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Abstract

Process data suffers from many different types of imperfections, for example, bad data 

due to sensor problems, multi-rate data, outliers, data compression etc. Since most 

modeling and data analysis methods are developed to analyze regularly sampled and 

well conditioned data sets there is a need for pre-treatment of data. Traditionally 

these imperfections have been viewed as unrelated problems and dealt individually. In 

this thesis we treat these diverse problems under the general framework of ‘treatment 

of missing data’. A vast amount of literature on the statistical analysis of data with 

missing values has flourished over last three decades mainly dealing with statistical 

surveys and biomedical data analysis. Therefore, the objectives of this study are to:

(i) establish the link between the missing data literature and the process data analysis, 

so that the process engineering community can take advantage of these methods,

(ii) extend some of the commonly used process data analysis tools using these formal 

methods for building models from data matrix with missing values and (iii) implement 

novel applications of missing data handling techniques in solving problems which may 

not appear as missing data problem directly.

This thesis has two main parts. Part-I of this thesis deals with ‘off-line’ mod­

eling of ‘latent variable models’. Principal Component Analysis (PCA), Iterative- 

PCA (IPCA) and Maximum Likelihood Factor Analysis (MLFA) are extended to the 

Data Augmentation framework for dealing with missing values. Missing data han­

dling techniques have been applied to synchronize uneven length batch process data 

and recover the correlation between compressed signals. Data pre-processing issues 

other than missing values have been dealt with in relation to an industrial case study 
where PCA was used to detect sheet-breaks in a paper mill.

Part-II of the thesis deals with the ‘on-line’ filtering problem. The Sequential 

Monte Carlo (SMC) filter is extended to a Multiple Imputation framework for updat­
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ing the filter with multi-rate measurements.
The improved performance of the proposed methods have been demonstrated 

using simulated examples, experimental data and industrial case study.
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Chapter 1 

Introduction

Data driven methods are now extensively used in process industries for identification 
and monitoring purposes. Such methods require well conditioned data, i. e., regularly 
sampled, uncompressed or raw data that is properly time synchronized, has no bad 
values and without any outliers. However, it is common to encounter imperfection in 
process data. Some of the common causes that lead to imperfect data are:

Bad values due to sensor problems: Measurements may get corrupted due to failure 
of the measurement device and/or errors in data management. Common causes that 
lead to bad data axe, sensor breakdown, measurement outside the range of the sensor, 
data acquisition system malfunction, energy black outs, interruption of transmission 
lines, wrong format in logged data, glitches in data management software, data storage 
errors etc. Some of these phenomena are illustrated in Figure 1.1. It shows a pressure 
signal where the measurement occasionally exceeded the range of the sensor, with 
missing values on a few occasions.

Multi-rate data: Sometimes data may not be available at the required time interval 
because of the nature of the sensors or the strategy of sampling, for example, quality 
measurements that come from an analyzer have lower sampling frequency compared 
to measurements such as temperature, flowrates, and pressure. Figure 1.2 shows com­
position measurement from an analyzer with 5 mins sampling interval where the rest 
of the variables are logged in every 1 min. In the Distributed Control System (DCS) 
a ‘zero order hold’ is applied to the measurements and measurements are supplied 
to the controller at every 1 min interval. In case of lab analysis where samples need 
to be collected manually, the measurement frequency may be completely irregular, 
asynchronous and there will also be a time lag between the instant the measurement is 
available and the actual sampling time. Measurements with different sampling rates 
axe often collected in a single data matrix for monitoring or identification purpose 
and referred to as multi-rate data.

1
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Figure 1.3: Typical signature of compression; the decompressed signal has many linear 
segments

Outliers in data: In robust analysis of data, outliers or observed values which 
lie far from the normal trend of the data, are often discarded. Often these missing 
values are filled using linear interpolation or using the adjacent data point. However, 
depending on the dynamics of the process these reconstructions may not be optimal.

Data Compression: Compression is encountered if archived data from the data 
historian are used for analysis. In order to save disk space or enhance data trans­
mission, process data are usually compressed before archiving in the data historian. 
Various reconstruction methods are used to decompress such data. The typical sig­
nature of compression is shown in Figure 1.3. The reconstructed signal has many 
linear segments. Only the inflection points are raw values, all other points are in­
terpolated values from these raw values. It has been shown that such reconstructed 
data axe not even suitable for calculating basic statistics or performance index calcu­
lations (Thornhill et al. 2004).

Until now these problems have been viewed as separate problems and dealt with 
individually. The general approach to these problems is to discard the imperfect 
data totally (i. e., discard the complete row meaning all values in a particular time 
stamp even if a single value is corrupted in a row) and only work with the complete 
data set. Sometimes ‘linear interpolation’ or ‘zero order hold’ devices are used to 
give the data a complete makeup. Most of the commercial software also deal with 
the problem in a similar manner. The justification for such an approach is that the 
sampling rates in the process industries are quite high and with the improvements 
in instrumentation and IT infrastructure large archived data banks are available.

3
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Therefore, one can afford to discard incomplete portions of the data and build a 
model using only complete data. However, in reality this may not always be possible, 
for example, if multiple grades axe produced in a process then there is a need to divide 
the data according to different grades, or in time varying processes the model needs 
to be updated with the most recent data, or when only few laboratory measurements 
axe available to build an inferential sensor. Moreover, it is now commonplace to use 
multivariate rather than univariate techniques for process monitoring and control. 
Deletion of the entire row or time stamp for a single missing value or only a few 
missing values can lead to discarding a laxge portion of the otherwise rich data matrix. 
In this context it is also important to use statistically valid methods so that the true 
correlation structure of data is retained. Such methods must be capable of dealing 
with missing values in a multivariate framework. Alternative less rigorous or ad 
hoc methods such as, straight line interpolation, zero order hold, substitution of 
conditional expectation etc. to reconstruct imperfect data give good results in some 
situations while in other cases may completely destroy the correlation structure and 
badly bias the estimated parameters.

In this study we propose a unified approach for dealing with this diverse set of 
problems. Despite the apparent differences all these causes affect the data matrix in 
a similar manner and fall broadly under the topic of ‘Treatment of Missing Data’.

The treatment of missing data has received much attention in the statistical litera­
ture. Missing values occur mainly in statistical surveys when respondents may choose 
not to answer all the questions. The properties of missing data and its impact on data 
analysis have been studied rigorously and many formal methods have been developed 
to deal with this problem, for example, Expectation Maximization (EM), Data Aug­
mentation (DA), Multiple Imputation (MI) etc. These methods are commensurate 
with the objectives of multivariate analysis, they conserve the correlation between the 
variables and have been used to solve a wide range of problems, even problems unre­
lated with missing data. For example, the Expectation Maximization (EM) algorithm 
which was developed for dealing with missing data has also been used to estimate 
latent variables, where the unobserved latent variables axe considered as missing. In 
this work we have adopted ideas and techniques of missing data handling methods 
from statistics and surveys. However, there axe major differences in the treatment of 
missing data between surveys and the process industry. In surveys the data collector 
and the analyst axe two different entities and the collected data ends up in large data 
base. Typically the data collector has access to more information than the analyst. 
In filling the missing values, the data collector uses this information and provides a 
complete ‘make-up’ to the data set, so that a variety of potential users can reach cor-
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rect conclusions irrespective of the analytical tools. In contrast to this, in the process 
industries data is automatically archived in the process historian and typically the 
engineer/analyst is the only user of the data. Therefore it is not important to fill the 
data, rather it is important to treat missing data in a way that is compatible with 
multivariate analysis. The main objective of the current study is to modify commonly 
used process monitoring methods to handle missing data in a statistically correct and 
meaningful way that will lead to correct inference from our analysis. Our goal in 
this work is to develop and propose methods that are easily understandable and have 
the potential of being accepted by the engineering community at large. Therefore, in 
developing different methods our emphasis is to keep the amount of statistical theory 
and derivation to minimal and use different computational based methods instead. 
Because of the availability of powerful computational devices in recent years there 
has been a renewed interest in the use of computational techniques, for example, 
Markov Chain Monte Carlo (MCMC) methods, various re-sampling methods such as 
Sequential Important Re-sampling (SIR) etc. Throughout the thesis we have used 
these ideas extensively for developing the new algorithms. The main areas of research 
are:

1.1 M issing data handling in latent variable m od­
els

In this thesis we axe mainly concerned with the impact of missing data on process 
monitoring tools especially because these are common cause models and identified 
from normal operation data. It is more likely that there would be bad data during 
normal operation than periods when an identification experiment is being carried out. 
Principal Component Analysis (PCA) is the most commonly used method for process 
monitoring. Therefore a main focus of this study is on problems arising due to missing 
data in PCA based modeling. PCA deals with ‘measurement errors’ and ‘latent vari­
ables’ and thus belongs to a broader class ‘measurement error latent variable models’. 
Besides PCA several other methods are available to deal with such class of problems. 
Though PCA is the most popular method in process monitoring it may not be the 
optimal method depending on the nature of the problem. Each of these methods 
has implicit or explicit assumptions and performs better over the range where the 
process best matches the assumptions of the method. Before extending the methods 
for dealing with missing data it is important to classify the methods and explore 
different explicit and implicit assumptions. This is essential as different assumptions 
require different kinds of treatment and the missing data extension of the algorithms
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are also different. We also classify processes in the context of process monitoring and 
recommend latent variable methods that are best suited for each class. In this study- 
several limitations of the current methods for dealing with missing data in PCA are 
pointed out. To overcome these limitations we extend PCA to the Data Augmenta­
tion framework for dealing with missing data. We also use similar methodology to 
extend Iterative PCA (IPCA) and Maximum Likelihood Factor Analysis (MLFA) for 
dealing with missing data. These methods have better optimality criteria and the use 
of these methods can be advantageous in certain situations.

We also demonstrate the application of these latent variable based missing data 
handling techniques in two different situations which are not apparently missing data 
problems. Our objective is to show that the missing data handling technique is not 
necessarily limited to dealing with missing values but it can also be useful for a wide 
variety of problems. The first example is the synchronization of the uneven length 
batch process data. Monitoring of batch processing is important as typically batch 
processes are used for producing high value added products. In batch monitoring 
the objective is to monitor the variation of a new batch and compare it with the 
average batch trajectory. Therefore data from different batches need to be included 
in the analysis. However, different batches may have different completion times and 
therefore the data lengths may be different. So there is a need for synchronizing 
uneven length batch data records for building an effective monitoring scheme. Syn­
chronization of uneven length batch data sets creates some gaps in data matrices 
from shorter batch runs. Most of the methods currently use ‘zero order hold’ or ‘lin­
ear interpolation’ for filling these gaps. These may not be satisfactory for multivariate 
analysis. The objective of this study is to investigate the utility of iterative missing 
data technique for building multi-way PCA from such data.

1.2 Com pression as a m issing data problem

The other novel application of missing data handling technique is to restore the 
correlation structure of compressed data and then build models from such data sets. 
Process data are commonly archived in compressed form in the data historian. Data 
compression has been known to distort univariate statistics. However, the effect of 
compression on multivariate data analysis has not been studied so far. In this study 
a systematic study has been carried out on the impact of compression on multivariate 
data analysis including its correlation structure, the fidelity of PCA model and the 
quality of the model in terms of its capability to accurately represent process dynamics 
etc. In this study we characterize data compression from a missing data point of view
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and formulate data compression as a missing data problem. We also apply an PCA 
based iterative missing data handling technique to restore the true correlation of 
compressed data set.

1.3 Pre-processing of data

In addition to dealing with missing data there are other issues that need to be ad­
dressed during the data pre-processing stage, for example, variable selection, selection 
of normal operating regions, accessing data quality and choosing the right data seg­
ment with appropriate excitation pattern, scaling, handling of multiple grades etc. 
Though often overlooked, the success of a monitoring scheme largely depends on how 
these issues are resolved during the preprocessing stage. We address these issues in 
connection with an industrial case study. This study is concerned with the analysis of 
process data to diagnose causes of sheet-breaks and therefore significant down times. 
PCA is used to model the process and a combined index based on the Hotelling T2 
and Squared Prediction Error (SPE) is developed as a sheet-break predictor. As the 
process is subject to external disturbances, grade changes and frequent interruptions, 
pre-processing of the data played an important role in getting consistent results. We 
use several novel techniques for data selection, scaling and modeling. The models are 
validated using a large validation data set with known fault conditions. The developed 
model, data visualization tool and engineering judgement are used for off-line diag­
nosis of root causes of sheet-breaks. Several operational changes were recommended 
and implemented on the process, resulting in significantly reduced sheet-breaks. Key 
Performance Indicators calculated before and after the changes show the significant 
economic gain as a result of this ‘data-mining’ project.

1.4 M issing data handling in SMC m ethods

Until now we have discussed the missing data and pre-processing issues of ‘model-free’ 
and ‘off-line’ analysis. Handling of missing data efficiently is also equally important 
for ‘model-based’ and ‘on-line’ analysis. On-line estimation of unmeasured states 
is an important problem in process industries, primarily because knowledge of such 
states lead to better control. Due to the advancement of computational devices there 
is renewed interest in methods based on sampling theory. Calculations in the sample 
space has several advantages, e. g., it can handle non-linearity and non-Gaussianity 
in the data very efficiently. However, the methods are not yet popular in process 
industries as the application details axe missing in the literature. We investigate the
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issues related to the tuning of the Particle Filter and also extend state estimation 
method to Multiple Imputation (MI) framework for dealing with multi-rate data.

1.5 Organization of the thesis

The dissertation is written in ‘paper’ or ‘publication’ format. Much of the material 
developed in this thesis have appeared in three peer reviewed conference papers and 
two journal papers. At the time of this thesis preparation another journal paper is in 
review stage. Since much of the material has been taken and edited from these publi­
cations there are some repetitions and overlaps between different chapters. However, 
each chapter is self contained and can be read more or less on its own. Chapter 1 pro­
vides a general introduction and describes the scope of the thesis; Chapter 2 contains 
the literature review of important definitions, concepts and techniques of missing 
data handling techniques. A majority of the references reviewed are from the field of 
statistics, surveys and economics. An effort has been made to explain these concepts 
in easily understandable terms to the engineering community. The relevance of these 
concepts to process data analysis has also been explored. Chapters 3 to 6 contain the 
new developments and contributions of this thesis. We can divide these chapters in 
to two parts: Part-I is on the ‘model-free’ analysis (i.e., no model has been identified 
previously) and Part-II, model-based analysis. In Part-I of the thesis, Chapters 3 
through 5, the main focus is ‘measurement error latent variable models’. Handling of 
missing data as well as the impact of the pre-processing step in general are the main 
topics of these chapters. In Chapter 3 we explore the characteristics of the ‘mea­
surement error latent variable models’ and extend them in the Data Augmentation 
framework to deal with missing data. In Chapter 4 the problem of reconstruction of 
data from compressed data records has been dealt. Data compression has been for­
mulated as a missing data problem and the correlation between variables are restored 
by using the missing data handling technique. Chapter 5 deals with different data 
pre-processing techniques other than missing data. This is essentially an industrial 
case study investigating the root causes of sheet-break. Part-II of the thesis com­
prises of Chapter 6 where the focus is on investigation of ‘model-based’ and ‘on-line’ 
methods. In this chapter different implementation issues of Sequential Importance 
Re-sampling (SIR) or Particle Filter are described. Particle Filters can estimate the 
states of non-linear and non-Gaussian systems without any approximation when the 
number of particles tends to infinity. However, the method is not popular in industry 
because the tuning of the particle filter is not easy and its implementation details are 
missing in the literature. We investigate several implementation issues and propose
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novel techniques for tuning the Particle filter and dealing with multi-rate data in the 
application of Particle Filter. Finally, Chapter 7 is the concluding chapter where we 
summarize the main contributions of this thesis.
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Chapter 2 

R eview  of M issing D ata Handling 
Techniques

Treatment of missing data is usually not the main focus of analysis. It is something 
that has to be dealt with during analysis because most data analysis or modelling 
methods are originally not designed to handle missing values in the data matrix. Use 
of ad hoc methods to deal with missing data may produce biased, inefficient and un­
reliable results. Over the last three decades a vast amount of literature has emerged 
in the statistical literature dealing with the treatment of missing data with applica­
tions in biostatistics, chemometrics, etc. Several important definitions and concepts 
have emerged to systematically analyze missing data. Commonly used methods for 
treating missing values include Complete Case Analysis(CCA), Available Case Analy­
sis (ACA), Single Imputation, Multiple Imputation, Expectation Maximization(EM) 
and Data Augmentation (DA). The main objective of this chapter is to review these 
concepts and the methods for dealing with missing data and establish the link with 
process data analysis. Some of the relevant concepts and methods are described 
below:

2.1 Patterns of M issing D ata

Sometimes it is beneficial to sort the columns containing missing values into orderly 
patterns. Historically, survey methodologists have classified different patterns of miss­
ing data encountered in surveys. For example, unit nonresponse, which occurs when 
the entire data collection procedure fails (because the sampled person is not at home, 
refuses to participate, etc.), item nonresponse which means partial data are available 
(e.g., the person participates but does not respond to certain individual items) are 
two such classifications. In longitudinal studies (e.g., for drug trials) towards the end
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there are dropouts for different reasons and the collected data from subjects are of 
uneven length. Such data can be ordered to a monotone pattern (Little and Rubin 
2002).

In process data analysis missing values are encountered because of reasons different 
than surveys, however the patterns can be very similar to those found in a survey. 
The different patterns commonly encountered in survey studies are shown graphically 
in Figure 2.1 where Y  denote an(N x  k) rectangular data set without missing value.
The i-th row is denoted by yt = (yu ,  , yik) and any element y{j is the value of
variable Yj for subject i. Figure 2.1(a) is an example when all the missing values 
belong to one variable. In process industries this typically happens when the sensor 
breaks down for a long period of time. Figure 2.1(b) is an example of unit non­
response, an analogous situation in process industries is when the process is down due 
to a fault condition (e.g., sheet-break in a pulp and paper mill), the only available 
information are the time stamps. This is especially a problem for building dynamic 
process model. The uneven length batch data can be arranged into the monotone 
pattern as shown in Figure 2.1(c), each of the columns would be a matrix of variables 
from different batch runs. Figure 2.1(d) is a general pattern where the short missing 
points may due to outliers removed for robust analysis and the long periods can be 
due to sensor downtime. The orderly pattern of missing values shown in Figure 2.1(e) 
is a unique signature of multi-rate data. The variable with missing value may be a 
quality variable such as, concentration which are measured less frequently in process 
industries. Figure 2.1(f) is a special representation of measurement error or latent 
variable model in missing data format where all the unobserved true values, X  are 
considered as missing.

