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Abstract

Unique challenges arise when attempting to navigate unknown GPS-denied subter-

ranean environments. To successfully explore these environments a vehicle much be

able to reconcile the nonlinear dynamics of motion, accommodate for diverse ter-

rain, adjust to static and moving obstacles, combat degraded sensor conditions, and

transmit high quality information. Each of these fields have been investigated inde-

pendently, however within the scope of this research these challenges are addressed

collectively by a prototype unmanned aerial vehicle (UAV) which utilizes a sophis-

ticated motion planner, customized hardware, and artificial intelligence-based image

enhancement.

A motion planner suitable for the described challenges addresses a four-part prob-

lem. Generation of a high-fidelity map, exploratory motivation, a global navigational

strategy, and an optimized and adaptable local trajectory planner. Each of these sub-

tasks are addressed by implementing the Fast Autonomous UAV Exploration (FUEL)

algorithm into the prototype platform.

Limitations to hardware systems present unique boundaries to efficient flight per-

formance. Consumers typically address these issues through costly performance up-

grades of existing components. However, when the flight terrain is predetermined,

slight geometric modifications to the airframe can be implemented to optimize effi-

ciency. Within this research, the vehicle uses custom-designed twisted rotor arms.

This strategy is used to redirect a portion of the vertical thrust to produce greater

yaw authority.

Arguably, the main value of a UAV is measured by the information it transmits to
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remote operators. Motivated by this, five convolutional neural networks tasked with

enhancing degraded low light images are implemented onboard the vehicle. Each of

these networks are tested in real-time experiments to quantify their performance and

their net benefits to the operator.

The ultimate goal of this research is to experimentally validate all presented design

selections, specifically to understand the limitations and real-world performance of

the systems and algorithms used.
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Chapter 1

Introduction

Exploratory robotics is a competitive field that is continuously innovating worldwide

within academia. Research is motivated through many prestigious robotics compe-

titions such as the DARPA Robotics Challenge, NASA Space Robotics Challenge,

Technoxian, and VEX Robotics Challenge [1–4]. Each of these competitions require

multidisciplinary collaboration to achieve success. Some of the most impactful re-

search groups in robotics are the ETH Zurich Institute of Robotics and Intelligent

Systems, Dyson Robotics Lab at the Imperial College London, Computer Science and

Artificial Intelligence Lab at MIT, and the Oxford Robotics Institute.

ETH Zurich is currently pursuing research in robust land based learning and adap-

tive robotics [5–7] in addition to the aid of exoskeleton applications in rehabilitation

medicine [8, 9]. Imperial College London is developing algorithms for scene and ob-

ject perception [10–12] and collaborative robotics [13]. MIT is exploring complex

and non-tradition control strategies for robotics such as brain-controlled and gesture

based [14, 15]. The robotics team at Oxford is establishing various reinforcement

learning strategies in addition to motion planning frameworks [16–19]. This is only

a few of the prominent institutions and their current research interests with many

more building off previous successes or independently developing new technologies.

Locally, the University of Alberta houses world-class robotics research in conjunction

with industry leading professors. Some of the prominent areas of research are ad-
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ditive manufacturing, AI/ML in robotics, advanced robotic construction, nonlinear

controls, exploratory aerial and ground vehicles, and biomechanical robotics.

1.1 Motivation

Industrial demands for increased safety, efficiency, and operability have accelerated

the need for autonomous systems. These directives have motivated the design of a

variety of vehicle platforms capable of performing autonomous tasks. However, lack-

ing in current research is an experimentally validated and optimized vehicle platform

capable of navigating through complex environments. Addressing this need is becom-

ing standard across various industries such as infrastructure, resource extraction, and

recreation.

Exemplifying this industrial trend is one of Canada’s largest resource extraction

companies, Suncor. The company deployed a fleet of autonomous haulage vehicles for

product transportation within their mining operations [20]. This quickly encouraged

other producers such as CNRL and Imperial Oil to adapt this technology in order to

stay competitive [21, 22]. This is not only a local trend as companies such as Glen-

core and Rio Tinto have extensive global investments in autonomous systems [23, 24].

Driving modern research is the complexity of the environments these systems operate

in. Highly remote, dynamic, and sensory deprived underground mining operations are

the apex of difficulty for autonomous systems. These environments lack GPS signals

which inhibits the attainment of an absolute positioning reference. The difficulty

of this challenge has motivated government bodies such as the Defence Advanced

Research Projects Agency (DARPA) to offer substantial monetary rewards for the

top performers in the Subterranean Robotics Challenge [1]. This motivation for ad-

vancement continues as companies such as NASA and SpaceX push to explore other

astronomical bodies such as neighboring planets, asteroids, and exoplanets where

GPS is unavailable.
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1.2 Thesis Objectives

The goal of the research presented in this thesis is to build a robust and efficient

quadcopter capable of autonomous GPS-denied flight. We present an evolution of

design decisions which highlight the problems faced and the lessons learned. Within

the scope of this research are extensive hardware and software considerations which

include off-the-shelf component selections, mounting and interfacing, sensor evalua-

tion, and software integration/modification. This research evaluates all the presented

design choices and experimental flight tests to ensure their validity and performance.

Building on the previous work in [25–28] this thesis aims at improving the efficiency

of the UAV through the elimination of the Velodyne LiDAR sensor. These sensors

are common in underground applications due to their high-fidelity mapping ability.

However, this sensor is expensive, computationally intensive, and the mass of the

device restricts the agility of the aerial vehicle. Through the removal of this device

the efficiency was improved while reducing capital costs.

1.3 Thesis Outline

This research progresses chronologically to highlight the lessons learned during de-

sign. Therefore, the remainder of this thesis will be structured as follows: Chapter

2 reviews comparable research and methodologies to understand the current trends

and challenges. Chapter 3 presents the hardware and software infrastructure used

onboard the custom UAVs. Chapter 4 covers convolutional neural networks used for

artificial low light enhancement. Chapter 5 describes the experimental flight tests of

our vehicle and onboard path planning algorithms. Chapter 6 summarizes the thesis

and suggests future work directions.
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Chapter 2

Background

2.1 Quadcopter Model

The 6-DoF rigid body dynamics of a quadcopter are derived from the free body

diagram (FBD) in Figure 2.1.

Figure 2.1: Quadcopter free body diagram.

Figure 2.1 shows the ground-fixed NED (north-east-down) inertial frame of refer-

ence N with Ω denoting the rotational speed of the propellers, opposite to the torque

generated. A non-inertial reference frame B is fixed to the body of the quadcopter

at its centre of mass (CM) with gravity force mg. The onboard electronic speed

controllers (ESCs) directly control the four rotor speeds Ω1, . . . ,Ω4 which are propor-

tional to the propeller thrusts F1, . . . , F4 and counter-torques τ1, . . . , τ4. In this way
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the controls generate the wrench Fb in Equation (2.1).

FB =
[︂

∑︁4
i=1 fB,i

∑︁4
i=1 τB,i

]︂

+ FB,g (2.1)

where:

4
∑︂

i=1

fB,i =

⎡

⎢

⎢

⎢

⎣

0

0

−f1 − f2 − f3 − f4

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0

0

−kL(ω2
1 + ω2

2 + ω2
3 + ω2

4)

⎤

⎥

⎥

⎥

⎦

(2.2)

and

4
∑︂

i=1

τB,i =

⎡

⎢

⎢

⎢

⎣

df4 − df2

df1 − df3

τ1 + τ3 − τ2 − τ4

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

dkL(ω
2
4 − ω2

2)

dkL(ω
2
1 − ω2

3)

kD(ω
2
1 + ω2

3 − ω2
2 − ω4

4)

⎤

⎥

⎥

⎥

⎦

(2.3)

In Equation (2.3), d is the length from the center of mass to the point of thrust

generation with kL and kD being the lift and drag coefficients inherent to the propeller

geometry. Additionally, f is the thrust and ω is the angular velocity vector.

The gravity wrench applied to the body at the centre of mass with the N and B

frames aligned is Equation (2.4).

FB,g =

⎡

⎣

RT 0

0 0

⎤

⎦

[︂

0 0 mg 0 0 0
]︂T

(2.4)

In equation (2.4), R ∈ SO(3) is the rotation matrix of frame B with respect to

frame N , such that RT transforms a vector in frame N basis to frame B basis.

