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ABSTRACT

The quantum field theory for accelerated systems is
investigated in order to. prov1de a phyS]ca1 1nterpretat1on
for the particle content ambiguity wﬁuﬂwar1ses from
a]ternate qdant1za.ton methods. For uniform acce]ergtion
this ambiguity lTeads to thermad properties known as
atceleration rédiatidn. Uniform]y accelerated dipole
detectoré-are shown td have a non—therma1 and non—isdtropic
response 1n-agreement wjth‘pnevious work. Particle
detectors follcwing a V411ing'0rbit are found to respond’
to Killing part1taﬁﬁdens1ty, thus prov1d1ng an 1nterpretat10n
for a]ternate parttﬁ?e content. The comparison of
detectors following different'trajectonies. 1eads to a
des€ription of acceleration radiation as an effect1ve
quantity. It is demonstrated that particle detectors
W,Qotmdlihg withﬁawsingleﬂ1+l dimensional mirror gibe a null
response even in the presence of non-zerobstre§s~energy.

This agreesiw;th equjva]ence arguments. A 1+1 dimensional
unjfotm1y accelerated box is shown to ccntain a negative
energy density identical to the acceleration radiation |

T

result 'his energy will be accounted for dynamically.
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Abbreviations, Units, Definitions and Notatien

Abbreviations '
¢ .

h.c. - hermitian conjugate
€.c. - complex conjugate

Units

The units h=c=G=kB=1 will be used.

Definitions

The Minkowski metric 'is cefined as

Vo)
y
]
il
3
o
o
"
[}
—
i
D
—.
o
i
D5
<

so that the Tine element is ds+ = -dt + dx

flotation ‘ .
A general four vector with cemponents v© and basis
e is-represented by wv=v'e .
o

A vector in Euclicean sbace 15 represented by V.

Partial derivatives are sumetimes written as,

]
*

i X



The following will be.considered standard

notation.

&
* - complex conjugate _ L .
* ¢ hermitian conjugate

H(t-t') . Heavyside (step) function
. 1/7 , T=Temperature
Tr = Trace

H : Hamiltonian

sh - sinh (hyperbolic sine)

ch - cosh (h;perbo1ic cosine) - "
v E (l—vj)'E ,-v=velocity

v - unit vector

u  retarded time u=t-x .

v T advanced tiﬁe v=t¥x )

difference , Lr=Eoooc !



. CHAPTER ONE
Quawrtum Field Theory of Accelerated Observers

-

1-1 Introduction

*

There were two original motivations for the study

”~

of quantum field theory for accelerated observers. These

were Hawking's (1975) rasult that black holec are o4 source

of thermal radiation, and Fulling's (1977 “tudy of the

£
non-uniqueness of canonical quantizatic- "lat space-
time. It was then recognized that*there were similarities

i

between the causal structure of spacetime extarior to) a.
black hole and that of Minkowski snace as viewed by an
accelerated observer,

Taking advantage 0f the non~uniquenegs of
Juantization, Davies (1975), Israel (1976), and Unfuh
(1976), confirmed that gquantization for g uniforaly
accelerated observer Using natura; Rind?e% coordinates
vielded thermal properties. Specificaliy, the “Minkowski
vacuum was found to contain a therma!l supernesition of
Rindler particles at a temperature equal to the acceleration
over 2- (T=a/2-). 7This phenomencn is referred to as
accelaration radiation. .Isrdél's wor< Considered 5
éeneric Case involving an observer confined by nul]
horizons, thereby containing.a unifi%d approach to black

N

hole radiance and acceleration radiation.
Since in curved spacetime the Quantizatdon srocedure

is*already ambiguous, it was*originally intended that



quantum tield theory in R1nd]er space, where there is a
]] defined under]y1ng f1e]d theory, wou]d be an

exce]]ent test case for black hole radiance. However, it
soon became apparent tnat the quantum f1e]d theory for
h acce]erated observers was by itself an 1nterest1no subject.

It wou]d be tempt1no to 1mmed1ate1y d1sm1ss the
‘Rindler quant1zat1on procedure as non- phys1ca1 because,the
bas1s for this method 1nvo1ves a non—inertia] obseruer.
It appears, however, that phys1ca1 effects due to Kindler
particles exist At the same t1me as Unruh (1976)
considered th1s a]ternate quantization, he also introduced
- mode] partnc]e detectors Jhen these detectors were'
‘ana1ysed for uniform acce]erat1on he found tnat
excitations were produced w1th a therma] snectrum at |
T=a/2~ %E}mp1y1ng that the detector was measur1ng R1nd1erv
Wpart1c]es The techn1que of us1ng detectors to study
partlcﬂa;content haSvnow become a standard procedure,
fo]Tow1ng the conventions of DeW1tt (1979),and Birreld i
and Uav7es (1982).

Certa1n detectors w1th ‘a dinole 1nteract1on term
have been stud1ed by Yinton (]983@,‘who f1nds_that uniform
acce]erat1on resu]ts in a non?therma1 and non-isotrooic

r&a d th1s d1screpancv

ooy

: reéponse In an attempt to un%;
| ' @ K PR
w1th other types of detectore we”

~j g xamine the dipole

detector using - d7fferent technique from that of Hinton.

The general response of monopole detectors to a state /N>



Will also be studied in order to determ1ne ‘the difference
1n response for two d1st1nct tra3ector1es "

The magnitude of any physical effects arising from
acce]erat1on rad1at1on 1s extremely sma11 requiring
accelerations of the order 102% m/s? for T=1K. hoWever,
such acce]erat1ons are common]y found in part1c1e
acce]erators and h1gh energy co]1ws1ons Bell and: Leinaas
(1983) have argued that the depolarization of cyclotron
‘electrons could be viewed as a thermal effect although the
prob]em-has been handled theoretica11y by Other techniques.
Baréhay and Troost (1978) have suggested that acce1erat1on
radiation may account for the observed thermal specCtra
of part*c)es producedlyn.certa1n colTision experiménts.
These possibi]itfes indicate that measurable effects may f;

exist which can be qualitatively explained by acceleration

radiation. o K ) .
. ¥

The physical effects diseusSed to this pointvhéve
manifested themselves as transitioh probabilities in
eertain systems; a result which' is 1ntu1t1ve1y reaSOnab1e
since perturbat1on theory utilises proper time in
e;ca]cu1at1ng amp11tudes. For unwformly accelerated Systems
this would s1ng1e out Rindler pr%per time ang particles as
important, suggesting that they would be reflected in

measurement. The general analysis of moh0p01e deteCtors

will confirm this belief for certain cag%s.

[f the actual value of energy present in tne



Minkowski vacuum is considered, then we know that the
expectation value of thé stress-energy tehso? is zero for.
ja11 observers. This 1mb]1es_that the thermal eneréy dUe to
considerﬁng Rindler particles ¢an at most be interpreted
as an effective quanptity thch shows. up in certain
measurements,

It is well. known that the présénce of‘perfectly

»

ref]ectihg boundaries is capable of a1tering the field, =
"producing\a non-trivial stress-energy tensor. In the case
of the we]? kn@wn Casimir effect, this modification
results in a negative energy density tausing an attractﬁVe
force between the two para]]éj-blates. 'This.phendménon
‘suggeststhat fherma] effects correspoqﬁing to atce1eratiqn
'radfation may be present in the stress—e:ergy tensor
pro@uced\py an accelerated mirror. The majorify of ‘these
problems have been studied in 1+1 dimensions due to the
difficulty of obtaining 3+1 solutions, _
Candelas and Deutsch (1977) have found that a
uniformly accelerated plane mirror 1n)3+1 dimension; will
produce a Stress-energy fensor with én asymptotic form
cofresponding to a thermal result which depends dn the
local acce]eration{ THé diffﬁcuTty with this result is
that. the energy‘balan;e cannot be verified dynamiéal]y

by calculating the energy radiated while bringing an

initially inertial mirror™to uniform acceleration. Ffor

example, in the Caéimir effect the energy present can/be



accounted for by the work done in bringing the mfrrofs
from 1nfin{§e:to Finite separdtion.

‘ Eu]]ing“and Davies (1376) have studied general
mofipn of a 1+1 dimensiona] boundyry and conclude that an
accelerated mirror radiates energy proportional to the
tfme.deriQative of its acceleration. The diffjcu]ty
with a one-mirror calculation is that once the energy is
radiated it is no longer eonfined. It fo]]ow; that the
stress-energy tensor at a.point which~eontains only
uniform mirror motion in its cqusai past will be zero.

For this reason we will consider the stress-energy tensor
for a region bqunded‘by two mjrrorsewhich define a
unifofmly acce]erated box. To perform this calculation

we w1T1 employ |the Euclidean space techn1ques which Fro1ov'
and Serebr1an] (1979) utilised in evaludting stress-energy
tensors for uniformly acce]erated expanding spherical
shells.

Throughout this.study the focus of interest is on
the observable effects of acceleration radiation. These
effects, though negligible at convont1ona1’:Ecelerations,
may be important in high eﬁerg/ processes By studying
model particle detectors and accelerated mirrors we intend
to determine the validity of acceleration rad1at1on as a
-phy51ca1 pheﬂomenon. Before proceeding with this, however,

we muse f1rst review the necessary quantum field theory as

well as the forma] aspects‘of quantization in Rindler space.



1-2 Topics in Quantum Field Theory j

The quantum fié]d theory we w11l consider will be
for the neutra]} massless scaiar field ¢ . The wave
equation for tne field is

D¢¥(‘§%2+ 72)¢=q

| | (1)

- The field ¢ will be constructed as a decompositfon of ‘
comp]ete orthonormal modes as fo]lows.‘

Let 21(x), 4,(x) be solutions of equation 1.7,

Then we define the inner proaguct as

(§1a¢255-11d2u 61(X)(?;—3;)ct(x)
(51260)2-11d=" 4 (x50 (x)

b S :
we %’ ’ . ‘ (]'2)

where dc” defines a space-like surface, with a future
'directed normal. The inner product of 1.2 is usually

written as

[, _—
(2, ~)=-i0d3x s (x) tu:(X)
;472
- (1.3a)
and has the property
‘ 5
* * *
(‘bly‘@z):(‘b;}s'bl) =-(t7_,51)
(1.3b)



Now let the uk(x) be solutions to the wave.equation
and be orthQnorma1.1n the sense that
(UK’UK') = kK (uk,u;.)=0 (u;,u;.) T ke
(1.4)
where S may be either the disFrete or continuous delta
function depending on the situation. If the uy a o
qTﬁ terms

restrfcted to being complete then we may expand +

A
of this set. That is

a (o,uk) a; = (5,uk)
so that
2(x) = -1l (é(x') [ - (x)u (x) + u (xu (x) )

Therefore the complete set Uy has the additional properties

W
: v
k)




lt:tl = 18(5"_)_(_')

(1.6)
As we shall see, the condition of compléteness bn fhe
modes is crucial for both the Cauchy problem and
quantization.

One more restriction .on the modes is necessary We

h“_must be ab]e to distinguish between positive and negative

frequency. This implies that a ‘natural definition of
"particle" exists. We will define positive frequency 1in

the. same way as it is used in quantum mechanics. I[f

U, .
ﬁk = —ukuk s 0

(1.7)
then U s said to be a positive frequency mode. .He see
that this definition causes the positive. and nedative
frequen;y modes to be orthogona1,which is consistent with
1.4. The préb]em that will lTater be encountered s that
this definition is not un1que, Qspec1a11y SO in curved

spacetime,

Quantization
Extending the quantum-mechanicai definition of
commutatogs to fields gives the canonical quant1zat1on

relations.



[0 ax') Tl =00

Enforcing the condition 1.9 gives

[ :(x), =(x") ]t;t' = [ au (x) + a;u;(x)‘, ak,&k,(x) + h.c.]

U Tul0in ) - Caga Juitoi, ()1,

From the comp]eteness relations in equations 1.5 ahd 1.6

we see that canonical quantization provides the following



——

10
operator algebra. :
s _ - -f. -
[ aK,aKl ] - [ a aaK| ] 0
(1.12)
[ a¢K’aK_' J ‘: “‘:kk:i
(1.13)

The condition 1.10 can.be easily verified using 1.12

and 1.13. Condition 1.11 may be verified as follows.

[ (e) Jpnpn = [agh (x) n.C.oya b (x) + heel I

(1.14)

Using both the positive frequency restriction 1.7 and the

wave equation 1.1 in expression 1.4 aives

(0000 I = - o 0] = u xur(x') |

- Therefore



11

- : < . (: ~
where we have used equation 1.5 in the final step.
To complete our quantization procedure there must

be a set of states that akand d; operate on. These states

are defined by the usual Fock representation where

a lo- =0 a o> = |1

. ~ = o~
3 k akllk' 0

(1.15)

that is, the dg operator annihilates a quantum identified

~

byf1k> , and ag creates a partic]e?lk> . Many-particle’

states may be created from the vacuum state lo~ using a

k
and ak.

