
Noname manuscript No.
(will be inserted by the editor)

GreenScaler : Training Software Energy Models With
Automatic Test Generation

Shaiful Chowdhury · Stephanie Borle ·
Stephen Romansky · Abram Hindle

Received: date / Accepted: date

Abstract Software energy consumption is a performance related non-functional
requirement that complicates building software on mobile devices today. En-
ergy hogging applications (apps) are a liability to both the end-user and soft-
ware developer. Measuring software energy consumption is non-trivial, requir-
ing both equipment and expertise, yet researchers have found that software
energy consumption can be modelled. Prior works have hinted that with more
energy measurement data we can make more accurate energy models. This
data, however, was expensive to extract because it required energy measure-
ment of running test cases (rare) or time consuming manually written tests.
In this paper, we show that automatic random test generation with resource-
utilization heuristics can be used successfully to build accurate software energy
consumption models. Code coverage, although well-known as a heuristic for
generating and selecting tests in traditional software testing, performs poorly
at selecting energy hungry tests.

Shaiful Chowdhury
Department of Computing Science
University of Alberta, Edmonton, AB, Canada
E-mail: shaiful@ualberta.ca

Stephanie Borle
Department of Computing Science
University of Alberta, Edmonton, AB, Canada
E-mail: sgil@ualberta.ca

Stephen Romansky
Department of Computing Science
University of Alberta, Edmonton, AB, Canada
E-mail: romansky@ualberta.ca

Abram Hindle
Department of Computing Science
University of Alberta, Edmonton, AB, Canada
E-mail: abram.hindle@ualberta.ca

2 Shaiful Chowdhury et al.

We propose an accurate software energy model,GreenScaler, that is built
on random tests with CPU-utilization as the test selection heuristic. Green-
Scaler not only accurately estimates energy consumption for randomly gener-
ated tests, but also for meaningful developer written tests. Also, the produced
models are very accurate in detecting energy regressions between versions of
the same app. This is directly helpful for the app developers who want to
know if a change in the source code, for example, is harmful for the total en-
ergy consumption. We also show that developers can use GreenScaler to select
the most energy efficient API when multiple APIs are available for solving the
same problem. Researchers can also use our test generation methodology to
further study how to build more accurate software energy models.

1 Introduction

Does software energy consumption matter? The answer is yes. Mobile device
users prioritize longer battery life when investing in their next purchase [1–
3]. Mobile device users also complain about battery life: recently Microsoft
acknowledged that a software bug, unrelated to battery hardware, induced
short battery life on Surface Pro 3 tablets [4]. Accordingly, developers are
trying to write more energy efficient code to meet the need of consumers [5–7].
Research has shown that energy efficiency can be improved significantly with
small code optimization [8–12]. To develop energy efficient software, developers
need feedback about the energy consumption of their software. Unfortunately,
developers are not sure how to measure and optimize the energy consumption
of their apps [1,13].

We seek to help Android developers accurately estimate energy consump-
tion of their software without the need for hardware instrumentation and with-
out physically measuring their own software’s energy consumption. Instead, de-
velopers can use an externally developed and robust model, built from physical
measurements of third party apps, to accurately estimate their own software’s
energy consumption. Measurements of third party apps, however, are hard to
find as we need repeatable test cases and corresponding energy measurements.
These test cases are costly to build manually and are the main limitation of
empirically derived models [11]. We address this limitation by demonstrat-
ing the effectiveness of automatic test generation to collect measurements for
energy models.

We propose GreenScaler , an easy to interpret energy model for Android
apps. GreenScaler leverages a continuous process of test generation to build an
ever more robust corpus of energy measurements. As of writing, GreenScaler
learns from a wide variety of 472 real world Android apps, which was made
possible through automatic test generation. GreenScaler is count based and
relies on counts of system calls, CPU time, and other OS-level statistics.

The contributions of this paper are summarized as follows.

GreenScaler : Training Software Energy Models With Automatic Test Generation 3

1) We propose a process of continuously building an ever more accurate
software energy consumption model using automatic test generation and test
selection heuristics. The success of automatic test generation for building ac-
curate software energy models is significant. We can continuously improve
model’s performance by adding more apps in training. New research ideas can
be explored with this approach. Researchers can investigate further for pro-
ducing better energy models. For example, can we improve model’s accuracy
by building domain specific models (building a separate model for gaming apps
for example)?

2) For using random tests, we need test selection heuristics. We evaluate
three test selection heuristics to understand which one is the most effective for
selecting energy tests. From empirical results we show the following. i) Code
coverage is not a good heuristic for selecting tests to produce energy models.
ii) A simple CPU-utilization heuristic performs similar to a complex energy-
estimating test heuristic. To the best of our knowledge, we are the first to
evaluate test selection heuristics for producing software energy models.

3) We propose the GreenScaler model that can accurately estimate software
energy consumption of apps without hardware instrumentation. GreenScaler is
trained and tested (with leave-one-out approach) on 472 apps with randomly
generated test scripts. The model shows an upper error bound of 10% when
compared with the ground truths, except for few extreme cases. As Green-
Scaler is built on randomly generated tests, it is also important to evaluate
its accuracy on human written meaningful tests. For such manually written
tests of 984 versions from 24 real world Android apps, the upper error bound
of GreenScaler is always less than 10%. To the best of our knowledge, no
previous software energy model was evaluated on such a large number of apps.

4)We show that GreenScaler is accurate in finding energy regressions be-
tween versions of the same app, regardless of the amount of change in the
source code. GreenScaler detects energy regression even for a single API change,
when such a change has significant impact on the app’s energy consumption.
This is directly helpful for the developers who want to examine if a new ver-
sion consumes more energy than the previous version. With GreenScaler , re-
searchers can build API recommendation systems for energy-aware developers.

5) We publicly release our dataset and tools to enable replication and ex-
tension [14]. The dataset contains measurements that took us nearly two years
to collect, including time for test generation and time for actual energy mea-
surements. Our automatic test generation and selection tool can be used to
add more apps for building better energy models. Developers can directly use
our energy prediction tool to estimate their apps’ energy consumption.

4 Shaiful Chowdhury et al.

1.1 Paper Organization

The main focus of this paper is to build an accurate software energy model for
Android systems—a model that learns from hundreds of apps. However, it is
laborious to write tests to drive those hundreds apps. So we need automatic
test generation. We study the previous test generation techniques in section
2, with the description of other important concepts related to this paper. We
show that Android Monkey is the best available test generation technique for
building software energy models. However, Monkey has its own drawbacks—
generates too many redundant events and does not offer us an way to control
the distribution of individual events. So we made our own Monkey, Green-
Monkey. GreenMonkey is still a random test generation technique, and might
produce test cases that do not exercise energy consuming operations. We gen-
erated several test cases for each app to select the best one. To select the best
test case, we need test selection heuristic. Which test should we select? Test
that cover more code? We study the effectiveness of code coverage heuristic
in selecting test cases that exploit energy expensive resources, and found that
code coverage would not be a good heuristic for selecting energy consuming
test cases (Section 3). Instead, we focused on resource-utilization heuristics.
Section 4 describes the whole GreenScaler methodology of building software
energy models with resource-utilization heuristics. The rest of the paper is
about evaluating our model from different perspectives (Section 5 to Section
8). In section 9, we discuss the future research avenues with our model building
approach, followed by the description of our dataset (Section 10), Threats to
Validity (Section 11), Related work (Section 12), and Conclusion (Section 13).

2 Background

This section explains the important concepts that are frequently used in this
paper. It also describes the motivation for energy model building automated
test generation.

2.1 Power vs. Energy

Power (P) is defined as the rate of work completion and measured in watts
whereas energy (E) is the total amount of work done for a given time T
(E = P · T) and expressed in joules [15–17]. Understanding the difference
between power and energy is important to develop energy efficient system. A
misconception exists among developers: improving execution time automati-
cally improves energy efficiency [1,13]. Improving execution time reduces T
in the equation. However, with the reduced execution time the CPU work-
load may also increase, which can switch the CPU to its highest frequency,

GreenScaler : Training Software Energy Models With Automatic Test Generation 5

which is also its highest power using state, thus negatively affecting the over-
all energy consumption. Furthermore T can be reduced by parallelizing a task
across multiple cores, which could induce even higher power use. This is also
confirmed by a previous study that shows that less execution time does not
necessarily indicate less energy consumption [18].

2.2 System Calls and CPU Time

System calls act as the bridge between an app and the OS. For example,
socket is a system call responsible for creating communication endpoints,
whereas read takes the responsibility to read from a file handle. Counting
system calls of different types can thus provide an estimation of the amount
of different resource usage by an app [11,19,20].

To represent the CPU time expended by a process, we used the number
of CPU jiffies provided by the Linux kernel. A CPU jiffy is a period of time
assigned for a process to run without any intervention [21]. A CPU can op-
erate in different power consuming states, which complicates software energy
modeling [13]. A CPU jiffy, however, can be of different time intervals based
on the CPU states. Thus considering CPU jiffies as CPU time would mitigate
some intricacy involved in software energy modeling.

2.3 Energy Measurement: GreenMiner

For measuring energy consumption and resource usage, we used GreenMiner,
which is fully described in Hindle et al. [22]. GreenMiner provides accurate
energy measurements for Android apps and is widely accepted in the software
energy research community [9,11,15,20,23,24]. The main components of this
test-bed are a lab-bench power supply (a YiHua YH-305D), a test-runner com-
puter (a Raspberry Pi model B computer) for controlling the experiments, an
energy measurement IC (Adafruit INA219 breakout board), a micro-controller
(Arduino Uno) for collecting energy measurements, and a system-under-test (a
Galaxy Nexus phone) (Table 1). The Arduino and Raspberry Pi are powered
by a USB hub. Each testbed costs approximately $250, each phone originally
cost approximately $500, and the green miner service is run on a separate
server ($1000). Development of the GreenMiner hardware and software itself
was more than $32000 in developer time. GreenMiner software is freely avail-
able for download [22].

A test-runner, a Raspberry Pi, is connected to a particular system-under-
test, a Galaxy Nexus. The test-runner pushes and runs tests on the Galaxy
Nexus, and collects measurements from the Arduino. Afterwards the test-
runner downloads statistics and other meta-data from the system-under-test.
The responsible test-runner, a Raspberry Pi, then uploads the measurements

6 Shaiful Chowdhury et al.

Table 1: Specs of the Samsung Galaxy Nexus phones used for the experi-
ments [25].

Component Specs

OS Ice Cream Sandwich, 4.4.2
CPU Dual-core 1.2 GHz Cortex-A9
GPU PowerVR SGX540

Memory 16 GB, 1 GB RAM
Display AMOLED, 4.65 inches
WLAN Wi-Fi 802.11 a/b/g/n

to a central server running the GreenMiner webservice. The current Green-
Miner consists of four such identical testbeds to speedup and parallelize the
data collection process. Figure 1 shows the innards of one of the four identical
settings of the GreenMiner. The GreenMiner service is a continuous testing
service whereby users may submit tests to be run and measured. After sub-
mitting a batch of tests to the GreenMiner, one of the phones is randomly
selected for executing a test. As a result, four different tests can run in paral-
lel to reduce the measurement time. GreenMiner maintains the same system
state for each test by cleaning any installed apps that ran previously.

Fig. 1: One of the four identical GreenMiner settings. Photo used with per-
mission from the Green Miner paper [22].

Variations in energy consumption and resource utilization are observed in
different measurements for the same test. Consequently, all the GreenMiner
based previous work repeated any specific measurement multiple times [9,11,
15]. Similarly, all of our tests for measuring energy and resource usage were
run 10 times and the mean value was used.

GreenScaler : Training Software Energy Models With Automatic Test Generation 7

2.4 Energy Estimation: GreenOracle

There exists different types of software energy models: instruction based mod-
els [18,26], utilization based models [27–29], and others [11,15,19,20] (de-
scribed in section 12). We followed the philosophy of count based energy mod-
eling similar to our previous GreenOracle [11]. GreenOracle modeled software
energy consumption based on the counts of different resource usages: number
of CPU jiffies, number of different invoked system calls and so on. GreenOra-
cle, however, has some limitations. This model was built only using 24 Android
apps. Although the size of the training set was enlarged by adding different
versions from those apps, this did not improve the model significantly. This is
not surprising as only one manually written test case was used for each app.
As a result, different versions of the same app might have executed the exact
sequence in source code, offering very similar information on resource usage
and energy consumption for a given test. An accurate energy model, however,
requires training from a wide variety of workloads. In this paper, we show
that a model based on such small dataset is not accurate in estimating energy
consumption of apps from very different domains.

2.5 Energy Model Building Test Generation

To measure the energy consumption of an app we need to drive the app with
some kind of test or benchmark. To run an app on GreenMiner, we need a
test script to replay operations on the app. An example of a test case is: open
Firefox, load a Wikipedia page and scroll over the page for five minutes—as if
a user is reading the page.

In our previous GreenOracle [11] model, we demonstrated that adding new
apps in training improves the accuracy of software energy models. Unfortu-
nately, adding more apps requires manually writing test cases for each app,
which makes it infeasible to have an energy model trained on hundreds of
apps. Manual software testing is difficult and expensive [30,31], which moti-
vated a significant number of research in automated software testing [32–36].
Automatic test generation is when tests are created automatically through al-
gorithmic means to drive the software under test. There has been a significant
number of research dedicated for Android test generation [37–41].

Test generation can be completely random [30] such as Android Mon-
key [42] where random events are injected to an app. Some random test
generation strategies, such as Dynodroid [37], extract the layout of the GUI
components from an app screen and generate events based on the extracted
components. Search heuristics are also employed to guide the test generation
process, known as Search Based Software Testing (SBST) [32]. For example,
code coverage is a search heuristic where the objective is to generate test
cases to maximize code coverage [43]. Techniques like Sapienz [39] uses multi-
objective optimization (maximize fault detection and minimize test sequence

8 Shaiful Chowdhury et al.

Table 2: A summary of the existing Android testing tools for model building
test generation.

