," JACH 14,4 Apr 1967 pp 793-802

S. Winograd, "On the Number of‘Hultiplicétioné Necessary

to Compute Certain Functions," Comgupications on pure

gné\;ealigi‘ﬂgghgsgsig§ 1970 pp 165-179 .

W. A. Wulf and C. G. Bellg\ "C.mmp - A Multi-Mini-
processor," APIRS Conference ELEC 1972 EJCC pp 765-777 . -

0. M. Young and R..T. Gregory, A SULVEY® of Numerical
Mathematics, Vol 2 Addison-Wesley 1973 ‘

— s e s e e A e S S