(1.16)

Green Functions

Expectation values for various combinations of
field operators will be required in calculations throughout
this study. These Green functions include the Pauli-Jordan,
Nightman,ﬂHadamard and Feynman functiins, as well as their
Euclide%n‘kounterparts which will be discussed in the

:1 R
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next section.
The Pauli-Jordan Green function provides a

covariant commutation relation

1G(x,x") = [ a(x),0(x") ]
(1.18)
and is useful for solving Cauchy-type problems. The fié1d
dt time t may be eva]ﬂated if it is known on a Cauchy

surface at an earlier time t=0.

! 1 ' " '
.;(X,t) - }d X (& ! -’tl G<x’x ) tlzo
(1.19)
The solution for- : in 1.19 is causal due to the
broperty that G(x,x') has support only for time-like
separation of x and x'. This may be verified as follows.
% ,
&
n
1G(X9X ) ?t=t'20_: ’: Zi(X),.‘(X'> Jt:tn.:o
= Lau b s au () a0+ v o) Tl g

NHX,X');t:teO:O | (see equation 1.5)



This justifies our previous assertion regarding the
importance of completeness in defining a quagtum fiaeld
theory,

The Wightman functions are defined by

G (x,x') = 0 b(x)i(x") lo-

(1.20)

G (x,x') = gl 00w (x") o

(1.21)

and will be required for analysis of particle detectors.
Hadamard's function may bte defined in terms of the

dightman functions by

Gi{x,x') = G (x,x') + G (x,x")

G-(x,x') =

=
(I-Z%%
The Feynman Green functien is given by the time

ordered product

wGF(x,X‘) = ol H{t-t') +(x):(x")

-'(1.23)

13

i



Cd]culdting:}GF

e = b L) 0l Bt ()
FHOE -t) (x" ) ia) o
<5l S0l [l et o
1 it
Therefore
GF(x,x‘) = - (x-x")

(1.24)
where we have used the canonical commutation relations 1.8
in the last step.

The Feynman Greeﬁ function will be useful for the
evaluation of stress—ehergy Ti\ in the presence of
voundaries as discussed\in chaptar thrée. 'The reason for
this is that GF contains canonical quantization»imp]icitly;
SO that we must merely solve 1.24 under certain boundary

conditions.

Euclidean Green Functions

Fuclidean Green functions may be obtained from the
previous ones by letting t=i-. If we make this same
substitution in the line element the metric becomes

Euclidean. SUbStituting again into the wave equation

14



15
results in a four dimensional “Laplacian®.
T Euclidean Green function is useful for two
reasons.  First, it gives a method for avoiding poles that

occur in the propagators by performing a UWick rotation
from Euclidean space. Secondly, some boundary value
problems become particularly simple in Euclidean space as
will be seen in chapter three.

The Euclidean Green function GF 15 defined as

Then GE will satisfy an equation similar to rhat of the

Feynman Green function.

. )
““GE = ( o F 7)) GE(1 W R ‘
:%‘(—{ +7‘)GF(1 sXii ) i
s o b (demiet) (ko)
»:C‘E( » X5 ‘,§’> = - (‘— '} (:i-)(_'/\
\“'
‘ No(1.26)
’ )
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Thermal Green Functions
Therma] Green funct1ons may be 0bta1ned by chang1ng

the vaCuu\mexpectaj1on va]ues to therma] ones as fo]]ows.

AN . N

G;(X)X‘) :<¢(x)-®(xl)>8 . . a\; T"
Gi - . | o
. - * [K' '
6 (xox') £ Trl e ¥ S(x)stx) )/ Tr on

Using the equétion of motion

»(t,x) = ol HE 2(0,x) e ML ’ _ 93"

2 . /
and the cyclic brogerty of traces, equation 1.27 inplies

that B - g

[ep]
T 4
———
t
-
>
.
+
| >
e
H
. [ep]
o 41
——
+
+
-—
jes
-
>
-
t+
-
| =<
~—

(1.28)

This periodicity is a fundamg#ta] property of-thermal
Gfeen functions.
The only thermal Green fUnction that we will uZe is
.the Hadamard one, which'may be writ'ten aé
Gé(t,x;t',i') = B G;(t+1ne,§;t',g')

, T (1.29)



i

This function is necéssary for our analysis of dipo]é

particle detectors.

/
/

The Canonical §%ress-Energy Tensor

/

"Thersp?ess-energy tensor T,, may be generally

defined by,/

\
/ \
/T - V3 §_§1 
Cay /-g §g"Y
where S is known as the action. In flat spacetime Ty, may
be defined in terms of the Lagrangian density.
T = AL > - g L
M (S(I)’U s [
' (1.30)
For the massless scalar.field
Y.
,L = légb.)z Lok .
(1.31)

(1.32)

17



”‘A';’ﬂv‘ , _ . |
‘prhventiona]]y Tuv is interpreted as follows:
o o -\ ‘

is fhe:energy density.

70 s the jLh component of momentum density.

700

+

fT]J'is the i,j compqnent of stress.
~T01‘is the‘iEﬂ component of energy flux.

- The stress-enerqy tensor 1.30 has the important

property.of being conserved, as we w1ll now demonstrate.

-

hS

Let i=L(sy0 L) Then ' o

b

a

« &

°
v _ N Y A RETR 5L
= : —_— + —_—
T sV ? v o8¢ ? :’X\) &b
' s V y VY
U oRY
- 9VL -9 L’V
. (1.33)
~. . S ) \ ’
The condition of metric compatibility means that g"? =0
. N ) sV
so that 1.33 becomes
woo &L L3 3L
TUV = }t’“ z= + 4 ° PN
) Cowose P XY s ’
- gU‘),( _& ) + ﬁ ,ﬁ’\
o9 y Y 6’b | v
s L X ct,J v
(1.34)

If the field > satisfies the wave equation then
A




-
A

so that (1.34) becomes

THY - g
,V
which implies that TV is conserved.
In 1+] d%mensions T’ has tne additional property
ot being traceless;

u . : N F
T = » g -5 a p
u ¢),u AV 29 guv”‘ @,1‘,5

and thus Tgv Ts traceless.
Reqularization of Vacuﬁm Stress-Eneray
One of the principal problems of auantum fiela
theory is the ca1cu1ét10n and 1nterpretation of divergent
quantities such as the vacuum exﬁectation vatue of Tuv.
We will pe using three different reqularization techniques{
normal ordering, pnoint sp]itting; and Green functions.
‘Norma1lordering is the conventiona]'regu]arization
techniéﬁe used for free fields. To normal order we

evaluate the object <o!:T‘u:&’o§ by nlacing tne

_annihi]ation_operators of the state N> before the



G

créétion operatoks. Different choices of orderings will
yield different results, so that the choice of N muét be
g physical one.

Thé forma]lphenomenon of acceleration radiation
gives a thermal stress-energx tensor when the choice of N
js the Rindler state, a topic discussed later in this
chapter. /

Point splitting is a technique requiring the
disp]écement of one of the field operators in Tuv as

follows.

where t and x are-the traditional Minkowski coordiniies,
Thié'disp1agément provides the convergence required for
_Calcujating the‘various integrals involved 1h the vacuum
expectation value bf T,, The result for <TJvf 1s then
expanded in powers of £, and the 11mi%jas € apprcaches
zero  is taken after discarding the divergent term
symptométic of quantum field theory.

The Green funcg{on technique is perhaps ©ne most
intuitive regularization procedure we will utiTixp. This
method will be used :for quantum fields in the presence of
bouﬁdaries, so that the Green functions will pe altered
from,their émpty.spabe versions due to the boupdary
tdnditiéns 1nvo1ved;

[P

To calculate T., we operate on the regularized

20



Feynman Green function with a differentia] operator as

folliows.
<T > =Tim (3 - 59 9&[33‘ F, )i (x,y) o
V) X~y "IX \'y L [ Dy, FY‘EQ .
L (1.36)
Gp (Xhy) = Go(xuy) - Gp(xny) o (1.37)
reg T
where GFl(x,y) is tne Feynman Greehkfunctﬁoﬁ for unbounded
; T

Minkowsk1 space,. hereafter referked‘to as the empty space
Green function.. Ye may verify. that the operator defined
in 1.36 will lead to the’proper expression for TU». This
calculation is outiined in appenaix one.

The Green function in 1.36 has been réguTarized by
removing the usual-empty space-part. This makes the
limiting procedure wel| detined since empty space Greeﬂ
functions diQérqe‘as x approaches y. The regularizatioﬁ
process is intuitively reasonable since it represents the
varijation of r;; from the divergent empty space value.
Note that in the case Qf no bounaaryes _this gives the
conventional resu]f Tuuio._ J
Non-Uniqueness of Canonical Quantization

The:non—uniqueness of the cénonfca] quantization
-procedure”ﬁas been studied in detail by Fuliing (1973).
~ The tnermal effects of quantum field theory tor an

accelerated observer arise from formal aspects of this
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ambiguity. The non-uniqueness of quantization means that
there are many decompositions of the fie]d,cormesponding
to a generalization of the positive frequency definition
in 1.7,

| Suppoée that‘the spacétime under consideration has
a time-Tike Killing vector S, Then along the world Tine
traced out by a particl® of momentum p, p-+< is a constant.

This can be shown as follows.

(1.38)
But TDp:O for a free parfic]e and i(w,v)=0 if 1 is a

Killing vector. This means that 1.38 becomes

Tplpez) =0
(1.39)
so that p.: ‘fs a constant. Since : has been réstrﬁcted
to a time-like vector, D -t meaéufes the particle energy
whjch is thus a.constant. This provides a'méthod_of

distinguishing between positive and negative energy,

leading to the generalizaticn of 1.7,
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[f

L"‘l’( :—.(\ ¢ B O
‘;:) ] )Kuk s “K

(1.40)
then u, 1s said to be a positive frequency mode.

The different alternatives for quantization may be

H

related through Bogolubov transformations. Suppnse that

there are two decompositions of the field

(1.41)
wHere Uy and Dk are complete sets, so they may be expanded

in terms of eacn other.

J i i
‘ (1,42)
Taking inner products in 1.42 identifies  and : as
1y T (ui,uj) fij = —(ui,uj)
(1.43)
These coefficients dafine a Bogolubov transformation. The
inverse of 1.42 is
* o
u = . = 7
1 J1 7. J1 ]
(1.44)

Using 1.41,1.42, and 1.44 the re]ations between the



operators a and a may be found to be as follows.

a =, .+ G
1 J1 ] J1 )
(1.45)
- * * 4
a. = «.,.a. - 2..a
J J1 1 J1 1
(1.46)

Enforcing the condition that u and u (as given by 1.42 and
1.44) are still orthonormal gives the relationships between

the Bogolubov coefficients

N 0 = < = ( 3. » =
(uJ,uk) ik Vol Tyt gy U o )
* *
= - 2 -
<‘]1 k ik ) i
soO that
.
1\] ik - “J K = J‘\
(1.47)

Similarily, taking the other finner oproducts yields
(1.48)

Ll'x;. - :,'ﬁgk = jik (1.49)

24



(1.50)
The restrictions 1.47 to 1.50 on the Bogolubov transforms

cause the operator algebra to remain invariant.

[ ai,aj ] = ai,aj ] =0,

Y13 377 - 1.51
i 1= djeay ] 55 ( )

The various choices for quantization result in

i a,a

an ambiguity in partic1é contént between different
decompositions. As an example of this, consider the

+

number of u particles in the vacuum corresponding to the

u modes. Using 1.46 we find
- - [ * * -
0 a.a 0> = -0 - - ) -2
I . SRR J1Q1)(‘]kak Bkak) 0
‘ * -
= 0 ]1:jk a.ak 0
- *
0O a.a. ‘0. = .. 5 .
3% Jigi
(1.52)

This 1mp]iés that the particle content of the states 'o.

and o> will in general differ. The observable effects of

this ambiguity are evident in the discussion of particle

detectors in chapter two.



1-3 Relativistic Kinematics of Acceleration

Many of the calculations considered in subsequent

.

chapters will involve uniformly accelerated observers. .

This section will review the kinematics of relativistically

¢

uniform acceleration following Misner, Thorne and Wheeler

(1970).
The four-acceleratinn a’ is defined by
du” _ u
g - @
(1.53)
where u~ is the four-velocity. Since
_ d o '
usu = -1 , g lusu) =9 = 2 a-u
then
u-a = 0 (1.54)
50 that the acceleration is orthogonal to the four-
velocity. This means that in *he instantanebus rest frame,
u=eq, that a =(0,a') and
B “1 N = !/qx
’.‘A'
agreeing with the usual definition of acceleration. Since

a*a is invariant then

26



(d2x) -
'i.) = | - -
o ldt:
(1.59)
evaluated in the iastantaneous rest frame, For uniform
acceleration, a-a=1/," wi.ch is constant.,

Consider solving for the Minkowgki coordindgés (t,x)
as a function of - for uniform acceleration. Choosihg
acceleration in the x direction, and using 1.53 and 1.54
along with the condition that a.a is constant, results in

the following relations.