Applying the net wrench in (2.1) to the Newton-Euler equations governing rigid-

body dynamics [29] results in (2.5)

⎡

⎣

∑︁4
i=1 fB,i

∑︁4
i=1 τB,i

⎤

⎦ =

⎡

⎣

mv̇

IBω̇B

⎤

⎦+

⎡

⎣

ωB ×mv

ωB × IBωB

⎤

⎦ (2.5)
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The dynamics of the attitude matrix R ∈ SO(3) and position of the body’s CM

with respect to the N frame origin are governed by [29]

Ṙ = RS(ωB) (2.6)

ṗW = RvB (2.7)

where S is an operator mapping R
3 vectors to 3 × 3 skew-symmetric matrices such

that S(x)y = x × y, x, y ∈ R
3. The matrix R ∈ SO(3) can be represented as the

roll-pitch-yaw Euler angle sequence (ϕ, θ, ψ) ∈ R
3 through (2.8) [29]

R =

⎡

⎢

⎢

⎢

⎣

cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ

⎤

⎥

⎥

⎥

⎦

(2.8)

Each of Equations (2.6) and (2.7) define the kinematic equations which govern the

dynamics of a +-frame quadcopter as illustrated in Figure 2.1 [29]. In this research

the hardware UAV employs an X-frame configuration where the longitudinal axis

is at 45◦ between the two front arms. The transformation required to change the

quadcopter to this configuration will be provided in Chapter 5.

2.2 Depth Image Formation

Sensor perception is achieved through a variety of devices such as LiDAR, rangefind-

ers, ultrasonic, thermal, and stereo cameras [30]. Each of these sensors are advan-

tageous under specific operating conditions and can provide standalone localisation

solutions for robotic applications. When considering commercial value and avail-

ability stereo cameras can provide effective solutions. To properly localise a vehicle

in 3D-space using optical methods, calibration must be performed. Equation (2.9)

establishes the calibration matrix which is manipulated by the focal length, scaling

factors, and centering offsets [31].
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K =

⎡

⎢

⎢

⎢

⎣

fx s cx

0 fy cy

0 0 1

⎤

⎥

⎥

⎥

⎦

(2.9)

Assuming the camera is calibrated the principles of epipolar geometry can be ap-

plied to estimate the 3D coordinates of a point as seen in Figure 2.2.

This is done through trigonometric relations between two 2D points on the indi-

vidual image planes across the epipolar scan lines.

Figure 2.2: Epipolar geometry for a calibrated stereo camera.

Suppose that x and x′ are the locations of the 3D point in the left and right image

plane, written in homogeneous coordinates as

x =

⎡

⎢

⎢

⎢

⎣

u

v

1

⎤

⎥

⎥

⎥

⎦

and x′ =

⎡

⎢

⎢

⎢

⎣

u′

v′

1

⎤

⎥

⎥

⎥

⎦

(2.10)

The relations are exemplified in Equations (2.11) and (2.12).

x̂ = K−1
1 x (2.11)

x̂′ = K−1
2 x′ (2.12)
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which, after the independent calibration matrices are applied results in the follow-

ing relation between the two points in Equation (2.13).

x̂′ = Rcx̂+ Tc (2.13)

Now, by exploiting the coplanar relationship between them we can arrive at the

essential matrix in Equation (2.14).

E = S(Tc)Rc (2.14)

This essential matrix allows for the coordinates of a point within one cameras

reference to be related to another. Imposing the epipolar constraint where the epipoles

are located at infinity along the horizontal axis, the images are rectified, and the

epipolar lines are aligned evenly as in Equation (2.15).

x̂TEx̂′ = 0 (2.15)

Using this and substituting (2.14) into (2.15) produces Equation (2.16).

x̂T

⎡

⎢

⎢

⎢

⎣

0 0 0

0 0 −B
0 B 0

⎤

⎥

⎥

⎥

⎦

x̂′ =
[︂

u v 1
]︂

⎡

⎢

⎢

⎢

⎣

0

−B
Bv′

⎤

⎥

⎥

⎥

⎦

= 0 (2.16)

In which case x̂ is a point within one calibrated cameras image plane, x̂′ is a second

point in the image plane of a second calibrated camera, and B is the baseline between

camera centers.

Simplifying (2.16), results in Equation (2.17)

Bv = Bv′ (2.17)

These relations allow for the understanding that only a horizontal translation is

required to derive depth of a point on the image plane from two images of a cali-
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brated and rectified stereo camera.Therefore, the disparity can be calculated through

Equation (2.18).

Disparity = x̂− x̂′ =
Bf

z
(2.18)

The match between x̂ and x̂′ is found along the epipolar line directly or by us-

ing methods such as sum of squared differences (SSD), normalized cross correlation

(NCC), or structural similarity index measure (SSIM). Finally, the depth which is

inversely proportional to the disparity can be calculated [31].

2.3 Convolutional Neural Networks

The importance of information rich visual data is becoming increasingly important

as it becomes more heavily relied upon for critical tasks. From exoplanet exploration

[32], subterranean navigation [33], and under water observation [34], visual data is

continually being used to drive human based decision making in challenging environ-

ments. Machine learning, particularly CNNs are leading frameworks for processing

and enhancing visual data.

2.3.1 Autoencoder

Autoencoders are two-part functions constructed of an encoder and a decoder. The

encoder, composed of parameterized layers, looks to replicate the features extracted

from the input data [35]. Conversely, the decoder looks to reconstruct the initial

images by decoding the extracted features following the identification [36]. Under-

complete autoencoders are identifiable through a bottleneck layer in which the output

dimension is smaller than the input; constraining the features extracted by the model

[37]. These constraints ensure the most representative features are extracted in the

learning stage through the inclusion of a loss function to minimize reconstruction error

[38]. Utilizing these principles, denoising autoencoders enhance images by learning

significant features of corrupted images and abstracting noise in the bottleneck [39].
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Autoencoders enhanced low light images in the studies of [40], [41], [42] as standalone

and supplementary solutions.

2.3.2 Feedforward

Feedforward convolutional neural networks combine convolutional layers with fully

connected layers in a linear fashion to learn the features of the input data [43]. The

addition of max pooling between convolutional layers reduces spatial complexity of

feature maps and decreases computational complexity, but can restrict fine detail

during extraction [44] [45]. Combining these processes is the study performed by Li

et al. and the introduction of LightenNet [46]. This study successfully enhances the

visibility of low light images using four convolutional layers as a backbone for the

model. Similarly, Schwartz et al. proposed DeepISP - a two stage network for low,

local and high, global level feature extraction [47]. This network performed image

enhancement for both well-lit and low light images to effectively improve feature

perception.

2.3.3 RetinexNet

Land et al. [48] proposes the deconstruction of an image into the components of illumi-

nance and reflectance. Known as Retinex theory, a primitive interdependence of these

image properties is established and is later refined in the works of [49], [50], [51], [52]

to abstain from degrading image artifacts such as the halo effect, color distortion, and

inadequate edge sharpening [53]. Combining deep learning frameworks with Retinex

theory is RetinexNet proposed by Wei et al. [54]. This model is constructed of three

modules: deconstruction, adjustment, and reconstruction. The deconstruction mod-

ule processes the images through a Decom-Net which is a variation of convolutional

layers to extract the illuminance and reflectance representations of the initial image.

These are then processed through an Enhance-Net which, again, utilizes a variation

of convolutional layers while manipulating the spacial resolution of the feature maps.
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Combining these networks into a pipeline renders quality qualitative results.

2.3.4 U-Net

U-Net proposed by Ronneberger et al. [55] introduces a sophisticated CNN structure

for refined feature extraction. This symmetric network uses the competing opera-

tions of max pooling and up-sampling to compress and expand the dimensionality

of the feature maps in addition to convolutional layers to extract prominent features

[56]. Skip connections are used to retain high dimension details within low dimen-

sional maps across the network [57]. This framework has been modified in the study

performed by Ai and Kwon [58] and coined Attention U-Net. This network inte-

grates attention gates within the skip connections. This occurs before concatenation

to filter irrelevant and noisy information input to the feature maps during forward

and backward propagation to achieve improved image enhancement [59]. Alternative

modifications for low light enhancement to the U-Net structure are presented by Cai

and U [60]. In this implementation recurrent residual convolutional layers replace tra-

ditional convolutions and the spacial resolution of the bottleneck is greatly increased

in size from the use of multiways dilated convolution blocks [60]. These modifications

produced substantial improvements visually and quantitatively.

Overall, each of the models chosen for comparison achieved previous successes in

LLIE. The exact structures used in this article are not identical to those reviewed

in this section, but follow the foundational frameworks to establish a baseline for

comparison.