2.2 M echanism  for M issing D ata

Missing values occur for reasons beyond our control. In statistical surveys often the 
data analysts do not have the information of what may have caused the data to be 
missing. However, for analysis purpose assumptions are made about the reason for 
missing data. These assumptions are usually untestable. If the assumptions are good 
then similar conclusions will follow from a variety of realistic alternative assumptions. 
Rubin (1976) laid out a probabilistic framework for the missingness mechanism and 
obtained the weakest condition under which it is appropriate to ignore the process 
that may have been the cause of missing data.

Let Y  =  (yij) denote an (N  x k) rectangular data set of which some of the values 
are missing. Missing values are denoted by Ymis and observed values are denoted by
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a b c

Figure 2.1: Examples of Missing Data patterns. Rows correspond to observations
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Yobs- In concise form it is represented as Y  =  [Yobs, Y m is]. This is a general notation 
used in missing data literature which is also followed in this thesis. It does not mean 
that observed and missing data are in two different blocks, rather missing values are 
distributed all over the data matrix. For any data set, a matrix M  =  (my), referred 
as missingness matrix, identifies what is known and what is missing. Each element 
of M  is usually a single binary item indicating whether ytj is observed (m^- =  1) 
or missing (m^- =  0). In the statistics literature, missingness is treated as random 
phenomena. The distribution of M, called missingness mechanism, is characterized 
by the conditional distribution of M  given Y, p(M\Y, 4>), where <f> denotes parameters 
unrelated with Y . Based on different conditionality the mechanism of missingness 
have been classified into three classes (Rubin 1976):

1. Missing Completely At Random (MCAR)

In this case missingness does not depend on any part of the data Y  either 
missing or observed.

p{M\Y,<t>) = p(M\<j>)

This does not mean that the pattern has to be random, rather the pattern does 
not depend on the values of the data matrix. Some examples from process data 
would be, regularly sampled multi-rate data, missing data due to sensor failure 
etc.

2. Missing At Random (MAR)

This is a less restrictive assumption than MCAR and the weakest condition un­
der which the missingness mechanism can be safely ignored while reconstructing 
the missing data. In this case missingness depends only on the observed com­
ponent Yobs and not on the missing component Ymia.

p(M\Y,<t>)=p(M\YAa,<l>)

For example, in some cases where measurement of quality variables are costly 
and time consuming, the condition measurements are taken regularly and the 
quality variables are measured only when these condition variables indicate that 
the process is drifting away from the normal operating region. Thus missing 
values are not systematically different from observed values during normal op­
eration and a model based on observed data can be used to estimate the quality 
variables.
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3. Non Ignorable Mechanism (NI)

If the mechanism of missingness is dependent on values of both the observed 
and the missing part of the data then the mechanism is Non Ignorable. This is 
the most restrictive assumption. In this case the underlying reason that caused 
the missing data has an effect on the inference and has to be included in any 
analysis. For example, in the process industry sometimes data axe not recorded 
because they are outside the range of the sensor. These censored data may be 
systematically different from observed data and a model based on the observed 
data is often not valid in that region.

A graphical representation presented by Schafer (1997) showing the difference 
among the above three classes is very appealing to intuition. Here we present it 
(Figure 2.2) with a slight change in notation and in a more generalized form. The 
straight line represents the link between different components, an absence of straight 
line signifies that the components axe unrelated. Figure 2.2(i) is a representation of 
MCAR showing that any missing value in j-th  variable is related with observed values 
of k-th variable. However, the missingness mechanism or the distribution of M  is not 
related to the values of either Yobs or Ymis. The distribution of M  is related to a 
cause (f> which is completely unrelated with Yobs or Ymis. The mechanisms that lead 
to missing values in process data are limited. In many cases it is possible to make a 
sound guess about the mechanisms of missingness by looking at the pattern or the 
signature of the data. The header information of the tags and the log books may also 
provide additional information about the cause that lead to missing data. Therefore, 
often it is not required to perform tests to classify the mechanism of missingness. 
Rather using logical deduction one can decide whether the missing values can be 
predicted directly from the observed values or the causes of missingness (i.e., <j>) need 
to be included in the analysis.

2.3 M ethods for Treating M issing D ata

Whenever data analysts come across missing values they adopt different methods to 
give the data a complete look. Some of these methods have been formalized and 
appear in widely used statistical software. While some of them are useful, many 
serves only specific purpose, lack theoretical justification and may not provide sound 
solutions in more general circumstances. On the other hand, several methods have 
also been developed which have firm statistical basis and general applicability. In this 
section we will review all methods starting from the very basic data editing to the
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(i) MCAR (ii) MAR (iii)N I

Figure 2.2: Graphical representation of (i)missing completely at random(MCAR),(ii) 
missing at random(MAR) and (Hi) non ignorable (NI) missingness mechanism, <fr 
represents component or causes of missingness unrelated with Y

most advanced methods.

2.3.1 Complete Case Analysis(CCA)

This is more data editing than a method itself, also known as listwise deletion. In a 
multivariate data matrix only those rows which do not contain a missing value are 
kept for analysis while the rest of the values are deleted. The advantages of this 
method are (i) simplicity, since standard complete data statistical analysis can be 
applied without modifications, (ii) provides unbiased estimate of regression parame­
ters when data is MCAR or MAR in many cases and (iii) provides unbiased estimate 
of mean when data is MCAR (Allison 2002). Disadvantages stem from potential 
loss of information by discarding incomplete cases. This loss has two aspects, loss of 
precision and biasing the estimated parameters when the missing-data mechanism is 
not MCAR, and the complete cases are not random samples of from the data ma­
trix rather a block of data from a particular section. The loss in efficiency can be 
particularly large for data sets involving a large number of variables. For example, 
if there are 20 variables and each variable independently has 10% chance of being 
missing , then the expected portion of complete cases is 0.920 =  0.12. That is only 
about 0.12/0.9 =  13% of the total data values will be retained (Schafer and Grar- 
ham 2002). Process data is often dynamic in nature and listwise deletion will distort
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the whole dynamic relationship. In complete case analysis the estimated variance is 
higher than the actual variance. This inflation can be mostly attributed to the small 
sample size (Little and Rubin 2002). Listwise deletion is widely used in process data 
analysis software.

2.3.2 Available Case Analysis(ACA)

Available Case Analysis stemmed from the idea that, one should use as much data 
as possible even for calculation of some of the univariate and bivariate statistics. For 
example, for calculating the mean and the variance of a variable all the available 
data of the specific variable can be used even if the corresponding measurements of 
the other variables may not be available. While calculating the correlation of two 
variables only the common values between the two variables are used. Under MCAR 
the Available Case Analysis gives consistent estimate of most of the univariate and the 
bivariate statistics. However, when considered collectively the estimated covariance 
matrix may not be positive definite. In regression, this creates severe problem when 
the covariates are highly correlated and the performance is remarkably inferior to the 
Complete Case Analysis (Haitovsky 1968). On the other hand, the performance of 
ACA is superior to CCA when the correlation between the covariates is weak (Kim 
and Curry 1977). In Maximum Likelihood (ML) estimate of regression parameters 
ACA gives better estimates even when the normality assumptions are violated (Azen 
and Van Guilder 1981, Little 1988).

2.3.3 Single Imputation M ethods

Imputation, literally meaning attribution, is the practice of filling in missing values. 
These methods first fill in the missing values and give the data a complete look and 
then estimate the desired parameters. Sometimes these two steps are performed iter­
atively in order to have better estimates. Imputation is a general and flexible method 
for handling missing data problems. Imputation produces an apparently complete 
data and allows the data user to analyze using standard methods and software. When 
data are analyzed by multiple users, imputing once prior to all analysis ensures that 
same set of data is being analyzed by each analyst, which facilitates comparison of 
results. However, imputation can give a false sense of completeness of data and the 
implication can be potentially dangerous. Some ad hoc imputation methods can dis­
tort data distributions and relationships. Single Imputation methods can be broadly 
divided into two classes:

1. Explicit Modelling: Imputation models axe based on formal statistical mod-
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els (e.g. multivariate model), and hence the assumptions are explicit. Some 
popular methods of this class are:

Imputing Unconditional Mean

Missing values are replaced by the average of the observed values for that vari­
able. This preserves the mean of the variable, but other aspects of distribution 
are altered with potentially serious ramifications. For example, the 95% confi­
dence interval of the population mean of the variable y is:

y ±  1.96—

where y and S2 are the sample mean and variance and N  is sample size. Mean 
substitution narrows this interval in two ways: by introducing a downward bias 
in S 2 and by overstating N. In addition to reducing variances, the method also 
distorts the correlation structure of the data.

Imputing Conditional Mean

Conditional mean is essentially the regression estimate of a variable based on 
other variables. These regressed values are used to fill the missing values. Let
us consider a regression model for predicting Y  from X  =  (X i ,  ,X p). In a
general setting, values can be missing in both X  and Y. If values are missing 
in Y  the model is first fitted to the cases for which Y  is known. Regression 
coefficients estimated from these complete cases are used to estimate the missing 
Y. Conditional mean imputation is nearly optimal if special corrections are made 
to standard errors (Schafer and Schenker 2000). If data values are missing only 
in the dependent variable Complete Case Analysis gives optimal estimate of 
the regression coefficient. However, the imputed data matrix is not suitable 
for analysis of variance and correlations because the method overstates the 
relationship between X  and Y. In cases where missing values are in A as well, 
two approaches have been used: (i) imputing missing X  by linear regression 
on the observed A ’s, regression coefficients are estimated from the complete 
case. For example, if X \  is observed for m cases (i — 1,...., m) and missing 
for (N  — m ) cases then the regression equation can be written in the following 
form:

E(Yi\Xi2, ...., Xip) — /3o +  (3\X*x +  ^  PjXij

where X*x - E(Xn\X i2 , ...., X ip). Thus, if conditional means X*x are substi­
tuted for missing value of X u, then Least Squares (LS) estimate on the filled- 
in data produces consistent estimates of the regression coefficients, assuming
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MCAR; (ii) imputing missing X  by linear regression on the observed X ’s and 
Y. If the partial correlation of Y  and the missing X 's  given the observed X ’s 
is high, then better imputations can be obtained by including Y  in the pre­
dictor along with the X ’s. However, the LS estimate of regression coefficients 
of Y  on X ’s are biased. Several bias corrected methods have also been stud­
ied (Afifi and Elashoff 1966, Buck 1960). Buck (1960) imputed missing X ’s 
by regressing missing X ’s on the observed X ’s and Y, with coefficients based 
on the complete cases. To correct for the variance estimates the residuals esti­
mated from regression equation were added to the sum squares of the missing 
variables. Later corrections were also applied to the covariance estimates (Beale 
and Little 1975). The corrected version of Buck’s method is closely related to 
the normal Maximum Likelihood Estimates.

Imputing from Conditional Distribution

The distortion in the covariance structure can be minimized if a sample drawn 
from the conditional distribution is imputed instead of the conditional mean. 
In the regression equation instead of imputing Y  a residual error drawn from 
a normal distribution with mean zero and variance estimated by the residual 
mean square is added to the predicted value.

£  =  f t +  / W i +  £ > * #  +  *

where Zi ~  1V(0, erf), with variance erf estimated from the residuals of regression 
of Y  on X  based on complete cases. The addition of the random normal deviate 
makes the imputation a draw from the predictive distribution rather than a 
mean (Schafer 1983).

2. Implicit Modelling: Mostly clustering algorithms are used to find similar data 
sets from the observed cases and fill the missing values. This implies that the 
underlying model and the assumptions are implicit. Popular techniques of this 
class are: K Nearest Neighbor (KNN), Hot Deck Imputation etc.

In KNN-based methods, K  other samples which have similar profile (based on 
the observed variables) are selected. A weighted average is calculated for this 
missing value from the K  nearest samples. The weights are the inverse of the 
similarity distance. Distance measures, such as, Pearson correlation, Euclidean 
distance, variance minimization have been used for weighting (Troyanskaya et 
al. 2001).

Hot Deck imputation is mainly used in surveys. The data from related cases in 
the same survey are used to fill the missing values. To fill a missing value first
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a pool of candidate values are selected. Several distance measures are used to 
measure the similarity, for example, maximum deviation, Mahalanobis distance 
etc. This pool of candidate samples are known as adjustment cell. To further 
select the missing value from within the cell a regression estimate of the missing 
value is calculated. Regression coefficients are based on complete case analysis. 
The value within the cell which is closest to the regression estimate is used to 
fill the missing value. Hot Deck differs from KNN in the sense that, it does 
not use an average instead it uses a sampled value of the specific variable from 
the adjustment cell to fill in the missing value. Several other versions of this 
algorithm are also available (Rubin 1973a, Rubin 19736, Cochran and Rubin 
1973, Colledge and Sande 1978).

2.3.4 M ultiple Imputation

The basic idea behind multiple imputation is to assess the additional variability in­
troduced because of imputations of missing values (Rubin 1977, Rubin 1978a). The 
main feature of multiple imputation is, for each missing data point several values (for 
instance, m samples from the conditional distribution) are imputed (Figure 2.3). 
Thus there would be m complete data sets. Each complete data set is analyzed using 
standard complete-data procedure just as if the imputed values were real data. In a 
survey setting this is most appropriate because the data collector and the analyst are 
often two different identity and the data collector has more information than those 
that axe reported in the data base. Based on the additional information the data 
base constructor can think of different imputation model and use them to fill the 
data. So the analyst will have a chance to use all of these different sets and use it to 
do sensitivity analysis.

The simplest method for combining the results of m analysis is Rubin’s Rule 
(Rubin 1987). Suppose that Q represents a population quantity (e.g. regression 
coefficient) to be estimated. Let Q and VU denote the estimate of Q and the 
standard error one will use if no data were missing. The method assumes that the 
sample is large enough that has approximately a normal distribution, therefore 
Q ±  1.96-\/U has approximately 95% coverage. In the presence of missing data, using 
multiple imputation (MI) m different data sets are created, subsequently there will be 
m different estimates of Q and U, =  l,....m]. Rubin’s overall estimate
is simply the average of the m estimates,

m
Q = m -1J 2 Q U) C2-1)

j=i 
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O bserved  D ata Im putations

1 2 ...... m

? i i i ......n
? i i i ......n

? i 1 . . . . 1 ......□
? i i i ......ri

Figure 2.3: Schematic representation of multiple imputation, where m is the number 
of imputation

The uncertainty in Q has two parts: the average within imputation variance,
771

U =  m- 1 ^ U i (2 .2)
3=1

and between-imputations variance,
771

B =  (m — I ) -1  ]T^[Q(j) — Q]2 (2.3)
3=1

The total variance is a modified sum of the two components,

T  =  U  +  (1 +  ro_1)B (2.4)

where the factor (1 +  to-1) is a correction for the finite number of imputations.
The relative increase in variance due to nonresponse is given by the ratio r  =  (1 +  
m- 1)B /U

One of the main requirement for proper multiple imputation is that the parame­
ters used for estimating missing values should also be sampled from the distribution 
to reflect the uncertainty about the parameters of the model. So it is natural to moti­
vate multiple imputation from a Bayesian perspective, where estimating the posterior 
distribution of a parameter is an integral part of the analysis (Schafer and Schenker 
2002). As a result, it is widely accepted that multiple imputation using Bayesian
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method of analysis is generally proper (Rubin 1987). However, with a variety of ex­
amples Nielsen (2003) has shown that the Bayesian method does not generally lead to 
proper multiple imputation and even in cases when it is proper the Bayesian method 
may estimate a variance which may go either way, be much higher or much smaller 
than the actual estimate. In response to that it has been argued that the examples 
were pathological cases and multiple imputation has a self correcting nature that 
leads to approximately valid statistical inference (Rubin 2003, Zhang 2003).

2.3.5 Expectation Maximization

The Expectation Maximization (EM) algorithm is a general method for obtaining 
maximum likelihood estimates of parameters in problems with incomplete data. Ex­
pectation Maximization (EM) is based on the intuitive idea of estimating the miss­
ing values and iteratively re-estimating the parameters using the estimated missing 
values. The origin of EM algorithm has been traced back to Fisher (1925) and 
McKendrick (1926). Some of the important contributions along the way were made 
by Hartley (1958), Baum and Weiss (1970), Orchard and Woodbury (1972), Sund- 
berg (1974, 1976). Baum and Weiss (1970) proved the monotone convergence of EM 
algorithm and Sundberg (1974) provided an easily understandable theory underlying 
EM algorithm and illustrated using several iterative examples. However, the pop­
ularity of the method is due to the seminal paper of Dempster and Rubin (1977). 
The word Expectation Maximization(EM) was also coined by them. As pointed out 
by VanDyk and Meng (2001), this paper has two main contributions which popular­
ized the method. First, they gave the algorithm an informative title identifying the 
key steps, the Expectation step (E-step) and Maximization Step (M-Step). Second, 
they demonstrated how it can be implemented to solve a wide class of problems. Some 
of them were never thought of previously, for example, Factor Analysis (VanDyk and 
Meng 2001). The steps of Expectation Maximization are described below. Let Y  de­
note the complete data matrix with density p(Y\0) where 0e5Rdxl. If Y  were observed 
completely the objective would be to maximize the complete-data likelihood function 
of 6

L(0\Y)<xp(Y\e) (2.5)

In the presence of missing data, however, only part of Y, Y0bs is observed. In a 
convenient but imprecise notation we write Y  =  (Y0bsYmis) where Ymis denotes the 
unobserved or missing part of the data. For simplicity we assume that data are 
missing at random (MAR), so that the likelihood for 0 based on the observed data is,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lobs{0\Yobs) oc J p(Yobs Ymis\0)dYmis (2.6)

Because of the integration maximizing Lobs can be difficult even when maximizing 
L is trivial. The EM algorithm maximizes Lobs by maximizing the expected value 
of complete-data likelihood. The likelihood of the observed data increases with each 
iteration of the EM algorithm until converging to a local or global maximum (Demp­
ster and Rubin 1977). The rate of convergence is directly related to the amount 
of unobserved information in the data matrix, i.e., convergence becomes slow with 
greater amount of missing data. The algorithm starts at some value of parameters, 
6® and iterates between the following two steps:

Expectation Step: In E-step we find the expectation of the logarithm of the 
complete-data likelihood given the observed data and the current estimate of the 
parameters.