Tool Available? Works without source code? Suitable for GreenScaler?

AndroidRipper [38] Yes Yes !
DroidFuzzer [45] No Yes

NullIntentFuzzer Yes Yes !
IntentFuzzer [46] Yes No

Monkey [42] Yes Yes !
MonkeyLab [47] No Yes

Dynodroid [37] Yes Yes !
ACTEve [48] Yes No

TrimDroid [41] Yes Yes N/A. Generates the whole test suite

A3E-DFS [49] Yes Yes !

SwiftHand [50] Yes Yes !
ORBIT [51] No No

PUMA [52] Yes Yes !
EvoDroid [40] No No
SPAG-C [53] No Yes

Thor [54] Yes Yes N/A. Requires existing test suite
JPF-Android [55] Yes No
CrashScope [56] No Yes

Sapienz [39] Yes Yes N/A. Authors do not share source code

length) in order to guide the test generation. Genetic algorithms can be used
in SBST to find the optimal set of test cases: from a set of candidate solutions
(test cases), the test generation process applies mutation on individual candi-
dates, or cross over across two or more candidates, or combination of both to
find better solutions [39,40].

In order to produce the GreenScaler model, a model trained on hundreds
of AndroZoo apps (described later), a test generation tool is required that is
publicly available, and does not require app’s source code for test generation;
the AndroZoo database only contains the executables (i.e., apks) without any
source code. Choudhary et al. [44] and Mao et al. [39] performed detail surveys
on the most well-known Android test generation tools. Table 2 shows the
summary of the surveyed tools to identify the ones that are suitable for the
GreenScaler model building. Only 7 out of the 19 surveyed tools are potentially
suitable for the model building test generations. It is important to find the best
performing tool among these 7 that can be used for the energy model building
test generation. Given the time cost of test generation and the collection of
energy and resource usage measurements, it is infeasible to use all the available
tools for the energy model building process.

Choudhary et al. [44] concluded that evaluation of existing test generation
tools can be biased by the apps selected for evaluation. So they did a thor-
ough study on most of the well-known Android test generation tools that are
publicly available. The authors found that some tools are hard to use, and
might demand continuous communication with the actual authors which is

GreenScaler : Training Software Energy Models With Automatic Test Generation 9

often not feasible. Interestingly, after their rigorous evaluation, Choudhary et
al. [44] concluded that random test generation—Monkey and Dynodroid—
outperform all the existing Android test generation techniques by a large
margin, including all of the GreenScaler suitable tools mentioned in Table
2. AndroidRipper exhibits the worst code coverage and require major effort
to use. PUMA, although requires little effort to use, its code coverage and
framework compatibility are very poor compared to others. Instead of the
very similar performance, Monkey is much simpler and 5x time faster in test
generation than Dynodroid [37]. Unlike Dynodroid, monkey does not have any
framework compatibility issue [44], making Monkey as the most suitable tool
for generating tests for a wide variety of Android apps.

Monkey, however, is notorious for some of its limitations including app
irrelevant events [37,39] like volume control, screen capture etc. Moreover,
although Monkey allows setting distributions of different groups of events [42],
it does not allow the user to define the distribution of events (e.g., generating
60% tap events). Inspired by the success and drawbacks of Monkey, we propose
a very similar random test generation tool, GreenMonkey. GreenMonkey is no
different than Monkey, except control over the distribution of events is allowed
and app irrelevant events such as volume control are discarded. In section 6,
we show that this little modification indeed improves model’s performance.
As a result, we continue our test generations with GreenMonkey instead of
Monkey.

With automated test generation, we can generate a test to drive a given
app so that we can collect resource usage (independent variables) and energy
consumption (dependant variable) to build energy models. However, the gen-
erated test case might not be exercising any energy expensive resources, and
thus will not provide any useful information for the models. As a result, we
aim to generate more than one tests for each app and select the one that has
the highest potential of exploiting energy hungry resources. So we need test
selection heuristics. In the next section, we evaluate the effectiveness of code
coverage heuristic in selecting test cases for energy model building.

3 Code Coverage Heuristic

In traditional software testing, code coverage is one of the most used metrics
to evaluate the effectiveness of a test generation approach [30,43,57–59]. In
general, a test with higher coverage is expected to reveal more faults in a
system [43,59]. However, Inozemtseva and Holmes [60] found that coverage
is not strongly correlated with test suite effectiveness for finding faults. In
contrast to traditional testing, the objective of our test heuristic is to select
test cases that exploit different energy consuming hardware components. A
model built on test cases that do not observe energy expensive work, would
not be accurate. Such a model would fail to estimate the energy consumption of
a foreign app that accesses different energy consuming hardware components.

10 Shaiful Chowdhury et al.

Table 3: Description of selected apps’ master test suite coverage.

Feature Klaxon Password Hash Storyhoard

Source Lines of Code 1601 541 3749
Executable Lines of Code 799 247 1959

Master Suite Size 16 17 75
Class Coverage 24/33 (73%) 11/12 (92%) 56/81 (69%)

Method Coverage 85/150 (57%) 54/60 (90%) 306/497 (62%)
Line Coverage 383/799 (48%) 217/247 (88%) 1252/1959 (64%)

Block Coverage 1937/4378 (44%) 2225/2345 (95%) 5345/8504 (63%)

In this paper, we evaluate the potential of the code coverage heuristic to
select tests that can be used for producing energy models. Does covering more
code necessarily indicate exercising more energy expensive resources? To an-
swer this question, we investigate the correlation between coverage and power
usage. If test suites with high code coverage implies high power usage, then
code coverage would be a valid test generation heuristic. Otherwise, different
avenues of test generation heuristics would need to be explored. Our method-
ology is a near replication of Inozemtseva and Holmes [60], but we focus on
power usage instead of fault detection ability.

3.1 Methodology

In order to determine the suitability of code coverage as a heuristic for selecting
energy consuming tests, we require: 1) a set of Android apps with available
test cases; 2) a process to generate test suites of different sizes; 3) coverage and
energy consumption of the generated test suites; and 4) a statistical method
to calculate the correlation between coverage and power usage.

3.1.1 Selected Applications

The difficulty of finding open source Android apps with JUnit test suites lim-
ited the number of potential apps. To match the work of Inozemtseva and
Holmes, the apps need to have a coverage of nearly 50% or more for either
class, method, line, or block. This further narrowed down the available choices.
We finally selected three open source Android apps: Klaxon—a pager; Pass-
word Hash—generates passwords; and Storyhoard—a choose your own adven-
ture app. Table 3 shows the characteristics of the selected apps. The varied
numbers of lines in source code, number of methods, classes and blocks help
better to understand the relationship between code coverage and power usage.

GreenScaler : Training Software Energy Models With Automatic Test Generation 11

3.1.2 Generating Test Suites

A test suite is a collection of sampled test cases from the master suite. The
master suite contains all the test cases for an app written by the developers.
Following the similar approach of Inozemtseva and Holmes [60], we generated
test suites of different sizes by sampling the existing master suite (collection
of all JUnit test cases). For example, a test suite of size 3 means there are
3 test cases in the test suite. In the study of Inozemtseva and Holmes, the
selected sizes for generating random test suites were 3, 10, 30, 100, 300, 1000,
and 3000. In their subject Java projects, the largest and smallest number of
tests were 7,947 and 628 respectively. In our selected Android apps, however,
the largest master suite (from the Storyhoard app) has only 75 test cases. As
a result, we could not select sizes similar to Inozemtseva and Holmes.

In order to get reliable statistical results by generating large number of
test suites, we selected more sizes within short intervals. We started with test
suite size 2 and then repeated the procedure with test suites of sizes 4, 7, 10,
13, 16, 27, 40, 64, and 73. Once the sizes were decided, a Python program was
written to randomly choose test cases from an app’s master suite and create
different sized test suites from them. For each test suite size, 100 test suites
were generated with random sampling from the master suite. This allowed us
to have a diverse collection of test suites of various sizes and coverage levels.
Algorithm 1 illustrates the whole process of generating test suites.

Algorithm 1: Generating 100 test suites. Each test suite will have a
given number (based on the suite size) of randomly sampled test cases.

input : master suite, suite size
/* The master suite of an app and a given suite size.

*/
output: collection test suites
/* 100 test suites each with a fixed number (i.e.,

suite size) of randomly sampled test cases. */

1 collection test suites ← [];
2 for suite number ← 1 to 100 do
3 test suite ← [];
4 for test number ← 1 to suite size do
5 test case ← Random(master suite);

/* select a test case randomly from the master
suite. */

6 test suite.append(test case);
7 end
8 collection test suites.append(test suite);
9 end

10 return collection test suites;

12 Shaiful Chowdhury et al.

3.1.3 Capturing coverage and energy consumption of each test suite

In order to capture the coverage of each test suite, we used a third-party tool
emma [61] on the source code of each app. Emma provides four types of code
coverage: line coverage, method coverage, class coverage, and block coverage.
We captured all the coverage reports for our analysis.

Energy was measured using the GreenMiner by averaging 10 runs of each
test suite. However, during the energy measurement process, “coverage true
flag” was disabled to avoid any overhead incurred from coverage calculation.

3.1.4 Kendall’s τ as a measure of effectiveness

We calculated the Kendall’s τ correlation coefficients between coverage and
power usage for the generated test suites. Kendall’s τ does not assume any
distributions of the data—unlike Pearson’s correlation coefficient it does not
assume that the two variables (i.e., coverage and energy consumption in our
case) have linear relationship. Similar to Inozemtseva and Holmes, we calcu-
lated the coefficients with both uncontrolled and controlled suite size.

Uncontrolled suite size: Combine the measurements of coverage and
power usage from all the generated test suites and calculate the Kendall’s τ
correlation coefficient between coverage and power usage.

Controlled suite size: Combine the measurements of coverage and power
usage from the generated test suites with a particular suite size (e.g., all suites
with size 2), and calculate the Kendall’s τ correlation coefficient.

3.2 Analysis of Results

For uncontrolled suite size, Table 4 shows the Kendall’s τ correlation coeffi-
cients between code coverage and power usage (watts) for all the three apps.
Power usage against test suite size is also presented. Table 5 and 6 show
the correlations when the suite sizes are fixed to 2 and 13 respectively (i.e.,
controlled suite size). We did not include results for other suite sizes (e.g.,
correlations for suite size 4, 7, 10 and so on) as the observations are similar.

We observe good/strong correlation between energy and code coverage,
especially when we do not control for test suite size (Table 4). This is not
surprising; larger code coverage usually means larger execution time which
has direct impact on the total amount of energy consumption (i.e., E = P ·
T). For example, from our results the highest correlation is observed for the
Storyhoard app when suite size is not fixed (minimum 0.78 for class coverage
and maximum 0.83 for method coverage, Table 4). However, this is the same
setup when we observe the highest correlation between energy consumption
and test duration (correlation coefficient 0.95). The lowest correlation is found

GreenScaler : Training Software Energy Models With Automatic Test Generation 13

for the same app when suite size is fixed to 13 (Table 6). Interestingly, for the
same setup, the correlation between energy and test duration is the lowest.
This implies that good correlation between coverage and energy consumption
does not necessarily indicate that the test cases are exercising energy hungry
resources—test duration might be the major factor for the observed good
correlation. In order to use coverage as the heuristic for energy model building
test generations, we need to observe good correlation between coverage and
power usage, instead of coverage and energy consumption.

The correlations between coverage and power usage are weak for Password
Hash and Storyhoard when suite size is not controlled (Table 4). In case of
Klaxon, we observe moderate correlation. However, for controlled suite sizes,
the correlation for Klaxon drops significantly (Table 5 and 6). Results from our
subject Android apps indicate that covering more code does not necessarily
indicate more exercise of power expensive source code portion. This supports
the intuition that all code is not equally heavy in power usage. For example,
code that makes an HTTP request might consume more energy than a larger
segment of code without high CPU usage or network operations [62].

Table 4: Correlation between code coverage and power with uncontrolled suite
size. Suite size vs. power is also presented.

Correlation with Coverage Correlation
Applications Method Class Line Block Suite size Duration

Klaxon
Power 0.57 0.58 0.58 0.58 0.59 N/A
Energy 0.67 0.67 0.69 0.69 0.67 0.91

Password Hash
Power 0.06 0.08 0.02 0.01 −0.05 N/A
Energy 0.56 0.53 0.60 0.61 0.68 0.94

Storyhoard
Power 0.22 0.23 0.20 0.19 0.20 N/A
Energy 0.83 0.78 0.82 0.81 0.85 0.95

In order to build GreenScaler—modeling software energy against the indi-
rect measurement of resource usage—we need test cases that are more likely

Table 5: Correlation between code coverage and power with suite size fixed to
2.

Correlation with Coverage Correlation
Applications Method Class Line Block Duration

Klaxon
Power 0.13 0.40 0.31 0.34 N/A
Energy 0.12 0.41 0.31 0.35 0.79

Password Hash
Power 0.33 0.38 0.31 0.31 N/A
Energy 0.69 0.67 0.67 0.66 0.85

Storyhoard
Power 0.45 0.52 0.35 0.13 N/A
Energy 0.47 0.51 0.37 0.17 0.90

14 Shaiful Chowdhury et al.

Table 6: Correlation between code coverage and power with suite size fixed to
13.

Correlation with Coverage Correlation
Applications Method Class Line Block Duration

Klaxon
Power 0.26 0.27 0.26 0.27 N/A
Energy 0.52 0.51 0.52 0.53 0.81

Password Hash
Power 0.21 0.21 0.13 0.13 N/A
Energy 0.40 0.40 0.23 0.26 0.91

Storyhoard
Power 0.26 0.38 0.15 0.13 N/A
Energy 0.21 0.26 0.13 0.12 0.47

to exploit different resources and energy consuming portions of the code. This
short study led us to focus experimentation on resource-utilization heuristics
rather than investing time on code coverage based test generation. Build-
ing automatic test cases for hundreds of apps with a heuristic, running them
on GreenMiner for collecting energy consumption and resource usage counts,
and then applying/tuning/validating machine learning models demand several
months.