2.4 Motion Planning

UAV flight has become increasingly popular for a variety of applications including

recreation [61], commercial [62], industrial [63], and military sectors [64]. This vari-

ety forces the diversification of UAV design to adapt to user-specific applications. At

the lowest level UAV hardware consists of the aerial platform, propulsion system, and
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flight control system (FCS) [65]. The platform architecture is situational, but common

variations include fixed wing, single rotor, multi-rotor, and hybrid systems [66]. Typ-

ical propulsion systems are either combustion based or electrical with some specialty

variations [67]. The FCS is modified based on mission analytics. Examples include

full autonomy, semi-autonomous, teleoperated, or remote controlled [68]. To achieve

full autonomy the embedded FCS must perform independent mission planning and

adaptable flight operation without human interference. Environmental perception is

a critical step in autonomy which relies on sensory inputs from external devices. This

includes sensors such as Global Navigation and Satellite System (GNSS), barome-

ters, Inertial Measurement Units (IMUs), compasses, Light Detection and Ranging

(LiDARs), stereo and monocular cameras, ultrasonic, RADAR, and Time of Flight

sensors (ToFs) [69]. These sensors provide estimation of the vehicle states such as

position, orientation, and speed to the FCS. Independently, some of these sensors suf-

fer from inaccuracies and drift over time [69]. To mitigate this problem, Integrated

Navigation Systems (INS) are proposed to introduce sensor fusion typically using a

Kalman filter to incorporate redundancy through additional sensors for more robust

navigational information [70]. GNSS systems are one of the most popular sensors

providing time-synchronized positional and velocity data [67]. However, in subter-

ranean environments GNSS information is either unreliable or unavailable in which

vision-based navigation [71] or INS is relied upon [72].

Navigational tactics deployed onboard UAVs are traditionally classified as deliber-

ative (global planning), sensor-based (local planning), or hybrid [65].

Following the establishment of the vehicle’s states and environmental map, there

are many algorithms proposed to allow a UAV to navigate efficiently within a local

space. Dijkstra’s algorithm [73] is proposed as an efficient algorithm which deter-

mines the shortest route to an end goal. This is done through a weighted graph

where every node within the graphical map is iteratively updated to provide the

shortest distance between all nodes. This methodology guarantees the shortest path
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between two chosen nodes can always be attained, assuming the map contains all

positive edge weights. However, this methodology requires computational complexity

particularly when the map size increases dramatically. Resolving this constraint is

the A∗ algorithm. Utilized by [74–76] for autonomous navigation the A∗ algorithm is

based upon a heuristic function which estimates the distance to an objective node.

This strategy evaluates the cost function only to the goal node as opposed to the en-

tire search space, greatly reducing computational demand. Rapidly exploring random

trees (RRT) and probabilistic roadmaps (PRM) are two sampling based techniques

which extract points within the configuration space to be grouped into nodes for local

traverse [77]. RRT commonly uses random sampling techniques to navigate the en-

vironment resulting in suboptimal solutions. The standard RRT algorithm may vary

to include auxiliary paths which contain environmental details regarding the end goal

known as informed RRT [78] and further optimized and informed algorithms such as

RRT∗ which use nearest-n node grouping strategies [79]. PRM and the success of

implementation changes based on the users chosen sampling method and node group-

ing techniques. Evaluated and tested in [80, 81] PRM can use sampling techniques

such as random, grid, halton, etc., in combination with different grouping methods

such as nearest-n, component, visibility, etc.. Artificial potential fields (APF) origi-

nally proposed by [82] is an algorithm that establishes attractive and repulsive forces

around the target and obstacles, respectively. The navigation through this field is

computed iteratively through a gradient descent algorithm to locate optimal path-

ways [83]. However, this algorithm does not guarantee the global optima is reached

and can get trapped in a local minimum. The works of [84, 85] suggest modifications

to APF to ensure satisfactory trajectory planning is achieved. [84] presents a simu-

lated annealing method which uses nearest neighbour sampling and energy derived

probabilistic associations to encourage departure from the local minimum. Secondly,

[85] implemented a Regular Hexagon-Guided method to encourage control actions

within constrained geometry to escape the local minima. In recent years machine
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learning (ML) algorithms, particularly that of reinforcement learning (RL) and deep

reinforcement learning (DRL) are being used for path planning [86]. These strategies

have now extended to collaborative multi-vehicle platforms such as UAV swarms in

[87] and advanced to task-specific swarm objectives in [88]. Most complex DRL algo-

rithms use the deep deterministic policy gradients (DDPG) proposed by [89]. In the

context of path planning DDPG establishes the environments as a continuous state

space where a subset of this environment is actionable by the vehicle. Within the

DDPG there are two neural networks. Simplification of the algorithm describes the

first network as the actor which suggests actions to the second network, the critic

based on the current state. The critic evaluates these actions and provides feedback

refining the policy to achieve a desired action [89].

Many variants of the above algorithms have been proposed to increase efficiency,

optimality, and convergence. Such algorithms are RJA-Star [90], G-RRT∗ [91], RRT∗-

SMART [92]. RL has been adapted and integrated with traditional path planners

to introduce hybrid solutions such as PRM-RL [93] and APF-RL [94]. Each of

these methodologies show improvements in specific areas over the original algorithms.

FUEL, a variant of the A∗ search algorithm which introduces a heuristic function in

addition to B-spline optimization proposed by Zhou et al. eliminates the need for

computationally intense sensors such as LiDAR. This compact algorithm only re-

quires a depth image from a stereo camera to initiate frontier-based exploration and

global/local tour generation. Due to these advantages this algorithm was selected to

be the end-to-end motion planner of the proposed quadcopter.
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Chapter 3

Hardware

Achieving autonomous navigation of a UAV is perceived primarily as a complex soft-

ware problem however, in task based autonomous flight this is only one objective.

For a UAV to accomplish mission critical objectives designers must consider the re-

strictions of payload, sensors, computational time, flight time, maneuverability, cost,

and the environment. Each of these considerations can be further refined to the ex-

amination of material selection, durability, accuracy, error tolerance, aerodynamics,

operability ranges/temperatures, power consumption, and safety.

The two UAVs discussed in this thesis have been specifically designed for their

deployed environments. Targeting operations in underground mines, light-rail train

(LRT) tunnels and caves, the chosen design features presented in Figure 3.1 and 3.2

reflect the exposure to these environments.

Figure 3.1: Side-view of prototype hexacopter (left) and quadcopter (right) designs.
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Figure 3.2: Top-view of prototype hexacopter (left) and quadcopter (right) designs.

Initially, the X-Frame hexacopter design was chosen for the task of autonomous

flight. Uncertainty in sensor requirements, payload, and flight time established the

need for a 6-propeller design which could adapt to an ambiguous flight-stack. How-

ever, once achieved it was observed that the design could be simplified. This resulted

in the production of the X-Frame quadcopter.

The main hardware components of these systems are presented in Table 3.1.

The hardware commonalities between the two UAVs are the result of their shared

objective and prior knowledge of efficiency. This resulted in both prototypes uti-

lizing the Nvidia Jetson NX computing modules, Pixhawk 5x flight controllers, and

DJI airframes. The primary differences are with the sensors used for environmental

perception. A high level overview of the hardware construction is found in Figure

3.3.

The airframes are the widely available F550 and F450 Flamewheel kits from DJI.

These come standard with PA66+GF30 fibreglass reinforced polyamide plastic com-

ponents such as 5” tall landing gears, 8” arms, and 9” propellers. The kit also

contains DJI 430 Lite electronic speed controllers (ESCs), top and bottom mounting
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Table 3.1: Primary hardware components of the hexacopter and quadcopter designs.

Hexacopter Quadcopter

DJI F550 Flamewheel Frame DJI F450 Flamewheel Frame

Velodyne Puck LITE LiDAR Garmin LiDAR-LITE v3

Pixhawk 5x Flight Controller Pixhawk 5x Flight Controller

Nvidia Realsense T265 Stereolabs ZED 2 Camera

Jetson Xavier NX Jetson Xavier NX

DJI 430 Lite ESC DJI 430 Lite ESC

DJI 2312E/960 KV Motor DJI 2312E/960 KV Motor

NVMe 970 EVO Plus SSD NVMe 970 EVO Plus SSD

AW-CB375NF Wifi Module AW-CB375NF Wifi Module

9” DJI Propellers 9” DJI Propellers

1-MaxAmps 5450 120c/14.8V LiPo Battery 1-Venom 5000 50c/14.8V LiPo Battery

2-Venom 2200 50c/11.1V LiPo Batteries 1-Venom 2200 50c/11.1V LiPo Battery

plates with an integrated PCB for electronic transmission to the ESC’s. Altogether

these UAVs are a lightweight 3.7kg and 2.3kg for the hexacopter and quadcopter,

respectively. Both the platforms are configured in the X orientation with the vehicles

forward heading placed at 30◦ for the hexacopter and 45◦ for the quadcopter between

the front arms. These orientations are displayed in Figure 3.4.

3.0.1 Environmental Perception

Active perception in essential for accurate and precise mission planning. Respon-

sible for the localization of sensory data is the Pixhawk 5X flight controller. This

module is deployed with the FMUv5X open standard firmware running on a 32-Bit

Arm Cortex-M7 at 216MHz with 2MB of flash memory and 512KB RAM flight man-

agement system alongside a 32-Bit Arm Cortex-M3 running at 24MHz with a 8KB

SRAM IO processor for external sensor processing. This device also contains ther-

mally isolated and vibration dampened triple redundant IMUs and double redundant
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Figure 3.3: Hardware assembly of the hexacopter (left) and quadcopter (right) sys-
tems.

