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Abstract

This thesis presents a novel 32 bit RISC architecture which achieves greater I/O
bandwidth and executes fewer nonprocessing states than conventional RISC designs.
Greater I/O bandwidth is achieved by encoding 2 instructions per 32 bit word, moving
the program counter offchip, and by utilizing unidirectional busses. Fewer non-
processing states are achieved by "background" register saves and restores and with
pipelined memory accesses and instruction execution. The architectural design of the
processor combines these novel features with good features of previous RISC designs
to meet philosophical goals such as efficient use of I/O bandwidth and locality of
information processing. The implications of the unconventional division between pro-
cessor and external memory contrcller on the system level architecture are then dis-
cussed. Next, circuit designs and floorplans of the implemented IC are shown to ver-
ify that this architecture could be fabricated in a conservative CMOS technology.

Finally, a summary of emulation and testing results is presented.
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1. INTRODUCTION

This thesis presents a Reduced Instruction Set Computer (RISC) architecture
which combines standard RISCT elements and ideas from previous research with a
number of novel ideas. The result is a novel 32 bit RISC architecture with a number

of advantages over conventional RISC architectures.

The RISC concept was first presented by Patterson and Ditzel in 1980 [Patt80].
The concept of RISC was presented because of evidence showing the non-optimal util-
ization of silicon resources of conventional CISC processors due to the increased com-
plexity of their instruction sets. [Kate 83] The Reduced Instruction Set concept initially
implies a simplification and reduction in size of the instruction set. This results in a
higher frequency of operation because instructions which are rarely used and would
slow down the other instructions are not included in the RISC instruction set. Typi-
cally, this increase in operating frequency more than offsets the cost of emulating the
omitted instructions resulting in greater system performance. Additionally, the RISC
concept has come to imply efficient use of silicon resources and an addition of com-
plexity only when it will lead to better system performance.

The Alberta Risc Chip (ARC) incorporates ideas from several.RISC architectures
which have been developed over the past several years. From this research several
architectural features have emerged as standard RISC elements. These standard ele-
ments provide guidelines in terms of instruction set design, register architecture, com-
piler design, and pipelining.

In addition to the standard RISC elements, characteristi¢s from Stanford’s MIPS
[Henn82,83] and the Berkeley RISC [Kate83] [Patt82] were incorporated into the ARC

architecture. In particular, these characteristics include the following:

a) circular, overlapping register windows. [Kate83] [Patt82)
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b) non-interlocked pipeline, optimizing compiler {Henn82,83]
¢) delayed branches [Henn82] [Kate83]
d) lack of condition code [Henn82]

These features have been combined with a number of novel architectural ideas result-

ing from a VLSI architecture course offered during the fall of 1986, including:

a) 2 instructions per 32-bit word

b) unidirectional I/O busses

c) external PC; intelligent memory or Memory Control Unit(MCU)
d) "background" register saves and restores to memory or MCU.
e) pipelined access to memory

These features are combined in the ARC design to realize:

a) high IO bandwidth available

b) reduced delays from bus turnaround and skew by utilizing unidirectional

I/O busses
c) fewer nonprocessing states
d) versatile interface to memory and other subsystems.

e) implementable in very conservative technologies (3 micron CMOS) and

scalable to more aggressive technologies.
f) low pin count

These are discussed in more detaﬁ in Chapter 3.

1.1. Conception of the Alberta Risc Chip (ARE)

This endeavor to design, implement, and test a RISC chip began as a VLSI archi-
tecture course taught by Dr. Emil Girczyc September through December, 1986. Five
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students enrolled in the course including Duncan Glendenning, Norman Jantz, Tai An
Ly, Trevor May, and Mike Smith. All of those involved participated in design discus-
sions. The objective of the course was to study current RISC architectures, design and
implement a RISC processor incorporating some original ideas and improvements.
Limitations included the available process technology(3 micron CMOS), IC design
software, and human resources(S Students, 4 months). Through the course of the term,

the novel architectural concepts of ARC (presented on the previous page) evolved.

During the course, preliminary versions of an ALU(by Tai Ly) and a register
file(by Norman Jantz) were implemented in 3 micron CMOS. Trevor May and Mike
Smith did some work on an instruction unit, and Duncan Glendenning did a partial
design of an on-chip memory management unit. Due to time limitations, the instruc-

tion and memory management units were not implemented.

1.2. Thesis Objectives

The objectives in preparing for this thesis have been:
a) to correct, improve, and complete the design outlined during the course.
b) to demonstrate that the architecture could be implemented in an available technol-
ogy, (i.e.: 3 micron CMOS).
c) to verify the advantages of the architectural concepts
Architectural improvements to the class design include refining the instruction set,
pipeline, intermodule communications, as well as resource and bus scheduling. In all
cases the major architectural concepts remain the same while the implementation is
defined or improved (see Chapter 4 and 5). The architecture was verified by an emu-
lator program as described in Chapter 6.

Some ALU and register file hardware was designed during the course but archi-

tectural improvements and rigid area requirements led to a complete reimplementation
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of this circuitry. The instruction unit (IU) and on-chip memory management unit
(MMU) were merged into the I/O Control Unit (IOCU) which was designed from
scratch. The first full implementation of ARC was submitted for fabrication in North-
ern Telecom’s 3 micron CMOS process during January, 1989. Due to implementation
errors as described in Section 6.3, the design was only partially functional. Chapter 7

summarizes the evaluation of the novel architectural features and suggests future

research.
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2. PREVIOUS RESEARCH

In the past several years, there has been increasing interest in the RISC architec-
ture philosophy. Many microprocessor manufacturers have subscribed to the RISC
architecture philosophy and extensive research and development has been undertaken
by both corporations and universities. From this research, several architectural features
have become widely accepted as standard RISC elements [Stall88]. These standard

RISC elements have been incorporated into ARC and are presented as follows:

A limited and simple instruction set.
- A large number of registers.
-  Load and store access to memory.
- All instruction operands in registers.
- A strategy of maximizing the use of registers and minimizing references to
memory.
- The use of an optimizing compiler
- An emphasis on optimizing the pipelined execution of instructions to
approach a throughput of 1 instruction per cycle.
A Summary of recent work in these areas will be presented below.

The two architectures most influential in the development of ARC, Stanford’s
MIPS [Henn82,83] and Berkeley’s RISC [Kate83], will also be presented. The MIPS
architecture was influential in terms of pipelining, instruction set, and philosophical

issues. The Berkeley architecture was influential in terms of it’s register file structure.

2.1. Instruction Set

In general, the size of the instruction set can be viewed as a tradeoff between
hardware and software/compiler complexity. Increasing the size of the instruction set,

for example, would increase the amount of ALU and instruction decoder logic, require
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more silicon area, and slow down the execution speed. Besides slowing down other
instructions, a complex instruction or addressing mode is sometimes slower than a cus-
tomized sequence of simpler instructions {Patt80], [Stal88). The Reduced Instruction
Set concept argues against large or complicated instruction sets for precisely the above
reasons. On the software side, an increase in complexity is realized because the com-

piler has to deal with the following issues:
- emulation of complex instructions or addressing modes
- increased code size
-  pipeline restrictions and op¢rand dependencies
- code optimization and reordering
- reordering instructions after branches

- register allocation

For the compiler, it is a simple matter to emulate a complex instruction or
addressing mode with a few simpler instructions. Because of this, the size of a RISC
executable file is usually larger than a CISC executable. This results in a greater

instruction bandwidth requirement.

Pipeline conflicts are a result of the way instructions utilize hardware resources.
Having the compiler generate code that is free of pipeline conflicts simplifies the
hardware because hardware resource allocation/interlocking is not required. To insure
proper pipeiine operatibn, the compiler must reorder instructions to insure a valid
instruction sequence free of pipeline conflicts and satisfying all operand dependencies.
The compiler must insure that an operand must be loaded into a register before being
processed. This is achieved by ordering code; such that a sufficient number of cycles
separate the LoaD instruction of an operand and the first instruction processing this
data. Most RISC compilers also optimize and reorder the code produced by packing

independent instructions together, replacing NOPs, etc. Additional relationships
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between the pipeline and the compiler will be presented later in the pipelining discus-
sion.

A register allocation algorithm is required by all RISC compilers. This algorithm
ensures that the least number of LoaD instructions are used to load register operands

into registers which reduces I/O bandwidth and increases performance.

2.2. Load and Store Architecture

In general, the number of addressing modes can be viewed as a tradeoff between
hardware and software complexity. Several addressing modes, as in CISC architec-
tures, would greatly increase the amount of iustruction decoder and pipeline scheduling
logic, require more silicon area, and slow down the execution speed. According to the
RISC concept, only essential addressing modes should be used and addressing modes
which are seldom used and which slow down the processor should not be included.

Therefore, most RISC machines follow the load-and-store architecture.

Load-and-store machines have 2 types of instructions: a) instructions which
transfer data between memory and registers, and b) instructions which process data in
registers (ALU instructions). Therefore, this type of architecture usually only has 2
simple addressing modes for ALU instructions (Register-Register and Register-
Immediate). The advantages of a load-and-store architecture include hardware simpli-
city and increased performance. The hardware simplicity results from the simplified
execution and decoding of few addressing modes. In terms of added software com-
plexity, compilers do not have a difficult time generating code for load-and-store archi-
tectures because they simply first get the operands, then use them. Performance is
increased by keeping operands in registers so that processing does not stop for

operands to be loaded from memory [Henn 82] [Kate 83).
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2.3. Registers

Registers may be divided into special purpose and general purpose registers. Spe-
cial purpose registers usually include control and status registers such as the program
counter and the condition codes. General purpose registers are always user-visible and
usually contain data and addresses. RISC processors differ greatly in the number and

types of registers as described in the following subsections.

2.3.1. Special Purpose Registers

Each CPU architecture uses a different set of special purpose registers. While the
MIPS machine [Henn82] has done away with a special condition cbde (CC) flag regis-
ter, the current trend still seems to be towards including special purpose control and
status registers [Stal88]. Most machines have a Program Status Word (PSW) which
usually contains the Program Counter (PC), Flags (e.g.: Overflow, Carry, Negative,
CC, interrupt), security codes, etc. Machines with PSWs can recover from interrupts

by restoring the PSW and other special and general purpose registers.

2.3.2. General Purpose Registers

Increasing the size of the general purpose register file will increase performance
because more temporal and spatial locality of an executing program is captured. As
the size of the register file is increased, it becomes necessary for a subset of the regis-

ters to be "active" at a time because:

- It becomes difficult to set the optimum unstructured register utilization for

a program with many procedures at compile time.

- Restrictions on number of bits available in an instruction for two(or more)

register addresses.
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- Overhead of context switches and procedure calls which must save all

registers used as well as those storing global variables.

The register window concept was pioneered by the Berkeley RISC group who
imposed a circular buffer structure on their register file [Patt82] [Kate83). This circu-
lar buffer structure facilitates procedure calls and returns and parameter passing
between procedures via overlapping register windows. Research done by members of
the Berkeley RISC team indicates that about 94% of procedure activations are passed
fewer than 5 arguments and use fewer than 12 words of arguments and local scalars.
Therefore, an overlap of 4-8 registers and approximately 8-12 local registers per
activation will usually be enough for a typical procedure activation. Fig. 2.1 (extracted
from [Kate83] of the Berkeley RISC group) shows the "Circular Buffzr Organization
of Overlapped Windows". A register file based on the Berkeley RISC is incorporated
into the ARC.

2.4. Pipelining

Most RISC machines utilize pipelining to increase instruction throughput and
achieve a high frequency of operation [Stall 88]. Pipelining can be used to speed up
the execution of instructions by decomposing instructions into s.veral stages, each of
which utilizes a different set of the processor’s resources. This results in a greater
operating frequency because the critical path of every stage is less than the critical
path of the entire instruction. Throughput is maintained if instructions are sufficiently

independent with respect to pipeline conflicts and operand dependencies.

In RISC machines, a common instruction processing pipeline consists of the fol-
lowing stages:
a) Calculate next instruction address: Put the program counter onto the address bus.

Resources required: PC, address bus



-10- Previous Research

Legend:

w0-w5 denote the 6 nverlapping windows, each divided into 3 segments.
For example, w0 has 10 local registers (A.loc), 6 registers used
to transfer input parameters from the calling function (A.in), and
6 registers which are used to transfer parameters to the called
function (B.in).

Function Calls
The above diagram portrays register window usage if function A
called function B, function B called function C, and function C
called function D. Function D is currently executing.

Fig. 2.1: Circular Buffer Organization of Overlapped Windew:
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b) Fetch instruction: Read the next expected instruction into a buffer.
Resources required: input data bus, instruction buffer 1.

c) Decode: determine the opcode and register operands.
Resources required: decoder, instruction buffer 2.

d) Execute: Perform instfuction operation with register operands.
Resources required: ALU, operand busses from registers.

e) Store Result: Store result in register file.

Resources required: bus to register file.

Depending upon the specific processor, the above example pipe stages may be
combined to make the pipeline shorter, or further decomposed to lengthen the pipe and
increase the clock frequency. Ideally, all pipe stages should have equal delay to max-
imize efficiency.

The above pipeline will operate smoothly as long as there are no conditional
branches and all operands are in registers. Conditional branches are handled in the
MIPS and RISC I machines [Henn82] [Kate85) by a "delayed branch" technique. In
this technique, the instruction following a conditional branch is always executed to
allow time for the conditional branch and next address calculation to clear the pipe.

Practical limits are placed on the number of pipeline stages by the delayed
branch, and operand dependencies. It is the responsibility of the compiler to reorder

the instructions to insure that:
a) operands are prefetched into registers (LoaD Instruction),

b) after each conditional branch there exists an instruction (or NOP), which

does not depend on the branch, to keep the pipeline full.
c) operand (register) dependencies are taken into account.

If an operand of an instruction is the result of a previous instruction, idle cycles

(NOPs) may be inserted to delay the start of that instruction until the previous one has



-12- Previous Research

completed. In general, the higher the number of pipe stages, the more difficult it is for

the compiler to create NOP-free code.

2.5. Caching

An 1/0 bottleneck problem exists in current RISC processors because, according
to the standard elements, they ought to execute one instruction per cycle. This means
an instruction fetch every cycle which would use all address and data bus bandwidth.
Most modern RISC architectures combat this problem by embracing hardware cache
support and/or on-chip caches to attain better performance [Furl89]. The caching tech-
niques vary between processors. Intel favors a unified instruction and data cache while
Motorola favors separated instruction and data caches (as per the Harvard Architecture)
in current and future RISC and CISC processors. Most other RISC chips incorporate
an on-chip instruction cache and off-chip data cache to combat the I/O bottleneck
problem. The Commercial version of MIPS (MIPS-X) [Horo87] uses both a 2-kbyte
on-chip instruction cache and an external interface for high-speed cache access to pro-

vide the required memory bandwidth for the processor.

Caching has become necessary to achieve high performance in microprocessor
systems. This is particularly so with RISC processors because slower memory cannot
supply data at the high clock frequency without wait states given the high I/O
bandwidth requirements resulting from an instruction throughput of 1 instruction per
cycle. Typical RISC clock speeds have not only increased past the capability of
DRAM main memory, but even faster, much more expensive SRAM cannot keep up
with RISC processors running aiaove 25 MHz and beyond [Furl89]. Even techniques
such as page-mode interleaving for the main memory - where two (or more) banks of
RAM may be accessed alternately to reduce the apparent access time - is not good

enough because it will cause wait states more frequently than will a cache.
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2.5.1. Caching Techniques

Issues in selecting a caching technique include cache placement in the system as

well as whether instruction and data caches should be separate or unified.

Placing the cache on-chip or before the address translation of the MMU creates
what is called a virtnal cache [Furl89). Because most processors use virtual address
locations, a cache that can access data directly from the virtual address without looking

up the physical equivalent, will be more effective.

The issue of whether to use a Harvard architecture (divided instruction and data
caches) or to use a unified cache is a tradeoff between bandwidth requirements and
resource limitations. The Harvard architecture provides an increase in memory
bandwidth. The increased memory bandwidth results from an address and data bus to
the instruocidon cache and another address and data bus to the data cache. Thetefore, a
Harvard architecture machine may have double the bandwidth and also double the
number of bus lines and bus pins. A unified cache can encounter more bus contention

between data and instruction than a divided cache but a lower pin-count will result.

The ARC may be interfaced to unified or separate instruction and data caches

which use virtual addresses.

2.5.2. Qverview of Instruction and Data Caches

Instruction caches are normally implemented on-chip because with 1 instruction
fetched from cache instead of memory per cycle, the bandwidth saving is high and
because the behavior of instructions is well understood as described by [Kate83].:

Instruction fetches are read-only accesses. They are sequential in small

blocks (between if or call or loop statements). Locality arises from the

repeated accesses to instructions inside loops. Since programs spend most of

their time i small inner loops, this locality is hiy-
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The above behavior allows for a simpie instruction cache design.

Data caches are generally larger and more complex than instruction caches and
therefore usually implemented as part of an off-chip MMU due to silicon area restric-
tions. Data memory references are not as predictable as instruction referencing.
Locality arises from repeated accesses to the same scalar variables or to sequential
access to non-scalar variables such as arrays and structures. For a detailed discussion
of microprocessor cache architectures, the reader is referred to [Furl89] [Kate83]

[Kado87] [Horo87] and [Hunt87].

2.6. Architectural Features of Stanford’s MIPS [Henn82,83]

The Stanford MIPS project [Henn82,83] concentrated on obtaining maximum per-
formance by making simultaneous tradeoffs across three areas: hardware, software sup-
port, and systems support. After considering possible design tradeoffs, the MIPS
designers opted for less hardware and more complex software. Key features of MIPS
in which this is apparent include: load/store architectures, packing constants into
instructions, omission of condition codes, word-addressed machines, and imposing
pipeline interlocks in software (optimizing compiler).

Load/store architectures require that operands be loaded into registers, from which
they are processed. Load/store architectures can yield performance increases if
frequently-used operands are kept in registers. The MIPS designers therefore used a
large number of registers and an efficient register allocation algorithm as part of the
compiler.

To further reduce the number of loads from memory to registers, the MIPS
designers also incorporated 4-bit and 8-bit constant fields into some instructions. By
studying a collection of programs, they determined that a 4-bit constant would cover
70 % of the cases in which a constant was necessary. An 8-bit constant(allowing a

character constant) would cover 95 % of the cases.
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The MIPS designers argued againsi the use of condition codes because they are
difficult to implement, difficult for compiler writers, and inefficient for conditional con-
trol flow breaks. Condition codes are difficult to implement because they are irregular
structures, some instructions set the condition code and others do not. This camses
- additional logic for condition code control and problems with branches in a heavily
pipelined machine (pipe may have to clear or be flushed before a branch). Condition
codes are difficult for compiler writers, especially in nonorthogonal architectures,
because condition codes are side effects of instruction execution. In terms of
efficiency, the MIPS designers compared the use of condition codes in conditional con-
trol flow with their scheme of conditionally setting the contents of a general purpose
register to O or 1, and found the MIPS scheme faster. One notable exception to this

scheme was the overflow flag which generates a processor interrupt in the MIPS.

Word-based addressing is advocated by the MIPS designers because it has a
lower overhead associated with each fetch or store, and word references occur much
more frequently than byte references. To make a word-based approach feasible, spe-

cial support for accessing bytes was provided in the MIPS instruction set.

Finally, and perhaps most significantly, the MIPS designers advocate shifting the
burden of cost from the hardware to the compiler. The MIPS design depends upon a
more complex compiler capable of imposing pipeline interlocks and delayed branches
by reordering instructions and insertion of NOPs. This resulted in much simpler and
much faster hardware. This shifting of the complexity from hardware to software has

several major advantages as described by [Henn82].:

The complexity is paid for only once during compilation. When a user runs
his program on a complex architecture, he pays the cost of the architectural
overhead each time he runs his program. It allows the concentration of
energies on the software, rather than constructing a complex hardware

engine, which is hard to design, debug, and effectively utilize.
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2.7. Architectural Features of the Berkeley RISC II

The designers of the Berkeley RISC [Patt82] [Kate 83] analyzed the behavior of
high level language (HLL) programs, patterns of procedure calls and returns, as well as
the optimization of register usage. In addition, they studied the trade-offs between
size, complexity, and speed to obtain the most effective use of the scarce hardware

(silicon) resource in the execution of HLL programs.

The Berkeley RISC project began in the spring of 1980. The RISC I processor
was implemented in the fall of 1980. Additions to the instruction set and changes to

the on-chip organization/communication resulted in the RISC II by spring 1983.

The RISC II has 39 instructions. These instructions are subdivided into 4

categories:

12 ALU instructions

16 Memory Access (Load/Store) instructions

7 Branch and Call instructions

4 Miscellaneous Instructions

All instructions are 32 bits in size. Most instructions contain 3 operands with 2
sources and a destination register specified in the instruction. There are also
some two- and single-operand (address) instructions. For memory access instruc-
tions, there are two addressing modes: a) indexed (contents of register + immedi-

ate offset), and b) PC relative (PC + immediate offset).

The RISC II has 138 32-bit working registers available to the user. Each pro-
cedure can access 32 of these registers. The first 10 registers, RO, R1, ..., R9, are glo-
bal registers and are always accessible. The other registers are called window regis-
ters. 22 of these registers, R10, R11, .., R31, are accessible within a procedure. Ten

of the registers, R16 to R25, within each register window are local registers. Regis-
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ters R10 to RIS are used to hold parameters passed by the current procedure to a
called procedure. Registers R26 to R31 hold parameters passed to the current pro-
cedure from the procedure which called it.

There are 8 windows in the RISC II register file. The current window is indi-
cated by the 3-bit Current Window Pointer (CWP) of the Program Status Word (PSW).
When a procedure call occurs, the CWP is decremented (mod 8). When a procedure
return occurs, the CWP is incremented (mod 8). To support the register organization
described above, the register windows are organized in a circularly overlapping fashion
so that all register windows have 6 registers in common with each of the adjacent
register windows. The registers which overlap are used for parameter passing between
procedures. The circularly overlapping structure of the RISC multi-window register

file is shown in Fig. 2.1.

The most recently used window of the register file which has been saved to
memory is indicated by the 3-bit Saved Window Pointer (SWP) of the PSW. When a
procedure call occurs so that CWP would become equal to SWP, a register file
overflow occurs. Similarly, when a procedure return occurs so that the CWP would
become equal to the SWP, a register file underflow occurs. These underflow and
overflow traps essentially occur when there is no more space in the register file. When
a register overflow occurs, a register window is saved to roemory and when a register
underflow occurs, a register window is restored from memory. Tamir and Sequin
[TaSe83] have investigated this aspect of the RISC architecture and concluded that the
best strategy is to save only one window per overflow trap. In the ARC processor,
improvements on the above sche;ne fo_r saving and restoring registers have been made.
In the ARC, register windows are saved and restored in the background without halt-
ing or a context switch to an interrupt service routine. The background register

save/restbre concept will be explained further in chapter 3.