Q(0\0(t)) =  J L(9\Yobs Ymis)p(Ymis\Yobs, 0(t))dYmis (2.7)

Maximization Step: In the M-step we find the 0(t+1'> to maximize <Q(0(m )|(?M) 
such that,

Q(0(*+i)|0(*>) > Q (0^\0^-1))fart = [l....n] (2 .8)

Although the general theory of EM applies to any model, it is particularly useful for 
data which comes from any exponential family of density functions. In such case the 
E-step reduces to finding the expected value of the sufficient statistics of the complete- 
data likelihood. Also if the closed form solution for the parameters are not available 
the M-step becomes complicated and the simplicity of the algorithm gets lost in the 
implementation. In the following section we explain the steps of EM algorithm with 
the simplest case of parameter estimation of a univariate Gaussian distribution.

Exam ple Suppose (yi,y2 , .... , yn) have a univariate normal distribution with
mean p  and variance a2. We write y = (yobs, ymis) where y represent random samples
of size n, yobs — [yi, ....yr\ is the set of observed values and ymis = [Vr+i,  yn] the
missing data. The log-likelihood based on the complete-data is:

K ^ o 2^ )  = const -  |  ln(a2) -  ^  ^  ^  ^  (2.9)
i=1

-  « ™ . - 2 h K (2.10) 

.  ( i n ,
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where y = ^ X X ^  and s2 =  ^ X X ^ *  ~ v)2- The sufficient statistics of the 
loglikelihood function is Si = £ XX Vi and s 2 =  ^ XX Vi- Log-likelihood is linear 
in the sufficient statistics. If all the data values are available the closed form solution 
for the parameters are given by, p = £ X X 1 Vi and d2 =  ± X X  (2/* _  A)2- Following 
exactly the above description the steps of the algorithm are:

E-step: We calculate the expected value of the log-likelihood function over the 
distribution of the missing values.

Q = E(l(p, a2\y)) = Ep{ymiAyohaMtW])(const -  |ln(<r2) -  _  2£_)(2 .12)

M-step: In this step we maximize the expectation of the log-likelihood with respect 
to the parameters.

dQ 
dp

=*> p
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'p(ymis\yobs,{p,a2])

E p (y m is\y0bB,lp.,a2}) ( ~  /X  Vobs,i I +  ^ p ( y m i , \y 0bs,lp,cr2}) ( ~  X !
\  i= 1 /  \  i=r+.

^  y y p b s ,^  +  ^ p ( y mia\yobs,[p^2]) t  Vmis,

(2.13)
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da2
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I n -

n (y — / i f  ns2

Ep(ymia\y0bs,ln,<r2]) {S )

^  i t ,  («* ■ ̂

\ w 2]) X ]  (Vobs,i — fj>) ^  +  E p (y mie\yob/,'[ti,a2]) XX (2/mis,i ~  A1) ^

1 n \

~ XX (ymisi  ~  aO j
i=r+1 /

-'Pfamisls/o&sjp.ff2])

+ n

i- 1

1 r
p̂iymislvoba, [p,O'2]) X 1 2/misi ■̂®p(Ptnis|p0f,»,[p,O2]) X y 2/mis,i +  A* 

i=r+l i=r+l
(2.14)

Clearly it is evident from Equation 2.13 and 2.14 that calculation of the expecta­
tion of the log-likelihood is not necessary. Rather in the E-step we need to calculate 
the expectation of the sufficient statistics of the log-likelihood. Therefore the calcula­
tions become much simpler. First, in the E-step the expected values of the sufficient 
statistics are given by,

Ep{ym,ie\yabs\y,a2}) XX 2lmis,i — (n r)fl® (2.15)
i=r+l

n

p̂(.ymia\y0bs,\p;<r2]) X > 2lmis,i = (n — r )/i^  +  (n — r)<r2 (2.16)
i=r+l

Substituting these expected values we obtain the estimates of the parameters in 
the M-step,

XX 2/ofes,î  +  -®p(a/mis|2/oi,s,[/*,o-2]) X y 2/mis,i  ̂ (^-17)

^  y6bB̂  +  (n ~ (2.18)
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(^)<,+,) = i  f E  (to.. -  /.<*+I))2 + E ^ . , , . ^ 0  t  (to..< -  «(,+,))1')
\ i = l  i= r -fl /

=► M M  -  i  E  (to,. -  e<‘+1))2
i= 1

( n n ^
■ '̂pfomislVofcs.lM.*3]) E  2/mis,< _  ^ ^ t+1^p(lhnisl»oks,[M.<^2]) E  2/mis,i +  ( «  ~  r )  ( / / t+ 1))  

i= r + l  i=r+l

=  1  f  (ium  -  M<*+1>)2
i= l

+ n  [(n — r ) ((m^+1^)2 +  (<T̂ ) 2)  — 2/ / t+1)(n — r)//(t+1) +  (n — r) (/u^+1^)2

=► ( ^ ) (m) =  i  [ e  (»*m -  ^ (t+1)) 2 +  (»-»■) (<7(t)) i
L*=i

Remarks

• In the EM algorithm, ‘missing data’ are not directly replaced in the log likeli­
hood function, rather expected values of the ‘sufficient statistics of likelihood’ 
are replaced in the function. Simple substitution of fi® would lead to omission 
of the term (n — r)(a2)^ .  This is the main difference between EM algorithm 
and other naive methods such as substitution of ‘estimated missing value’ and 
re-estimation of parameters. For each imputation of the missing value correc­
tion is also done in the covariance so that the error and covariance structures 
remain the same.

• If the sufficient statistics of log-likelihood function are linear in the data (e.g., 
multinomial distribution) E-step is simply estimation of the conditional expec­
tation of the missing values and naive methods such as substitution of the 
estimated ‘missing value’ and re-estimation of parameters is equivalent to the 
EM algorithm.

EM has two major limitations: (i) in some cases with a large fraction of miss­
ing values it can be very slow to converge, (ii) cases where M-step is difficult (e.g., 
does not have any closed form), the theoretical simplicity of the algorithm does not 
convert to practical simplicity. Two types of extensions of the EM algorithm have 
been done to speed up the convergence. The first type which are more like the EM 
algorithm, retains the monotone convergence properties of EM by keeping the E- 
step unchanged and mostly modifying the M-step of the algorithm. The basic idea 
is to replace the M-step with several conditional maximization steps where a closed 
form for the M-step is not available. Several methods have been developed along 
this line. Expectation Conditional Maximization (ECM) (Meng and Rubin 1993),
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Expectation Conditional Maximization Either (ECME) (Liu and Rubin 1994), Alter­
nating Expectation Conditional Maximization (AECM) (Meng and van Dyk 1997), 
Parameter-Expanded EM(PX-EM) (Liu and Rubin 1994) are some of the notable ex­
tensions. The other type is based on the idea of speeding the algorithm by combining 
it with Newton-Raphson type updates commonly known as Hybrid EM algorithm 
(Jennrich and Sampson 1966, Laird and Ware 1982) However, these algorithms can 
be categorized under ECME as well.

2.3.6 Expectation Conditional M aximization (ECM)

ECM replaces the M-step of the EM algorithm with a series of conditional maximiza­
tion steps. Like EM this also maximizes the expectation of the loglikelihood in the 
M-step. For cases where a closed form solution for all the parameters are not available 
it splits the maximization step to several conditional maximization (CM) steps. The 
idea is that the closed form solutions for such CM steps axe easy to derive. Suppose 
parameter vector 9 =  {Oi,d2, .... , 9S). The s-th CM step is to maximize expecta­
tion of the loglikelihood function with respect to 9S keeping all other parameters, gs 
(a vector containing all parameters other than 9S) fixed at their previous estimated 
values. When the set of ga is ‘space-filling’ in the sense of allowing unconstrained 
maximization over 6 in its parameter space, ECM converges to a stationary point 
under essentially the same conditions that guarantee the convergence of EM (Little 
and Rubin 2002, Meng and Rubin 1993).

Exam ple Multivariate normal regression model with incomplete data
Suppose we have n independent observations from the following A;-variate normal 

model.

Yi ~ N( X i 0 ,  £) (2.19)

Where is a known (k x p ) design matrix for the z-th observation, j3 is a (px 1) vector
of regression coefficients, and £  is a (k x k) unknown variance-covariance matrix. The 
maximum likelihood estimation of 9 — (/?, £) is not available in closed form except 
for special cases when E =  a21.

E~Step:The E-step of the algorithm is similar to the EM algorithm.
M-step is divided into two CM steps:
CM1: If £  were known, say £  =  £ ^ ,  then the conditional maximum likelihood 

estimate of /? would be simply the weighted least-squares estimate:
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p { t+ i) =  { J 2 ^ r  (S ( t ) ) - i x . } - i { \ r  %  (E W)-1 y .} (2.20)
i= l  i= l

CMS: Given (3 = (3̂ t+1\  the conditional maximum likelihood estimate of S can 
be directly obtained from the cross product of the residuals:

£(*+*) =  I  V ( y i  -  X iflt+1)){Yi -  XiP(t+1))T (2.21)
n *ri

4 = 1

2.3.7 Expectation Conditional Maximization Either(ECM E)

ECME is an extension of ECM. Similar to ECM, E-step remains the same as Expec­
tation Maximization. However, the M-step is substantially different from the EM or 
ECM. Instead of maximizing the expectation of loglikelihood function here the actual 
loglikelihood function is maximized in several CM steps. If an explicit expression is not 
available for any of these CM steps, parameters can be estimated by using optimiza­
tion schemes like Newton-Rapson method. This speeds up the convergence greatly. 
In that case the algorithm becomes very similar to the Hybrid methods (Little and 
Rubin 2002).

2.3.8 D ata Augmentation

The term Data Augmentation refers to methods for iterative optimization or sam­
pling algorithms via the introduction of unobserved data or latent variable. In the 
statistics literature data augmentation was made popular by Tannner and Wong for 
posterior distributions of parameters (Tanner and Wong 1990). From a different per­
spective for applying multiple imputation to missing values a similar algorithm was 
developed by Li (1985). Important methodological and theoretical papers on Data 
Augmentation include Damien, Wakefield and Walker (1999), Higdon (1999), Mira 
and Tierney (1997), Neal (1997), Roberts and Rosenthal (1997) and VanDyk and 
Meng (2001). In the physics literature Data Augmentation is referred to as method 
of auxiliary variable (Swendsen and Wang 1987). Auxiliary variables are adopted 
to improve the speed of simulation, important contribution include Edwards and 
Sokal(1993).

If the missing data mechanism is ignorable then all the relevant information about 
the parameters are contained in the observed-data likelihood L (9\Y0bs) or observed- 
data posterior P  (0|Td>s). Except for some special cases, these tend to be complicated 
functions of 0, and extracting summaries like parameter estimates require special
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computation tools, Data Augmentation (DA) can be very useful in this respect. The 
basis of Data Augmentation is Bayes’ Rule for estimating joint density:

p  (e, Ymis\Yobs) = p  (ymi,|y obs) p  (eiYobs, Ymis)

Integrating both sides over the missing data space gives the desired posterior 
density:

P(d\Yobs)=  j  P  {Ymis\Yobs) P  (9\Yobs, Ymis) dYmis (2.22)
JYmis

If Ymis is sampled from the posterior distribution P  (ymiS|yo6s) then in discrete 
form Equation(2.22) can be written as,

m
P  (0\Yobs) =  1/m  P  (8\Y%1 Yobs)  (2.23)

i—1

Similarly,

P  (0, Ymia\Yobs) =  P (9\Yobs) P  (Ymis\9, Yobs)

Integrating both sides over the parameter space gives the posterior density:

p  (YmislYobs) = [ p  (e\Yobs) P  (Ymis\0, Yobs) do (2.24)
J 9

m
P  {Ymis\Yobs) = l / m Y JP  (Ymis Y0ta) (2.25)

«=i
Equation (2.23) and (2.25) suggest an iterative scheme. The key idea behind 

Data Augmentation is to solve the incomplete-data problem by repeatedly solving 
tractable complete-data problem. In Data Augmentation Y ^  is augmented by an 
assumed value of the YmiS. The resulting complete-data posterior P  (9\Yobs, Ymis) 
becomes much easier to handle. The solution is further improved by the iterative 
implementation or the following two steps:

Imputation Step: Given a current guess 0® of the parameters, first a value of the 
missing data is drawn from the conditional predictive distribution of Y m iS,

Y ^ t1 ~  P  ( Y ^ l Y ^ f )  (2.26)

Posterior Step: Conditioned on Y^t1 a new value of 9 is drawn from its complete-data 
posterior,
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Qt+1 ~  P  {e\Yobs,Y^}) (2.27)

Repeating the above steps from a starting value of 0 ^  yields a stochastic sequence 
{0 ® ,Y ^S : t  =  1,2,...} whose stationary distribution is P  (d,Ymis\Yobs), and subse­
quences ( 0W : t = 1,2,...} and {Y®is : t = 1,2,...} have P{6\Yobs) and P (Ymis\Yobs) 
as their respective stationary distribution. For a value of t that is substantially large, 
9t can be regarded as an approximate draw from P  ( 0 | F O6S)  and Y%}s as an approx­
imate draw from P  (Ymis\Yoba). Data Augmentation may be viewed as a stochastic 
counterpart of Expectation Maximization where the Imputation step is similar to the 
Expectation step and the Posterior step is equivalent to the Maximization step of the 
EM algorithm (VanDyk and Meng 2001). Data Augmentation method is very closely 
related to an iterative method called the Gibbs’ Sampler. The Gibbs’ Sampler is a 
Markov Chain Monte Carlo (MCMC) method used to generate samples from joint 
distribution of a set of variables where it is difficult to sample from the joint distrib­
ution directly, but relatively easy to sample from the conditional distribution. Data 
Augmentation may be viewed as a Gibbs’ Sampler with two parameter vectors (i. 
e., vector one containing model parameters, vector two containing the missing val­
ues) (Gelman and Rubin 2004). The main advantages of Data Augmentation are: it 
is intuitive, steps are easy to follow and implementation is easy for a wide variety of 
problems. The method has also good convergence property.

2.4 Concluding Remarks

The methods discussed at the beginning of this chapter (e.g., Complete Case Analysis, 
Available Case Analysis, Conditional and Unconditional Mean Substitution, Single 
Imputation) are more of historical approaches to missing data problems. Although 
these methods are quick fix to the problem, they are not based on a rigorous frame­
work and tend to have an ad hoc character. On the other hand, Expectation Maxi­
mization (EM), Data Augmentation (DA) and Multiple Imputation (MI) are system­
atic approaches to the analysis of data with missing values, where inferences are based 
on likelihoods derived from formal statistical models for data generation (Little and 
Rubin 2002). Among these methods, the EM algorithm has been used extensively 
for building time series models from data with missing values (Shumway and Stoffer 
1982). Although the EM algorithm requires implementation of two easy steps, if the 
closed form solution for the parameters are not available the M-step becomes com­
plicated and the simplicity of the algorithm gets lost in the implementation. On the 
other hand, Data Augmentation and Multiple Imputation are computational based
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methods. These methods can be applied with a wide range of model structures for 
building models from data containing missing values. The focus of this thesis is 
mainly on Data Augmentation and Multiple Imputation. In Chapter 3 latent vari­
able models axe extended to Data Augmentation framework for building models from 
data matrix containing missing values and Multiple Imputation is applied to update 
Particle filters from multi-rate data matrix in Chapter 6 .
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Chapter 3 

M issing D ata Treatment in Latent 
Variable M odels

Modern chemical processes have become increasingly complex and are well equipped 
with instrumentation. Typically hundreds of variables may be monitored in a process 
and measurements are recorded at a high sampling rate. This results in overwhelming 
amount of data sets. Often there exists redundancy in the measurements leading to 
collinearity or the variables are correlated by the physical laws. In this context latent 
variable models are used extensively in process industries to eliminate the redundancy 
and capture the useful process information in a lower dimensional space. One of 
the major difficulty in applying these methods is that there may be imperfection in 
process data and most of these methods are not originally designed to handle missing 
or imperfect values in the data matrix. In the absence of such capabilities often 
ad hoc or heuristics are used to get around the problem. This can give inefficient 
results, which may put the reliability of the whole monitoring scheme into question. 
Therefore it is important to adopt a ‘formal’ method of treating missing data while 
building such models. The main objective of this study is to extend commonly used 
monitoring tools in a statistically valid manner, so that they can handle missing data 
to lead to correct inferences.