Figure 3.4: Hexacopter and quadcopter ”X” air frame configurations.
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barometers, ensuring fail safe sensory acquisition. With the Ardupilot v4.3.0 software

platform and the QGroundControl ground station interface, users are able to control

all elements of the flight parameters. The integrated IMUs provide vehicle position,

orientation, inertial, and altitude information. However, as a standalone sensor the

IMU suffers from inaccuracies due to noise and drift. A critical feature of the Pix-

hawk platform is the availability to perform sensor fusion of external devices though

the use of a pre-programmed Extended Kalman Filter (EKF). This filter allows for

seamless integration of an external IMU to improve the accuracy of estimation.

3.0.2 Hexacopter Environment Perception

The hexacopter introduces sensor fusion techniques using the Pixhawk 5X flight con-

troller for data accumulation and processing. To accurately localize the UAV within

its environment two independent approaches were investigated. Firstly, a Velodyne

Puck LITE LiDAR device is introduced for state estimation. This 16-channel 3-D

laser scanner renders accurate point cloud data at 10 Hz for a range up to 100m.

This cylindrical scan has a FOV of 360◦ accumulating 300,000 points/second. This

information is passed to a Fast Lidar Odometry and Mapping (FLOAM) algorithm

which performs the localization and mapping. The second solution utilizes the de-

centralized processing power onboard the Intel Realsense T265 stereo camera. This

device has a 173◦ FOV with a 848x800 resolution in addition to an embedded visual

SLAM algorithm for position and velocity estimates at rates of 200Hz. Independently

these algorithms offer accurate solutions for environment perception. However, due

to the advantages of a 360◦ FOV and higher precision within its operating range the

Velodyne LiDAR was used as the primary method for perception and state estimation.

The Intel Realsense T265 camera is used as a redundant state estimator which

provides IMU data for estimation for the Pixhawk 5X.
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3.0.3 Quadcopter Environment Perception

The quadcopter introduces redundant IMU data into the flight controller through a

secondary sensor embedded within the ZED 2 stereo camera from StereoLabs. This

camera provides inertial sensor data at a rate of 400 Hz. In addition to the IMU, the

ZED 2 camera provides stereo depth estimation as a 360x640 pixel depth map for

120◦ field of view at distances of up to 20m with accuracy of >95% up to 15m. This

depth image is produced through triangulation of matched pixels across stereo image

pairs. The depth map produced by the ZED 2 camera is shown in Figure 3.5.

Figure 3.5: Standard and depth images produced by the ZED 2 camera.

The combination of these sensors with the manufacturers built in stereo SLAM

algorithm, allows for the UAV to perform 6-DoF positional tracking through visual

inertial odometry (VIO). Post-integration, Hardware in The Loop (HITL) testing

was performed to validate the design selection. The prototype UAV suffered from

inaccuracies during specific axial maneuvers. When the UAV would pitch forward to

travel linearly along the X-axis as defined in Figure 3.4, the VIO reported the UAV

drifted upward in the negative Z-axis when completing the trajectory. This inability

to accurately track the desired trajectory is shown in Figure 3.6.

Similarly, this result was mirrored during opposing pitch maneuvers where the

UAV would drift downward in the positive Z-axis after the final position was reached.

Investigation revealed that as the UAV pitches the VIO indicates the drone is de-

scending as the heading begins to point toward the ground. As a result, the UAV

compensates for this perceived loss of elevation by ascending after the trajectory is
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Figure 3.6: Quadcopter drift after performing a forward pitch maneuver in HITL
testing.

complete. The altitude information derived from VIO fusion of the ZED 2 camera

and flight controller were unable to reconcile accurate altitude information even after

the inclusion of barometric data from the Pixhawk. Therefore, a Garmin LiDAR-Lite

v3, a laser-based altitude sensor, was integrated into the design. This sensor pulses at

500 Hz to obtain accurate altitude information to a precision of ±2.5cm and is used

as a replacement for altitude estimates of the VIO, correcting the drift effects.
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Chapter 4

Low Light Video and Image
Enhancement

4.1 Introduction

Low light image enhancement (LLIE) is a procedure in which poorly illuminated

and occluded images are processed to improve the perception of the observed scene

[95]. This process is important for sub-tasks such as surveillance [96], navigation [97],

image classification [98], and intelligent transportation [99]. Each of these applications

look to use an enhanced image for further analysis, however frequently neglected is

the operational advantage the enhanced image provides as-is. Navigating low light

environments for inspection-based tasks such as exploration of caves, rail tunnels, and

mines is a challenging feat for locally controlled UAV operators. However, real-time

enhanced image feedback provides the user with the option to overcome degraded

sensor conditions to fly in these mission specific environments.

LLIE is classically approached through methodologies such as Histogram Equal-

ization [100], Gamma Correction [101], and Retinex theory [102] or a combination

thereof [103]. However, recent advancements in machine learning and computer vi-

sion can be used as standalone solutions or combined with classical methodologies

to provide robust and optimized alternatives. Deep learning can be characterized

through three primary branches, that of supervised, semi-supervised and unsuper-

vised learning [104]. For the purposes of this evaluation, we will be contrasting
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supervised learning techniques against one another to establish a baseline for future

UAV research applications. Specifically, the methodologies exploiting networks ar-

chitectures of convolutional neural networks (CNNs). To establish this baseline a

comparison is drawn between the CNN structures of an Autoencoder, Modified Au-

toencoder, Feedforward, RetinexNet, and U-Net for the task of LLIE [105]. Each

of these architectures have proven to be effective in different applications, especially

when computational power is unrestricted [106] and training data sets are highly fil-

tered and precise [107]. However, in reality the images encountered are substandard

and circumstances of limited processing capabilities generate unforeseen challenges

during real-time implementation. The results of these complications can cause mod-

els to become inoperable [108], lagged [109], or suffer from degraded performance

[110].

4.2 Database Generation

In part, the fundamental success of any machine learning model is derived from the

data it is trained on. Size, diversity, and quality of the database directly impacts

the accuracy of results [111]. There are many well established datasets for low light

such as the LOw-Light dataset (LOL) [54], See in the Dark dataset (SID) [112], and

ExDark dataset [113]. Each of these image databases provide a diverse range of visual

information. The LOL and SID databases are ideal for supervised training due to their

ground truth image pairs. Whereas the ExDark database is ideal for unsupervised

training due to the lack of a ground truth. Either the LOL or SID databases could

have been used in this application, however to ensure translatable performance in real-

time a database produced from the onboard ZED 2 camera was used. A total of 250

RGB images in low/high light were gathered. By generating a custom dataset many

parameters can be controlled including the data precision within the image pixels,

the resolution, image scenes, and lighting saturation. The ZED 2 stereo camera has a

resolution of 1344x376. However, this is obtained by concatenating the field of view

23



of the two 672x376 lenses. For simplicity and accuracy within implementation and

training, 672x376 images were collected for testing using a single lens of the camera.

These additional considerations ensure repeatable performance can be obtained.

4.3 Methods

Suffering from large amounts of noise and occlusions, the stereo camera underperforms

in low lighting conditions. To reconcile these deficiencies, we propose four CNN

network architectures to enhance raw 3-channel RGB images. Of the 250 images

collected, 80% were reserved for training and 20% for testing. Prior to training,

the images were normalized between [0,1] while retaining the resolutions of 360x640.

These models were trained and tested on a 14 Core Intel i9-10940X CPU with an

Nvidia GeForce RTX 3090 processing 24 GB of G6X memory. Additional testing was

performed on a Jetson Xavier NX with a 6 core Nvidia Caramel ARM CPU and 384

core Nvidia Volta GPU. The frameworks of the model are as follows.

4.3.1 Autoencoder

The structure of the Autoencoder implementation can be seen in Figure 4.1.

The Autoencoder consists of two modules, the encoder and decoder each mirroring

the other. This model learns and encodes different features from the input images

through convolutional layers which are passed through ReLU activation functions.

This simultaneously reduces the resolution using max pooling while increasing the

number of feature maps between convolutional layers to a maximum of 32. Using this

process, the model is able to learn higher level features while decreasing computational

requirements. The decoder module uses the opposing operation of upsampling to

reconstruct the enhanced 360x640 RGB image.

4.3.2 Modified Autoencoder

The Modified Autoencoder structure is presented in Figure 4.2
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Figure 4.1: Autoencoder architecture.

This model followed the same design as the Autoencoder, but maintains the di-

mensionality of the feature maps. This variation is introduced to eliminate fine detail

loss in resolution reduction before reconstructing the enhanced image. Although com-

putationally more expensive, the extent of this trade-off will be investigated.

4.3.3 Feedforward

Next, a Feedforward neural network containing 6 convolutional layers is designed in

Figure 4.3.