- ° @ a7 u = ula
(1.56)
R VALY S RS VRN LT L
a% (T - W0y = Ly
(1.57)
a® = u-/ .
1.58)
From 1.53 and 1.56 we obtain
a’ = u’/ . ' (1.59)

Using 1.53, 1.53 and 1.59 we obtain the following

differential equations for the four velocity.



d’u® 1 du®.
di? v di u-/ -
(1.60)
d'ut 1 du° 1
d:7 gy C U/
(1.61)

Solving the diffarential equations 1.60 and 1.61 with the

condition u=(1,Q) at t=0, gives (t,x) in terms of

t = 15h<'/1) x = wch(:/y)
. (1.62)
dotice that \
X© - to o= :‘T(Chif/t - Shzr/L) = ¢« = 1/a“
1.63

Thus the world-line of a uniformly accelerated object is

a hyperbola in ﬁinkowski coordinates (see Figure 1.1),
causing the object to be causally disconnected from region
The causal structure of Rirdler space 1s identical to that
of a black hole represented by Kruskai coordinates. The
presence of the null horizons bounding region [ is
rgsponsib]e TOor the interesting features in the quantum
field theory of both black holes and Rindler space [see
Israel (1976)). ) ,

The natural coordinate system for a uniformty

accelerated observer may now be obtained, resulting in

e

[l



Figure 1.1
world Line for Uniform Acceleration in Minkowsk i

Coordinates

29
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the Rindler coordinates.. To determine a coordinate Besis
with respect to the accelerated observes, we must be in
the rest frame of the obJect and the basis must be non-
'rotat1ng. The first cond1t1on is self- exp]anatory dnd may
‘be satisffed by setting e,7u.. The second cqnditioﬁ means
| that the basis system rotates only as much ae requifed’by
_the changing four ﬁg’ﬂ’-ocityf Basis‘eectors orteogona1 to
both u and ad are unaffected. The result of“theseﬂ

- requirements is the Fermi—Wa]ker transport rule.

dTa = e(a-euq - a(u-ejL

(1.64)

For uniform.accelerations the choice of basis

will safisfy'the restrictions of 1.64, along wiﬁh the

orthogonality conditions -

— - - ",
r\\ferl eB — 0 s a?‘i : o _ ‘ \(166)
. This may be verified as fo1]ows;{' ) R - o
‘ ) . 8 v )} R

N
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dey _ Lda _llald .
dr Tlajdr Tja| do l1V7»0,0)
1]
= Ja] u = u(a é) - al(u é)
and
€178, T u-a =0 i
To

Thus the choice of basis 1.65 is appropriate.
define a coordinate system with respéct to this basis we

write a general vector as the sum of the object location

and a space-like vector in the rest frame

k CRR ,
) + X‘(T) /

thefe x:(T) is the object location.. This implies the

following coordinate system as i]]uétrated in Figure 1.2.

(t.x) = 2(sh =/a , ch t/x) + (asn t/% , xch </4)

t = («+2) sh /v X = (n"") C‘h J'r/;z

- (1.67)

Notice that



Figure 1.2

Rindler Coordinate System ‘

T increasing

X

increasing

= constant

= constant
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= (atg)?
(1.68)
SO an observer with uniform acc~'eratj0n remains at a fixed.
point : as would be expected.
, ,
In practice such a coordinate system 1.67 must
remain small in the sense  that ' '
al << 1 .
‘ (1.69)
where a is acceleration and ¢ is the size of the coordinate

system. This can be seen as follows,

i

ds- -dt? + dx? = -(dz sh-/a + (14+z/ )ch-/ . dr )=,

t (dz cht/. + (1+:/+)d- sht/%)2

ds? = (1 + az)? d:2 + d-2
(1.70)
but
1+a: - 0
‘therefore
" < LT

teading to the desired restriction 1.69.
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The basis in equation 1.67 will be used in later
sections, and a modification of the above &oordinates will

be useful for quantization in 1+1 dimensions.

/L t = ga% sh(at) = X = géQCh(aT> |

where the parameter a is a constant. (1.71)
Notice that '
. i éZag (\

Kot s 8 | |

(1.72)

so for :$ constant we are on a world line of constant
acceleration. The advantage to the Rindler coordinates

given in 1.71 is that the line element is conformally

Minkowskian.

ds? = -dtZ v dx? = ¢237 (Lgi2 4 g:2)
' (1.73)

In equations 1.70 and 1.73 the metric coefficients

are independent of . This implies that the operator ;

37
defines a time-like Ki1ling vector and is thus a basis for

quantization.

Y



1-4 Qqantization in Rindler Space

Since the general'quantization procedure 1is nofw
unique, it is interesting to examine the consequences of
quantum field tHeory for an accelerated observer.

Uniform acceleration is essentially thé first non-trivial
case, since the usuaT quantizatioﬁ.procedure is Poincare
invariant.

A uniformly accelerated observer has a natural
coordinate system -- the Rindler coordinates. Thus we are
essentially considering quantum field theory in Rindler
space. |

The interesting feature of this procedure is that
the Minkowski vacuum is found to contain a fherma]
superposition.of Rindler particles at T=a/2+. This is
also reﬁ]écted in the stress-energy tensor calculated by
ndrma] orde&jﬁg with respect to Rindler-annihilation and
.creation cperators in the Minkowski vacuum.

.A This éectidn will develop the standird guahtization
procedure for 1+1 dimensional Rindler space fo]}owing the
treatment of Birrell and Davies (1982).

Using‘thé Rindler cbordinates from equétion 1.71

ar | _ - as
: ' ch(a-)

t
"
|
%]

o
—
7]

pa——g
>

i
QU4 (D

the metric becomes



Since the metric coefficients are independent of =,

a.),\n

is a time—]ikg Killing vector and thus can be used to
define'positive frequency (see section 12)

Under a conformal transformation,-the'wave equation
for the massless scalar fiéld is also conformal. ‘This

can be explicitly verified by consideringlthe D'Alembertian

52 N2
~_ } A
oF e— At Z
ytel T 2
Calculating 5t and ¢ gives N
1
== 222 4 4T3 ‘Shaz ER cha- -
5t 3t N f t 3+ ai : ar -
e e
i
o - Char 3 _ sha-
X a, v T T Az 3.
e - e

Thus tne D'Alembertian becomes

(1.74)
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The two causally distinct Rindler wedges, known as
the Teft and right regions (L and R), are shown in Figure
1.3. As can be seen the-L wedge has a,sfgn problem in the
T coordinate.,‘This can be handled in the mode analysis by
changing the sign of ¢ to get the proper positive frequency
behaviour. ‘ U/

We can now construct the field modes in Rind]ﬁra

coordinates.

\ ( “jwr+ike
i AT ’ 1” R
B o wdny
Yy (75 2) T .
.0 in \\L
(, ol rike ,
i /47/ 1” L
u ( ) = " .
L7k i i
|
i 0 in R

Since neitner set is complete over the Cauchy siice t=(

+

~(:=0), both the L and R modes are required for tne
decomposition of .
() =k [ooa, qu + he ] [ s oy e
T ROk RYx T T DL LY c.]
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Causal

Figure 1.3

Properties of the Rindler Hedaes

t

1ncreas1ng

X
T increasing




Imposing canonical quantization gives i

This forces the algebra of the annithilation and creation

Operators to be

[ LaK’,EaK' ] = 0
r - = N r\..‘
- cak’:a : ] - el kk!
(1.77)
where « and - represent L or R indices.‘ This indicates

Cthat the field can be decompcsed either in Minkowski or
Rindler coordinates.,
In order to examine the particle content of the

Rindler decomposition, we must evaluate the Bogolubov

coefficients which relate “inkowski and Rindler creation
ind annihilatiorn sperators. This can be done in either of
two ways. The inner products Mmay be evaluated directly,

as in equation 1.43, or complex analyticity arguments may

be used. The second method which was introduced by Unruh

(1976 ) is much more elegant in this case.
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[f

;)(u) - ' e-]u,u ;:)’(/U) dA\,

(1.78)
then :(u) cﬁntdins only positive frequency modes it it is
analytic and bounded for al} complex values of u whose
imaginary parts are neqgative. This can easily be seen
because the existence of +LJ terms in the exponent of 1.78
would cause the integral to bé divergent for u with a
negative imaginary part. By constructing combinations of
uR and uL which obey the above‘anaTyticiéy properties, we
can evaluate the relation between thne two sets of creation
and annihilation dperetors.

The lineﬁ} combinations which satisfy the above

argument are

which when writ<en in Minkowski coordinates become

V‘T’/a k-0 vVEt4x



and
m/a k~0 ’
{

u—m/a . k-0

These expressions satisfy the analyticity requirements and
thus contain the same information ds the Minkowsk]

decomposition. Imposing normalization on 1.79 and 1.30

leads to the field decomposition

T S R - --./%a -
- ;dkyzfsn:u/a idK(‘e RUK te Lu,-k)
cra-T./22 * ./2a
+ dk(e pU_ e Luk) + h.c
(1.31)

where

dk 0 :dk 0. =0
and

r t 5; _ [

L dk’dk' ] = Kk



Lf 1.81 is compared with 1.76 then we see that

| o ( 1 '“1)/2'.8 -t ./2a )
R% T ZTshauva | % © Py |
(1.82) -
= “___“1__1_ [ 7'/2a . 'Lm - A)/Za i
L% Tvashe7a o Y e Fdoe ,
(1.83)

Since the L and R regions are causally disjoint
the Rindler particle content of the Minkowski vacuum, as

measured by an observer confined to -the R region, is

-

. -=T1.0/4d
B i W= oM - 2 e A
i R Rak M K d—k d—k 2sh-4/a r
Mopa, ca M= oL
Rk Rk eEf«/a ]

(1.84)

“he expression for the numoder aperator 1.84 is identica]
[

to a thermal superposition of particles at 1=a/2-, implying

T the Minkowski vacuyum contains a thermal distribution

of Rindler particles.

If the energy density of these particles is
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calculated bj‘evaluating the Rind]er'ordered stress-enerqgy

tensor in the Minkowski vacuuwm, we _find

.
A
' ) 21 2./ 1
Sl fai g '
276 (2 3 v A
( (1.85)
Taking into accolnt the fact that
ds = .e7237 ‘ .
. e ' -2acw
then 1.85 is modified by a factor of o , SO that .
_a- -2a
T 74s ¢
Using‘1.72 this becomes ’
a- (
= _or :
24+ !
(-1.36)
y
7
wherefgpp 15 the proper acceleration at a point 7 . N ;
e .l
[f the total energy from 1.36 is calculated we - E
obtain the fo iawing equations. _ m”f gfva"
g e ;‘ F
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S
=

Rf: o (1.87)
The results obtained for the energy density have
been found by eva]uatwng the R1nd1er ordered stress- energy

.in the Minkowski vacuum.

-

X LA . ) . .
MITT g IMs o .

If we were«td calculate a Minkowski ordered stress-energy

4

for- the Rindler vacuum we would find that .-

<R :TUV:M 'R> ='—<N{,:Tuv:R iM>

\

which we will show in chapfer two. This wou]d cauée the

44

energy dens1ty 1. 86 and the total energy 1.87 to change by.

a negat1ve s1gn

The results obtained in this section can be extended

to “the study of fermions and scalar fields in 3+1
dimensions In. 1+1 dimensions, Horibe (1979) has shown

that the Rindler parthcle number 1n the Mwnkowsk1 vacuum

ollows a Ferm1-D1rac distribution at 7=a/2 7. The 3+1

t
'
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results for the scalar field were considered in Unruh's

brigina]kpaper (1976), whﬁch differs from our previous

analysis by having a more complicated set of normalk .modes.
v



et CHAPTER TUO

I3

Model Particle Detectors

.2—1 Introduction

The ambigil}/ in the particle content of a quantum
field Ties jn.the definition of positive frequency, a
cd%tep{ which depends on the proper time chosen for
quantization. A particle detector whose response depended

On its trajnctory and hence,proper time, could reveal

whether or not this’ anb]gu1ty is observab?e ore
B

precisely, supnose the detector's roper time defines a
p

t1mo—11ke K1111ng vector giving a "natural" def%nition‘of
both quantlzat1on and part1r1es [f this natural particle
content is reflected in the detector's rnsponse, then these
part1c1es are observable, giving the quantization procedure
a physical interpretation. |

The first mode] particle detectors Wwere introduced

'by'Unh&H?(1976) and Deltitt (1979), who represented a

detector by a quantum syscem with ifamiltonian HO and éﬁ
: , . o

1

uwo nstates §E>, such that

with ground state

H JE >

0' 0 0' "0
This system is then coupled to the auantum field uf
interast by an interaction amil:fonian Hint' Anarticle is

then said to be detected when the tetector's uantum siate

Juips from the ground state to an cxciled one.