In this study we mainly restrict ourselves to analyzing latent variable models 
which are used for monitoring purpose. Prom a structural point of view such models 
are symmetric (i.e., data are not divided into dependent and independent variable 
sets). We explore different characteristics and inherent assumptions of this group 
of latent variable models and based on the inherent assumptions of the models, we 
classify these methods in different classes. This is crucial for extending the methods to 
effectively handle missing data. We propose algorithms to handle missing data in the 
following methods: (i) Principal Component Analysis (PCA) (ii) Iterative Principal
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Component Analysis (IPCA) and (iii) Maximum Likelihood Factor Analysis (MLFA).
The organization of this chapter is as follows: in Section 3.1 we define the problem 

that is encountered in process monitoring, and classify the problem into two different 
classes: structural latent variable problem and functional latent variable problem. In 
Section 3.2 we explore the characteristics of some of the symmetrical latent variable 
models. Next in Section 3.3.1 we provide a brief overview on PCA with emphasis on 
different methods for handling missing values in a data matrix and point out some 
of the limitations of the currently used methods in handling missing values. Iterative 
Principal Component Analysis (IPCA) is introduced in Section 3.3.2 for dealing with 
‘Functional Latent Variable Problems’ and the method has been extended in the Data 
Augmentation (DA) framework for handling missing data. In Section 3.4.1 we intro­
duce the Maximum Likelihood Factor Analysis for dealing with ‘Structural Latent 
Variable Problems’ and extend the method in a Data Augmentation framework for 
handling missing values in data matrix. Throughout this study it has been assumed 
that data is Missing Completely At Random (MCAR) or Missing At Random (MAR). 
Treatment of missing data with Non Ignorable (NI) mechanism is beyond the scope 
of this study. In Section 3.5 the implementation and performance of the methods are 
demonstrated using a simulated flownetwork system. Finally, in Section 3.6 we give 
a novel application of the missing data handling technique, we apply a PCA based 
missing data handling technique for synchronizing uneven length batch process data.

3.1 Problem  definition

Consider a measurement matrix Ye$lNxn where N  is the number of samples and n 
represents the number of variables. The measurement at sampling instant i, y jxn can 
be decomposed as follows:

Vi = Xi + ei (3.1)

where e, is the measurement error and Xi is the noise free true variable. For
building latent variable model, measurements from a particular section or unit are
collected in a data matrix. After collecting N  samples we can write it in the following 
matrix form:

Y = X + s  (3.2)

where Xe$lNxn is the noise free true values and e e 3?JVxn is the measurement error 
matrix. These are routine operational data and represent the normal variation in the
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process. Process measurements usually demonstrate strong correlation under normal 
conditions arising from physical relationships or instrumentation redundancy. The 
correlation between the measurements provides necessary redundancy to detect and 
identify any fault in the process. However, these constraints are hidden under the 
noise and not visible apparently. As a result though the data matrix Y  may appear 
as full rank, the true signal part of the measurement, X  is likely to be rank deficient 
in most cases. The relationships between the variables can be expressed in two ways:

i) Linear factor form
X  = T P t

where Te%tNxm contains the uncorrelated latent variables and PdRnxm is the loading 
matrix, which contains the basis vectors of the lower dimensional space. The rank of 
matrix T  and P  are lower than the rank of the noisy measurements Y  (i.e, m < n).

ii) Linear relation form
A X t  = 0

where A is the constraint equation.
So the modelling problem is essentially the estimation of loading matrix P  or the 

constraint equation A from the training data set. Either forms of these models can 
be used for detection and isolation of faults. Using loading matrix P, the test data 
is projected onto the lower dimensional space. The residuals of a test sample are 
calculated as follows:

n  = Vi -X i  (3.3)

=  Vi ~  ViPPT (3.4)

Residuals in a lower dimensional space can also be calculated using the following 
equation:

n  =  A y f  (3.5)

Once the residuals have been calculated, various statistical tests are performed on 
these residuals to detect and isolate faults in the process.

3.1.1 Characterization of Error

The measurement noise e is an additive noise due to the inaccuracy in the measur­
ing devices. This is inherent to the measuring device and the characteristics of the 
measurement error do not change from observation to observation. Therefore the
measurement errors at different sampling events belong to the same distribution. For
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characterization purpose errors are often assumed to be normally distributed, for ex­
ample, zero mean multivariate normal e, ~  N (0, Qe); i = [1, The covariance
of the measurement error is given by,

Qe =  cov(£i) (3.6)

=  Eiejsi) (3.7)

where E(.) represents the expectation.
The structure of the covariance matrix will depend on the correlation between 

the measurement errors in the variable direction. We assume that the structure of 
the covariance matrix, f2e is diagonal with unequal diagonal elements. Since we are 
dealing with steady state modeling, measurement errors are usually uncorrelated with 
each other. The only exception is if some derived variables are used, for example, 
enthalpy instead of flowrate and temperature, then the errors of enthalpy will be 
correlated with flowrate and temperature. In that case, there is a good chance that 
flowrate and temperature may not be included in the model. However, measurements 
come from different sensors, for example, flowmeter, thermocouple, level sensor etc.
Each sensor works on different principles, measures different quantity and has its
own precision level. It is highly unlikely that the errors of the measurements will 
have equal variances. Therefore the diagonal elements of the covariance matrix Qe 
is assumed unequal. This structure is sufficiently general to capture the behavior of 
measurement errors from most steady state processes.

3.1.2 Characterization of Underlying Signal

The assumptions regarding the true signal give rise to two different problems which 
are well known in statistical literature. If we assume that Xi follows a multivariate 
normal distribution with mean [i and covariance £ x then we obtain what is referred 
to as a Structural Latent Variable Problem. On the other hand if we make a less 
restrictive assumption that the true values of the variables follow an arbitrary deter­
ministic sequence then we obtain a Functional Latent Variable Problem (Fuller 1987). 
Noise-free signals from chemical processes are in general deterministic, for example, if 
we consider that x* represents different steady state operating points then it is more 
appropriate to use a functional model. However, in many circumstances the behavior 
of the signal can be approximated very well by a structural model. Since for monitor­
ing purposes normal operation data axe used for building the model, the excitation 
is due to random disturbances entering into the process and the measured signals 
behave like filtered random signals. This is illustrated in Figure 3.1 where a random

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n
4.323

F
z*0.1353

Random Discrete To Workspace

Auto CorrMtkn Analytte
■........... i ............  ........ I

! ;

| 1

“  1 - ! -----------------------
---- ; —

______ t  - *  - i -  ’

Figure 3.1: A filtered random noise behaving as a structural signal

Gaussian signal passes through an autoregressive process. The output signal has a 
Gaussian Distribution and the correlation between the samples is also minimal. The 
degree of correlation will depend on the coefficients of the auto regressive process. 
The point to note here is that, in a chemical process we can also expect Gaussian 
distribution of the noise free signals in some situations. So, solutions of both the 
structural and the functional problems are useful for process monitoring.

3.2 Classification o f Latent Variable M odels

Principal Component Analysis (PCA) is the most common latent variable method 
used for process monitoring. Besides PCA there are other similar methods which 
can extract the latent structure from the data. Several modifications of PCA have 
also been developed to attain better optimality criteria and solve specific prob­
lems. Some of the popular latent variable methods are Maximum Likelihood Fac­
tor Analysis (MLFA), Bayesian PCA (BPCA), Iterative PCA (IPCA), Probabilistic 
PCA (PPCA). Based on the discussions in the previous section we classify these 
methods into different groups. The classification of the methods and their salient 
properties are summarized in Table 3.1. The classification of methods under this 
framework is important for extending the methods for dealing with missing data, 
since structural and functional models need different kind of treatment.

From the above list of latent variable models we choose to study the impact of
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Method Optimality Underlying
Signal

Noise Structure Scaling Comment

PCA Least Squares Functional Isotropic Noise Dependent on 
Scaling

Data requirement is 
small.

BPCA Least Squares Structural Isotropic Noise Dependent on 
Scaling

Data requirement is 
small. Prior 
information is 
required.

PPCA Least Squares Structural Isotropic Noise Dependent on 
Scaling

IPCA Weighted 
Least Squares

Functional Non-Isotropic
Noise

Standard deviations 
of measurement 
noise are used for 
scaling. Scaling 
Invariant

Estimates the 
variance of 
measurement error 
from the data. Data 
requirement is 
moderate.

MLPCA Maximum
Likelihood

Functional Very general 
noise structure 
with correlation 
in both time and 
variable direction.

Standard deviations 
of measurement 
noise are used for 
scaling. Scaling 
Invariant

Requires the 
knowledge of 
covariance of 
measurement error.

MLFA Maximum
Likelihood

Structural Non-Isotropic
noise

Standard deviations 
of measurement 
noise are used for 
scaling. Scaling 
Invariant

Estimates the 
variance of 
measurement error 
from the data. Data 
requirement is very 
high.

Table 3.1: Salient properties of latent variable models
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missing data in few representative models. We choose Principal Component Analy­
sis (PCA) and Iterative Principal Component Analysis (IPCA) as representative cases 
from the functional class and Maximum Likelihood Factor Analysis (MLFA) as a rep­
resentative case from the structural class of models. We propose modifications of these 
algorithms based on Data Augmentation and Bootstrap methods to deal with missing 
data.

3.3 Functional Latent Variable M odel

3.3.1 Principal Component Analysis 
Review of PCA

PCA is widely used to build models from a large number of highly correlated variables. 
In process monitoring, PCA is extensively used for tracking operating performance 
and detecting impending faults. Extensive review on the theory and practice of PCA 
is available in Jackson (1991). In PCA it is assumed that the noise free signals, X  
can be expressed as a product of two factors.

X =  TP1'

where T  is the score, and P is the loading matrix both have rank, r and r <n .  The 
objective of PCA is to get the solution of T  and P  by minimizing the sum of squared 
errors, E.

E = t r ( ( Y  -  TPr)T{Y -  TPr))

However, this leaves indeterminacy in the estimation of T  and P. A restriction is 
placed on the length of P  (i.e. P P T — I) to make it an identifiable problem and the 
modified objective function is given by,

L = fr(( Y -  T F ^ f i  Y -  TPr)) +  p t r ^ P  -  I))

The minimization of the objective function leads to an eigenvector solution and the 
error is minimized when P  contains the eigenvectors corresponding to the significant 
eigenvalues of YT Y  and also from definition T = YP.

This solution is closely related to the Singular Value Decomposition (SVD) of the 
matrix Y. Using SVD the data matrix Y  of dimension N  x n can be decomposed to 
the following form:

Y = U A  VT (3.8)
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where UUT =  VVT =  /„ and A is a positive definite diagonal matrix. Equation 3.8 
implies that YT Y  = VA2 VT, and finding U, A and V  can be seen as an eigenvalue 
problem. The columns of V  are the eigenvectors and the diagonal matrix A2 will 
contain the eigenvalues in descending order, Ai > A2 > A3... > Ar > ....An. If the 
noise-free signal X  has rank r < n, the eigenvalues Ar+i....An will be substantially 
smaller than the first r eigenvalues and the variance explained by these eigenvalues 
can be attributed to the error E. Also the first r  columns of V give the loading matrix 
P, and the first r  eigenvalues explain the variance of the noise free signal X.

Missing D ata Handling in PCA

Missing values in the data matrix pose difficulties at two stages in PCA based 
process monitoring. Firstly, in building a model from the historical data sets. Sec­
ondly, during the monitoring phase for calculating the scores and the residuals. 
Methods developed for score calculation in the presence of missing values include 
Trimmed Score (TRI), Single Component Projection (SCP), Conditional Mean Re­
placement (CMR), Projection to Model Plane (PMP). These are all single step meth­
ods and essentially the implementation of Equation 3.12 (Nelson and MacGregor 
1996, Artega and Ferrer 2002). In this study we focus only on the issues that arise 
during the off-line modelling stage due to the presence of missing values in the data 
matrix. A brief review of these methods is in order.

Originally the NIPALS algorithm was used for building principal component mod­
els. Christofferson (1970) extended the NIPALS algorithm for finding first and sec­
ond principal components in the presence of missing values in the data matrix. The 
method has been generalized for finding multiple PCs in the presence of missing 
data (Grung and Manne 1998). It uses a least square minimization criteria to esti­
mate the scores and the loadings in successive steps. Let Y  be a full matrix and Z 
is the known part of Y. In matrix Z  the missing values are represented by zeroes. 
The relation between Z  and Y  can be conveniently expressed with the help of miss­
ingness indicator M  which has same dimensions as Y  with elements rriy =  1 for y^ 
known, and m# =  0 for missing y^. Consequently the relation between Z  and Y  is 
Zij = rriijyy. The objective function may be written in the following form:

N  n  A N  n  A

'y J tikPjk) — Y Y ^  Y  tik'W'ijPjk) (3-9)
i=l j=l k—1 i~l j=l k=l

For the vth row the objective function is given by,

Fi =  -  Y i  ^ i j P j k f  (3-10)
j k=l

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Defining with elements = niijPjk > as the i-th row of Z, and t(Y as the 
i-th row of T, Equation(3.10) can be written in the following form:

j k
If elements of the loadings matrix, are known the solution to the regression 

problem is:

=  z O)A {i) ( a ® t A ^  _1  ( 3 .1 2 )

Similarly, defining z®  as the j-th column of Z  containing elements p^> as 
j-th column of P  containing elements Pij and the matrix with the elements 

~  tikm ij the loadings matrix can be found by ordinary least-squares regression
as:

p(j) = (̂ b ^ tB ^  _1 B ^ tz^  (3.13)

The algorithm is an iterative implementation of Equation 3.12 and Equation 3.13. 
However, the estimated scores are not orthogonal to each other. To get orthogonal 
scores after convergence of the algorithm, SVD is performed on the data matrix with 
imputed values.

Now it has become more customary to use the Singular Value Decomposition (SVD) 
algorithm to extract the PCs. In the presence of missing values in the data matrix, an 
iterative imputation approach is used to fill the missing values and estimate the PCs. 
In this study we refer to this algorithm as Principal Component Analysis Imputation 
Algorithm (PCAIA) (Grung and Manne 1998, Troyanskaya et al. 2001, Walczak and 
Massart 2001). The algorithm is described below:

1. Initially missing values of the data matrix are filled with the unconditional 
mean of the variables. For example, missing values are filled by the column 
averages of Yobs, which gives the augmented data matrix Yaug = [Yobs,Ymis] 
where Ymis =  mean(Yobs).

2. Singular Value Decomposition (SVD) is performed on the augmented data mar
trix. The loading matrix, P  is used to predict the noise free values X  —
Y  P P T1 augJ 1

3. Missing values are filled with predicted X, and the augmented data matrix, 
Yaug ~  [ Yobs, Xmis\ •
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4. Convergence is monitored by observing sum of squared errors of the observed 
values and corresponding predicted values from step (2).

SSE obs =
i= 1 j=1

Step (2) and step(3) are repeated until convergence.

Treatment of missing data based on the NIPALS algorithm and SVD essentially 
minimize the same least squared objective function as in Equation 3.9. However, the 
NIPALS algorithm converges at a faster rate than the iterative imputation method. 
Some of the limitations of PCAIA are discussed below. Methods based on the NIPALS 
algorithm also suffer from similar limitations in the presence of missing data.

Limitations of PCAIA

Distortion of Covariance Structure
Measurements have two parts: a deterministic part, X  and a random noise, e. 

Therefore, the covariance of the measurement matrix Y  can be divided into two 
parts, £ y  =  £ *  +  fle. In filling the missing values the method ignores the random 
error part of Y. Missing values are filled by the conditional expectation of the missing 
values, X . As a result is underestimated and the estimate of E y  from such imputed 
data matrix gets distorted. The degree of distortion will depend on the percentage of 
missing data and the relative magnitude of the measurement error. Also this type of 
imputations over emphasize the linear relationships between the variables, therefore 
the imputed data set is not suitable for analysis of variance.

Model Order Selection
The rank of the loading matrix P or equivalently the number of major PCs in the 

model is known as the order of the model. The loadings are given by the eigenvectors, 
and the corresponding eigenvalues indicate the variances explained by the eigenvec­
tors. Ideally one would like to include the minimum number of eigenvectors necessary 
to explain the total variance of the deterministic part, X. Methods commonly used for 
model order selection are, SCREE-plot, Broken root, Cross validation, Significance 
test etc. In selecting the number of PCs, except for cross validation all these methods 
make use of the ratio of the variance explained by major PCs to the total variance 
explained by all PCs.

% Variance Explained by Major PCs =   ----- — ^ — — (3.14)
Ai +  b Ar +  • • • +  A n
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Once the ratio has been calculated, the user decides on how much of the variance 

needs to be attributed to X. The number of PCs necessary to capture the specified 
variance information will determine the model order.

Distortion of the covariance matrix has a direct impact on the selection of model 
order. The error variances are attenuated because of missing values in the data 
matrix which leads to the shrinkage of the denominator term of the ratio defined in 
Equation 3.14 . Therefore the percentage of total variance explained by major PCs 
will no longer remain constant for a data set, rather it will depend on the fraction of 
missing values present in the data matrix.

Extending PCA to the Data Augmentation Framework

The limitations of Principal Component Analysis Iterative Algorithm (PCAIA) arise 
due to the fact that the missing values are replaced with the conditional expected 
values of the missing values, i.e., while imputing the missing values the errors in 
the measurements are ignored. Depending on the magnitude of the measurement 
errors the covariance matrix of the imputed data set may get distorted from the 
covariance matrix of the original data set. Therefore it is important to take the 
measurement error into consideration during the imputation phase. In this section we 
propose an algorithm which combines PCAIA with the ideas of Bootstrap re-sampling 
and Data Augmentation strategies. The proposed algorithm is named PCA-Data 
Augmentation (PC AD A).

The basic idea is to iteratively implement the imputation and posterior steps de­
scribed by Equation (2.26) and (2.27) as discussed in Section 2.3.8. Suppose that 
at the i-th iterative step, the available data set is Yobs and the missing values axe 
randomly distributed throughout the data matrix. The data set can be given a com­
plete makeup with some initial estimates of the missing values, e.g., filling the missing 
values with the mean of the observed values Ymis <= mean(Yobs). The complete data 
set is given as, Yaug — \Ya,s Ymi3\. The parameters or the loading matrix, P  can be 
calculated by applying Singular Value Decomposition (SVD) on the augmented data 
matrix Yaug. After the initial estimation, the imputation and the posterior steps are 
carried out as follows:

Imputation Step
Imputation step requires that the missing values are sampled from the distribution 

conditioned on the observed values and the parameters. Using the estimate of the 
loading matrix, P  and augmented data matrix, Yaug conditional expectations of the 
measurements are calculated by the following equation:
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X  = YaugPPT (3.15)

The differences between the observed measurements and the corresponding esti­
mated values of X  give the residuals:

rij =  y t - * i j S (3-16)

These residuals are collected in a matrix to form the residual matrix r. A residual 
term sampled from the residual matrix is added with each expected value of the 
missing data points. The imputation values for the missing data points are given by 
the following expression:

y T  = £%is + rkj (3.17)

where A; is a random integer number between 1 and N and r\j is a residual term
sampled randomly from the j-th  column of the residual matrix r. These estimated 
values are used to impute the missing values and the augmented data matrix is given
by, YaUg — , Ijnis]•

Posterior Step
Model parameters from their posterior distributions are sampled at this stage. A 

‘Bootstrap’ re-sampling technique is used to create the posterior distributions of the 
model parameters. The parameters in this case are the elements of the loading matrix 
P.