This model works to extract features from the training data through a series of

convolutional layers. Maintaining the resolution between layers, the feature maps

are increased from 3 to a maximum of 512. This model operates linearly with all

information passing from one convolution to the next with ReLU activation functions

between layers. Although a decrease from 512 to 3 channels is a substantial reduction

and some fine detail extraction is lost, this model is still effective in eliminating

degrading image artifacts.
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Figure 4.2: Modified Autoencoder architecture.

4.3.4 RetinexNet

The structure of the RetinexNet can be seen in Figure 4.4.

The RetinexNet is a two stage architecture composed of extraction layers, followed

by enhancement. In the first module, a Decom-Net is used to extract the image com-

ponents of the illumination and reflectance. To achieve this decomposition the input

RGB image is passed through 5 convolutional layers to produce at a maximum 64

feature maps. Each layer is passed through a ReLU activation function except for the

output layer being passed through a sigmoid function. The first output of this model

is the 3-channel reflectance tensor which helps identify features related to the color

and textures of the scene. The second output is a single channel illumination tensor

which can learn features that relate specifically to the brightness and contrast. These

tensors are passed to the second module, Enhance-Net. This network concatenates

the reflectance and illumination components as a 4-channel tensor before passing it

through a series of convolutional layers. Opposing operations of strided convolutions

and transposed convolutions work to compress and expand the spacial resolution of
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Figure 4.3: Feedforward architecture.

the feature maps to a maximum of 64. The output of this model is a single channel

illumination image. This output is then concatenated with each convolutional layer

upsampled to maintain a resolution of 360x640. These newly assembled feature maps

pass through another convolutional layer to reduce the total from 361 to 64. This

layer analyzes different levels of abstraction created through spacial manipulation of

the feature maps before passing its output to a final convolutional layer and sigmoid

function resulting in a single 360x640 image. This model recombines the reflectance

and illumination components as follows to output an enhanced 3-channel RGB image.

Imageout(x, y) = I(x, y) ∗R(x, y) (4.1)

4.3.5 U-Net

Finally, the U-net structure is similar to that of the Autoencoder, containing an

encoder-decoder couplet. The visualization of this network can be seen in Figure 4.5.

This network is composed of four blocks which work cohesively to manipulate the

spatial dimension of the image while fluctuating the number of feature maps. After

the feature map resolution is reduced by two-thirds through max pooling operations,
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Figure 4.4: RetinexNet architecture.

Figure 4.5: U-Net architecture.

the number of channels is increased to a maximum of 512 through a series of 8

convolutional layers. Following this dimensional reduction, the image is reconstructed

using the opposing combination operations of upsampling and convolutions. To ensure

the features extracted from each layer are preserved during reconstruction, skip layers

are introduced to pass information across the network.

Hyperparameters used during training can greatly impact the performance of the

model, but can be limited by the GPU available. The hyperparameters used during

the training of the models are presented in Table 4.1.

The hyperparameters were kept consistent between models to maintain a fair com-

parison. However, to ensure maximum performance, during training the number of

epochs was allowed to vary in U-Net until a visual plateau was observed. Additionally
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Table 4.1: Hyperparameters for training CNN models.

Parameter Value

Batch Size 5

Learning Rate 0.001

Epochs 30

Dropout Rate 0.5

the mean squared error (MSE) was used as the loss function and minimized by using

the Adam optimization algorithm [114].

Addressing the implementation of the above algorithm, θ is the set of model pa-

rameters to be optimized with yi and ŷi being the ground truth and enhanced images

at iteration i, respectively. As the values of θ are minimized using Adam’s optimiza-

tion procedure of moment and bias-corrected moment estimates. At each iteration i,

the gradients of the MSE are calculated which are then used to update the values of

θ.

To assess the quality of the image enhancement four metrics were used which

included Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Metric

(SSIM), Multi-Scale Structural Similarity Index (MS-SSIM), and Mean Squared Er-

ror.

PSNR is used to compare the strength of a signal before and after noise degradation

[115]:

PSNR = 20 · log10
(︃

MAX2

√
MSE

)︃

(4.2)

where MSE is the mean squared error and MAX is the maximum value of a signal.

SSIM is a metric that aims to assess the similarity of two images. This measure

this a combination of the independent analysis of luminance, contrast, and structure

[116]:
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Luminance:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(4.3)

Contrast:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(4.4)

Structural:

s(x, y) =
σxy + C3

σxσy + C3

(4.5)

These metrics can be combined into the singular valuation of SSIM to evaluate the

quality of similarity [116]:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.6)

where µx, σ
2
x, σxy, and C1 are the mean, variance, covariance of x and y, and

constant of image x, respectively. These parameters hold true for y which is an image

of equal size to x.

Multi-Scale Structural Similarity Index (MS-SSIM) is an expanded form of SSIM

where the influence of luminance, contrast, and structure can be controlled indepen-

dently through the exponents of αj, βj, and γj:

MS− SSIM(x, y) = [lm(x, y)]
αM

M
∏︂

j=1

[cj(x, y)]
βj [sj(x, y)]

γj (4.7)

where j is the current scale and M is the total number of scales. The scales are

defined through the application of a low pass filter to remove high frequency noise in

addition to downsampling the image by a factor of two to aid in feature extraction.

The scales begin at M = 1 denoting the original image [116].

Finally, the MSE is a pixel to pixel evaluation method which analyzes the average

squared difference across all of the pixels in two images to quantify the differences

between them.
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4.4 Results

The performance of the models was evaluated based on the convergence during model

training, image quality, PSNR, SSIM, MS-SSIM, MSE, and model run times both

onboard and offboard the UAV.

The training time allocated to each of the models was set based on the plateau

of the MSE value during training. This indicates the model’s inability to extract

more information from the training data and converge further. For the Autoencoder,

Modified Autoencoder, Feedforward, and RetinexNet models this was observed at 30

epochs. However, the U-Net which is a larger and more sophisticated model, and was

allotted 100 epochs before convergence was observed. The results of the training are

found in Figures 4.6, 4.7, 4.8, 4.9, and 4.10.

Figure 4.6: Training loss of the Autoencoder model.

The results of this training can be visualized in 4.11 which display a low light test

image, its ground truth counterpart, and each of the models outputs.
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Figure 4.7: Training loss of the modified Autoencoder model.

Examining this result, it is seen that as the complexity of the model increases the

more accurate colour information is extracted. In the order of quality, the U-Net,

Feedforward, and RetinexNet models are able to extract the most color information

from the dark images. The Autoencoder and Modified Autoencoder were ineffec-

tive in rendering accurate colour information. Although it is not observed in the

still frames of Figure 4.11, the Autoencoder and U-Net architectures suffered from

extensive noise and blur when processing video feed. In contrast, the Modified Au-

toencoder, Feedforward, and RetinexNet frameworks produced sharp and accurate

images, particularly around object boundaries.

With the motivation for real-time UAV flight the computational demand of the

models was investigated. Running in parallel to the flight stack, the models were

clocked during flight maneuvers. The mean time over 500 cycles was recorded to

obtain an accurate estimate. These results can be found in Table 4.2.
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Figure 4.8: Training loss of the Feedforward model.

Table 4.2: Model runtime evaluation.

Model Flight Computer Desktop

(s) (FPS) (s) (FPS)

Autoencoder 0.021 48 0.007 143

Mod. Auto. 0.056 18 0.006 167

Feedforward 1.518 0.66 0.034 29

RetinexNet 0.236 4.2 0.012 83

U-Net 0.356 2.8 0.014 71

As expected, the least sophisticated model obtained the fastest run time. The

Autoencoder followed by the Modified Autoencoder, RetinexNet, U-Net, and Feed-

forward architectures is the order of operational speed. Table 4.2 highlights the drastic

increase in processing time from the desktop to the onboard computer. The increase

was 2x, 8.33x, 43.7x, 19.6x, 24.4x, for the Autoencoder, Modified Autoencoder, Feed-
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Figure 4.9: Training loss of the RetinexNet model.

forward, RetinexNet, and U-Net models, respectively. This reduction in performance

results in large latency during video feed which directly impacts the operator’s abil-

ity to fly and visualize the environment. To establish a comparison cinematography

publishes video feed at a rate of 24 fps [117]. Although cinematic performance is not

required the models which mitigate the observed latency to approach or achieve this

baseline are the Autoencoder and Modified Autoencoder.

Next, the models were evaluated by quantitatively comparing the output image

with that of the ground truth. The results of this comparison are found in Table 4.3.

The model which produces the most accurate enhancement is U-Net. This model

can reconstruct colour information which is sparsely available in the training images.

Containing notable advantages this model is the deepest containing 512 feature maps

at its maximum while preserving high dimensional details across low dimensional

maps through skip connections. The remaining four models produced similar results
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Figure 4.10: Training loss of the U-Net model.

