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Abstract

Many real-world tasks in fields such as robotics and control can be formulated as constrained

Markov decision processes (CMDPs). In CMDPs, the objective is usually to optimize the

return while ensuring some constraints being satisfied at the same time. The primal-dual

approach is a common technique of addressing CMDPs. It rewrites the original optimization

problem of CMDPs into its equivalent Lagrangian form. In this thesis, we deliver an overview

of CMDPs and the primal-dual approach, explain several algorithm designs adopting the

primal-dual approach under di↵erent learning settings in terms of simulator types, and provide

analysis of these algorithms.

ii



Preface

Chapter 2 contains original contributions of the author to this thesis. The proof of lemma 2.0.2

is corrected by the author through discussions with my supervisor Csaba Szepesvári. Chapter

2 and chapter 4 contain proofs that are reorganized and explained with interpretations.
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Chapter 1

Background

1.1 Introduction

In the recent decades, reinforcement learning (RL) has been widely applied to many real-world

problems and has achieved remarkable success across domains such as robotics, gaming,

business, and autonomous driving. In common RL studies, an agent interacts with an

environment, which is often formulated as a Markov decision process (MDP), and the goal is

to optimize an unconstrained value over a period of time, usually the expected cumulative

reward in the MDP [Sutton and Barto, 2018]. However, in many real-world applications,

it is often not the case that the agent can optimize its objective without any constraint

such as e�ciency and safety requirements. For example, when we would like to design a

robot to carry out some task, it is sensible to place constraints on its power consumption.

Problems of this nature, where the agent optimizes a value subject to ensuring that a second

value satisfies some constraint, can be formulated as constrained Markov decision processes

(CMDPs) [Altman, 1999].

There are a number of directions in the CMDP research. Some early studies assume that

the model of CMDP is known to the agent, and aim to find a near-optimal policy to solve

the planning problem [Borkar, 2005; Paternain et al., 2019; Achiam et al., 2017; Xu et al.,
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2020]. As a more general case in real-world problems, many recent studies assume the model

is unknown, and therefore require learning of transitions [Vaswani et al., 2022; Wei et al.,

2020; Jain et al., 2022; Wei et al., 2021; Ding et al., 2020; Tessler et al., 2019]. Many studies

propose policy-based algorithms that are shown to be able to converge in experiments usually

with the lack of theoretical guarantees [Yang et al., 2020; Achiam et al., 2017; Stooke et al.,

2020; Tessler et al., 2019]. This line of research usually adapts mainstream RL algorithms

such as Proximal Policy Optimization (PPO) [Schulman et al., 2017] into constrained setting.

Another highly active direction involves proposing near-optimal algorithms that aim to

minimize either regret or sample complexity in the probably approximately correct learning

(PAC) setting [Brantley et al., 2020; Wachi and Sui, 2020; Vaswani et al., 2022; Jain et al.,

2022; Ding et al., 2020]. This line of research develops rigorous mathematical frameworks for

analyzing the theoretical guarantees of algorithms with similar designs.

Despite the di↵erence in problem settings, the primal-dual approach is adopted by many

of the aforementioned work. The primal-dual approach has a long history and can be seen

as early as in Altman [1999]. It rewrites the original CMDP problem into its equivalent

Lagrangian form, which is a convex-concave min-max game, or a saddle point problem. In

this thesis we focus on a number of primal-dual algorithms under di↵erent settings and look

into the similarities among the theoretical analysis of these algorithms. We explore CMDPs

with global access and online access, and CMDPs with linear function approximations.

1.2 Markov Decision Processes

Consider an infinite-horizon discounted Markov decision process (MDP) M = (S,A, P, r, �).

The state space S and the action space A are sets of all states and actions. Denote

the cardinality by S and A respectively if the set is finite. Each element indexed by

(s, a, s0) 2 S ⇥A ⇥ S of the transition probability P 2 [0, 1]S⇥A⇥S denotes the probability

of transitioning from the state s to s0 by taking the action a. The reward function r :
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S ⇥ A ! [0, 1] gives the expected reward r(s, a) the learner receives by taking the action

a in the state s. For a trajectory {s0, a0, s1, a1, . . . , st, at, . . . }, the cumulative reward, or

the return R, received by the learner is defined as the discounted sum of the rewards, i.e.,

R = r(s0, a0) + �r(s1, a1) + · · ·+ �tr(st, at) + . . . , where � 2 [0, 1) is the discount factor. If

the initial state is deterministic, we denote it by s0, and if the initial state is stochastic, we

denote the initial state distribution by ⇢.

Let ⇡ denote a stationary and stochastic policy, defined as a probability distribution

over the action space A given some state s 2 S, i.e., ⇡ : S ! �A, where �A is the set of

all simplex over the action space. Given some policy ⇡, the expected discounted return, or

(reward) value function, denoted as V ⇡

r
(s0), is defined as the expected cumulative discounted

rewards from the initial state s0 by following the policy ⇡, i.e., V ⇡

r
(s0) = E[

P
t=0 �

tr(st, at)],

where actions and next states are sampled from the policy ⇡ and transition P respectively,

i.e., at ⇠ ⇡(·|st) and st+1 ⇠ P (·|st, at). Given some policy ⇡, for any state-action pair

(s, a) 2 S ⇥A, the reward action-value function, defined as Q⇡

r
(s, a) : S ⇥A! R, satisfies

V ⇡

r
(s) = h⇡(·|s), Q⇡

r
(s, ·)i =

P
a
⇡(a|s)Q⇡

r
(s, a), where V ⇡

r
(s) is the value function when

s0 = s.

Fix a policy ⇡. Define P⇡ 2 [0, 1]S⇥S as the probability matrix induced by the policy

⇡. For each entry with index (s, s0) 2 S ⇥ S, define P⇡(s, s0) :=
P

a2A ⇡(a|s)P (s0|s, a).

Similarly for rewards, define r⇡ 2 [0, 1]S as a vector, and for the sth element, define r⇡(s) =
P

a2A ⇡(a|s)r(s, a) as the expected reward in the state s induced by the policy ⇡. The above

notations and definitions make it convenient to introduce the following a�ne linear operator.

Define the Bellman operator (also called policy evaluation operator [Szepesvári, 2023c])

T⇡ induced by the policy ⇡ as an a�ne linear operator T⇡ : RS ! RS,

T⇡v = r⇡ + �P⇡v, (1.1)

where v is an arbitrary vector in Rd. Rewrite eq. (1.1) in an element-wise manner, equivalently
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we also have for any s 2 S,

T⇡v(s) =
X

a2A

⇡(a|s)
"
r(s, a) + �

X

s02S

P (s0|s, a)v(s0)
#
. (1.2)

Let the vector v in eq. (1.1) be V ⇡. Then we have T⇡V ⇡(s) =
P

a
⇡(a|s)[r(s, a)+�

P
s0 P (s0|s, a)V ⇡(s0)],

where the right hand side is exactly V ⇡(s) by Bellman equation. Hence, V ⇡ is the fixed point

for the Bellman operator T⇡:

V ⇡ = T⇡V
⇡. (1.3)

Now we have su�cient tools to introduce the performance di↵erence lemma:

Lemma 1.2.1 (Performance di↵erence lemma). For any value function V ⇡
, and any two

memoryless policies ⇡ and ⇡0
,

V ⇡
0 � V ⇡ = (I � �P⇡0)�1 (T⇡0V ⇡ � V ⇡) .

Proof. Note that V ⇡
0
= (I � �P⇡0)�1 r⇡0 . Hence,

V ⇡
0 � V ⇡ = (I � �P⇡0)�1 r⇡0 � V ⇡

= (I � �P⇡0)�1 (r⇡0 � (I � �P⇡0)V ⇡)

= (I � �P⇡0)�1 (r⇡0 + �P⇡0V ⇡ � V ⇡)

= (I � �P⇡0)�1 [T⇡0V ⇡ � V ⇡] .

The performance di↵erence lemma (or value di↵erence lemma), proposed in Kakade [2003];

Kakade and Langford [2002], is widely used and takes many di↵erent yet equivalent forms.

lemma 1.2.1 was rediscovered by Szepesvári [2023d]. It provides a method to measure the

di↵erence in value by following di↵erent policies. Here we introduce an equivalent form of

the performance di↵erence lemma. First, we introduce the notion of advantage:
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Definition 1.2.1 (Advantage). The advantage of taking action a at state s over some policy

⇡ is defined as

A⇡(s, a) = Q⇡(s, a)� V ⇡(s).

The advantage of a deterministic policy ⇡0 over another policy ⇡ is defined as

A⇡ (s, ⇡0) = A⇡ (s, ⇡0(s)) = Q⇡(s, ⇡0(s))� V ⇡(s).

Note that the action-value function Q⇡(s, a) is defined such that for any s 2 S, V ⇡(s) =

h⇡(·|s), Q⇡(s, ·)i. Therefore, the advantage of policy ⇡0 over ⇡ can also be written as:

A⇡(s, ⇡0) = hA⇡(s, ·), ⇡0(·|s)i = hQ⇡(s, ·), ⇡0(·|s)i � hQ⇡(s, ·), ⇡(·|s)i

= hQ⇡(s, ·), (⇡0(·|s)� ⇡(·|s))i.

Now we show the performance di↵erence lemma:

Lemma 1.2.2 (Performance di↵erence lemma [Kakade and Langford, 2002]). For any ⇡, ⇡0
,

and any state s 2 S,

V ⇡
0
(s)� V ⇡(s) =

1

1� �E⇡0 [A⇡ (s0, ⇡0)] ,

1.3 Simulator modes and access types

We will assume the learner interacts with a simulator to learn about the underlying MDP

before returning a policy. Such simulator is provided to the learner together with an application

interface for querying. By di↵erent access modes, the simulators can be categorized into three

types: global access, local access, and online access [Szepesvári, 2023a; Yin et al., 2022].

Global access, also referred to as generative model or random access in some works

[Agarwal et al., 2020; Yin et al., 2022], assumes that all state-action pairs (s, a) 2 S ⇥ A

are made accessible to the learner, and the simulator can be queried with any state-action

pair (s, a) 2 S ⇥A. When it is queried so, the simulator will return a random next state s0

5



sampled from P (·|s, a) and the corresponding reward r.

Local access assumes that the simulator can be queried with states s that were previously

observed by the learner with any actions a 2 A. When it is queried so, the simulator will

return a random next state s0 sampled from P (·|s, a) and the corresponding reward r. Local

access simulators can be implemented with checkpointing by maintaining data structures

that keep track of the visited states.

Online access assumes that the simulator maintains the current state, and can only be

either reset to the initial state (or a random sample from the initial state distribution) or

transitioned from the current state to the next state when given an action a 2 A by the

learner. The associated reward r is revealed to the learner when transitions occur.

1.4 Constrained Markov Decision Processes

Consider an infinite-horizon discounted constrained Markov decision process (CMDP) M =

(S,A, P, r, c, b, �), where S is a state space, A is an action space, P is the transition probability

matrix, r : S ⇥ A ! [0, 1] is the reward function, and c : S ⇥ A ! [0, 1] is the constraint

reward function (also known as utility function), b 2 (0, 1) is the constraint constant, and

� 2 [0, 1) is the discount factor. In this work, we assume the initial state is deterministic and

we will denote it by s0. Analogous to rewards r, we define Vc and Qc.

The learner is allowed to interact with the CMDP for some iterations by means of some

access type introduced in section 1.3 before the learner is required to return a policy ⇡ that

is expected to work well on the CMDP. The objective of a learner in CMDP is to return a

policy ⇡ such that the policy maximizes the reward value function V ⇡

r
(s0), while ensures the

requirement on the constraint value function V ⇡

c
(s0), i.e.,

max
⇡

V ⇡

r
(s0), s.t., V ⇡

c
(s0) � b. (1.4)

Let ⇡⇤ denote the optimal stochastic policy for the above CMDP, V ⇤
r
(s0) be the value function
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of the optimal policy ⇡⇤, and V ⇤
c
(s0) be the constraint value function of the optimal policy

⇡⇤.

The following assumptions and definitions are also useful and oftentimes needed in CMDPs.

Assumption 1.4.1 (Slater condition). There exists � > 0 and a policy ⇡ such that V ⇡

c
(s0) �

b+ �. In this case, we say the CMDP is feasible with slack � �.

Definition 1.4.1 (Slater constant). For a given CMDP M , define the Slater constant

⇣ := max⇡ V ⇡

c
(s0)� b to be a problem-dependent constant.

The Slater condition assumes that there is some slack between the constraint value

function V ⇡

c
the learner can achieve and the constraint constant b, and in this sense the Slater

constant is a quantity that measures the size of the slack and thus the di�culty of solving

the CMDP in eq. (1.4). Note that by definition the Slater constant satisfies that ⇣ � �.

1.5 Primal Dual Approach

The Lagrangian function for the optimization problem eq. (1.4) is the following saddle-point

problem

max
⇡

min
��0

V ⇡

r
(s0) + �(V ⇡

c
(s0)� b), (1.5)

where � is the Lagrange multiplier or the dual variable for the constraint. By Lagrangian

duality, (⇡⇤,�⇤) is a solution to the saddle-point problem eq. (1.5), where ⇡⇤ is the optimal

policy for the CMDP and �⇤ is the optimal Lagrange multiplier.