The RISC I instruction pipeline has three stages: a) Fetch, b) Compute, and c)
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Write. As well, a delayed branch feature has been incorporated into the RISC II. This
means that the jump or branch takes effect only after the instruction following the
branch has been executed. Another restriction of the RISC II pipeline was that the
pipeline was suspended during data memory accesses. This suspension occurred
because the address and data busses are used for the data load or store thereby disal-
lowing instruction fetches to occur (which also require the address and data busses).
As well, the RISC II register file allows only one register-write per cycle. This means
that a dummy pipeline stage must be inserted into all instructions at the place where
toads perform their memory access. An on-chip instruction cache would combat the
problem of pipeline suspension during data access as long as a cache miss does not
occur. Pipelined memory access (more than 1 memory access in progress at a time)

combined with dual-ported memory would also alleviate the problem.

2.8. Summary of Previous Research

The ARC architecture incorporates many standard RISC characteristics:
- A limited and simple instruction set.
- A large number of registers.
- Load and store access to memory.
- All instruction operands in registers.

- A strategy of maximizing the use of registers and minimizing references to

memory.
- The use of an optimizing compiler

- An emphasis on optimizing the pipelined execution of instructions to obtain a

throughput of 1 instruction per cycle.

In addition to the standard RISC elements, characteristics from Stanford’s MIPS

[Henn82,83] and the Berkeley RISC [Kate83] [Patt82] were incorporated into the ARC
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architecture.

In particular, these characteristics include the following:
a) circular, overlapping register windows. [Kate83] [Patt82]
b) non-interlocked pipeline, optimizing compiler [Henn82,83]
¢) delayed branches [Henn82] [Kate83]

d) lack of condition code [Henn82]

Most RISC processors require caching techniques to obtain sufficient I/O
bandwidth and an instruction throughput of 1 instruction per cycle. This is evident in
the commercial versions of the RISC I [Kate85], and the MIPS-X [Horo87], both of
which require an on-chip instruction cache and off-chip data cache. The more aggres-
sive Motorola 88000 RISC chip utilizes a Harvard architecture cache structure to facil-
itate high I/O bandwidth. ARC employs I/O bandwidth reduction to eliminate the
need for an on-chip cache (as long as the memory is fast enough). If memory is not
fast enough, ARC will require a cache structure. Separate instruction and data caches
could be used to afford some advantages of the Harvard architecture with fewer bus
lines and pins. If the Pocess technology permits, the cache(s) together with other
memory management functions can be moved on-chip. The novel concepts of the

ARC which increase performance are presented in the next chapter.
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3. NOVEL CONCEPTS THAT INCREASE SPEED AND EFFICIENCY

A number of novel concepts have been introduced with ARC which afford

improvements over previous RISC designs. These concepts include:
a) 2 instructions per 32-bit word
b) unidirectional input and output busses
c) background register saves
d) pipelined memory access
e) extemal program counter and associated logic
f) ~memory control unit (MCU) or intelligent memory

The improvements are realized in terms of greater I/Q bandwidth available, fewer
nonprocessing states, and the ability to access siow memory. Greater I/O bandwidth is
available because concepts a), c), e) and f) cause a reduction in the total bandwidth
required for instruction fetches and subroutine calls, while concepts b), ¢), €), and f)
are used to balance the bandwidth between the I/O resources available. The ARC has
fewer nonprocessing states because of the MCU and background register saves. The

ARC may also be interfaced with slow memory by pipelining memory access.

The increase in available input bandwidth results largely from packing two
instructions per word, and from the unidirectional IN bus. The increase in available
output bandwidth results largely from the external PC (instruction addresses do not ori-
ginate from ARC) and from the unidirectional OUT bus. Conventional and RISC pro-
cessors normally increase their available bandwidth by having on-chip ins&uction
and/or data caches. This works well for traditional programming languages which
display good locality properties. In comparison, techniques to be detailed in this
chapter for increasing ARC’s available bandwidth do not rely upon program locality
and thus should provide better support for languages such as LISP and Smalltalk.

Nonetheless, the ARC techniques can also operate in conjunction with a cache struc-
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ture to gain the normal benefits of caches.

Background register saves and restores are made possible by the large amount of
available bandwidth. This feature allows procedure calls and returns to occur with a
minimum of LoaD and STore overhead associated with restoring/saving register win-

dows.

The division/interface between ARC and the MCU (or intelligent memory) is also
a key concept which results in a desirable division/interface between processor and
memory. This interface between ARC and the memory system forms the basis of a set

of philosophical objectives detailed at the end of this chapter.

3.1. Twe Instructions per 32-bit Word

The available input bandwidth is significantly inéreased by encoding most ARC
instructions into 16 bits. Thus two instructions are loaded in most 32-bit instruction -
fetches. As the ARC executes 1 instruction per cycle, the unidirectional IN bus is
available for data transfers every second cycle. This reduces the I/O bottleneck, leav-
ing bandwidth on the IN bus available for incoming data or register restores. In addi-
tion, halfword instruc}ions are easier to decode and should result in less memory and
cache space required for executable code than would fullword instructions. The reduc-
tion in cache space required is an important feature because cache memory is always

at a premijum if it is to be implemented on the same IC as the ARC or the MCU.

To gain the above advantages, several tradeoffs were made. Because the instruc-
tions are restricted to 16 bits in length, the instruction set is limited and slightly less
orthogonal than it might be otherwise. As well, the register operand fields are only 4
bits wide so that a maximum of 16 registers can be addressed. Therefore the register
windows contain 16 registers and only 1 16-register window is available to each pro-
cedure. These disadvantages are not sérious because the instruction set is adequate

and follows the RISC philosophy and the register window size is only 6 smaller than
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that of the Berkeley RISC II but missing 10 global registers. The advantages of
greatly reducing the I/O bottleneck and of reducing memory and cache requirements

should outweigh these disadvantages.

3.2. Unidirectional I/0

Conventional microprocessors have a unidirectional address bus and a bidirec-
tional data bus. In conventional microprocessors, the address bus is used for both
instruction addresses and data addresses, while the data bus is used for instructions,

incoming data and outgoing data.

Higher performance microprocessors with high I/O requirements such as the
Motorola 68030 and 88000 follow the Harvard architecture scheme. This is a four bus
architecture having an instruction address bus, a data address bus, an instruction input
bus and a bidirecticnal data bus. The Harvard architecture eliminates conflicts

between instructions and data at the expense of additional pins and busses.

In the ARC, outgoing data addresses and data utilize the QUT bus while instruc-
tion pairs and incoming data utilize the IN bus. This I/O structure provides equal
input and output bandwidth resources to support the almost equal input and output
bandwidth demand which results when instruction addresses do not originate from the
cpu. The ARC processor has certain similarities with Harvard architecture processors,
using time division multiplexing (TDM) to eliminate the high pin count. The ARC
architecture may be considered as a TDM Harvard architecture with respect to the IN
bus because the IN bus is reserved for instructions and data on even and odd clock
phases respectively. The ARC can also be interfaced to separate instruction and data
caches as is done in the Harvard architecture. ARC does not require as much I/O
bandwidth as is available with the Harvard architecture because of the features which
reduce the necessary I/O bandwidth requirements. Conflicts between instructions and

data are resolved by pipelining as explained in sections 3.4 and 3.5.
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ARC has higher input bandwidth available than a conventional RISC. T¥&it ix
because ARC’s IN bus supports incoming instruction pairs and incoming data. In
comparison, the conventional data bus must support outgoing data in addition to
incoming full-word instructions and incoming data. ARC aiso has a higher output
bandwidth available for data transfer. This is because¢ ARC does not need to send out

an instruction address on each cycle as is necessary with conventional PEOCESSOrS.

Further, the traditional bus structure of most RISCs incorporates a bidirectional
bus. The associated bus rurn-around delay and clock skew may reduce the maximum
operating frequency. Utilizing uniclirectional busses in ARC eliminates bus turnaround
delays and makes complicated bidirectional drivers/receivers between the proce:ssos and

memory unnecessary. !

As well, unidirectional busses may make it easier to design a pipelined memory
subsystem, impossible in a conventional system with a bidirectional data bus. The
ARC's unidirectional bus system eliminates bus conflicts between data to be stored and

data to be loaded.

3.3. Background Register Saves and Restores.

To reduce the number of nonprocessing states, the ARC design supports back-
ground register saves and restores. The ANC includes a register file made up of circu-
lar overlapping register windows, similar to those developed in the Berkeley RISC
[Patt82]. During procedure calls, a new register window becomes the "activg" win-
dow. The "active" window holds the only registers that can be accessed by ARC
instructions. To reduce the number of wait states (LoaD or STore instructions) associ-
ated with restoring or saving the window context to a register stack, the ARC incor-

porates additional logic which saves and restores register context windows in parallel

! Tristate drivers would still be required to support DMA.
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with ALU operations. Whenever the IN bus is not being used, this logic checks regis-
ter context windows and will restore the context of ancestors of the currently active
window in anticipation of subroutine rewrns. Similarly, when the OUT bus is not
being used, this logic will attempt to store the context of a higher register window to
the register context stack in anticipation of a subroutine call. This feature is used to
make it seem like there is an infinite number of windows in the register file. If a
number of calls or returns occur quickly in succession, it is possible that the back-
ground saving and restoring will fall behind. The MCU will detect this condition and
the processor will be fed NOPs so that the registers will be saved/restored at the rate

of one per cycle. 2

ALU instructions do not utilize the IN, OUT, or MMU busses. Therefore, while
the processor is executing ALU instructions, the OUT and MMU busses are free and
the IN bus is fre every odd phase (instruction fetch on even phases). This available
I/O bandwidth is exploited to save and or restore registers without interfering with the
normal instruction execution throughput. Because this process occurs while ALU

instructions execute, it is referred to as a background save or restore of registers.

3.4. Pipelined Memory Access and Instruction Execution

Pipelined memory access allows more than one memory access to occur at the
same time in a pipelined fashion. Pipelined memory access reduces the number of
overhead states and allows a higher operating frequency. In a traditional RISC
approach, the MMU must decide if data is resident (in cache or memory) and return
the data within a specified time to the cpu (typically 1 cycle). When the data is not
resident, the processor is halted until the data is fetched. Fugther, the time required to

determine if the data is resident affects the maximum operating frequency of the sys-

2 This achieves the same effect as would a burst mode Load/Store of the register window.
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tem. The ARC incorporates a pipelined memory access scheme. For LoaD instruc-
tions, addresses are sent out in one cycle and the data is expected to be returned N
cycles later. This allows the external MCU to take several cycles to locate the

requested data and return it to the cpu.

Further, N can be dynamically adjusted 3 to support complex memory decoding.
For example, when running LISP or object-oriented programs, the pipeline length can
be increased to allow time for the MMU to accomplish translation of symbolic pro-
gram addresses to physical addresses without inserting wait states. The Pipeline is
extended to the Memory Control Unit because transport and control instructions are
pipelined. In the first version of ARC, Load and Store instructions send out the
memory address and expect the data to be transferred to or from ARC, on. the next
phase. In the case of JMP or JSR, the new instructions are not fed to ARC until 2

phases after the memory address is sent out.

Caching and memory interleaving can be used to allow ARC to work at a
significantly higher speed than the main memory. Caching is favored by most high
performance processors because very high hit ratios can be achieved with a moderately
sized cache and the hit ratio can be increased by increasing the size of the cache.
Page mode memory interleaving (Least significant address bits select bank) can also be
used when sequential memory locations are accessed. This allows different banks of
memory to be accessed alternately to increase the memory transfer throughput in a
pipelined fashion. Page mode interleaving has not proven to be as successful as cach-

ing because often the same memory bank is accessed twice in succession.

The pipelined memory access described above is beneficial because it allows the
processor to interface with slower RAM. ' The number of pipe stages could conceiv-

ably be changed depending upon the memory subsystem (slower memory or {0 take

3 The maximum size of N would, however have to be known at compile time and it is like-
ly that less efficient code will result as the ceiling of N increases.



-26- Novel Concepts

into account cache misses).

3.5. External Program Counter

Locating the prograra counter (PC) off-chip significantly increases the output
bandwidth available for data transfers. In the ARC, the instruction address does not
originate from the cpu, but rather, from a memory control unit (MCU) (except in the
case of a branch). Because most instruction addresses are externally generated and
stored, the instruction address requires little of ARC’s OUT bus bandwidth. By moni-
toring the instruction stream for branch instructions and receiving the result of branch

conditions from the ARC cpu, the MCU could also generate branch destinations.

Other advantages of an off-chip PC include an increase in parallelism, a simpler
on-chip pipeline, and locality of instruction address generation. Associated with the
external PC is some logic to allow instruction address sequencing, addition, etc. By
having the PC and associated logic off-chip, on-chip resources such as the ALU are
not used to update the PC. The instruction pipeline of ARC is simplified because next
instruction calculation does not have to fit into the pipeline resource scheduling. By
associating the PC more closely with memory, there exists a greater locality of instruc-
tion address generation. Thus, instruction addresses are not propagated to the processor
and calculated there. Rather processor addresses are calculated locally within the intel-

ligent memory subsystem (or MCU) and only the instructions are fed to the processor.

It is possible to locate the PC off-chip as part of the MCU because ARC has sim-
ple addressing modes and control instructions. (See chapter 4 for details of the ARC

instruction set.)

During sequential instruction flow, the external PC simply increments. Otherwise,
the external PC unit needs to be notified when JUMP, Jump to SubRoutine, RETurn,
and relative BRanch control instructions occur. When a JUMP instruction occurs, the

contents of a register are placed on the OUT bus to become the new PC. When a JSR



-27- Novel Concepts

instruction occurs, the PC is saved to the PC stack, and the contents of a register are
placed on the OUT bus to become the new PC. When a RETurn instruction occurs,
the last value on the PC stack becomes the new PC. When a relative BRanch instruc-
tion occurs, the 8 least significant bits on the OUT bus are added (2’s complement) to

the current PC.

ARC has 2 addressing modes: a) register direct and b) immediate. Therefore all
data memory addresses originate from the general purpose registers. PC relative and
other addressing modes are synthesized by loading the PC (or other special purpose
register) into a general purpose register, performing an arithmetic operation on the
register (such as ADD constant), and then using the resulting address in a LoaD or
STore.

3.6. Intelligent Memory

The Memory Control Unit (MCU) may be considered as a single chip unit or as
several chips distributed within the intelligent memory subsystem. The MCU works in
conjunction with ARC to enable bandwidth reduction, bandwidth balancing, back-

ground register saves, and pipelined memory access.

Bandwidth reduction from ARC is made possible, in part, because the PC and
other special registers are part of the MCU. By associating the PC more closely with
memory, instruction addresses are calculated within the intelligent memory subsystem.
This leads to saved bandwidth because the PC is only sent out on branch instructions.
An external PC also results in an increase in parallelism and locality of instruction

address generation.

Associating most other special registers with the MCU leads to further bandwidth
reduction and locality of interrupt handling and context switching. When an interrupt
occurs, it is unnecessary for ARC to transfer all special registers to the MCU, thereby

saving bandwidth. Interrupts and context switches are primarily the responsibility of
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the MCU. (ARC treats interrupt service routines as just another subroutine call.) Hav-
ing the MCU handle interrupts makes sense because most interrupts result from
memory and /O devices and can thus be handled more locally. Having the MCU han-
dle context switches also makes sense because a context switch involves memory real-

location and sometimes disk swapping as a new process becomes active.

Bandwidth balancing is made possible by the interface between ARC and the
MCU. When the PC is part of the MCU, nearly equal IN and OUT bus bandwidth
requirements exist to and from ARC. The OUT bus of ARC supports outgoing data,
data addresses, and register saves. The IN bus of ARC supports instruction pairs,
incoming data, and register restores. Bandwidth must also be balanced between phases
of Phil and Phi2 as hinted in section 3.2 in the paragraph on time-division-
multiplexing (TDM) of the IN and OUT busses. Bandwidth balancing is explained

more fully in terms of resource scheduling in section 4.1.4 and pictorially in Fig, 4 8.

Background register saves are also made possible by the MCU. The MCU
manages the register stack. The algorithm to have registers saved to (or restored from)
the register stack is a responsibility of the MCU. Storage space for the registers is
also a responsibility of the MCU. When the MCU determines that it is time to either
save or restore a register subwindow, it notifies ARC. Then during each subsequent
ALU instruction, a register from the subwindow to be saved/restored will be pushed

onto/poped from the register stack.

Pipelined memory access is arother useful feature of the interface between ARC
and the MCU. The MCU may control slow memory, utilize virtual address lran.slation,
utilize caching, or queue addresses to interleaved memory. In these cases, the number
of cycles between the assertion of a data address from ARC and the response from

memory can be customized for each different type of memory subsystem.
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3.7. Philosophy Behind ARC and MCU Design

In addition to the concepts presented in this chapter to improve speed and

efficiency, a number of other high level objectives are set for the design of ARC and

its companion MCU.

The ARC and MCU are partitioned such that generic processing functions are

incorporated into ARC while memory control functions are incorporated into the

MCU. The implementation of the processing and memory control functions on

separate chips have a number of advantages:

a)

b)

c)

It allows the processor to ‘be generic and attached to different, specialized
memory controllers. Memory controllers tend to be dependent upon the system
architecture, memory subsystem hardware, the operating system, etc. In contrast,
processors should be as generic as possible so thai they can be incorporated into a

wide variety of systems and the executable code will be the same on all systems.

Fewer compromises are necessary with this partition than if memory and proces-
sor functions are incorporated together on the same chip (e.g. number of

registers/bits vs. size of cache, more transistors vs. lower yield).

A sibling relationship between cpu(s) and memory subsystem(s) results in
increased parallelism and locality of information processing. Conventional pro-
cessors exhilit a master-slave relationship between the cpu and the memory sub-
system. The MCU thus operates in parallel with ARC by performing memory
control functions and feesding instructions and routing data to and from ARC.
Functions such as caching, interrupt handling, context switches, and virtual
memory translation are functiors of the MCU because these functions are associ-
ated more closely with memory control than data processing. By giving thx
MCU these responsibilities, some of the processing and bandwidth load are takei

from the processor.
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d) More efficient use of I/O bandwidth as well as locality of information processing
and an increase in parallelism results from incorporating special registers such as
the PC into the MCU. Because instructions originate from memory and the gen-
eration of instruction addresses requires littie CPU intervention, the PC and asso-
ciated sequencing logic is implemented in the MCU. Other special registers such
as the Register Stack Pointer are associated with the MCU because they address
memory locations used by memory control functions. Because these special
registers do not have to be saved and restored to ARC at the advent of an inter-
rupt, interrupt handling becomes the responsibility of the MCU. This leads to
locality of interrupt handling because many interrupts originate from the memory
subsystem(s) (e.g.: page faults, segmentation faults); It also leads to .increased
parallelism because the MCU takes responsibility for feeding ARC the call to the

correct interrupt service routine.

e) The ARC design is versatile and expandable. On-chip enhancements could
include more registers, different register window overlaps, more sophisticated I/O
Control Unit (IOCU) functions, different ALU operations, and possibly expansion
to 64 bits. The Memory Control Unit would be closcly bound to the system and
memory architecture. The MCU could be a single chip or distributed control in
the memory subsystem(s). Enhancements to the MCU could include larger
caches, virtual memory, tags and security features. In effect, both ARC and the
MCU can be “scaled" according to the available technology.

The architectural relationships between ARC and the MCU will be discussed in

more detail in the next chapter.
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4. ARCHITECTURE

This chapter presents a description of the architecture of the ARC processor at the
block diagram or functional level. Architectural details of the ARC processor include
datapath functions, I/O Control Unit (IOCU) functions, the instruction set, and the
instruction pipeline. The implications of the ARC architecture on the system level
design are then discussed. ARC system architectural details include the interface of
ARC to different types of memory subsystems. These discussions will highlight the
implementation details of the novel architectural concepts and philosophical issues

presented in Chapter 3.

4.1. ARC Processor Architecture

A picture of ARC is shown in Fig. 4.1. The 2 major functional blocks of ARC
are the Datapath and the IOCU. The Datapath is composed of the ALU and Register
File while the IOCU handles background operations and pipelining as well as I/O
operations. The relative positions of the functional blocks and I/O signals are detailed
in Fig. 4.2. Note the nonstandard unidirectional IN and OUT busses, interface to the

external MCU, and 4 nonoverlapping clock phases. 1

4.1.1. Datapath

A Block diagram of the Datapath is shown in Fig. 4.3 The Datapath is composed
of the ALU and the Register File. The ALU communicates with the register file via 2
read ports and 1 write port. The Register File communicates with the outside world

via the IOCU.

! Clock phases are divided into even and odd, as well as A and B clock phases. Even
clocks include PhiOA and PhiOB. Odd clocks include PhilA and PhilB. During A phases,
busses are precharged, the ALU writes to the register file, and latching occurs. During B
phases, all decoding, execution, memory access, etc. occurs.
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4.1.1.1. The ALU

The ALU is shown as the left half of the Datapath Block Diagram of Fig. 4.3.
The ALU is responsible for operations on register and instruction operands. The result
of each ALU operation is stored in the register file. A carry-select adder, condition
testing logic, and an ALU instruction decoder are incorporated into the ALU. The
interface and relative placement of these blocks of the ALU are illustrated in Fig. 4.3.
The architectural design of the ALU is fairly conventional. The instructions supported
by the ALU are presented in Section 4.1.3.1 and the logic design of the ALU is
presented in Chapter 5.

4.1.1.2. The Register File

The register file is responsible for storing the working set of data to be operated
upon by the ARC processor. In any LoaD-and-STore architecture, the design of the
register file greatly influences the throughput of the processor. Previous RISC proces-
sors have incorporated register files as large as possible given the physical constraints
of the implementation technology. With a large register file, more of the working set
of data can be held on-chip, causing fewer LoaD and STore accesses to memory. In a
conventional RISC, memory accesses are costly in terms of bandwidth, data latency,
and pipeline conflicts (e.g.: interference of LoaD and STore with Instruction Fetch in

Berkeley’s RISC).