46
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To study a specific model we aésume that Hfﬁt is

small and then use perturbation theory. For such small Hint
the amplitude to go from the state !E6>50> to [Es1ys s

L

+ : ’
_’aE,'%_ i<E |<:g'f—md'r' Hjnt(r')fo>;Eo> (2.2‘)

E A ]

wﬁere T is the detector proper time, and the states !y->
o> represent excited and vacuunm states of the quaﬁtdm
field. The appearance of proper time in the amplitude:
causes the detector's’response_to be‘trajectory dependent.
The detector mode]_sgudiea by Unruh (1976) involved

@ Schroedinger particle ¥+ confined to a box, .2upled to

the field . by the interaction =3 . ‘hen tnis system is
uriformly accelerated the excited sfa‘tes are accupied by
’ /

in a thermal distribution at T=a/2+. A relativistic model

due to DeWitt (1979) has become the standard of detector
ranalysis,” the simplest such detector having a monopole

interaction Hamiltonian.



2-2 Monopd]e Detectors

The interaction Hamiltonian for the monopole

detector is

(2.3).
where m(t) is the detector monopole mement, and x(t) is the
detector location. The equation of motion for m(<) in the

detector rest frame is

|
]HOT -‘-'IH T
m(t) = e m(o)e
(2.4)
Using this result the amplitude becomes
s | iH - -TH;T
aE,/ = 1/‘—r dT J;V(X( '))\O [‘e~ m(O)e EO>
(2.5)
[*”’ "If(E-E )
dg,, T 1. dr e “v stx(t)) onqE mio) £ >
(2.6)

Thus the total probability to jump to an excited state is

. gt -T(E-E Jlo-c)
p= 1 drdte ° “Eim{o) £ - °
) ] /- p ! .
E#EO ‘
o s{x(<)) v, (x{-")) 0
(2.7)
The sum across the complete set of states o - 1s the

tdentity operator

A
!
—



so that this becomes

p~= \<Elm(o)lﬁo>lzj drde' e

+

Wightman function G (x(T),x(?')),.resu1ts in

+ >
= < ! ‘ {2,’ Tdt’
b }\Elm(o)lEo>, j_wd.,d\
The expression v
| e .2
i<E|m(o)1EO»;

is known as the detector sensitivity and

.Recognizing the combination of field operators as the

-T(E-EO)(T~T')

(2.9)

(2.10)

(2.11)

is determined

entirely by the details of the quantum system representing

the detector. The part

+

F(E) = | gedr’ e E(77TY)

1s known as the response function and is trajectory

(x(z),x(x

(2.1é)

dependent, which may reveal the apparent particle content

for a giwven trajectory.

In cases where

(2.13)



the whole process is invariant under - translations,

corresponding to a constant. response per unit time.

F(E) = Jd(f-(')d(m') e BT Gt

(2.14a)

(2.14b)
[f we now consider inertial detector motion as %n

Birrell and Davies (1982), the amplitude becomes

. ' ) 1(E—EO)1 .
Te,y T ITEIMlO)TES e “olatx(z)) o
(2.15)
But
a3k + -dkext+ict
(x(-)) o T la el -l + h.c.) o~
Vo)
fem K x0Tt () ratEel
= !
éo Otherwise
(2.16)
SO that
+ 1(E_E /V.. 5! . +
a.l . d: e 0 e 'K ()it
£, oL
(2.17)
For 1nért1al motion 5(')=*1‘ and t=.- so that equétion

2.17 becdmes

50
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CelEEg L) ' (2.18)

The argument of the delta function is never zero since

E-E,~0 and / q

Vs (1) o
- - | (2.19)

meaﬁﬁﬂg that ag =0 for inertial motion. This result is
due to Poincare invariance; the Minkowski vacuum must be
the empty state.va1id for all inertial observers.

Suppose that we now uhiform?y accelerate a detector

so that it follows the world line given by equation 1.67

t = 2sh </ X = -wch. -/ ¥,2= constant

(2.20)
Following t.e standard analysis due to Delitt (1979),
and Birrell and Davies (1982), the response'of the detector

may be calculated as follows.

The Wightman function for the massless scalar fie]d_
is
o+
G (x,x") = - ]2 [(t-t')z-(x—X')ZJ‘]
4+ T

(2.21)
Evaluating this far the accelerated world line in equation

2.20 we find



+
G (x{(t),x(<")) = - —l? [(sh t/a-sh T'/a)z—
471
(Ch t/a-ch Tl/fl)z]‘]
!
= - ]2 [Shzlr/?a Ch2 T;T' -
167 £
| 2 st 2 w7
e st ] ‘
+
G (x{r),x(x")) = - ]2[12 shésr/2,]"] ’
] 16x :
(2.22) *
The presence of ~ invariance implies that there is a
constant response per unit time.
+ > .
F(E)/~ = [ dat e-]EAT(- > 12 )
. /- 16+ TL‘-Sh LT/Z‘:
' (2.23)
Using the expansion
to
) 2. _ 1 : 1 2
cserx = = ) (g
nN=+cw
(2.24)
then
) ] _ 1 1w 1
sh-a1/2: (i sin 11:/2;)2 ¢ n=-= (;;' - n)2
+ o [
i ] - _412 ; ]
sh AT/Z:L nN=-ow (L’+12ﬂﬂ3>
(2.25)

The integral in equation 2.23 can be evaluated by completing

the contour in the negative imaginary direction and



ignoring the n=0 pole when calculating residues.

F(E)/Y = “‘]_2_ J (211)(_1E)E1E(11n2wt)
417 n=]
S E 0 -2mEl B ef7EN
2n n‘:1 v ]_e-ZWEx
F(E)/’ = EWE'(*‘*“
Zr(e ~—])

(2.26)
Usiné equation 2.26 and 2.10, the probability per unit time

15

R 5 (E-€ )
Prro= gm Eomlo) B 2 TEE ]
e -1

his result is identical to the behaviour of the same
detector at rest in a thermal bath atAtempeHQturé i=a/io

Since the Minkowski vacuum contains a thermal
superposition of Rindler particles at the same temperature,
“this implies that the detector is responding to the Rindler
particleé, 9iving the alternative quantization procedure a
pDhysical 1nterpretakjon.

A uniformly accelerated detector will not yield a
thermal-resu1t for an arbitrary H*nt’ the dipole detéc&or

being one such example. N

v



2-3 Accelerated Divole Detectors
Dipole detectors were inproduced by Hinton (1983),

who fou;d a non-thermal and non~isotfopic response in 3+1
dimensions and thermal response jn“f}1 dimensions. OQur
analysis differs from the method éf Hinton in that we work
directly with tne Green funct ™n as opposed to using a
field decomposition in Rindler coordinates. Apart from a
different choice ot renresent1no thé detector d]oo]e moment,
"the results we obtain are Lons1s;ent with Hinton's.

J
Tne dipole interaction Hami]tonian is

E (2.28)
where m”(') 1s the dinole moment and <(:) is the detector

lTecation. Jsina the eauation of motion for m“{ } leads to

the transitiogn probability (from equation 2.10)

o -1H -
() = e 9 mi(oye O
\ ' *.
P = Eom (O}fEO* Em (o) E,
. =1E - + ,
d-d-' e VG(x,x )‘x=:<( /‘
X'Ex () (2.29)
Let i
m{-) :m(')u+m]( )n (2.30)

“where u is the detector velocity and n is the principal

normal to the world line. satisfying u-n=0, n.n=+],



* -

The vector n is a fixed vector which 1s Fermi-Yalker
transnorted. To illustrate this, consider the equation

of motion for n (see 1.64), _ !

n

T utasnp - alu-n) = ufa-n) (2.31)

aloy

/

[t we evaluate 2.31 1n the rest frame u=eo, then n=(o,n])

and
i
dn' 2
_dr = O . . (A.32>
SO that in the rest frame, n is a fixed vector.
The conditions in 2.30 wmust remain valid under
Fermi-Walker transport. This may be verified as follows.
d(u-n) dn
- = . + F——
I a-n u- g
Using 2.31 the above exnression becomes
g%]_):a.n-‘-u.u(av.n) = N ‘ :233)
@
['t must also be verified that n remains Jormalized.
d(n-nd _ dn
g T en d:
O . A dn ‘ o ,
4sing equation 2.31 for g @nd the result ¢.33
7 (n- ' \
- d‘ng) = 2{u-n)la-n) = o 12.34)

55



lhus 2133 and 2.34 indicate that the choice of the dipole
moment in eaquation 2.30 is consistent with Fermi-Walker
transport.

Using the coupnling in 2.30, the probability for

transition (equation 2.29) becomes

‘ ‘2 r '](E"E )\_ +
p = E moko)-EO ;drd~‘*e - G
:‘ | ) 2 f ‘1<E‘E )\l
+o<Em (o) e, dedre
! o X X' y yv' +
\ . G
— tnon A S yyt
>
X' 1
+ (n™n lx' + n“ny ;’:y' * symmetric terms)G
> 5 )
’ . *
+ <F mo(o):EO\ E mT(O) b
+ ;d'dT' e_1ELT ni:;.r.G+ + symmetric term
+* similar cross terms for x,y . {2.35)

ana - are defined by (equation 1.87)

23

t = («+2)sh /. z = (+:)ch -/

L W

pe
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- ‘ m « : ‘57 6‘,
Cvaluating the derivatives alon*the uniformly . - ! ’
v :‘*\,
accelerated world line ¢ '=2=0, x=x', i}y', qives
+ [ 3
a3 j G - S VO e e
. a 2 N
\]6!121 Shdl\r/?.t 32"Lt45h A2
+ + 1
G = I CR
X X
vy 32- 4t 0
. + 1 1
<:,—IG = - — ) —_— m—————— e ——
N 16 “¢4sh2f;r/2- 32"2 4Sh4.*<f/2‘t
+ + he-/n
3 'G = - , G = v->cr1‘;f,,/:_r_ e
’ ) ]6:?1ﬁ<h3;ﬂfﬁl
(2.36)

A1l other derivatives are zero.

flotice that the - translation symmetry exists,
meaning a constant transition probability per unit time.

Evaluating the integrals

+ c e-]E“d . 8”E:,2
- shZ\/Z. eZ"E‘_]
(2.37)
+ o -1 )
e E‘g; _ 4o [(EL)2+4EL]
P shak/Za 3 eZ"E 1
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[+.m e_ji\‘cn,\/Za‘dA,: iaE8n‘,Ea2 - :
B W s N o (2.39)

Finally this leads to the following result for

equation 2.35 using 2.36 to 2.39. "

_ 2
3 1<Elm (0)]E >/ |
/T =—E—‘ I 0 0 ‘ Wt
P/ '87rv, SZTTECL_-I) | “,
N . i . 0- o
| - 32
. 2 E-n
+ | <Elm (o)l E >] ,
] . 0 . t24m(e27TEl_.l)
' il
Eag'n2 2 n e |
R * 27k~ * 37 TN
‘ 6w (E -y T (e -1)/
, o .
g%? 2 (<E!mo(o);Eo>gE{m](o){E - c.c.) {
PR RN 1 P
- - ‘ P _
\ 16752t (e27EY ) | (2.140)
The combination nga can be wr1tten'as n-a. 'Since.

nia s time 1ndependent (seev?.32x n-a must also be constant.

"This may be verified as follows, : N o
: 1 ‘ ‘ n ‘

>r' W

'
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d(n-a) . dn da
dr dr a+mn dt
, : B e
Using 2.32 this becomes
d(n-a) _. , da _ da
T—— = (u-a)(a:n) + n . F ;n . d-*
b
For uniform acce]érat1on
%% - 2%y ) (see chapter one) ,
t ‘ — &"'@
¥
3, \.v"- ""'«{‘m\
Qigiél - neu =0 (equation‘2ﬂ33)

so that equation 2.40 can be written as

-
' 3
2 E
N/t = j<Eim (0)/E 5! -
‘ 0 0 8n<e+2wEa_])
{
’<E’m'1'a;fE 1 (£ Ea? o 2)
+ 9 : T E(n-a)“:
2TEx 1 24~ S 3 J
e -1
!
FInL<Eim (o) (€ ><Elm (o) € >"]
El
2 .
E™n-a ~
< \ (2.41)




xﬁ:’.‘ }
This probability is both non-thermal and non
isotropic, where by non~tHerma] we, mean that { i pénse
is not identical to that expeeted byvthe sa 'tbr at

rest in a thekma1 bath. Both these effec
space-]ike coup]inés so that fof a pdre}y t“ tike
goup1im@ (m](r)EO) the response yill.be thermal. The
effect of the non-isottopic n-é’term is td single out the
d1rect1on of accelerationas preferred, a result which i's
reasonab]et

For a genéral’éoup]ing the dominant contributions
to equation 2.4) occur for E/a<<1 (E <<a), which 1mb1ies
that the non—therﬁal contributjons wWill tend to dominate
the detector response. An explanation of this result
s necessagy; most of the confusion results from too
muc@ﬁgeasohingbby analogy. Since a]] prey1ous resuits are
analodous to tne behaviour of the same system at rest in
a thermal bath, we would expect‘the same gesult 16 this

*+ 3
case. This 1s definitely not trues The Rindier metric tﬁ&

55 1dent1ca1 to ‘that of an 1nf1n1te flat earth, sothe corredf #
ana]ooy is that a un1form1y accelerated detector responds
as though it were at rest abovefan 1nf1nitg flat earth.