Table 4.3: Model accuracy evaluation.

Model PSNR SSIM MS-SSIM MSE

Autoencoder 14.544 0.482 0.582 0.036

Mod. Auto. 14.393 0.539 0.573 0.037

Feedforward 14.165 0.535 0.584 0.039

RetinexNet 14.058 0.543 0.566 0.040

U-Net 16.833 0.559 0.714 0.021

to one another despite having noticeable visual differences. These models contained

a maximum of 3.4% difference between the PSNR values. Similarly, a maximum of

11.9% , 3.1% and 10.5% for SSIM, MS-SSIM, and MSE, respectively.
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4.5 Summary of Results

This Chapter aimed to evaluate CNN architectures for the task of low light image en-

hancement. The study addressed five variations of networks: Autoencoder, Modified

Autoencoder, Feedforward, RetinexNet, and U-Net. These models were trained us-

ing a custom 250 image database with an 80/20 training-testing split. These models

were assessed on their visual similarity to the ground truth, accuracy of enhancement

through the metrics of PSNR, SSIM, MS-SSIM, and MSE, and by their computational

demand. For enhancement of static images, the best performing model was the U-Net

which achieved PSNR, SSIM, MS-SSIM, and MSE values of 16.8 dB, 0.559, 0.714, and

0.021, respectively. For visual quality during streaming the best performing model

was the Modified Autoencoder. This is because the other models suffered from de-

ficiencies. Blur and noise were prominent in the outputs of U-Net and Autoencoder

and latency in the frame rates of the Feedforward, RetinexNet, and U-Net models.

Computationally, the fastest executing models deployed on the Jetson Xavier NX

were the Autoencoder (0.021s), Modified Autoencoder (0.056s), RetinexNet (0.236s),

U-Net (0.356s), and Feedforward (1.512s). However, when deployed onboard the

flight computer the only computationally feasible models were the Autoencoder and

Modified Autoencoder. This assessment was performed during manual flight tests

to ensure accurate readings when nominal computational loads for standard flight

were applied. Notably, the two models which suffered heavily from blur during im-

plementation were the two models which reduced the resolutions of the feature maps.

Therefore, for fast and accurate low light image enhancement in UAV applications a

Modified Autoencoder structure with consistent spacial resolution between layers is

recommended for future considerations.
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Figure 4.11: The images are A) Test image, B) Ground truth, C) Autoencoder, D)
Modified Autoencoder, E) Feedforward, F) RetinexNet, G) U-Net.
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Chapter 5

Evolution and Evaluation of
Motion Planners

5.1 Introduction

Unmanned aerial vehicles (UAVs) provide support for tasks such as search and res-

cue [118], surveillance [119], delivery [120], and inspection [121]. Traditionally these

tasks have been dependent on human operation, but as the performance of commer-

cial and consumer UAVs accelerates supervision is becoming less of a requirement.

One obstacle to autonomy is the reliance on global positioning systems (GPS) for

navigation and control [122]. This dependency becomes problematic when the GPS

signal is interrupted or blocked due to an artificial or natural obstruction. These

inhibitions occur in urban environments such as buildings, tunnels, and mines and in

rural environments such caves, canyons, mountains, and other topology [123], [124],

[125]. When the GPS signal is impeded, UAVs can lose crucial mission dependent

information such as their position and velocity [126]. This loss of kinematic data

inhibits localization producing significant challenges for the safe operation of UAVs

in sensory constrained situations.

Subterranean environments sustain GPS-denied conditions making exploration a

complex task. This geography is characterized through uneven terrain, spacial re-

strictions, darkness, and reduced abiotic variability [127]. Proposed as a universal

solution for autonomous exploration and navigation are two prototype UAVs. These

38



evolutionary designs use differing sensor-fusion techniques to accurately accumulate

spacial visual information in these environments. Along with differentiation in en-

vironmental perception these UAVs present different strategies for local and global

path planning in combination with object detection and avoidance. The hexacopter

platform achieved successes in autonomous underground flight through high perform-

ing sensors and a custom software stack. An optimized local path planner introduced

as Non-linear Model Predictive Horizon (NMPH) is an adaptive learning architecture

based on Deep Reinforcement Learning for computationally efficient trajectory gener-

ation, dynamic obstacle avoidance, and smooth optimized flight paths [25]. Proposed

as a global motion planner is the fusion of the NMPH framework with a volumetric

graph-based planner for adaptation to perceptual changes.

A quadcopter design for GPS-denied subterranean exploration followed the hex-

acopter prototype. This iteration used lower cost sensors in addition to a custom

software stack. This system made use of the Fast UAV Exploration (FUEL) frame-

work as an end-to-end system solution for autonomous navigation [128]. As a global

planner this architecture exploits a frontier-based exploration methodology through

real-time voxel-grid mapping [128]. The local path planner is designed using a hybrid

A* search algorithm optimized through B-splines to generate feasible kinodynamic

pathways [129].

Each of these methods provide different, yet effective solutions for subterranean

navigation capable of handling the non-linear dynamics of UAV flight. In addition to

the system designs we explore the challenges encountered and the lessons learned.

The evolution of our work will be presented chronologically as we advanced through

this challenge.

5.2 Software Implementation

As the prototype quadcopter was designed, it retained many hardware commonalities

as the objective of autonomous GPS-denied flight remained a common goal. However,
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where the two evolutions differed is in their path planning strategies. The software

architecture can be viewed in Figure 5.1

Figure 5.1: System architecture and information transmission.

The hexacopter implements the FLOAM algorithm for localization and mapping.

Utilized in both local and global path planning this information is processed by the

NMPH and GBPlanner nodes for mission planning. Streamlining this process is the

quadcopter subsystems which uses VIO and depth images to optimize its global and

local path planner embedded within the FUEL frameworks.

5.2.1 Hexacopter Navigation

In [26], we developed and implemented a modular global motion planning framework

for the hexacopter, which aims to generate optimal paths in unexplored, dynamic,

and GPS-denied environments. Our approach integrates a graph-based exploration

technique [130] with our proposed optimization-based local path planning algorithm,

which is called Nonlinear Model Predictive Horizon (NMPH) [25, 27, 28]. NMPH

considers the vehicle’s dynamics and accounts for dynamic obstacles. This integra-

tion yields optimal and robust paths that enable the hexacopter to navigate through

complex terrains with ease. Figure 5.2 illustrates the overall architecture of the global

motion planner implemented on the hexacopter vehicle.

The global motion planner requires a map that contains the physical representation
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of the environment, which includes both static and dynamic objects. In our work, we

employ volumetric mapping for this purpose, due to its computational efficiency, ease

of visualization, ability to be incrementally constructed, and provision of the voxel

grid structure necessary for planning.

The graph-based planning approach uses the Rapidly-exploring Random Graph

(RRG) algorithm to construct a connected roadmap graph and utilizes the Dijkstra

search algorithm to determine the best path within the graph.

The primary objective of the graph-based approach is to direct the vehicle towards

unexplored areas in the environment and provide endpoints for the local path plan-

ner. Subsequently, the NMPH local path planning method generates optimal paths

to these endpoints while avoiding both static and moving obstacles. The different

scenarios for finding a viable path are depicted in Figure 5.2.

The reference trajectory computed by NMPH is sent to the vehicle’s controller for

tracking purposes. As the drone moves, the NMPH continuously updates the reference

trajectory based on the system and environment states. The exploration mission

continues until either the environment is fully explored, or the operator interrupts

the mission.

Details about the NMPH algorithm and the modular global motion planner can be

found in our recent works [26–28]. These publications provide comprehensive insights

into the methodologies and implementations utilized in our research.

5.2.2 Quadcopter Navigation

To achieve fully autonomous, GPS-denied navigation onboard the quadcopter a so-

phisticated motion planner was adapted and integrated within the UAV’s architec-

ture. The FUEL algorithm proposed by Zhou et al. includes both frontier driven

exploration and local optimized trajectory generation produced in the authors earlier

work [129]. The framework of this algorithm is presented in Figure 5.3. Represented

as a voxel grid map the spacial visual information of the environment is encoded to the
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virtual map using a Euclidean Signed Distance Field which can derive the distance to

objects both in relation to one another and to the vehicles position. Through this de-

ployment voxels which are virtual cubic occupants of 3D space are stacked as opaque

clusters for occupied areas, translucent clusters for frontiers, and are transparent for

unoccupied space.

Motivating the UAV to investigate the unknown boundaries/space of the environ-

ment is the frontier-based exploration [131]. This module marks frontiers as groups of

unexplored voxels next to those previously explored. After grouping these segments

of unknown space, a centroid is traditionally calculated as a navigational waypoint.

However, within FUEL this suboptimal solution is addressed by uniformly sampling

viewpoints in an attempt to efficiently span the unexplored region by traversing sub-

sections within the frontier space.