The register file is shown as the right half of the Datapath Block Diagram of Fig.
4.3. The main difference with regard to previous register file designs is that four
busses are served by the ARC Register File: S1, ~S2, Dst, and MMU. The S! bus
carries the contents of a register to the ALU and the IOCU. The ~S2 bus carries the
contents of a register to the ALU. The Dst Bus carries the result of ALU operations
back to a register. The MMU bus is bidirectional and is used for data transfer
between a register and the IN and OUT busses via the IOCU. The register addresses

for each of the 4 busses are input to the subwindow decoders and are labeled Dst@,
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S1@, S2@, and MMU@ in Fig. 4.3.

This high connectivity to the register file allows more independence of operation
between the ALU and the IOCU thereby simplifying background register
saves/restores, simple pipeline scheduling, and high instruction throughput. Back-
ground register saves/restores or memory access instructions can occur in ARC while
an ALU operation is in the pipe because sufficient busses exist to access the register

file concurrently.2

The Register File is organized as a set of overlapped register windows. The
advantages of a circular buffer organization of Overlapped windows was shown by the
Berkeley RISC group [Patt82] and was mentioned in Chapter 2. Essentially, register
windows allow the exploitation of temporal and spatial locality of address and data
references within a procedure and across procedure calls. Because the register win-
dows are overlapping, some registers accessed by the calling subroutine are also acces-

sible by the called subroutine. This enables efficient parameter passing.

The version of the ARC implemented had 32 registers in total, divided into 4
subwindows of 8 registers each. 2 subwindows are accessible at any one time, 1 of
the subwindows would previously have been accessible to the calling procedure result-
ing in an overlap of 8 registers between procedure calls. (A more detailed physical

description of the ARC register file circuitry is given in Section 5.2)

This circular buffer organization of overlapped register windows leads to a regis-
ter stack structure as depicted in Fig. 4.4. The register stack is essentially the register
window of old procedure activations stored in memory because of limited space within

the register file.

2 In a processor architecture with one less bus to the register file, background register saves
could still occur by using the idle bus during 2 operand ALU instructions and branches. How-
ever, this would reduce the opportunity to perform background saves and resteres resulting in
more waits required to keep pace with subroutine calls and routines.
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The register stack is controlled by the MCU and the background register
save/restore finite state machine. The MCU keeps track of procedure calls and returns
and interrupts and notifies ARC if a register subwindow push or pop is to occur. The
current register window is referenced by the Current Window Pointer (CWP). A back-
ground register save pushes the register subwindow referenced by the Save Window
Pointer (SWP) A background register restore pops the register subwindow preceding
the pop pointer. As shown in Fig. 4.4, only the current and most recent procedure
register sets are held in the ARC register file. The register sets of distant ancestors of
the current procedure are stored only in memory controlled by the MCU except when
the register stack is nested less than two levels deep in which case all procedure

activations are in registers (e.g.: at boot)

4.1.2. The I/O and Control Unit @OCU)

A block diagram of the IOCU is shown in Fig. 4.5. The IOCU interfaces the
register file to the IN and OUT busses and the MCU. The IOCU may be considered
as being composed of four functional blocks:

1) I/O Bitslice Circuitry (upper left of Fig. 4.5)

2) Instruction Extraction and Latching Circuitry (bottom of Fig. 4.5)

3) Transport and Control Instruction Circuitry (upper right of Fig. 4.5)

4) Window Control Logic (mid right of Fig. 4.5)
An overview of each of the four functional blocks follows. For more detailed infor-
mation about the IOCU circuitry consult Section 5.3.

The I/O Bitslice Circuitry is responsible for routing of data between the IN bus,
the OUT bus, and the S1 and MMU busses of the register file. This circuitry facili-
tates a high bandwidth interface between the Register file and the unidirectional IN and

OUT busses, providing support for the routing of data, necessary for transport and con-
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trol instructions as well as background register saves and restores.

The Instruction Extraction and Latching Circuitry is responsible for the extraction
of opcodes and instruction fields and latching the instructions intc the pipeline. The
extraction of instructions is necessary because ARC instructions are packed 2 per 32-
bit word (as discussed in Chapter 3). The Instruction Extraction Circuitry divides an
incoming instruction pair into a first-halfword instruction and a second-halfword
instruction. The first-halfword instruction is "latched" into the pipeline one phase
ahead of ihe second halfword instruction. Once an instruction is latched into the
decode phase of the pipeline, the instruction type and operand fields are decoded. The
operand fields are passed to the Register Decoder Latches shown above and to the left

of the Instruction Extraction Circuitry in Fig. 4.5.

The Transport and Control Instruction Circuitry is responsible for the decoding
and pipelining of transport and control instructions as well as interfacing with the
external MCU. Decoding of transport and control instructions is performed by a local
I/O Control Instruction Decoder. Circuitry to implement the pipelines of the various
transport and control instructions is coupled closely with the local decoder. The Tran-
sport and Control Instruction Circuitry interfaces to the external MCU via the Mx0-3
signals which inform the MCU of the current transport or control operation. This, in
turn, facilitates transfers to and from memory for LoaD and STore instructions as well
as background register saves/restores. The interface with external memory will be dis-

cussed in detail in sections 4.2, and 5.3.

The Window Control Logic circuitry is responsible for the state of the register
stack and the overlapping register windows. The Window Control Logic Circuitry
houses the Current Window Pointer (CWP), the Save Window Pointer (SWP) and cir-
cuitry to perform background register saves/restores. The background register
save/restore circuitry is governed by the Push, Pop, and RegTx signals from the exter-

nal MCU as well as the SWP and CWP. The CWP is updated on Jump-to-Subroutine
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(JSR) and Return (RET) Instructions (decoded by the Transport and Control Instruction
Circuitry).
Further details of all IOCU functions are presented in Chapter 5 together with cir-

cuit schematics and floorplans.

4.1.3. Instruction Set

The instruction set of the ARC processor is as shown in Table 4.1. The instruc-
tion set consists of 3 types of instructions: ALU, Transport, and Control. The format
of the different types of instructions is shown in Fig. 4.6. To allow 2 instructions per
32-bit word, most instructions occupy 16 bits. To simplify decoding, instructions are
composed of four 4-bit operand fields, FO-F3. As discussed in Chapter 3, packing 2
instructions per word is necessary to leave bandwidth on the IN bus for memory reads

while executing one instruction per cycle.

4.1.3.1. ALU Instructions

ALU instructions are made up of three operand instructions, Quick instructions,
two operand instructions, and SET instructions. The format of the different types of

ALU instructions is shown in Fig. 4.6.

Three operand instructions are operations which access two inputs from the regis-
ter file and store the result of the 6peration to the register file. The 4-bit FO field
selects the operation and is deemed the opcode. The inputs to the operation are indi-
cated by F1 and F2 while F3 indicates the destination register for the result of the
operation. As four codes of the FO field are used to indicate longer opcode and Quick
instructions, there can be only 12 three operand instructions. The selected set (see

table 1) represents the most commonly used ALU operations.

Quick instructions (Add Quick (AQ) and Subtract Quick (SQ)) are implemented

in ARC. These instructions allow adding or subtracting the contents of a register by
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Table 4.1: ARC Instruction Opcodes
3 Operand ALU Instructions
Mneumonic FO (P0-P3) F1 (P4-P7) F2 F3 D6----D0
ADD 0000 s2 S1DST 00x0 00x
AQ 0010 Q S1 DST 00x0 10x
SUB 0001 S2 S1 DST 00x1 00x
SQ 0011 Q S1 DST 00x1 10x
AWC 1000 S2 S1DST 00x0 01x
SWC 1001 S2 S1 DST 00x1 O1x
AND 0101 S2 S1 DST 0111 00x
CR 1011 S2 S1 DST 0111 O1x
XOR 0111 S2 S1 DST 0111 10x
BIN 0110 Sz S1 DST 0110 11x
BEX 1010 S2 S1 DST 0110 10x
SET Instruction
SET Mneumonic R0 F1=COND F2 F3 D6----D0
= 0100 0010 S$1/Dst S2 1001 001
=0 0100 0110 S$1/Dst X 100x x11
< 0100 10x1 S1/Dst S2 1111 00x
<= 0100 00m3 S1/Dst S2 1101 00x
ODD 0100 11x1 S1/Dst X 111x x1x
LT 0100 0000 S1/Dst S2 1001 000
ov 0100 11x0 Dst X 101x x1x
I= 0100 10x0 S1/Dst S§2 1011 00x
2 Operand ALU Instructions
Mneumonic FO F1 F2 F3 D6----D0
NOT 1110 11xx S1 Dst 0111 11x
SL 1100 00xx S1 Dst 0100 00x
SR i101 00xx S1 Dst 0101 00x
SRC 1101 Olxx S1 Dst 0101 01x
SLC 1100 0lxx S1 Dst 0100 01x
ROL 1100 10xx S1 Dst 0100 1xx
ROR 1101 10xx S1 Dst 0101 1xx
ROLS 1110 00xx _S1Dst 0110 Oxx
(I/O Contral) Transport Instructions
Mneumonic FO F1 F2 F3
LD 1331 0001 S1 MMU
LDSR 1113 Hlxx xx MMU
LDI 1111 1101 xx MMU
ST 1111 . hon S1 MMU
(I/0 Controi) Control Instructions
Mneumonic FO F1 F2 F3
JMP 1111 1011 S1 xxx
JSR 1111 1001 S1 xxx
BR 1111 1010 8 bit offset
RET 1111 1000 XX XXX
SKPONC 1111 0000 S1 xxx
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3 Operand ALU instructions

po FO P3 F1 F2 F3

Op S2@/Q S1@ Dst@

2 Operand ALU Instructions

Po_FO p3 P4 F1 P7 F2 F3

Op Op S1@ Dst@

Set Cond Instruction

po FO P3 F1 F2 F3

0100 Cond St @,Dst@l S2@

2 Operand Transport Instructions

po FO P3 ps F1 p7 F2 F3

1111 Op S1@ MVU@

Control Instructions

po FO pP3Pe4 F1 p7 F2 F3
1111 BRANCH Branch Offset
po FO P3 Pa F1 p7 F2. F3
1111 SKPONC X X
poFO p3 p4 F1 p7 F3
1111 | R S1 X

Fig. 4.6: Instruction Formats
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as much as 15. This is most useful for loops and array indices. Quick instructions 7=
operations which access one input from the register file, one input from the F1 field,
and store the result of the operation to the register file. The F2 field selects the input
from the register file while the F3 field indicates the destination register for the result
of the operation. The F1 field of the instruction is known as the "Quick" operand

because it is faster than fetching a constant from memory.

Two operand ALU instructions are operations which access one input from the
register file and store the result of the operation to the register file. The input to the
operation is indicated by F2 while F3 indicates the destination register for the result of
the operation. FO indicates that this is a two operand instruction while F1 specifies the
operation. Two operand ALU instructions include unary logic operations (such as

inversion, shifts, and rotates).

The SET instruction performs an operation on one or two inputs from the register
file and writes the boolean result into bit 31 of a register. The FO field of the SET
instruction is 0100 (the SET opcode). The F1 field of the SET instruction is-known as
the COND field and indicates the condition to test. In addition, the SET instruction
requires three operands: S1, DST, and S2 but only two fields are left. Therefore, a
compromise must be made so the DST operand and the S1 operand occupy the same
field: F2. The S2 operand occupies the F3 field, normally assigned to the DST
operand. The SET instruction only returns one valid bit which is stored in bit 31 of
the DST register. The other 31 bits contain the result of the ALU operation required
by the SET instruction (usually subtraction). 3 SET can test for several conditions
including overflow, S1 < S2(signed or unsigned), S1 <= S2, S1 odd, S1 =0, S1 = S2,
S1 != 82. The conditions are determined by the 4-bit COND field.

3 With a minor modification to the ALU bitslice circuitry, it would be possible to leave bits
0-30 of SET’s DST register intact. This is something that shouid be done in the next version
of ARC.
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The format of each of the instruction types shown in Fig. 4.6 and described above
has been chosen to make the ALU instructions as orthogonal as possible. Each
instruction has 4-bit S1 and DST register operands. 3 Operand ALU instructions also
have an S2 address or Quick value occupying the F1 field of the instruction. The SET

instruction compromises orthogonality to keep the instruction length to 16 bits.

In terms of function, the ALU instructions are straightforward and similar to those
for other word-addressed KISC designs. Logic instructions include AND, OR, XOR,
and NOT. Addition and subtraction can be done with carry or with a 4-bit "quick"
operand. Rotation and Shifting can be done in either direction by one bit or by 8 bits
left, or left with a carry (to enable multiplication). Character manipulation instructions
include BIN and BEX which cause the least Significant byte of a word to be overwrit-
ten, or the least significant byte of a word to be isolated with zeros in all other bytes.
The above byte or character manipulation instructions are essential because ARC is
word-addressed. The SET instruction is very similar to a corresponding instruction in
the MIPS machine[Henn82].

ALU instructions have few pipeline restrictions (see Section 4.1.4). They may be
executed as either the first or second halfword instruction and may immediately follow
branch or data transfer instructions as long as there are no data dependencies. Thus,
the compiler commonly has the freedom to pack ALU instructions two per word and
to reorder ALU instructions around branches. Dhuring the execution phase (PhiB) of an
ALU instruction, the S1 and ~S2 busses become valid. On the following phase (PhiA)
the DST bus becomes valid and the result of the ALU instruction is written to the
register file. ALU instructions do net utilize the MMU bus, the IN bus, or the OUT

bus. For more information about instruction timing and pipelining, see Section 4.1.4.

4.1.3.2. Transport Instructions

Transport instructions transfer data to/from the register file via the IN/OUT bus

from/to externdl memory. The trarisport instructions include LoaD (LD), STore (ST),
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LoaD Special Register (LDSR), and LoaD Immediate (LDI). 4 The LD and ST instruc-
tions move data between a register (MMU bus operand) and external memory (address
held in S1 register operand). External memory addresses are held in the register refer-
enced by the S1 operand, and incoming or outgoing data is to be held in a register
referenced by the MMU operand. The LDSR instruction can be used to retrieve 1 of 4
special registers from the external Memory Control Unit. These special registers
include a PC, register stack or data stack pointess, etc. The LDSR instruction couid
easily have been split into 2 instruciions such as LDSR and STSR. If the F2 field is
to be used to icsntify an external special register, 16 special registers could be

accessed.

Pipeline restrictions exist for transport instructions. Transport instructions can
occupy only the first halfword instruction. Also, background register saves/restores
cannot occur during the data phase of a transport instruction because transport instruc-

tions utilize the MMU bus of the register file as well as the IN or Out bus during that
phase.

4.1.3.3. Control Instructions

Control Instructions perform data dependent alteration of control flow. Control
instructions include JuMP (to a 32-bit address), BRanch (relative branch of +/-127),
JSR and RET (subroutine jumps and returns change the active register window), and
SKPONC (conditional skip of instruction). All branches and jumps are "delayed” so
that the instruction word immediately following is executed in the same “context"
(register window). The JSR and’RET instructions are needed so that register window

shifting as well as pushes and pops can work in conjunction with procedure calls and

4 A LoaD Immediate (LDI) instruction is also necessaty for simpler compilation and initiali-
zation but this instruction has some costs associated with it. This instruction is not orthogonal
and it involves interpreting the following 32-bit instruction word as data and executing 2
NOPs. In the version of ARC implemented, a LDSR instruction was included but the LDI in-
struction was not fully implemented.
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returns. The JuMP instruction has one operand, S1, a register address. The contents
of that register will be sent to the OUT bus to become the new PC. The BRanch
instruction contains an 8-bit offset which is sent through the OUT bus to be added to
the current PC offchip. SKPONC has one operand, S1, a register address. If bit 31 of
that register is a 1, the instruction immediately following SKPONC will have no effect
(ALU result not stored in register file and 'I_'ransport/Comrol- instruction cancelled). 3
To perform a conditional branch, jump or subroutine call, a BR, JMP, or JSR instruc-
tion is placed immediately after a SKPONC instruction. To perform an efficient con-
ditional assignment or conditional execution of an ALU instruction, an ALU instruc-
tion is placed immediately after a SKPONC instruction. This differs from the condi-
tional branch instruction of the Stanford MIPS [Henn82].

Pipeline restrictions exist for control instructions. Control instructions may
always occupy the first halfword instruction. As well, SKPONC, BR and JuMP con-
trol instructions may occupy the second halfword instruction slot if they do not follow
a STore instruction. Background register saves (pushes) may not occur during the exe-
cution phase of second-halfword BR and JuMP control instructions. The JSR, BR and
JuMP instructions utilize the OUT bus during execution while SKPONC does not.
The JSR instruction is set to always occupy the first halfword instruction to minimize
pipeline conflicts and to minimize complexity in synchronizing the instruction fetches

and incrementing the CWP.

The transport and control instructions send a corresponding 4-bit I/O control
instruction (Mx0-3) to the memory control unit when they enter the decode pipestage
(see Section 5.3 ). The Mx0-3 code notifies the External Memory Controller of the
current Transport or Control instruction, or the push or pop status. This allows the

MCU to match the pipeline of ARC and service the memory requirements of Transport

5 The SET COND ALU instruction usually works in conjunction with the SKPONC instruc-
tion.
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and Control instructions as well as background register saves/restores. Alternatively, it

is possible for the memory control unit to decode the Transport and Control instruc-

tions before sending them to the ARC. In this case, the 4-bit I/O control instruction to
the MCU would be redundant.

4.1.4. Pipeline and Resource Schedulinz

The purpose of pipelining is to increase the clock speed and to increase the utili-

zation of the processor’s resources. The pipeline of ARC instructions vary from three

to four pipestages. © Pipelining is further complicated by the concept of even and odd

clink phases, limited resources, and unidirectional busses. The pipestages of the ARC

pipeline are showii in Fig. 4.7(a) and are explained as follows:

IF

During the Instruction Fetch pipestage, an instruction word is read into the
ARC via the IN bus and separated into two instructions. The Instruction
Fetch pipestage always occurs on an even phase because the ARC proces-

sor fetches two instructions per 32-bit word every second phase.

Decode

During the Decode pipestage, an instruction is separated into an opcode
and operands. The opcode is converted into control signals by the ALU
or Control decoder and the operands are interpreted according to the
instruction type. The ALU and Conirol decoders queue control signals to
the ALU and I/O Control logic while operand addresses are queued for the
register file decoder. It is to be noted that instructions which occupy the
first halfword of the instruction pair are decoded first on the odd phase

immediately following the fetch, while second halfword instructions are

6 The pipeline of load instructions may be extended beyond five pipestages if ARC is inter-
faced to slow memory or a cache miss occurs (see Section 3.4, pipelined memory access).
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Pipeline of First Halfword Instruction
Phi O Phi 1

S1 Addr | DstYMMU
I F Decode | Execute Data

BR Addr

Pipeline of Second Haifword Instruction

Dst
| F Decode Execute Data

Fig. 4.7 a) Pipeline and Resource Scheduling

IN BUS OUT BUS
LD Data ST Data
_ Pop Push Data
Phi1 BR/JMP Addr
(Odd
Phase)
Instruction LD/ST Addr
) Fetch JSR Addr
Phi0 BR/JMP Addr
(Even Push Data
Phase)

Fig. 4.7 b): Resource Scheduling
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decoded during the following even phase. (See top of Fig. 4.7(a) )
Execute

Behaviour during the Execute pipestage depends on the instruction being

performed. For ALU instructions, the Register File writes the register

operands onto internal busses (S1 and ~S2 busses) and the ALU executes

the specified operation, queuing the result for writing to the register file on

the following pipestage.

For most transport or control instructions, this pipestage is used to access
a register which contains the external memory address to be written out
the OUT bus. For example, during the execute pipestage of a L) instruc-
tion, the address of external memory to load from would be obtained from

a register and written on the OUT bus (See Fig. 4.8).

The relative branch instruction writes the 8 bit branch offset on the OUT
bus during this pipestage.

Data
The result of the ALU instruction is written to the register file via the Dst
bus during the precharge phase of the Data pipestage. This increases per-
formance by allowing more time to execute the operation (which is in
ARC’s critical path) while still allowing the data to be used as an argu-

ment for the following instruction.

For transport and control instructions, this pipestage is used for data
transfer between the register file and external memory. This data transfer
occurs via the MMU bus and the IN or QUT bus for incoming or outgo-
ing data respectively. For the LoaD instruction, this pipestage may be
extended by an even number of clock phases if the processor is interfaced

to slow RAM or a cache miss occurs (see Sections 3.4 and 5.3.3 for more
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information).

Examples of the pipeline timing of LoaD, STore and ALU instructions are given
in Figs. 4.8, to 4.11.

Figure 4.8 depicts the timing and bus resource utilization of the LD instruction.
The LD instruction is composed of 4 pipestages: fetch, decode, address transfer, and
data transfer. The address transfer pipestage utilizes the S1 bus and the OUT bus to
transfer the address from a register to the MCU. The data transfer pipestage utilizes
the IN bus and the MMU bus to receive incoming data (from the above memory

address) and store it in a register via the MMU bus.

Fig. 4.9 depicts the timing and bus resource utilization of the ST instruction The
ST instruction is composed of 4 pipestages: fetch, decode, address transfer, and data
transfer. The address transfer pipestage sends the address over the S1 bus to the OUT
bus. The data transfer pipestage sends the data to be stored in memory over the MMU
bus to the OUT bus.

Figures. 4.10 and 4.11 depict the timing and bus resource utilization of first or
second halfword ALU instructions repectively. Instructions which occupy the second
halfword, decode, execute, etc. one phase later than the instruction occupying the first
halfword. During the decode phase, n( busses are utilized. During the execution
phase, ALU instructions utilize the S1, “S2, and DST busses. Following the Execution
Phase, the result of the ALU instruction is stored into the register file. This actually
occurs during the precharge phase of the following pipestage.

Fig. 4.7(b) shows how the IN and QUT bus resources are scheduled. IN and
OUT bus scheduling has been organized to minimize the pipeline length of instruc-
tions, to minimize conflicts between instructions and to balance the /O bus bandwidth
between the two halfwords. In addition to scheduling the IN and OUT busses, it is

necessary to ensure that conflicts do not occur on internal busses (S1, ~S2, Dst, MMU
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busses). The example timing diagrams of Figs. 4.8-4.11 also show the bus utilization

for the internal as well as the external busses for LoaD, STore, and ALU instructions.

The IN bus must handle incoming instructions, loaded data, and data restored to
registers. Instruction pairs must come in every other phase (if we are to execute one
instruction per cycle) so the obvious choice is to schedule LD data and restored regis-
ter data in the same phase. To avoid conflict on the IN bus, background rzgister
restores (Pops) cannot occur while a LD instruction is utilizing the IN bus. Instruction

fetches are arbitrarily set to occur during even clock phases.