The existing approaches [Jain et al., 2022; Vaswani et al., 2022] to solving the above

primal-dual saddle-point problem is to solve it iteratively, by alternatively updating the policy

(primal variable) and the Lagrange multiplier (dual variable). Let T be the total number of

iterations before returning the estimate solutions, and let ⇡t and �t be the primal and dual

iterates respectively for some iteration t 2 [T ].
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Chapter 2

Learning in Tabular CMDPs with

Global Access

In this chapter, we consider infinite-horizon discounted tabular CMDPs under the global

access setting. This chapter also includes the original work of the author (lemma 2.0.2). Let

M = (S,A,P , r, c, b, �) be the CMDP, where S is a state space, A is an action space, P is the

transition probability matrix, r : S ⇥A! [0, 1] is the reward function, and c : S ⇥A! [0, 1]

is the constraint reward function, and � 2 [0, 1) is the discount factor. Recall that with

global access model, the learner can query the simulator with arbitrary state-action pair

(s, a) 2 S ⇥A to learn about the MDP dynamics. To solve the CMDP in eq. (1.4) under the

global access setting, it is natural to adopt the model-based approach. With model-based

approach, the learner explicitly calculates and maintains an empirical estimate model and

plans with respect to the empirical model. In the tabular case, such an empirical model can

be calculated by querying the simulator with every state-action pair multiple times so that it

is a good estimate of the true underlying MDP with high probability.

Let cM be the empirical model maintained by the learner. Assume the reward and

constraint functions are deterministic and known to the learner. Hence the empirical model

is essentially the empirical estimate bP of the true transition probability matrix P. To
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calculate bP and thus instantiate cM , for each state action pair (s, a), query the simulator N

times with (s, a) and collect N random samples of next states. Then for each s0 2 S, let

bP(s0|s, a) = N(s0|s,a)
N

, where N(s0|s, a) is the number of s0 appearing.

For some technical reason to be explained later, we introduce perturbation to rewards.

For each s 2 S and a 2 A, define the perturbed rewards rp(s, a) = r(s, a) + ⇠(s, a), where

⇠(s, a) ⇠ U [0,!] are i.i.d. uniform random variable and ! is some parameter to be determined

later. Further, let the constraint of the empirical CMDP equal to b0. By setting b0 to di↵erent

values, we can either loosen or tighten the constraint. In particular, setting b0 > b means

tightening the constraint and b0 < b means loosening the constraint. Now, we can define

the empirical CMDP cM as the tuple hS,A, bP , rp, c, b0, s0, �i. For the empirical CMDP cM ,

let bV ⇡

rp
(s0) and bV ⇡

c
(s0) be the reward value function and constraint value function for some

policy ⇡. To instantiate M, it remains to set the values of ! and b0, which is left to the next

section.

With the empirical CMDP M instantiated, the learner needs to solve the following

problem

b⇡⇤ 2 argmax bV ⇡

rp
(s0) s.t. bV ⇡

c
(s0) � b0. (2.1)

As discussed at the beginning of section 1.5, we write the above eq. (2.1) as the equivalent

saddle-point problem

max
⇡

min
��0

h
bV ⇡

rp
(s0) + �

⇣
bV ⇡

c
(s0)� b0

⌘i
. (2.2)

Let (b⇡⇤, b�⇤) denote the solution to the empirical CMDP eq. (2.1), where b⇡⇤ is the optimal

empirical policy and b�⇤ is the optimal Lagrange multiplier. Then again, as discussed in

section 1.5, we solve the above problem eq. (2.2) iteratively, by alternatively updating the

primal variable and the dual variable, denoted as b⇡t and b�t respectively for some iteration t.

Given the dual variable b�t at iteration t, the primal variable b⇡t is updated as:

b⇡t = argmax
⇡

bV ⇡

rp
(s0) + b�tbV ⇡

c
(s0). (2.3)
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Similar to Paternain et al. [2019]; Jain et al. [2022], the dual variable b�ts are updated

with gradient descent steps and projection onto a feasible range. However here, after

projection, the dual variables are further rounded to the closest element in an epsilon-net

⇤ = {0, "1, 2"2, . . . , U} with resolution "1, which will be shown to help with the concentration

for all � 2 ⇤. The parameter U will be determined later. The dual variable b�t is updated as:

b�t = R⇤[P[0,U ][b�t � ⌘(bV b⇡t
c
(s0)� b0)]], (2.4)

where P[0,U ][�] = argmin
p2[0,U ] |�� p| is the projection function that projects � 2 R onto the

[0, U ] interval, and R⇤[�] = argmin
p2⇤ |�� p| is the rounding function that rounds � 2 R to

the closest element in the epsilon-net ⇤.

Putting everything together, the model-based algorithm is described in line 1.

Algorithm 1: Model-based algorithm for CMDPs with generative model [Vaswani
et al., 2022]

Input :S,A, r, c, ⇣, N, b0,!, U, "1, T, b�0 = 0.
1 For each state-action (s, a) pair, collect N samples from P(.|s, a) and form bP
2 Perturb the rewards to form vector rp(s, a) = r(s, a) + ⇠(s, a) where ⇠(s, a) ⇠ U [0,!]
3 Form the empirical CMDP cM = hS,A, bP , rp, c, b0, s0, �i
4 Form the epsilon-net ⇤ = {0, "1, 2"1, . . . , U}
5 for t 0 . . . T � 1 do

6 Update the policy by solving an unconstrained MDP: b⇡t = argmax bV ⇡

rp+b�tc

7 Update the dual-variables: b�t+1 = R⇤[P[0,U ][b�t � ⌘(bV b⇡t
c
(s0)� b0)]]

Output :Mixture policy ⇡̄T = 1
T

P
T�1
t=0 b⇡t.

Before analyzing the sample complexity of line 1, we introduce some preliminary results:

Theorem 2.0.1. (Guarantees for the primal-dual algorithm (Theorem 1 in Vaswani et al.

[2022])) For a target error "opt > 0 and the primal-dual updates in eq. (2.3) and eq. (2.4) with

U >
���b�⇤
���, T = 4U2

"
2
opt(1��)2

[1 + 1
(U�b�⇤)2

], ⌘ = U(1��)p
T

and "1 =
"
2
opt(1��)2(U�b�⇤)

6U , the mixture policy

⇡̄T = 1
T

P
T�1
t=0 b⇡t satisfies

bV ⇡̄T
rp

(s0) � bV b⇡⇤

rp
(s0)� "opt and bV ⇡̄T

c
(s0) � b0 � "opt.
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Proof. Similar to Jain et al. [2022], define the dual regret w.r.t. some � as:

Rd(�, T ) :=
T�1X

t=0

⇣
b�t � �

⌘⇣
bV b⇡t
c
(s0)� b0

⌘
(2.5)

By primal update in eq. (2.3), for any iteration t, the primal variable b⇡t is the maximizer of

bV ⇡

rp
(s0) + b�tbV ⇡

c
(s0). Hence, for any ⇡ and some t,

bV b⇡t
rp
(s0) + b�tbV b⇡t

c
(s0) � bV ⇡

rp
(s0) + b�tbV ⇡

c
(s0).

Let ⇡ = b⇡⇤, and note that bV b⇡⇤
c

(s0) � b0 since b⇡⇤ is a solution to the CMDP cM ,

bV b⇡⇤

rp
(s0)� bV b⇡t

rp
(s0)  b�t

h
bV b⇡t
c
(s0)� b0

i
. (2.6)

Summing eq. (2.6) over all t 2 {0, . . . , T � 1}, dividing by T , and using the definition of the

dual regret in eq. (2.5), we have

1

T

T�1X

t=0

h
bV b⇡⇤

rp
(s0)� bV b⇡t

rp
(s0)

i
+
�

T

T�1X

t=0

⇣
b0 � bV b⇡t

c
(s0)

⌘
 Rd(�, T )

T
.

Note that ⇡̄T = 1
T

P
T�1
t=0 b⇡t is the mixture policy, and thus for any reward function l,

1
T

P
T�1
t=0

bV b⇡t
l
(s0) = bV ⇡̄T

l
(s0).

h
bV b⇡⇤

rp
(s0)� bV ⇡̄T

rp
(s0)

i
+ �

⇣
b0 � bV ⇡̄T

c
(s0)

⌘
 Rd(�, T )

T
. (2.7)

Then we bound the dual regret Rd(�, T ) for some � 2 [0, U ]. Define b�0
t+1 = P[0,U ][b�t �

11



⌘(bV b⇡t
c
(s0)� b0)], then

���b�t+1 � �
��� =

���R⇤[b�0t+1]� �
���


���R⇤[b�0t+1]� b�0t+1

���+
���b�0t+1 � �

���

 "1 +
���b�0t+1 � �

��� ,

where the first inequality is due to triangle inequality and the second inequality is due to the

property of epsilon-net. Squaring both sides,

���b�t+1 � �
���
2

"21 +
���b�0t+1 � �

���
2

+ 2"1
���b�0t+1 � �

���

"21 + 2"1U +
���b�0t+1 � �

���
2

"21 + 2"1U +
���b�t � ⌘

⇣
bV b⇡t
c
(s0)� b0

⌘
� �
���
2

="21 + 2"1U +
���b�t � �

���
2

� 2⌘
⇣
b�t � �

⌘⇣
bV b⇡t
c
(s0)� b0

⌘
+ ⌘2

⇣
bV b⇡t
c
(s0)� b0

⌘2

"21 + 2"1U +
���b�t � �

���
2

� 2⌘
⇣
b�t � �

⌘⇣
bV b⇡t
c
(s0)� b0

⌘
+

⌘2

(1� �)2 ,

where the first inequality follows directly from above, the second inequality follows because

� 2 [0, U ] and b�0
t+1 is a projection onto [0, U ], the third inequality follows because projections

are non-expansive, and finally the last inequality follows because for any policy ⇡ the constraint

value function bV ⇡

c
(s0) is non-negative and bounded by 1/(1� �). Rearranging and dividing

by 2⌘, we get

⇣
b�t � �

⌘⇣
bV b⇡t
c
(s0)� b0

⌘
 "21 + 2"1U

2⌘
+

���b�t � �
���
2

�
���b�t+1 � �

���
2

2⌘
+

⌘

2(1� �)2 .

Summing both sides from t = 0 to T � 1 and noticing that the left side gives the dual regret

12



by definition,

Rd(�, T )  T
"21 + 2"1U

2⌘
+

1

2⌘

T�1X

t=0

���b�t � �
���
2

�
���b�t+1 � �

���
2
�
+

⌘T

2(1� �)2

 T
"21 + 2"1U

2⌘
+

���b�0 � �
���
2

�
���b�T � �

���
2

2⌘
+

⌘T

2(1� �)2

 T
"21 + 2"1U

2⌘
+

���b�0 � �
���
2

2⌘
+

⌘T

2(1� �)2

 T
"21 + 2"1U

2⌘
+

U2

2⌘
+

⌘T

2(1� �)2 .

Next, we show that assigning ⌘ some appropriate value gives us the results claimed in

theorem 2.0.1. In particular, setting ⌘ = U(1��)p
T

, we have for any � 2 [0, U ],

Rd(�, T )  T 3/2 "
2
1 + 2"1U

2U(1� �) +
U
p
T

1� � . (2.8)

Since � 2 [0, U ], let � = 0, and recall eq. (2.7), we have

bV b⇡⇤

rp
(s0)� bV ⇡̄T

rp
(s0) 

p
T
"21 + 2"1U

2U(1� �) +
U

(1� �)
p
T

<
p
T

3"1
2(1� �) +

U

(1� �)
p
T
,

where the second inequality follows because "1 < U . For the constraint violation, there

are two cases. The first case is when b0 � bV ⇡̄T
c

(s0)  0. In this case, it also holds that

b0 � "opt � bV ⇡̄T
c

(s0)  0, which is what we wanted to show. The second case is when

b0 � bV ⇡̄T
c

(s0) > 0. In this case, using the notation [x]+ = max{x, 0}, we have

h
bV b⇡⇤

rp
(s0)� bV ⇡̄T

rp
(s0)

i
+ U

h
b0 � bV ⇡̄T

c
(s0)

i

+
 Rd(U, T )

T
.

13



Because by assumption it holds that U > b�⇤, lemma 2.0.2 is applicable and gives that

h
b0 � bV ⇡̄T

c
(s0)

i

+
 Rd(U, T )

T
⇣
U � b�⇤

⌘ .