The global tour to the identified frontier clusters is formulated as a modified asym-

metric travelling salesman problem [132]. By removing the homing requirement and

the penalties incurred during movement through previously explored spaces to new

clusters the traditionally closed-loop problem can be reconfigured as an asymmetric

open-loop. This global tour continually motivates the vehicle to navigate a collision

free path to the areas that result in the highest coverage. However, penalties inte-

grated within the cost function are applied to maneuvers resulting in rapid yaw and

velocity changes during transitions. This regulated global tour is continually updated

as new frontiers are discovered resulting in unbounded exploration until all clusters

are covered.

Efficiently navigating static and dynamic obstacles within a local area requires a

precise representation of the virtual environment. Within the local environment mo-

tion primitives are generated to establish elementary movements and trajectories the

quadcopter can follow. Each of the motion primitives are assessed for their ability

to avoid obstacles and maintain dynamic feasibility. These primitives are updated

as the map expands and evolves through the UAV exploration. A single primitive
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is generated through discretization of control inputs over a constant time duration

containing information of position and velocity. In total three independent 1-D poly-

nomials are established. Using these primitives more sophisticated trajectories can

be assembled to move from the current state to the goal state. To assemble these

pathways a hybrid A∗ search algorithm is used. An initial cost function which locates

the optimal pathway to the end-goal is established in addition to a heuristic function

to account for the current and end states position and velocity to minimize the time

to the end goal. By balancing these functions, the optimal path which takes the

shortest time is found.

Since the connection of the primitives by means of the hybrid A∗ algorithm are

not inherently smooth the concept of B-Splines is introduced. The control points

the UAV is directed to follow can be adjusted to ensure smooth continuity between

one another. This encourages dynamic stability and optimized trajectory transition.

With the addition of the convex hull property of B-Splines the safety of the proposed

trajectory can be evaluated. Proposed as a safeguard to constrain the velocity and

acceleration of the control points in addition to establishing a buffer to occupied

voxels the convex hull can ensure dynamically feasible pathways. If an unacceptable

pathway is detected the algorithm can replan and produce a secondary trajectory.

However, if no additional pathways are available the algorithm will terminate leaving

the quadcopter in the last achieved state.

5.3 Experimental Flight Testing

5.3.1 Real-time Flight Test Results for the Hexacopter Ve-
hicle

We utilized a DJI FlameWheel F550 hexacopter that is constructed and equipped with

specialized instruments. The primary objective is to explore unknown environments

by employing the global motion planner presented in Section 5.2.1. The detailed

hardware setup and for the hexacopter vehicle is described in detail in Chapter 3.
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Figure 5.3: Quadcopter global motion planner architecture.

The flight test aims to evaluate the exploration performance of the global motion

planner’s capabilities and the functionality of the NMPH local trajectory planning

within the global planner. The test is conducted within an underground parking

area, as illustrated in upper image in Figure 5.7. The exploration performance of the

system was tested as the global motion planner generated several terminal setpoints to
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survey an unexplored area. Our proposed NMPH algorithm provided local reference

trajectories between the current vehicle location and the next terminal setpoint at a

rate of 200 Hz to ensure a smooth flight.

The start and the end (home position) of the exploration mission are further de-

picted in Figure 5.7 in the bottom left and right images, respectively.

Figure 5.4: Wide view of hexacopter navigation (top), reference trajectory to setpoint
(bottom left), 3D voxel map construction after experimental test flight (bottom right).

It is worth noting that the NMPH planning algorithm consistently generated a

continuous trajectory toward the setpoints computed by the graph-based planner.

Also, the vehicle showed very good tracking performance in following the generated

trajectories. Moreover, Figure 5.5 presents various perspectives showing the tracked
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Figure 5.5: Top perspective of the tracked trajectories by the hexacopter system in
the underground space using our presented global motion planner.

trajectories of the hexacopter vehicle upon successful completion of the exploration

mission.

The volume traversed by the vehicle spans approximately 486m3, with a total flight

duration of 3 minutes. Following the generation of 8 setpoints by the global motion

planner, the drone was commanded to return to its home position.

Overall, the navigation capabilities and reliability of our system, enhanced with

the proposed approaches, were thoroughly tested and validated in an unknown and

GPS-denied environment. The results demonstrated that the system can achieve

autonomous navigation and exploration even in confined spaces.

To evaluate the trajectory planning performance in the presence of wind distur-

bance (approximately 15 km/h), a hardware flight test was conducted in an outdoor

environment. The results of the outdoor flight test can be seen in Figure 5.6. De-

spite the presence of the wind disturbance, the vehicle exhibited seamless navigation

capabilities between the generated setpoints, similar to the earlier tests.
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Figure 5.6: Flight test of the hexacopter employing the global motion planner in an
outdoor environment with a 15 km/h wind speed.
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5.3.2 Real-time Flight Test Results for the Quadcopter Ve-
hicle

Validating our work and demonstrating an effective integration of FUEL into our

quadcopter are the underground experimental flight tests performed. From the left

image in Figure 5.7 we can see the initial frontiers which are generated during start-

up. Because little information is known of the perceived surroundings large frontiers

are visible. The blue, red, and purple frontiers are one large unexplored region. How-

ever, this region is divided into colorized subsections using a principal component

analysis to guide the exploration more efficiently. The right image of Figure 5.7 is

a depiction of the initial local trajectory toward an unexplored frontier. Noticeably

smooth and uniform the A∗ pathway, smoothed by the B-spline, can avoid the immi-

nent obstruction to establish an efficient path toward the goal.

Figure 5.7 demonstrates an underground flight test performed in the second un-

derground level of a parkade. This concrete encapsulated environment eliminates

any GPS transmission demonstrating a practical test environment for the proposed

methods.

This figure presents multiple viewpoints of the UAV in addition to the real-time

mapping performed as it traverses the unknown environment. Hard constraints on

the velocity and acceleration were set at 0.3 m/s and 0.5 m/s2. This restriction was

implemented due to the bottleneck in the depth image processing. Limited to a max-

imum of 8 FPS using the neural depth functionality the environmental perception

was slower than the processing abilities of the navigational algorithms introduced.

Lowering the depth image quality was infeasible as the information transmitted suf-

fered substantially, particularly when faced with monochrome and textureless sur-

faces. This flight test demonstrates our vehicle’s ability to autonomously map and

navigate an unknown environment in real-time under GPS-denied conditions.

Travelling for a total time of 3 minutes and 39 seconds, Figure 5.8 exemplifies the

quadcopter’s ability to perform successful exploratory missions. During this time the
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Figure 5.7: Frontier clusters (left) and local trajectory generation (right).

vehicle traversed through open regions, around corners, and narrow passages for a

total explored volume of 518m3 which was approximated in figure 5.9.

However, this flight test was not the limit of the quadcopter as seen in Figure 5.10

where many unexplored frontiers were identified by the aerial vehicle that were not

yet traversed.

The UAV performance was extensively tested in both constrained and open en-

vironments for a maximum exploration time frame of 11 minutes with the current

hardware configuration.

5.3.3 Rotor Arm Redesign

By investigating the path traversed by the quadcopter in Figure 5.11 it is understood

the FUEL algorithm encourages aggressive yaw action to accommodate for the limited
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Figure 5.8: A) Standard view of quadcopter trajectory. B) Wide view of quadcopter
trajectory. C) Real-time voxel grid mapping. D) Onboard quadcopter camera POV.

Figure 5.9: Total estimated volume travelled by the quadcopter with a 3 meter tall
ceiling height.

FOV of the stereo camera.

A yaw maneuver requires an aggressive counter-torque imbalance. To achieve this
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Figure 5.10: Unexplored identified frontiers during experimental flight test.

Figure 5.11: 3D perspective of the tracked trajectories by the quadcopter system in
the underground space using the adapted exploration algorithm.

the angular velocity of two opposing motors are slowed to induce a rotation. However,

when attempting to yaw the quadcopter would experience a drop in altitude indicat-

ing the vehicle could not produce enough thrust to perform this maneuver. Through
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experimental testing the thrust to weight ratio was determined to be 1.7:1; 15% less

than the recommended ratio of 2:1 [133]. This ratio demonstrates the limitations of

the current design. As a solution the geometry of the UAV was modified to reallocate

the available thrust. A twist was introduced into each of the arms of the quadcopter

as seen in the prototypes of Figures 5.12a and 5.12b. This twist redistributes verti-

cal thrust disproportionally to increase the torque of the vehicle with only a slight

decrease in available thrust.

(a) Tilted mounts at 5 10 15 and 20
top view.

(b) Tilted mounts at 5 10 15 and 20 front
view.

Figure 5.12: Tilted quadcopter arms.

The twist of each arm can be calculated as a matrix representing the total effects

on the body. The free-body diagram in Figure 5.13 represents the orientation of the

designed UAV. In this diagram the positive X direction is at 45◦ from the front two

motors of the X-frame quadcopter.