The OUT bus handles BRanch/JuMP addresses, JSR addresses, STored data,
LD/ST addresses, and background register saves ("push”es). To shorten the pipeline
for LoaDs and STores, LD/ST addresses should be sent out on an even Phi after the
decode, and STore data should be sent out on the following odd clock phase. For the
sake of simplicity, JSR addresses should also be sent out on the even Phi after the
decode. The above decisions create the restriction that JSRs, LoaDs and STores can
only be first halfword instructions. BRanch/JuMP cddresses and Pushes should be
scheduled to shorten the pipeline, provide an even utilization of the OUT bus as well
as, if possible, provide a balance of first halfword and second halfword instructions.
With this criteria in mind, there are 2 possibilities:

1) Branch/Jump addresses could be scheduled during even chock phases and
pushes could be scheduled during odd phases. Therefore, branches and

jumps would be restricted to being first halfword instructions.

2) BRanch/JuMP instructions could alternatively occur in either phase for
better balancing of first and second halfword instructions. This would,
however, create a conflict between the BR/JMP addresses from second-

halfword BR/JMP instructions and Pushed Data as well as ST Data.
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The second possibility is more efficient because it provides better balancing of first and
second halfword instructions. It is more costly because it requires slightly more
hardware to arbitrate pushes and adds a compiler restriction.

The following table lists the halfword restrictions for the various instructions and

other ARC operations.

Table 4.2: Instruction/Operation Restrictions

Operation/ Halfword (Pipeline)
Instruction Restrictions
ALU Instructions Either First or Second Halfword
SET Instruction Either First or Second Halfword
BR, JMP, SKPONC Either First or Second Halfword
LD, LDI, LDSR First Halfword Only
ST, STSR, JSR First Halfword Only
PUSH During ALU Instruction Which
Does not Follow LD/ST/LDSR
Only ‘
POP During First Halfword ALU Instruc-
tipn Only

4.2. ARC System Architecture

ARC is significantly different than conventional processors in a number of ways,
the most obvious of which are the unidirectional busses and the interface to the
Memory Control Unit. These differences must be reflected in a system built around
ARC. Several possible system configurations are shown in Figs. 4.12, 4.13, and 4.14.
The major components of these systems include the Alberta Risc Chip(ARC) instruc-
tion processor, a Memory Control Unit (MCU) and a RAM subsystem. Fig. 4.12 por-
trays a system in which ARC and the MCU are connected to a single port RAM
memory subsystem. Fig 4.13 features dual port RAM to increase the available I/O
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bandwidth. The block diagram of Fig 4.14 shows how a sophisticated MCU which
includes virtual address translation, cache, security and interrupt handling could be
interfaced to the memory subsystem and ARC. It is also possible that ARC and the
MCU could be implemented on the same chip but this option is not investigated
because it is currently beyond the capability of technologies available at our university.
As we will see, the MCU must be tailored specifically for the system/memory architec-

ture and may be considered as the "intelligent" part of the memory subsystem.

The choice of a memory subsystem and type of MCU depends on a number of
factors. The simple system portrayed in Fig. 4.12 with single port RAM and a simple
MCU is the cheapest and lowest performance system. Iu this system, the MCU logic
is distributed within the RAM subsystem. The performance of this system would be
limited by the clock speed and comparatively low memory bandwidth of the RAM
subsystem. Thus, connecting ARC to conventional single port RAM defeats the I/O
bandwidth gains of ARC’s busses. The dual port RAM system of Fig. 4.13 offers
greater memory bandwidth because dual port RAM provides 2 busses to match ARC’s
busses but the throughput of the system is still limited by the clock speed of the dual
port RAM subsystem. The clock speed could be increased beyond the speed of the
RAM if page mode interleaving or caching is incorporated into the system. Figure
4.14 portrays a higher performance system which would be able to achieve high I/O
bandwidth and a high clock speed. In addition, this system shows that functions such
as virtual address translation, etc. would be incorporated into the MCU. The MCU
could support either unified or divided iastruction and data caches. Separate data and
instruction caches would result in a system architecture similar to the Harvard Archi-

tecture.

4.2.1. Interface of ARC to Memory Control Unit

The interface/division between ARC and the MCU was discussed in Chapter 3 at
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a philosophical level. Chapter 3 also introduced several novel features of ARC which
are dependent upon MCU support. In the previous section, the example system
configurations of Figs. 4.12, 4.13, and 4.14, show some details of how the MCU can
be interfaced to ARC and the memory subsystem. This section analyzes the interface
and functions necessary within the MCU to support the philosophical issues, the novel
features of ARC as well as optional MCU functions which would enhance the system

performance.

In the ARC, some functions which are normally incorporated as part of a
microprocessor are off-chip. For example, special registers such as the Program
Counter (PC) and Register Stack Pointer are implemented in the Memory Control Unit.
PC manipulation and sequencing, stack management, special register management, I/O
control, and instruction and data caching must therefore be performed off-chip. ARC
is referred to as an instruction processor because it only processes instructions and
depends on the MCU to "feed" it instructions. The MCU is responsible for functions
which are not normally implemented in a MMU and has a sibling(parallel) rather than
a master-slave relationship with the processor. Other functions to enkance system per-
formance are also to be associated with the MCU rather than the CPU as is common
in conventional architectures. These optional functions could include virtual memory

translation, interrupt handling, and instruction preprocessing.

4.2.1.1. Program Counter and Special Registers of the MCU

Because instructions originate from memory and the generation of instruction
addresses seldom requires CPU intervention, the PC and associated sequencing logic is
implemented in the MCU. One advantage of moving the program counter (PC) off-
chip is in the reduction of necessary bandwidth between the instruction processor and
memory controller. Since the PC is not on-chip, it no longer is necessary to send out
the PC address on each instruction fetch. Instruction sequencing is performed by

adding 1 to the PC during sequential instruction execution. When a jump instruction
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occurs, the new PC is loaded from the ARC register file via the OUT bus. When a
relative branch (BR) occurs, the 8-bit offset of the branch instruction is added 2’s
complement) to the current PC. The branch offset can be received from the OUT bus

of ARC or can be extracted from the BR instruction as it is sent to ARC.

In addition to the PC, other special registers such as the Register Stack Pointer
are also associated with the MCU because they address memory locations used by
memory control functions. The special registers of the MCU also require additional

logic such as an adder to perform incrementing, decrementing and offset addition.

4.2.1.2. The Register Stack of the MCU

The MCU must control the register stack which is associated with the circular
window structure of the register file. When subroutine calls occur(JSR instruction), a
"new" register window is allocated to the called subroutine. If several subroutine calls
occur without returns, registers will be overwritten unless they are saved to the register
stack of the MCU. Registers are retrieved from the register stack when returns from
subroutines occur (RET instruction). The reysater stack is operated on primarily by the
background register save/restore processes discussed in Chapters 3, 4 and 5. The

register stack structure is depicted in Fig. 4.4 and introduced in Section 4.1.1.2.

4.2.1.3. MCU YO Control

The 1/O requirements of the IN and OUT busses of ARC can be controlled/served
by the MCU. The instruction requirements of ARC can be served because of the sim-
nlicity of the instruction set (only 1 addressing mode, simple control flow). Other /O
requirements such as data and addresses for LoaDs or STores, background register
saves/restores, and special register transférs, are facilitated by the interface between

ARC and the memory controller.

The fast, efficient, low-pin-count unidirectional-bas interface, which is defined

between ARC and the memory controller facilitates access to memory, special
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registers, and other MCU services. The interface between ARC and the MCU varies
somewhat between the systems presented in Section 4.2. In general, communication is
via ARC’s IN and OUT busses, the 4-bit I/O control opcode, Mx0-3, and via the
RegTx, Push, and Pop signals. The Mx0-3 code indicates the instruction currently
being decoded by ARC. Based on this, the MCU knows what ARC will be sending
on the OUT bus and what ARC will be requiring on the IN bus in subsequent cycles.
It is then the responsibility of the MCU to redirect the data and addresses from the
OUT bus to the memory subsystem and to direct data and instructions from the
memory subsystem to the IN bus. The MCU must therefore be pipelined to match
ARC so that information is expected and dispatched during the correct cycle. The
Push, Pop, and RegTx signals originating from the MCU direct the background regis-
ter sévc and restore functions. The RegTx signal occurs when it is necessary to either
save or restore registers. If the Push and RegTx signals are high, registers will be
saved from ARC to the memory subsystem (or MCU) and the next window of ARC’s
register file becomes the current window. If the Pop and RegTx signals are high,
registers will be restored from the memory subsystem back to their original register
subwindow of the ARC Register File and the previous window of ARC’s register file
becomes the current window. It is possible for either the push or pop signals to be
asserted without a register transfer being required. When this happens, ARC simply
shifts to the next/previous register window without transferring registers. For more

information about the above /O control mechanisms, see Chapter 5.

4.2.1.4. MCU Caching

An instruction and or data cache can be incorporated into the MCU to obtain the
same benefits as in a traditional RISC system. The interface between ARC and the
MCU is however unique so that the cache implementation may be different than in a

traditional RISC.
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As detailed in Chapter 2, a variety of caching schemes exist in current RISC
architectures. The Motorola 88000 RISC processor follows the Harvard Architecture
which involves separate data and instruction caches and separate instruction and data
busses while Intel processors maintain a unified instruction and data caching scheme
. [Furl89]. In many conventional RISCs, the processor is designed with a certain cach-
ing scheme in mind. |

The ARC chip can be interfaced to a variety of MCU cache architectures depend-
ing upon the memory architecture and bandwidth required. For example, the instruc-
tion and data caches could be separated or unified and the MCU can be connected to
single- or dual-port RAM. If the instruction and data caches are separate, it would be
wise to couple the program counter with the instruction cache control and the register
stack with the data cache control. Dual-port RAM would provide more bandwidth
between the MCU (and therefore the cache) and the external RAM although if the
cache has a high enough hit ratio, single port RAM may be sufficient. With dual-port
RAM, it would probably be best to have unidirectional read and write busses to the

AM but instruction and data busses as in the Harvard Architecture are also possible

between the MCU and RAM.

4.2.1.5. Optional MCU Functions to Enhance Performance

Virtual memory translation, interrupt handling, and instruction preprocessing are
features which, if implemented, are normally incorporated into a CPU or CPU copro-
cessor. In the ARC system these functions would be associated more closely with the
MCU. Virtual memory translation can either preceed or succeed the cache. Interrupt
handling is also possible and is discussed along with the philosophical issues near the
end of Chapter 3. Instruction preprocessing is also a possibility because the MCU

could decode and preprocess some instructions before sending them to ARC.
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5. ARC CIRCUIT/HARDWARE DESIGN DESCRIPTION

As mentioned previously, The ARC is composed of 3 main parts, The ALU,
Register File, and the IO Control Unit (IOCU). This chapter gives details of the
hardware design of each of these parts at the floorplan and schematic levels. Sufficient
information will be presented here to understand the design without getting into
process-dependent design de:ails. (Device level layouts and simulations are presented
in a separate technical report.) As well, given the floorplan and schematic information
presented in this chapter, an IC designer should be able to inspect functional blocks in
the IC layout and to more fully understand the implementation details of ARC’s novel

features, presented in Chapter 3.

5.1. The Arithmetic and Logic Unit

The floorplan of the ARC ALU is depicted in Fig. 5.1.1. The ALU is composed
of S sections: an adder, a decoder, bitslice circuitry, a condition tester, and other non-
bitslice circuitry. Much of the ALU circu.ry is MUX-based which made it more regu-
lar and compact than purely combinational circuitry. The ALU is connected to the
register file through 3 unidirectional busses, S1, “S2, and DST. The S1 and ~52
busses carry the contents of 2 registers to the ALU and the DST bus returns the result
of an ALU operation to a register. The ALU instruction byte (PO-P7) is passed to the
ALU decoder which generates internal ALU control signals (D0-D6). An overflow
signal (OQV) is available from the ALU. Two clock signals, PhiA and PhiB, synchron-
ize the ALU with the rest of ARC.

According to simulations, the time required for the ALU execution phase (PhiB)
will set the speed of the processor. During PhiB, the register file conditionally
discharges the S1 and ~S2 busses and the ALU performs the specified operation. The
critical path within the ALU in from the S1 and ~S2 busses, through the adder and the

condition/flags section to the DST bus to implement the SET instruction. Therefore,
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these sections were optimized for speed. The logic circuitry which implements other

opcodes was optimized for area.

The design of an ALU for the ARC was first tackled by Tai An Ly during the
fall of 1986. Since then the ALU has undergone some functional changes. The adder’s
layout was redone by Alan Mitchell during the fall of 1987. The rest of the ALU was
redesigned and layout redone as part of this thesis during 1988.

5.1.1. ALU Adder

The adder is a 32-bit carry-select adder very similar to the adder design presented
in page 331 of the text, "Principles of CMOS VLSI Design" by Weste and Eshraghian
[Weste85). Bitslice I/O signals to/from the adder include the a, b, and swn signals.
Nonbitslice I/O signals include the carry-in and the carry-out. The a and b signals are
the two 32-bit operands to undergo 2’s complement addition. The sum signal is the
32-bit result of that addition. More information about the design of this adder is
presented in [Ly87] and [Mitc87].

5.1.2. ALU Decoder

The ALU instruction decoder translates the instruction opcodes (PO-P7) into the
ALU control signals (D0-D6) and holds them valid throughout the execution phase of
the ALU. The ALU decoder consists of a PLA to convert opcodes into ALU control
signals and latches to hold the control signals. Table 4.1 lists all ALU instructions
together with corresponding instruction opcodes (PO-P7) and ALU control signals
(D0-D6).

The bottom of Fig. 5.1.1 displays significant features of the ALU  decoder and
associated latches. The decoder PLA converts the instruction opcode (P0O-P7) inputs
into the ALU control signals (D0-D6) and 3 other signals (Set, 3op, 20p) which indi-

cate the current instruction type (Set condition, 3 operand, or 2 operand instruction).
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The Ser signal is required by the inmux of the IOCU (see section 5.3) and the 30p and
20p signals are used to simplify the PLA logic within the ALU decoder. The Q0-G3
signals are electrically the same as P4-P7 and are used as a 4-bit Quick (immediate

mode) constant for the AddQ and SubQ instructions.

The ALU decoder PLA operates during PhiB of the decode pipestage. At the end
of this PhiB, D0-D6 and Q0-Q3 are latched to hold these signals valid according to the
pipeline timing diagrams for ALU instructions given in Fig. 4.11 and 4.12. ! During
the following PhiA (precharge) phase, the signals are propagated to the next latch and
begin to drive the ALU signal lines. The D0-D6 and Q0-0Q3 signals thus remain valid
throughout the foHoWing ALU execution phase (PhiB) until the following PhiA.

The ALU decoder PLA equations are given in Fig. 5.1.2(b). These equations
were derived from the opcodes in Table 4.1 and the ALU decoder table of Fig
5.1.2(a).

5.1.3. ALU Bitslice Circuitry

The ALU bitslice is the heart of the ALU and implements all of the logic opera-
tions. The ALU contains 32 bitslices stacked with bit0 at the top and bit31 at the bot-
tom (nearest the decoder). The ALU control signals (D0-D6) from the ALU decoder
control the flow of operands through the ALU bitslice multiplexers and thereby control
which operation is performed.

Floorplan diagrams of the ALU bitslice circuitry are given in Fig. 5.1.3. Fig.
5.1.3(a) is the floorplan of a generic ALU bitslice which indicates the location of sig-
nals and functional blocks. The ALU bitslice circuitry is interfaced to the Register
File at its right via the S1, “S2, and DST busses. The S1 bus carries the S1 operand
from the register file to the ALU. The ~S2 bus carries the inverse of the S2 operand

! Pipelining is discussed in detail in section 4.1.4 of this thesis,
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ALU 3 Operand 2 Operand Set Cond MMU

Si | Instruction Instruction Instruction Instruction

‘gna (PO * P1) (PO'P1P2'P3') | (POP1P2P3)
DO X X P6 X
D1 PO P5 P5 X
D2 | P2P3' + PQ'P2 P4 0 X
D3 P3 P3 except NOT 1 X
D4 1 P2 P4 X
D5 | P1 + PO*P2 P1+ (PO*P2) P7 X
D6 0 0 1 X

Fig. 5.1.2 a);: Al:l Lozoder Table

ALU DECODER PLA EQUATIONS

3op = P1'+ PO'* P2 + PO * P3

20p = PO * P1
SET Cond = P(*' * P1 * P2' * P3'

DO = P6

D1 = 3op * PO + P5*20p + P5 * PO'P1P2'P3'
D2 = 3op * P2P3' + 3op * PO'P2 + 20p * P4

D3 = POP1P2P3' + P3 + PO*P1*P4*P5
D4 = 30p + P2 * 20p + P4*PO'P1P2'P3'
D5 = P1 + POP2 + PO'P1P2'P3"P7

D6 = PO'P1P2'P3'

Fig. 5.1.2 b): ALU Decoder PLA Equations
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from the register file to the ALU. The DST bus carries the result of an ALU operation
to the register file. The Adder is interfaced to the left of the ALU bitslice via the a, b,
and Sum signals. Each ALU bitslice is connected to other bitslices to enable shift and
rotate operations. Single-bit shift and rotate operations are enabled by the Bi-! and
Bi+1 signals shown in Fig. 5.1.3(a). Rotate-by-8 operations are facilitated by the
inter-bitslice routing dispiayed in Fig 5.1.3(b). Fig 5.1.3(b) also indicates how the
Q0-Q3 signals are routed.

§.1.3.1. ALU Bitslice Schematics

The ALU Bitslice schematic is presented in Fig. 5.1.4. The ALU operates by
computing all logic functions in parallel and then selecting the desired result with a
mux tree built from 2-1 inverting muxes (see Fig. 5.1.6(a)). Minor differences that

exist between the ALU bitslices are highlighted on the schematics.

The mux tree was designed to minimize the complexity of decoding the opcodes
and to maintain performance. The logic operations (AND, OR, XOR, NOT) are
implemented at the bottom right of the schematic and are selected by the DI and D2
control signals. The desired Shift and Rotate functions are selected with the D3, and
| D4 control signals. The various Add and subtract functions are iraplemented by condi-
tioning the b input to the adder as shown at the top of the schematic. (It is to be
noted that the adder is connected directly to the output stage because the adder is in
the critical path of the ALU bitslice.) The output stage of the ALU bitslice circuitry is
composed of a pass transistor preceding an inverter. The inverter, in turn, drives the
DST Bus. This pass transistor and inverter form a dynamic latch which is loaded dur-
ing the ALU execution phase @hiB). The "EQ Line" circuitry detailed above the out-
put stage of the bitslice schentatic of Fig. 5.1.4 tests for a zero sum or S1 operand. A

more detailed schematic of the EQ Line Circuitry is given in Fig. 5.1.6(c).
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Bit 0 of the ALU bitslice circuitry is different from all other bits of the ALU
because it is connected to nonbitslice circuitry which feeds it carry-in, *0’, or S131 10
the SHL/SHLC/ROL input associated with the D3 control signal. This Bit O input cir-
cuitry is shown in Fig. 5.1.5(a). The SHL/SHLC/ROL input is attached to Bi-1’ (Sli-
1°) for all other inputs. Bits 0-3 contain circuitry for QO0-3, the 4-bit Quick (Qi) or
immediate operand used by AddQ and SubQ instructions and associated with the D2
control signal. The Qi input is hardwired to ground for bits 4-31.

Bits 8-31 require an additional MUX for the byte insertion and extraction instruc-
tions (BIN, BEX) associated with the D2 control signal. In place of this MUX, bits
0-7 hardwire the BIN/BEX input to the S1 bus.

Bit 31 is different than the other bits because a) shifts and rotates from the right
come from nonbitslice circuitry, and b) In the event of a SET condition instruction, the
condition is asserted onto bit 31 of the DST bus in place of the result of the ALU
operation. The SHR/ROR input, associaied with the D3 control signal, is connected to
the output of the bit 31 support circuitry detailed at the bottom of Fig. 5.1.5(b). The
MUX associated with the D6 control g s 45754 to Bit 31 and provides an input

for the Cond signal generated by the circuitiy of Fig. 5.1.5(b).

5.1.4. Condition Tester

The condition tester tests for the arithmetic conditions specified by ARC’s SET
COND instruction. The condition tester also latches the overflow and carry conditions.
When the SET instruction is executed, the output of the condition tester is passed to
bit 31 of the DST bus so that the condition is stored in bit 31 of a register. The 8
conditions are selected by the 4-bit COND Field of the SET instruction as listed in
Table 4.1.

Figure 5.1.7 is a floorplan of the condition tester as well as a ficorplaa of the bit

31 support circuitry. The floorplan shows the relative positions of functional blocks,
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inputs, and outputs. The inputs to the condition tester from the ALU or adder include
S10 (S1 bit0), EQ, C31 {Carry from bit 31), Sum31 (Sum bit 31), S131, and S231.
The EQ line is a wired nor of the output stage from each of the ALU bitslices such
that the EQ line is only high when all outputs are zero. The Condition tester also

receives control signals (D0-D6) from the ALU decoder.

The schematic of the condition tester is portrayed in Fig. 5.1.5(b). The condition
tester is implemented using 2 input inverting MUXes, NAND gates, NOR gates, D
latches and an XOR gate. Transistor level schematics are given in Fig 5.1.6 for the
inverting MUX, XOR gate, and EQ line circuitry. These implementations are more

efficient than the traditional gate implementations of these functions.

5.1.5. Other Non-Bitslice ALU Circuitry

Other non-bitslice circuitry includes rotate, shift and carry inputs to bit 0 and bit
31 as well as the condition input to bit 31. This circuitry is implemented outside of
the bitslice so that the pitch of bits 0 and 31 of the ALU bitslices could match that of

the register file.

The bit O non-bitslice support circuitry aids in the implementation of shift- and
rotate-left type instructions such as SHL (Shift Left), SHLC (Shift Left with Carry),
and ROL (Rotate Left). A schematic for the bit O non-bitslice support circuitry is

given in Fig. 5.1.5(a).