Hence, since U 2 [0, U ], combining the above display with eq. (2.8) gives

h
b0 � bV ⇡̄T

c
(s0)

i

h
b0 � bV ⇡̄T

c
(s0)

i

+


p
T

"21 + 2"1U

2U(1� �)
⇣
U � b�⇤

⌘ +
U⇣

U � b�⇤
⌘
(1� �)

p
T

<
p
T

3"1

2(1� �)
⇣
U � b�⇤

⌘ +
U⇣

U � b�⇤
⌘
(1� �)

p
T
,

where the third inequality follows because because "1 < U . Set T such that the second term

in both quantities is bounded from above by "opt

2 . This gives

T = T0 :=
4U2

"2opt(1� �)2

2

641 +
1

⇣
U � b�⇤

⌘2

3

75

With T = T0, the above expressions can be simplified as follows:

bV b⇡⇤

rp
(s0)� bV ⇡̄T

rp
(s0) 

2U

(1� �)"opt

✓
1 +

1

U � b�⇤

◆
3"1

2(1� �) +
"opt
2

,

h
b0 � bV ⇡̄T

c
(s0)

i
 2U

(1� �)"opt

✓
1 +

1

U � b�⇤

◆
3"1

2(1� �)
⇣
U � b�⇤

⌘ +
"opt
2

.

Now, set "1 such that the first term in both quantities is also bounded from above by "opt

2 .

For this, choose

"1 =
"2opt(1� �)2

⇣
U � b�⇤

⌘

6U

14



With these values, the algorithm line 1 ensures that

bV b⇡⇤

rp
(s0)� bV ⇡̄T

rp
(s0)  "opt and b0 � bV ⇡̄T

c
(s0)  "opt.

Lemma 2.0.1. (Lemma B.2 of Jain et al. [2022]) For any C > �⇤ and any e⇡ s.t. V ⇡
⇤

r
(s0)�

V e⇡
r
(s0)+ C

⇥
b� V e⇡

c
(s0)

⇤
+
 �, we have

⇥
b� V e⇡

c
(s0)

⇤
+
 �

C��⇤ .

Proof. Define ⌫(⌧) = max⇡ {V ⇡

r
(s0) | V ⇡

c
(s0) � b+ ⌧} and note that by definition, ⌫(0) =

V ⇡
⇤

r
(s0) and that ⌫ is a decreasing function for its argument. Let V ⇡,�

l
(s0) = V ⇡

r
(s0) +

� (V ⇡

c
(s0)� b). Then, for any policy ⇡ s.t. V ⇡

c
(s0) � b+ ⌧ , we have

V ⇡,�
⇤

l
(s0)  max

⇡0
V ⇡

0
,�

⇤

l
(s0)

= V ⇡
⇤

r
(s0)

= ⌫(0).

Then we have

⌫(0)� ⌧�⇤ � V ⇡,�
⇤

l
(s0)� ⌧�⇤

= V ⇡

r
(s0) + �⇤(V ⇡

c
(s0)� b� ⌧)

� V ⇡

r
(s0),

where the last inequality follows because V ⇡

c
(s0) � b + ⌧ . Note that the above inequality

holds for any policy ⇡ such that V ⇡

c
(s0) � b+ ⌧ , thus we have

⌫(0)� ⌧�⇤ � max
⇡

{V ⇡

r
(s0)|V ⇡

c
(s0) � b+ ⌧} = ⌫(⌧),

⌧�⇤  ⌫(0)� ⌫(⌧). (2.9)
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Recall the notation [x]+ = max{x, 0}, and choose e⌧ = �
�
b� V e⇡

c
(s0)

�
+
,

(C � �⇤) |e⌧ | = �⇤e⌧ + C|e⌧ |

 ⌫(0)� ⌫(e⌧) + C|e⌧ |

= V ⇡
⇤

r
(s0)� V e⇡

r
(s0) + C|e⌧ |+ V e⇡

r
(s0)� ⌫(e⌧)

= V ⇡
⇤

r
(s0)� V e⇡

r
(s0) + C

�
b� V e⇡

c
(s0)

�
+
+ V e⇡

r
(s0)� ⌫(e⌧)

 � + V e⇡
r
(s0)� ⌫(e⌧),

where the first inequality follows from eq. (2.9) and the second inequality is due to the

assumption on e⇡. Now we bound ⌫(e⌧):

⌫(e⌧) = max
⇡

n
V ⇡

r
(s0) | V ⇡

c
(s0) � b�

�
b� V e⇡

c
(s0)

�
+

o

� max
⇡

�
V ⇡

r
(s0) | V ⇡

c
(s0) � V e⇡

c
(s0)

 

� V e⇡
r
(s0),

where the inequality follows from tightening the constraints on ⇡, and the second inequality

follows because e⇡ immediately falls into the set on the right side. Finally, we have

(C � �⇤) |e⌧ |  �,

�
b� V e⇡

c
(s0)

�
+
 �

C � �⇤ .

The following lemma is a corrected version developed based on the lemma 10 of Vaswani

et al. [2022].

Lemma 2.0.2. For any C > b�⇤ and any e⇡ s.t. bV b⇡⇤
rp

(s0) � bV e⇡
rp
(s0)+ C

h
b0 � bV e⇡

c
(s0)

i

+
 �,

we have

h
b0 � bV e⇡

c
(s0)

i

+
 �

C�b�⇤ .

Proof. Define ⌫(⌧) = max⇡
n
bV ⇡

rp
(s0) | bV ⇡

c
(s0) � b0 + ⌧

o
and note that by definition, ⌫(0) =

16



bV b⇡⇤
rp

(s0) and that ⌫ is a decreasing function for its argument. Let bV ⇡,�

l
(s0) = bV ⇡

rp
(s0) +

�
⇣
bV ⇡

c
(s0)� b0

⌘
. Then, for any policy ⇡ s.t. bV ⇡

c
(s0) � b0 + ⌧ , we have

bV ⇡,b�⇤

l
(s0)  max

⇡0
bV ⇡

0
,b�⇤

l
(s0)

= bV b⇡⇤

rp
(s0)

= ⌫(0).

Then we have

⌫(0)� ⌧b�⇤ � bV ⇡,b�⇤

l
(s0)� ⌧b�⇤

= bV ⇡

rp
(s0) + b�⇤(bV ⇡

c
(s0)� b0 � ⌧)

� bV ⇡

rp
(s0),

where the last inequality follows because bV ⇡

c
(s0) � b0 + ⌧ . Note that the above inequality

holds for any policy ⇡ such that bV ⇡

c
(s0) � b0 + ⌧ , thus we have

⌫(0)� ⌧b�⇤ � max
⇡

{bV ⇡

rp
(s0)|bV ⇡

c
(s0) � b0 + ⌧} = ⌫(⌧),

⌧b�⇤  ⌫(0)� ⌫(⌧). (2.10)

Recall the notation [x]+ = max{x, 0}, and choose e⌧ = �
⇣
b0 � bV e⇡

c
(s0)

⌘

+
,

⇣
C � b�⇤

⌘
|e⌧ | = b�⇤e⌧ + C|e⌧ |

 ⌫(0)� ⌫(e⌧) + C|e⌧ |

= bV ⇡
⇤

rp
(s0)� bV e⇡

rp
(s0) + C|e⌧ |+ bV e⇡

rp
(s0)� ⌫(e⌧)

= bV b⇡⇤

rp
(s0)� bV e⇡

rp
(s0) + C

⇣
b0 � bV e⇡

c
(s0)

⌘

+
+ bV e⇡

rp
(s0)� ⌫(e⌧)

 � + bV e⇡
rp
(s0)� ⌫(e⌧),

where the first inequality follows from eq. (2.10) and the second inequality is due to the
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assumption on e⇡. Now we bound ⌫(e⌧):

⌫(e⌧) = max
⇡

⇢
bV ⇡

rp
(s0) | bV ⇡

c
(s0) � b0 �

⇣
b0 � bV e⇡

c
(s0)

⌘

+

�

� max
⇡

n
bV ⇡

rp
(s0) | bV ⇡

c
(s0) � bV e⇡

c
(s0)

o

� bV e⇡
rp
(s0),

where the inequality follows from tightening the constraints on ⇡, and the second inequality

follows because e⇡ immediately falls into the set on the right side. Finally, we have

⇣
C � b�⇤

⌘
|e⌧ |  �,

⇣
b0 � bV e⇡

c
(s0)

⌘

+
 �

C � b�⇤
.

Lemma 2.0.3. (Lemma 9 of Vaswani et al. [2022]) The objective eq. (1.4) satisfies strong

duality. Defining ⇡⇤
c
:= argmax

⇡
V ⇡

c
(s0). We consider two cases: (1) If b0 = b� "0 for "0 > 0

and event E1 =
n���bV ⇡

⇤
c

c (s0)� V ⇡
⇤
c

c (s0)
���  "

0

2

o
holds, then �⇤  2(1+!)

"0(1��) and (2) If b0 = b+� for

� 2
�
0, ⇣2
�
and event E2 =

n���bV ⇡
⇤
c

c (s0)� V ⇡
⇤
c

c (s0)
���  ⇣

2 ��
o

holds, then �⇤  2(1+!)
⇣(1��) .

Proof. Writing the empirical CMDP in eq. (1.4) in its Lagrangian form,

bV b⇡⇤

rp
(s0) = max

⇡

min
��0

bV ⇡

rp
(s0) + �

h
bV ⇡

c
(s0)� b0

i

Using the linear programming formulation of CMDPs in terms of the state-occupancy measures

µ, we know that both the objective and the constraint are linear functions of µ, and strong

duality holds w.r.t µ. Since µ and ⇡ have a one-one mapping, we can switch the min and the

max [Paternain et al., 2019], implying,

= min
��0

max
⇡

bV ⇡

rp
(s0) + �

h
bV ⇡

c
(s0)� b0

i
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Since �⇤ is the optimal dual variable for the empirical CMDP in (4),

= max
⇡

bV ⇡

rp
(s0) + �⇤

h
bV ⇡

c
(s0)� b0

i

Define ⇡⇤
c
:= argmaxV ⇡

c
(s0) and b⇡⇤

c
:= argmax bV ⇡

c
(s0)

� bV b⇡⇤
c

rp
(s0) + �⇤

h
bV b⇡⇤

c
c

(s0)� b0
i

= bV b⇡⇤
c

rp
(s0) + �⇤

h⇣
bV b⇡⇤

c
c

(s0)� V ⇡
⇤
c

c
(s0)

⌘
+
�
V ⇡

⇤
c

c
(s0)� b

�
+ (b� b0)

i

By definition, ⇣ = V ⇡
⇤
c

c (s0)� b

= bV b⇡⇤
c

rp
(s0) + �⇤

h⇣
bV b⇡⇤

c
c

(s0)� bV ⇡
⇤
c

c
(s0)

⌘
+
⇣
bV ⇡

⇤
c

c
(s0)� V ⇡

⇤
c

c
(s0)

⌘
+ ⇣ + (b� b0)

i

By definition of b⇡⇤
c
,
⇣
bV b⇡⇤

c
c (s0)� bV ⇡

⇤
c

c (s0)
⌘
� 0

bV b⇡⇤

rp
(s0) � bV b⇡⇤

c
rp

(s0) + �⇤
h
⇣ + (b� b0)�

���bV ⇡
⇤
c

c
(s0)� V ⇡

⇤
c

c
(s0)

���
i

1) If b0 = b� "0 for "0 > 0. Hence,

bV b⇡⇤

rp
(s0) � bV b⇡⇤

c
rp

(s0) + �⇤
h
⇣ + "0 �

���bV ⇡
⇤
c

c
(s0)� V ⇡

⇤
c

c
(s0)

���
i

If the event E1 holds,
���bV ⇡

⇤
c

c (s0)� V ⇡
⇤
c

c (s0)
���  "

0

2 , implying,
���bV ⇡

⇤
c

c (s0)� V ⇡
⇤
c

c (s0)
��� < ⇣ + "

0

2 , then,

� bV b⇡⇤
c

rp
(s0) + �⇤

"0

2

=) �⇤  2

"0

h
bV b⇡⇤

rp
(s0)� bV b⇡⇤

c
rp

(s0)
i
 2(1 + !)

"0(1� �)

2) If b0 = b+� for � 2
�
0, ⇣2
�
. Hence,

bV b⇡⇤

rp
(s0) � bV b⇡⇤

c
rp

(s0) + �⇤
h
⇣ ���

���bV ⇡
⇤
c

c
(s0)� V ⇡

⇤
c

c
(s0)

���
i
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If the event E2 holds,
���bV ⇡

⇤
c

c (s0)� V ⇡
⇤
c

c (s0)
���  ⇣

2 �� for � < ⇣

2 , then,

� bV b⇡⇤
c

rp
(s0) + �⇤

⇣

2

=) �⇤  2

⇣

h
bV b⇡⇤

rp
(s0)� bV b⇡⇤

c
rp

(s0)
i
 2(1 + !)

⇣(1� �)

We analyze Algorithm line 1 under both the relaxed feasibility and strict feasibility cases

[Vaswani et al., 2022].