Let us assume that after imputing the missing values, the completed data matrix 
is Yaug. Using the ‘Bootstrap’ re-sampling method, J  Bootstrap data sets Y* =
[yi1), y(2>)....... yW] are created from the augmented data matrix. Singular Value
Decomposition (SVD) is performed on each of these data sets, which results in a
series of model parameters (i.e., loadings matrix, P* =  [P ^  P ^  P^])- Averages
of the estimated model parameters are given by:

P = jZ U P i (3.18)

In the next iterative step the estimated loading matrix, P  is used to calculate 
the conditional expectation of the missing values. The Imputation step and the 
Posterior step are repeated alternatively until convergence. Convergence is monitored 
by observing sum of squared errors between the observed values and corresponding 
predicted values.

N  n

SSE ob3 =  EE < * - * » & .
i= 1 j= 1
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3.3.2 Iterative Principal Component Analysis

Iterative Principal Component Analysis (IPCA) is developed for solving the following 
functional latent variable problem. Suppose that we have a data matrix Y  which can 
be decomposed as follows:

y = A + e  (3.19)

where the noise free signal X  is deterministic, measurement error is multivariate 
normal e* ~  N (0, f2e) and the constraints between the noise-free measurements is 
expressed in the following principal relations form:

X A  = 0

The objective of IPCA is to simultaneously estimate the error covariance matrix
and identify the constrained model A. The algorithm is motivated from the fact 

that PCA minimizes a least squares objective function and therefore is not optimal 
in the maximum likelihood sense for non-isotropic measurement errors (Narasimhan 
and Shah 2004). Maximum likelihood estimation is often a desired optimality criteria 
because it provides minimum variance estimates of parameters as sample size tends to 
infinity. However, it has been proved that even in the case of univariate regression for 
the functional model problem, the maximum likelihood procedure for simultaneously 
estimating the model and the error variances gives unbounded solution (Anderson 
1984).

Thus, several modified maximum likelihood methods have been developed to solve 
this problem (Chan and Mak 1985). However, none of these methods can achieve 
maximum likelihood estimates if there is no a priori knowledge of the error covariance 
matrix available. For known error covariance matrix Wentzell et al. (1997) developed 
a maximum likelihood estimation method in the PCA framework, called MLPCA to 
estimate the noise-free signal X. The algorithm is based on an alternative regression 
strategy in combination with singular value decomposition. MLPCA minimizes the 
following objective function:

S =  -  xi)SlJ1(yi -  Xi)' (3.20)

For known minimization of the above objective function maximizes the log 
likelihood function. The method has been used in different chemometrics applicar 
tion. In chemometric data often replicates of the measurements are available and 
the variances of measurement errors can be independently estimated. On the other 
hand, in process industries such information is rarely available. In this context IPCA
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is very relevant since it simultaneously estimates the model and the error covariance 
matrix. The method minimizes a weighted least squares criteria and it has been 
shown that for functional model with non-isotropic measurement errors IPCA gives 
better estimates than PCA.

IPCA combines PCA with an optimization procedure for estimating the error 
covariance matrix. IPCA has two main steps: (i) optimal scaling of measurements 
and (ii) estimation of the error covariance matrix. The method iteratively alternates 
between these two steps until convergence. An optimal scaling strategy is used in 
IPCA. It was shown that PCA is scaling invariant with this scaling scheme. Let 
scaling factor L be defined by,

LLt =  n e

After scaling the measurements with the scaling matrix, the transformed mea­
surements are given as follows:

y\ = Xi IT 1 +  SiLT1

With the assumption that measurement errors are uncorrelated with underlying 
signals the covariance of the scaled matrix is given by,

^ 2h =  +  I

This is an important result as it provides a convenient way to select the order of 
the model. According to the eigenvalue shift theorem, eigenvectors of the covariance 
matrix of noise corrupted scaled data, E a r e  equal to the eigenvectors of the covari­
ance matrix of scaled noise-free data, SXe. There is no distortion in the eigenvectors 
due to the presence of noise in the signals. In addition to that, eigenvalues of the 
covariance matrix of noise corrupted data are shifted by unity from the eigenvalues 
of the covariance matrix of noise-free data. This property is conveniently used for 
selecting the order of the model. For example, if the rank of the data matrix X s is m, 
the last (n-m) eigenvalues of SXs will be exactly zero and the last (n-m) eigenvalues 
of EVs will be unity. The eigenvectors corresponding to these unity eigenvalues define 
the basis vectors of the residual space, As which in this case is the constraint model 
in scaled domain. Therefore, it provides a definitive way of selecting the model order. 
The constraint model in the original domain is simply given by,

A =  LAS

However, in most of the cases the error covariance matrix fle is not available and 
the following iterative technique is used for simultaneous estimation of A and

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An initial estimate of the constraint model, A0 is obtained by ordinary PCA on 
the unsealed data matrix Y. This initial estimated model is used to calculate the 
residuals, r* =  yiA°. If the estimated model is exact, the residuals will be indepen­
dent in the sample direction and may be assumed normally distributed with zero 
mean and covariance matrix Clr =  A°Q£(A°)T. Thus, the joint density function of 
[rf r% • • • r%]T is easily obtained, and fte is estimated by maximizing the log like­
lihood function, which is equivalent to minimizing the following objective function:

min Nlog | (^4°) QeA° +  ^  rf^j (3.21)

where r f ,  the residuals of i — th  observation and i= l, N.
In the next step, data is scaled using the estimated error covariance. The con­

straint model is estimated by applying Singular Value Decomposition (SVD) on the 
scaled data matrix. The estimated model will be closer to the true model in each 
successive step. The maximum number of elements in Qe that can be estimated is 
restricted by the number of constraints or the rank of A. If rank of A is m then a 
maximum of m (m + l)/2  elements can be estimated.

Missing data handling in IPCA

IPCA is combined with the Bootstrap and Data Augmentation(DA) techniques for 
dealing with missing data in the data matrix. The main objective of the proposed 
algorithm is to take measurement errors in missing values into consideration during 
the imputation of the missing values. An intuitive way is to add an error term scaled 
to the variances of the measurement error with the conditional expected values and 
use them for imputation. However, addition of the errors causes divergence in the 
iterative algorithm. Extension in Data Augmentation (DA) framework gives the 
iterative algorithm good convergence property. The algorithm is termed as IPCA 
Data Augmentation (IPCADA). The basic idea is to implement the imputation step 
and posterior step described by Equation (2.26) and (2.27).

Imputation Step (I-Step)
The Imputation step requires that the missing values be sampled from the distrib­

ution conditioned on the observed values and the current estimates of the parameters. 
This can be conveniently done in IPCA since the error covariance is also simultane­
ously estimated in the procedure. Similar to the stochastic regression a scaled error is 
added with the conditional expected values. However, in this case the regressors are 
also corrupted with measurement noise. Therefore, the ordinary least squares method 
is not suitable for estimation. Instead a total least squares method (i.e., IPCA) is
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used to calculate the conditional expectation of the m i s s i n g  values. The procedure is 
explained below:

Using the previous notations, at any time step t an estimate of the loading matrix,
P  and error covariance, 0,£ and augmented data matrix Yaug axe available. The
conditional expected value is given by,

X  = YaugP P T (3.22)

A scaled error term is added to the expected values:

Y  = X  + Lv  (3.23)

where Vi ~  N(0,1) and LLT =  Cl£. This is equivalent to drawing samples from 
the predictive distribution. The factorization of the error covariance matrix can be 
carried out by LU decomposition. If the error covariance matrix is diagonal, then the 
scaling factor is given simply by the square root of the matrix. Missing values are 
filled using the corresponding values of Y  and the augmented data matrix is given as, 
Yaug  ^ o & s  i Y m is  j

Posterior Step
At this step model parameters are sampled from their posterior distribution. The 

‘Bootstrap’ re-sampling technique is used to create the posterior distribution of the 
model parameters. The parameters in this case are the elements of the loading ma­
trix P. Let us assume that the scaled data matrix is Ya. Using ‘Bootstrap’ m
re-sampled data matrix Y^, Y ^ \  are created, and SVD is performed on
each of these data sets, which results in a series of model parameters (i.e., loadings 
matrix, ..... P ^ ) .  Average estimates of the model parameters are given by,

P. =  (3-24)
f i b

The estimated average loading matrix in the scaled domain, Pa is used to calculate 
the conditional expected values of the missing data in the imputation step. The steps 
of the proposed algorithm for dealing with missing data axe described below:

1. Initially the missing values of the data matrix axe filled with the unconditional 
mean of the variables. For example, missing values are filled by the column 
averages of Y 0ba and augmented data matrix, Yaug = \Yobs, mean(Yobs)\.

2. The filled data matrix Yaug is supplied to the IPCA algorithm. IPCA auto­
matically determines the number of significant principal components and gives
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an estimate of the constraint model A and scaling matrix L, where LLT = ClE. 
Data is scaled using the scaling matrix.

3. Using Bootstrap several re-sampled data matrices are created. SVD is per­
formed on each of the re-sampled data matrices to calculate the loading matrix. 
The variability of the data gets transmitted to the loading matrices, therefore 
the calculated loadings are the sampled parameters from the distribution. The 
average of the parameters are used to estimate the missing values. The noise- 
free variables in scaled domain X s is given by,

it —  P  PTv s
s  S s  a u g

4. The scaled noise free variables X s are converted to X  in the original domain, 
X  — X SL  and a scaled noise is added with the predicted X .

Y  = X  + Lu

where Ui ~  N(0,1). Missing values in the data matrix are filled with these 
predicted Y  values.

5. Convergence is monitored by observing sum of squared errors between the ob­
served values and corresponding predicted values from step (4).

N  n

SSE obs =
i=i j=i

6 . Steps (2) to (5) are repeated until convergence.

3.4 Structural Latent Variable M odel

3.4.1 Maximum Likelihood Factor Analysis

Structural modelling has been extensively studied in the area of statistics, psychology 
and econometrics; and Factor Analysis (FA) is used to model such processes. We feel 
that these methods have not been used to their full potential in the area of chemical 
engineering. In this section we describe the steps of the algorithm, demonstrate 
its potential in process fault detection and finally extend the method in the Data 
Augmentation frame work for handling missing data. The general structure of the 
Factor Analysis model is:
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yi =  &B' +  £i

where B  is a matrix of order n  x k  assumed to be full row rank, called the factor 
loadings, £* ~  9ft1 xfe is the score or factor, and assumed to be normal with mean zero 
and positive definite covariance matrix <J>. The observations y* are independent and 
identically distributed,

Vi ~  N(0, E)

with E =  B < b B '  +  Qe. This general structure is used for two different types of 
factor analysis, Exploratory Factor Analysis (EFA) and Confirmatory Factor Analy- 
sis(CFA). Given a data set Y, the essence of EFA is to investigate, whether the 
observed covariance of the data can be approximated by such a structure with a 
small number of factors. On the other hand, CFA implies structure in MLFA model 
with restrictions on B  and $. These restrictions are implied to relate the underlying 
factors to some hypothesized causes. Hypothesis testing is done on the restricted 
values to confirm the structure. In process industries the analysis is more exploratory 
in nature. Therefore in this section we will restrict our discussion to Exploratory 
Factor Analysis.

Maximum Likelihood Factor Analysis, based on iterative switching between eigen­
value problem and updating of has been in use for a long time (Lawley and 
Maxwell 1963). But because of limited computational power, eigenvalue computa­
tions were difficult and it was used only for small problems. The breakthrough in the 
application of Maximum Likelihood (ML) principles to Factor Analysis (FA) came 
after the application of fast optimization methods to optimize the log likelihood func­
tion (Joreskog 1970). The work of Joreskog later led to the well known LISERL pro­
gram. An Expectation Maximization (EM) version of MLFA is also available (Rubin 
and Thayer 1982). The iterative steps of EM algorithm are very similar to the steps 
described by Lawley and Maxwell (1963). Lawley’s version of MLFA will be described 
here because of its close resemblance to PCA and easy implementation (Wansbeek 
and Meijer 2000).

MLFA Algorithm

1. The initial values of the error variances (diagonal elements of Qe) are selected. 
This can be taken as 10% of the variances of the observed signals.

2 . The estimated covariance of the observed data, S  is scaled with the error covari­
ance matrix. Eigenvalue decomposition is performed on the scaled covariance 
matrix S  fl”1.
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3. Ak is a diagonal matrix with largest k eigenvalues. B  are the corresponding 
eigenvectors in the scaled domain. The loadings in the original domain are 
given by, B  — B A ,

A =  ((A* -  / jfe)(B,fiJ1S - 1) - 1) 1/2 (3.25)

4. The diagonal elements of the error covariance matrix are calculated as follows:

i= j= l

Step 2 to step 4 are repeated until convergence.

Once the error covariance and the loadings have been estimated the scores are 
estimated by regressing & on y,.

i 'i  =  m i \ V i )  =

Application to Process Monitoring

The application of Maximum Likelihood Factor Analysis in process monitoring is 
similar to the application of PCA. The breakdown of correlation between the vari­
ables can be easily tested using Squared Prediction Error (SPE). Since the data is 
assumed multivariate normal, Hotteling T-square plot can also be used to detect the 
deviation of the process from normal operating region. Once fault has been detected, 
SPE contribution charts can be used to isolate the root cause. In addition to using 
SPE and T-square chart, Squared Weighted Residuals (SWR) can be used for fault 
detection and isolation, since estimates of error variances are also available. SWR 
gives sharp detection and it has superior fault isolation capability over SPE. Under 
normal condition SWR has a chi-squared distribution (Oxby and Shah 2000).

Connection with Modified PCA Methods

Maximum Likelihood Factor Analysis (MLFA) is closely related to two modified form 
of PCA, Probabilistic PCA (PPCA) and Bayesian PCA (BPCA). Unlike PCA these 
two methods assume that the underlying noise-free variables X  are multivariate nor­
mal which is exactly the assumption in MLFA. Probabilistic PCA is actually a re­
strictive case of MLFA. It further assumes that the measurement noise is isotropic-iid 
(fie =  cr2I) (Tipping and Bishop 1999). On the other hand, the main objective 
of Bayesian PCA is to use the prior information about the loadings in performing
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Principal Component Analysis. The method can deal with small data samples very 
effectively. However, the method is optimal in the least squares sense, does not in­
corporate the noise covariance in estimation and falls short in achieving maximum 
likelihood estimates (Nounou and Shen 2002).

Missing D ata Handling in MLFA

The EM algorithm for factor analysis gives a natural way to handle missing values in 
MLFA. However, the method does not use eigenvalue solution and the steps of the 
algorithm are not intuitive. The PCA-like MLFA algorithm described in Section 3.4.1 
will be extended for handling missing data. Since the error variances are also calcu­
lated, an intuitive way is to perform error correction while imputing for the missing 
values, and extend the method in Data Augmentation framework.

The Imputation step (I-step) of the Data Augmentation algorithm can be im­
plemented very easily using the iterative algorithm. Using the same description of 
Section 3.4.1, at any step t the estimate of the noise free variable X  is given by,

£<*> -  jg«|(*)

Vmis =  +  V iL

where Vi ~  1V(0,1). So, is a random draw from the distribution conditioned 
on Yobs and E ^ .

The Posterior step (P-step) is to sample the parameters from their respective dis­
tributions. Here the parameters are the eigenvectors of the covariance matrix. Instead 
of sampling each element of the eigenvectors from its distribution the covariance ma­
trix is sampled from the distribution, and eigenvalue decomposition is performed on 
each sampled covariance matrix. For implementation purpose, the covariance matrix 
is sampled from the Inverse-Wishart distribution, as the posterior distribution of the 
covariance matrix of a multivariate normally distributed data has an Inverse-Wishart 
distribution (Gelman and Rubin 2004). The covariance matrix estimated from the 
augmented data matrix Yaug = (Y0bs, Y^^J  is used to scale the Wishart distribution. 
The uncertainty of the covariance matrix gets transferred to the model parameters 
which in this case are the eigenvectors of the covariance matrix. So essentially the 
eigenvectors are sampled from their distribution. The distribution of the posterior 
density of the covariance matrix of multivariate Gaussian samples is derived in the 
Appendix.
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3.5 R esults and Discussions

3.5.1 Flownetwork Example

The flow-network process, shown in Figure 3.2, will be used to compare the relative 
advantages and disadvantages of different methods. This is a benchmark example 
used by Narasimhan and Shah (2004) and a similar example was used by Nounou 
and Shen (2002) to evaluate different properties of Bayesian PCA. It is assumed that 
the fluid flowing through the network is incompressible and there is no time delay in 
the process. The constraint model A, of the process can be obtained easily from the 
mass balance equation at the junctions. The following four flow balance equations 
can be written for this flow-network system:

X i+ X 2 ~ X 3 = 0
X3 ~ x4 = 0 
X4 — X5 — X2 = 0 
X5 ~  Xq =  0

where Xi to x& are flowrates at different points of the system. Thus the constraint 
model is:

1 1 - 1 0 0 0
0 0 1 -1 0 0
0 -1 0 1 - 1 0
0 0 0 0 1 -1

The rank of the constraint matrix is four, which is also known as the order of the con­
straint model. In the above example Xi and x2 were chosen as independent variables. 
These are two deterministic signals and output of auto regressive (AR) processes 
given in Table 3.2. The rest of the flow rates, x$ to x§ were calculated from the mass 
balance equations. These variables are noise free and satisfy the constraint,

A X T = 0

where X  = [Xi X 2 X 3 X 4 X 5 Ag] and X \  to X$ are vectors containing the actual 
flowrates at each sampling point. However, in process industries the actual values of 
the variables are generally not available, only the noise corrupted measurements Y  
are available,

Y =  X + e

where e is a matrix containing the measurement noise. Measurement noises are 
assumed Gaussian, independent and identically distributed and also uncorrelated in 
the variable direction (i.e., S i~  N  ^0, crjl^, j  = 1,2 . . . , 6^.
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Figure 3.2: Schematic Diagram of the Flow-Network 

Table 3.2: Transfer Functions of the Deterministic Signals

X i X 2
1 I

1—az~l 1 - b z - 1

3.5.2 Performance measures

The following two measures were used to quantify the performance of the proposed 
algorithms.