Findings: Code coverage relates more to test duration than to power
usage. With code coverage as the heuristic, test with longer execution
time might be selected for model building, in spite of its weakness in
exercising energy expensive portions of the source code. This implies that
coverage will not be a good heuristic if employed for selecting tests to
model software energy consumption. We need different heuristics that use
actual resource-utilization, and thus capture energy expensive portions of
source code.

4 GreenScaler Methodology

In this section, we describe the complete GreenScaler methodology of using
resource-utilization heuristics for generating tests to build continuously refined
software energy models.

The process of producing an energy model from a large corpus of energy
measurements is to: 1) collect Android apps (section 4.1); 2) generate tests for
the collected apps (section 4.2); 3) collect energy consumption measurements,
system calls measurements, and other process counters while running an app’s
test (section 4.3); 4) add measurements to the training corpus; 5) and finally
train our model. Figure 2 summarizes the process of developing GreenScaler.
We also need to evaluate the effectiveness of this process, so model selection
(section 4.4), feature engineering (section 4.5), and validation (section 4.6) are
also described.

GreenScaler : Training Software Energy Models With Automatic Test Generation 15

AndroZoo
APK Collection

Rejected Apks

Sampled APKs
APK-Test
pairs created

Green Miner
Energy+Feature

Training

App
Measurements

GreenTestGen

GreenScaler

GreenScaler

Fig. 2: The process of developing GreenScaler. The model learns continuously
with new apps using test selection by GreenTestGen.

4.1 Collecting Android Applications

We sampled apps randomly using the database provided by AndroZoo [63],
and collected about 500 apps. AndroZoo provides millions of apps for Android
research that were collected from 3 different app stores: Google Play, Anzhi,
and AppChina. Some of the apps did not install or run properly. After remov-
ing those, 472 apps were used to develop the proposed GreenScaler energy
model. AndroZoo does not provide app categories, but using the screencap

program, described in section 4.2, we manually investigated a sample from the
472 collected apps, and observed apps from different domains: media players,
games, utility, etc. Some sampled apps (radio, streaming, and online games)
heavily used the network. Table 7 shows the categories of 100 randomly se-
lected apps. The categories of these apps were defined based on two of the
authors consensus. The unknown category contains non-English apps that are
difficult to categorize. It is clear from Table 7 that our sampled apps are from
very different domains. This is important for building a robust energy model
that should work across different types of Android apps.

4.2 Automatic Test Generation with Resource-utilization Heuristics

The futility of code coverage heuristic encouraged generating test cases based
on resource-utilization heuristics. We evaluate two such heuristics for building
software energy models: CPU-utilization and E-heuristic (estimated energy
utilization).

CPU-utilization heuristic: Select the test case with the highest CPU time,
as CPU is a major source of energy consumption. We can argue that the
CPU-utilization heuristic may select test cases that are biased to CPU uti-

16 Shaiful Chowdhury et al.

Table 7: Categories of the 100 randomly selected AndroZoo apps.

Category Count Category Count

Game & Puzzles 23 Book 6
Utility 11 Entertainment 5

Unknown 11 Media 5
Business & Website 10 Finance 2

Education 9 Health 2
Communication 8 News 1

Tools 7 Total 100

lization only and may ignore the utilization of other resources like network,
file etc. Consequently, a model built on such test cases might fail to estimate
energy consumption of apps with high network or file operations. As a result,
we selected another heuristic, E-heuristic, that exploits other energy heavy
resources as well.

E-heuristic: Select the test case with the highest estimated energy con-
sumption based on an actual software energy model—GreenOracle [11]. In
this approach, a test case is selected that has the highest estimated energy
consumption based on all the different hardware components utilization. In a
nutshell, an existing energy model is used to generate tests towards producing
an even more accurate energy model.

For generating tests based on these two heuristics, we propose GreenTest-
Gen. For a given app, GreenTestGen creates a number of test cases with the
help of GreenMonkey. With GreenMonkey, each test case consists of different
randomly selected events. GreenTestGen runs all the test cases for the app,
and selects the one that maximizes a given heuristic function. It is important
to note that any test generator (e.g., Monkey, Dynodroid) can be used with
GreenTestGen just by replacing GreenMonkey. GreenMonkey and GreenTest-
Gen are fully depicted in Algorithm 2 and 3 respectively.

Algorithm 2: GreenMonkey

input : no of events
output: test script

1 EVENTS POOL={adb shell events};
2 test script ← SequenceOfEvents (no of events,

DISTRIBUTION OF EVENTS, EVENTS POOL);
3 return test script;

GreenScaler : Training Software Energy Models With Automatic Test Generation 17

Algorithm 3: GreenTestGen

input : An AndroZoo app, a testGenerator
/* calls GreenMonkey as the default test generator */
output: Test case for the app

1 if CrashCheck (App)==True then
2 Exit();
3 end
4 no of events ← Random(10, 40);
5 play time ← 0;
6 max heuristic value ← 0;
7 while play time≤30 mins do
8 test script ← testGenerator(no of events);
9 heuristic value ← Execute(App, test script);

10 if heuristic value>max heuristic value then
11 max heuristic value ← heuristic value;
12 best test ← test script;
13 end
14 update play time ;
15 end
16 ScreenCap(App, best test);

GreenMonkey: A pool of adb events—such as tap x y, swipe x1 y1 x2

y2, text string or number, ENTER, DEL, tapmenu etc.—was created where
the values of pointer locations, strings and numbers are selected randomly
(line 1 of Algorithm 2). The pointer locations were restricted to a specific
range to avoid clicking on the phones’ HOME and BACK buttons. Different events
have different impacts on generating useful test cases. We did manual obser-
vations on 30 randomly chosen apps. Not surprisingly, input tap was found
as the most contributing event toward generating useful test cases. Events like
swipe, input text, and keyevents were assigned similar priority, followed by
tapmenu. So instead of selecting events uniformly randomly, GreenMonkey is
biased so that a test script contains more tap events than any other events,
whereas the event tapmenu occurs the least (DISTRIBUTION OF EVENTS,
line 2). A test script is thus a set of different events—separated by a 2 second
sleep time—and the number of events in a test case might differ among the
apps.

GreenTestGen: When an app is selected, GreenTestGen first checks if the
app installs and runs properly (line 1, Algorithm 3). In case of a success, the
app is then run to find the best test case—the test that maximizes a selected
heuristic function. GreenTestGen selects the number of events randomly—
from 10 to 40 events so that a test is neither too short nor too long (line
4). A test script that is too short (few events) might not do anything useful,
whereas having too many long test scripts would prolong our data collection

18 Shaiful Chowdhury et al.

period. If all the test scripts are of similar duration (same number of events),
any machine learning model would ignore duration as an important feature,
which would be devastating for predicting an unknown app’s energy with a
very different test duration. Each app is then run for a fixed 30 minutes before
selecting the best test case (line 7).

GreenTestGen calls a test generator (GreenMonkey as the default, algo-
rithm 2) to create a test case with the selected number of events (line 8). After
running the test script and measuring the heuristic value (line 9), GreenTest-
Gen creates another test with the previously fixed number of events and run
it to evaluate if the heuristic value (e.g., CPU time) is increased, in which case
it updates the best test case as the most recent one. At the end, the best test
case is the one with the highest heuristic value (line 10− 12). Before running
the test on GreenMiner, we also added a 10 seconds idle time at the end of
the selected test case. This is to capture any associated tail energy leak [15,
19] that can occur at the end of running the test (tail energy is explained in
section 12.1).

After spending 30 minutes to generate the best performing test case, Green-
TestGen replays the best test case in order to capture the screenshots using
screencap program and save the images (line 16). This allows us to inves-
tigate each app’s behaviour and type if needed—construction of Table 7 for
instance.

4.3 Collecting Energy Consumption and Resource Usage

For collecting the energy consumption and resource utilization statistics for
all the apps, we used GreenMiner (described in section 2.3). All of our mea-
surements, for energy and resource usage, were separate from each other so
that the actual energy measurements are not affected by the programs captur-
ing resource usage. As mentioned earlier (section 2.3), we repeated each test
10 times and took the mean value of the measurements, for both energy and
resource usage.

We used the strace program for tracing all the different system calls in-
voked by an app. The -c option was enabled so that we only capture the
summary counts of each system call. We also enabled the -f option so that
system calls invoked by the child processes are captured as well. A script was
written that starts running just before the test case of the app under test
(AUT) starts its execution. The script then waits and checks for the availabil-
ity of the AUT in the current running process list. Once it finds the process
in the list, it immediately starts the strace program with the process id. The
strace program stops and writes the summary counts in a file, when the test
case of the app under test finishes.

To capture CPU usage, we used the GNU/Linux proc file system: /proc/stat
for capturing global information and /proc/pid/stat for capturing informa-

GreenScaler : Training Software Energy Models With Automatic Test Generation 19

tion local to a particular process [11]. These two files provide the CPU time
in jiffies both locally and globally, in addition to other pertinent information
such as number of context switches, and number of page faults. For capturing
global information, we took the difference of counts between after and before
running a test. The local information is collected after a test run is completed.

One more important feature that was ignored in some other software mod-
els (e.g., GreenOracle [11], and PETrA [64]) is an app’s interface colour. In
case of OLED screen, up to 40% reduction in screen-based energy consump-
tion is achievable by switching interface with white background to dark back-
ground [65]. With such dependency on colour, an energy model would be in-
accurate if it does not consider screen colour information. We used screencap

program to capture screenshots while running a test case for an specific app.
The script is very similar to the script we used for system calls, except it runs
the screencap program instead of the strace program. Motivated by Dong
et al. [66], we calculated the average red, green, and blue values (RGB) for all
the pixels across all screenshots. Each of these three averages is then multi-
plied by the test duration—as we model energy consumption instead of power.
For example, if we capture three screens, and the average red pixel values are
100, 150, and 200 in those three screens, the calculated red value is 150—i.e.,
(100 + 150 + 200)/3. And the red value used by a model is 150 multiplied by
the test duration.

4.4 Algorithms for Energy Models

We have to train a model based on resource usage (independent variables)
and energy consumption (dependent variable). We compared three machine
learning algorithms and chose the best performing and most interpretable one
for our GreenScaler : Ridge regression, Lasso, and Support Vector Regression
(SVR). Ridge regression and Lasso are the simplest of the available regres-
sion algorithms and are very similar except their methods of regularization.
The biggest advantage with these algorithms are that they are very easy to
interpret.

Ridge: Given a set of labelled instances {[Xi, Y i]}, ridge regression finds a
coefficient vector θ = (θ0, θ1, . . . , θn), which can find the best linear fit, Yp =

θTX, where the predicted values Yp minimizes the sum of the squared error.
This can be formalized as in equation 1 [67]:

θ = arg min
θ

[

m∑
i=1

(Y i −
n∑

j=0

θjX
i
j)

2 + λ

n∑
j=1

θ2j] (1)

In our case, m is the number of apps, n is the number of selected features from
the traces of system calls and CPU related information, Xis are the feature
vectors, Y is are the observed energy consumption, and Yp is the vector of

20 Shaiful Chowdhury et al.

predicted energy consumption. The parameter λ is used for regularization in
order to avoid overfitting the training data.

Lasso: One of the characteristics of ridge regression is that it does not elim-
inate unnecessary features—it retains features with tiny coefficients. Lasso,
on the other hand, drops features from a group of highly correlated features.
The only mathematical difference between ridge and lasso is the regularization
term in equation 1; lasso uses l1 (i.e.,

∑
|θj |) regularization instead of l2 (i.e.,∑

θ2j) [67].

Support Vector Regression: SVR, in contrast to Ridge and Lasso, is more
complex and in many cases can exhibit better performance than simple linear
regression [68]. Interpretation of such a model, however, is difficult and can be
complicated for the developers to find which features are contributing more
toward energy consumption. To mitigate this, we only used the linear kernel
instead of the more complicated sigmoid, radial basis function (RBF), and
polynomial kernels. SVMlight implementation was used for SVR that is based
on ε-SV regression [68] which finds a function f(x) that does not deviate more
than ε from the ground truth.

4.5 Feature Engineering

Some system calls are similar in functionality. For example, both fsync and
fdatasync do the similar file synchronization work—“synchronize a file’s in-
core state with storage device”[69]. If we treat these system calls the same,
then apps that use either can benefit from training. As a result, similar system
calls are grouped together similar to our previous work on GreenOracle [11].
All the grouped system calls are presented in Table 8. In general, if an app
invokes 10 fsync and 10 fdatasync, a new feature Fsync (group name) was
used with 20 counts in our model.

Compared to the number of apps, the number of features in our dataset
is quite large—22 from CPU and pertinent information, 4 for R, G, B, du-
ration, and 99 from grouped and individual system calls. This large number
of features leads to model overfitting. Among the three algorithms we used,
SVR is hard to interpret and does not help in feature selection. Lasso with
l1 regularization yields a more sparse coefficient vector (i.e., many features
with coefficient 0) than Ridge, thus more suitable for feature selection. How-
ever, with high correlation among features, Lasso selects many features with
negative coefficients, which made our previous GreenOracle model [11] less
interpretable and less accurate.

We addressed this issue with the recursive feature elimination method with
Lasso. After the first iteration, we manually removed the features with low
coefficients. We followed this procedure until we got a set of features with

GreenScaler : Training Software Energy Models With Automatic Test Generation 21

Table 8: Grouping similar system calls according to OS semantics.