For CMDPs with relaxed feasibility, the requirement for the learner to meet the constraint

is relaxed. The learner is required to return a policy b⇡ with an approximately optimal value

and a small constraint violation in M , i.e.,

V b⇡
r
(s0) � V ⇤

r
(s0)� ", and V b⇡

c
(s0) � b� ". (2.11)

For CMDPs with strict feasibility, the requirement for the learner to meet the constraint

is strict. The learner is required to return a policy b⇡ with an approximately optimal value

and no constraint violation in M , i.e.,

V b⇡
r
(s0) � V ⇤

r
(s0)� ", and V b⇡

c
(s0) � b. (2.12)

2.1 Relaxed feasibility

Theorem 2.1.1. (Theorem 2 of Vaswani et al. [2022]) For a fixed " 2 (0, 1/(1 � �)] and

� 2 (0, 1), Algorithm line 1 with N = eO( log(1/�)
(1��)3"2 ) samples, b0 = b � 3"

8 ,! = "(1��)
8 , U =

O(1/"(1� �)), "1 = O("2(1� �)2) and T = O(1/(1� �)4"4), returns policy ⇡̄T that satisfies

the objective in eq. (2.11) with probability at least 1� 4�.

Proof. We prove the result for a general primal-dual error "opt < " and b0 = b� "�"opt

2 , and
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subsequently specify "opt and hence b0. In lemma 2.1.1, we show that if the constraint value

functions are su�ciently concentrated (the empirical value function is close to the ground

truth value function) for both the optimal policy ⇡⇤ in M and the mixture policy ⇡̄T returned

by Algorithm line 1, i.e., if

���V ⇡̄T
c

(s0)� bV ⇡̄T
c

(s0)
��� 

"� "opt
2

;
���V ⇡

⇤

c
(s0)� bV ⇡

⇤

c
(s0)

��� 
"� "opt

2
,

then (i) policy ⇡̄T violates the constraint in M by at most ", i.e., V ⇡̄T
c

(s0) � b� ", and (ii)

its suboptimality in M (compared to ⇡⇤ ) can be decomposed as:

V ⇡
⇤

r
(s0)� V ⇡̄T

r
(s0) 

2!

1� � + "opt +
���V ⇡

⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

���+
���bV ⇡̄T

rp
(s0)� V ⇡̄T

rp
(s0)

��� . (2.13)

In order to instantiate the primal-dual algorithm, we require a concentration result for policy

⇡⇤
c
that maximizes the constraint value function, i.e. if ⇡⇤

c
:= argmaxV ⇡

c
(s0), then we require

���V ⇡
⇤
c

c (s0)� bV ⇡
⇤
c

c (s0)
���  "+ "opt. In Case 1 of lemma 2.0.3, we show that if this concentration

result holds, then we can upper-bound the optimal dual variable |�⇤| by 2(1+!)
("+"opt )(1��) . With

these results in hand, we can instantiate all the algorithm parameters except N (the number

of samples required for each state-action pair). In particular, we set "opt = "

4 and hence

b0 = b � 3"
8 , and ! = "(1��)

8 < 1. Setting U = 32
5"(1��) ensures that the U > |�⇤| condition

required by theorem 2.0.1 holds. To guarantee that the primal-dual algorithm outputs an

"

4 -approximate policy, we use theorem 2.0.1, recall that |�⇤|  C := 16
5"(1��)2 and U = 2C, and

set

T =
4U2

"2opt(1� �)2


1 +

1

(U � �⇤)2

�
=

64

"2(1� �)2


1 +

1

(U � �⇤)2

�
 256

"2(1� �)2 [C
2 + 1]

<
512

"2(1� �)2C
2 =

512

"2(1� �)2
256

25"2(1� �)2 .

Thus,

T = O

✓
1

(1� �)4"4

◆
.
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Using theorem 2.0.1, we need to set "1,

"1 =
"2opt(1� �)2 (U � �⇤)

6U
=
"2(1� �)2 (U � �⇤)

96U
 "2(1� �)2

96
.

Thus,

"1 = O
�
"2(1� �)2

�
.

With our choices of the value of "opt and !, eq. (2.13) can then be simplified as

V ⇡
⇤

r
(s0)� V ⇡̄T

r
(s0) 

"

2
+
���V ⇡

⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

���+
���bV ⇡̄T

rp
(s0)� V ⇡̄T

rp
(s0)

��� .

Putting everything together, in order to guarantee an "-reward suboptimality for ⇡̄T , we

require that:

���V ⇡
⇤
c

c
(s0)� bV ⇡

⇤
c

c
(s0)

��� 
5"

4
;
���V ⇡̄T

c
(s0)� bV ⇡̄T

c
(s0)

��� 
3"

8
;
���V ⇡

⇤

c
(s0)� bV ⇡

⇤

c
(s0)

��� 
3"

8���V ⇡
⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

��� 
"

4
;
���bV ⇡̄T

rp
(s0)� V ⇡̄T

rp
(s0)

��� 
"

4
.

(2.14)

We control such concentration terms for both the constraint and reward value functions

in section 2.3, and bound the terms in eq. (2.14). In particular, we prove that for a fixed

" 2 (0, 1/1 � �], using N � eO
⇣

log(1/�)
(1��)3"2

⌘
samples ensures that the statements in eq. (2.14)

hold with probability 1�4�. This guarantees that V ⇡
⇤

r
(s0)�V ⇡̄T

r
(s0)  " and V ⇡̄T

c
(s0) � b�".

For bounding the concentration terms for ⇡̄T in eq. (2.14), we use theorem 2.3.1 with

U = 32
5"(1��) , ! = "(1��)

8 and "1 =
"
2(1��)2

96 . In this case, ◆ = !�(1��)"1
30U |S||A|2 = O

⇣
�"

4(1��)4

SA2

⌘
and

C(�) = 72 log

✓
16(1 + U + !)SA log(e/1� �)

(1� �)2◆�

◆
= O

✓
log

✓
S2A3

�2"5(1� �)7

◆◆
.

With this value of C(�), in order to satisfy the concentration bounds for ⇡̄T , we require that

2

s
C(�)

N · (1� �)3 
"

4
=) N � O

✓
C(�)

(1� �)3"2

◆
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We use the lemma 2.3.3 to bound the remaining concentration terms for ⇡⇤ and ⇡⇤
c
in eq. (2.14).

In this case, for C 0(�) = 72 log
⇣

4S log(e/1��)
�

⌘
, we require that,

2

s
C 0(�)

N · (1� �)3 
"

4
=) N � O

✓
C 0(�)

(1� �)3"2

◆

Hence, if N � eO
⇣

log(1/�)
(1��)3"2

⌘
, the bounds in eq. (2.14) are satisfied, completing the proof.

Lemma 2.1.1. (Lemma 11 of Vaswani et al. [2022]) For b0 = b� "�"opt

2 , if (i) "opt < ", and

(ii) the following conditions are satisfied,

���V ⇡̄T
c

(s0)� bV ⇡̄T
c

(s0)
��� 

"� "opt
2

;
���V ⇡

⇤

c
(s0)� bV ⇡

⇤

c
(s0)

��� 
"� "opt

2
,

where ⇡⇤
c
:= argmaxV ⇡

c
(s0), then

(a) policy ⇡̄T violates the constraint by at most ", i.e. V ⇡̄T
c

(s0) � b� " and

(b) its optimality gap can be bounded as:

V ⇡
⇤

r
(s0)� V ⇡̄T

r
(s0) 

2!

1� � + "opt +
���V ⇡

⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

���+
���bV ⇡̄T

rp
(s0)� V ⇡̄T

rp
(s0)

��� .

Proof. For (a), from theorem 2.0.1, we know that,

bV ⇡̄T
c

(s0) � b0 � "opt,

then

V ⇡̄T
c

(s0) � V ⇡̄T
c

(s0)� bV ⇡̄T
c

(s0) + b0 � "opt

� �
���V ⇡̄T

c
(s0)� bV ⇡̄T

c
(s0)

���+ b0 � "opt.

By definition of relaxed feasibility, we require ⇡̄T to violate the constraint in the true CMDP

M by at most ", i.e., V ⇡̄T
c

(s0) � b� ". From the above equation, a su�cient condition for
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ensuring this is,

�
���V ⇡̄T

c
(s0)� bV ⇡̄T

c
(s0)

���+ b0 � "opt � b� ",

meaning that we require

���V ⇡̄T
c

(s0)� bV ⇡̄T
c

(s0)
���  (b0 � b)� "opt + ".

Plugging in the value of b0 = b� "�"opt

2 , we have

���V ⇡̄T
c

(s0)� bV ⇡̄T
c

(s0)
��� 

"� "opt
2

,

which indeed holds by our assumption.

For (b), let ⇡⇤ be the solution to eq. (1.4). Then we show that ⇡⇤ is feasible for the

constrained problem in eq. (2.1), i.e., bV ⇡
⇤

c
(s0) � b0. We have

V ⇡
⇤

c
(s0) � b =) bV ⇡

⇤

c
(s0) � b�

���V ⇡
⇤

c
(s0)� bV ⇡

⇤

c
(s0)

��� .

Since we require bV ⇡
⇤

c
(s0) � b0, using the above equation, a su�cient condition to ensure this

is

b�
���V ⇡

⇤

c
(s0)� bV ⇡

⇤

c
(s0)

��� � b0,

meaning that we require
���V ⇡

⇤

c
(s0)� bV ⇡

⇤

c
(s0)

���  b� b0.

Since b0 = b� "�"opt

2 , we require that

���V ⇡
⇤

c
(s0)� bV ⇡

⇤

c
(s0)

��� 
"� "opt

2
.

Given that the above statements hold, we can decompose the suboptimality in the reward
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value function as follows:

V ⇡
⇤

r
(s0)� V ⇡̄T

r
(s0)

=V ⇡
⇤

r
(s0)� V ⇡

⇤

rp
(s0) + V ⇡

⇤

rp
(s0)� V ⇡̄T

r
(s0)

=
h
V ⇡

⇤

r
(s0)� V ⇡

⇤

rp
(s0)

i
+ V ⇡

⇤

rp
(s0)� bV ⇡

⇤

rp
(s0) + bV ⇡

⇤

rp
(s0)� V ⇡̄T

r
(s0)


h
V ⇡

⇤

r
(s0)� V ⇡

⇤

rp
(s0)

i
+
h
V ⇡

⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

i
+ bV b⇡⇤

rp
(s0)� V ⇡̄T

r
(s0)

=
h
V ⇡

⇤

r
(s0)� V ⇡

⇤

rp
(s0)

i
+
h
V ⇡

⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

i
+
h
bV b⇡⇤

rp
(s0)� bV ⇡̄T

rp
(s0)

i
+ bV ⇡̄T

rp
(s0)� V ⇡̄T

r
(s0)

=
h
V ⇡

⇤

r
(s0)� V ⇡

⇤

rp
(s0)

i

| {z }
Perturbation Error

+
h
V ⇡

⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

i

| {z }
Concentration Error

+
h
bV b⇡⇤

rp
(s0)� bV ⇡̄T

rp
(s0)

i

| {z }
Primal-Dual Error

+
h
bV ⇡̄T
rp

(s0)� V ⇡̄T
rp

(s0)
i

| {z }
Concentration Error

+
h
V ⇡̄T
rp

(s0)� V ⇡̄T
r

(s0)
i

| {z }
Perturbation Error

,

where the inequality follows from the optimality of b⇡⇤ and since we have ensured that ⇡⇤ is

feasible for eq. (2.1). For a perturbation magnitude equal to !, we use lemma 2.3.2 to bound

both perturbation errors by !/(1� �). Using theorem 2.0.1 to bound the primal-dual error

by "opt,

V ⇡
⇤

r
(s0)� V ⇡̄T

r
(s0) 

2w

1� � + "opt + [V ⇡
⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)]

| {z }
Concentration Error

+ [bV ⇡̄T
rp
� V ⇡̄T

rp
(s0)]

| {z }
Concentration Error

.

2.2 Strict feasibility

Theorem 2.2.1. (Theorem 3 of Vaswani et al. [2022]) For a fixed " 2 (0, 1/1 � �] and

� 2 (0, 1), Algorithm line 1, with N = eO
⇣

log(1/�)
(1��)5"2⇣2

⌘
samples, b0 = b + "(1��)

10 , U = 4(1+!)
⇣(1��) ,

"1 = O("2(1� �)4⇣2) and T = O(1/(1� �)6⇣4"2) returns policy ⇡̄T that satisfies the objective

in eq. (2.12), with probability at least 1� 4�.

The proof mostly adopts similar methodology to the proof of relaxed feasibility.
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2.3 Concentration results

Definition 2.3.1 (◆-Gap Condition). MDP cM↵ satisfies the ◆-gap condition if 8s, bV ⇤
↵
(s)�

maxa0:a 6=b⇡⇤
↵(s)

bQ⇤
↵
(s, a0) � ◆, where b⇡⇤

↵
:= argmax bV ⇡

↵
and b⇡⇤

↵
(s) = argmax

a
bQ⇤
↵
(s, a) is the

optimal action in state s.

Lemma 2.3.1. (Lemma 5 of Vaswani et al. [2022]) Define b⇡⇤
↵
:= argmax

⇡
bV ⇡

↵
. If (i) E is

the event that the ◆-gap condition in definition 2.3.1 holds for cM↵ and (ii) for � 2 (0, 1) and

C(�) = 72 log
⇣

16↵maxSA log(e/1��)
(1��)2◆�

⌘
, the number of samples per state-action pair is N � 4C(�)

1��
,

then with probability at least Pr[E ]� �/10,

���bV b⇡⇤
↵

�
� V

�
b⇡⇤
↵

���
1


s
C(�)

N · (1� �)3 k�k1 .