For the Tocal monopole detectorithis is not a problem

but when considering differences between ‘two points, as

.&#with’the dipole detector, discrepancies will occur. As

7 a rough indication of what can happen, consider the Green
function G](x,x'), as studied by Troost and Van Dam (1977)
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and in more detaijl by D ﬁ er (1977).
‘ (2.42)

vl lt-t")

Gi(x,x")

For Rindler coordinates
X = (a+Z)chrt/n

t = (atg)shrt/a -

evaluated at £=0, 2.42 becomes (see 2.22 and 2 25)

Gl("‘,T :— 2 ] N /
8r "sh it/2x
| to ]ij , :
GE(z,-') = - ;e (2.43)
217 n=-=» (L#+123n&)
(1.29)

The corresponding thermal Green function 1s

Qe
o

. »

<

. + o .
(t"at' ) = - ]2 Lr): —;—]—gzﬁm o
. - 27 n:-m’(‘;t‘*‘in\%) \.“"‘ : i
' Yo "
) & v mv‘ ,:

field eya&uageq on the

so that the Green function for the
confined stnict]y to thés
. L8

The

~—

line is thermal.
response

The time-1like counlings are

world
lead to a thermal

world line-anda will thds
space like couplings are sens1t1ve to changes in the f1e]d
lines having different accelerations

between two world



This impfies that a space-Tike coupling is comparing
points at varyihg temperatures, thus leading to a non-

thermal response. . ~

. L
v

R L

I



2-4 General Positive Frequency Respon;e
The generalization of an accelerated trajectory is
a Killing orbit which provides a natural method of
quantization and particle definitioh. It is thus ‘interesting
to consider the behaviour of a detector witﬁ a world Tine
of fhis type. e will show that a monopole detector
following this denera]ized trajector; will respond to the
Killing pértic]é density. This 1is analagous to the
accelerated detector's response to Rindler partic]eé.
+ Let the trajectory proper time be T and supposé that
2/ i represents a time-1fke K111ing vector,‘ then the field
may be decomposed as |

Q

(2.44)

+ .
where bk and bk are the Killing annihilation and creation

operators.
With a monopole interaction Hamiltonian, the
-response function i% given by (see 2.12)

FIE) = | d:d:' d3kd e”E("f )
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< <0!(‘5(w+E)Uk(io)bk + q(u)‘E))Uk(i,o)bk)
X B! = = < ! ) - i ’ >
( (kU E)uk|(-_-)-0)bk' + (u) +E)uk (io)bK’)‘o
(2.45) ~
Wwhere Eb is the detector location. @

Since E,w>0, the only non-zero delta function
contributions will come from the bL part in the first term
and the bk piece in the second one. This results in the

JRE

response

‘,,5_”
/7

| - (2.46)
This implies that the d;jzitor responds to the éi11ing
partjc]e density 1nithe vacuyum state o0>. In the case of
ansaccelerated detector the number of Rindler particles in
~fﬁe‘Minkowsk1 state follows a thermal dfstribution wh{ch is
then reflected in'the response functionf  This also

explains the behaviour of the dipole detector in a different

way .
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The response of the dipole detector with purely

space-like couplings will be

..u,;uf 0
This means that the detector js measuring differences
in the number density, a quantity which ngends on the
local acceleration and hence posit%on, resulting in a noi—
therpl, non-isotropic response.

‘Equation 2.46 can be written in a different way by

realizing thatfsince the b‘bL term Wi]1 be destroyed by

k
the t,t’vintegratiOns,(tHe operators may be reordéred as
follows ; |
FE) = )ded Ce T EU T e ) sk ))s, o
(2.47)
where e represents normal orderihg with respect to the

Ki11ing annihilation and creation operators.
Thus weé have seen tHat a detector responds to the
“particles natUra]]y defined by its world line. ile now wish

‘ G . . .
to consider the difference in response from two distinct \\

\
[y

trajectories "in an attempt to détermine if there is a
state,ihdependent différence between them.

Suppose that the state of the field is i, then

]
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consider two trajectories with positive frequency modes and
operators represented by 0,56. From equation 2.47 we know
that each detector will respond to the effective Green

functions

(2.43)
The difference between the two orderings in the above
equation will be a*c—number (as is'always the case), so the

task will be to determine the significance of this function.

Using the notation

= + ' = 3 0 S0
2(X) a.u, 3. u, ajuj + ajuy
Ti(x') .= Lo+t aLu. o= a0l
(X a,u, a.u. aJuJ + h.c
(2.47)
then ’ N ' .
(xpz )y = ne (g (x) o
STFUDA S SR O ST T B S RETRE R SA-R
jugtage i ] o> 4l (a1aj 3395 o>
¥ L
FOLU(E.a, - ALAL ) D0l (3T <33 ‘
17349 J 1 o) u1u3 (aja1 a1aj o),



The relation between the operators a,a in terms of

the Bogolubov transforms (chapter one) 1S now used to obtain

the following equations.

joiln}
Qo

Qo
[e70]

jevy]
Qi

je3h]
Ut

Similarly

[oT ]
[aVR ]

oty ]
Qi

Using 2.49 to

ffw“j

= Ly TS SRS P Jiat’-)
\
R - - * * - -
= aiaJ +‘1k7j;<aka - a ak) = a.a
= by k ~ 51kak)(‘j;a Ty, )
=33+
NIRRT

2.52 in equation 2.48 we obtain

(2.49)

(2.50)

(2.51)



- -y * * - ,
- Ujuj i].kc,\\jk U].U) 1\]LJ'k
- * - i R, - - *
+ou.ut gL, 5. + la . - . .
l il Bkt 4t (a\]a 1T T k)
- -, * ’* _.’._:.' )
I R AR T LN TSR L S R PR
- * ] *
+ U_u

but (see equation 1.47)

~* S ;*
ik gk T ik gk qj
therefore
[ / ' ! * * (
2(x) s (x") 5 d(x){x") o T TUSUS iy
’ - * - -t * -
+ LUl LT + = 5. . z. .
u1uj ik gk u]uJ 1k jk u1uj ik ik (2.53)
Evaluating the following expectation value
0 ta(x)s(x"):lon = «o‘uiujcaiaj
_;__.., - - - - _g_ - _—-l - -
+ u.u a.a_ + u.u. a.a. + u u é¢.a., o0
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- * * i
40T ik T ik
we find
- - B * ok
ao‘aiaj_ow ERETER (2.54)
«o;a]aJ‘o\- = -e].ktjk (2.55)
- - , B -‘* 5
Oja]aJ‘O\ = ik ik . (2.56)
50 that
) t i - - * ;* - - B *
0 ts(x)2(x ).6[0» ToTUGU gy T UG Sk
1 . | ‘ X :‘\'\x
R R TSR PR RN DI o (2a57)
This equation 1s identical ¢o 2.53 implying that
\l\ / 1 3\ 1
(x)2(x Jigo- 2(x) s x Jig = 70 (x):(x )15 0
(¢2.58)
or.
SN (x) p ) )i o N (k) s ()N
0 0
= <0 :(x):(x'):6§0> (2.59)
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Using the.result 2.59, consider the difference

between the re%ponse Funct1onsﬁfor two trajectories

N

represented by

"op
Supgp5e that ﬁpr bothvtrajector1es
“R

“then
&k

tneve1y5~qleons¢aht,

(2.60)

Ty
W

where G nﬁ% ar§ the effective Green fUnctions (see 2.47).
m Lw“ ‘ ‘ ' :

Uswnggg%e

fesu1t 2.59 théﬁ
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Theysigniﬁcance of th%%s'ﬁ]t is that the

difference in response to the state IN- for two different

B

trajectories, represented by 0,0, is governed by the

state-independent object

<o}:p(x)p€x'):6jo>«

~

which was'origina]Ty the response of the 0 detector to

the state jo-. This implies that there is a significance
to this object. For example, 1n the accelerated-inertial
‘ .

case which we have been considering, the‘ngsponse function

will always differ by a thermal contributionfiat T=a/2-

regardless of the state examined. This inesfthg

acceleration raﬁiation an“object1ve meaning. It appears

as 1f there is always a thermal stress-energy tensor

present when comparing accelerated and fnertial systems.
I[f the normal ordered stress—energy tensors

appropriate to each observer are calcutated, we obtain

-where O 1s the dporonriate differential operator.

Then g&é result of equation 2.59 agijves

(2.62)

whero thao tAawvm

/1
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is a generalization of acceleration radiation. Note that

v - v
this result implies that

i-]o>
uv 0O

0> =-<0]:T
iy (2.63)

as mentioned in chapfer oné.l j‘ . .
- In summary, response td state [N> by twéidlﬁt@gct
detector tra3ector1es differs by an amount attributable

to the presence of a general1zed acce]erat1on rad1at1on

”thus ‘providing it with a-ph/s1cal 1nterpretat1on



2-5 Energy -Balance For Mgnopole Detectors

In previous.sectioné we have been mainly coﬁce?ﬁed
with detecfor behaviour aﬁd ngtxwith the state of"the;fiem.~
If equa£1on 2.6 is considered we see . that the amplitude

for the field to maie a transition to state |u> is

The Tinearity of #(x) in annihilation and creatign

!

operators implies chat the only possible candidate‘fof~ S
is the one- article 'state. Thus for a non-zero amplitude,
not on1/ will the detector be excited but aTso tﬁk f1e1d

will Jump to a one- part1c1e state. As v1ewed-by an

' _Vinertla] observer,th1s process will appear as detector

P
]

€xcitatidn with the emission of a scaiar pgrtiéle --
V}fbgha&iour thaﬁ seemeparadoxicé1 Withoyt‘ﬁn energy source.
ATtHoudh 1t‘1s,usu§1]y fut11e‘to question energy baiance
when:emp1oy1nghperturbation'théory, in"tﬂgs caée‘we\aref

’

égry1ng to reconcw]e the behavioural difference between

inertial and hon-1nert1a1 detectors.

L4}

s ’ v
Con,wder the case of I+l uniforp acceleration where"

T~ X T«
che amp11tudq is

ag - (d dk o H(E- E )- ‘~’e;1“3+{k5

. 7 w . | . \ .-— .
where, as in chapter 1, lthe Rindler coordinates s and -

'hequt in the line element evaluated at :=0.

13
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-dt? = 7% (Lds? 4 d:2) = _ds2 #

The objects Ry and R} “are the Rind]er'ann1h11at?dn and

. 13

creation operators. But

@@@ h RK h\lak + 5ak

so the only choice for [y>is the state- flkf£13
The probability is the same for‘either positive or

Chm
ne,ative k because

f( i(E—E )' —1.\"
s ’ n . * ! ~
Pe ;)d e T ol e IK.!RK. 0
< : R e ih
\ foolg Revton ]
where ‘
' 1, R 1, 0R
R0l iR 0 \

depends only on the magnitude'of(k' (see equat%oﬁ 1.82).
Thus an fnercial Qbse}ver would on average see B]ue—sh{fted
~particles enfitted to,the right and red-shiféed ones to the
]eftﬂ The net effecf,oh the detector is a force 0pposing
its mof%éh.‘ | b | |
. This force,along ;ith the one requ{red due L0

Tncreased'detecfpr mass; mus't be\supp]ied by an external
source for-the detector to remain at constant acceTération[

‘The work done by this source supb]ies the energy‘balance

for the entire process.
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A ‘ ‘ CHAPTER THREE . o
. - Moving Boundary Effects
3-1. Introduction
Th: presence of perfectly reflecting boundaries can
cause non—trtvia1'vacuum stress—energy effects, a famous
s example being the Cas1m1r effect Can the motion of a
boundary produce a hon tr1v1a1 stress- energy tensor? _fn‘
.particu1ar, will un1form accelerat1on praduce a thermal
stress-egergy @grge1ng:w1th that obtained in _hapter one byt%
cohsidehihg Rindler paktic]es? These questions i1l be »» “
%%ifﬁﬁi )1nvest1§ated thr spaces-bounded by one and.two mirrors, forgﬂ
- 1+1 dimeh?{gns. This permits the use of conformal
5 1nvar1ance of the wave equétion to map the wor]d lines ot
fpégacce]erated mirrors to 1nert1a1 ones. .
Q Some uniformly atcelerated mirror.prob1ems have been
t f501ved‘1n 3+1 dimehsionsvby'Cande1as and Deutsch (1977),
and by Frolov qn;_Serebriany (1979). }CandeTas,and Deutsch
conclude that the asymp%qtit.form>of T.,,6at Targe distanpe
from a un1form1/ accplerated pTane mirror is identical to
a negat1vn energy therma] resu]t related td the local -
acceleration. Ffrolov and Serebriany make Qse of tuc. idean
space to Simp]i{y problems ?hvo]ving uniform]y accelerated
expanding'spheres,‘a technique we will emp1oy“1n'1+1
d%ménsdo%s , ' ‘}“ CoE
To brtdge the conceptua] gap between part1c1es ahd

stress-energy ca]cu1at1ons, the behav1our of part1c1



wed

detectors co—moving'with the mirrors will be investigated.
The results agree with the equ{va]ence arguments 1ntrin§1c
to %e]ativity. F%r example, a co-moving observer would
claim that in his rest frame the mirror 1; stationary so

his detector should measure nothing. This result will be
3 1 .

verified. -9

~a



3-2 1+1 Non-Unitorm Acceleration of One Mirror

In tnis problem first studied by Davies (1975),
ana Dewitt (1975), and in more detail Dy Fu]]ing and
Davies (1976), an in{t1a11y stafionary mirror follows a
ageneral trajectory. Th1s/;€tt1on will review th
ana1/s1s of Fu111ng aﬁ//Uav1es 1ead1nq to the caicu]at1on

ot va due to mirror motion. The proo]em 1s to solves

D00 s(na(e) - o BENEIRE

where z(t) 1s the mirror position at time t,.z(t)=0 for

t<0.