Groups System calls Semantics

Lseek lseek, llseek “Reposition read/write file offset”
Write write, pwrite “Write to a file descriptor”
Writev writev, pwritev “Write data into multiple buffer”
Read read, pread “Read from a file descriptor”
Readv readv, preadv “Read data from multiple buffer”
Open open, openat “Open a file”
Statfs fstatfs64, statfs64, statfs, fstatfs “Get filesystem statistics”
Stat lstat64, stat, fstat, lstat, fstat64, stat64 “Get file status”

Fsync fsync, fdatasync “Synchronize a file’s in-core state with storage device”
Pipe pipe, pipe2 “Create pipe”
Clone clone, clone2 “Create a child process”
Utime utime, utimes “Change file last access and modification times”
Dup dup, dup2, dup3 “Duplicate a file descriptor”

reasonably high coefficients. This procedure subsequently deleted highly cor-
related features. Only 80% of the measurements from AndroZoo (i.e., 377
randomly selected apps out of 472) were used for feature selection. Table 9
describes the final set of selected features. We got this same set of features for
the both resource-utilization heuristics based test sets (CPU-utilization and
E-heuristic). This small number of features makes a model easy to interpret.

Learning algorithms perform slowly and suffer from low accuracy with
high variance in feature values [70]. In our case, we indeed observed such high
variance. This was solved by using 0-1 normalization, as in equation 2, where
x is the actual and x̂ is the normalized feature vector.

x̂ =
x−min(x)

max(x)−min(x)
(2)

4.6 Testing and Cross Validation

We applied 10-fold cross validation for all the three algorithms to tune the
regularization parameters, known as model validation phase before testing
with the test data. 10-fold cross validation is helpful when the data size is small.
Because it does not require dividing the data into three parts: training data,
validation data, and testing data. With 10-fold cross validation, we divided the
training data into 10 segments (each containing the same number of apps). At
phase i, segment i is used as the test data, whereas the other 9 segments are
combined to make the training data. This way, 10 models are evaluated with
10 different test data partitions. We observe the model’s performance to see if
we need to adjust the regularization parameters (i.e., the penalty sizes). The
process stops when no more improvement is possible and when the performance

22 Shaiful Chowdhury et al.

Table 9: Selected features (CPU and others, duration, colour, and system calls)
from feature selection process to model energy consumption for Android apps.
This table suggests that the major sources of Android energy consumption are
CPU, context switches, test duration, screen color, file operations, and network
operations. The weight represents the energy consumption for each unit (e.g.,
one CPU jiffy) of the features. The weights of each feature are discussed in
Section 7.3.

Features Description Weights

User Number of CPU jiffies for normal processes executing in user mode 1.034e-2
Nice Number of CPU jiffies for niced processes executing in user mode 8.660e-3

CTXT Total number of context switches 7.604e-5
Major Faults Number of major page faults for a process 1.117e-2

Duration Length of the test case in seconds 6.300e-1
Red Average level of red from screens · duration 5.000e-4

Green Average level of green from screens · duration 4.000e-4
Blue Average level of blue from screens · duration 5.200e-4

Fsync System calls (fsync & fdatasync) to synchronize a file’s state to disk 1.310e-3
bind System call to bind a name to a socket 6.033e-2

recvfrom System call to receive a message from a socket 5.260e-5
sendto System call to send a message to a socket 1.761e-2
Dup System calls (dup, dup2, dup3) to duplicate a file descriptor 5.406e-2
Poll System calls (poll and ppoll) to wait for some event on a file descriptor 2.920e-3

of the 10 different models are similar. The coefficients of the regularization
(e.g., λ for ridge and lasso) for all the three algorithms were finalized during
this cross validation phase. It is important to note that, we only used 80%
of the apps for the cross validation. Also, for evaluating a model’s accuracy
(starting from section 5), an app under test was always excluded from the
training set.

5 Evaluating Resource Utilization Heuristics

This section evaluates and compares the two resource-utilization based test
generation heuristics: CPU-utilization heuristic (CPU time) and E-heuristic
(energy estimation).

Using the 472 collected AndroZoo apps, we built two energy models.

– Model CPU−H : trained with all the selected features from Table 9, but ex-
clusively using measurements from tests generated by the CPU-utilization
heuristic.

– Model E−H : trained with the same feature set, but exclusively using mea-
surements from tests generated by the E-heuristic.

GreenScaler : Training Software Energy Models With Automatic Test Generation 23

Table 10: 99% mean confidence interval (percent of error in joules) of tests
versus models. Results suggest that for mean confidence interval both the
models have similar accuracy. The difference is negligible/small according to
Cliff’s delta.

Model CPU−H Model E−H

Test Heuristic confidence interval confidence interval Wilcoxon p Cliff’s delta

CPU-Heuristic 3.60 - 4.50 4.62 - 5.72 2.20e-16 negligible
E-Heuristic 5.36 - 6.26 3.02 - 4.03 2.21e-16 small

Combined Tests 4.63 - 5.24 3.90 - 4.68 2.20e-16 negligible

Both the models were trained with Lasso because of its superior performance
over the others (discussed later). Regularization parameters were used from
the cross validation phase (section 4.6). Comparing the accuracy of these two
models would tell us which test generation heuristic produces better tests for
developing software energy models.

We evaluate the models’ accuracy (percent of error in joules) following the
leave-one-out approach [71]. This ensures that an app under test was never
seen in training. Each model was evaluated on two different sets: measurements
from the CPU-utilization heuristic based tests and from the E-heuristic tests.
This produces two error distributions for each model.

We applied the Anderson-darling normality test [72] and found that none
of the error distributions are normally distributed. This led us to select a non-
parametric test to decide if the error distributions from Model CPU−H and
Model E−H are statistically different. We used Kruskal-Wallis test [73], which
does not assume data is normally distributed, and found that these two models
(from two different heuristics) produce statistically different error distributions
(α = 0.05 and p = 0.01). In order to find which model offers better accuracy, we
used the pairwise Wilcoxon-rank-sum test [74] to calculate the 99% confidence
interval of mean percent error in joules. We also calculated Cliff’s delta [75] to
measure the effect size between the two error distributions (presented in Table
10).

When applied to CPU-utilization heuristic based tests, Model CPU−H ’s
mean confidence interval is lower than Model E−H with negligible effect (Cliff’s
delta). Model E−H , however, similarly outperforms Model CPU−H , with slightly
better accuracy, when evaluated for the E-heuristic based tests. In other words,
each model slightly outperforms the other when evaluated on measurements
arising from its own test heuristic. We select Model CPU−H as GreenScaler for
the following reasons:

1) For mean confidence interval both the models perform similarly. How-
ever, for upper error bound Model CPU−H is better. Model CPU−H and Model

E−H estimate 94% and 90% apps within 10% error respectively. Also the mean
error of the worst 5% estimations with Model CPU−H is 13%, in contrast to

24 Shaiful Chowdhury et al.

16% for Model E−H .
2) Model CPU−H is built on test cases generated with a simple CPU-

utilization heuristic. This is much simpler and easier than a complex energy
model heuristic. CPU-utilization heuristic requires only capturing CPU time
for a test from the Linux file system. On the other hand, the model based
heuristic also requires tracing all the invoked system calls by an app by run-
ning a separate strace program.

3) We were concerned that CPU-utilization tests would ignore other re-
sources. Thus we compare calls to resources (i.e., system calls) with the Kruskal-
Wallis test on the number of recvfrom (network receive), sendto (network
send), and fsync (file operations) between CPU-utilization and E-heuristic
based generated tests. We found that the distributions of these system call
counts between the two test sets are not statistically different (p >> α where
α = 0.05). This suggests that CPU-utilization heuristic based tests exploit
other resources similar to the E-heuristic tests. We further examined a sample
of the CPU-utilization heuristic based tests and found that accessing other re-
sources can impact CPU utilization. For example, for an on-line video player,
CPU utilization is highest when a test starts playing a video across the net-
work. Thus CPU-utilization based tests do use other hardware components.

Findings: Tests based on CPU-utilization heuristic exploit other resources
similar to those exercised by the complex E-heuristic based tests. Conse-
quently, energy models built on test cases from both heuristics perform
similarly. For simplicity, we recommend CPU-utilization heuristic for gen-
erating tests to build software energy models.

6 Monkey vs. GreenMonkey

In section 2.5, we mentioned the drawbacks of Monkey and proposed Green-
Monkey to mitigate Monkey’s problems. Before generating tests and collecting
measurements for 472 AndroZoo apps, we conducted a short study to verify if
these little changes can indeed improve the performance of energy model build-
ing test generation. We selected 100 random apps for training, and 50 different
apps for testing models’ accuracy. These are two subsets of the 472 AndroZoo
apps. With CPU-utilization test generation heuristic, we used GreenTestGen
with Monkey and GreenMonkey to generate tests for these 150 apps. Two
energy models were built: one with Monkey generated tests and another with
GreenMonkey. Both the models were tested on the 50 selected apps. Figure
3 clearly shows that the energy model built on GreenMonkey generated tests
outperforms the energy model built on Monkey generated tests. In case of
GreenMonkey based model, 90% of the apps’ energy was estimated within only
5% error. On the other hand, only 64% of the apps were estimated within 5%
error by the model based on Monkey. Table 11 also confirms that this difference
is statistically significant.

GreenScaler : Training Software Energy Models With Automatic Test Generation 25

0 2 4 6 8 10 12 14 16 18
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

GreenMonkey
Monkey

Fig. 3: Comparing performance between Monkey and GreenMonkey for build-
ing energy models. GreenMonkey outperforms Monkey in generating tests that
are more suitable for building energy models.

Table 11: 99% mean confidence interval (percent of error in joules) of models
based on Monkey and GreenMonkey generated tests. Model based on Green-
Monkey tests is significantly more accurate than the model based on Monkey
generated tests.

Models confidence interval Wilcoxon p

Monkey tests 3.60 - 7.00 7.80e-10
GreenMonkey tests 2.80 - 4.60 7.80e-10

These early findings led us to generate test for all the 472 apps with Green-
Monkey instead of the Android Monkey.

7 Evaluating GreenScaler

In this section, we evaluate the performance of GreenScaler from different
aspects: accuracy of GreenScaler on randomly generated tests and manually
written tests, GreenScaler ’s ability to explain different sources of energy con-
sumption, and GreenScaler ’s ability to detect energy regressions. We also ob-
serve GreenScaler ’s sensitivity to the size of changes in SLOC between versions
of different apps. This is to check if GreenScaler detects energy regression only
for large commit sizes. Next, we evaluate GreenScaler from developers’ per-
spectives.

26 Shaiful Chowdhury et al.

7.1 Evaluation on Randomly Generated Tests

We compare the performance of GreenScaler (based on CPU-utilization heuris-
tic tests) with the previous GreenOracle model [11]. We applied all the three
machine learning algorithms from section 4.4.

0 10 20 30 40 50 60 70
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Androzoo applications

GreenOracle
SVR
Lasso
Ridge

Fig. 4: GreenScaler (Lasso) outperforms GreenOracle with very large margin
on the 472 AndroZoo apps with randomly generated tests.

GreenScaler has significantly less estimation error than GreenOracle. Fig-
ure 4 shows the Cumulative Distribution Function (CDF) of estimation per-
centage error in joules of our three selected algorithms compared with the
previous GreenOracle for all the collected AndroZoo apps. The significantly
worse performance of GreenOracle is not surprising, as it was trained only on
24 apps, which led to the selection of inappropriate features with inaccurate
coefficients. With the new set of 472 apps and accurate feature set, all the
three models outperform GreenOracle by a large margin. Lasso and Ridge
perform very similarly and show better accuracy than SVR. In case of Lasso,
for example, almost 94% of the apps’ energy estimations had an upper bound
of 10% error. For outliers, the upper bound was only ≈15% error compared
to the 70% worst case error with GreenOracle. The indistinguishably similar
performance of Lasso and Ridge is because of the very small (close to zero)
regularization coefficient obtained from the cross validation phase. With no
regularization, there is no difference between Lasso and Ridge. With the very
small number of features, none of the models overfit the training set, which
led to a negligible regularization coefficient. However, during the feature se-
lection phase, Lasso was very different than Ridge and helped us to find a

GreenScaler : Training Software Energy Models With Automatic Test Generation 27

good performing feature set. Therefore, we select Lasso for our GreenScaler.
In other words, the final GreenScaler model is built on CPU-heuristic based
test generations with Lasso.

7.2 Evaluation on Manually Written Tests

The randomly generated tests with utilization heuristics, although good for
energy model building, might not observe any meaningful sequence of actions.
The GreenScaler model is built on such test cases. So far, we do not know how
a model built on random test cases performs on meaningful human written
test cases. As a result, it is important to evaluate GreenScaler ’s performance
on human written test cases. Our previous energy model GreenOracle [11] is
trained on 24 Android apps, with 984 versions in total, where the test cases
were written manually. These test cases represent how an average user might
interact with these 24 apps, and were written based on the consensus of several
computing science grad students from the Software Engineering Research Lab,
University of Alberta, Canada. Table 12 shows the test scenarios for all the
GreenOracle apps. Complete and subsets of GreenOracle dataset were used in
several published papers on software energy consumption [11,15,16,20,25,76].

0 10 20 30 40 50 60 70
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GreenOracle applications

GreenOracle
SVR
Lasso
Ridge

Fig. 5: GreenScaler (Lasso) outperforms GreenOracle even on GreenOracle
dataset. Mean error was considered for apps with multiple versions.

Encouragingly, GreenOracle, even for its own dataset, is outperformed by
GreenScaler (Figure 5). The upper error bound for the new model is 10% (i.e.,
with Lasso), in contrast to the 13% error with GreenOracle. This suggests that

28 Shaiful Chowdhury et al.

Table 12: Description of the GreenOracle applications [11]. The table shows
the 24 apps in the dataset with their types, numbers of versions, and the
execution scenarios of the manually written test cases.

Applications Type No. of versions Test Scenario

Firefox Browser 156 Loads a Wikipedia page and scrolls over the page.
Calculator Android Calculator 97 Does simple and complex calculations.