Subspace angle

Principal Component Analysis (PCA) is carried out by applying Singular Value De­
composition (SVD) on the covariance matrix where the loadings of the PCs are given 
by the eigenvectors. In a multidimensional problem the eigenvectors can be multi­
plied by any non-singular matrix to define the same hyperplane. The exact value of 
each element of the matrix depends on how the basis vectors are selected. Therefore, 
direct comparison of the elements of the eigenvectors with actual model parameters is 
not feasible. Instead one should examine if the hyperplane defined by the estimated 
model is in agreement with the actual model hyperplane. In this study the subspace 
angle, 0 is used to measure such agreement.

Let F  and G be given subspaces of real space J?m, u € F, v € G, and assume for 
convenience that p = dim(F) > dim(G) = q > 1. The smallest angle 9\{F, G) — 6% £ 
[0,7r /2] between F  and G is defined by

cos(0i) =  maxueFmaxveauTv 
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Assume that the maximum is attained for u =  u\ and v = v\. Continuing in 
this way until one of the subspaces is empty, we are led to the following definition. 
The principal angles &k € [0, tt/2] between F  and G are recursively defined for k = 
1, 2 , •••,<? by,

cos(0fe) =  maxueFmaxveGuTv =  v%vk, ||«||2 =  1 , IMta =  1 

subject to the constraints

u ju  —  0,v fv  =  0

where er*. is an eigenvalue of FTG. Therefore subspace angle or principal angle is the 
minimum angle between the subspaces (Bjorck and Golub 1973). On the other hand, 
similarity index is a combined index defined by,

0S = i i > s a(0,) = iy >
q i=1 q i=1

where A* is the eigenvalue of FTGGTF. The value of the similarity index is between 
0 and 1, where 1 means that the two subspaces are linearly dependent (Krzanowski 
1979). Clearly these two indicators have the same origin but differs in the way the 
result is reported. In the current study the subspace angle is used to quantify the 
model quality. The built-in function ‘subspace.m’ from Matlab’s ‘Data analysis and 
Fourier transforms’ toolbox is used to calculate the subspace angle. The details of 
the algorithm can be found in Knyazev and Argentati (2002).

Total Sum of Squared Error (TSE)

The main objective of process monitoring is to estimate the noise-free values of the 
signals. In order to evaluate the performance of the proposed algorithms we also 
calculated the total sum of squared errors (TSE) between the noise-free signal and 
predicted signal. Total sum of squared error is given by,

N  m

T S E  = £ £ ( * « - * « ) ’
i=1 j= 1

In addition to the prediction trend plots, TSE gives a quantitative way of comparing 
the performances of the algorithms.
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Figure 3.3: Trend Plot of X  and predicted X  using MLFA and PCA
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Figure 3.4: Total Sum Square Error between X  and predicted X  using MLFA and 
PCA
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Figure 3.6: Squared weighted residuals calculated using MLFA

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5.3 Monitoring of Structural Process

Simulation studies have been carried out using the flownetwork system to check the 
performance of the MLFA and PCA in monitoring structural processes. In order to 
simulate structural process data, it is assumed that the independent variables Xi and 
X2 are sampled from the Gaussian distributions N(10,4) and A (20 ,5) respectively. 
Since the other variables are linear combinations of these two variables, data matrix 
X  will have a multivariate normal distribution.

One of the primary objectives of process monitoring is to estimate the noise-free 
measurements, X  as defined in Equation 3.1. In this study the estimated X  from 
MLFA and PCA have been compared with the true X. Figure 3.3 shows that the 
estimated X  from MLFA follows the true X  more closely than the estimated values 
from PCA. To compare the models in a more quantitative manner total sum of squared 
errors (TSE) between the estimated values and the true values have been plotted in 
Figure 3.4. The var(error variances) is plotted along x-axis, which is an approximate 
measure of non-isotropic (i.e., variances of each of measurement noise is unequal) 
nature of the errors. Higher values signify that the noise is more non-isotropic. It is 
evident from the figure that MLFA minimizes higher prediction error than PCA at 
all non-isotropic error conditions. The two methods are equivalent at the limit when 
the errors are isotropic. In the process of estimating latent variables using MLFA, 
variances of the measurement errors are also estimated. Therefore, squared weighted 
residuals (SWR) can be calculated and used for fault detection purpose. In Figure 3.5 
and 3.6 we compare the fault delectability of the two algorithms. A sensor fault has 
been simulated by adding a constant bias to one of the sensors. Though both PCA 
and MLFA were able to detect the fault, the squared weighted residuals obtained from 
MLFA are more sensitive to the fault and shows abnormal behavior very distinctly 
on the SWR plot. Also there is no false alarms during the normal operation. On 
the other hand the SPE-plot obtained from PCA have many false alarms during 
the normal operation. The better fault detection performance of SWR over SPE 
observed in this case can be attributed to two factors (i) SWR is more sensitive to 
faults than SPE for non-isotropic measurement noise (ii) the minimization criteria of 
MLFA is better suited for non-isotropic noise. However, it is arguable which has the 
dominant effect. Even if the better performance is due to the sensitivity of the SWR, 
it is not possible to calculate SWR in PCA based monitoring since the covariance of 
measurement noise is not estimated.
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Figure 3.7: Sum of Squared Errors between the observed measurements and the pre­
dicted noise free values showing the convergence of MLFA-Data Augmentation algo­
rithm

3.5.4 Results on missing data handling in Structural M odel

MLFA was extended to the Data Augmentation framework for dealing with missing 
data. The convergence property of the proposed algorithm in the presence of missing 
data is shown in Figure 3.7. The algorithm converged up to a very high percentage of 
missing data. However, the data requirement for the algorithm is quite substantial. 
For the flownetwork system with six variables, at least 2000 samples were required 
to estimate good estimates. The estimated values of the missing measurements by 
MLFA-DA are plotted against the true noise-free values in Figure 3.8. The plot shows 
good agreement between the estimates and the true values. However, as the missing 
percentage goes above 20% the performance of the algorithm deteriorates. At this 
high percentage of missing values it becomes a non-identifiable problem. In that 
case too many parameters are being estimated from too few constraints. In other 
words, when the percentage of missing value is high there is more probability that 
on some rows we will not have sufficient number of observed values for calculating 
all the missing values using the constraints. Therefore, some the estimates of the 
missing values will not change from the initially assigned values during the iterative 
process. In addition to that, the estimates of error variances also get affected. Since 
the variables are scaled with the standard deviation of the errors, a poor estimate of 
error variances may lead to poor estimates of the missing values.
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Figure 3.8: Plot of predicted noise free values of the missing measurements by MLFA- 
DA against the true values

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5.5 Results on the Functional Latent Variable Problem

The functional process behavior is simulated using the transfer functions given in 
Table 3.2 with a = 0.9 and b =  0.8. Utility of Missing data handling technique is the 
most when the sample size is small. In this case the sample size is 200.

Results on Model order Selection

Figure 3.9 shows that with more data missing in the data matrix, total variance 
explained by the first two principal components increases. So, methods which use 
variance information for selecting model order, such as, SCREE-plot, Broken Stick 
method are affected because of missing data. Figure 3.10 shows the model order 
selection in the presence of 15% missing data using cross validation. Though the 
calculated values of prediction error sum of squares (PRESS) change due to missing 
values, the slope of the curves clearly indicate that the first two PCs axe sufficient to 
express the variability of the data. However, PRESS calculated using PCADA are 
closer to the actual values than calculated using PCAIA.

The improved model order selection criteria of IPCADA in the presence of missing 
data are evident from Figure 3.11. Because of the scaling strategy, in IPCA the 
eigenvalues corresponding to the null space becomes one. This property is very useful 
in selecting the order of the model. The estimated eigenvalues by IPCADA at different 
percentages of missing data are shown in Figure 3.11. The last four eigenvalues do 
not deviate significantly from unity. This is primarily because at each iterative step 
residual corrections are carried out on the estimated missing values. This helps to 
restore overall covariance and error covariance structures of the original measurements 
to some extent. Therefore, the model order selection is precise for IPCADA in the 
presence of missing data.

Convergence Property

Convergence of PCA-Data Augmentation (PCA-DA) and IPCA-Data Augmentation 
(IPCA-DA) were monitored using the calculated sum of squared errors between the 
observed values and corresponding predicted noise-free values. In the flownetwork 
example, the actual constraint model is exactly known, the changes of the subspace 
angles with iteration steps were also calculated to reaffirm the convergence proper­
ties. Both the sum of squared errors and the subspace angles decrease with each 
additional iteration step and reaches to their minimum values at convergence. It 
is also evident that both indices have similar trends and point towards the conver­
gence around the same iteration steps (Figure 3.12, Figure 3.15). Therefore, when
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Figure 3.10: Model order selection using cross validation
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Figure 3.12: Convergence monitoring of IPCADA using the sum of squared error 
between the observed and the predicted values
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Figure 3.13: Convergence monitoring of PCA-Iterative Algorithm using the Subspace 
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Figure 3.14: Convergence monitoring of PCA-Data Augmentation using the Subspace 
Angle

the true model is not known sum of squared errors between the observed values and 
the corresponding predicted values can be used to monitor the convergence of the 
algorithms. However, the convergence of PCA-Data Augmentation (PCADA) and 
Iterative-PCA-Data Augmentation (IPCADA) are not smooth like PCAIA as shown 
in Figure 3.13 because at each iterative step residual error corrections are carried out 
by adding random noise with the conditional expected values. This randomness is 
also reflected on the convergence plot. Once the algorithm converges the indices vary 
around the minimum values. Therefore one should check for a bounded value rather 
than a constant term to determine the convergence.

PCADA converges even for very low signal to noise ratio and high percentage (i.e.
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Figure 3.15: Convergence monitoring of IPCA-Data Augmentation using the Subspace 
Angle

True Error 
Variances

Estimated Error Variances 
(without Error Correction)

Estimated Error Variances 
(with Error Correction)

Estimated Error Variances 
( using IPCADA)

1 . 7 1 . 0 9 4 1 . 3 2 5 1 . 8 5

0 . 1 6 0 . 1 0 9 0 . 1 7 5 0 . 1 3

0 . 4 9 0 . 3 2 3 0 . 6 2 3 0 . 4 9 4

0 . 3 6 0 . 2 8 2 0 . 3 1 0 . 3 3 1

0 . 0 4 0 . 0 0 . 0  0 . 0 5 9

1 . 2 1 0 . 8 7 4 1 1 . 1 3 1 . 3 7

Table 3.3: Comparison of Estimated Error Variances with True Values

25%) of missing data. IPCADA also enjoys good convergence properties except at 
very low signal to noise ratio with very high percentage of missing data. In those 
cases the estimation of error variances is poor and also the variance corrections are 
of the same order of magnitude as the contributions from the underlying true signal. 
Therefore it interacts with the underlying signals and the model quality deteriorates. 
However, the sum of squared errors between the observed values and the predicted 
values also shows the divergence and the iterations can be terminated at that point.

Estimation of error variances is an integral part of IPCADA algorithm. Due 
to the presence of missing values in the data matrix these are the most vulnerable 
parameters. In Table 3.3 the estimates of error variances have been compared with 
the true error variances. True error variances are given in column 1. Reported values 
in column 2 are estimated by using only the IPCA algorithm iteratively and missing
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Figure 3.16: Model Quality Comparison. Subspace Angle between the estimated model 
and actual model vs. variance of error variances

values are filled by directly substituting the conditional expected values without any 
error correction. The values in column 3 are obtained by IPCA where the conditional 
expected values were corrected to account for the measurement errors before being 
used for imputation, but ‘Bootstrap’ is not used to sample the parameters from the 
distributions. Parameters in column 4 are estimated using the complete IPCADA 
algorithm. The error variances of the signals estimated using IPCADA are the closest 
to the true values. For the other two methods the estimated values of the smaller 
error variances are poor and the smallest error variance estimate always tends to zero.

Comparison of Model Quality

It was claimed in the previous sections that the IPCADA algorithm is advantageous 
over PCAIA when the errors are non-isotropic (i.e., Q ±  a21). To demonstrate the 
point, the Subspace Angle (9) between the models estimated by PCAIA and IPCADA 
are plotted in Figure 3.16. The deviations of the noise variance from isotropic noise 
has been quantified by var(error variances). In both cases 10% of the total values are 
missing. When the noise variances are nearly isotropic two methods are practically 
indistinguishable. But as error variances become more non-isotropic, the performance 
of the PCA based algorithm deteriorates sharply.

The quality of the models estimated from the algorithms at different percentage of 
missing values are compared in Figure 3.17. In this case the error variances deviates 
from isotropic noise only moderately; var(error variances) is 0.05. Estimated models 
from IPCADA algorithm have better quality for missing values up to 20%. For missing
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Figure 3.17: Flownetwork Example: Comparison of Model Quality estimated by 
IPCDA and PCAIA at different percentage of missing values

values beyond that range the use of IPCADA is not recommended, as the algorithm 
runs into convergence problem and the quality of the model may deteriorate sharply. 
At high percentage of missing data, similar to MLFA there may arise identifiability 
problems as discussed in Section 3.5.4.

In Figure 3.18 the estimated values of the missing measurements have been plotted 
against the noise-free true values. The plot clearly shows that PCADA gives better 
prediction than PCAIA. In order to get a quantitative feel, we also calculated the 
sum of squared errors between the predicted values and the true values as shown in 
Figure 3.19 for different percentages of missing values. These values are an average of 
twenty Monte Carlo simulations and the error bars indicate the standard deviations 
of the estimates. It is evident from the plot that the proposed PCADA algorithm 
gives better estimates of the missing values, as well as, the estimated models are of 
better quality than that of estimated by PCAIA. However, the computational load of 
PCADA is substantially higher than PCAIA. Until now we have shown the application 
of the iterative techniques for solving problems which are directly related to missing 
data. Besides these a wide range of problems can be formulated as missing data 
problem and the iterative techniques may be used effectively to solve such problems. 
In the following section we demonstrate one such example where PCAIA is used 
to synchronize uneven length batch process data. PCAIA is used mainly from the 
consideration to limit the computational load of the analysis, as the method is already 
computationally intensive.
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of the missing measurements by PCAIA
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Figure 3.19: Sum of Squared Errors between the true values and the values predicted 
by PCAIA and PCADA at different percentage of missing values

3.6 Synchronizing U neven Length B atch Process  
D ata

Batch processes are used for producing highly value added products such as, phar­
maceutical products, speciality polymers, biomedical products etc. Monitoring of 
batch process is important because early detection of the anomaly can facilitate tak­
ing corrective actions or altogether discarding further costly processing of the batch. 
Multiway PCA (MPCA) based methods are commonly used for monitoring of batch 
processes (Nomikos and MacGregor 1994). Batch process monitoring is essentially 
monitoring the trajectories. The allowable band for the trajectories are calculated 
from the trajectories of different batches. Therefore to take this variation into account 
data from different batches have to be included for building the model. So typical 
batch process data will have a three-way matrix structure as shown in Figure 3.20(a).

For applying PCA data need to be unfolded to a two-way structure. Data can be 
unfolded in three distinct ways to a two-way data matrix (Westerhuis et al. 1999). 
However, the unfolding proposed by Nomikos and MacGregor (1994) is the most 
meaningful in this context as it provides a way to include the normal batch to batch 
variations in the model. This is illustrated in Figure 3.20 in steps (d) and (e). In a 
typical batch run (j =  1,2, • • • , J) variables are measured at k =  1, • • • ,K(i)  time 
intervals. Here the end point of the measurements is a variable and varies from batch
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to batch. The vaxiation of batch length may be due to a wide variety of reasons 
including feed quality variation, poor control etc. Similar data will be generated from 
several i =  1, • • ■ , I  similar batch runs. This vast amount of data can be organized 
in a three-way data matrix. The unfolding proposed by Nomikos and MacGregor 
(1994) slices the matrix in vertical direction and arrange the time slices side by side. 
In the unfolded matrix each batch appears as an object. The data are then mean 
centered and scaled prior to applying PCA. This unfolding is particularly meaningful 
because by subtracting the means of the columns of the unfolded matrix the main 
non-linear and dynamic component of the data are removed. A PCA performed on 
these mean-centered data is therefore a study of the variation in the time trajectories 
of all the variables in all batches about their mean trajectory. However, if the batch 
lengths are uneven, before carrying out the mean centering operation different batches 
need to be synchronized. In this section we will directly move into the various issues 
related to synchronization of batch data. The details of the application of MPCA 
techniques in batch process monitoring can be found in Nomikos and MacGregor 
(1995a) and Nomikos and MacGregor (19956). Review and comparative study on 
different techniques of batch process MPCA was done by Eric N. M. van Sprang 
(2002) and Westerhuis et al. (1999).