Lemma 2.3.2. For any policy ⇡, we have

���V ⇡

r
(s0)� V ⇡

rp
(s0)

���
1
 !

1� � ;
���bV ⇡

r
(s0)� bV ⇡

rp
(s0)

���
1
 !

1� �

Proof. For policy ⇡, V ⇡

r
(s0) = (I � �P⇡)

�1 r⇡ and V ⇡

rp
(s0) = (I � �P⇡)

�1 r⇡
p
.

V ⇡

r
(s0)� V ⇡

rp
(s0) = (I � �P⇡)

�1 ⇥r⇡ � r⇡
p

⇤

=)
���V ⇡

r
(s0)� V ⇡

rp
(s0)

���
1

��(I � �P⇡)

�1
��
1

��r⇡ � r⇡
p

��
1

Since
��(I � �P⇡)

�1
��
1
 1

1��
and

��r⇡ � r⇡
p

��
1  !

���V ⇡

r
(s0)� V ⇡

rp
(s0)

���
1
 !

1� � .

The same argument can be used to bound
���bV ⇡

r
(s0)� bV ⇡

rp
(s0)

���
1

completing the proof.

Theorem 2.3.1. (Theorem 6 of Vaswani et al. [2022]) For � 2 (0, 1),!  1 and C(�) =

72 log
⇣

16(1+U+!)SA log(e/1��)
(1��)2◆�

⌘
where ◆ = !�(1��)"1

30U |S||A|2 , if N �
4C(�)
1��

, then for ⇡̄T output by Algo-

26



rithm theorem 2.0.1, with probability at least 1� �/5,

���V ⇡̄T
rp

(s0)� bV ⇡̄T
rp

(s0)
���  2

s
C(�)

N · (1� �)3 ;
���V ⇡̄T

c
(s0)� bV ⇡̄T

c
(s0)

��� 

s
C(�)

N · (1� �)3 .

Proof. Since by definition ⇡̄T = 1
T

P
T�1
t=0 b⇡t is a mixture policy, we have

���V ⇡̄T
rp

(s0)� bV ⇡̄T
rp

(s0)
��� =

�����
1

T

T�1X

t=0

h
V b⇡t
rp
(s0)� bV b⇡t

rp
(s0)

i����� 
1

T

T�1X

t=0

���V b⇡t
rp
(s0)� bV b⇡t

rp
(s0)

���

 1

T

T�1X

t=0

���V b⇡t
rp
� bV b⇡t

rp

���
1
.

Recall that cM
r+b�tc

satisfies the gap condition with ◆ = !�

30|⇤||S||A|2 for every b�t 2 ⇤. Since

|⇤| = U

"1
, ◆ = !�(1��)"1

30U |S||A|2 . Since b⇡t := argmax
⇡
bV ⇡

rp+b�tc
, we use lemma 2.3.1 with ↵ = rp + b�tc

and � = rp, and obtain the following result. For N � 4C(�)
1��

, for each t 2 [T ], with probability

at least 1� �/5,

���V b⇡t
rp
� bV b⇡t

rp

���
1


s
C(�)

N · (1� �)3 (1 + !)  2

s
C(�)

N · (1� �)3 .

Using the above relations,

���V ⇡̄T
rp

(s0)� bV ⇡̄T
rp

(s0)
���  2

s
C(�)

N · (1� �)3 .

Similarly, invoking lemma 2.3.1 with ↵ = rp+b�tc and � = c gives the bound on
���V ⇡̄T

c
(s0)� bV ⇡̄T

c
(s0)

���.

Lemma 2.3.3. For � 2 (0, 1),!  1 and C 0(�) = 72 log
⇣

4|S| log(e/1��)
�

⌘
, if N � 4C0(�)

1��
and

B(�, N) :=
q

C0(�)
(1��)3N , then with probability at least 1� 3�,

���V ⇡
⇤

rp
(s0)� bV ⇡

⇤

rp
(s0)

���  2B(�, N);
���V ⇡

⇤

c
(s0)� bV ⇡

⇤

c
(s0)

���  B(�, N);
���V ⇡

⇤
c

c
(s0)� bV ⇡

⇤
c

c
(s0)

���  B(�, N).
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Chapter 3

Learning in Linear CMDPs with

Global Access

In this section, we consider inifinite-horizon discounted CMDPs with linear function approxi-

mation under the global access setting. Similar to chapter 2, let M = (S,A,P , r, c, b, ⇢, �)

be the infinite-horizon �-discounted CMDP. With the primal-dual approach, we have the

primal variable ⇡t and the dual variable �t for iteration t. Hence, the learner will generate

a sequence of policies {⇡0, ⇡1, . . . , ⇡T�1} and Lagrange multipliers {�0,�1, . . . ,�T�1} when

the algorithm eventually returns a policy after T iterations. To measure the performance of

the learning algorithm on maximizing reward value function and satisfying requirements for

constraint value function, define the average optimality gap (OG) and the average constraint

violation (CV) [Jain et al., 2022] as

OG :=
1

T

T�1X

t=0

[V ⇤
r
(⇢)� V ⇡t

r
(⇢)],

CV :=
1

T

T�1X

t=0

[b� V ⇡t
c
(⇢)]+.

Further, we introduce some more notations for the learner’s estimates. For some policy ⇡,

denote bQ⇡

r
and bQ⇡

c
as the estimate reward action-value function and estimate constraint
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action-value function respectively. For now, there is no need of knowing how the learner

estimates the two action-value functions. Similar to section 1.4, we can introduce the estimate

reward value function as bV ⇡

r
= h⇡(·|s), bQ⇡

r
(s, ·)i and the estimate constraint value function as

bV ⇡

c
= h⇡(·|s), bQ⇡

c
(s, ·)i. Define the primal regret and dual regret as

Rp (⇡⇤, T ) := Es⇠⌫⇢,⇡⇤

T�1X

t=0

h⇡⇤(·|s)� ⇡t(·|s), ( bQ⇡t
r
(s, ·) + �t bQ⇡t

c
(s, ·)i,

Rd(�, T ) :=
T�1X

t=0

(�t � �) (bV ⇡t
c
(⇢)� b),

(3.1)

where ⌫⇢,⇡⇤ 2 �S is the discounted occupancy measure. With the above quantities defined,

we have the following theorem.

Theorem 3.0.1. (Theorem 3.1 of Jain et al. [2022]) Assuming that

���Q⇡t
r
� bQ⇡t

r

���
1
 e" and

���Q⇡t
c
� bQ⇡t

c

���
1
 e", for a generic algorithm producing a sequence of polices {⇡0, ⇡1, . . . , ⇡T�1}

and dual variables {�0,�1, . . . ,�T�1} such that for all t,�t is constrained to lie in the [0, U ]

where U > �⇤, OG and CV can be bounded as:

OG  Rp (⇡⇤, T ) + (1� �)Rd(0, T )

(1� �)T + e"g(U),

CV  Rp (⇡⇤, T ) + (1� �)Rd(U, T )

(U � �⇤) (1� �)T +
e"g(U)

(U � �⇤) ,

where g(U) :=
h
1+U

1��
+ U

i
.

Proof. We will begin with bounding the value di↵erences in the Lagrangian using lemma 1.2.1.

Let T r

⇡⇤ and T c

⇡⇤ be the Bellman operators of the optimal policy for the reward and cost

respectively. Then,

⇥
V ⇡

⇤

r
� V ⇡t

r

⇤
+ �t

⇥
V ⇡

⇤

c
� V ⇡t

c

⇤
= (I � �P⇡⇤)�1 [[T r

⇡⇤V ⇡t
r
� V ⇡t

r
] + �t [T

c

⇡⇤V ⇡t
c
� V ⇡t

c
]]

LetM⇡ be the state-action operator appliedQ functions such thatM⇡(Q)(s) =
P

a
⇡(a|s)Q(s, a).

Observe that T r

⇡⇤V ⇡t
r

= M⇡⇤Q⇡t
r
and V ⇡t

r
= M⇡tQ

⇡t
r
. The expressions for the constraint rewards

29



are analogous. Rewriting the above expression,

⇥
V ⇡

⇤

r
� V ⇡t

r

⇤
+ �t

⇥
V ⇡

⇤

c
� V ⇡t

c

⇤
= (I � �P⇡⇤)�1 [[M⇡⇤Q⇡t

r
�M⇡tQ

⇡t
r
] + �t [M⇡⇤Q⇡t

c
�M⇡tQ

⇡t
c
]]

= (I � �P⇡⇤)�1 [[M⇡⇤ �M⇡t ] [Q
⇡t
r
+ �tQ

⇡t
c
]]

= (I � �P⇡⇤)�1
h
[M⇡⇤ �M⇡t ]

h
bQ⇡t
r
+ �t bQ⇡t

c

ii

+ (I � �P⇡⇤)�1
h
[M⇡⇤ �M⇡t ]

h
Q⇡t

r
� bQ⇡t

r
+ �t

⇣
Q⇡t

c
� bQ⇡t

c

⌘ii

| {z }
Error

Let us first bound the maximum norm of the “Error” term,

k Error k1 =
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By assumption,
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���
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 ".

k Error k1 
"

1� � (1 + �t) .

Since the dual variables are projected onto the [0, U ] interval, �t  U , implying that

k Error k1 
"

1� � (1 + U)

Substituting in this bound on the error, using the convention that left-multiplication by a

measure means integration with respect to it,

⇥
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r
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⇤
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where ⌫⇢,⇡⇤ = (1 � �)⇢ (I � �P⇡⇤)�1 is the discounted probability measure over the states

obtained when starting from ⇢ and following ⇡⇤. Summing from t = 0 to T � 1 and dividing

by T .

1

T
⌫⇢,⇡⇤

T�1X

t=0

⇥⇥
V ⇡

⇤

r
(⇢)� V ⇡t

r
(⇢)
⇤
+ �t
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V ⇡

⇤

c
(⇢)� V ⇡t

c
(⇢)
⇤⇤

 ⌫⇢,⇡⇤

(1� �)T

T�1X

t=0

h
[M⇡⇤ �M⇡t ]

h
bQ⇡t
r
+ �t bQ⇡t

c

ii
+

"

1� � (1 + U)

Now, observe that

⌫⇢,⇡⇤

T�1X

t=0

h
[M⇡⇤ �M⇡t ]

h
bQ⇡t
r
+ �t bQ⇡t
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ii
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T�1X

t=0

h⇡⇤(·|s)� ⇡t(·|s), bQ⇡t
r
(s, ·) + �t bQ⇡t

c
(s, ·)is⇠⌫⇢,⇡⇤

=Rp (⇡⇤, T )

Putting everything together,
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 Rp (⇡⇤, T )

(1� �)T +
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1� � (1 + U) (3.2)

The above result bounds the sub-optimality in the Lagrangian. Next, we will see how this

result implies a bound on the sub-optimality in the objective and the constraint violation.

To bound the reward sub-optimality, we will upper bound the negative of the second term on

the left-hand side in the above equation, i.e., we upper bound 1
T

P
T�1
t=0 �t

⇥
V ⇡t
c
(⇢)� V ⇡

⇤
c

(⇢)
⇤
.
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We have,
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(3.3)

Using Eqs.eq. (3.2) and eq. (3.3),

OG =
1

T

T�1X

t=0

⇥
V ⇡

⇤

r
(⇢)� V ⇡t

r
(⇢)
⇤
 Rp (⇡⇤, T ) + (1� �)Rd(0, T )

(1� �)T +
"
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This proves the first part of the theorem. We now bound the constraint violation. For an

arbitrary �,
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implying
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Adding eq. (3.4) and eq. (3.2) and reordering the terms gives
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We consider two cases: (i) if
P
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(⇢)) � 0, we set � = U , else, if (ii)
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0, we set � = 0. Using these choices, and since Rd(�, T ) is linearly increasing in �,
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Using lemma 2.0.1 with C = U > �⇤ and � = h(U), we get
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3.1 Coin betting

theorem 3.0.1 gives upper bounds of both the average optimality gap and the average

constraint violation by the primal and dual regret defined in eq. (3.1). Note that minimizing

the primal regret and dual regret is equivalent to solving an online linear optimization

problem. Further, coin-betting, proposed by Orabona and Pál [2016], is a parameter-free

algorithm designed for solving online linear optimization. Adopting a parameter-free online

linear optimization algorithm can help eliminate the sensitivity of the algorithm to the values

of hyper-parameters. To instantiate the coin-betting algorithm (Algorithm 2 in Orabona

and Pál [2016]), we need to define one more variable wt, which works as the “wealth” in the

coin-betting setting.

wt+1(s, a) =

P
t

i=0
eAi

l
(s, a)

(t+ 1) + T/2

 
1 +

tX

i=0

eAi

l
(s, a)wi(s, a)

!
, (3.5)

where given the primal variable ⇡t, eAt

l
(s, a) is defined as

eAt

l
(s, a) =

8
>><

>>:

bAt

l
(s, a) if wt(s, a) > 0,

h
bAt

l
(s, a)

i

+
if wt(s, a)  0,

where bAt

l
(s, a) is defined as
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l
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1� �
1 + U

h
bQt

l
(s, a)�

D
bQt

l
(s, ·), ⇡t(· | s)

Ei
.