Bomber Bombing game 79 Starts the game and drops bombs at fixed intervals.
Blockinger Tetris game 74 Moves, rotates blocks randomly
Wikimedia Wikipedia mobile 58 Searches and loads the Bangladesh page, and scrolls.

Sensor Readout Read sensor data 37 Reads and draws graphs for different sensors’ data.
Memopad Free-hand Drawing 52 Opens a canvas, draws an object.
Temaki To do list 66 Creates, updates, searches, and deletes a to-do list.

2048 Puzzle game 44 Tries different moves to solve the problem.
ChromeShell Browser 50 Opens a web page and scrolls.

Vector Pinball Pinball game 54 Throws several balls, and plays with them.
Budget Manage income & expense 59 Calculates by depositing and withdrawing money.

Acrylic Paint Finger painting 40 Draws objects.
VLC Video/Audio player 46 Loads and plays a video for 2 mins.

Eye in Sky Weather app 1 Searches for Edmonton, and looks for temperature.
AndQuote Reading quotes 21 Reads some famous quotes.
Face Slim Connect to Facebook 1 Connects with facebook, and browse the help page.
24game Arithmetic game 1 plays some random tries.

GnuCash Money Management 16 Opens an account and saves transactions.
Exodus Browse 8chan 3 Reads some selected threads.
Agram Word anagrams 3 Generates single and multiple anagrams.

Paint Electric Sheep Drawing app 1 Draws objects.
Yelp Travel & Local app 12 Finds a restaurant and reads users’ reviews.

DalvikExplorer System information 13 Reads system’s information.

GreenScaler, although built on measurements from randomly generated test
cases, can accurately estimate energy consumption of manually written tests.

7.3 Qualitative Evaluation of GreenScaler Model

With the leave-one-out approach, described in Section 5, we have developed
472 different linear models with the CPU-utilization test generation heuris-
tic. These models, however, are almost identical, as excluding one app from
training does not affect a model. We chose one of these models randomly to
represent the GreenScaler. Table 9 shows the final GreenScaler energy model
(i.e., weights of the selected denormalized features). The accuracy of the model
stems from what the table shows. The model suggests that the main sources of
energy consumption in Android systems are CPU usage, test duration, screen
colour for OLED screen, file operations (fsync, dup, and poll), and data com-
munication (sendto, recvfrom, and bind). The very high coefficients for CPU
usage and test duration are similar to the findings of Miranskyy et al. [77], who
found that often energy consumption was too highly correlated with CPU and

GreenScaler : Training Software Energy Models With Automatic Test Generation 29

run-time on database systems. According to the model, transmitting (sendto)
is more expensive than receiving (recvfrom), which is complemented by previ-
ous research [78]. Moreover, in terms of pixel colour intensity, blue is the most
expensive and green is the least expensive, which is also observed by Dong et
al. [66].

Findings: GreenScaler considers many of the known major sources of
energy consumption on an smart-phone. This includes CPU time, context
switches, page faults, test duration, and interfaces’ colors. GreenScaler
relies on system calls to estimate energy consumption by other components
like disk, networks.

7.4 Evaluation on Detecting Energy Regressions

GreenScaler is a model, and similar to any previous energy estimation ap-
proaches [18,19,64], GreenScaler is not 100% accurate. Considering the esti-
mation error, we ask: will GreenScaler be useful to app developers? We argue
that usefulness is how GreenScaler model performs where a developer would
actually use it: during the implementation and maintenance of their own app,
comparing version against version. In this section, we evaluate GreenScaler ’s
ability to detect energy regression between versions at different levels—two
versions separated by a single commit or two versions from two subsequent
releases. If GreenScaler is successful in detecting energy regression, developers
can know if their changes have negative effect on the app’s energy consump-
tion.

The main strength of GreenScaler is that it maintains similar shape be-
tween estimations and ground truths for all the versions of any particular app.
We selected four apps from GreenOracle dataset that have lots of versions.
With multiple versions, we have a separate error distribution function for each
app. Figure 6 shows that although GreenScaler accuracy varies among the
apps, the error distribution is very similar among all the versions for the same
app.

This observation is significant: it indicates that GreenScaler should accu-
rately estimate the energy consumption difference between two versions of an
app. To further demonstrate the adeptness of GreenScaler for such cases, we
select six apps from GreenOracle dataset. Unlike other apps, these six apps
contain versions with very different energy profiles. Moreover, two of these
six apps (Yelp and Agram) contain versions that are actual releases, whereas
versions from other four apps are separated by a single commit.

Figure 7 shows that for all the six apps, GreenScaler successfully separates
out the energy inefficient versions. For Yelp, a travel & local information app,
only one version has a very different energy profile. GreenScaler distinguished
that version accordingly. Memopad, a drawing app, exhibits three interesting

30 Shaiful Chowdhury et al.

0 10 20 30 40 50 60 70
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Firefox
Sensor
Bomber
Calculator

Fig. 6: GreenScaler maintains similar error distribution among different ver-
sions of an app.

energy profiles throughout its life time—it became more and more energy
efficient over time in contrast to Agram and Pinball. Our proposed model
accurately distinguished those three phases.

We also investigate if GreenScaler can help developers to understand the
type of modification that impacted the energy consumption. GreenScaler does
not locate source code responsible for energy regression. However, the sim-
plistic philosophy of GreenScaler—simple counts of different features—helps
understanding the type of energy expensive modification. We provide two such
examples. For Agram, an app to generate anagrams, the GreenOracle dataset
contains only three versions. Figure 7(b) shows that version 2 and 3 consume
more energy than version 1. GreenScaler suggests that the number of con-
text switches has increased significantly from version 1 and stays similar to 2
and 3. Our first impression was that code for thread interaction could have
been modified. We used git diff and found that Java methods for gener-
ating anagrams were indeed synchronized. It is well-known that unoptimized
synchronized methods fight excessively for shared locks, which leads to more
context switches and CPU usage [6,79]. Similarly, we investigated the contin-
uous improvements of Memopad in terms of energy consumption. The only
significant difference in our model among all the versions of Memopad was
their RGB counts, clearly suggesting the background colour was changed over
time. Indeed we found three distinct background colours. White background
(the most expensive for OLED screen) was used for versions up to 33, which
was modified to more efficient yellow, followed by even more efficient red. This
articulates how significant a simple choice of background colour can be for
devices with OLED screens, as also observed by previous research [65].

GreenScaler : Training Software Energy Models With Automatic Test Generation 31

1 2 3 4 5 6 7 8 9 10 11 12
Versions

40

80

120

160

200

240

280

320

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(a) Yelp

1 2 3
Versions

40

50

60

70

80

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(b) Agram

1 11 21 31 41 51
Versions

40

60

80

100

120

140

160

180

200

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(c) Wikimedia

1 11 21 31 41 51
Versions

40

50

60

70

80

90

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(d) Memopad

1 11 21 31 41 51
Versions

40

60

80

100

120

140

160

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(e) Pinball

1 11 21 31 41
Versions

40

45

50

55

60

65

70

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(f) Game 2048

Fig. 7: GreenScaler ’s efficiency in differentiating between versions with differ-
ent energy consumption. Versions are sorted based on their committed times.
Whenever there is significant energy difference between two versions of the
same app, GreenScaler detects the difference. Developers can use GreenScaler
to check for energy regression before releasing a new version.

32 Shaiful Chowdhury et al.

Findings: GreenScaler accurately identifies energy inefficient versions for
a given app—for versions separated by a single commit and multiple com-
mits (i.e., subsequent releases). Developers can use our tool [14] to evaluate
if a new version of an app is more energy expensive than the previous one.
In case of energy regression, they can consult GreenScaler to understand
the type of modification that might have impacted the energy negatively.
For example, if a new version calls fsync more than before, a developer
can focus on file I/O related code.

7.5 Accuracy vs. Commit Size

For our subject apps, GreenScaler was successful in detecting energy regres-
sion. However, this does not tell us if GreenScaler is sensitive enough to detect
regression even when the code change is minimal—e.g., when two versions dif-
fer by a single line of source code. Does GreenScaler’s accuracy in detecting
regression depend on the commit size? To answer this question, we used five
apps (with all the versions) from section 7.4, as these apps show energy re-
gression with source code modifications. We could not use Yelp as we do not
have access to its source code.

We calculated the commit sizes (the sum of the number of additions and
number of deletions in SLOC) between all the successive versions. We then
calculated the differences between mean energy consumption of the successive
versions (difference between mean of 10 energy measurements of version xi and
mean of 10 energy measurements of version xi+1, difference between mean of
10 energy measurements of version xi+1 and mean of 10 energy measurements
of version xi+2, and so on). Similarly, the differences between mean energy
estimations (with GreenOracle) of all the successive versions were calculated.
This way we calculated the absolute estimation error of GreenScaler for a
commit size in case of energy regression detection. For example, for a commit
size of 10, if the difference in mean energy consumption between two versions
of an app is 2 joules and the difference in mean estimated energy consumption
is 5 joules, this is a 3 joules of estimation error for a commit size 10. We
combined the data from all the five apps and show the result in Figure 8.

Figure 8 suggests that there is no notable relationship between the commit
size and GreenScaler ’s accuracy in detecting energy regression. We also calcu-
lated the Kendall’s τ correlation coefficient between commit size and absolute
error in joules. The coefficient is only 0.08. This implies that GreenScaler accu-
racy does not rely on the commit size. Thus, the model is expected to identify
energy regression regardless of the number of changes (small or large) made
in the source code. We provide more empirical evidence as follows.

GreenScaler : Training Software Energy Models With Automatic Test Generation 33

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

10.0

10 1000
Commit size

A
bs

ol
ut

e
er

ro
r

(jo
ul

es
)

1

2

3

4
count

Fig. 8: GreenScaler ’s sensitivity to commit size in detecting energy regression.
Apparently, there is no (or very weak) relation between accuracy and commit
size.

7.5.1 GreenScaler’s Accuracy in Detecting Energy Regressive API Changes

Can GreenScaler detect energy regression for a single API change? We con-
sider two case studies with experiments for the evaluation: 1) changing a Java
collection data structure, and 2) changing the HTTP library for HTTP re-
quests.

Hasan et al. [9] showed that selecting the most energy efficient Java col-
lection can have enormous effect in reducing software energy consumption. In
order to evaluate GreenScaler ’s sensitivity on a single line of code change, we
selected four different Java collections: TreeList from Apache Commons Col-
lections (ACC); TreeMap, LinkedHashMap, and LinkedList from Java Collec-
tions Framework (JCF). These four collections have different energy profiles [9]
and are suitable for our study. We developed an Android app that has only
one activity. This activity does only one thing: insert 50,000 elements into a
Java collection. This way, we created four different versions of the app with
the four collection APIs. For example, in one version the app inserts 50,000
elements into a TreeMap, and in the next version the TreeMap is replaced by
the LinkedHashMap—a single line of source code modification.

We measured the actual energy consumption of these four different ver-
sions (10 times each) with the GreenMiner, and ranked them according to
their mean energy consumption. We then compared this ranking with the
ranking obtained from our GreenScaler model by taking the mean of 10 en-
ergy estimations for each collection. Figure 9 shows the energy consumption
ranking (ranking from actual measurements as well from model’s estimation)
of the four selected Java collections. In case of energy consumption estimation,
GreenScaler has the smallest percentage of error (2.63%) for TreeList(ACC)

34 Shaiful Chowdhury et al.

and the largest percentage of error (10.75%) for LinkedHashMap. In spite of
these estimation errors, GreenScaler is very accurate while detecting energy
consumption differences between two successive versions ordered by their rank-
ing, even when the difference is very small. For example, the actual difference
between the versions with LinkedList and LinkedHashMap is only 0.5 joules,
whereas the difference is 0.56 joules with GreenScaler. As we mentioned earlier,
this is one of the main strengths of GreenScaler—it can identify energy ineffi-
cient versions. It is also important to note that although there exists variation
in different energy measurements with GreenMiner (box-plot), the variation
is very small. This is also true for the estimations from GreenScaler.

GreenMiner GreenScaler
4

5

6

7

8

9

E
n
e
rg

y
 (

jo
u
le

s)

LinkedList(JCF)

LinkedHashMap (JCF)

TreeMap (JCF)

TreeList (ACC)

LinkedList(JCF)

LinkedHashMap (JCF)

TreeMap (JCF)

TreeList (ACC)

Fig. 9: Comparing Java collections’ energy consumption. Actual energy mea-
surement from GreenMiner suggests that TreeList (ACC) is the most energy
expensive and LinkedList (JCF) is the least energy expensive for inserting
50,000 integer elements. Greenscaler suggests the same and comes up with the
exact same ranking.

Collections are typically CPU and memory bound, thus we provide an-
other case study that employs the network. We compare the performance of
GreenScaler in identifying energy consumption difference between two Java
HTTP libraries. In this case, our single activity app downloads the homepage
of CNN.com 20 times at one second interval. One version of the app uses the
Jsoup library for the HTTP requests, which is replaced by the URLConnect

library to produce the second version of the app. Figure 10 shows the compari-
son with 10 energy measurements and 10 energy estimations for each versions.
GreenScaler estimated the energy consumption within around 12% error (by
calculating the mean of energy measurements and estimations) in both cases.
However, the estimated difference (around 4 joules between the means) is very

GreenScaler : Training Software Energy Models With Automatic Test Generation 35

similar to the ground truths. This difference can be significant for an app that
continuously communicates over a network.

GreenMiner GreenScaler

40

42

44

46

48

50

E
n
e
rg

y
 (

jo
u
le

s)

URLConnect

Jsoup

URLConnect

Jsoup

Fig. 10: Comparing Java download libraries: Jsoup and URLConnect. For the
executed test, GreenScaler suggests that version with Jsoup consumes around
4 joules more than the version with URLConnect. This is very similar to the
actual measurements from GreenMiner.