X The'so]utidﬁgs

v - (3.2)
whnich satisties the conditions in.3.71 since eacn term
) b s » N .

) ‘depends. only on'u cp‘v,‘softhat

-

]
)

' ?u 3V 8. . '

The boundary condition can be verified using 3.2.

:’P

e iolru + 2(r0)) | -iu(2ry - oy 2(oy)



CAY

~shown in Figure 3.1. Then def1n1ng

'creatioh opehatbhé>%%

mth ashe f1é1«d

= e twloy +ozlry)) | -ty + 2(y))
(3.4)

The parameter Ty has the geometr1c 1nterpretatlon

W

3 .
oo plu) = 2ru -
we have
(%Y
du) A - )
s e ey

(3.5)

where a ‘and-af ahe' kOWSk] ahhihiTation and

‘j1rror was 1n1t1a11y at rest

SVecuum state

,4. “L‘

There 1s an

B

g‘t |n1t1a1 cdndition contained in

the abbve so]ut1on in that the' eTT*V_term represents

‘fﬁ

unmod1ﬁ1ed Weft -moving waves Any other cho1ce_@eu

represent a part1c1e f]ux 1nc1dent from ?hfinityﬁfkﬁg
¥ \»} - ’ .

vio]at1no the cnnd1t1on that the field state

s the M1nkowsk1 ‘vacuum. " For example, Rindler codrdihates

~ “

ce u1d be used for un1form acce]erat1on in the above problem

but.this would alter the 1eft—mov1ng waves, v1o]at1ng the

above cond1t1on and resultTng in*an 1ncorrect va]ue for

T

© -

The=stress energ/ tensor can now be ca]culated using

the techn1que of " pownt sp.1tt1ng (see chaptS{‘l) to
RV - -.: {l . ' ’

e Sy N

o L e

dhmi-ws g
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Figure 3.1

Coordinate Description for Single Mirror

Non-Uniform Acceleration

L

o f———— mirror .world 1ine

7.9
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il

reqularize the tensor. This involves evaluating one of the
fields at the point (t++e,x) and the other at (t,x) then

expanding in powers of

00 11

ol = 'lo Tt Yt

)
)
o
4+ - = [ :{ “);7
(‘\<t ,,X) = Jdﬂ\-f”\—} . ity
( i - oy 1 -
<a [ e elvee) p' (u+Je p(u+‘)] + h.c.|
| (3.7)
low
T(= Tu\):+ OTV)O
' (3.8)



where
| f v L + , e + )
<0 TOlto» = jdn i fe (v+) - p'(ut.) Tup (u .%
{_.AJ _'JJ \’
< 'Le Tav "(u) 1 D(U)g
1 : f : f’ ) 7 _ \
0 Tgylo- = i@ I [91 - 0t (use)pt(u) el ebplure) D(U)JJ
(3.9)
: - |
0 Tog 0w+ Jau gz | eV gy oietun
po
b= w -1 ] ! + V)
o1V o' (u)e 1uo(u); N ie] (v )+ o' (u+ )e] p(u+. )]
\\\ v | | \}
;\‘e.;¢1~v + DI<U) e“'lipD(U) ? ‘
’ ( . ‘ ] R
0 TOO‘G;; = d. g yey + p'(u+-)p'(u) eT“[D(U+'>"D<Q)],
(3.10)

The cross terms in the expressions leading to 3.9 and 3.10
have been 1gnored because the imaginary contributions to
T -vanisn in the 1imit as . approaches zero.

When the expectation value is taken in equation 3.8

tne normal ordered term disappears leaving only “he

81



contributions from equations 3.9 and 3.10. The integrals
from these equations may be evaluated by rotating t.e
contour to the stitive imaginary axis and including a

negative sign.

Therefore

doe e U7 = f . oid. e’ = 4. e
f i?% e 7 = ‘%ir
(3.11a)
. = s o tuy et lolur ) on{u)] | o<1 p(us o' (u)
5 = p'{utz)p'(u) e T~ Tolur-T=olu7]
(3.11b)
Ekpanding in a power series for - in 3.11b gives
*;
] +. | _ ' .
41p“‘)p(u>ﬁ:r}p(u)“ 1 ]
[o(u+:)-p(u)] [o(u+-)-p(u)]
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S Sy o 1
4y P (u) ‘t[D (u)e + e o () L T T ) ]
I 6 ]
g “ )
_ - , ;ﬁ w,_l t( Dl‘, r"O.H) - 1 Dli' o
i 0 (u) opt(u) ll T 2pn! b o6p |t (ZD' ’ “6p! ] J
B ,-J; 3 l 1E.I| *:D. 1 {pll . ) *
B P T o T G0 + iy . 5| + O )f
1 . 1 1{ o e D )
pifute)pfu) . 1o 1 prtto3fprie S0
3 T T A ! '
4rlp(u+s)-p(u)]? ’ AP 2uPt
P (3.11c)

Using 3.2 to 3.1[ wé finally obtain ~T e

- D N T I R I
ot T Iy o oz, A0
. o 3 fl
Too = =" To1” = 3 S ¥ Yo
%:f :0‘; Q“%. L3 ( :3
% R A } i

If tne point spl1tt1no~techn1oue is carr1ea out;f@r
empty dwnkouskj spafe a d1veraent term 1deﬁt1ca1 t@zthét"
in 3.12 is obtained. As pn]y differences from thi§ f
dive}gent value are observable, it may be suotractedu

from 3.12, resulting in the reou]ar17ed stress- enerov

tensor when the 1i1mit as‘¥'ahoroaches zorb is taken. .

tﬁ;”} -
.;Ol, :/Tll" = _TOI

v
S
PSR 2N



€y,

ot Ly 1.

(. e o]
r .= Ip ), s 2 . P
‘ 2io' o 12+ du’ vp'(u)

B!
01 24+ pe

| ! (3.13).

Using equations 3.2 and 3.5 the above expression.may

be evaluated in terms of kinematical properties of the ’
world line. - ' -
: do d- '
n{u) = 2 - s 2 Ty . ) .
(u) ! A ! Q
A
_ du
u o= v e -
" () i 1 v
u .
(3.14)
Therefore
do oL v vy
dU 1 - Y _ LV
# (3.15)
The expectation 5y s now calculated using 3.13 to 3.15
o= oL vt de ey
Ol 12- [ d'U; Lt v ‘
¢ 3
' »
{ > : ( : . i ‘
e T A SR d -y
12 -y du -yed TR v
{ “ L
12- . )
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Fina

wher

rign
S.ame
mire
reta
equa
and

q

radi

Tne

fov v 1. d
T 1 . a
01 2 iy-ve o
mirror
‘;h
"
.1 sy da
01 12+ Ly =V

mirror

1 - M
iy we nave tne result

; 1 s T - T ;g?l {vfky 'dd

o I S R

P

-

e tne derivative is calculated at the retarded
* Thus {hé.mirror radiates negative energy to

L provided that the acce 2oration +s increasing.

3

mirror

(3.16)

time

the

technigue is amploved an the opposite side of the

~

or, the difference “being that advanced instead of.

-

rded -times are yused. The result 1s ‘identical to

-

the blue-shift becomes a red-shift,

P

tion 3.16 except far a change in the sign of

the energy

An-inertial observer would see a net energy oeing

-

ated from the mircrer,

e

I Y R

d- 12 -V - R
SeTay 5aTance 15 cravidnt N, tre e
SR - - -

&

e}
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N - T 8g
\ 4 ~ \
\‘1‘ ‘ . - :
. T o . A ¢
v : ]
“ F = T n = T nvl *1,, [}
[T TR + uvo
N o \)/‘. - AR . ‘ .
where n_ is the normal to the mirror. In this case,
. :\“ \‘/ . c ' o . ‘ i ‘ h : '. : ’
 ~£;‘ . o N . | _ J -
v -8 : g :
“therefore . : o } ) A N _f
- ) \‘ \‘:‘\ ‘ . W &;’ N
o R »
Ve . )
= _4a [vFyv) \$1+VV) L
F L I - vy
; 0 12+ [‘(-*{V) Lv=-vv) Y
. P / ’
[’)’
. A\ )
a Y= (y=vi | v, .
X + | T h ) N
127T L“Y""YﬁJ (v L\‘/+~(‘V)/’ . } 7
N
..\ N . \
T .
{ 4‘44 H f
R v
i .
' - va

is o
0 _ Yva
P e,
- (3.138)

which provides'the‘egﬁrgy balance for the radiating mirror.

If we now determine the total energy radiated by the



mirror in moving from inertial motion to uniform

acceleration, we-find

_ (/ ’ | -

| With ué#O\ for only a short.period of time, the

S

+ velocity ,of the mirror will change very little so that

! /

S ' o r '
If we-calculate the tota} energy expected from the

_Rindler -particies as 1n'chapteéﬁone, we find

-~ = M !
T f‘”// Ml g M .
/
. ' /-
and ' ] //'/
S
. /.
E = - 53 "for  RLIT IR
24? : u‘).M

This means:that the acceleraticn radigtion cannoﬁ be .
thought of as a therma]ized~rémnant of a dymamiqurocess{as
studied here. A-more realistic model would be/@n
accelerated box which can thus contain any eneégy radiatedi
and‘poésibly thérma]ﬁze it through numerouys reflections.

This will be studied in the next sectian.

. ' o o (3.19)
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The respohse of «a >art131e détectJr co-moving with

oy

the mirror wr]] now’be examined. Intu1t1veﬂv we would

expect a nu]] response since in the defector*s rest frame‘

the m1rror is stat1onary } This is indeed the Case, as we
will now: ver%fy for a mongpole detector A\
' Fo<<j monopole 1nteract1on Ham11ton1an the- amp11t”dew‘

is (see 2.6)

R ] !
. _
5. , [ i(E-E "
" agr, - Jan g e et lop |
‘ (3.20)
‘Due to the‘confq?ma] invariance of the field we can express
the above equation as ‘ : o ; ¢ ﬁﬁg
AN
. R% ‘ :
'f » B . /
LB ,d tdw 81 (E- Eo)"» <w'(a e vt +_>1 C.)sinugio>y
' “ ,
where ' o ! .
D(ul =7 -z v. = o+ 0z
(3 22)
This can be verified by subst1tut1ng equae10h 3.22 into 2.21, - -
\ . z

resu]t1ng\1n modes identical to equation 3.5.

The line element for equation 3.22 becomes

-dts + dz? = -n'(u)dudv = p'{u)(-dt? + dx?)

1 ~

"

n'{u)ds?

which is conformal to Minkowski space. . Using,this rasult



/

o ' o : 4
y
(
with ;=g&2tonstant for a co-moving detector, 3.21 becomes
" - . ’

o

+
el
m
1
m
+
€
~—
A
o
[e}]
+
o
4
—

4 a " (dv inws, 3(E-EFE +. <'¢!aéI >
; £,y )“w S 2f g ( ELO o) J‘-m‘o

SO the delta funq§ﬁbﬂ)will“a1ways be

1

But >0 and E—EO>04

Eyw
a co-mov-ing particle detector.

]

" Tnis phenomenon is aifferent from thase already

examined. In this case <T,v> reveals energy content but

o

the.co-moving detector measures nothing, as opnosed to the
nrevious cases where narticle response existead in the
absence of stress-enerqgy. This analysis suggests that a

particle detector is a probe sensitive to

zero, that s a. =0 . This results $? a zero resoonse by.

89
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equivalence arguments whereas Tw is not. The reason for
this is(ﬁhat any world line in'1+1 dimensions can be _
straightened by a conformal transformation, forcing

co-moving detector response to be zero. The ‘calculation

of Ty, however, is sensitive to the dependence of the

“conformal transformpation on the Minkowski time parameter;’

which may lead to Tuv#O. : .