The bit 31 non-bitslice support circuitry aids in the implementation of shift- and
rotate-right instructions such as SHR (Shift Right), SHRC (Shift Right with Carry),
and ROR (Rotate Right). A floorplan for this circuitry is given in Fig 5.1.7 and a
schematic is given in Fig 5.1.5(b). This floorplan is provided to document the physical

design and facilitate layout inspection and modification.
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5.2. Register File

The floorplan of the ARC Register File is depicted in Fig. 5.2.1. The Register
File is composed of 3 sections: 1) a register array of 32 4-port 32-bit registers, 2) a set
of 4 subwindow decoders, and 3) subwindew enable circuitry for each of the 4
subwindows. The Register File can also be considered to be composed of 4 subwin-
dows (W0-W3). Each subwindow contains 8 32-bit registers, decoders for the 8 regis-
ters, and subwindow enable circuitry which determines if the subwindow is currently

active,

Subwindows are paired to form overlapping register windows similar to the
Berkeley RISC processors mentioned in Chapter 2. The subwindow select/enable cir-
cuitry is a set of PLAs which determine which subwindow decoders are to be
activated, thereby facilitating the overlapping register feature of ARC. The first ver-

sion of ARC has a window size of 16 registers with an overlap of 8.

The registers within the register array have 5 ports and service 4 different busses
to interface to the ALU and IOCU bitslice circuitry. 2 The high number of ports and
busses are necessary to support novel ARC features such as the background register
saves and restores. The register array is connected to the ALU bitslice circuitry via 3
unidirectional busses, S1, “S2, and DST. The S1 and ~S2 busses carry the contents of
2 registers to the ALU and the DST bus returns the resuit of an ALU operation to a
register. The register array is connected to the IOCU bitslice circuitry via the uni-
directional S1 bus and the pidirectional MMU bus. The S1 bus carries the contents of
a register (usually representing a memory address) via the IOCU bitslice circuitry for
dispatch out the OUT bus. The MMU bus is bidirectional and can be conditionally
discharged by the IOCU bitslice circuitry or by a register. The direction of the MMU
bus is determined by the M_O and M_I lines. If the M_O line is high, a register will

2 The S register ports are mapped to 4 busses because the MMU bas is bidirectional and
therefore services 2 register ports.
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conditionally discharge the MMU bus. If the M_I line is high, the value on the IN bus
will be written onto the MMU bus.

The subwindow decoders are essentially a set of 3-to-8 decoders for each of the 5
register ports (D, M_O, M_], S1, ~S2). The decoder inputs are 3-bit addresses for
each of the register busses (D@0-2, MM@0-2, S1@0-2, S2@0-2). These 3-bit

addresses are shown to the right of the subwindow decoders in Fig. 5.2.1.

The floorplan of the subwindow enable/select circuitry is shown at the bottom of
Fig. 5.2.1. The inputs to the subwindow enables include Window selects (WO0-3,
MWO0-3), the most significant bit of register operand addresses (S 1@3, S2@3, D@3,
M@3), clocks (PhiA, PhiB), and register write enables (D_w, M_I, M_O). The
current ALU window (selected by WO0-3) is controlled by the 4-bit Current Window
Pointer (CWP) of the IOCU. The MMU window (selected by MWO-3) is also con-
trolled by the CWP while executing Transport or Control Instructions. During "back-
ground” register saves and restores, MWO-3 is controlled by the 4-bit Save Window
Pointer (SWP). The CWP is implemented as a circular shift register which is shifted
right after each JSR instruction and shifted left after each RET instruction., The SWP
references the register window next (or currently) to be saved. The MMU window
(MWO-3) is not necessarily the same as the current window (W0-3) because the IOCU
is charged with the task of saving and restoring unused RF activations.

The design of the Register File for the ARC was first tackled during the fall of
1986 as a course project. Since then, the register cells were redesigned by Emil
Girczyc to conserve space. The Decoder and enable circuitry was also redesfgned to

censerve space during the fall of 1987.

5.2.1. Register Array

The register array is made up of 2 types of cells, 1) the register-pair cell, and 2)

the zegister prechares cell. The register pair cell is essentially a bitslice for 2 registers.
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Registers were paired for two significant reasons: 1) to allow the ALU to have a larger
pitch, and 2) to minimize the capacitance of the register file busses (Bus lines are
shorter). The register precharge cell contains the precharge transistors for the S1, ~S2,
and %IMU busses in addition to the interface between the register array and the 1/O

Control bitslice circuitry.

The register-pair cell floorplan of Fig. 5.2.2 indicates the relative positions of the
busses running horizontally and the decoder signals running vertically through the cell.
The register-bit schematic of Fig. 5.2.3 shows the various ports, control signals, bus
connections, transistor connections and sizes of a register bit. Each register contains 5
ports (S1, S2, M_O, M_I, DST) controlli# by the decoder signals from the bottom of
the register-pair cell. When a decoder signial is high, the corresponding port facilitates
a transfer from register to bus or vice-verss. When an SI decoder signal is high, the
S1 port of that particular 32-bit register conditienally discharges the S1 bus. Only one
S1 decoder signal may be high at one time for all of the registers in the array. Simi-
larly with the S2 decoder signal. The M_O and M_I decoder signals ¢ausc a MMU
bus conditional discharge or register read respectively. Only one register may access
the MMU bus at any time. When a DST decoder signal is high, the contents of the
32-bit DST bus are transferred into the particular register referenced by the high DST
decoder signal. All dynamic busses (S1, “S2, and MMU) are precharged during PhiA
and conditionally discharged during PhiB (execution phase). Therefore the SI, $2,
M_I, and M_O decoder signals can only be active during PhiB. In contrast, the DST
bus is static. The output of the ALU is written onto the DST bus during PhiB and dur-
ing the following PhiA. The contents of the DST bus may be loaded into a register
during the PhiA. This extends the amount of time for the critical path by the time

required to drive the DST bus or the length of PhiA (whichever is shorter).

The design of registers is important in any RISC because the performance of

RISC processors is closely related to the number of registers. The register-pair is the
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densest and most technology dependent cell in ARC. In the design of the register file,
tradeoffs had to be made between a) register bit size, b) number of registers, c) register
speed, and d) capacitive load of registers on the busses. The register bit size is critical
because this dictates the number of registers that will fit on the ckip. The register
speed can be altered by increasing the width of the bus discharge transistors but this
also increases the register bit size and capacitive load on the busses. The higher the
capacitive load on the busses, the more time is required to precharge and discharge
each of the busses. Capacitive load is increased as the number of registers or the drive
(size) of register ports increases. The schematic of a register bit given in Fig. 5.2.3
gives suggested aspect ratios for the Northern Telecom CMOS3 process but optimiza-

tion must be redone for reimplementation in ;. more aggressive technology.

S.Z.i. Subwindow Decoder

The - - - =xler floorplan of Fig. 5.2.4 shows the decoder as well as
subwir - . v for an 8-register subwindow. A subwindow decoder is
sk - 1.4 zad is divided into 4 decoders - a decoder for each of
th indow. In the floorplan, the register port (decoder) sig-
nal. : .cister addresses are inputs from the right, and enable sig-
nals . .« the bottom. The register decoder signals control the register ports

and correspend to the SI, S2, M_O, M_I, and DST decoder signals described previ-
ously in Section 5.2.1. The register addresses are extracted from instructions and are
labelled SI@, S2@, M@, and D@. Only the 3 least significant bits (bits 0-2) of the
register addresses are inputs to the subwindow decoders. These 3-bit addresses will
select 1 of the 8 registers each within the register subwindow providing the subwindow
is enabled by the enable signals from the enable PLAs.

‘The partial schematic of a decoder cell is given in Fig. 5.2.5. This schematic

shows the relative placement of transistors and signals for an example decoder pair.
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Enable PLA Equations:
ES1 = (Wi & ~S1@3 & OB) | (Wi-1 & S1@3 & 2B)
ES2 = (Wi & ~52@3 & 9B) | (Wi-1 & S2@3 & OB)
EMOi = (MWi & ~M@3 & OB & M_O) | (MWi-1 & M@3 & 2B & M_O)
EMIi = (MWi & ~M@3 & 2B & M_]) | (MWi-1 & M@3 & @B & M_|)
EDi = (Wi & ~D@3 & @A & D_W) | (Wi-1 & D@3 & DA & D_W)

Fig. 8.26: PLA Equations for Enable Circuitry
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The decoder cell is essentially a collection of NAND-form decoder-pairs for each of
the 5 pairs of register decoder signals: SI, S2, M_O, M_I, and D. The pairing of
decoders results in some space savings because the addresses of the pair differ only in
the least significant bit of the address (Note that S1@1 and S1@2 are decoded by 2
transistors instead of 4). As well, the decoder signals are paired to match those of the
register array. The enable signals, ES1i, ES2i, and EDi (i indicates subwindow), hold
the register decoder signals low when the subwindow is not active. The enable signals

are described in the following section.

5.2.3. Subwindow Enables

The subwindow enable circuits facilitate the overlapping register feature of ARC
by managing the selection of a subwindow. As well, these circuits ensure that the

register decoder signals are enabled during the correct clock phases.

The subwindow enable floorplan is shown at the bottom of Fig. 5.2.4. The inputs
to the subwindow decoders include Window selects (W0-3, MWO0-3), the most
significant bit of register operand addresses (S1@3, S2@3, D@3, M@3), clocks
(PhiA, PhiB), and register write enables (D_w, M_I, M_O).

The 4-bit Window select signal, W0-3, indicates the subwindow pair which is the

current ALU window (for S1, S2, and DST addresses). The snbwindow within the
subwindow pair is selected by S1@3, $2@3, and D@3.

The 4-bit MMU Window select signal, MWO0-3, selects the subwindow pair which
is the /O (or MMU) window. The 4-bit MWO0-3 signal is the same as W0-3 during
transport or control instructions but during background register saves/restores, MWO0-3

will point to another window.

The most significant bit of each of the register addresses extracted from an
instruction field is used by the subwindow enable PLA to select one of the two

subwindows of the current 16-bit overlapping register window.
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The clock signals, PhiA and PhiB, are needed to ensure that the register decoder
signals are enabled during the correct phases. SI, $2, M_O, and M_I register decoder
signals are enabled during PhiB (execution phase) while the DST register decoder sig-
nal is enabled during PhiA.

The register write enable signals, D_w, M_/, and M_O, are input to the subwin-
dow enables by the IOCU. When the D_w signal is low, writes from the DST bus to
the register file are disabled and changes to the overflow and carry flags are
suppressed. This is used to conditionally cancel the current ALU instruction. (The
D_w signal is conditionally pulled low by the preceding SKPONC operation.) The M_I
and M_O signals select the direction of the bidirectional MMU bus.

The PLA equations for the various subwindow enable circuits are given in Fig.

5.2.6.

8.3. The I/O and Control Unit (IGCU)

The IOCU is resporisible for I/O functions such as the interface to ARC’s uni-
directional IN and OUT busses and is also responsible for Control functions such as
instruction extraction and decoding, register window control, and background register
saves and restores. The IOCU also supports unidirectional busses, two instructions per
word, pipelined memory access, and the Memory Control Unit with an external PC -
all novel features of ARC presented in Chapter 3. In addition, transport instructions
such as LoaD, STore, LDPC, and LDI and control instructions such as branches and

the conditional skip instruction (SKFPONC) are the responsibility of the IOCU.

A block diagram of the IOCU is given in Fig. 5.3.1. This block diagram shows
the relative positions and approximate sizes of functional blocks. The IOCU can be

considered as being composed of four functional blocks:

1 1/O Bitslice Circuitry
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Fig. 5.3.1: /0 and Control Unit Block Diagram
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2  Instruction Extraction and Latching Circuitry
3 Transport and Control Instruction Circuitry

4  Window Control Logic.

Inputs to the IOCU include the 32-bit IN bus from: off-chip, the 32-bit S! and
MMU busses from the register file, the Push, Pop, RegTx, and Resetbar signals from
off-chip, and the Set Cond signal from the ALU decoder. Data outputs of the IOCU
include the 32-bit OUT bus to off-chip and the 32-bit MMU bus to the register file.
Signal outputs of the IOCU include register and window addresses to the register file
D@, M@, S1@, S2@, W0-3, MWO0-3), register file control signals (M_O, M_],
D_w), the instruction opcode to the ALU (PO-P7), and a 4-bit signal to the External
Memory Control Unit (Mx0-3).

5.3.1. YO Bitslice Circuitry

The Floorplan of the I/O bitslice circuitry is as shown at the top left of Fig. 5.3.1.
This circuitry is located adjacent to and directly connected to the bitslice circuitry of
the Register File. This circuitry provides a switchbox for the S1 and MMU busses of
the register file, the IN bus, the OUT bus, and the branch offset (one of the fields of
relative branch instruction). The schematic for the J/O bitslice circuitry is given at the

top of Fig. 5.3.4.

Inputs to the I/O bitslice circuitry include the following control signals from the

I/0 Control Decoder PLA:

S10ut:
causes the value on the S1 bus to be written to the OUT bus. This signal
is asserted when the contents of a register (interpreted as a memory
address) is to be written to the OUT bus. This signal is asserted during
the address phase of LoaD, STore, JUMP, or JUMP-to-SubRoutine (JSR)
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instructions.

mmOQut:
causes the value on the MMU bus to be written to the OUT bus. This
signal is asserted when the contents of a register (interpreted as data) is to
be written to the OUT bus. This signal is asserted during the data phase

of STere instructions and during background register saves.

mmin:
causes the value on the IN bus to be read into the MMU bus. This signal
is asserted during the data phase of all LoaD instructions and during regis-
ter restores. This signal allows data to be loaded from the IN bus via the
MMU bus into a register. The mmlin signal could also be delayed to
increase the pipe length of data fetches from memory to allow pipelined
memory access as described in section 3.4. The implementation would
involve inserting variable delays controlled by signals from the MCU.

This feature was not implemented in the first version of ARC.
brout:

causes the 8-bit branch offset field of a relative branch instruction to be

written to the OUT bus.

Some restrictions apply with regard to when the above signals may be asserted.
All data transfers via the IN and OUT bus occur during PhiB. Obviously only one
value may be written to the OUT bus at a time. As well, data may be transférred in
through the IN bus during odd clock phases (Phill:. Phi3B) because instruction pairs
are transferred over the IN bus during even clock phases. Conflicts are resolved

according to the pipeline and resource scheduling diagrams of Fig. 4.11.
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5.3.2. Imstruction Extraction and Latching Circuitry

Fig. 5.3.2 shows instruction extraction and latching circuitry. This circuitry is
composed of several functional blocks including the INMUX (INstruction MUX),
latches for the instruction, as well as multiplexers and latches to extract operands from
the instruction.

The instruction multiplexer separates instruction pairs into two 16-bit instructions.
During each even phase (PhiQB, Phi2B), the 32-bit word on the IN bus is expected to
contzin a pair of instructions. The first halfword instruction (INO-15) is latched into
the instruction latch and thereby enters the instruction pipeline. The second halfwerd
instruction (IN16-31) is latched within thz INMUX until the next PhiB phase at which
time it is latched into the instruction latch and then enters the instruction pipsline one

cycle behind the first halfword instruction.

The instruction within the instruction latch is divided into 4 fields labelled FO, F1,
F2, and F3 in Fig. 5.3.2. These fields correspond to different operand types depending
on the instruction type as specified by the instruction formats given in Fig. 4.9. The
instruction field extraction circuitry of the IOCU is mainly concerned with extracting
the $1@, S2@, MMU@, and DST@ operands. The opcode information is the FO and
F1 fields, which are passed directly to the ALU and Transport/Control Instruction
- Decoders. To organize the instruction fields into the different operand types, multi-
plexers are used as shown in the middle of Fig. 5.3.2. Control signals from the ALU
and I/O Control decoders (Set Cond, /O Op) are used to select the extraction of

operands from the instruction fields.

Once the S1@, S2@, MMU@, and DST@ operands of the instruction have been
sorted, they are latched adjacent to the Register File decoder circuitry. The S1@,
S2@, and MMU@ operands are queued in these latches until the next PhiB phase (as
specified by the instruction pipeline) at which time they drive the register decoder and

enable circuitry. The DST@ operand must be queued until the following PhiA.
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5.3.3. Transport and Control Instruction Circuitry

The 1OCU is responsible for the I/O and control instructions given in the table at
the top of Fig. 5.3.3. The Transport and Control Instruction circuitry is composed of
the I/O Control Decoder PLA, D_w circuitry, and other logic which performs prelim-
inary instruction de:--*:nq,

The I/O Cr - - Zxder PLA shown in Fig. 5.3.4 is responsible for decoding the
I/O and control ins.acvions into various control signals. The I/O decoder inputs and
output control signal equations are listed in Fig. 5.3.3. A short explanation of each of

these signals follows:

S10ut:
This signal is asserted if a LoaD, STore, JUMP, or JSR instruction is
decoded. This signal is a decoder control signal passed to the I/O bitslice
circuitry.

mmOQut:
This signal is a decoder control signal used in the I/O bitslice circuitry.
mmout is asserted if a STore instruction is decoded.

mmin:
This signal is a decoder control signal sent to the I/O bitslice circuitry.
mmin is asserted if a LoaD (LD), LoaD Immediate (LDI), or LoaD Spe-
cial Register (LDSR) instruction is decoded. This signal could be delayed
to increase the pipe length of data fetches from metnery, allowing the pro-

cessor to clegantly react to a cache miss.
brOut:

This signal is a decoder control signal passed to the I/O bitslice circuitry.
The brOut signal is asserted if a relative BRANCH instruction is decoded.

Mx0-3:
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Instruction; PO-P3 P4-P7 MX0-MX3
LD 1111 0001 0001
LDSR 1111 10XX 01X%XX
ST 1111 0011 0011
LDI 1111 1101 1101
JMP 1111 1011 1911
JSR 1111 1001 1001
BRA 1111 1010 1010
RET 1111 1000 1000
SKPONC 1111 0000 0000
non-mmu 2000C 200 1111
Pushmode 200 200K 1100
Popmode 200 000K 1110

/0 Control Decoder PLA Inputs
MMUOP = P0*P1*P2'P3

MMUINST = MMUOP * SKP

SKP = SKPONC(previous) * S131

Phis 4 4 Phia

I/O0_Control Decoder PLA Output Equations
S10UT =D |ST | JMP | JSR

S10UT = 0001 | 0011 | 1011 | 1001
S10UT = X0X1 = P5' * P7 * MMUINST
MMOUT = ST = 0011 = P4"P5"P6*P7*"MMUINST

MMIN = LD | LDSR | LDI
MMIN = 0001 | 01XX | 1101

MMIN = (P4"“P5"P6"P7 | P4"P5 | P4*P5"P6''P7) * MMUINST
BROUT = 1010 = P4"P5"P6*P7' * MMUINST

SKPONC = 0000 = P4"P5"P6"P7' * MMUINST

LDl = 1101 = P4*P5*P6"P7 * MMUINST

JSR = 1001 = P4*P5"*P6"P7 * MMUINST

RET = 1000 = P4*P5'*P6"P7' * MMUINST

MX0 = P4 | MMUINST'

MXt = P5 | MMUINST'

W¥2 = P6

M3 = P7

Fig. 5.3.3: /O Control Opcodes and Decoder PLA Equations
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This 4-bit code is sent to the off-chip Memory Control Unit to let it know

what I/O operations to expect from ARC.

LDrI:
This signal is generated if a LoaD Immediate (LDI) instruction is detected.
This signal is routed to the D_w circuitry to suppress execution of the
next incoming instruction pair allowing the next word in the instruction
stream to be treated as data rather than instruction.

SKPONC:
This signal is generated if a SKIP ON Condition (SKPONC) instruction is
detected. The SKPONC signal is routed to the D_w circuitry to suppress
execution of the next instruction. This instruction is used in conjunction
with the BRANCH or JUMP instructions to emulate conditional branching.

RET:

The RET signal indicates that a RETurn (from subroutine) instruction is
detected.

JSR:

The JSR signal indicates that a Jump (to SubRoutine) instruction is

detected. The JSR and RET are passed to the Window Control circuitry.

The D_w circuitry is responsible for the D_w signal which enables writes from
the DST bus to the Register File. Because the results of all ALU instructions are
transferred via the DST bus to a register, the D_w circuitry is responsible for enabling
(or disabling) ALU instructions. A schematic for the D_w circuitry is given in
Fig. 5.3.5. The D_w signal is intended to be low when immediate data loads occur or

when it becomes necessary to skip an instruction.
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5.3.4. Window Control Logic.

The state of the overlapping register windows of ARC is controlled by a Current

Window Pointer (CWP) and a Save Window Pointer (SWP). The concept of using a

CWP and a SWP to implement overlapping register windows was pioneered by the

Berkeley RISC group (see Section 2.7) The function of the window control logic of

ARC is to manage the register file windows for ALU and I/O operations as well as for

background register save/restore operations. The window control logic is composed of

a)
b)

d)

two 4-bit circular shift registers which implement the CWP and the SWP.

a 3-bit counter for incrementing through the registers within a subwindow

which is being saved/restored;
multiplexers for the MMU window and MMU ad. iss;

a finite state machine to help manage the background register saves and

restores.

The floorplas: 4f the window control logic is shown on the mid-right of Fig. 5.3.1.

The schematic for the 4-bit shift register (SR4), which makes up the heart of the

CWP and SWP, is given in Fig. 5.3.6. The schematic for the CWP is given in Fig.

5.3.7. The CWP operates as follows:

When the CWP is given a Reser signal, bit 0 (WO0) of the SR4 is set to
logic "1". The other bits of SR4, all latches and D flip-flops are set to
logic "0".

When a JSR instruction is detected by the decoder, the JSR signal is
asserted to the CWP circuitry and latched into the D flip-flop. After an
appropriate number of pipestage delays (to accomodate the delayed branch
and pipeline features of ARC) the SR4 shift register receives the signal to
shift up. Then the shift register shifts the logic “1" from WO to W1 and a

new register window becomes the active (current) window.
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When a RET instruction is detected by the decoder, the RET signal is
asserted to the CWP circuitry and latched into a D flip-flop. After an
appropriate number of pipestage delays, the SR4 circular shift register

receives the signal to shift down.

Fig. 5.3.8(a) details the design details including the state diagram and state equa-
tions of the SWP circuitry. Schematics of the SWP.UP and SWP.Down circuitry are
given in Fig. 5.3.8(b). Schematics for the 3-bit counter and associated circuitry are
given in Fig. 5.3.9. The SWP utilizes a more complex finite state machine and a 3-bit
counter to assert the shift-up and shift-down signals to the shift register. The SWP

finite state machine operates as follows:

When the SWP is given a reser signal, bit 0 (W0) of the SR4 is set to
logic "1". The other bits, latches and D flip-flops are set to logic "0".