Several methods have been used to synchronize the uneven length data from dif­
ferent batches. Nomikos and MacGregor (1994) proposed the use of an indicator 
variable instead of time. Data from different batches are synchronized with respect 
to the indicator variable. The variable has to have some specific properties, such as, 
same starting and ending point in different batches, monotonicity that is increasing 
or decreasing trend in time and free from noise. A constant increment is selected 
along this indicator variable and rest of the variables are synchronized with respect 
to this indicator variable. This method has also been used by Kourti et al. (1996) to 
synchronize a semi-batch polymerization process. The main critique for the method 
is, in many cases it is difficult to find a variable which can meet all these criteria. A 
simpler practical solution was used by Lakshminarayanan et al. (1996) where they 
padded the shorter batches with the last measurements and made all of the batch 
lengths equal. This essentially implies that, all the time differences are at the last 
stage of the batch process. Therefore it is not suitable for batch processes which have 
multiple stages. However, the method works well in many situations when the batch 
lengths are not substantially different. Another option is to consider data from all 
batches only up to the shortest batch length. Thus data collected during the later 
stage of the longer batches are not included in the model. Unfortunately the data 
collected towards the end is of great interest as these measurements provide infor-

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mation whether or not the reaction is complete or the cycle is finished. To estimate 
the end point of the batch process a two-stage method is proposed by Marjanovic 
et al. (2006). The method is particularly useful for predicting the batch comple­
tion time before hand. However, until now the most general and elegant solution 
for synchronizing batch trajectories is via Dynamic Time Warping (DTW). DTW is 
widely used in speech recognition, particularly in isolated word recognition (Myers et 
al 1980, O’Shaughnessy 1986, Silverman and Morgan 1990). In chemical processes 
DTW was introduced by Gollmer and Postens (1995) to detect the onset of different 
growth phases and failure in batch fermentation process. Nomikos and MacGregor 
(1994) later used DTW for synchronizing un-even length batch trajectories. Dynamic 
Time Warping is a flexible, deterministic pattern matching technique. It is able to 
translate, compress and expand the patterns locally, which are very attractive fea­
tures for multi-stage batch process data. The method uses the theory of dynamic 
programming, hence the name Dynamic Time Warping. There are many versions of 
Dynamic Time Warping. However, for batch data synchronization asymmetric dy­
namic time warping is commonly used and in this study we will focus on asymmetric 
DTW only.

Let T  and R denote the ‘test’ and ‘reference’ multivariate trajectories with dimen­
sions of t x m and r x m  respectively, where t and r  are the number of observations, 
m is the number of variables and % j  denote the time indices of the respective trajec­
tories. DTW will find a sequence F* of K  points on a t x r grid.

F* =  c(l),c(2),-. .,c(A0,---,c(if) (3.26)
m ax(t,r) < K  < t  + r (3.27)

where c(k) = [i(fc), j(fc)] and each point c(k) is an ordered pair indicating a position 
on the grid. In the most common asymmetric DTW algorithm the test trajectories 
will match the time index of the reference trajectory. Therefore, the common time 
index k is in fact the time index j  of the reference trajectory R, and contains exactly 
r points.

F* =  c(l),c(2), • - - ,c(k), ■ ■ • , c(r)

and c(j) = (i(j),j). This implies that the path will go through each vector of R  but 
it may skip vectors of T.

Asymmetric DTW is a two step procedure. In the first step, the test batch data 
points are aligned along the time indices of the reference batch. Some total distance 
measured between the two trajectories are minimized in order to find the best indices
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for the test batch. The most commonly used local distance is the weighted quadratic 
distance.

d(i(k),j(k)) =  (T(i(k) , :) -  R(j(k), :))W(T(i(k) , :) -  R(j(k), :))T (3.28)

D (t,r ) = ^ = i d m , j ( k ) }  
w(k)

where W is a positive definite weight matrix that reflects the relative importance of 
each measured variable and w(k) is a nonnegative weighting function for d(i(k),j(k)). 
The optimal path is found as the solution to the following optimization problem:

D*(t,r) = miriF[D(t,r)] (3.30)

F* = argmiriF[D(t,r)\ (3.31)

Several local and global constraints are also imposed in the algorithm. End point
bounds are the most common and useful when the end points of both trajectories are
known with certainty. It implies that the first c(l) and the last c(K) path points are 
as follows:

c(l) =  ( l , l )  (3.32)

c(K) = (t,r ) (3.33)

Monotonicity constraints are imposed (e.g., i(k +  1) > i(k) and j(k  +  1) > j(k)) 
to preserve natural order of the trajectories in time. In order to prevent excessive 
compression or stretching, slope constraints are included into the algorithm. This is 
imposed by specifying a set of allowable predecessors for each point in the grid.

After aligning the trajectories the next step is to deal with the excess or inadequate 
data points in the synchronized data matrix. If the length of the test batch is longer
than the reference batch, some points of the test batch need to be discarded. For
example, if two points from the test batch correspond to one point in the reference 
batch then based on the distance measure one point is discarded or an average of 
these two points are assigned to that position. On the other hand, if the test batches 
are shorter than the reference batch, after alignment there would be many gaps in 
the test data set (i.e., some of the rows of the test data set will be empty). Typically 
a ‘zero order hold’ or ‘first order hold’ is used to fill these gaps. However, none of 
these methods are deemed appropriate considering the fact that batch process data
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Steps of Synchronizing the Uneven Length Batch Process Data

Step 1: Collect data in a three way data matrix. Select a reference batch from the 
collection of data.

for i=l... I
Step 2: Align data set from each batch with the reference data set using dynamic 
time warping.

Step 3: Create a dynamic data matrix by including the lagged variables.

Step 4: Use PCAIA to fill the missing values of the shorter data sets.

end

Step 5; Unfold the data set in two dimensional data matrix and build model using PCA.

Table 3.4: Algorithm describing the steps of synchronizing data from batch processes 
with different completion time using a combined DTW  and missing data technique

are dynamic and multivariate. By applying ‘zero order hold’, though the spatial 
correlation between the variables are preserved, the temporal trends of the variables 
get distorted. On the other hand, ‘first order hold’ or ‘linear interpolation’ takes care 
of the temporal correlation to some extent but destroys the spatial correlation between 
the variables. Therefore a method is needed which will preserve both temporal trend 
and spatial correlation between the variables. In the current study we propose a 
method based on missing data handling technique which attempts to conserve both 
temporal and spatial correlation of the batch data set. The method takes advantage 
of the data matching capability of DTW and multivariate nature of the missing data 
handling technique.

3.6.1 Combined DTW  and Missing Data Technique

The basic idea is to align the test data set along the time stamp of the reference 
data set using DTW. If the test data set is shorter than the reference data set, 
some gaps will be created in the test data set. Subsequently these gaps are filled by 
applying missing data handling technique. The overall methodology of the technique
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is described in Table 3.4. We have discussed the basic principle of DTW in the 
previous section. In this section we will explain how missing data technique is used 
to fill the gaps in the shorter batches. The pattern of data from a single batch after 
synchronization is shown in Figure 3.20(b). Apparently in this pattern there is no 
way of using multivariate methods to fill the missing values as the rows that contain 
missing values are completely empty. Therefore, the model cannot be used to predict 
unique values for the missing data points. However, batch process variables are not 
only spatially correlated with each other at any given time, but also correlated in the 
temporal direction. So it is reasonable to include lagged variables in the data matrix 
and the pattern of the data matrix with lagged variables is shown in Figure 3.20(c). 
From this pattern it is evident that iterative missing data techniques can be used to 
fill the missing values, as well as build PCA model. Once the lagged data matrix 
has been created, PCAIA is applied to fill these missing values. PCAIA is a pseudo- 
EM algorithm which iterates between the model parameter estimation and missing 
value estimation steps. The algorithm is described in Section 3.3.1. Because of the 
time shifted values in the rows containing missing values, we will get some unique 
prediction of missing values by using the model. As the model is multivariate the 
predicted values are also consistent with the correlation structure of the data. The 
procedure is repeated for each set of batch data which has length shorter than the 
reference batch. Once all batches have the same length they can be unfolded by any 
of the three unfolding techniques. In the current study, we unfolded the matrix in 
the variable direction as proposed by Nomikos and MacGregor (1994). Once the data 
has been arranged in a two-dimensional rectangular structure, the ordinary PCA can 
be applied. Notice that, in this example PCAIA has been applied to dynamic data 
contrary to the steady state data dealt in the previous sections. In the following 
section we demonstrate the technique using a batch polymer reactor.

3.6.2 Batch Polymer Reactor

The proposed methodology is applied to a feed batch polymer reactor process (Chen 
and Liu 2002). The reaction system involves two consecutive first-order reactions:

A ^ B - > C

The schematic diagram of the reactor with the different measurement locations are 
shown in Figure 3.21. The reactor is operated in closed loop under an on/off control 
strategy. The reaction has three distinct stages. In the start-up stage, the steam in 
the jacket initially heats up the reactor content until the temperature reaches desired
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Figure 3.20: Pictorial representation of the proposed technique for synchronizing the 
uneven length hatch process data using the combined DTW  and PCAIA, and unfolding 
to a two way data matrix
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operation level. In the second cooling stage, the cooling water in the jacket is used to 
remove the exothermic heats of reaction. The third stage is more of a maintenance 
stage, the reaction temperature is self sustained at this stage. The cooling water 
valve is turned on occasionally to take out the excessive heat generated from the 
reaction. The jacket temperature, the temperature of the metal wall between the 
reactor and the jacket, the reactor temperature and the cooling water flow rate are 
the four measured process variables. Two quality variables, concentrations Cb and 
Cc are measured at the end of each batch run. The simulation conditions and relevant 
parameters remains same as that of Luyben (1990), except the initial concentration
CA-

Variation in initial feed concentration is common, as feed may be obtained from 
different sources or because of the presence of impurities in the feed. We consider 
a range of initial feed concentrations which affect the batch completion time. Data 
are collected from a total of sixteen batches and the batch completion time varies 
from 73 minutes to 100 minutes. We select the batch with 95 min completion time as 
our reference data set since the distribution of the batch lengths has a peak around 
that point. This will minimize the time shifting of the rows of the batches which 
have completion time on both ends to some extent. In order to build the monitoring 
scheme the four process variables are included in the model.

The typical trend of the variables are shown in Figure 3.22. Since the process has 
three different stages and there is no monotonically increasing or decreasing variable, 
DTW is the most appropriate method for synchronizing the data. The data are 
synchronized using two different techniques. First, we use DTW for aligning all the 
batches along the reference batch and apply ‘first order hold’ to fill the gaps of the 
shorter batches. Second, we use DTW for aligning the data with the reference batch 
and use the proposed methodology based on missing data handling technique to fill 
the missing values. Subsequently PCA is carried out on the complete-synchronized 
data sets.

PCA is carried out on the data matrices synchronized by the two different methods 
and the results are illustrated in Figures 3.23 through 3.26. Figure 3.23 gives the 
cumulative percentage of variances explained by the PCs. We are able to get a very 
compact model from the synchronized data where the proposed missing data handling 
technique is used to fill the missing values. The first principal component, extracted 
from the data set which is synchronized using the proposed methodology, explains 
85% of total variance compared to 40% of total variance explained by PC\ obtained 
from the data synchronized using ‘DTW-first order hold’. In the proposed method 
only two PCs explain 90% cumulative variance, whereas eight PCs are required to
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explain the same amount of variance of the data set synchronized using £DTW-first 
order hold’. In MPCA compact model has a special meaning as we are looking at the 
variation between the batches. In the ideal case if all batches have normal behavior 
and the variations are due to random measurement noise then a single PC should 
be sufficient to capture most of covariance information of the data. One possible 
explanation for the compact structure of the model from the proposed methodology 
is, PCAIA is a multivariate technique therefore the predicted values commensurate 
with the overall correlation structure of the data matrix. On the other hand, ‘first 
order hold’ creates points which may have introduced extra variation in the data 
matrix. Therefore more PCs are required to explain this additional variation in the 
data.

The SPE and the T-square plots for the two methods are given in Figures 3.24 and 
3.25. The SPE plot from the traditional ‘DTW-first order hold’ marginally detects 
batch number four as an abnormal batch compared to the rest of the batches. The 
T-square plot of the proposed missing data based method detects the sixteenth batch 
as abnormal. The fourth batch has a completion time of 85 mins and completion time 
of the sixteenth batch is 73 mins. Compared to the reference batch completion time 
of 95 mins the sixteenth batch feed is further off from the normal batch completion 
time and it has the most impurities therefore it appears more justified to single out 
sixteenth batch as the abnormal batch.

Though the proposed method shows good promise in off-line analysis there are 
several limitations of DTW and as such the proposed methodology. The biggest 
critique against DTW is that, on-line application of DTW is not straight forward. Our 
view point on this is that the monitoring does not have to be on-line throughout the 
processing. Rather in systems like this where the processing is going through multiple 
stages, after completion of each stage, PCA can be applied to find out the process 
status. For example, in this case three models can be built using the normal data sets. 
First one, using data from the heating phase only, second one using data of both the 
heating and cooling phase and the third one using data from all three stages. As soon 
we detect the completion of a stage, the data can be synchronized using the proposed 
methodology and the respective model may be used to detect any abnormality in 
the batch. This is consistent with the overall objectives of batch process monitoring. 
Without the measurement of the quality variable this non-invasive method may help 
to detect any abnormality in the processing. In the event an abnormality is detected 
the subsequent processing may be abandoned to avoid any additional cost.
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Figure 3.21: Schematic diagram of a batch reactor
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Figure 3.22: Trend plot of the measured variables of the batch reactor
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Figure 3.24: T-Square and SPE plot obtained from the data matrix which has been 
synchronized using traditional DTW
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Figure 3.26: Distribution of batch completion time: the position of the abnormal 
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3.7 Concluding Remarks

A general framework for classification of the latent variable models is proposed in 
this chapter. This classification can serve as a guideline to select the latent vari­
able models for process monitoring according to the characteristics of the process. 
Further, the classification helps in making any modifications in the analytical tech­
niques. In this study we extended PCA, IPCA and MLFA to the Data Augmentation 
framework for handling missing values in the data matrix. We applied ‘Bootstrap’ re­
sampling for implementing the Data Augmentation technique. The proposed methods 
demonstrate better performance in preserving the correlation structure between the 
variables. The proposed iterative methods have good convergence properties and the 
estimated models have better quality compared to the models estimated using the 
traditional methods.

Missing data handling technique is used in combination with Dynamic Time Warp­
ing (DTW) to synchronize uneven length batch data. The proposed method conserves 
the correlation between the variables and thereby leads to a compact latent structure 
of the model.
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Chapter 4 

D ata Compression as a M issing 
D ata Problem

4.1 Introduction

Data compression is a widely used practice in the process industries. The current 
industrial practice in data archiving is to archive or store compressed data using the 
vendor supplied compression algorithms. As the name suggests the main objective of 
compression is to compress a data file to reduce the size of data file so that storage 
space is minimized or reduced. Compression is now redundant since storage is rela­
tively inexpensive yet industrial practitioners continue to compress data as a default 
practice. However, if the main purpose of data compression is to facilitate transmis­
sion of data through telecommunication or satellites then data compression can be 
justified.

Whenever possible, we suggest using uncompressed data for any analysis. How­
ever, in many situations when historical data has to be analyzed for investigative 
purposes such as post-mortem of faults, one may have no choice other than using 
compressed data from the data historian. In many other situations we may be re­
quired to use compressed data for analysis for reasons such as:(l) data analyst may be 
located at a remote place and it may not be possible to reset the compression factor 
and collect uncompressed data for analysis; (2) sometimes it may be of interest to 
compare current performance index of a control loop with the historical performance 
index of the loop when the controller was originally tuned. For calculating the past 
performance index one has to rely on compressed data obtained from the process 
historian.

Although compressed data is regularly used for different analysis, it is also well 
known that analysis of compressed data can lead to erroneous results in data based
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analysis. The effect of data compression on various univariate statistics, such as, 
mean, standard deviation, as well as various loop performance indicators are well 
studied (Thornhill et al. 2004). The effect of data compression on pattern matching 
was studied by (Singhal and Seborg 2005). In their study, the data compression algo­
rithms were assessed on the basis of not only how accurately they represent process 
data but also how they affect the identification of similar patterns from historical 
data. However, to the best knowledge of the authors, the effect of compression on 
multivariate data analysis and model building has not been studied so far.

The data historian currently used in industries mostly use direct methods (for 
example, Swinging Door data compression) for compressing data. Such compressed 
data are usually reconstructed using univariate methods, such as, linear interpolation. 
These reconstruction methods do not take into account the changes that take place in 
other variables, and as such linear interpolation-based data reconstruction algorithms 
may destroy the correlation between different signals. So the reconstruction may not 
be reliable depending on the end use of the data. In particular such techniques 
may be potentially detrimental if the reconstructed data is used for multivariate 
analysis since such analysis makes use of the correlation between different variables. 
The main objective of this study is to investigate the impact of data compression 
on multivariate data analysis, specifically Principal Components Analysis (PCA). 
In this paper we investigate two compression algorithms, the conventional Swinging 
Door compression algorithm and the more recent Wavelet Compression Algorithm 
from a multivariate data analysis and modelling perspective. We also investigate the 
impact of compression on processes of different dynamical behavior, e.g., fast and 
slow dynamics, stochastic process. Finally, we analyze compression from a missing 
data point of view. A novel method, based on a missing data handling technique, is 
proposed to restore the correlation of the data which have been compressed using the 
Swinging Door compression algorithm.

4.2 Overview o f D ata Com pression M ethods

In process industries the measurements from all on-line sensors are first transmitted 
to the DCS systems. Most DCS systems are a repository of raw data for a short pe­
riod. However, for long term storage data are first compressed and stored in the data 
historian. Data in its compressed form are stored as a sparse matrix of raw values or 
coefficients in the transformed space. Since most data analysis techniques can only 
deal with a complete data matrix and time domain data, it is necessary to recon­
struct the compressed data to a complete data matrix in the original time domain.
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Therefore each data compression algorithm also has an accompanying reconstruction 
algorithm. The combined compression and reconstruction is referred to as ‘compres­
sion algorithm’.There is a wide variety of compression algorithms described in the 
literature especially in the context of image compression. Compression algorithms 
can be divided into two main groups: 1) Direct method and 2)Transform method.