GreenScaler ’s ability to detect energy regressive API changes is significant
for energy-aware app developers. Previous studies [80,81] have found that
energy-aware app developers should take extra care while selecting and uti-
lizing APIs that are energy hungry—e.g., APIs for making HTTP requests. It
is evident that GreenScaler can help developers for selecting energy efficient
APIs. However, to perform accurate comparison between two APIs, developers
should write concise test cases that exercise other irrelevant components the
least. A very recent work by Song et al. [82] discusses about writing such test
cases.

7.6 Evaluating GreenScaler Tool from Developers’ Perspectives

One of the end products of this research is the GreenScaler tool [14], a model-
based tool support that Android developers should be able to use to estimate
their apps’ energy consumption. We apply a qualitative evaluation of Green-
Scaler as follows.

1) Accurate and reliable: Previous research [44] shows that Android tools’
evaluation are biased by the apps used for evaluation. As a result, very different

36 Shaiful Chowdhury et al.

performance might be observed when those tools are evaluated on a different
set of apps. GreenScaler is trained and tested on 472 real-world Android apps.
In addition, 24 Android apps with 984 versions were tested with GreenScaler.
To the best of our knowledge, no previous energy model was tested on such a
wide variety of apps.

2) Easy to use: GreenScaler works without any need of expensive hardware
instrumentation. Developers do not even need to instrument their apps to
run with GreenScaler. The only required tools to run GreenScaler, Android
Debug Bridge (adb) and aapt, come with the Android development framework.
GreenScaler does not suffer from Android framework compatibility issues. As
GreenScaler works without the need of source code of an app, it works on
both native and non-native Android apps. Previous studies observed that these
issues make many of the Android tools unusable [44,83].

3) Regression detection: GreenScaler is accurate on detecting energy re-
gression; a developer can immediately verify if an updated app’s version is
more energy expensive than the previous one. In case of energy regression,
developers can make a trade-off between energy efficiency and other function-
alities. Energy-aware developers are willing to sacrifice some other features
if that helps in reducing energy consumption [13]. In addition to evaluating
source code changes, developers can employ GreenScaler model with manually
created benchmarks to compare energy consumption of different third-party
libraries to select the most efficient one.

8 The Importance of More Apps in Training

Will more apps help? Figure 11 shows the reduction in error as more apps are
used in training. From 472, 50 apps were sampled randomly as test instances.
Using the rest of the apps, accuracy of GreenScaler is tested using different
training sets with different number of training apps (50, 100, 150 and so on).
The accuracy can vary for the same training size based on the selected apps—
some apps capture more system calls than others. This is why for each training
size x, we repeated each test 100 times with 100 different combinations of x
number of apps. Figure 11 shows the combined error distribution for each
training size.

Apps with high estimation errors (outliers) exist for all the training sizes.
This high error, however, dwindles continuously as we add more apps in our
training. In fact, with 400 apps in training the upper error-bound becomes
very close to 10%. The dotted line shows the average of the 5 worst estima-
tions with each training size. Although the decay of error rate becomes slow
after adding 300 apps in training set, the least number of outliers with 400
apps suggest the possible improvement of GreenScaler with adding even more
number of apps. Evidently, adding more apps in training improves the upper-
error bound of GreenScaler. With a large number of apps, we can evaluate
the performance of more complex approaches like deep learning. This is why

GreenScaler : Training Software Energy Models With Automatic Test Generation 37

automatic test generation is so useful. GreenTestGen enables a process that
allows GreenScaler to improve continuously.

50 100 150 200 250 300 350 400
Number of apps

100

101

102

103

Pe
rc

en
t o

f E
rr

or

Mean error of the worst 5 estimations

Fig. 11: Model’s accuracy against the number of apps used in training. The
accuracy improves with more apps in training. This suggests that we can
continuously improve the model by adding more apps with the random test
generation process.

9 Research Directions for the Software Energy Research
Community

We provided empirical evidence on the success of automatic test generation for
building software energy models. This observation encourages more research
avenues to explore. We provide two such examples.

9.0.1 Domain Specific Energy Models and Deep Learning

In this paper, we focused on building a generic single energy model that can be
used to estimate energy of Android apps from any category. With random test
generation process aided by test heuristics, we can collect measurements for
more apps and build domain specific models. Although the AndroZoo database
does not contain app categories, we can collect apps from repositories (e.g., F-
droid or Google App Store) where categories are available. Instead of building
a single model, a cluster of models (separate models for games, communication,
utility and other categories) can be built.

38 Shaiful Chowdhury et al.

Do domain specific models offer better accuracy than a one-for-all model
like GreenScaler? We do not know the answer, and that is why it could be
an interesting future work. Similarly, how about models that are built on
resource usage similarity rather than similarity in app category? With more
and more apps in training, should we employ deep learning for building energy
models? Deep learning usually requires large training data. While techniques
like early stopping and dropout layers [84] can help alleviate the problem, the
GreenScalar methodology provides a method of continually generating and
adding more measurements of more apps to achieve an appropriate amount
of measurements for deep learning. This leads to a question about how many
apps we need to measure for building a deep learning based model?

9.0.2 Building API Recommendation Systems for Energy-aware Developers

Previous research [85,86] focused on building API recommender systems for
developers. Developers can select an API based on their requirements when
multiple options are available. Different metrics can be used while ranking
different APIs: documentation, performance, usability, number of users, and
number of reported bugs. These recommender systems do not consider energy
efficiency of APIs, which might be crucial for the energy-aware developers.
Researcher can use GreenScaler to build an API recommender system that
includes energy efficiency as one of the performance metrics. Results from
section 7.5.1 clearly show that GreenScaler is adept for such studies.

10 Dataset

For future researchers, we share our dataset publicly [14]. This dataset contains
all the selected tests for the 472 AndroZoo apps with the CPU-utilization
based heuristic and GreenOracle based heuristic—total 944 tests. This tests
can be run on GreenMiner in order to explore more research questions and to
reproduce our results.

The dataset also contains resource usage and energy consumption for all
the apps used for GreenScaler and GreenOracle models. As we mentioned
earlier, each test was run multiple times: 10 times for energy measurements,
10 times for capturing system calls, 10 times for CPU and related measure-
ments, and 5 times for capturing screen shots. The dataset, however, only
contains the mean values of each measurements. We have four types of data
for the Androzoo apps: 1) AndroZoo apps with resource usage and energy
consumption for tests selected with CPU-utilization heuristic that includes all
the captured system calls (472 data points), 2) AndroZoo apps with resource
usage and energy consumption for tests selected with CPU-utilization heuris-
tic that groups similar system calls together (472 data points). Similarly, there
are two more sets of measurements from tests with model-based heuristic (in

GreenScaler : Training Software Energy Models With Automatic Test Generation 39

total, 472 · 2 = 944 data points from model-based heuristics). We also shared
the GreenOracle dataset with and without grouping system calls. This dataset
can be used not only to reproduce our results, but also to investigate other
machine learning and feature selection techniques for building better models.

Data points: A single data point (as used for model building) represents
resource usage and energy consumption of an APK (for an app or for a
version). So a single data point is:
Number of cpu jiffies, number of context switches,.., test duration, Red,
Green, Blue, number of sento syscalls,.., number of dup system calls,..,
Energy consumption.
Here, energy consumption is the dependent variable and all others are the
independent variables.

11 Threats to Validity

This section describes the threats to validity of our experiments and results:
conclusion validity, construct validity, internal validity, and external validity.

11.1 Conclusion Validity

Some of our conclusions might not be accurate due to the statistical tests
we used. Although the tests we used do not assume anything about the dis-
tribution of the data, some of them still have their own set of assumptions.
For example, the Kendall’s τ test assume that there exists no tied rank in
the data. Similarly, the Wilcoxon p assumes that the two distributions under
test observe similar variance. The results would be inaccurate in case these
assumptions are wrong. We mitigated this threat by comparing the actual er-
ror distributions with cumulative distribution functions (CDF). Like previous
studies [18,19,87], we also evaluated our model’s accuracy by calculating the
percentage of error relative to the ground truths. This method, however, is
asymmetric—the error limit in case of under-estimation is 100% whereas for
over-estimation it does not have a boundary [88]. This threat was mitigated
by showing the actual ground truths and estimated joules when we evaluated
GreenScaler ’s accuracy in detecting energy regression (section 7.4).

11.2 Construct Validity

Modeling software energy consumption is difficult [13]. For example, a CPU
can operate at different frequencies and use different power in these states.
Consequently, two different apps in spite of utilizing the CPU for the same

40 Shaiful Chowdhury et al.

duration, might consume different amount of energy based on the triggered
CPU frequency level. In our model building process, we relied on the number of
CPU jiffies (the time between two clock ticks that can vary) instead of the CPU
time directly. Our assumption is that a CPU in higher frequency state would
have different number of CPU jiffies than a CPU in lower frequency state. We
do not have direct empirical evidence for the accuracy of such assumption.
Instead, we relied on the accuracy of the model built on such assumption.

Similarly, our approach for capturing resource usage by tracing system calls
can be criticized. Although capturing different system calls usually indicate the
types and amount of resources accessed by an app during a test run, there can
be some exceptions—direct memory access (DMA) for example.

We also relied on the claim that system call based models do not suffer from
tail energy phenomenon [11,15,19]. Although the good accuracy of GreenScaler
across a large number of apps suggest that such a claim might be true, we do
not have direct empirical evidence for that. We do not know if the tests we
exercised (including GreenOracle dataset) were able to observe any tail energy
leaks. For that matter, we do not have evidence that any of our subject apps
has an execution path that can produce tail energy leaks. Finding if an app
actually has tail energy leak requires manually investigating the app’s source
code to see if it is not doing batch processing (e.g., not sending a number of
packets in a single batch) although batch processing option was available.

11.3 Internal Validity

The resource usage we collected are mostly related to a process, such as the
number of CPU jiffies used by an app, and system call traces. However, we
also used global resource usage, such as the number of context switches, the
number of global CPU jiffies. These global resources can be affected by other
background processes than the process we are interested in. We mitigated
this threat by uninstalling all other optional apps that can impact the global
resources. GreenMiner also uninstalls an app immediately after running it,
even when the next run is scheduled for the same app. This ensures that the
current run does not use any stored data from a previous run.

The mapping mechanism—average from system call traces, CPU jiffies,
and energy consumption—might not be 100% accurate as little variation be-
tween different measurements is observed. Modern mobile devices and their
software are not as deterministic as we would hope. There was no direct con-
trol over the laboratory temperature that might be harmful for measuring
accurate energy consumption. However, INA219’s specification [89] suggests
that measurements would not be significantly different over the expected lab-
oratory temperature range. We mitigated these two threats by running each
scenario 10 times.

GreenScaler : Training Software Energy Models With Automatic Test Generation 41

The best feature set for modeling Android apps’ energy consumption is
obtained from a recursive elimination process. There are other feature selection
algorithms [90] that might produce a different set of features. However, the
selected features with the followed procedure complements earlier findings that
CPU, screen, test duration, file operations and network transmissions are the
main sources of energy consumption [9,19,62,65,81]. Similarly, energy model
from the CPU-utilization based test generation is compared against the model
built on tests based on the GreenOracle model. Other energy models might
produce better tests.

11.4 External Validity

External validity can be criticized for using a single version of Android phone
and OS. Architecture independent energy models, however, still remain as
open research problem, but there is preliminary work on converting energy
models between platforms [91].

The three apps—Storyhoard, Klaxxon, and Password Hash—we used for
evaluating code coverage are comparatively older than the AndroZoo apps, and
might not cover the latest Android coding features and style. The GreenScaler
model is trained and tested on 472 AndroZoo apps, with the leave-one-out
approach. Although it is possible that this model might fail to estimate the
energy consumption of a new app, the chance is low. We also mitigated this
threat by testing GreenScaler model on the GreenOracle dataset. However,
from our subject apps, we do not know if any of them was using GPS. Even
if we had such an app, our phones were immobile, thus would not reflect the
actual usage scenario of apps with GPS usage. Also, we only experimented
with Wi-Fi, and do not know how a system call based model would perform
for other technologies like 3G, and 4G.

Our model building test generation tool created test cases with random
events. Such a tool would fail to exercise app’s components where human
intervention is required—such as providing correct id and password. Also, the
generated tests might not be meaningful—the tests might drive an app in
a very different way than a human user. Our objective, however, was not to
develop a tool that can exercise every functionalities of every Android apps. We
also did not target to produce meaningful tests. Rather, we investigated if an
energy model built on randomly generated test cases can accurately estimate
energy consumption of human written meaningful tests. By achieving high
accuracy on human written tests (i.e., GreenOracle dataset), we believe that
our objective is indeed achieved.

42 Shaiful Chowdhury et al.

12 Related Work

We divide the related previous studies into three areas: modeling software
energy consumption, techniques to optimize software energy consumption, and
studies related to software energy testing.

12.1 Modeling Energy Consumption

Instruction-based modeling is estimating energy consumption using program
instruction cost [18,26]. The basic problem of these approaches is their rigid-
ness to one particular programming language. Energy estimation for apps
without source code is not possible with such approaches. GreenScaler ap-
plies black-box testing and does not require source code. Instruction-based
modeling might also require per-instruction power profile, which is not avail-
able for all devices [92]. In contrast, GreenScaler relies on features that can
be accessed from any Linux-based systems.

The most commonly used approach for modeling software energy consump-
tion is the utilization-based approach [27–29,87,93,94]. The basic philosophy is
that capturing the usage time of a component with its energy consumption al-
lows modeling its energy profile. Such approaches, however, cannot model tail
energy leaks [11,15,19]—energy consumed by a component even after com-
pleting its task before becoming inactive (transition time energy consumption).
In our models, however, we did not model energy consumption using active
usage period of hardware components. Instead, the cumulative counts of dif-
ferent system calls, CPU jiffy, and other OS-level statistics were used. This
automatically alleviated the intricacy of separately modeling tail energy for
every hardware components. As a result, in contrast to up to 200% error in
estimating joules with utilization-based approach [8], our count-based model
exhibits only ≈15% error in extreme cases.