When it becomes necessary to perform a background register save, the
Push and RegTx signals are asserted by the off-chip MCU. These signals
cause 8 registers (one register subwindow) to be Pushed one at a time via
the MMU baus and the OUT bus during each subsequent ALU instruction.
The 3-bit counter (count3) indicates which register within the subwindow
that will be stored on the stack by the next Push operation. Count3 is
cleared before the first Push and incremented after each subsequent regis-
ter push until the 8 registers in the window referenced by the SWP are
saved on the register stack of the MCU. The Trigger to increment the
SWP is asserted when the last register (register 7) of the SWP window is
being transferred (count3 = 7) This trigger activates the SWP.UP finite
state machine which in tumn asserts a shift-up signal to the SWP shift
register. The SWP.UP finite state machine also disallows further Triggers

for 2 clock cycles to prevent glitches.
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FSM for Activating SWP.Up and SWP.Down for Exactly 1 Clock Phase
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When it becomes necessary to perform a background register restore, the
Pop and RegTx signals are asserted. The Pop signal is the trigger for the
SWP.Down finite state machine so the SWP shift register shifts down one
window. The trigger is debounced by two cycles as shown in Fig.
5.3.8(a) but this could be reduc_ed to one cycle to allow SWP to shift
down more frequently than once every two cycles. The RegTx signal indi-
cates that register transfers are also to occur. The Pop and RegTx signals
cause the 8 registers in the window now referenced by the SWP to be
restored from the register stack of the MCU. First the 3-bit counter
(count3) is cleared and single registers are Popd (restored) via the MMU

bus and IN bus during each subsequent ALU instruction.

The schematics for the MMU window and MMU address multiplexing are given
in Fig. 5.3.10. The MMU Window multiplexer selects the window of the MMU bus
(MWO-3) from the SWP or the CWP. The CWP is selected whenever 1/O or Control
instructions are being executed and the SWP is selected when ALU instructions are
being executed to enable background register saves or restores. The MMU address
mulﬁplexer selects the address of the register within the MMU window from either an
operand address or the output of the 3-bit counter. During background register
saves/restores the 3-bit counter addresses the register to access the MMU bus. During

I/O or control instructions, MMU@ comes from field F3 of the instruction opcode.
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6. ANALYSIS OF CONCEPTS

The purpose of this chapter is to analyze and verify the architecture (as presented
in Chapter 4) as well as the novel architectural features which were introduced in
Chapter 3. The overall architecture is verified by an emulator program as detailed in
Section 6.1. Novel features of the architecture are analyzed in Section 6.2 in terms of

their advantages and disadvantages.

6.1. Emulation of Architecture

During the Architectural design stage, a high-level emulator was written in the
’C’ programming language to define the operation of the ARC processor. A listing of
the emulator is provided in Appendix A. It can be used as a reference for the resource
scheduling and pipelining details of the instruction set and background operations.
The Emulator was tested with several sample programs to exercise the various archi-

tectural features of ARC and it verified that there were no resource or timing conflicts.

The emulator was also used to clarify and improve architectural details of the
instruction set, the instruction pipeline, resource allocation, and functional details of
the IOCU. For example, during the design of the emulator, the typical number of
pipestages of transport and control instructions was reduced from 6 to 3. It would
have been useful at this stage to have had a suite of common programs with which to
test out the architectural features of ARC. This may have lead to additional
modifications to the ARC instruction set, particularly to the transport and wonie!

instructions, which may have yielded further improvements.

6.2. Analysis of Architectural Features

A cause and effect relationship was presented in Chapter 3 between the novel
features of ARC and several advantages. Analysis of these novel features and claimed

advantages was performed semi-empirically using a set of ARC code sequences. ! The

! Given a sequence of instructions for ARC, it is a simple matter to obtain statistical data
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code sequences chosen for this purpose include relatively common algorithms includ-
ing: a) bubble sort, b) multiplication, c) factorial calculation, and d) matrix multiplica-
tion. The 'C’ and ARC code sequences for each of these algorithms are presented in
Appendix B.

From the ARC code sequences, static and dynamic statistics have been obtained.
Static statistics treat each of the ARC subroutines as linear code sequences and simply
count the number of different instruction types, the size (in words) of the subroutine,
etc. Dynamic statistics are obtained by picking a typical set of parameters and calcu-
lating how the subroutine would execute with the given parameters. Dynamic statistics
can then be obtained including the frequency of instruction types encountered during
the example execution of the algorithm. The conditions under which the dynamic

statistics were gathered for each of the algorithms are presented in Table 6.1.

Table 6.1: Dynamic Benchmarks for Various Algorithms

Algorithm Dynamic Benchmark
Bubble Sort Sorted an array of 100 integers.
Multiplication A muldiplication with the Multiplier set to 127.
Factorial The calculation of 7!
Matrix Multiplication | The multiplication of a pair of 5 X 5 matrices.

such as frequencies of various types of instructions, I/O bandwidth, number of NOPs, etc.
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The results of the static and dynamic instruction analysis are presented in Tables 6.2,
6.3, and 64. An analysis of this data with respect to each of the design objectives

from Chapter 3 is presented in the following subsections.

6.2.1. Bandwidth Utilization/Availability

One goal of the ARC design was to strike a balance between bandwidth utiliza-
tion and bandwidth availability. A high bandwidth utilization would imply efficient IN
and OUT bus resource utilization while a high bandwidth availability means bandwidth
available for background register saves/restores as well as LoaD and STbrc instruc-
ticas. In this section, the bandwidth utilized by the instruction stream is analyzed dur-
ing even and odd phases on the IN and OUT busses (refer to Fig. 4.7). Bandwidth
requirements of background operations will be discussed in detail in Section 6.2.3.

Instruction fetches use every even cycle on the IN bus. This accounts for 50% of
the total IN bus bandwidth and 100% of the even phase IN bus bandwidth. LoaD
instructions utilize some of the bandwidth during odd cycles on the IN bus. From
Table 6.3, LoaDs account for as much as 11% of the instructions encountered (for
Bubble Sorts). 2 An instruction frequency of 11% LoaDs accounts for 11% of the total
IN bus bandwidth and 22% of the odd phase IN bus bandwidth.

OUT bus bandwidth is utilized by all transport and control instructions such as
LD, ST, BR, JMP, and JSR. The LD, BR, JMP, and JSR instructions utilize one
phase on the OUT bus to send out a memory address. The ST instruction requires 2
phases of the OUT bus: one for the memory address, the next for data. Therefore, we

can calculate the utilization of the OUT bus according to the following formula:

2 Example subroutines are all processing intensive. It is likely that LoaDs and STores
would be mere frequent in I/O intensive subroutines. As well, fewer LoaDs and STores occur
with this architecture because background register saves and restores ensure that 8 registers of
the 16 per window do not need to be saved and restored during subroutine calls and retums.



-110 -

Analysis of Concepts

‘Table 6.2: Static Instruction Statistics

ALU Static Push Static Pop Code
Algorithm Instructions |  NOPs Opportunities | Opportinities Size
Bubble Sort 13 7 19 9 18 Words
Multiply 18 1 20 7 15 Words
Factorial 7 5 13 7 8 Words
Matrix Multiply 26 9 25 13 28 Words

Table 6.3: Dynamic Instruction Statistics

(Frequency of instruction types encountered during example execution of Algorithm)

Algorithm ALU NOP LD ST SET,SKPONC | BR/IMP JSR
Bubble Sort 37% 15% 11% 11% 11% 15% 0%
16 bit Multiply 69% 1% 0% 0% 12% 16% 0%
Factorial 28% 39% 0% 0% 8% 16% 8%
Matrix Multiply 52% 17% 6% 3% 4% 6% 12%
Table 6.4: Dynamic Push and Pop Opportunities
Dynamic Push | Dynamic Pop | Push Opportunities Pop Opportunities
Algorithm Opportunities | Opportunities before First JSR after Last JSR

Bubble Sort 49,900 24950 - -

"7 kit Muliiply 79 31 - -

- ‘orial 61 30 8 4

. -xiix Multiply 2100 987 11 9
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utilization (OUT)=2xfreq.(ST Y+-freq. (LD }+freq.(BR/JSR IJMP)
The frequency of the various instructions types can be obtained from Table 6.3. Thus,
the OUT bus bandwidth utilized by the ARC instruction sequences (of the example
subroutines of Appendix B) accounts for between 16% and 48% of the total OUT bus
bandwidth.

According to the above calculations, atilization of the IN bus is approximately
t1% and utilization of the QUT bus is 48% or less for the example subroutines. This
leaves considerable bandwidth available for background register saves and restores as
discussed in Section 6.2.3.

P

% 2.. Bandwidth Balancing

The concept of bandwidth balancing was introduced in Chapter 3 as a means of
boosting bandwidth utilization and scheduling around pipeline conflicts. An attempt
was made to balance the IN and OUT bus even and odd phase bandwidth by schedul-

ing different operations to alternate phases (See Fig. 4.7).

The IN bus is fully utilized during even clock phases for instrucdon fetches (as
discussed in Section 6.2.1). During Odd phases, background register restores (Pops) or
data LoaDs may occur. These operations are certain to be much less frequent on aver-
age than instruction fetches but, at intermittent times, LoaDs or Pops are equally as
frequent. 3 Some pipelining restrictions apply to LoaDs and Pops which serve to
slightly reduce the IN bus bandwidth utilization during odd clock phases. In particu-
lar, Pops are restricted to occurring during first halfword ALU instructions and LoaDs
are restricted to being first-halfword instructions. Therefore, some odd phase IN bus

bandwidth can never be utilized (during first halfword ST or cortrol instructions)

3 When entering a procedure, LoaDs are usually frequent as it becomes necessary to load in
variables from memory. Pops are frequent when the MCU decides that it is time for ARC to
perform background register restores.
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because Pushes/Pops, transport and control instructions all request service from the
MCU via a 4-bit code (Mx0-3). In addition, an internal MMU bus conflict would

occur between transport instructions and Pushes/Pops.

The OUT bus is also more highly utilized during even clock phases. Most tran-
sport and control instructions (LD, ST, and JSR) send out an address during even
clock phases. BR and JMP instructions may send out addresses during either phase.
Background register Pushes can occur during either even or odd phases but will occur
less often during odd phases because an MMU bus conflict exists between odd phase
Pushes and LoaD, STore, and LDSR instructions. STores utilize the OUT bus for
addresses during even phases and for data during odd phases. Given the above facts,
the OUT bus bandwidth will be more highly utilized during even clock phaées by the
number of LoaD, and JSR instructions and the slight difference in Pushes between the
two phases. From the statistics of Table 6.3, LD and JSR instructions can account for
up to 18% of all instructions executed. Therefore, during I/O intensive subroutines or
when calls are frequent, considerably more OUT bus bandwidth would be used during

even cycles.

It would be possible to better balance the /O utilization between even and odd
clock phases by removing the halfword instruction restrictions of Table 4.2. This
would require a more robust and complex pipeline control circuitry. Another improve-
ment would involve removing restrictions on Pushes and Pops. Currently Pushes and
Pops cannot occur during control instructions because communication to the MCU is
via a 4-bit code (Mx0-3) which notifies the MCU of transport and control requests and
Pushgs/Pops. An independent P{lsh/Pop notification to the MCU would increase I/O
bandwidth utilization, particularly on 6dd phases of the IN bus.

6.2.3. Bandwidth Available for Background Register Saves/Restores
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In the previous 2 sections, it was verified that significant IN and OUT bus
bandwidth is available for background register saves and restores to occur. Now it is
necessary to analyze any other conditions which influence when background register

saves and restores can OCCUTr.

To complete a background register save (Push) of a register subwindow of 8
registers, 8 or more ALU instructions not preceded by LD, ST, or LDSR must occur in
a subroutine. The minimum number of register pushes is described in absolute terms

by the following equation:

MinimumPushes=8x(calldepth~registerfiledepth +2)
If insufficient Pushes have been performed, the MCU will have to feed ARC NOPs
until sufficient registers have been saved. A register file with 8 windows (register file
depth = 8) would enable a code segment with a call/return depth of 6 or less to exe-
cute without necessary Pushes or Pops (provided that all registers were saved to begin
with). In general, more pushes than necessary will be performed to allow for succes-
sive calls. The nominal number of pushes may be close to the maximum number of

pushes described by the following equation:
MaximumPushes =8x(Numberof Calls)

A background register restore (Pop) of a register subwindow can occur if 8 or
more ALU instructions occupy the first halfword instruction within a subroutine. The
minimum number of register Pops is described in absolute terms by the following

equation:

MinimumPops=8x(returndepth—registerfiledepth+2)
If a return is encountered and an insufficient number of Pops have occurred, it is
necessary for the MCU to feed ARC NOPs until sufficient registers have been restored
from the register stack. The nominal number of Pops are likely to be close to the

minimum because Pops do not have to occur unless the corresponding registers have
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been overwritten (more than reg_file_depth - 2 successive calls followed by successive
returns).

Static push and pop opportunities are presented in Table 6.2 for each of the
example algorithms. These statistics assume the code is executed linearly so they can
be considered as crude nominal statistics for push and pop opportunities. Dynamic
statistics for the iterative example programs are presented in Table 6.4. These statistics
are somewhat more useful. The total number of dynamic push and pop opportunities
per subroutine are presented in the first 2 columns of Table 6.4. These represent the
total amount of bandwidth available for Background register saves and restores. Note
that considerably more bandwidth than necessary is available for Pushes and Pops and
that available push bandwidth is approximately double the available pop bandwidth

(because of halfword restriction).

‘The number of push opportunities before the first JSR and the number of pop
opportunities after the last JSR are given in the third and forth columns of Table 6.4.
These statistics are provided because pushes are likely to be required after entering a
subroutine but before the first JSR. Similarly, Pops are likely to occur before retumning
to the calling subroutine. These statistics are also useful for analyzing a worst case
scenario — recursive calls or a series of calls/returns much greater than the depth of
the register file. The number of these push and pop opportunities seems to be just
barely adequate for Pushes but the number of Pop opportunities may be inadequate for

recursive routines.

From the discussion above, a number of characteristics of the background register
save/restore functions may be noted. Background Pushes and Pops seem to be feasible
provided that the considerable amount of available bandwidth is utilized effectively.
Advantages include utilizing bandwidth that would otherwise not be used and less
instruction overhead during subroutine calls and returns. A disadvantages is the

inefficient use of the available bandwidth. Pushes are likely to be more frequent than
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Pops and this corresponds with more Push opportunities than Pop opportunities. The
algorithm within the MCU to determine when Pushes and Pops occur will have to take
into account the above characteristics. An algorithm will have to be selected which
effectively utilizes the awvailable bandwidth and allows for more lead time when direct-

ing register Pops.

6.2.4. Nonprocessing States

From Table 6.3, the frequency of NOPs executed is approximately 18% of all
instructions (of the sample programs of Appendix B). NOPs are necessary because of
the pipeline restrictions placed on transport and control instructions, because 2 ARC
instructions are packed per word, and because labels have to be aligned to word boun-
daries. The frequency of NOPs could be slightly reduced by balancing the halfword
alignment of transport and control instructions (Currently, the majority of transport and
control instructions are restricted to the first halfword). Alternately, these restrictions
could be removed entirely, but this would require more compiex pipelining and

resource scheduling circuitry.

6.2.5. Two Instructions Per Word

All ARC instructions, with the exception of LDI, are 16 bits in length which
results in reduced code size (see Table 6.2) and a reduction in the required IN bus
bandwidth. This has allowed ARC tc fetch an instruction pair every second cycle
while executing one instruction per cycle which results in high instruction throughput.
This scheme leaves the remaining half of the IN bus bandwidth avaitatde for LoaDed
data and background register Pops.

Disadvantages to 2 instructions per word include a complex pipeline, pipeline res-

trictions, and a limitation in register file addressability.



- 116 - Analysis of Concepts

ARC's instruction pipeline is more complex because instructions are split into
first- and second-halfword instructions and because clock cycles are split into even and
odd phases. To reduce the complexity of the pipeline, pipeline restrictions are intro-
duced (see Fig. 4.7). Pipeline restrictions lead to NOPs and some wasted bandwidth as

discussed in Section 6.2.4.

The main problem with 16 bit instructions is that a limited number of registers
may be addressed at one time. Restricting the instructions to 16 bits results in restrict-
ing the register addresses to 4 bits. Therefore, only 16 local registers of the register
file may be accessed in any context. This may, in turn, lead to more memory accesses
than necessary if more registers were addressable. Perhaps one answer to this poten-
tial problem lies in allowing some of the instructions to be 32 bits in size and to allow
some instructions to access global registers. As well, less strict scheduling on the IN
bus would allow the instruction stream more than half of the IN bus bandwidth. (In
Section 6.2.1, the total IN bus bandwidth utilized due to instruction execution of the

sample programs was calculated to be 61%)

6.2.6. External Program Counter

The advantages of ARC’s external PC feature are discussed in Sections 3.5 and
3.7. Section 3.5 details the bandwidth advantages and feasibility of an external PC
while Section 3.7 deals with philosophical issues.

A reduction in required OUT bus bandwidth is unquestionably an advantage of
the external PC feature. With an on-chip PC, éssuming 2 instructions per word and
throughput of 1 instruction per cycle, 50% of the total output bandwidth would be
required for instruction addresses. With the external PC, the only instruction addresses
that originate from ARC are generated by JSR and JMP instructions. From Table 6.3,
the average frequency of these instructions is less than 20%, corresponding to less than

20% of the total output bandwidth. This reduction in required OUT bus bandwidth
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leads to almost equal input and output bandwidth requirements (see Section 6.2.1 and
6.2.2). Therefore, unidirectional IN and OUT busses are more effective than address
and datafinstruction busses of more conventional processors. 4 See Section 6.2.7 for a

discussion of the advantages and disadvantages of unidirectional IN and OUT busses.

6.2.7. Unidirectional IN and QOUT Busses
~ ARC incorporated unidirectional IN and OUT busses to achieve the following
advantages:
a) more input bandwidth without additional pins,
b) eliminate conflicts betwesn incoming and outgoing data,
c) eliminate bus turnaround delays
d) facilitate pipelined memory access.

A disadvantage is that unidirectional busses do not interface directly with a stan-

dard memory subsystem. Example system configurations were presented in Section

4.2,

6.3. Testing Results

Unfortunately, complete testing of the ARC chip was not possible because of a
number of layout errors as well as some design errors. One of the most serious errors
was the layout of the register file bitslice circuitry. This prevented the testing of most
of the ARC instructions because ARC is a load-and-store machine and therefore most

instructions access registers.

The correct aspect ratios of the transistors in the register bitslice circuit are as

given in Fig. 5.2.3. In the actual layout, the n-type transistors of the crosscoupled

4 An external PC could also work with a processor with conventional address and data
busses by tristating the address bus of the processor during instruction fetches.
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inverters are not wide enough to discharge the precharged busses. The result of this
error is that registers turn to 1’s when they are to conditionally discharge a precharged

bus.

Portions of ARC which were testable and found correct included portions of the
IOCU input multiplexing circuitry and decoder. The relative branch instruction was

also testable and found to be functionally correct.
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7. CONCLUSIONS

The design and implementation of ARC has yielded a number of interesting con-
tributions to research. The focus of this architectural design is to alleviate the proces-
sor to memory bandwidth bottleneck which is still a problem with current Von-
Neuman architecture processors. A number of novel architectural features were intro-
duced with this design and the advantages of these features were verified in Section
6.2. This 32 bit RISC design was implemented in Northern Telecom’s 3 microa
CMOS process thus verifying that the architecture could fit onto a die of a very con-
servative technology. This design was a first attempt at such a project by researchers

at this university.

7.1. Architectural Concepts

The architectural features were introduced in Chapters 3 and 4 and analyzed in
Section 6.2. These features were found to be basically sound but implementing these
features efficiently is complex and more research is needed in many cases. The
analysis of Section 6.2 indicates that the current ARC implementation of the novel

architectural features is not optimum.

7.1.1. 2 Instructions Per Word

Advantages of 2 instructions per word include less required input bandwidth and
a high instruction throughput. Disadvantages include a more complex pipeline and

limited register addressability.

In the version of ARC implemented, instruction restrictions were introduced to
allow the simplification of the pipeline. This resulted in a large number of NOPs in
the sample programs. This tradeoff should therefore be reversed — fewer instruction

restrictions and more complex on-chip pipeline hardware for better performance.
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The limited register file addressability of 16 bit instructions is a more serious
drawback. One answer to this problem may be to allow some instructions to occupy

32 bits and to allow some instructions to access global registers.

7.1.2. External Program Counter

This feature is a solution for the output bandwidth bottleneck of previous RISC
designs. For example, in the RISC II, instruction addresses interfere with stored data
[Kate83]. This feature enables great output bandwidth saving because the inst.tion
address does not need to be sent from the processor to.-fetch each instruction word.
Because of the saving of output bandwidth, OUT bus bandwidth is available for back-
ground processes such as register saves. By combining an external PC with unidirec-
tional IN and OUT busses, the input bandwidth bottleneck is also alleviated. Advan-
tages of unidirectional IN and OUT busses are presented in Section 6.2.7. The exter-
nal PC feature of ARC seems to have few disadvantages other than being unconven-

tional. 3

7.1.3. Unidirectional IN and OUT Busses

Thev unidirectional bus feature of ARC is perhaps the most radical of the novel
features. Because of this feature, ARC’s interface to the MCU and memory subsystem
is unconventional but versatile nontheless. Substantial advantages of the unidirectional
bus feature of ARC are presented in Chapter 3 and Section 6.2.7 which outweigh its

non-conformity.

5 An external PC only works with simple addressing modes such as in a load-and-store
RISC architecture.
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7.14. External Memory Control Unit

To extend the architectural features of ARC to the system level, an external
Memory Control Unit (MCU) is required. It operates as a coprocessor which handles
the memory interface, instruction fetches, interrupts, background register saves/restores
and various other duties. The MCU facilitates several philosophical goals such as

locality of information processing and parallelism.

7.1.5. Background Register Saves/Restores

The intent of background register saves and restores is to take away some of the
LoaD and STore overhead which normally occurs during procedure calls and returns.
The analysis of Section 6.2.3 indicated that the current implementation would probably
perform adequately but there is considerable room for improvement (larger register
file, fewer conflicts with instructions). The analysis also implied that background
registers saves/restores would leave considerable bandwidth available for other back-

grousd operations such as a data cache. 6

7.2. Further Work

A number of improvements to the instruction set, architecture, and hardware of

ARC are suggested as follows.