For simplicity, we can first examine the force and torques applied to the rigid body

in a +-orientation where the body frame axis can be aligned along the arms to derive

Equation 5.1.
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Figure 5.13: Free body diagram of tilted quadcopter arms.
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(5.1)

where h is the height of the propeller from the base of the mounts and d is the distance

from the center of gravity of the point of thrust generation. However, since h≪ d it

can be presumed to produce negligible torque resulting, in Equation 5.2.
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(5.2)

Because the force and torque equations were formulated with a +-airframe con-

figuration, a 45◦ rotation about the Z-axis must be applied to the rigid body. This

rotation matrix is shown in Equation 5.3.

Rz =

⎡

⎢

⎢

⎢

⎣

cos(π/4) − sin(π/4) 0

sin(π/4) cos(π/4) 0

0 0 1

⎤

⎥

⎥

⎥

⎦

−→ Rb,z =

⎡

⎣

Rz 0

0 Rz

⎤

⎦ (5.3)
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Equation 5.4 applies this rotation to the forces and torques produced by the X-

frame quadcopter.

∑︂

Fb,X = Rb,zFb,+ (5.4)

The resulting forces and torques experienced by the quadcopter are summarized

in Equation 5.5.

∑︂

Fb,X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− cos(β)(F3 sin(α)− F4 sin(α))− sin(β)(F1 sin(α)− F2 sin(α))

cos(β)(F1 sin(α)− F2 sin(α))− sin(β)(F3 sin(α)− F4 sin(α))

−F1 cos(α)− F2 cos(α)− F3 cos(α)− F4 cos(α) +mg

cos(β)(τ3 sin(α) + τ4 sin(α) + dF3 cos(α)− dF4 cos(α)) + sin(β)(τ1 sin(α) + τ2 sin(α)− dF1 cos(α) + dF2 cos(α))

sin(β)(τ3 sin(α) + τ4 sin(α) + dF3 cos(α)− dF4 cos(α))− cos(β)(τ1 sin(α) + τ2 sin(α)− dF1 cos(α) + dF2 cos(α))

τ1 cos(α)− τ2 cos(α)− τ3 cos(α) + τ4 cos(α) + dF1 sin(α) + dF2 sin(α)− dF3 sin(α)− dF4 sin(α)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5.5)

The forces and torques were measured experimentally using the force-torque sensor

embedded within the end-effector of the Baxter robot by Rethink Robotics. The

experimental setup is presented in Figure 5.14.

Where the quadcopter is rigidly secured to the base of the end-effector; level in

the X-Y plane. Commanded to 100% of the input the UAV attempted to increase

altitude and yaw in two independent tests during which three trials were averaged.

The force feedback of the Baxter robot resisted the UAV maneuvers, maintaining

a static position during testing. For each of the arm tilt angles three trials were

performed measuring the forces and torques in the Z-axis with an average of the

three readings during steady state being presented in Figure 5.15

As the tilt angle is increased the force available to generate vertical thrust in the

Z-axis decrease. This force is transferred to the X and Y-axis, subsequently increas-

ing the vehicle’s ability to yaw. However, examining Figure 5.16 it is understood

that the trade-off between thrust reduction and increased yaw authority has a large

proportionate disparity. This differentiation provides application specific advantages,

particularly for exploration.
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Figure 5.14: Experimental design for force and torque measurements.

The exploration algorithm deployed onboard the quadcopter is dependent on the

ZED 2 stereo camera. With a limited field of view, the algorithm encourages aggres-

sive yaw maneuvering to expand the explorable frontiers and refine local trajectory

planning. By reducing the thrust by 10.7% the torque can be increased by 53.7%

between 0◦ and 10◦. This trade-off is substantial for stereo vision based underground

exploration where aggressive altitude changes are limited, but yaw agility is required.

5.4 Summary

Fully autonomous GPS-denied navigation presents extensive challenges for subter-

ranean vehicle development. Presented as an iterative approach we have experimen-

tally validated both the hexacopter and quadcopter vehicles in the target environ-
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Figure 5.15: Thrust and torque generation as a result of the arm tilt angle.

ment. Considerations we evaluated in our designs were flight platforms, sensor stacks,

propulsion systems, navigation algorithms, and agility. The hexacopter, possessing

a higher payload threshold, carries a larger more capable sensor stack. Utilizing a

Nonlinear Model Predictive Control Horizon optimized through reinforcement learn-

ing the hexacopter can plan efficient local trajectories. Using GBPlanner the hexa-

copoter can fuse pointcloud data acquired from a 3D LiDAR with the voxel based

software to recreate a virtual representation of the perceived scene. From the lessons

learned of the hexacopter a more agile and cost-efficient quadcopter was developed.
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Figure 5.16: Force and torque percent change as a result of the quadcopter arm tilt
angle.

This platform integrated the Fast UAV Exploration algorithm which produces global

and local trajectories from stereo depth images. Similar to the hexacopter, a voxel-

based map is reconstructed in a virtual environment to be used by the navigation

algorithms. A modified asymmetric travelling salesman problem encapsulating the

theory of frontier-based exploration is responsible for global waypoint establishment.

A hybrid A∗ approach is optimized using B-splines to efficiently create local trajec-

tories within the environment.

Evaluated as progressive iterations of one another we have been able to achieve

two independent fully autonomous GPS-denied vehicle platforms for underground

exploration. It is our motivation that the design solutions presented provide insight

to future UAV researchers in the field of subterranean exploration.
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Chapter 6

Conclusion

Fully autonomous unmanned aerial vehicle (UAV) flight in GPS-denied environments

is a complex task involving challenges in both hardware and software. However, with

the motivation to increase safety, reduce human error, and optimize productivity this

research area is gaining momentum. This thesis presented an evolution of two UAV

system designs capable of fully autonomous UAV flight in GPS-denied environments.

Vision data is required for robotic systems performing tasks such as visual au-

tonomous navigation or environmental imaging. However, the quality of this data

is degraded in poorly lit environments. To overcome this issue, machine learning-

based algorithms can be used to enhance low-light image frames. In this work the

convolutional neural network architectures of Autoencoder, Modified Autoencoder,

Feedforward, RetinexNet, and U-Net were implemented to enhance low-light images

in real-time onboard a prototype aerial drone. The networks were run on the drone’s

single-board computer and fed video data from real flight maneuvers to realistically

measure system performance. The network which accomplished the best image en-

hancement of static images was U-Net. However, full frame-rate performance was

reduced to 10% with this model. The Modified Autoencoder was found to be the

best performing model capable of 60% of full frame-rate performance. This model

was found capable of producing colourless, but sharper and brighter images than

U-Net.
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The design considerations included an evolution of the flight platform, propulsion

systems, sensor stack, and navigational path planners. The hexacopter, initially de-

signed for ambiguous sensor requirements and payload introduces the optimized local

trajectory planner of Nonlinear Model Predictive Horizon using deep learning direc-

tives. Global awareness is achieved through the graph-based planner GBPlanner.

This design incorporated LiDAR sensing technology for accurate environmental per-

ception. Succeeding the hexacopter is the lightweight and more versatile quadcopter.

The quadcopter builds off the lessons learned from the previous platform to achieve

the objective of autonomous flight. This design incorporates the Fast UAV Explo-

ration (FUEL) algorithm to accomplish stable navigation with the use of a stereo

depth camera for environment sensing. The presented systems and methodologies

are verified through experimental flight tests in GPS-denied environments. By pre-

senting two iterations of design this research aims to provide a benchmark for future

research in the field of exploratory aerial robotics.

6.1 Future Work

The use of autonomous UAVs provides an opportunity to accomplish previously re-

stricted and dangerous tasks found in industry and academia. With the advancements

made in this research some of these limitations are solved. However, there are still

prominent roadblocks that limit an optimized solution. One of the largest is the

onboard computational power. This restriction is evident in the processing of sophis-

ticated motion planners and dense sensory data collection. Therefore, it would be

beneficial to utilize sensors with independent processing, more efficient algorithms, or

upgrade to a more capable onboard computer.

Presented as a low-cost alternative to current industrial standards, the airframe

and mechanical hardware of the proposed UAV continues to require robust safety

considerations. To protect the propellers a ducted design should be investigated

to reduce the potential for damage in the event of a collision. Similarly, a caged
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design could be considered to protect the air frame. However, the shape, weight, and

geometry must be optimized to ensure efficient flight performance.

Finally, a low-battery safeguard should be introduced into the FUEL algorithm.

This would evaluate the length of the path traversed and the battery remaining.

The determination of an exploration threshold would allow the quadcopter to safely

return to the home position. Each of these design considerations would expand the

capabilities of autonomous GPS-denied UAV flight and allow industry and researchers

to further progress into novel applications for autonomous exploration.
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