90



3-3 1+1 Uniform Acce]eration of Twd Mirrors
Th1s problem involves:the region between two mwrrors
"w1th different un1form accelerations' and the cond1t1on ' . 5\\\

that $=0 on the boundaries, as indicated in Fiqure 3.2.

o

. If the region‘between the hyperholae is.mapped
Euclidean space, then it becomes bounded b
circles as shown in F1gure 3 3. The,Euc11dean secto
i]]ustrates that this system repreéents’& uniform]y
aebe1eratee rigid "box" because the«Q@@per distance between
the two circles remains constant. R

To evaluate T, , the Feynman's Green function will

be obtained by'so1v1ng,

X | . (3.23)
subject tor Gp(X,x')=0 for x or x' on the boundary.

The boundary condition on the Green funhtwon ref1ects the

cond1t1on on the f1e1d Regu]ar12atwon will be carried out
by removing the usual Minkowski space contribution and then

T, can be obtained by operating on G with a suitable
» : reg o

operator;
Before continuihg wtth the two-mirrbr problem, the
one-mirror case-hi]] be solved.’ Thie will set up the method
for the:morevdifficu1t two-mirror cése and will verify the
result obtaihedxin the previous section that T =0 for

SRV

uniform acceieration.
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Figure 3.2
World Line for TWb Mirrors at'Uniforh

Acceleration in Minkowski Space

AT
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Figure 3.3
World Line for TWO'MiPFOFS.at Uniform

Acceleration in Euclidean Space
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The one-mirror Green function may be obtained in the
Euclidean sector by mapping the exterior of the circle onto

a half plane as illustrated in Figure 3.4. This mapping is

=
i
[ —
+1
NN

(3.24)
where . z=x+iy is a point in Euclidean space and w=u+iv

. / . ’ - .
:;Jhe circle lzl=1 becomes the line u=0 1n the w-plane.
>\" .

The Euclidean Green function is related to the Feynman Green -

function by

Gel-uxsonox') = A6 (it it x")
(3.25)
Using the equation 3.24 and the method of images in

the w-plane gives the Euclidean Green function.

1

! = Vg — [ *1 ; oot
GE(w,w ) = - 5 Infw-w'  + > Tn w+w''
i n 1+2z 1+z2"
\
| ) . P4
Y- 1 z-z"'
GE(z,z ) = - 5 In| ; .



Figure 3.4

®

Conformal Ma®ping for the Exterior of a Circle

we L=z
1+2
z-plane z=x+*+iy
4 % A
‘\\\\\ ° ( X 1)’ )
. //\’ A,
3
i X
/
7
//
X__»_/ //
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w-plane

w=u+iy

* (u,iv)
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GE(;,X) = - @i Inlx-y @ + 4% Iniltxy ' -2%-y

) ’ (3'26)
Scaling x by 1/a (x-x/a), gives the solution for an arbitrary

radius Since the mapping in Figure-3.4 (equation 3.24)

i, )
presumes a unit circle. Thus 3.26 becomes s
Go(x,y) = ~ & Tnixoy 24+ L Infa*+x2y<-2aix-y’
RN e X=y. i, ' 1y LS

+ constant !
e (3.27)

\]
The constant term in the above expression will be ignored

since it does not contribute to stress-energy.
Regularizing the Green function by removing the empty

space part and rotaiing back to Minkowski space gives the

regularized Feynman Green function.

; ] , .- . .
GF(x,y) = - T In a“+x-y -2a-x-y
req ‘
(3.28y
This expression still contains a diveraence as x° and
y' approach a , that 1s,as the mirror i5 approached. This
divergence is symptomatic of a}l problems involving
boundaries. Its origin in this case is that the image charge

s being moved until it reaches the boundary, without the

physical charge being present (removed in reqularization) to

v
cancel the divergence.
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The stress-energy tensor may be evaluated by
operating on the regularized Green function in cquation

3.28, and taking limits as follows (see chapter one).

Too= Timi( - Bm')wtfw P )GF(x,y)
) yorx “x Ty ! ‘X Ty req
(3.29)

Calculating the derivétives appearing in 3.29

1A
ley x —a— - ™)
P T Ge(x,y) s 2‘1 (gﬁgf‘;;'f*_“zﬁ;ﬁ’ij
“x Ty ‘reg | : J
g (v may ety —atx
To(atextyi-2axey). \
Taking the 1imit as y approaches «
¥ "
Tim i GF =
¥ X X Ty reg
) »
S5 T - = - X X T
Z - - ( - . .
T (xe-a- )~ Xm-and
acn
lim i G = - - -
\ : F -
Y- X X Ty o req (x--a-)-

(3.30)
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Using this.result and cquation 3.29 to evaluate T mives
T ‘ = . 53: - b a v ¢
o (x-a) 4-(x -a") ‘
7’
T - __ﬂm_, jw,M”W ( - ) =0
’ 21()(‘—6“)'j ’
L .3
(3.31)
As expected, T.,=0 in agreement with the calculations of
the previous section.
The obtained Feynman Green function will now be
used in the two mirror problem by constructing an infinite
number of 1image and physical charges using the functiona)
form of equaticn 3.27. The process begins with the
direct solution
< G.{x,y) = - 1 ITn x-y:~
't __’)Y_ 4., s i
then image charges are placed both outside and inside the
ring-shaped region as indicated in Figure 3.5,
Go(x,y) = - ~1A1n3x-v‘5 p L Inix“y=-2b<x.y+b"
Er=2L 4=, - = 4~ - L = £
1 1 ; 0 - 2 N !
FgT onixty--2acx-y+a N1



Figure 3.5

Method of Images Between Two Concentric Circles

°

3

- ’ ' : ~ ° physical Chisk

® image charge
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The boundary condition is violated on the inside mirror by
.the second term and on thé dUtside one by the third term.
These contributions may be cancelled bygplacing physical
chargés in the image region and'noticing}that to within a
constant, scaling y by a2/b2 (or bz/éé) gives a term

proportional to the 1mage contribution,

1 1
Sp(xsy) = -7 Inlx-yi? -z= In|x-

/\

]. ") -»‘ 2 A 1 2 . |
Py Inixfy®-2atxeyratt o+ g An|x2y2-202x.yebt |

’

'Repeating this process leads to the Euclidean Green

function
: : = " Zn -
- 1 L fa) KB
(JE(_X_’,X)" _Z‘:n;_m‘ln!é—'b)‘ ,\L!
//
2n 4n

1 R a al /
+ F‘]n}ile'sz‘(B‘)’ X X‘ri—j bL‘ /f

| (3.32)
where once again the cénstdnt term.has,béen 1ghored. } -
| Three of the terms fn the sum are divergent 1n»/
the region of‘ihterest. ‘They are; the n=0 term in thé

first sum which leads to the empty space so]ution,¢%nd the

4
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, n=0,1 terms in the second'sum which are the divergences

encountered Ln the one-mirror problem.

\, ' :
.Removing the empty space termgand rotating to

M1nkowsk\hcoord1nates results-in the reqularized Feynman
un '

Green f tion
|‘ B |2
@ | 2n =
1 . 1A
iG ﬁe,y) S Tnx {b} y{
g o
n#0
w 2n “~y4n
R LS R RS

(3.33)
. . ~.. o
For -the calculation of T, we note-that the second
sum in equation 3.33 will not contrfbuté' sinceﬂits -

functional form is identical to that of 3 28 which resu]ted'_ﬂ

in T,,=0. We now eva]uate Tuv for the first sum.

[T

falen
1 . b B
A (xa.Y) s \ T T
Py vareo T e s (x2-2x y?i?2n+ii?4ny2)
. v ’b 'b
n#0 . \ ). :
[ _, [alen) 1 falzn , ,
. Lfalen *uYave Y 0b, ol L
ﬁ\bJ‘ TXZ-Zy.yf%f2n+{%f4ny2'* o
L i DI : j - ‘t ,
3 *
lim G (x,y) = 50 0 =2 1D
y=X X Ty Freg Z‘n:w- X - |1;(%72” :
. n#0 L b))
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/
n 2n
, fa) ™ (2
; 1[3}2” xuxv(l b b) !
. Tib (1"[@"}2”’“ X,l* '
. b))
Zn
y (2]
Tim i3 3 GF(x,y) = qu; L§$2n[:
-~ X X re ngld x 1—{—&
y y reg ? -5
‘ 2
; (i] "
_ _uv . by
2y laj2n),
Therefore b j
. }
o : on
~(x_x =% x?) % ’(%}'
qy o= H e ) :
o n 4 _ ! a‘Zn
TX n=-» ;1- B: J
ngo. T 1P (3.34)

In the limit as a/b approaches zero (a is held constant
while b becomes large), a condition which describes a box
of ihfihite'1ength, the summation in the above equation

will be zero,causing T ., to agree with the one mirror

resu?té. The sum in 3.34 is now evaluated.
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io i r2n ) © r2n r—zn :
- 2n 5 L~ , F -2n ,
n=-= (r~".1)2 n=1 (r°"-1) (r -1)
n#0 .
; r2n _ 20: an_ A
n=-w (rEM1)2 TpZp o (p2N_)2 b
0 N
. \
From the tabulations of Hansen (1975), we get
\‘\.
' e Z2n \
- e —~}T+—6—i—gK(k)((Z-kZ)K(k)-3E(k):
n=1 (r<"-1): | A \ .
(3.35)
where r-1 , and
r o= expl-rK'(k)/K(k)] |
o (3.36)
l’% "\' . o) ~i
K(k) = Jv.(l-k~s1n~’t) ‘dt
0 (3.37)
~ L
K'(k) = K(k") , ko= {1-k7)

(3.38)
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n’ .
T 5 )
£k) = [2 (1-kzsinze)¥ gy |
0 | (3.39)
. \ ' ”
Substitutiing the result of 3.35 into 3.34, T,, becomes
- 2 A 2 . 2
T = - (x x =kn  x2) - X X ~kn  x?)
MY gk WY T Y TBadxh o HV BV
x K(K) | (2-K2)K(K)-3E(x)
i (3.40)

If the condition a¢ <<1 (¢ is the length of the box
) P
and a is acceleration) is enforced so that the co-moving

observer's .coordinate system is well behaved throughout

the box {see chapter one), then

dpack” 3p ~ 1/a , ¢=b-a

1. 1 1 -
% T8 T oavr  a(Tee/ay o all-¢/a)

so that

(3.41)
Using the fabove expression and equation 3.36, we

find
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® In(1-a,8) = -nK' (K)/K(K)

.abZ = nK'(k)/K(k)

Since ayt is small, then K'(k) is smal] and, K(k) is

™n

large. To first approximation, let k=1,so'that K'(k)=1/2

and K(k) » = . .Then ignoring K(k)E(k) as insignificant
compared with the K(k)K(k) term, equation 3.40 for T !
, : : o
becomes
. 2 2
Tuv h -'24wxu<xuxv—%juv )
2 -y 1 g2 2
B vx“(xuxv-%q,)x )557: 2a 63
b~
Therefore
~ 2. 1 ‘df
T:J T 24”Xb(xuxJ~21“vX )
ST S SUEE L T o) ——
X v 24af 2
(3.42)

To determine T‘) in the rest frame of the box, the

i
¢

tensorial part of 3.42 mdét be evaluated at t=0 (see
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With this choice the stress-energy tensor in the
instantaneous rest frame is
k]
T S S m
00140 PITET 24az00y
. o (3.43)
Taql = 0
01}t=0

The first term in expression 3.43 is identical to
a thermal energy density at T=a/2v, since 1/x? is the

proper acceleration as we move through the box. The .

A "
second term is merely the Casimir effect singe to first
order in (al), x?

aé=1, giv.iing the usual result.
h

Calculating the total energy in the box at t=0

yields
1/a “
f _
S P S S
J 28 ganeny X°
VEV bt/

. 24ab€

Using equation 3.41 this becomes

4
O
-~
v

Q
oo



-
oY)

N

- g | 3
\ ‘ ‘ (3.44)
which indicatesrthat tﬁe uniformly accelerated bok responds
as if the fie{d were in the Rindler state (thermal energy
density at T=a/2n), with the Casimir éffect as a correction
for %he finiteness of the box. This 1mp11és that there is
an observable sgress-ené;gy effect of acce]eratign

radiation.



3-4 Energy Balance for a Uniformly Accelerated Box

The result 3.44 raises the question of enerqy
balance. For example with the Casimir effect, we can
think of the walis being an infinite distance apart, then
holding one wall fixed we bring the second one to a
separation L. There is an attractive force between the

walls equal to

= T
F= gy
Thus the work done in moving the wall with no acceleration

is given by

o= ) i = i
. gﬁi i 9¢ 7 24T

so the. work done 1n bringing the mirrars from infinite

—r

separation to separation L accounts for the energy npresent. -

Can a orocedure similar to this be carried out for
an accelerated box? If the box 15 initially at rest and
is brought to a constant acceleration, what will be tne
final eneragy contained? As a first approximation to:this
problem, let the two mirrcrs radiate enerqgy independently,
then consider tne rate of eneray flow from the walls as
measured by a co-moving obser@e};at the back wall. Using

. 3 ' '

3.16 the rate of enerqy changéﬂis 4

(3.45)




where we nave modified the enerqgy flow from the front
wall to 1nq]ude the "gravitational" biue shitt. [f we
integrate 3.45 for mirror-motion that is initially
inertial and finally uniformly accelerated, we find the

total enerqy

a a
. b, °f :
A ENRS VR LTS
a a {a-
} b, f, °f
£ = 12+ " 17 o

(3.46a)

‘where ab, aTC are the final accelerations of the front and

back walls. [f the condition ac~ 1 is imposed, then
3.46a becomes (using 3.41) P
o "
a (a,-a:-¢) a:
b . ‘3 % b e
S Ry b (L-ayd)
- aéC
B 24+
(3.46b)
W

N

[f we include the energy from the Casimir effect then

the above result will agree with that obtained in 3.44.