Equivalently, eAt

l
(s, a) can also be defined in a closed form:

eAt

l
(s, a) = bAt

l
(s, a)I {wt(s, a) > 0}+

h
bAt

l
(s, a)

i

+
I {wt(s, a)  0} ,

where I{!} is the indicator function that takes value 1 when the event ! holds true and

0 otherwise. Now it still remains to determine how to update ⇡t. We update the primal
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variable (policy ⇡t) using the same update rule in the coin-betting algorithm, i.e.,

⇡t+1(a|s) =

8
>><

>>:

⇡0(a|s), if
P

a
⇡0(a|s) [wt+1(s, a)]+ = 0,

⇡0(a|s)[wt+1(s,a)]+P
a0 ⇡0(a0|s)[wt+1(s,a0)]+

, otherwise,

(3.6)

The update rule for the dual variable �t adopts the update rule of the “fraction” variable in

the coin-betting algorithm Continuous Coin Betting (COCOB) proposed in Orabona and

Tommasi [2017]. In particular, we have

�t+1 = �0 � �t
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� 1

1

A

1

A ,

(3.7)

where �(x) = 1
1+exp(�x) . With these updates for the primal and dual variables, it can be

shown that the results of Orabona and Tommasi [2017] give us the following upper bounds

for the primal regret and dual regret:

Rp (⇡⇤, T )  3(1 + U)

1� �
p
T
p
1 + KL (⇡0k⇡⇤),

Rd(�, T )  1

1� � +
���� �0

��
s✓

1

(1� �)2 +
GT

1� �

◆
�T ,

where KL (⇡0||⇡⇤) = Es⇠⌫⇢,⇡⇤ KL (⇡0(· | s)k⇡⇤(· | s),�T = log
⇣
1 + (GT (1� �) + 1)2 k�� �0k2

⌘

and GT =
P

T

i=0

���bV ⇡i
c
(⇢)� b

��� = O(T ).

3.2 Approximate action-value function realizability

So far we have derived results on generic CMDP algorithms adopting primal-dual approach and

some preliminary analysis on coin-betting type algorithms, yet we have made no assumption
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of CMDPs. It is not always feasible to require a learner to perform well on every CMDPs.

It is reasonable to restrict the set of CMDPs that the learner is required to work well on.

To achieve this, we can make assumptions on CMDPs that assign some good properties.

We expect the learner to perform well where the assumptions hold true. One of the most

common assumptions one can make is that the value functions or the action value functions

can be linearly parameterized by some feature map. Weaker assumptions claim that the

value functions or the action value functions can be approximately linearly parameterized.

Specifically, for the latter assumption, let � : S ⇥ A ! Rd be a feature map with feature

vectors �(s, a) for the state-action pair (s, a), we have

Assumption 3.2.1. [Approximate universal linear Q⇡
-realizability] Given an CMDP M and

the feature map �, for any memoryless policy ⇡,

inf
✓2Rd
kQ⇡

r
� �✓k1  "b, (3.8)

inf
✓2Rd
kQ⇡

c
� �✓k1  "b. (3.9)

The linear function approximation assumption claims that for any memoryless policy ⇡,

the best approximators for the action value function and the constraint action value function

have a uniform error of at most "b. Planning under the approximate universal action value

function realizability assumption is well studied [Szepesvári, 2023b]. The key objective of

planning in MDPs with linear function approximation is to solve eq. (3.8) by approximating

the minimizer with some estimate b✓r. To calculate such b✓r, one way is to maintain a set

C ✓ S ⇥A of state-action pairs, for each state-action pair (s, a) 2 C, rollout m trajectories

from z = (s, a) for a fixed number of steps H following policy ⇡. Then, calculate the estimate

action value function qr(z) as the average of the truncated cumulative discounted rewards

generated by all m trajectories, i.e.,

qr(z) =
1

m

mX

i=1

HX

t=1

�tr(si
t
, ai

t
),
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where si1 = s and ai1 = a for all i = 1, . . . ,m. Thus, we can denote qr as a |C|-dimensional

vector that stores all the estimate action values of state-action pairs z 2 C in the set. Let

! : C ! (0,1) be some weighting function. Without loss of generality, we assume that
P

z2C !(z) = 1. Then we apply the generalized least squares to solve b✓⇡
r
:

b✓⇡
r
= argmin

✓

X

z2C

!(z)[h✓,�(z)i � qr(z)]
2. (3.10)

Define the weighted moment matrix G! as

G! =
X

z2C

!(z)�(z)�(z)>,

which is nonsingular and thus we can solve eq. (3.10) as

b✓⇡
r
= G�1

!

X

z2C

!(z)qr(z)�(z).

Now we elaborate more on the set C, which is known as the coreset. Due to the linear

structure of the action value function, there is no need of keeping all state-action pairs in the

coreset. However in order to extrapolate well to state-action pairs outside of the coreset C

while keeping the coreset as small as possible for e�ciency, we need to carefully design what

should be included in the coreset. This problem is known as the G-optimal design. For some

coreset C and some weighting function !, we have the following result:

Lemma 3.2.1. (Lemma 5.2 of Jain et al. [2022]) For policy ⇡, any distribution ! and subset

C, if we use m trajectories to estimate the action value function for each (s, a) 2 C, and solve

eq. (3.10) to compute b✓⇡
r
, then for any (s, a) 2 (S ⇥A) pair, the error

���
D
�(s, a), b✓⇡

r

E
�Q⇡

r

���

can be upper-bounded by

"b
⇣
1 + k�(s, a)k

G
†
!

⌘
+
k�(s, a)k†

G
†
!

1� �

r
log(2|C|/�)

2m
,
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where, G! =
P

(s,a)2C !(s, a)�(s, a)�(s, a)
>
and A†

is pseudoinverse of A.

The proof of this lemma can be found in Szepesvári [2023b]; Jain et al. [2022]. To control

the extrapolation error at points (s, a) outside of the coreset C, we need to carefully choose

the coreset C and weighting function !. To do so, we introduce the Kiefer-Wolfowitz theorem:

Theorem 3.2.1 (Kiefer-Wolfowitz [Kiefer and Wolfowitz, 1960]). Let Z be finite. Let

' : Z ! Rd
be such that the underlying feature matrix � is rank d. There exists a set C ✓ Z

and a distribution ! : C ! [0, 1] over this set, i.e.
P

z02C ! (z0) = 1, such that

1. |C|  d(d+ 1)/2,

2. sup
z2Z k'(z)kG�1

!

p
d,

3. In the previous line, the inequality is achieved with equality and the value of
p
d is best

possible under all possible choices of C and !.

If such C is found, then the function approximation error e" can be bounded by

e"  "b(1 +
p
d) +

p
d

1� �

r
log(2d(d+ 1)/�)

2m
.

Now we are ready to present the Coin-Betting Politex algorithm in line 2, and combine

theorem 3.0.1 with lemma 3.2.1, we bound the average optimality gap and the average

constraint violation in the following theorem:

Theorem 3.2.2. Under Assumption assumption 3.2.1, OG and CV of line 2 can be bounded

as:

OG 

✓
3(1+U)

p
1+KL(⇡0k⇡⇤)

1��
+ 

◆

(1� �)
p
T

+
e"(1 + 2U)

1� � ,

CV 
⇣

✓
3(1+U)

p
1+KL(⇡0k⇡⇤)

1��
+ 

◆

p
T

+ ⇣e"(1 + 2U),

where U = 2
⇣(1��) , e" = "b(1 +

p
d) +

p
d

1��

q
log(2d(d+1)/�)

2m and  = 4U
p
log((T + 1)U) + 1.
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Algorithm 2: Coin-Betting Politex [Jain et al., 2022]

Input : ⇡0 (policy initialization), �0 (dual variable initialization), m (Number of
trajectories), T (Number of iterations), Feature map �.

1 Compute coreset C and distribution !

2 Solve the unconstrained problem max⇡ bV ⇡

c
(⇢) to estimate the Slater constant ⇣ and

set U = 2
⇣(1��)

3 for t 0 . . . T � 1 do

4 For every (s, a) 2 C, use m trajectories starting from (s, a) using policy ⇡t and
estimate the action-value functions qr(s, a) and qc(s, a)

5 Compute and store b✓⇡t
r

and b✓⇡t
c

using eq. (3.10).
6 for every s encountered in the trajectory generated by ⇡t, and for every a do

7 Compute bQ⇡t
r
(s, a) = hb✓⇡t

r
,�(s, a)i,

bQ⇡t
c
(s, a) = hb✓⇡t

c
,�(s, a)i, and bQ⇡t

l
(s, a) = bQ⇡t

r
(s, a) + �t bQ⇡t

c
(s, a).

8 Update ⇡t+1(a|s) using eq. (3.6)

9 Compute bV ⇡t
c
(⇢), update �t+1 using eq. (3.7)
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Chapter 4

Learning in Episodic Linear CMDPs

with Online Access

In this section, we study time-inhomogenous episodic CMDPs with linear function approxi-

mation. Let M = (S,A, H,P, r, c, b) be the CMDP. We have S and A as the state and action

space, H as the fixed finite horizon of each episode, P = {Ph}H1 as the time-inhomogeneous

transition probability, r = {rh}H1 as the time-inhomogeneous reward function, c = {ch}H1 as

the time-inhomogeneous constraint reward function, and note that now we require b 2 (0, H]

so that the problem is feasible and not trivial. Since the value functions for rewards and

constraint rewards are analogous in the following analysis, we use l to denote either rewards

r or constraint rewards c. Similar to our definitions in Section section 1.2, we define the

value functions for episodic CMDPs. For some policy ⇡, define the value function V ⇡

l,h
as the

expected cumulative rewards starting from the state s:

V ⇡

l,h
(s) = E

"
HX

i=h

li(si, ai) | sh = s

#
,

where the expectation is taken over the randomness of the trajectory {si, ai}Hh generated by

following policy ⇡. Define the action value function Q⇡

l,h
as the expected cumulative rewards
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starting from taking the action a in the state s:

Q⇡

l,h
(s, a) = E

"
HX

i=h

li(si, ai) | sh = s, ah = a

#
.

For brevity, we introduce a notion PhV ⇡

l,h+1(s, a) to denote the expected values of the next

state sh+1 if the learner takes action a in the current state s. Specifically, we define PhV ⇡

l,h
as:

PhV
⇡

l,h+1(s, a) = Es0⇠Ph(·|s,a)V
⇡

l,h+1(s
0).

Now, the Bellman equation can be written as:

Q⇡

l,h
(s, a) = rh(s, a) + PhV

⇡

l,h+1(s, a), (4.1)

and

V ⇡

l,h
(s) =

X

a2A

Q⇡

l,h
(s, a)⇡(a|s) =

⌦
Q⇡

l,h
(s, ·), ⇡(·|s)

↵
. (4.2)

Further, we assume that the transition probability and the (constraint) reward function can

be well represented by linear functions in some feature maps.

4.1 Linear CMDPs

As discussed in section 3.2, to scale up the state and action space, we often rely on all kinds

of assumptions on MDPs. Apart from the (action) value function realizability assumptions,

another common assumption on MDPs is that the transition probability (and in some cases

the reward function as well) can be represented or approximated by some functions. One

of the most simple function approximations gives us the linear kernel MDPs model. MDPs

with linear function approximation [Ayoub et al., 2020; Cai et al., 2020; Jin et al., 2020;

Ding et al., 2020; Zhou et al., 2021] is an assumption on MDPs that the transition and

reward can be linearly parameterized by some feature maps of state-action pairs. There exist
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several di↵erent yet incomparable assumptions on how transitions are linearly parameterized,

including linear mixture MDPs (also known as linear kernel MDPs) [Ayoub et al., 2020;

Zhou et al., 2021; Cai et al., 2020; Ding et al., 2020] and linear MDPs [Jin et al., 2020]. In

particular, we consider linear mixture MDPs in this section and thus have the following

assumption:

Assumption 4.1.1 (Linear mixture MDPs). MDP (S,A, H,P, r) is a linear mixture MDP

with a kernel feature map  : S ⇥ A ⇥ S ! Rd
, if for any h 2 [H], there exists a vector

✓h 2 Rd
with k✓hk2 

p
d such that for any (s, a, s0) 2 S ⇥A⇥ S,

Ph(s
0|s, a) = h (s, a, s0), ✓hi.

Moreover, we assume that for any function V : S ! [0, H],
��R

S  (s, a, s
0)V (s0)ds0

��
2

p
d1H

for all (s, a) 2 S ⇥A, and max{d1, d2}  d.

For CMDPs, we make the same assumptions about the transitions and additionally we

make some assumptions that rewards and constraint rewards can also be linearly parameterized

by a di↵erent feature mapping.