7.2.1. Enhancements to Instruction Set

For the most part, the selection of ARC’s instructions was good enough to per-
form most tasks elegantly. However, a number of shortcomings became noticeable

during the analysis of the design. Improvements to various instructions are suggested

6 It is to be noted that background register save/restore circuitry requires a relatively small -
amount of hardware/area. This is one advantage over an on-chip cache.



- 122 - Conclusions

as follows.

Externally decoding the relative BRanch instruction in the MCU would result in a
shorter pipeline for this instruction. Additionally, the BRanch instruction would not be
delayed (instructions immediately following branch always executed) as is currently

the case. This enhancement is introduced in Section 4.2.1.1.
A number of improvements should be made to the SET instruction:

a) The SET instruction should be able to test 16 conditions (ax in the MIPS)
instead of just the 8 conditions listed in Table 4.1. This is suggested
because some of the branch conditions of the example programs ir: Appen-
dix B were somewhat clumsy to implement. A performance improvement

should result with only small additions to Hardware.

b) The SET instruction is not elegant because the S1 and DST addresses
share the same operand field. This situation could be slightly improved if,
instead, the S2 and DST addresses shared the same operand field (unary
tests such as =0, ODD, OV would not overwrite tested register). For tests
which involve 3 registers, the destination register coi:ld be interpreted as
register S2+1 (Difficult to implement and not orthogonal). Alternately, a
4-bit condition mask or a condition flag could be provided but this alterna-
tive would require additional instructions to access the condition mask or
flag.

The SKPONC instruction could easily become a conditional branch if the F2 and

F3 fields are used for a relative pranch address.

In order to access 16 or more special registers of the MCU, the LDSR and STSR
instructions could use the F2/F3 field(s) té indicate the external register. This instruc-
tion could be decoded before sending to ARC or the number of the requested register
could be sent via the QUT bus to the MCU.
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7.2.2. Improvements to Architecture/System

A number of improvements can be made to the architecture of the ARC as well
as to the architecture of the ARC system. Improvements to the ARC chip could
include alterations to pipelining, resource scheduling, bandwidth utilization, and excep-
tion handling. ARC’s system interface is open to further design possibilities because
the MCU has yet to be designed.

Pipelining and resource scheduling improvements could include the elimination of
halfword instruction restrictions or a beotter balance between transport and control
instructions. This was discussed in Sections 6.2.4 and 6.2.5. Another pipelining
improvement would' be to prefetch registers during the decode phase so that the regis-
ter fetch is not during the critical path. This is discussed in more detail in the next sec-
tion.

Exceptions and interrupts are handled by the MCU. For this to work, all special
registers and flags must be accessible to the MCU. Therefore the carry and overflow
flags should be implemented off-chip. If all special registers and flags are off-chip,
they do not need to be saved when an exception occurs. Thus ARC can perform a
context switch with merely a JSR instruction. The handling of interrupts/exceptions is

presented in more detail in Sections 3.6, 3.7, and 4.2.

To verify the advantages of the above proposed alterations to ARC, the ARC
emulator could be used in conjunction with a compiler and a suite of benchmark pro-
grams to obtain statistical performance results. For example, this technique can be

used to investigate different instructions, compiler restrictions, and pipeline scheduling.
7

To analyze the effectiveness of the ARC system, an emulator should be written

for the MCU and memory subsystem. The system emulator could be used to analyze

7 Most analyses would require minor changes to the emulator.
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various IN anc OUT bus interfaces to the MCU and the memory subsystem. As well,
it would be worthwhile to investigate a means of interfacing static RAM caches to the

MCU or IN and OUT busses.

7.2.3. Improvements to Hardware

In addition to the architectural improvements suggested above, a number of
modifications to the full custom layout of ARC are necessary to get it working.
Hardware redesign is necessary for the following Clircuitry:

- The register file bitslice circuitry (Fig. 5.2.3)

- The Control Operations D_w circuitry (Fig. 5.3.5)
- mmout and mmin signals of the IOCU

- INI2 and IN13 shorted together in IOCU

The redesign of the register file bitslice circuitry is a nontrivial endeavor because
the area required by the register file is critical. The pitch of the register file bitslice
sets the pitch of the ALU and IOCU bitslice circuitry.

The D_w circuitry is composed of standard cells. It could be easily redesigned to

match the schematic of Fig. 5.3.5.

The mmout and mmin control signals of the IOCU need to be delayed by an
additional clock phase to match ARC’s pipeline.

During testing it was discovered that IN12 and IN13 were shorted together. It is
possible that there exist other layout errors such as this because ARC was predom-
inantly a full-custom design. It is strongly recommended that future designs utilize
software packages such as automatic place-and-route, extraction, and functional simula-
tion.

In addition to the above modifications, the following two enhancements to the

first design are suggested.
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Registers could be prefetched during the decode stage in latches adjacent to the

ALU and IOCU. This would take register access out of the execution pipestage.

Better communication between ARC and the MCU is also desirable. In particu-
lar, the Push/Pop handshaking should be improved to make it more versatile and to
make it independent of transport and control instructions. Better synchronization of

instructions such as BR and LDSR/STSR is also desirable.
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T
* File: arcsim.c
»
* Purpose: main(), unix interface, instruction stack
* and other functions of ARC emulator
*

#include <stdio.h>
#include "opcodes.h”

#idefine PIPELEN 7

#define NUMFIELDS 4

#define HIGH OxFFFFFFFF

#define NOP 0x20002000 /*nopis: AQO000; AQO OO *

/* Extemnal Global variables */

extern int slbus, s2bus, dstbus, mmubus, inbus, outbus;
extern int sladdr, s2addr, dstaddr, mmuaddr;

extern int mmuop;

extern int CWP;

extern int Push, Pop, Regtx;

/*
* The instruction pipeline of ARC is approximated by
* the following instruction stack and skipflags
* The skipflags indicate if corresponding instruction
* in pipeline is to be skipped
*

int istack [NUMFIELDS] [PIPELEN];
int skipflags [PIPELEN];

main(arge,argv)
int arge, *argvil;

{
FILE *infile;
int phasecount=0;

switch(argc) {
case 1: ir.file = stdin; break;
case 2: infile = fopen( (*(argv+1)), "r" ); break;
default: printf("usage: %s [inputfile]0,(**argv) )
}

CWP =0;

istackinit();

reginit();

while ( ! done() ) (
/* do PhiA swff first ¢/
precharge();
/* now do PhiB stuff */
read_inbus(infile,phasecount);
iprint(phasecount);
iprocess();
PushPop();
PushFSM();
PopFSM(phasecount);
busprint();
phasecount ++;

}
regprint();
precharge() {

slbus = HIGH;
s2bus = HIGH;
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mmubus = HIGH;

/* this is a kludge */
mmuop = NOMMU;
}

read_inbus(infile,absphase)
FILE *infile;

int absphase;

{

static int endinput=0;

int count;

int emcpop, emcpush, emcregtx;
char s[128], *sptr;

/*
instruction fetch every even phase
read inbus every phase from hex input file
when no input left, input = HIGH
if line begins with "#', it is a comment

*/

ipush();/* push 1 instruction each phase */
if ( ! endinput) {
sptr = fgets(s,128,infile);

while ( (sptr != NULL) && (s[0] == #))
/* read next line until not a comment ¥/
sptr = fgets(s,128,infile);

if (sptr = NULL) endinput = 1;

else {
/* read input in hex format */
if ( (count = sscanf(s,"%x %d%d%d",&inbus,
&emcpush,&uncpop.&emcmgn)) <

endinput = 1;
inbus = HIGH;
if (count < 4)
emcpush =0;
emcpop = ;
emcregx = 0;
}
Pop = emcpop;
Push = emcpush;

Regtx = emcregtx;

)

if ( (lendinput) && ( ! (absphase & 0x01)))
ifetch();

}
istackinit() {
int ij;
/t
and setting all skipflags to 1
./
for (i=0; i < PIPELEN; i++) {

initialize instruction stack by filling it with NOPs(or AQ 0 0 0)

skipflags[i] = 1; /* set skinfiags to 1 before insms start »/

istack [0] [i] = AQ_OP;
for (j = 1; j < NUMFIELDS; j++)
istack {j] [i] = O
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skipflags{0] = 0;
*

also set Push, Pop, and Regtx to 0
*/
Push = 0; Pop = 0; Regtx = 0;

}
ipush O {
/* pushes 1 NOP on the instruction stack */
int ij;
for (i=PIPELEN-%:i > 0; i--) {
for (j=0; y < NUMFIELDS; j++) {
istackfj] [i} = istack [j] [i-1};
skipflags [i] = skipflags [i-1};
istack [0}[0] =AQ_OP;
istack {1](0] =0;
istack [2]{0] =0;
istack [3}{0] =0;
} skipflags [0] =1;
ifetch () {

/* read 2instructions from standard input and place in istack */

istack [0][1] = (inbus >> 28) & OxOF;
istack [1][1] = (inbus & 0xOF000000) >>24;
istack [2][1] = (inbus & 0x00F00000) >>20;
istack [3][1] = (inbus & 0x000F0000) >>16;
istack [0]{0] = (inbus & 0x0000F000) >>12;
istack {1]{0] = (inbus & 0x00000F00) >>8 ;
istack [2){0] = (inbus & 0x000000F0) >>4;
istack [33[0] = (inbus & 0x0000000F);

SHRﬁ“ gs[0] = 0;
} shllﬂ:%l] =0
iprin(phasecount)
int phasecount;
L
int i;
printf("The Inst. Stack and Busses for Phase #%d:0,phasecount);
intf(" 0);
printf("Phi Inst Skip0);
for (i=0; i<PIPELEN; i++)
printf("%d: %ox %ox %ox %x %d0.i,(istack[0]{il).(istack[1}[i]).
(istack[2]{i]).(istack[3][i]).skipflags[i]);
printf("0);
] printf("Push=%d Pop=%d Regtx=%d0,Push,Pop,Regtx);
busprint()
printf{"inbus=0x%x outbus=%x0,inbus,outbus);
printf("s1@=%x slbus=%x, s2@=%x s2bus=%x0,s1addr,s1bus,s2addr,s2bus);
printf("mmu@=%x mmubus=%x, dst@=%x dstbus=%x0,
mmuaddr,mmubus,dstaddr,dstbus);
printf("mmuop=0x%x0,mmuop);
printf(" 0);
}

iprocess() {
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int phase;

for (phase=0; phase < PIPELEN; phase++) {
if (! (skipflags {phase]) )
decode(phase);

}
done() (
/#

For now we know we are done if all skipflags
for all instructions in the pipeline are set to 1.
*/
int i;
for (i=0; i<PIPELEN; i++) {
if (! (skipflags [i]) )
return{0);

}
return(l);
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/*
* File: decoders.c
*

* Purpose: decoders for different instruction types of ARC
]
*/

#include <stdio.h>
#include "opcodes.h”

#define PIPELEN 7
#define NUMFIELDS 4

/* instructions currently in the instruction queue */
extern int istack [NUMFIELDS] [PIPELEN];
extem int skipflags [PIPELEN];

decode(phase)
int phase;

{

int F1, F2, F3; /* 4-bit instruction Fields */
int 51, s2, dst; /* instruction operands */

int D6_DO; /* ALU Control Signals */

F1 = istack[1] [phase]; /* usually s2 operand */
s2 =F1;

F2 = istack[2] [phase]; /* usually sl operand */
sl =F2;

F3 = istack{3] [phase]; /* usually Dst operand */
dst = F3;

switch( istack [OJfphase] ) {

case ADD_OP:
D6_] DO 0;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case AQ OP:
D6_D0 = 04;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case SUB_OP:
D6_D0 = 010;
aluexec(phase,D6_D0,s2,s1,dst);
break; '

case SQ_OP:
D6_DO0 = 014;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case AWC_OP:
D6_D0 = 02;
aluexec(phase,D6_D0,s2,s1,dst);

case SWC_OP:
D6_DO0 = 012;
aluexec(phase,D6_D0,s2,s1,dst);

break;

case AND_OP:
D6_DO = 070;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case OR_OP:
D6_D0 = 072;
aluexec(phase,D6_D0,s2,s1,dst);

break;
case XOR_OP:
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}

D6_D0 = 074;
a.luexeC(phasc.DS_Do.SZS 1 'dSt);
break;

case BIN_OP:
D6_DO0 = 066;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case BEX_OP:
D6__D0 = 064;
aluexec(phase,D6_D0,s2,s1,dst);
break;
case SET_OP:
D6_DO0 = 0;
decode_set(phase,F1,F2,F3);
/* operands are rearranged for set instruction
dst is really F2 Field, sl=dst, s2 is F3 Field
*/
break;

default:
decode_2opinstns(phase);
}

decode_set(phase,cond,s1,s2)
/* s1 = dst for this instruction */
int phase, cond, sl, 52;

int dst, D6_DO;

dst = sl;

switch(cond) (

case 2: I*sl ==s2 %
D6_DO0 =0111;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case 6: /*sl=0%
D6_D0 = 0103;
aluarec{phase,D6_D0,s2,s1,dst);
break;

case 9: /*sl <s2%
D6_D0 = 0170;
aluexec(phase,D6_D0,s2,s1,dst);
breek;

case 1: /* sl <=s2 %/

case 3:
D6_DO0 = 0150;
aluexec(phase,D6_D0,s2,s1,dst);

break;

case 13: /* s1 ODD */

case 15:
D6_D0 = 0162;
aluexec(phase,D6_DO0,s2,s1,dst);

break;

case 0: /sl LTs2%
D6_D0 = 0110;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case 12: fad ) 'AJ}

case 14:
D6_D0 = 0122,
aluexec(phase,D6_D0,s2,s1,dst);
break;

case 8: Prsll=s2%
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case 10:
D6_DO0 = 0130;
aluexec(phase,D6_D0,s2,s1,dst);
break;

default:
fprintf(stderr,"Invalid SET Instruction0);

}

decode_2opinstns(phase)
int phase;

{
int opcode, sl, s2, dst;
int D6_D0;

opcode = 16 * (istack [0] [phase]) + istack[l] [phase];
s1 = istack{2] [phase];

/* s2 is part of opcode */

s2 = istack[1] [phase};

dst = istack{3] [phase];

switch(opcode) {

case NOT_OP:
D6_DO0 = 076;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case SL_OP:
D6_D0 = 040;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case SLC_OP:
D6_D0 = 042;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case SR_OP:
D6_D0 = 050;
aluexec(phase,D6_D0,s2,s1,dst);
break;

case SRC_OP:
D6_D0 = 052;
aluexec(phase,D6_D0,s2,s1,dst);

break;

case ROL_OP:
D6_D0 = 044;
gluexec(phase,D6_D0,s2,s1,dst);
break;

case ROR_OP:
D6_D0 = 054;
aluexec(phase,D6_D0,s2,s1,dst);

break;

case ROLS_OP:
D6_D0 = 060;
aluexec(phase,D6_D0,s2,s1,dst);
break;

/* for all Transport and Control operations dst (F3) field is really

mmu field */

case LD_OP:
1d(s1,dst,phase);
break;

case LDPC_OP:
ldpc(dst,phase);
break;

case LDSRO_OP:
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1dsr(0,dst,phase);
break;

case LDSR1_OP:
1dsr(1,dst,phase);
break;

case LDSR2_OP:
1dsr(2,dst,phase);
break;
case LDI_OP:
if (1di(dst,phase) ) {
skipflags{0] = 1;
skipflags{1] = 1;

break;

case ST_OP:
st(s1,dst,phase);
break;

case JMP_OP:
jmp(s1,phase);
break;

case JSR_OP:
Jjst(s1,phase);
break;

case BRA_OP:
bra((s1 * 16 + dst),phase);
break;
case RET_OP:
rin(s1,phase);
break;

case SKPONC_OP:
if( skponc(s1,phase) )
skipflags[(phase - 1)] = 1;
ak;

default:
printf("Tllegal instruction: %d0,opcode);
}

- 136 -
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* File: alusim.c
*

* Purpose: ALU functions
*

#include <stdio.h>

#include "regdefs.h"

#include "opcodes.h”

extern int slbus, s2bus, dstbus;
extern int CWP;

extern int mmuop;

/‘
* OV and Carry Flags should really be stored in external

* MCU along with other special registers so that ARC does

* not have to save it’s state in the event of an interrupt
*/

static int carry = 0;

static int ov = 0;

#ifdef DEBUG
alutest()

int t1, €2;
int tmp = 0;

regfile[CWP] [0] =9;
regfile[CWP] [1] = 4;

tmp = alufunc(0,0,1,2,0,0,&t1);
printf("result of alu is %d0,tmp);

#endif

aluexec(phase,D6_D0,s2,51,dst)
int phase, D6_D9, s2, sl, dst;

{
int SetCond;

if (phase —= 2)
mmuop = NOMMU;

if (phase == 3) {
/* disable_alu=0; dst_en=1; ¥/

dstbus = alufunc(D6_D0,s1,52,&SetCond);
regbusrw{WRITE,dst, CWP,DSTB);
}

}

alufunc(D6_D0,s1,52,SetCond)
int D6_DO, si, 52;
int *SetCond;

{

static ifst result;

int a,b, D5_DO, tmp;

int constant;

constant = s2;

/* D6 indicates if it is a SET cond instruction */
*SetCond = D6_D0 & 0100;
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*SetCond = *SetCond >> 6;

/* strip off D6 bit from D6_DO */
D5_D0 = D6_DO0 & 077;

regbusrw(READ,s1,CWP,S1B};
a = slbus;
regbusrw(READ,s2,CWP,S2B);
b = s2bus;

switch(D5_D0) {

case 0:

case 1:

case 020:

case 021: result = a + b;
setaddovc(a,b,result, &carry, &ov);
break;

case 04:

case 05:

case 024:

case 025: result = (a + constant);
setaddovc(a,constant.result, &carry, &ov);
break;

case 010:

case 011:

case 030:

case 031: result = (a - b);
setsubovc(a,b,result,&carry, &ov);
break;

case 014:

case 015:

case 034:

case 035: result = (a - constant);
setsubove(a,constant,result, &carry, &ov);
break;

case 02:

case 03:

case 022:

case 023: result = (a + b + carry);
setaddove((é+carry),b,result, &carry, &ov);
break;

case 012:

case 013:

case 032:

case 033: msult:= (a - b + carry);
sm&k ve((a-carry),bresult, &carry, &ov);
break:

case 070:
case 071: result = (a & b);
break;

case 072:
case 073: result = (a | b);
b'e .

case 074:
case 075: result = (a " b);
bre .
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/* BIN */

case 066:

case 067: result = (a & OxFFFFFFF0) + (b & OxF);
break;

/* BEX */

case 064:

case 065: result = a & OxF;
break;

/* NOT */
case 076:
case 077: result = “a;

break;

/* SHL ¥/

case 040:

case 041:
result =a<< 1;
break;

/* SHLC */

case 042:

case 043: result = (( a << 1) &0xFFFFFFFE) + carry;
break;

/* SHR */
case 050:
case 051: result = a >> 1;

break;

/* SHRC */

case 052:

case 053: result = ( (a >> 1) & OxEFFFFFFF ) | (carry << 31) ;
break;

/* ROL */

case 044:

case 045:

case 046:

case 047:
tmp = ((unsigned) a >> 31) & Ozl
result = ((unsigned) a << 1) + tmy;
break;

/* ROR */
case 054: :
case 055:
case 056:
case 057:

tmp = a & 0x01;

result = (a >> 1) | (tmp << 31);

/* ROL8*/

case 060:

case 061:
tmp = (a >> 24) & 0x0FF;
result = (a << 8) + tmp;
break;

}

/* now check to see if there are any test instructions */
switch(D6_DO) {
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1* ="
case 0111: if (a == b) result = 1; else { result =0;}
break;

*=0%

case 0103:

case 0113:

case 0107:

case 0117: if (result == 0) result =1; else { result = 0;}
break;

/*a<b®
case 0170:
case 0171:
if (a < b) result = 1; else { result = 0;}

break;

/*a<=b*

case 0150:

case 0151:
if (a <= b) result = 1; else { result = 0; )
break;

il ]

case 0130:

case 0131: .
if (a !=b) result = 1; else { result = 0; }
break;

/*sl LT s2%/

case 0110:
if ( ((long) a) > ( (long) b) ) result=1;
else { result = 0; }
break;

case 0122:
case 0123:
case 0126:
case 0127:
case 0132:
case 0133:
case 0136:
case 0137:
if (ov) result = 1; else { result = 0; }
| break;

\ return(result);

/.
* Function: setaddove
L ]
* Purpose: to set the overflow and carry flags for
* addition operations
¥
setaddovc(a,b,result,carry,ov)
int a, b, result, *carry, *ov;
{

long longint;

longint = ((unsigned) a ) + ( (unsigned) b);
if (longint && 0x100000000)

*carry = 1;
else
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*carry = 0;
if (((a > 0) && (b > 0) && (result < 0)) i
((a< 0) && (b < 0) && (result > 0)))
*ov = ];
else
*ov =();

}
I*

* Function: setsubovc
*®

* Purpose: to set the overflow and carry flags for
*

- 141 -

subtraction operations
*/
setsubovc(a,b,result,carry,ov)
int &, b, result, *carry, *ov;
{
long longint;
longint = ((unsigned) a ) + ( (unsigned) ( - b));
if (longint && 0x10000u000)
*carry = 1;
else
*carry = 0;

if ((a > 0) && (b < 0) && (result < 0)) Il
((a < 0) && (b > 0) && (result > 0)))
*ov=1;
else
*ov = 0;
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I~

* File: regsim.c

-

* Purpose: contains register access routines
*/

#include "regdefs.h”

#include <swdio.h>

int regfile NUMWINDOW] [NUMREG];

/* External Global Variables */

extern int s1bus, s2bus, dstbus, mmubus;
extern int sladdr, s2addr, dstaddr, mmuaddr;
extern int CWP, SWP;

reginit() {
/* sets all registers to zero */
int i, j;
for (i=0; icx NUMREG; i++)
for (=0; j<NUMWINDOW; j++)
reghilefj} [i] = 0;
}
regprint() (
int i;
for (i=0; i< NUMREG; i++) _
| printf("reg # %d is %ox0,i,(regfile[CWP] [i]) );
regrw(rw,reg,win,data)
int rw,reg,windata;
{
switch(rw) {
case READ: retumn(regfile[win){reg]);
case WRITE: {
;esﬁle[win]{regl = dats;
break;
default: printf("unknown register command: %d0w);
returni(-1);
}
regbusrw(rw,reg,win,bus)
int rw,reg,win bus;
switch (bus) {
case MMUB:
mmuaddr = reg;
switch (rw) {

case READ: if (mmubus = -1)

ntli’nixbus = regrw(rw,reg,win,DATA);

else
printf{"mmubus has already been discharged0);
bréak;

case WRITE: regtw(rw,reg,win,mmubus);

)
break
.case S1B:
-sladdr = reg;
switch. (rw). {

case READ: if (slbus = -1)
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slbus = regrw(rw,reg,win,DATA);
else
printf("sibus has already been discharged0);
break;
case WRITE:
printf("cannot write o register from s1bus0);

break;

case S2B:

s2addr = reg;

switch (rw) {

case READ: if (s2bus == -1)

s2bus = regrw(rw,reg,win,DATA);

else
printf("s2bus has already been discharged0);
break;

case WRITE:
printf("cannot write 1o register from s2bus");
break;

}
break;

case DSTB:
dstaddr = reg;
switch (rw) (
case READ: printf("cannot read from reg to dstbus");
break;

case WRITE: regrw(rw,reg,win,dstbus);
)
break;
default: printf("bus type %d not defined0,bus);
)

return(0);
} /* end of regbusrw */
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* File: regdefs.h

*

* Purpose: definitions for register and bus access
*/

/* register definitions */
#define NUMWINDOW 4
#define NUMREG 16
#define READ 1

#define WRITE 0

#define DATA 0

/* bus switches */
#define MMUB 0
#define S1B 1
#define S2B 2
#define DSTB 3

-144 -
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/#
* File: iocusim.c
*”
* Purpose: emulation of Transport and control instructions as well
* as background register saves and restores.
*/

#include <stdio.h>
#include “regdefs.h"
#include “opcodes.h"

#define NUMFIELDS 4
#define PIPELEN 7
extern int istack[NUMFIELDS] [PIPELEN];

int s1bus, s2bus, mmubus, dstbus, inbus, outbus;

/* register decoder addresses */
int sladdr, s2addr, mmuaddr, dstaddr;

/t
* mmuop: 4 bit signal sent off chip describing what is
* requested from external memory controller
*/

int mmuop;

/t
CWP is 4 bit Shift register indicating windows
mmuwin is set = SWP (pointer to register window
which is next to be saved [pushed] )

*f
int CWP = |;
int SWP = 1;
I*

3 bit up counter used for Pushing/Popping window pointed to by SWP
This counter counts through the 8 registers in a subwindow.