Pathak et al. [19] proposed a complex Finite State Machine (FSM) based
model using system call traces. Aggarwal et al. [15,20] applied system call
counts to predict if energy consumption of different versions differ from each
other based on the number of changed system call counts. This model, however,
does not offer the actual energy consumption, and thus the developers would
not be sure how bad the energy regression incurred from a change in source
code is. None of these models consider screen colour and may profile other
components inaccurately. The number of apps used for learning and validation
was also very small compared to our dataset.

Nucci et al. [64] proposed PETrA, an energy estimation tool that leverages
Android tools such as dmtracedump. As PETrA is the state-of-the-art for esti-
mating energy consumption of Android systems, we wanted to compare Green-
Scaler ’s accuracy with PETrA. Unfortunately, PETrA relies on measurements
that are not supported by all Android devices. For example, the batterystats

GreenScaler : Training Software Energy Models With Automatic Test Generation 43

program to collect which components were active during an app run, is not
supported by the version of Android running on the GreenMiner’s Galaxy
Nexus phones. We found that the same file could be accessed by using the
batteryinfo program, but again the provided data was very different than
what PETrA expects. We had the same issue with Galaxy Nexus hardware and
OS while trying to run other components of PETrA—e.g., dmtracedump. We
also tried to run PETrA with LG Nexus 5, a close relative of LG Nexus 4 used
by PETrA, but failed to produce any results. Again, it was because of the dif-
ferent batterystats file. We contacted one of the PETrA authors, and came
to know that in order to run PETrA on a different device than LG Nexus 4, we
need to re-implement PETrA. The authors are also thinking to make PETrA
open source so that such implementation is possible. In contrast to PETrA,
GreenScaler is already open source and relies on information that are available
on any Linux-based systems. Moreover, PETrA heavily relies on the built-in
power profile.xml file for getting the current draw for components like CPU,
which is not the same as the current from the battery where the voltage is mea-
sured. GreenScaler, on the other hand, is built on real energy measurements
that does not involve any battery information and does not need a battery to
run or estimate energy consumption. In worst cases, PETrA’s estimation error
is more than 50%, especially for apps with high network usage, which is much
higher than GreenScaler. PETrA also requires manual app instrumentation,
which makes it hard to work with hundreds of apps for research purpose. App
instrumentation also makes it hard to adopt a tool in a continuous integration
system. Also, in contrast to GreenScaler, PETrA’s performance on detecting
energy regression is unknown.

12.2 Energy Optimization

A process of app recommendation based on energy usage is proposed by Sa-
borido et al. [95]. A user can select an energy efficient app when multiple apps
with the same functionalities are available. With the availability of such rec-
ommendation systems, developers would be forced to develop energy efficient
apps. In order to help developers optimize their apps’ energy consumption,
a significant number of research was dedicated on energy optimization tech-
niques and guidelines.

Wake locks are frequently used by Android developers to continue opera-
tions even when a device goes to sleep status [96]. Unfortunately, programmers
may write code to acquire wake lock that never releases the lock [97]. Pathak
et al. [98] observed that 70% of energy bugs are related to wake locks. Much
research [8,96,97,99–101] has been conducted to characterize, detect, and
minimize wake lock bugs.

In a previous work [17], we observed that employing HTTP/2 server can
help significantly in reducing clients’ energy consumption. For energy efficient

44 Shaiful Chowdhury et al.

logging, we showed in a separate study that developers can combine small log
messages and write them together to save energy [25].

As screen colour is very sensitive for OLED screen’s energy consumption,
tools for automatic colour transformation have been developed [65,102]. In case
of video streaming, pre-fetching has been found helpful to save energy [103].
Job off-loading to a server to save energy was also studied [78,104]. The over-
head associated to data off-loading can be so expensive that it might even
worsen energy consumption [78].

For reducing tail energy, bundling I/O operations can be effective [17,19,
62]. Ad-blockers help reducing energy consumption [23], as advertisements are
source of significant energy drains [105]. Some studies concentrated on writing
energy efficient code during the development phase [81]. For example, energy
profiles of the frequently used Java collection framework were studied [9,12].
Manotas et al. [106] developed a framework for automated selection of energy
efficient Java collections.

12.3 Energy Testing

Research on software energy testing focused on reporting well-known energy-
hungry APIs, and locating energy bugs in a system.

Linares-Vásquez et al. [80] reported a list of energy-greedy APIs by study-
ing 55 Android apps. The authors concluded that careful selection and appli-
cation of these selected APIs can lead to more energy efficient apps. This list
of energy-greedy APIs are, however, obtained only from 55 apps and might
not be complete in listing all energy-hungry APIs. Moreover, energy efficiency
is not only effected by the energy greedy APIs. There are other factors (e.g.,
tail energy [19], code obfuscation [107], code refactoring [108]), that can im-
pact energy consumption. Our GreenScaler model does not estimate energy
consumption based on counting energy hungry APIs, and thus do not have
such limitations.

Jabbarvand et al. [109] proposed a test suite minimization approach for
energy testing. The authors hypothesized that tests that covers energy-greedy
APIs (using the API list from Linares-Vásquez et al.) should be enough to
locate energy bugs. In our case, however, we needed to generate test cases from
the scratch with no existing test suite. Moreover, our objective was to generate
test cases for building energy models, not to locate energy bugs. Finally, in
contrast to merely stating a hypothesis, we provided empirical evidence that
code coverage is not a good heuristic for generating energy model building
tests.

GreenScaler : Training Software Energy Models With Automatic Test Generation 45

13 Conclusion and Future Work

In this paper, we proposed and showed the value of continuous software energy
consumption model building through automatic test generation. This process
built GreenScaler, an ever improving software energy model. The success of
random test generation for building energy models is encouraging. More soft-
ware energy research can be conducted with our simplistic approach. Our
model building approach uses measurements of resource usages that are acces-
sible from any Android systems, and is reproducible for other Android devices.

We demonstrated code coverage’s irrelevance to power usage. In fact, code
coverage correlates more with test run-time than with power usage. Instead
of code coverage, we built energy models using automatic test generation by
two resource-utilization heuristics: CPU-utilization and E-heuristic (software
energy model estimation). We found that simple CPU-utilization heuristic
exhibits similar performance to a more complex model based heuristic in gen-
erating tests to produce energy models.

There is a clear relationship between the number of apps measured and
the upper error-bound of count-based software energy consumption models.
By automating formerly manual-labour intensive testing work, we can contin-
uously produce ever more accurate models that can be used by developers with
no hardware-based instrumentation. We also demonstrated that these models
work well in the relative case whereby version to version the model successfully
predicts changes in energy consumption of an app undergoing modification.
We shared our GreenScaler tool so that developers can have direct feedback
on energy consumption without dealing with hardware instrumentation [14].

Future work includes scaling up this app measurement approach even fur-
ther, so that approaches like deep learning and domain specific energy mod-
elling can be studied. We hope that the idea of energy consumption test heuris-
tics excites other researchers as well, as there is a need for more investigation
into test generation heuristics that are good for energy modelling—perhaps
other energy models serve as better heuristics than CPU-time heuristics. We
used random search, other forms of search such as genetic algorithms might
prove fruitful. We do not yet know the bounds of this model, perhaps there is
a true saturation point. Questions left unanswered include: “what is the effect
of more tests per app on a model”, and “what are other features we should be
measuring?”

Acknowledgements

Shaiful Chowdhury is grateful to the Alberta Innovates - Technology Futures
(AITF) to support his PhD research. Abram Hindle is supported by an NSERC
Discovery Grant. Stephanie Borle was supported by an NSERC Undergraduate
Student Research Award.

46 Shaiful Chowdhury et al.

References

1. C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do programmers know about
the energy consumption of software?,” IEEE Software, pp. 83–89, 2015.

2. Hern and a. Alex, “Smartphone now most popular way to browse inter-
net ofcom report.” https://www.theguardian.com/technology/2015/aug/06/

smartphones-most-popular-way-to-browse-internet-ofcom/, 2015. (last accessed:
2016-Jul-29).

3. V. Woollaston, “customers really want better battery life.” http://www.dailymail.

co.uk/sciencetech/article-2715860/, 2014. (last accessed: 2015-APR-22).
4. B. Jones, “Microsoft has found the source of recent surface pro

3 battery woes.” http : / / www . digitaltrends . com / computing /

microsoft-surface-pro-3-battery-getting-patch/, 2016. (last accessed: 2016-Jul-
30).

5. H. Malik, P. Zhao, and M. Godfrey, “Going green: An exploratory analysis of energy-
related questions,” in Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR ’15, pp. 418–421, 2015.

6. G. Pinto, F. Castor, and Y. D. Liu, “Mining Questions About Software Energy Con-
sumption,” in MSR 2014, pp. 22–31, 2014.

7. S. A. Chowdhury and A. Hindle, “Characterizing energy-aware software projects: Are
they different?,” in Proceedings of the 13th International Conference on Mining Soft-
ware Repositories, MSR ’16, pp. 508–511, 2016.

8. A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent Inside My App?:
Fine Grained Energy Accounting on Smartphones with Eprof,” in EuroSys ’12, (Bern,
Switzerland), pp. 29–42, April 2012.

9. S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle, “Energy profiles
of java collections classes,” in Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, pp. 225–236, 2016.

10. D. Li and W. G. J. Halfond, “Optimizing energy of http requests in android appli-
cations,” in Proceedings of the 3rd International Workshop on Software Development
Lifecycle for Mobile, DeMobile 2015, pp. 25–28, 2015.

11. S. A. Chowdhury and A. Hindle, “Greenoracle: Estimating software energy consump-
tion with energy measurement corpora,” in Proceedings of the 13th International Con-
ference on Mining Software Repositories, MSR ’16, pp. 49–60, 2016.

12. R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, and J. a. P. Fernandes, “The influence
of the java collection framework on overall energy consumption,” in Proceedings of
the 5th International Workshop on Green and Sustainable Software, GREENS ’16,
pp. 15–21, 2016.

13. I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pollock, and
J. Clause, “An empirical study of practitioners’ perspectives on green software engi-
neering,” in Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16, pp. 237–248, 2016.

14. S. Chowdhury, S. Gil, S. Romansky, and A. Hindle, “Greenscaler-tools-and-data.”
https://github.com/shaifulcse/GreenScaler-Tools-and-Data, 2017.

15. K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia, “The Power of
System Call Traces: Predicting the Software Energy Consumption Impact of Changes,”
in CASCON ’14, 2014.

16. S. Chowdhury, K. Luke, J. Toukir, Imam Mohomed, S. Varun, K. Aggarwal, A. Hindle,
and G. Russell, “A System-call based Model of Software Energy Consumption without
Hardware Instrumentation,” in IGSC ’15, (Las Vegas, US), December 2015.

17. S. Chowdhury, S. Varun, and A. Hindle, “Client-side Energy Efficiency of HTTP/2 for
Web and Mobile App Developers,” in SANER ’16, (Osaka, Japan), March 2016.

18. S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating Mobile Application
Energy Consumption Using Program Analysis,” in ICSE ’13, pp. 92–101, 2013.

19. A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-grained Power
Modeling for Smartphones Using System Call Tracing,” in EuroSys ’11, (Salzburg,
Austria), pp. 153–168, April 2011.

GreenScaler : Training Software Energy Models With Automatic Test Generation 47

20. K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A tool for analyzing the
impact of software evolution on energy consumption,” in 2015 IEEE ICSME, (Bremen,
Germany), pp. 311–320, Sept 2015.

21. Jiffy, “Linux Man Page.” http://man7.org/linux/man-pages/man7/time.7.html,
2016. (last accessed: 2016-Jan-10).

22. A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S. Roman-
sky, “GreenMiner: A Hardware Based Mining Software Repositories Software Energy
Consumption Framework,” in MSR 2014, (Hyderabad, India), pp. 12–21, May 2014.

23. K. Rasmussen, A. Wilson, and A. Hindle, “Green Mining: Energy Consumption of
Advertisement Blocking Methods,” in GREENS 2014, (Hyderabad, India), pp. 38–45,
June 2014.

24. A. Hindle, “Green Mining: Investigating Power Consumption Across Versions,” in
ICSE ’12, pp. 1301–1304, June 2012.

25. S. A. Chowdhury, S. Nardo, A. Hindle, and Z. Jiang, “An exploratory study on as-
sessing the energy impact of logging on android applications,” Accepted in Empirical
Software Engineering Journal, 2017.

26. C. Seo, S. Malek, and N. Medvidovic, “Component-level energy consumption esti-
mation for distributed java-based software systems,” in Lecture Notes in Computer
Science, vol. 5282 of Lecture Notes in Computer Science, pp. 97–113, Springer Berlin
Heidelberg, 2008.

27. A. Carroll and G. Heiser, “An Analysis of Power Consumption in a Smartphone,” in
Proceedings of the USENIXATC’10, 2010.

28. A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real User Activity
Patterns to Guide Power Optimizations for Mobile Architectures,” in IEEE/ACM
MICRO 42, (New York, NY, USA), pp. 168–178, December 2009.

29. S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir,
T. Li, and L. K. John, “Using Complete Machine Simulation for Software Power Esti-
mation: The SoftWatt Approach,” in Proceedings of the 8th International Symposium
on High-Performance Computer Architecture, HPCA ’02, pp. 141–150, 2002.

30. S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,
M. J. Harrold, and P. Mcminn, “An orchestrated survey of methodologies for auto-
mated software test case generation,” J. Syst. Softw., vol. 86, pp. 1978–2001, Aug.
2013.

31. P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on automated
fault localization,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, pp. 165–176, 2016.

32. M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and challenges for
search based software testing,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pp. 1–12, April 2015.

33. M. Pradel, M. Huggler, and T. R. Gross, “Performance regression testing of concurrent
classes,” in Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA 2014, pp. 13–25, 2014.

34. C. Zhang and A. Hindle, “A green miner’s dataset: Mining the impact of software
change on energy consumption,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, pp. 400–403, 2014.