Assumption 4.1.2 (Linear mixture CMDPs). The CMDP (S,A, H,P, r, c, b) is a linear MDP

with a kernel feature map  : S ⇥A⇥ S ! Rd1 and a value feature map ' : S ⇥A! Rd2,

if for any h 2 [H], there exists a vector ✓h 2 Rd1 with k✓hk2 
p
d1 such that for any

(s, a, s0) 2 S ⇥A⇥ S,

Ph(s
0|s, a) = h (s, a, s0), ✓hi,

and there exists a feature map ' : S ⇥A! Rd2 and vectors ✓r,h, ✓c,h 2 Rd2 such that for any

(s, a) 2 S ⇥A,

rh(s, a) = h'(s, a), ✓r,hi, and ch(s, a) = h'(s, a), ✓c,hi,

where max{k✓r,hk2 , k✓c,hk2} 
p
d2. Moreover, we assume that for any function V : S !
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[0, H],
��R

S  (s, a, s
0)V (s0)ds0

��
2

p
d1H for all (s, a) 2 S ⇥A, and max{d1, d2}  d.

The objective of the learner is to solve the following CMDP:

max
⇡

V ⇡

r,1(s1), s.t., V ⇡

c,1(s1) � b. (4.3)

To measure the performance of the learner on some CMDP M over K episodes of interaction

in terms of maximizing the value and ensuring the constraint, we define the regret and

constraint violation as:

Regret(K) =
KX

k=1

⇣
V ⇡

⇤

r,1 (x1)� V ⇡
k

r,1 (x1)
⌘

Violation (K) =

"
KX

k=1

⇣
b� V ⇡

k

c,1 (x1)
⌘#

+

.

(4.4)

Now to adopt the primal-dual approach, we rewrite the CMDP objective eq. (4.3) as the

equivalent saddle-point problem

max
⇡

min
��0

V ⇡

r,1(s1) + �
�
V ⇡

c,1(s1)� b
�
. (4.5)

Again to solve the above saddle-point problem, we iteratively update the primal variable and

dual variable over episodes. In the kth episode, denote the primal variable by ⇡k and denote

the dual variable by �k. Given the primal and dual variables at the end of the last episode,

the k � 1th episode, one can update the primal variable ⇡k by directly solving the following

policy optimization problem:

max
⇡

V ⇡

r,1(s1) + �k�1(V ⇡

c,1(s1)� b).

However, to solve the above problem requires the help of some policy optimization algorithms,

which is computationally expensive and infeasible under the online setting. Hence, we need

to come up with a new method to avoid the expensive computation.
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4.2 Policy improvement and policy evaluation

Basically, we still follow the standard procedures of policy iterations to iteratively update

our policies ⇡k, which includes two steps: policy improvement and policy evaluation. The

policy evaluation step computes the value function Q⇡
k�1

of the policy ⇡k�1 for each episode

k. In many cases, it su�ces to compute only a good estimate of the true value function.

The policy improvement step usually computes a greedy policy ⇡k with respect to the value

function Q⇡
k�1

. Thus, iteratively conducting the policy evaluation and policy improvement

steps generates a sequence of policies {⇡k}.

4.2.1 Policy improvement

To study the performance of such policy iteration algorithms, we need to relate polices in

the sequence. The tool to achieve this is the performance di↵erence lemma. Note that

lemma 1.2.2 works under the infinite-horizon discounted MDPs. Analogously, we define the

time-inhomogeneous advantage as A⇡

h
(s, a) = Q⇡

h
(s, a)�V ⇡

h
(s), and thus have the performance

di↵erence lemma for finite-horizon MDPs:

V ⇡
0
(s)� V ⇡(s) = E⇡0

"
HX

h=1

A⇡

h
(s0, ⇡0)

#
= E⇡0

"
HX

h=1

hQ⇡(s, ·), (⇡0 � ⇡)(·|s)i
#
. (4.6)

With the performance di↵erence lemma eq. (4.6), we now can relate the value function of any

policy V ⇡

l,1(s1) to the value function V ⇡
k�1

l,1 (s1) of the policy at the end of k � 1th iteration

⇡k�1:

V ⇡

l,1 (s1) = V ⇡
k�1

l,1

�
sk1
�
+ E⇡k�1

"
HX

h=1

⌦
Q⇡

l,h
(sh, ·) ,

�
⇡h � ⇡k�1

h

�
(· | sh)

↵
#
. (4.7)

Note that eq. (4.7) provides us with a way to represent the value function V ⇡

l,1(s1) of any

policy ⇡. To calculate V ⇡

l,1(s1) in practice, we need to replace the expectation with a sample
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trajectory and thus obtain an approximation Lk�1
l

(⇡):

Lk�1
l

(⇡) = V k�1
l,1 (s1) +

HX

h=1

⌦
Qk�1

l,h
(sh, ·) ,

�
⇡h � ⇡k�1

h

�
(· | sh)

↵
, (4.8)

where V k�1
l,1 (s1) and Qk�1

l,h
(sh, ·) are estimate value functions calculated by the learner in

each episode. Finally, with the ability to obtain an approximation of the value function of

any policy ⇡, we are ready to present the update rule for the primal variable. As discussed

above, we are oftentimes incapable of solving the problem in eq. (4.5), and instead we adopt

an online mirror descent style of policy update by solving the following problem:

max
⇡

Lk�1
r

(⇡)� �k�1
�
b� Lk�1

c
(⇡)
� 1
↵

HX

h=1

D
�
⇡h (· |h) | e⇡k�1

h
(· | sh)

�
, (4.9)

where ↵ > 0 is a trade-o↵ parameter, D(⇡|e⇡k�1) is the Kullback–Leibler divergence (KL

divergence), i.e.,

D(⇡(·|s)|⇡0(·|s)) =
X

a2A

⇡(a|s) log
✓
⇡(a|s)
⇡0(a|s)

◆
,

and

e⇡k�1
h

(· | sh) = (1� ✓)⇡k�1
h

(· | sh) + ✓Unif(A)

is a policy mixing ⇡k�1 with a uniform policy Unif(A) with some weight ✓ 2 (0, 1]. Mixing

the uniform policy with policy ⇡k is important for it ensures the absolute continuity of ⇡

with respect to e⇡k. The absolute continuity is required by the definition of the KL divergence

which states that ⇡ = 0 wherever e⇡ = 0. Clearing out all the terms that are irrelevant to ⇡,

the problem in eq. (4.9) can be solved by

argmax
⇡

HX

h=1

⌦�
Qk�1

r,h
+ �k�1Qk�1

c,h

�
(sh, ·) , ⇡h (·|sh)

↵ 1
↵

HX

h=1

D
�
⇡h (· | sh) | e⇡k�1

h
(· | sh)

�
. (4.10)

Note that there is no dependence among di↵erent states and actions in the above update rules.

Hence for any time step h 2 [H], we can equivalently update the policy by each state-action
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pair (s, a) by a closed form rule:

⇡k

h
(· | ·) / e⇡k�1

h
(· | ·) exp

�
↵
�
Qk�1

r,h
+ �k�1Qk�1

c,h

�
(·, ·)

�
. (4.11)

4.2.2 Policy evaluation

Now that we have established the update rule for the policy improvement step, it remains to

show how to calculate the estimate value functions used in the update rules, which is the

policy evaluation step. With the linear mixture CMDPs assumption assumption 4.1.2, we

can use least squares to estimate the value functions V ⇡
k

l,1 . For brevity, we denote V ⇡
k

l,1 by V k

l,1.

The Bellman equation states that

Qk

r,h
(sh, ah) = rh(sh, ah) + PhV

k

r,h+1(sh, ah).

To estimate the value function Qk

r,h
, we estimate the second part PhV k

r,h+1 by (�k

r,h
)>wk

r,h
,

which can be seen in many linear mixture MDPs works [Ayoub et al., 2020; Zhou et al., 2021],

where wk

r,h
can be solved via least squares. Specifically, we solve the following regularized

least squares for wk

r,h
:

wk

r,h
= argmin

w

k�1X

⌧=1

⇣
V ⌧

r,h+1

�
s⌧
h+1

�
� �⌧

r,h
(s⌧

h
, a⌧

h
)> w

⌘2
+ �kwk22, (4.12)

where

�⌧

r,h
(·, ·) :=

Z

S
 (·, ·, s0)V ⌧

r,h+1 (s
0) ds0,

and V ⌧

r,h+1(·) =
⌦
Q⌧

r,h+1(·, ·), ⇡⌧

h+1(· | ·)
↵
A for h 2 [H � 1]. Analogously, we estimate PhV k

c,h
by

(�k

c,h
)>wk

c,h
, solved from:

wk

c,h
= argmin

w

k�1X

⌧=1

⇣
V ⌧

c,h+1

�
s⌧
h+1

�
� �⌧

c,h
(s⌧

h
, a⌧

h
)> w

⌘2
+ �kwk22. (4.13)
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Further, we estimate rh by '>uk

r,h
in which we solve uk

r,h
from:

uk

r,h
= argmin

u

k�1X

⌧=1

⇣
rh
�
s⌧
h+1

�
� ' (s⌧

h
, a⌧

h
)> u

⌘2
+ �kuk22. (4.14)

Analogously we estimate ch by '>uk

c,h
in which we solve uk

c,h
from:

uk

c,h
= argmin

u

k�1X

⌧=1

⇣
ch
�
s⌧
h+1

�
� ' (s⌧

h
, a⌧

h
)> u

⌘2
+ �kuk22. (4.15)

Algorithm 3: Optimistic Primal-Dual Proximal Policy Optimization [Ding et al.,
2020]

Input :Let
�
Q0

r,h
, Q0

c,h

 H
h=1

be zero functions, {⇡0
h
}
h2[H] be uniform distributions on

A, V 0
c,1 be b,�0 be 0,� be 2H/�,↵, ⌘ > 0, ✓ 2 (0, 1].

1 for episode k = 1, . . . , K + 1 do

2 Set the initial state sk1 = s1. for step h = 1, 2, . . . , H do

3 Mix the policy

e⇡k�1
h

(· | ·) (1� ✓)⇡k�1
h

(· | ·) + ✓Unif(A)

4 Update the policy

⇡k

h
(· | ·) / e⇡k�1

h
(· | ·)e(↵(Q

k�1
r,h +�

k�1
Q

k�1
c,h )(·,·))

5 Take an action ak
h
⇠ ⇡k

h

�
· | sk

h

�
and receive reward and utility

rh
�
sk
h
, ak

h

�
, ch
�
sk
h
, ak

h

�

6 Observe the next state sk
h+1

7 Update the dual variable �k by

�k  Proj[0,�]
�
�k�1 + ⌘

�
b� V k�1

c,1 (s1)
��

8 Estimate the action-value or value functions
�
Qk

r,h
(·, ·), Qk

c,h
(·, ·), V k

c,h
(·)
 H
h=1

via

LSTD
⇣
{s⌧

h
, a⌧

h
, rh (s

⌧

h
, a⌧

h
) , ch (s

⌧

h
, a⌧

h
)}H,k

h,⌧=1

⌘

Finally, to encourage exploration, we add upper confidence bound (UCB) type bonus

to our estimates of (constraint) value functions and (constraint) reward functions so that
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Algorithm 4: Least-Squares Temporal Di↵erence (LSTD) with UCB exploration
[Ding et al., 2020]

Input : {s⌧
h
, a⌧

h
, rh (s⌧h, a

⌧

h
) , ch (s⌧h, a

⌧

h
)}H,k

h,⌧=1.

1 Set
�
V k

r,H+1, V
k

c,H+1

 
be zero functions and � = 1, � = O

⇣p
dH2 log(dT/p)

⌘

2 for step h = H,H � 1, . . . , 1 do

3 ⇤k

l,h
 
P

k�1
⌧=1 �

⌧

l,h
(s⌧

h
, a⌧

h
)�⌧

l,h
(s⌧

h
, a⌧

h
)> + �I

4 wk

l,h
 
�
⇤k

l,h

��1Pk�1
⌧=1 �

⌧

l,h
(s⌧

h
, a⌧

h
)V ⌧

l,h+1

�
s⌧
h+1

�

5 �k

l,h
(·, ·) 

R
S  (·, ·, s0)V k

l,h+1 (s
0) ds0

6 �k

l,h
(·, ·) �

⇣
�k

l,h
(·, ·)>

�
⇤k

l,h

��1
�k

l,h
(·, ·)

⌘1/2

7 ⇤k

h
 
P

k�1
⌧=1 ' (s⌧

h
, a⌧

h
)' (s⌧

h
, a⌧

h
)> + �I

8 uk

l,h
 
�
⇤k

h

��1Pk�1
⌧=1 ' (s⌧

h
, a⌧

h
) lh (s⌧h, a

⌧

h
)

9 �k

h
(·, ·) �

⇣
'(·, ·)>

�
⇤k

h

��1
'(·, ·)

⌘1/2

10 Qk

l,h
(·, ·) min

�
'(·, ·)>uk

l,h
+ �k

l,h
(·, ·)>wk

l,h
+
�
�k

h
+ �k

l,h

�
(·, ·), H � h+ 1

�+

11 V k

l,h
(·) 

⌦
Qk

l,h
(·, ·), ⇡k

h
(· | ·)

↵
A ·

Output :
�
Qk

l,h
(·, ·), V k

l,h
(·, ·)

 H
h=1

the estimates are optimistic with high probability. Denote the bonus for (constraint) value

functions and (constraint) reward functions by �k

l,h
and �k

h
respectively. Specifically, the

bonus are given by:

�k

h
= �

⇣
'> �⇤k

h

��1
'
⌘1/2

, (4.16)

and

�k

l,h
= �

⇣�
�k

l,h

�> �
⇤k

l,h

��1
�k

l,h

⌘1/2
, (4.17)

where � > 0 is the coe�cient.