(for now only use up counter. assume external MMU returns in same order)
State of Push_pop FSM is held in these global variables:

*/

int Count3 = 0;
int Push = 0;

int PushMode = 0;
int Pop = 0;

int PopMode = 0;
int Regtx = 0;

int Reset = 0;

”
* Push can occur during even (Phil) or odd (Phi0) Phases.
* Notification of Push to EMC via "mmuop” occurs on phase preceding
* actual Push of a register via MMU and OUT busses.
* If two ALU instructions occur in a word, 2 Pushes can occur.
*®
* The logic to determine if a push is to occur (assuming that ARC is
* in Push mode) is as follows:
* Check Decode Pipestage:
* If JSR | BRA | RET)
Cannot Push in following phase because these instructions
send an address on the OUT bus during following phase.
As well, They send out their own mmuop to the EMC during
decode pipestage
Therefore "mmuop” not set to Push
else If (LD | LDSR | LDPC | ST)
Cannot Push in following TWO phases

* % ¥ # 3 ¥ #
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- (above instns use MMU bus and or OUT bus in next 2 phases)
.- Therefore "mmuop” not set to Push in this or next phase

* else If (ALU instruction)

* mruop = Push

. During the following phase a register will be Pushed

. on the MMU bus to the OUT bus.

*/
PushFSM()

static int PushNotify = 0;

/* SWP initially points to the window to be saved */
if (! PushMode)
return(1);

if (PushNotify > 0) {
/t

* mmuop should have been asserted during the previous
* decode phase (1 phase before actual Push)
*/

PushNotify --;

regbusrw(READ,Count3,SWP,MMUB);

outbus = mmubus;

if( Count3 = 7) {
ShiftUp(&SWP);
PushMode = 0;
Count3 = 0;
) else
Count3 ++;
}

/* Here is where we start the clock on the Push
* Check that a LD, ST, or LDSR Transport instruction is not
* executing in phase 3 because during data phase
* these Transport instructions utilize

* MMU bus and either IN (LD) or QUT (ST) bus.

*/
if ( ALUinst(2) && ! LDSTinst(3) ) {
PushNotify++;
mmuop = PUSH;

}
} /* end of Push function */

/t
* POP occurs during Phil (odd phases) because IN bus is used
* for instruction fetches during even phases.
* Pop mmuop can only occur when decoding an ALU instruction
* because all transport and control instructions use mmuop
* and MMU bus and possibly IN bus.
[ ]

* Notification of Pop to EMC via "mmuop" occurs on TWO phases preceding

* actual Pop of data from the EMC via IN and MMU busses.
* (Pop thus occurs under different circumstances than Push)
*/

PopFSM(absPhase)
int absPhase;

{
static int PopNotify = 0;

if (! PopMode)
return(l);

if (PopNotify >= 2)
PopNotify = 1;
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;E.lse if (PopNotify = 1)

PopNotify --;
mmubus = inbus;
regbusrw(WRITE,Count3,SWP,MMUB);

if( Count3 = 7) {
PopMode = 0;
Count3 = 0;

] alse
Count3 ++;

/* Here is where we start the clock on the Pop
* Must be during Odd Phase (so as not to interfere with IF)
* Must be decoding ALU instruction (otherwise cannot send mmuop)
E ]
if ( ALUinst(2) && ((absPhase & 1) = 1) ) {
if (PopNotify != 0)
fprintf(stderr,"Something Wrong0);
PopNotify = 2;
mmuop = POP;
}
} /* end of Pop function */
PushPop()
/t
* This function dztermines if ARC is to enter Push mode or
* Pop mode. In Push mode, ARC will save 8 registers, 1 at every
* opportunity as defined by the Push() function
*/
/*
PushPop() is called every timestep.
It returns immediately if ((Push && RegTx) Il Pop ) is False.
Otherwise:
it goes into PushMode if (Push && Regtx)
it goes into PopMode if (Pop && Regix)
it decrements SWP if (Pop)
While in PushMode or PopMode, a register is transferred

each time there is an ALU instruction in phase 3 of the pipeline.
*/

if (| PushMode && ! PopMode && ! ((Push && Regtx) Il Pop) )
return(0);

if {Fusidicths && Pop) {
ficiirif(stderr,"Cannot be in BOTH Push and Pop modes0);
G 1)

)

if (PopMode && Push) {
fprintf(stderr,"Cannot be in BOTH Push and Pop modes0);
exit(1);

)

if (Pop && Regtx)
PopMode = 1;

if (Pop)/* just decrement SWP */
ShiftDown(SWP);

if (Push && Regtx)
PushMode = 1;

if (! (PushMode il PopMode) )
/* not just jet */
return(0);
/* OK, So now we are in either PushMode or PopMode */
/* it is up to the Push and Pop functions to get us out



iocusim.c - 148 -

of it */
}

ALUinst(phase)
int phase;

/* test if an ALU instruction is in named piiase of istack */
if (phase > PIPELEN ) {
fprintf(stderr,"Only %d pipestagesO,PIPELEN);
exit(1);
)

if (istack{O]{phase} == OxF )
/* Transport or Control Instruction */

return(0);
else
/* ALU instruction */
return(1);
)
LDSTinst(phase)
int phase;

{
/* test if 2 LD, LDSR or ST instruction is in named phase of istack */

if (phase > PIPELEN ) {
fprintf(stderr,"Only %d pipestages0,PIPELEN);
exit(1);

if (istack[O][phase] 1= OxF )
return(0); /* ALU instruction */

if (istack{1][phase] = 0x01)
/* LD Instruction */
rerurn(1);

if (istack[1](phase] = 0x03)
/* ST Instruction */
return(l);

if ((istack{1]{phase] & 0x04) == Ox04)
/* LDSR Instruction */
return(1);

fprintf(stderr,"Unidentified instruction - bye0);
} exiu(l);

Id (slreg, mmureg, phase)
int slreg, mmureg, phase;

/* phase 2 is decode phase mmuop always sent out on decode phase */
/* slreg and mmureg are set up during PhiA */

switch (phase) {
case 2: mmuop = LD;

break;
case 3: regbusrw(READ,slreg, CWP,S1B);
outbus = slbus;

break;
case 4: mmubus = inbus;

regbusrw(WRITE,mmureg, CWP,MMUB);

return(0);
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ldpc (mmureg, phase)
int mmureg, phase;

/t
* LDPC is a special case of LDSR (to follow)
*/
switch (phase) {
case 2: mmuop = LDPC;
break;
case 4: mmubus = inbus;
regbustw(WRITE,mmureg, CWP,MMUB);

return(0);

ldsr (stNum,mmureg, phase)
int stNum, mmureg, phase;

{
switch (phase) {
case 2:
if (stNum = 0) mmuop = LDRO;
if (stNun: == 1) mmuop = LDRI;
if (stNum == 2) mmuop = LDR2;
break;
case 4; mmubus = inbus;
regbusrw(WRITE,mmureg, CWP,MMUB);

veturn(0);
}

1di (mmureg, phase)
int mmureg, phase;

{
switch(phase) {
case 2: mmuop = LDI;
break;
case 3:
mmubus = inbus;
regbusrw(WRITE,mmureg, CWP,MMUB);
/* set global flag and register for use by IU */
mmuaddr = mmureg;
return(1); /* cancel currently decoding instruction */

return(0);

st(slreg, mmureg, phase)
int slreg, mmureg, phase;

{
switch(phase) {
case 2: mmuop = ST;

break;

regbusrw(READ,s1reg, CWP,S1B);
outbus = slbus;
break;

case 4: regbusrw(READ,mmureg, CWP,MMUB);
outbus = mmubus;

case 3:

return(0);

)

jmp(sireg, phase)
int slreg, phase;

{
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/* jmp is delayed by three instructions */
switch(phase) {
case 2: mmuop = JMP;
break;
regbustw(READ,s1reg, CWP,S1B);
outbus = slbus;

break;

return(0);

case 3:

jsr(slreg, phase)
int slreg, phase;

{
switch (phase) {
case 2: mmuop = JSR;

break;

regbusrw(READ, slreg, CWP,S1B);
outbus = slbus;
break;

/* jsr is delayed by 3 instructions */

case 6:

case 3:

ShiftUp(&CWP);
/* Delayed return -- 1 instruction word following it is executed.
* Taking into account pipeline delay to Execute Pipestage
* of following instruction
*/

}
return(0);
}

bra(offset, phase)
int offset, phase;

{
/* branch is delayed by 3 instructions */
switch (phase) {
case 2: mmuop = BRA;
brealk;

M & offset;

)
return(0);

case 3:

rty(s1reg,phase)
int slreg, phase;

{
switch (phase) {
case 2:
mmuop = RTN;
break;
case 3:
regbusrw(READ, slgeg, CWP,S1B);
outbus = slbus;

jed fetum -- Ligghruction following it is executed.
ifite W.Wpeline delay to Execute Pipestage
Nction

" ShiftDown(&CWP);
/* CWP has to change on following PhiA
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* but this will suffice because in this emulator
* pipestages are executed sequentially from 1 - 5
*/

}
return(0);

skponcisireg, phase)
int slreg, phase;
{

int Isb;
switch (phase) {
case L mmum = SKPONC:
break;

case 3,
fagbusrw(READ,slreg.CWP.SlB);
if( slbus & Ox01) {
/* return 1 if we are to skip next instruction */
return(l);

} ek
return(0);

ShiftUp(WindowPtr)
int *WindowPtr;
{

*WindowPir = *WindowPir << 1;
if(*WindowPtr > 8)
*WindowPir = I;
)

ShiftDown(WindowPu-)
int *WindowPy;

if (*WindowPtr — 1)
*WindowPrr = §;
else
*WindowPitr = *WindowPir >> 1;
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/ﬁ

* File: opcodes.h

”

* Purpose: defines for ARC opcodes
*

/‘
3 operand ALU instructions:

OP S2 S1 DST/cond
*/
#define ADD_OP 0x0
#define AQ_OP 0x2
#define AWC_OP 0x8
#define SUB_OP Ox1
#define SQ_OP 0x3
#define SWC_OP 0x9
#define AND_OP 0xS
#define OR_OP O0xB
#define XOR_OP 0x7

#define BIN_OP 0x6
#define BEX_OP OxA
#define SET_OP © Ox4
/t
2 operand ALU instructions:
OP OP S1 DST
*/
#define NOT_OP O0xEC
#define ROR_OP 0xD8
#define ROL_OP 0xC8
#define SR_OP 0xDO0
#define SRC_OP 0xD4
#define SL_OP 0xC0
#define SLC_OP 0xC4

#define ROL8_OP 0xE0

/ﬁ
Other instructions:

MMU_OP S1 MMU
*

#define LD_OP OxF1
#define LDPC_OP OxF7
#idefine LDSRO_OP  OxF4
#define LDSR1_OP  OxF5
#define LDSR2_OP  OxF6

{define LDI_OP 0xFD
#define ST_OP 0xF3

#define JMP_OP OxFB
#define JSR_OP OxF9
#define BRA_OP OxFA
#idefine RET_OP 0xF8

#define SKPONC_OP 0xFO

/t
these are the internal mmu op codes and the op codes sent
to the external mmu;
iocntrk: 4 bit signal sent off chip describing what is
requested from external memory controller

*/
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#define LD
#define LDPC
#define LDR2
#define LDR1
#define LDRO
#define ST
fidefine IMP
#define JSR
#define PUSH
#define BRA
#define RTN
#define POP

001
007
006
005
004
003
013
011
014
012

010

016

- 153 -

/* functions External Mem controller does nothing with */

#idefine LDI

#define SKPONC 000
#define NOMMU 017

015

Appendix A
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APPENDIX B: ARC Implemcntation of Example Algorithms
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/* In place Bubblesort algorithm */
BubbleSort(A asize)
int A[ASIZE], asize;
{
int i, deepest;
int moves = 1;
int temp;

deepest = asize -1;
while (moves) {
moves = 0;
for (i=0; i< deepest; i++) {
if (A[i] > A[i+1)) (
temp = Ali];
Ali} = Ali+1});
Ali+1] = temp;
moves = i;
)
}

deepest = moves;

Fig. 6.1 a) Bubblesort algorithm in ’'C’
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# ARC code for Bubblesort algorithm:

#
# Register allocation:

# (RO and R1 are parameters to Bubblesort function)

#RO: A

#R1: asize

FR2: i

#R3:  deepest

# R4: moves

#RS:  temp

#
SUB R2R2 R2
AQ 1 R2R4
SQ 1 RIR3
AQ 0 RORO

WHILE:
AQO R4RS
SET =0 RS
NEG RS RS
SKPONC RS
BR END
SUB R4 R4 R4

FOR:
AQOR2RS
AQORORO
SET >=RS5 R3
SKPONC RS
BR WHILE
AQOR3 R4
AQORORO
ADD RO R2 R6
LD R6 R5
AQ 1 R6R9
LD R9 R7
AQORSRS
SET <= R8 R7
SKPONC RS
BR FOR
AQ1R2R2
AQORORO
AQORORO
ST R6 R7
SQI1R2R4
BR FOR
AQ 0 RO RO
ST R9 RS
AQORORO

END:
RET
AQORORO

i=0;

moves = i +1;
deepest = asize-1;
NOP

temp = moves;
set if temp =0

skip if reg S bit 31 == 1
relative branch to END:
moves = 0;

temp = i;
NOP
(i >= deepest) ?

end of for loop ?
Deepest = moves
NOP

R6 = &A[i]

temp = Ali};

R9 = &A[i+1]

R7 = A[i+1]

R8 =RS

set R8.31 if R8 <= R7
R8.31?

exchange not necessary
i+

NOP

NOP

Afi} = Ali+1};

moves = i-1;

NOP
Ali+1] = temp;
NOP

Return From Subroutine
NOP

Fig. 6.1 b) Bubblesort Algorithm in ARC Mneumonics
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Multl6(mplicand, mplier,product)

int mplicand, mplier, *product;

{

/* 16 bit multiply of positive numbers */
int temp;

int neg = 0;

*product =0;

if (mplicand < 0) {
neg = !neg;
mplicand = 0 - mplicand;
}
if (mplier < Q) {
neg = !neg;
mplier = 0 - mplier;
}
if (mplicand < mplier) {
temp = mplier;
mplier = mplicand;
mplicand = temp;
}

while (mplier != 0) (
if ((mplier & 01) == 01)
*product = (*product) + mplicand;
mplicand = mplicand << 1;
mplier = mplier >> 1;
)
if (neg)
“product = 0 - *product;
return(*product);

Fig. 6.2 a) Multiply Algorithm in 'C’
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#

# ARC code for 16-bit multiply function

#

# Registers:

# 0: Multiplicand

# 1: Multiplier

# 2: product

# 12: temp reg

# 13: negative flag (negate result?)

# 14: temp reg

# 15: temp reg

#

MULT:
SUB R13 R13 R13 Neg=0
SUB R15 R15R15 R15=0
SKPONC RO RO (Multiplicand) -ve?
NEG R13 R13 R13 = IR13
SKPONC R1 Multiplier -ve?
NEG R13 R13 R13 =IR13
NOT RO R14 R14 = IR0
SKPONC R14
SUB R15 RORO RO =0 -R0;
NOT R1 RM4
SKPONC R14
SUB R15 R1R1 R1=0-R1;

WHILE:
AQORI R4 R14 =R1
SET =0 R14 Multiplier == 0?
SKPONC R14
BR ENDWHILE
AQ 1 R15 R15 R15=1
AND R1 R15R12 R12 = multiplier & 01
ROR R12 R12 ror 1 to sign bit
NOT R12 R12 inverse logic
SKPONC R12
ADD ROR2 R2 Product += Muiticand
BR WHILE
SHL RO RO Multiplicand << 1;
SHR R1 R1 Multiplier >> 1
NOT R13 R14 R14 = Ineg

ENDWHILE:
SKPONC R14 skip if !neg
SUB RIS R2R2 Product = 0 - Product
RET
NOP

Fig. 6.2 b) 16 Bit Multiply in ARC Mneumonics
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factorial(num)
int num;
/* returns num! */

{
int i, torial, temp;

torial =1;

- 159 -

for (i=2; i<=num; i++)
torial = Mult16(torial, i, &temp);
printf("Factorial of %d is %d0,num,torial);

Fig. 6.3 a) Factorial Algorithm in *C’

#
# ARC code for factorial function
M .
# Registers;
# 0 number (Parameter)
# 1: i
# 2: torial
# 3: address of Multl6
# 4 temp reg
#
FACTORIAL:
SUB R1 R1 Rl i=0;
AQ 2R1Rl i=2;
SUB R2R2 R2 torial = 0;
AQ1R2R2R2 torial = I;
WHILE:
AQOR1R4 R4 =i;
SET <= R4 RO i-<= number?
SKPONC R4
BR ENDWHILE
AQOR8 R2 R8 = torial (setting parameters for Mult)
AQOR9RI1 RO =i "
JSR MULT16
NOP NOP NOP
BR WHILE
NOP NOP
ENDWHILE:
RET
NOP

Fig. 6.3 b) Factorial Algorithm in ARC Mneumonics
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MultiplyMatrix(A,B,C,arows,acols,brows,bcols)
int arows, acols, brows, beols;

int A[AROWS][ACOLS];

int BIBROWS]{BCOLS];

int CTAROWS][BCOLS];

{

int i, j, ai, bi, aj, bj;

int product;

for (i = 0; i< arows; i++)
for (j=0; j<bcols; j++) {
Clilfjl = 0;
/* loop for calculation of Cij */
/t
* During this part:
* ai =i; aj =0; bi = 0; bj = j;
*/
for (aj =0; aj < acols; aj++)
Clil[j] += Mult16(Ali]{aj], B(ajl{jl, &product);

Fig. 6.4 a) Matrix Multiplication Algorithm in 'C’
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# ARC ‘code for Matrix Multiplication of vadable

# sized matrices:

# C[arows][bcols] = A(arows][acols] X B{brows](beals]
#

# Register allocation:
# (RO thrz R6 aro parameters o Bubblesart function)
#RO: A RS: Multiplicand Parameter to Multl6
#R1: B R9: Multiplier Parameter
#R2: o4 R10: Product Parameter
#R3: arows
# R4: acols
#RS: brows R13 CEHlIi)
#R6: beaols R14: 8
#R7: i R1S: j
MATMULT:
SUB R7 R7 R7 i=0
SUB RIS R15 R1S im0
SQ1R7R7 im-1;
SQ 1 RIS R1S jm-l;
FORI: AQ1R7R7 +4i;
AQOR7R9
SET <R9 R3 i < arows ?
SKPONC R9
BR END if not goto END
NOP
FOR2: AQ 1 RISRIS ++ji
AQORISRY
SET <R9R6 j <beols ?
SKPONC R9
BR FOR1 if not goto FOR1
NOP
AQORG6RS (parameters for MULT16)
AQOR7R¢
JSR MULT16 Ri0=R8 * R9
NoP 3 instns in delayed branch
SUB R13R13 R13 R13 = C[i]j] = 0;
SUB R14 R14 R14 aj = 0;
FOR3: AQORI4RS
SET <R8 R4 aj < acols ?
SKPONC R8
BR FOR2 if not goto FOR2
AQOR7R9 ’ R9 = i (parameter for MULT)
AQOR4 R8 RS = acols (parameter far MULT)
JSR Mult16 R10 = R8 * R9
NOP
ADD RO R14 R12 Ri2= A +3aj
ADD R10 R12R12 R12 = &A[i}{aj];
LDRi2R12 R12 = A[ij§%
AQORI14R8 R8 = aj (parameter for MULT)
JSR MULT16 R10=R8 *R9
AQOR6R9 R9 = beols °
ADD R1 R15 R11 Rll =B +j

ADD R10RI11 Rl
LDRI11 Rl
AQORI1RS

JSR MULT16
AQORI2R9

Nop

Nop

ADD RI10 R13 R13
ADD R1S R2 R12
JSR MULT16
AQOR7R9
AQORG RS

Nop

BR FOR3

AQ 1 RI4R14

ST R10R13

NoP

RET

Nop

Fig. 6.4 b) Matrix Multiplication in ARC Mneumonics

R11 = &B(aj](j]

R11 = B{aj)(j]
panmetet for MULT
R10=R8*R9
panmeter for MULT

R13 = Cfi]{j]
R12=C+j

g« & Cli]Gi}
panmeter for MULT

b+
save Cli]{j]
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