35. R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra, “Robust test automa-
tion using contextual clues,” in Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pp. 304–314, 2014.

36. S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri, “Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness and
challenges (t),” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 201–211, Nov 2015.

37. A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation system for an-
droid apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pp. 224–234, 2013.

38. D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon,
“Using gui ripping for automated testing of android applications,” in Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2012, pp. 258–261, 2012.

48 Shaiful Chowdhury et al.

39. K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated testing for
android applications,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, (New York, NY, USA), pp. 94–105, ACM, 2016.

40. R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evolutionary testing of
android apps,” in Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014, pp. 599–609, 2014.

41. N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing combina-
torics in gui testing of android applications,” in Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pp. 559–570, 2016.

42. Monkey, “UI/Application Exerciser Monkey.” https://developer.android.com/

studio/test/monkey.html. (last accessed: 2016-May-11).
43. R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation by devel-

opers,” in Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pp. 72–82, 2014.

44. S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation for an-
droid: Are we there yet?,” in Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), ASE ’15, (Washington, DC,
USA), pp. 429–440, 2015.

45. H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the android apps with
intent-filter tag,” in Proceedings of International Conference on Advances in Mobile
Computing & Multimedia, MoMM ’13, pp. 68:68–68:74, 2013.

46. R. Sasnauskas and J. Regehr, “Intent fuzzer: Crafting intents of death,” in Proceed-
ings of the 2014 Joint International Workshop on Dynamic Analysis (WODA) and
Software and System Performance Testing, Debugging, and Analytics (PERTEA),
WODA+PERTEA 2014, pp. 1–5, 2014.

47. M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and D. Poshyvanyk,
“Mining android app usages for generating actionable gui-based execution scenarios,”
in Proceedings of the 12th Working Conference on Mining Software Repositories, MSR
’15, pp. 111–122, 2015.

48. S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic testing of smart-
phone apps,” in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE ’12, pp. 59:1–59:11, 2012.

49. T. Azim and I. Neamtiu, “Targeted and depth-first exploration for systematic testing
of android apps,” in Proceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA
’13, pp. 641–660, 2013.

50. W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps with minimal
restart and approximate learning,” in Proceedings of the 2013 ACM SIGPLAN In-
ternational Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’13, pp. 623–640, 2013.

51. W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated gui-model
generation of mobile applications,” in Proceedings of the 16th International Conference
on Fundamental Approaches to Software Engineering, FASE’13, pp. 250–265, 2013.

52. S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma: Programmable
ui-automation for large-scale dynamic analysis of mobile apps,” in Proceedings of the
12th Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’14, pp. 204–217, 2014.

53. Y. D. Lin, J. F. Rojas, E. T. H. Chu, and Y. C. Lai, “On the accuracy, efficiency,
and reusability of automated test oracles for android devices,” IEEE Transactions on
Software Engineering, vol. 40, pp. 957–970, Oct 2014.

54. C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of android test
suites in adverse conditions,” in Proceedings of the ISSTA 2015, ISSTA 2015, pp. 83–
93, 2015.

55. H. van der Merwe, B. van der Merwe, and W. Visser, “Verifying android applications
using java pathfinder,” SIGSOFT Softw. Eng. Notes, vol. 37, pp. 1–5, Nov. 2012.

56. K. Moran, M. Linares-Vsquez, C. Bernal-Crdenas, C. Vendome, and D. Poshyvanyk,
“Automatically discovering, reporting and reproducing android application crashes,” in
2016 IEEE International Conference on Software Testing, Verification and Validation
(ICST), pp. 33–44, April 2016.

GreenScaler : Training Software Energy Models With Automatic Test Generation 49

57. P. Boonstoppel, C. Cadar, and D. Engler, “Rwset: Attacking path explosion in
constraint-based test generation,” in International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 351–366, Springer, 2008.

58. S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven compositional symbolic
execution,” in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 367–381, Springer, 2008.

59. A. S. Namin and J. H. Andrews, “The influence of size and coverage on test suite
effectiveness,” in Proceedings of the ISSTA ’09, pp. 57–68, 2009.

60. L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite
effectiveness,” in Proceedings of the 36th International Conference on Software Engi-
neering, ICSE 2014, pp. 435–445, 2014.

61. Emma, “EMMA: a free Java code coverage tool.” http://emma.sourceforge.net/,
2006. (last accessed: 2016-JUL-22).

62. D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy optimization of http
requests for mobile applications,” in Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pp. 249–260, 2016.

63. K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting millions
of android apps for the research community,” in Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, pp. 468–471, 2016.

64. D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. D. Lucia,
“Software-based energy profiling of android apps: Simple, efficient and reliable?,”
in 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 103–114, Feb 2017.

65. D. Li, A. H. Tran, and W. G. J. Halfond, “Making Web Applications More Energy
Efficient for OLED Smartphones,” in ICSE 2014, (Hyderabad, India), pp. 527–538,
June 2014.

66. M. Dong, Y.-S. K. Choi, and L. Zhong, “Power modeling of graphical user interfaces
on oled displays,” in Proceedings of the 46th Annual Design Automation Conference,
DAC ’09, pp. 652–657, 2009.

67. T. Hastie, R. Tibshirani, and J. Friedman, “Linear methods for regression,” in The
Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer
Series in Statistics, 2001.

68. V. Vapnik, The nature of statistical learning theory. Springer, 2000.
69. Linux man-pages project, “Intro linux man page.” http://linux.die.net/man/2/

intro, 2016.
70. C. wei Hsu, C. chung Chang, and C. jen Lin, “A practical guide to support vector

classification,” 2010.
71. T. Hastie, R. Tibshirani, and J. Friedman, “Model assessment and selection,” in The

Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer
Series in Statistics, 2001.

72. H. C. Thode, Testing for normality, vol. 164. CRC press, 2002.
73. M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods. John

Wiley & Sons, 2013.
74. D. F. Bauer, “Constructing confidence sets using rank statistics,” Journal of the Amer-

ican Statistical Association, vol. 67, no. 339, pp. 687–690, 1972.
75. N. Cliff, Ordinal methods for behavioral data analysis. Psychology Press, 2014.
76. S. Romansky, S. A. Chowdhury, A. Hindle, N. Borle, and R. Greiner, “”deep green:

modelling time-series of software energy consumption,” in 33rd IEEE International
Conference on Software Maintenance and Evolution (ICSME) (accepted), 2017.

77. A. Miranskyy, Z. Al-zanbouri, D. Godwin, and B. Bener, “Database engines: Evolution
of greenness,” Journal of Software: Evolution and Process, vol. 30, no. 4, 2018.

78. A. P. Miettinen and J. K. Nurminen, “Energy Efficiency of Mobile Clients in Cloud
Computing,” in Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, (Boston, MA, USA), June 2010.

79. StackOverflow, “Why are synchronize expensive in Java?.” http://stackoverflow.

com/questions/1671089/why-are-synchronize-expensive-in-java, 2009. (last ac-
cessed: 2016-Jul-22).

50 Shaiful Chowdhury et al.

80. M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk, “Mining energy-greedy api usage patterns in android apps: An em-
pirical study,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pp. 2–11, 2014.

81. D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An Empirical Study of the Energy
Consumption of Android Applications,” in Proceedings of the 2014 IEEE ICSME,
(Victoria, BC, Canada), pp. 121–130, September 2014.

82. W. Song, X. Qian, and J. Huang, “Ehbdroid: Beyond gui testing for android applica-
tions,” in ASE 2017, pp. 27–37, 2017.

83. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14, (New
York, NY, USA), pp. 259–269, ACM, 2014.

84. I. Goodfellow, Y. Bengio, and A. Courville, Regularization for Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

85. G. Uddin and F. Khomh, “Automatic summarization of api reviews,” in ASE 2017,
pp. 159–170, 2017.

86. Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining api popularity,” in Testing –
Practice and Research Techniques, pp. 173–180, 2010.

87. L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang, “Accurate
Online Power Estimation and Automatic Battery Behavior Based Power Model Gen-
eration for Smartphones,” in Proceedings of the 8th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, 2010.

88. M. Shepperd, M. Cartwright, and G. Kadoda, “On building prediction systems for
software engineers,” Empirical Software Engineering, vol. 5, pp. 175–182, Nov 2000.

89. Texas Instruments, Dallas, USA, INA219 Zer-Drift, Bidirectional Current/Power
Monitor With I2C Interface, December 2015. http://www.ti.com/lit/ds/symlink/

ina219.pdf.
90. M. Karagiannopoulos, D. Anyfantis, S. B. Kotsiantis, and P. E. Pintelas, “Feature

Selection for Regression Problems.” http://www.math.upatras.gr/~dany/Downloads/

hercma07.pdf. (last accessed: 2015-Oct-22).
91. C. Zhang, “The impact of user choice on energy consumption,” MSc. thesis, University

of Alberta, 2013.
92. R. W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, and M. Shiraz, “A review on mobile

application energy profiling: Taxonomy, state-of-the-art, and open research issues,”
Journal of Network and Computer Applications, vol. 58, pp. 42 – 59, 2015.

93. J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for Profiling the Energy Usage
of Mobile Applications,” in WMCSA ’99, (New Orleans, Louisiana, USA), pp. 2–10,
February 1999.

94. M. Dong and L. Zhong, “Self-constructive High-rate System Energy Modeling for
Battery-powered Mobile Systems,” in Proceedings of the MobiSys ’11, pp. 335–348,
June 2011.

95. R. Saborido, G. Beltrame, F. Khomh, E. Alba, and G. Antoniol, “Optimizing user expe-
rience in choosing android applications,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 438–448,
March 2016.

96. Y. Liu, C. Xu, S. Cheung, and V. Terragni, “Understanding and detecting wake lock
misuses for android applications,” in FSE 2014, (Seattle, WA, USA), Nov 2016.

97. F. Alam, P. R. Panda, N. Tripathi, N. Sharma, and S. Narayan, “Energy optimization
in android applications through wakelock placement,” in 2014 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1–4, March 2014.

98. A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging on smart-
phones: A first look at energy bugs in mobile devices,” in Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, HotNets-X, pp. 5:1–5:6, 2011.

99. Banerjee, Abhijeet and Chong, Lee Kee and Chattopadhyay, Sudipta and Roychoud-
hury, Abhik, “Detecting Energy Bugs and Hotspots in Mobile Apps,” in FSE 2014,
(Hong Kong, China), pp. 588–598, Novemeber 2014.

GreenScaler : Training Software Energy Models With Automatic Test Generation 51

100. X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall, “How Speedy
is SPDY?,” in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’14, (Seattle, WA, USA), pp. 387–399, April 2014.

101. P. S. Patil, J. Doshi, and D. Ambawade, “Reducing power consumption of smart device
by proper management of wakelocks,” in Advance Computing Conference (IACC),
2015 IEEE International, pp. 883–887, June 2015.

102. M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk, “Optimizing energy consumption of guis in android apps: A multi-
objective approach,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pp. 143–154, 2015.

103. N. Gautam, H. Petander, and J. Noel, “A Comparison of the Cost and Energy Ef-
ficiency of Prefetching and Streaming of Mobile Video,” in Proceedings of the 5th
Workshop on Mobile Video, MoVid ’13, (Oslo, Norway), pp. 7–12, February 2013.

104. M. Othman and S. Hailes, “Power Conservation Strategy for Mobile Computers Using
Load Sharing,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 2, pp. 44–51, January
1998.

105. J. Gui, D. Li, M. Wan, and W. G. J. Halfond, “Lightweight measurement and es-
timation of mobile ad energy consumption,” in Proceedings of the 5th International
Workshop on Green and Sustainable Software, GREENS ’16, pp. 1–7, 2016.

106. I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s energy-
optimization decision support framework,” in Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pp. 503–514, 2014.

107. C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and J. Clause, “How Does Code
Obfuscation Impact Energy Usage?,” in Proceedings of the 30th IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2014.

108. C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect energy usage?,”
in Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2014.

109. R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware test-suite min-
imization for android apps,” in Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, pp. 425–436, 2016.

52 Shaiful Chowdhury et al.

Shaiful Chowdhury is a PhD candidate in Computing
Science at the University of Alberta, Canada. Previously,
he received his MSc and BSc degrees in Computer Science
from University of Saskatchewan, Canada and University of
Chittagong, Bangladesh respectively. Shaifuls research inter-
est includes software energy modeling and efficiency, mining
software repositories, and applications of machine learning

in software engineering. Shaiful won the Early Achievement Award in PhD (Com-
puting Science) at the University of Alberta. He also received the mining challenge
paper award at MSR 2015.

Stephanie Borle received her BSc in Computing Science from
the University of Alberta. During this time she was awarded an
NSERC USRA which gave her the opportunity to research soft-
ware engineering topics. Currently, Stephanie is working toward
an MSc degree in Speech-Language Pathology at the University
of Alberta.

Stephen Romansky is a Computing Science MSc student
at the University of Alberta where he completed his BSc and
will start a PhD. In his MSc, Stephen applied machine learn-
ing to the task of predicting software energy consumption.
Stephen’s research interests include Software Engineering.

Abram Hindle is an associate professor of Computing Sci-
ence at the University of Alberta. His research focuses on prob-
lems relating to mining software repositories, improving software
engineering-oriented information retrieval with contextual infor-
mation, the impact of software maintenance on software energy
consumption (Green Mining), and how software engineering in-
forms computer music. He likes applying machine learning in

music, art, and science. Sadly Abram has no taste in music and produces rep-
rehensible sounding noise using his software development abilities. He has pub-
lished several papers in international conferences and journals, including EMSE,
ICSE, FSE, ICSM, MSR, and SANER. He has served on the program commit-
tees of several international conferences, and has program co-chaired MSR and
SCAM. Abram received a PhD in computer science from the University of Wa-
terloo, and Masters and Bachelors in Computer Science from the University of
Victoria. http://softwareprocess.ca