The above argument can be verified faor an explicit

calculation. '
Consider a box which Changes extremely quickiy ffom

inertial motion to uniform acceleration at t=0, as

indicatea in Figure 3.6. Invoking causality, TJW in

region I snould only reaister the Casimir effect white

regions Il and III will contain particle flux from one of

109



Figure 3.6
World Line for a Box Chanqing Discontinuously

from Inertfal Motion to Uniform Acceleration

A
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the mirrors. In region IV there
present from both mirrors.

Recallina the discussion

will be par

N section 3

the importance or initial conditions on tne

and using the above causality arguments, the

be decomposed as follows;

ticle flux

-2 concerning
fiela modes,

field must

bpo® Voe (ane n" + h.c.) sin Un(x—l/ab)
: , : N \
T T e L ILTS INES P (T VE IO R
I vdnr | TR S |
(3.47)
where
. ‘l(l -l } { 3 = ns
ﬂl\af aD) n
I - - )
= L 1 ‘ia e ]”n(v.l/ab) e ]“np(u) + h.c. .
I1 n Vadn n: ) i
(3.48)
f |
Lo 1 (. [ ~i..alv) -ia (uvl/a )l | )
111 ) Y4H7L1an[e n - e n b j h.c.J
4



q

The natural choice for q(v) and pl(u) in 3.50 wil’
lead to the Rindler coor@&nates-since the boundaries are
stationary as seen by the accelerated observer. Fram

equation 1.72

= 1 U = j T
t = 5 exo(ab;) sh ay ¢ B exo(ab ) ch a,
b b
sO that
| Tn(-a _u) o(u)
a b )
b
(3.51)
t:: peo= L In(a v): q(v)
. a \ D - Y
b
(3.52)

The mirror in region I! is bounded by the lines

U, and in region 111 by u=u Vs (see Figure 3.6).

O 3
The values for Ve and Ug May be calculated as tollcws.

-

(t+x)(t-x) = uy = - 1/a



v
N ‘?,‘4

Therefore

-1/a2

YoV T £
but
vO = }/af
SO
= . 2
Ue af/ab
Tf we

-~

we obtain

now expand p

] -

B . 2
VOR@ 1/ab
%
Q = -1/‘ab s
= /22
e T oap/ag

¢

11
¢
(3.53a)
& (3.53b)

(u) and a(v) from 3.51 Gnd 3.52

kY
ARY -
i

- - (<-abu-1) + OLL@E@+1)3]3

bl

uF ay + o (agu+1)-]

]
-/aD

&

«

¢ 0l{ayve1)7]

(3.55)

For the regions II and IIT, the Ja1pes of u and v

have the ranges indicated in 3.53. For these values the

higher order terms in 3.54 and 3.55 are negligible. é?is

3

-

L
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may be verified-as follows;

ab(;i/ab),4 1 =0

ot

+

—
H

Yo T LT Ap/ap - L= a1 =g <c
’ .
I » . v
L : ,
abyf ml \Qﬁ(af 1 = 1 + Zébf 1 _p2ab 1

s

where the result of 3.41 has been used to obtain the
approximat%qn For - é%/ab.

) , . )
proximation

. The above results imply ﬁhat to a good ap

in region III, and

a(v) = v -1/ay

bonde SRR
5 gEve
A -
X

in regfbﬁ IT. This means that we may satisfy the required
form of the fiefd expansions in 3.47 to 3.50 by the

8w
RN

decomposition
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¢ = = /4iﬂ {1an(e—ian(v) —iunp(u)} + h.cﬁ}
| : | | (3.56)
where %
o(u) = —%bM(,-abu) Hlut1/ay) + (url/ay) H(-u-1/a,)
| (3.57)

~and

» ._ 1 N ‘ . :

qg(v) = n Tn(a.v) H(v-l/af) + (v—l/,af) H(-v+1/af)
(3.58)

The eipect'ation of T;\)_ may now be evaluate‘d \"u‘s«i_r\wg

_ o : N
the method of point splitting. Following steps identical

to those Teading to 3.9 and 3.10 in section 3-2, we find

<T

“Too

01"

>

T
|
|
|
|

N j .
(3:59)

‘The summations in 3.59 have been evaluated by Fulling and ™

Davies (1976) with the result

t

(3.50).



00
(3.61)
where
fFlu) = 2 [P "3 i'):+ L fpr)z
247 o' 2{n' ’Zl\z

(3.62)

o Lfa 3farr, (a2

sv) = e - 7-{0' TR )
(3.63)

The above results aiffer f%bm those.obtained in the
one-mirror phobleh by the inclusion of the fiha1vterm in
3.62 andv3.63 which is a Casimir-like cOntribution. I[f we
evaluate the derivativesbin'3.62 and 3.63 using 3.57 and

3.58, we find

n'(u) = €(u+1/ab)i—%b1n(—abu)_- u. - l/abj
+ H(-uél/ab) - ai—u H(u+1/ab)
(3.64)
' (u) = oy Hutl/a,) ¢ c(utlya.) -1 - L |
a,u- b b’ apu
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R - 2 ’ 1
D .(U) gggaHKU+1/ab) + 5(U+1/ab),ggaz
(3.66)
' _ 1 ' '
a'(v) = E?V H(v-l/af) + H(—v+1/af)
- 1 1)
+ 8(v-1/a,.) = In(agzv) - v + = |
f {\af f 2]
. (3.67)
q' ' (v) sy Hlv-lag) + <(v-1/ac) [-1 + )
\ (3.68)
@) = W(veaL) - tlv-1/a.) L
Qv £ ’ SO aLy
.F
(3.69)
Notice that'in the first and second derivatives the delta

functi.n terms do not contribute to first order in (ald).

“inally, we may write T, for the region IV as

00" 247;\2u

(3.70)
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oo =1 1 1 __n? 1 1 )
<To.1” L TR cZag(_2“2+ 2v~’J
(“V&4V
1 11, 1
ot (urlag) G s (vel/ag) |
(3.71)

Now we calculate the following quantity in order to

simplify. T,

it

i} (:(t2+x3+2xt) s ot2ex22xt]
2(-t2+x2)2 ! ‘ /

‘;/ t2+X:

(-t2+x2)3 e

=2xt

(_t2+X2)2

-
=
-

ﬁ o (3.72)

Using the above results 7., becomes

1 . 1 1 1
¥ 24ﬂj(v—1/af) v + uu vu> 247)(U+v1/ab) u
(3.73)
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Apart from the delta function terms, th1s resutt agrees .
WTth that previously obtawned in equa;1on 3.42 for (ag)<<l.

If we now calculate the energy radiated from the
mirrors due to the delta function contributions in 3.73,

we find

- 1 }
“rad” jdt ey o (t) (agmag)
1
. 1
Erad = ° 747 fap-ag)
Finally this becomes
_ a?d
. . 1 _ o - b
“rad T T zaw (A -, gt va.

(3.74)

where we have Qsed expression 3.41 

”This result agreés with the total energy present in
the inétant;neous rest frame of a uniformly accelerated
bo X (see equation 2.44), thus solving the problem of
energy balance. This implies that the acceleration 4
radiatioh can be thought of as the total energy radiated
by the mirrors in moving from 1ﬁertia1 motion fo uniform
acceleration.

The restriction'p1éced on this.system (ac~-<1),
permits'a co-moving observer to have a well defineq

+

- coordinate system throughout the box. The fact that the
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box will register a non-zero stress-energy identical to
that obtained by Minkowski ordering in the ﬁind]er-vacuum,
is perhaps, an intuitive result. Since the box is getting
shorter as yiewed by ahlinert1a1’observer, the state of the
field should match this behaviour. The Rindler vacuum

restrictea to a finite length is the natural candidate for

such a state.



SUMMARY

The goal of this study has been to provide a
physical interpretation for the formal ambiguity in
particle content which arises from different choices of
quantization. In pafticular we have been interested in
quantum field theory for ECCe1erated.systems, which could
reflect the thermal properties of the Rindler éuantization
procedure.

In chapter two, the response of a uniformly
accelerated dipo detector was analysed by a different
method from thqt used by Hinton in His 19583 study. lle
“find and qua11tativé]y justify, a non-thermal and non-
isotropic response thus agreeing with the previous work.

We then determined that a particle detector
following a trajectory defining a time-like %illing vector,
would respond to the Killing particle density in the
Minkowski vacuum. The varjation in reéponse to a state
N> between detectors following different trajectories was
then analysed. As a result of this calculation, the
génera]ized acceleration radiétion Wwas interpreted as
the effective quantity preéent when comparing systems
fol]owing diffe%enf trajectories.

In chaéter three we found that particle detectors
comoving with a sing]e 1+1 dimensional mirror have a null
responseleven for trajectories resulting in non-trivial

T . This example suggests that the particle content of

u

lel
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a quantum field is truly an observer dependent concent,
and will thus reflect equivalence principle arguments.

In the same chanter we also found that a 1+1
dimensional uniformly accelerated box contained a negative
energy density whfch was identical to a thermal result at
T=a/2=. The presence of this enerqgy was dynamicaf]y
accounted for using the results of the one-mirror
problem ana by considering a box which moved
discontinuously from inertial motion to uniform
acceleration.

Qur resﬁ]ts point to future study of Tuv for
completely qeneral motion of two mifrors. It would then
be possipnle to examine both the uniformly accelerated box
and the one-mirror problem as Timiting cases of

completely general motion.
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APPENDIX ONE
Verification of the Definition for Tuv from the Feynman,
Green Function:
We will demonstrate that the operator defined in
equation 1.36 is suitable for calculating T,,. The

Feynman Green function is

16 (xsx") = wolH(t-t" )i (x)o(x') + x<=x' o>

How calculating the derivatives of Gr

17 b0 GG ® Tim Leo) vl il o+ oL oo
AT R B A R L it
-7 (A.1)
1 o . = ) 5 fy ha AR ol VIO\"
11mx e ,1GF l]mx 0 SERRL 3 .y
X — —

e §
\
= ‘{jm ’/ijl EPE R 0
' £
+ Tim < (t-t") ol eyt ] tod
X'_»)( v lt:tl»
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But from 1.10 we have

! {
Loo(x),a(x") ] = 0
t=t'
therefore
Tim i5.0.,G. = 1im o B SRS e U
XI'X t‘] F 5'»»5 t J

Similarily

Tim 1}t?t,GF = 1im %0 {wtn,?t,:l [0
XX XX

im0 -5 {t-t') [ -, ] o
o x'—-xX

tolim ocoi-S(t-t) [ s, ] o-
X' X :

= 1?m o0 ¢ ;Et‘“ 0~
X X
f ’
+lim Teo - (t-t' ) [ -, ] o
x'-x

(A.2)
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'Fina11y weg obtain

'. s = . L; 4';‘"‘,“ \‘1 !
'l]Tx atat.1GF 11Tx 5<0 | kogﬁégt.é) [0>

Since

- o ,.B
=9 6 - kg g%y

E J
{ Y s U5V MV Ty, 3

then the results of A.1 to A.3 imply that the definition

1.3% witl yield the cbrrect form for T...

.
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Y~ APPENDIX ONE

Verification of the Definition for T,, from the Feynman,

Green Function:

We will demonstrate that the operator defined in

equatidn 1.36 is suitable for calculating T . The

Feynman Green function is

1GF(x:x') = colH(t-t )i (x)i(x") + xe=x' o=

dow calculating the derivatives of Gr

\
Tim  s.,5. iG. = Tim B0+ ,.,tﬂ.: 0
xtex TRy LN it
(A.
' ENER = 1 O SIS TR R o
1?m ’t'j'1GF 1]m 01y ; KRR
XX X =X
lim s (t-t') co' ’/’3.,*] 0
X' =x
Q\
= ; BN TR P
]]'m O‘_ £ JI 0
X
+ 1im (t t') s 0" [3,"] Lo
X~ x Y ‘ tett.
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But from 1.10 we

Tim
X' ex

—.
3 -
—
oW
|

"
—_
.
3

hdave

] = 0

= im0

[

O

¥
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Finally wg obtain

i -~
Tim 5,5,,16. = 1im s<o| {5.4,5,,4} lo»
L R
‘ ‘ (A.3)
Sirice
e ___'“‘, - L CLB{ -
;uv p,u¢,v> 29,9 -p,%#ai

then the results of A.1 to A.3 imply that the definition

- 1.36 will yield the cbrreqt form for T .
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