Putting everything together, we have the main algorithm in Algorithm line 3. For each

episode, it performs policy improvement in line line 3 and line 4 at each time step, and then

it performs the standard dual variable update in line line 7 with gradient descent. At the end

of each episode, the main algorithm performs the policy evaluation to calculate estimates

by calling to the least-squares temporal di↵erence procedure in Algorithm algorithm 4. The

LSTD procedure implements the policy evaluation step by solving all the least-squares
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problems defined in Section section 4.2.2. The closed form expression is given by fundamental

regularized linear regression.

Theorem 4.2.1. (Theorem 1 of Ding et al. [2020]) Let Assumptions assumption 1.4.1 and

assumption 4.1.2 hold. Fix p 2 (0, 1). We set ↵ =
p

log |A|/(H2K), � = C1

p
dH2 log(dT/p),

⌘ = 1/
p
K, ✓ = 1/K, and � = 1 in Algorithm line 3, where C1 is an absolute constant.

Suppose log |A| = O(d2 log2(dT/p)). Then, with probability 1�p, the regret and the constraint

violation satisfy

Regret(K)  CdH2.5
p
T log

✓
dT

p

◆

Violation(K)  C 0dH2.5
p
T log

✓
dT

p

◆

where C and C 0
are absolute constants.

To prove theorem 4.2.1 we need some preliminary analysis and results. First of all, we

decompose the regret to break it down to terms that are easier to analyze. Recall the

definition of the regret in eq. (4.4):

Regret(K) =
KX

k=1

⇣
V ⇡

⇤

r,1 (s1)� V ⇡
k

r,1 (s1)
⌘
.

It is not easy to directly relate the values V ⇡
k

r,1 of policies ⇡ks to the value of the optimal policy

⇡⇤, but the algorithm design of Algorithm line 3 makes it easier to relate the values V ⇡
k

r,1 to

the estimate value functions V k

r,1 returned by Algorithm algorithm 4, where the policies ⇡k are

updated according to the estimate values. Hence, we add and subtract the estimate values:

Regret(K) =
KX

k=1

�
V ⇡

⇤

r,1 (s1)� V k

r,1 (s1)
�

| {z }
(R.I)

+
KX

k=1

⇣
V k

r,1 (s1)� V ⇡
k

r,1 (s1)
⌘

| {z }
(R.II)

. (4.18)

We use the following lemma to expand term (R.I):
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Lemma 4.2.1. For reward l being either reward r or constraint reward c,

KX

k=1

�
V ⇡

⇤

l,1 (s1)� V k

l,1(s1)
�
=

KX

k=1

HX

h=1

E⇡⇤
⇥⌦
Qk

l,h
(sh, ·) , ⇡⇤

h
(· | sh)� ⇡k

h
(· | sh)

↵⇤

+
KX

k=1

HX

h=1

E⇡⇤
⇥
◆k
l,h

(sh, ah)
⇤
,

(4.19)

where ◆k
l,h

:= lh + PhV k

l,h+1 �Qk

l,h
.

To prove lemma 4.2.1, we need to use the Bellman equations in form of eq. (4.1) and

eq. (4.2) to rewrite the left hand side as

V ⇡
⇤

l,h
(s)� V k

l,h
(s) =

⌦
Ph

�
V ⇡

⇤

l,h+1 � V k

l,h+1

�
(s, ·), ⇡⇤

h
(· | s)

↵
+
⌦
◆k
l,h
(s, ·), ⇡⇤

h
(· | s)

↵
+ ⇠k

h
(s),

where ⇠k
h
(s) := hQk

h
(s, ·), ⇡⇤

h
(·|s)� ⇡k

h
(·|s)i. Note that the above equation is recursive. Recur-

sively expanding the expression, where for the first term the terminal case is Vr,H+1 = 0 for

any policy, gives us the desired result.

To expand (R.II) we need to introduce some filtrations. For any k 2 [K], h 2 [H], define

Fk

h,1 as a �-algebra generated by state-action sequences:

{(s⌧
i
, a⌧

i
)}(⌧,i)2[k�1]⇥[H]

[��
sk
i
, ak

i

� 
i2[h] .

Additionally, for any k 2 [K], h 2 [H], define Fk

h,2 as a �-algebra generated by state-action

sequences with an extra next state:

{(s⌧
i
, a⌧

i
)}(⌧,i)2[k�1]⇥[H]

[��
sk
i
, ak

i

� 
i2[h]

[�
sk
h+1

 
.

Let

Nk

r,h,1 :=
D⇣

Qk

r,h
�Q⇡

k

r,h

⌘
(sk

h
, ·), ⇡k

h
(·, sk

h
)
E
�
⇣
Qk

r,h
�Q⇡

k

r,h

⌘ �
sk
h
, ak

h

�
,

Nk

r,h,2 :=
⇣
PhV

k

r,h+1 � PhV
⇡
k

r,h+1

⌘ �
sk
h
, ak

h

�
�
⇣
V k

r,h+1 � V ⇡
k

r,h+1

⌘ �
sk
h+1

�
,
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and define the martingale sequence Mk

r,h,m
as:

Mk

r,h,m
=

k�1X

⌧=1

HX

i=1

�
N ⌧

r,i,1 +N ⌧

r,i,2

�
+

h�1X

i=1

�
Nk

r,i,1 +Nk

r,i,2

�
+

mX

`=1

Nk

r,h,`
. (4.20)

Note that by the definition in eq. (4.20), in particular we have

MK

r,H,2 =
KX

k=1

HX

h=1

2X

`=1

Nk

r,h,`
=

KX

k=1

HX

h=1

(Nk

r,h,1 +Nk

r,h,2).

Now, we introduce the following lemma to expand term (R.II):

Lemma 4.2.2.

KX

k=1

⇣
V k

r,1 (s1)� V ⇡
k

r,1 (s1)
⌘
= �

KX

k=1

HX

h=1

◆k
r,h
(sk

h
, ak

h
) +MK

r,H,2. (4.21)

Lemma 4.2.3. [Policy Improvement: Primal-Dual Mirror Descent Step [Ding et al., 2020]]

Let Assumption assumption 1.4.1 and Assumption assumption 4.1.1 hold. In Algorithm line 3,

if we set ↵ =
p

log |A|/
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H2
p
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⌘
and ✓ = 1/K, then
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(4.22)

where C2 is an absolute constant and T = HK.

Proof. Recall that line line 4 of Algorithm line 3 follows a solution ⇡k to the following problem,

max
⇡

HX
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⌦
Qk�1

r,h
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c,h
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(4.23)

where we use the shorthand
⌦
Qk�1

r,h
+ �k�1Qk�1

c,h
, ⇡h
↵
for
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�
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�
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h
(· | sh)

�
if dependence on the state-
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action sequence {sh, ah}Hh=1 is clear from context. We note that eq. (4.23) is in form of a mirror

descent problem in lemma 4.2.7. We can apply the pushback property with x⇤ = ⇡k

h
, y = e⇡k�1

h

and z = ⇡⇤
h
,
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Equivalently, we write the above inequality as follows,
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(4.24)

By taking expectation E⇡⇤ on both sides of eq. (4.24) over the random state-action sequence

{(sh, ah)}H1 *ting from s1, and applying lemma 4.2.1, we have
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(4.25)

The rest is to bound the right-hand side of the above inequality. By the Hölder’s inequality
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and the Pinsker’s inequality, we first have
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Then, using the square completion,
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where we drop o↵ the first quadratic term for the inequality, and
��e⇡k�1

h
� ⇡k�1

h

��
1
 ✓, we

have
HX

h=1

⌦
Qk�1

r,h
+ �k�1Qk�1

c,h
, ⇡k

h
� ⇡k�1

h

↵
� 1

↵

HX

h=1

D
�
⇡k

h
| ⇡k�1

h

�

 ↵

2

HX

h=1

��Qk�1
r,h

+ �k�1Qk�1
c,h

��2
1 + ✓

HX

h=1

��Qk�1
r,h

+ �k�1Qk�1
c,h

��
1

 ↵(1 + �)2H3

2
+ ✓(1 + �)H2,

(4.26)

where the last inequality is due to
��Qk�1

r,h

��
1  H, a result from line line 11 in Algorithm

algorithm 4, and 0  �k�1  �. Taking the same expectation E⇡⇤ as previously on both sides
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of eq. (4.26) and substituting it into the left-hand side of eq. (4.25) yield,
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(4.27)

where in the second inequality we note the fact that D
�
⇡⇤
h
| e⇡k�1
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h
| ⇡k�1

h
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from lemma 4.2.8.

We note that �0 is initialized to be zero. By taking a telescoping sum of both sides of

eq. (4.27) from k = 1 to k = K + 1 and shifting the index k by one, we have
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is uniform over A and we ignore
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Finally, we take � := H/� and ↵, ✓ in the lemma to complete the proof.

Lemma 4.2.4. Let Assumption assumption 1.4.1 and Assumption assumption 4.1.1 hold. In

54



Algorithm line 3, if we set ↵ =
p
log |A|/

⇣
H2
p
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⌘
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p
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where C3 is an absolute constant.

The proof to lemma 4.2.4 first bounds the second term of the left hand side in eq. (4.22)

and then combines it with lemma 4.2.3 to obtain the desired results. The first part is

constructed based on the update rule of the dual variables �ks and the fact that the dual

variables are projections and thus bounded. We have seen similar techniques in the proof to

theorem 2.0.1. We show the first part of the proof in details: by the dual update in Algorithm

line 3, we have
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where we use the feasibility of ⇡⇤ in the last inequality. Since �0 = 0 and
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the above inequality implies that
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We note that with lemma 4.2.4, it remains to bound two more terms on the right hand side

of eq. (4.28) to get our regret bound. We bound each of the two terms in the following two
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lemmas.

Lemma 4.2.5. Let Assumption assumption 4.1.1 hold. Fix p 2 (0, 1). If we set � =

C1

p
dH2 log(dT/p) in Algorithm line 3, then with probability 1� p/2 it holds that
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where C1 is an absolute constant and T = HK.

Recall that ◆k
r,h
(s, a) := rh(s, a) + PhV k

r,h+1(s, a) � Qk

r,h
(s, a) is defined as the model

prediction error at state-action pair (sh, ah), incurred partially by the error in transition

estimates. Note that due to UCB style bonus in Algorithm algorithm 4, in particular

(�k
l,h

+ �k
h
), with high probability this error can be bounded as such: for any state-action pair

(s, a) 2 S ⇥A, for any k 2 [K], h 2 [H], with probability 1� p/2,

�2(�k

h
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r,h
)(s, a)  ◆k

r,h
(s, a)  0, (4.29)

where p appears in the UCB bonus coe�cient � := C1

p
dH2 log(dT/p) in eq. (4.16) and

eq. (4.17). Hence, the proof to lemma 4.2.5 first relates the model prediction error ◆k
r,h

to

the UCB bonus terms (�k

h
+ �k

r,h
)(s, a), and then bounding these bonus terms by elliptical

potential lemma (lemma 4.2.9) completes the proof. Finally, we use the last lemma below to

bound the last term in eq. (4.28).

Lemma 4.2.6. Fix p 2 (0, 1). In Algorithm line 3, it holds with probability 1� p/2 that

��MK

r,H,2

��  4

s

H2T log

✓
4
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◆
,

where T = HK.

The proof to lemma 4.2.6 applies the Azuma-Hoe↵ding inequality to the martingale

sequence MK

r,H,2 which is bounded by showing that Nk

r,h,1 and Nk

r,h,2 are bounded for all
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k 2 [K], h 2 [H].

Lemma 4.2.7. (Pushback property of KL-divergence [Wei et al., 2020]). Let f : �! R be a

concave function where � is a probability simplex in Rd
. Let �o

be the interior of �. Let

x⇤ = argmax
x2� f(x)� ↵�1D(x, y) for a fixed y 2 �o

and ↵ > 0. Then, for any z 2 �,
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↵
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1

↵
D (z, x⇤) .

Lemma 4.2.8. (Bounded KL-divergence Di↵erence [Wei et al., 2020]). Let ⇡1, ⇡2 be two

probability distributions in �(A). Let e⇡2 = (1� ✓)⇡2 + 1✓/|A| where ✓ 2 (0, 1]. Then,

D (⇡1 | e⇡2)�D (⇡1 | ⇡2)  ✓ log |A|.

Moreover, we have an uniform bound, D (⇡1 | e⇡2)  log(|A|/✓).

Lemma 4.2.9. (Elliptical Potential Lemma [Abbasi-yadkori et al., 2011]) Let {�t}1t=1 be

a sequence of functions in Rd
and ⇤0 2 Rd⇥d

be a positive definite matrix. Let ⇤t =
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