Direct methods are rule based methods which store data by looking at its devia­
tion from the trend of the signal. Some of the popular direct methods are, piecewise 
linear compression (Hale and Sellars 1981), Box-Car, Backward Slope, a combina­
tion of these two methods called Box-Car-Backward-Slope (BCBS) and the Swinging 
Door algorithm (Bristol 1990). Direct methods make the archiving decision in real 
time as the data are recorded from the process. Therefore Direct methods have 
been the methods of choice for most industrial data archiving systems, for example, 
AspenTech®  uses an adaptive method based on Box-Car-Backward-Slope(BCBS) in 
their data historian and O SI®  uses a variant of Swinging Door algorithm in their 
PI historian (Misra et al. 2000, Matthew et al. 1998).

Transform methods perform an integral transform of the original data set and 
then transform it to a set of coefficients in the new space. Compression is performed 
on these transformed coefficients. Examples of some commonly used transforms are, 
Laplace transform, Fourier transform, and Wavelet transform. However, Wavelet 
transform is most suitable from a data compression perspective and most of the 
transformed compression algorithms are based on Wavelet transformation. Supe­
rior performance of Wavelet compression has been demonstrated in different context 
including, compression and subsequent reconstruction of process data from a paper 
making machine (Nesic et al. 1997), on-line feature extraction and noise removal from 
non-stationary signals (Bakshi and Stephanopoulos 1996) and pattern matching in 
historical data (Singhal and Seborg 2005). All these applications are off-line in the 
sense that compression is applied on that data set after a batch of data has been 
collected. An online data compression strategy using Wavelets have also been devel­
oped by (Misra et al. 2000). This algorithm works sequentially, i.e., with the arrival of 
each new point the algorithm computes all approximation coefficients and updates the 
multi-resolution tree. An efficient bookkeeping methodology has also been proposed, 
which improves compression ratios significantly over the batch or off-line version of 
Wavelet compression.

In this study, the Swinging Door compression and the Wavelet compression al­
gorithms are taken as two representative algorithms from the direct and transform 
methods, respectively. These two algorithms are described in more detail in the 
following subsections.
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4.2.1 Swinging Door Compression and Reconstruction  
Swinging Door Compression

Swinging Door compression algorithm is based on the idea that within a signal trend 
it may be possible to identify many linear segments. Therefore storing only the end 
points of these linear segments may be sufficient to capture the main dynamics of 
the system. Swinging Door compression acts sequentially on each data point and 
therefore it can be applied in an on-line fashion to compress the data. The working 
principle of Swinging Door compression method is explained in Figure 4.1. Let us 
assume in Figure 4.1 that point c is the last recorded point. Based on the desired level 
of compression a distance referred to as ‘compression deviation’ is specified by the 
user. The actual amount of compression or the compression factor cannot be spec­
ified directly in the Swinging Door compression. Deviation thresholds are specified 
in engineering units which indirectly dictates the compression ratio. ‘Compression 
Deviation’ is used to calculate the two limiting points, a and b from point c by adding 
and subtracting the deviation distance respectively. Points a and b are called pivot 
points. As each new spot value arrives, lines are drawn from the pivot points to form 
a triangular envelope that tries to enclose all the spot values since the last recorded 
point, c. The sides of the triangle are the ‘doors’. For instance, in Figure 4.1, aa' 
and bb' are two doors that envelope all points up to point d in a triangle. However, 
the next sample e cannot be enclosed in the triangular envelope. The deviation of 
sample e from the linear trend of the signal is such that, to encompass it within the 
‘doors’, the ‘doors’ have to be rotated wider than as shown by aa' and bb". Therefore 
the ‘doors’ will not form a triangle encompassing sample e, which signifies that a 
new trend has started after point d. The first and the last samples from the previous 
trend, i.e., point a and d are archived. New upper and lower bounds are calculated 
at point d and the procedure is repeated from point d onwards. In the compressed 
form, only the end points of linear trends and the corresponding sample numbers are 
stored in the process historian.

Swinging Door Reconstruction

The Swinging Door algorithm uses a linear interpolation method to reconstruct the 
signal. Therefore the reconstructed signals will have many linear segments in between 
the raw data points. For example in Figure 4.1, point c and point d are the only two 
originally stored spot values. Linear interpolation will create intermittent points at 
regular time interval as specified by the user. The interpolated points will lie on 
the straight line connecting points c and d. Clearly the reconstruction criteria is
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to minimize the deviation of the reconstructed signal from the actual signal and 
not aimed towards preserving the variance of the signal or the correlation between 
different variables in the reconstructed signals. Since multivariate analysis makes use 
of the correlation between the variables, linear interpolation type reconstruction is 
clearly unsatisfactory for such analysis.
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Figure 4.1: Schematic representation of the Swinging Door algorithm for data com­
pression

4.2.2 Wavelet Compression and Reconstruction

Wavelet compression and reconstruction is based on Wavelet Transform and Inverse 
Wavelet Transform respectively. The main objective of Wavelet Transform is to locate 
a frequency component as well as the exact time of occurrence. In this sense it is very 
similar to Short Time Fourier Transform (STFT). However, a Wavelet transform does 
it more efficiently by dividing data, functions, or operators into different frequency 
components and then processing each component with a resolution matched to its 
scale. For example, a high time resolution (narrow window) is used for high frequency 
signals and low time resolution (wide window)is used for low frequency signals. During 
data compression only the high frequency information is lost. This is commensurate 
with the needs of the process and control engineers since most of the high frequency 
signals come from disturbances, are short lived and not of interest. On the other
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hand, process dynamics are mostly in low frequency region and persist throughout the 
duration. Wavelet compression reconstruction is implemented in three main steps: 
(i) Wavelet Transform (ii) Thresholding and (iii)Inverse Wavelet Transform. The 
transformation of a signal during these steps is shown in Figure 4.2.

Wavelet Transform

The raw signal x(t) is represented in terms of Wavelet coefficients ^ t i,k ■ This is done 
by taking the Wavelet transform of the signal using a particular mother Wavelet and 
a level of decomposition (Equation 4.1). The number of coefficients generated during 
this transformation is the same as the number of data points.

^ t j,h — J  x (t) dt (4.1)

where the mother Wavelet is given by,

fpj,k (t) = s jfV  (aji ~  k) (4.2)

integer j  represents the scale at which the signal is decomposed and k represents 
its position in time.

Mother wavelets are short lived functions which enhance the time localization. The 
most common mother Wavelet functions used in the literature are the Haar function 
and the Daubechies family of orthogonal Wavelet functions. The Haar Wavelet func­
tion has been used in this paper for Wavelet data compression (Polikar 2005). It is a 
square wave defined as follows:

îJk (*) =  1 t e o,
1
2

t € T
1

2 ’
t £ [  o, 1] (4.3)

At this stage still there is no loss of information. Using Inverse Wavelet the original 
signal can be reconstructed from the coefficients. However, the disk space occupied 
by the coefficients is also the same as the original signal.

Thresholding

Compression or reduction of file size is achieved during the thresholding stage. Coef­
ficients whose magnitudes are less than a predefined threshold 0 axe set to zero. The 
threshold limit (j) is calculated iteratively based on the desired level of compression.
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The threshold limit can also be calculated by comparing the variance information of 
the original signal and the reconstructed signal. Thresholding will lead to many zeros 
in the data matrix. These zeroes are neglected and only the non-zero coefficients are 
stored. However, it is also important to record the locations or index numbers of the 
coefficients for reconstructing the signal. The non-zero coefficients are stored in the 
form sign(wk)(k +  ( | iOfcj/ | |oo)) where k is the index number and wk is the Wavelet 
coefficient at location k. Together with the scaled non-zero coefficients in this form, 
the length of the original vector and the maximum value of the coefficients, ||to * ||o o  

are stored, and Compression Ratio is given by,

length o f original vector /tcompression ratio = ------    —------------   (4.4)
number o f nonzero coej ficients + 2

These thresholded coefficients are the compressed form of the data and are stored 
in the data historian. However, when the coefficients are neglected, the transforma- 
tion is no longer lossless and the reconstructed signal from these coefficients will be 
different from the original signal.

Wavelet Reconstruction

The first step of reconstruction is transformation of the coefficients to their absolute 
values. The integer parts of the scaled coefficients give the index numbers and the 
decimal parts are essentially the scaled coefficients. The decimal parts are multiplied 
by Hiwjfclloo and the appropriate signs are placed in front of the coefficients. The 
coefficients are placed at their respective positions in the data vector as indicated by 
the index numbers. All points in between the coefficients are filled with zeros. Inverse 
Wavelet transform (Equation 4.5) is applied on this coefficient vector with the same 
mother Wavelet and the same level of decomposition originally used for compressing 
the data set (Singhal and Seborg 2005). Data vector x(t) is the decompressed signal 
in the time domain.

x(t ) = ci)' 2̂Yl (4) (4 5 )
j k

4.3 Form ulation o f Com pression as a M issing D ata  
Problem

Data historians used in process industries almost exclusively use direct methods for 
compressing data. In this section we will formulate compressed data from direct 
methods as a missing data problem. Process historians use decompression algorithms
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to provide a data matrix with the specified sampling rate. These decompression 
methods mostly use linear interpolations to fill the points in-between the originally 
stored spot values. In order to cast the problem in a missing data formulation, the 
first step is to take out the interpolated points. Only the spot points are retained and 
subsequently used for building the model using multivariate missing data handling 
techniques.

6
5

4

3

2
1

6

3
4  

3 

2 

1

Figure 4.3: Data from several loops of a refinery process archived using a Swinging 
Door compression algorithm to a factor of 10 and subsequently reconstructed using 
the built-in reconstruction algorithm. The reconstructed signals show many linear 
segments.

For example, the reconstructed signals from Swinging Door compression algorithm 
are shown in Figure 4.3. The measurements from the level loops of a distillation col­
umn were compressed by a factor of three using Swinging Door compression algorithm. 
The signals were reconstructed using linear interpolation. Data matrix of the corre­
sponding signals are shown in Figure 4.4(a), where the linearly interpolated points are 
replaced with ‘NaN’. This shows the distribution of the originally stored spot values. 
Some of the rows do not contain a single spot value in the row. These rows have been 
shaded in the data matrix. Since these rows do not contain any information they 
were removed and the new data matrix is shown in Figure 4.4(b). This is the missing 
data formulation of the compressed data, where the missing values exist all over the 
data matrix. Multivariate missing data handling techniques may be used to predict
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Raw Time Trends of Level Signals from a Refinery
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Linearly Interpolated signal from Swinging Door Compressed data
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NaN NaN 29.101 NaN NaN NaN
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20.217 NaN NaN NaN 19.898 19.898
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18.915 10.199 29.486 30.427 19.639 19.639
20.241 9.0755 NaN NaN 20.28! 20.288
16.505 7.7956 26.58 26 18.538 18.539

NaN NaN NaN NaN NaN NaN
20.931 11.231 32.214 31.923 20.941 20.941

22.26 10.546 32.853 32.312 21.679 21.679
NaN 13.136 32.418 32.736 NaN NaN

18.484 NaN NaN NaN 18.877 18.877
21.029 10.2 31.665 NaN 20.87 20.87

NaN NaN NaN 30.56 NaN NaN
19.052 12.804 NaN NaN NaN NaN

NaN NaN 32.118 32.276 19.494 19.494
NaN 9.8166 NaN NaN NaN NaN

20.95 NaN 31.356 31.186 21.305 21.305
NaN 8.4052 28.349 27.593 NaN NaN

16.455 NaN NaN NaN 18.735 18.735
NaN NaN 29.101 NaN NaN NaN
NaN 10.087 NaN 30.08 NaN NaN

21.213 NaN 33.521 NaN 20.886 20.886
NaN 13.015 NaN 33.423 NaN NaN
NaN 8.5436 28.526 28.927 NaN NaN

20.217 NaN NaN NaN 19.898 19.898
NaN 9.5583 NaN 30.567 NaN NaN
NaN NaN NaN NaN 21.527 21.527
NaN 10.053 31.034 30.56 NaN NaN

20.579 NaN NaN NaN NaN NaN
NaN 9.53S 29.484 29.418 NaN NaN
NaN 13.166 33.806 33.689 20.463 20.463

19.614 NaN NaN NaN NaN NaN
NaN 8.2582 27.895 27.337 NaN NaN
NaN NaN NaN 30.397 NaN NaN

19.559 11.375 30.664 31.456 19.307 19.307

NaN NaN NaN 30.397 NaN INaN

19.559 11.375 30.664 31.456 19.3071 19.307

Figure 4.4: (a)Data matrix after the linearly interpolated points have been replaced by 
‘NaN’(b)Data matrix after removing the shaded rows from data matrix (a)

missing values in such a data matrix.

4.3.1 Characterization of Compression Mechanism

In order to reconstruct the missing values, it is important to characterize the mecha­
nism that generated the missing values. In the missing data literature, mechanisms are 
classified in three categories: i)Missing Completely At Random (MCAR),ii) Missing 
At Random (MAR) and iii)Non Ignorable (NI) mechanism. Details of the definitions 
can be found in (Rubin 1977, Little and Rubin 2002). These classifications provide 
a guideline for reconstruction and possible implications of any assumption. Here we 
give a brief description of these mechanisms to classify compression in light of these 
definitions. As shown in Figure 4.4(b), the original spot values and missing values 
are spread all over the data matrix. Any data set, Y  =  {Vij), containing an observed 
part and a missing part is represented as Y  — (Yobs,YmiS). This notation will also 
be used in this paper. A matrix M  = (mij), referred as the missingness matrix, is 
used for indexing the missing and the observed part. Each element of M  is a single 
binary item indicating whether is observed (m^ =  1) or missing (m^ =  0). In
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the statistics literature, missingness is treated as a random phenomena. The distri­
bution of M, called the missingness mechanism, is characterized by f(M\Y,<p), the 
conditional distribution of M  given Y, where 4> denotes parameters unrelated with Y. 
Classification of missingness mechanism is based on the conditionalities:

1. Missing Completely At Random(MCAR)

In this case missingness does not depend on any part of the data Y  either 
missing or observed.

f{M\Y,<f>) = f{M\(j>)

2. Missing At Random(MAR)

Missingness depends only on the observed component Y0bS and not on the miss­
ing component Ymia of the data matrix.

f(M\Y,<j>) = f(M \Y oba,<f>)

3. Non Ignorable Mechanism (NI)

If the mechanism of missingness is dependent on both the observed and the 
missing part of the data then the mechanism is Non Ignorable.

Under MCAR and MAR conditions the mechanism that led to missing data can 
be ignored in the reconstruction process. Any model based on the observed data will 
give reasonable reconstruction. For Non-Ignorable cases the missing mechanism has 
to be taken into account in the reconstruction of missing data. In many cases it is 
not possible to include the mechanism in the reconstruction process. To circumvent 
this, it is customary to assume data as MAR and build the model only based on the 
observed part of the data at the expense of some accuracy.

Now let us analyze where the compression mechanism stands according to the 
above definitions. While storing a value using Swinging Door, the deviation of the 
value from the linear trend is calculated. If the point is outside the desired bound 
only then is it archived, otherwise it is discarded. So essentially the distribution 
of M  will be dependent on both Y0bs and YmiS- Therefore, from the view point 
of missing data, compression is a ‘Non-Ignorable(NI)’ mechanism. This indicated 
that a method that is inverse to the compression algorithm should be used for exact 
reconstruction of the signal. However, the mechanism used for compressing the data 
is an irreversible one and it is not possible to include it in any form in the multivariate 
reconstruction process. In the absence of any such mechanism, we will proceed with

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



methods developed based on ‘Missing at Random (MAR)’ and use the model based 
on the observed data to reconstruct the missing part of the data matrix. Since there 
is a probability that the observed part of the data may be systematically different 
than the missing part, it may introduce some error in the model or the reconstructed 
signal. However, this is the best practice in this situation.

Due to compression the percentage of missing data is very high, for example, 
for a compression factor of 3 approximately 66% of the data is missing and at a 
compression factor of 10 only one out of ten points is recorded which means 90% of 
the data is missing. So, from a missing data view-point compression can be seen as 
Non-Ignorable mechanism with a very high percentage of missing data.

4.4 R econstruction o f Swinging Door Com pressed  
D ata using PC A IA

PCA based missing data handling techniques have been used to reconstruct small 
amount of missing data and perform PCA based process monitoring in the presence 
of missing values in the data matrix. The details of the methods can be found in 
(Nelson and MacGregor 1996, Grung and Manne 1998). However, in the current 
study we show the application of the methods in a completely new context. Missing 
data handling method is used for restoring the correlation structure and building 
a multivariate model from compressed data. First, data compression is cast as a 
missing data problem and subsequently the Principal Component Analysis Iterative 
Algorithm (PCAIA) (Grung and Manne 1998) is used for building the model. Re­
constructing signals from compressed data using missing data handling techniques 
is challenging because most of the techniques are not suitable for dealing with such 
high percentage of missing data. However, if used judiciously, missing data handling 
techniques can be useful in extracting the true correlation between the variables. The 
implementation steps of the algorithm are shown via a flow diagram in Figure 4.5. 
The method is suitable for working with compressed data from any direct method. 
The retrieved data matrix from the process historian contains some originally stored 
spot values and linearly interpolated points in between them. The first part of the re­
construction algorithm is to find the original stored points. To find these data points a 
compression detection algorithm was used (Thornhill et al. 2004). This algorithm can 
find the spot values from signals which were reconstructed using linear interpolation. 
Since the reconstructed signal is piecewise linear, it will have discontinuity only at 
the locations of the spot values. Therefore, the locations of the spot values are given 
by the locations of the non zero double derivatives. Second derivatives are calculated
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at each point of the signal using the difference relationship shown in Equation 4.6.

(Vi+ 1 -  Vi)/h -  (Vi ~  f e - ik  
A (Ay), =  -------------------  &

Vi+l -I- Ui—i . .
=   p   (4.6)

where jji is the reconstructed signal and h is the sampling interval. If N  is the 
total length of the signal, index i ranges from 2 to (N -l). Only the spot values are 
retained, and the rest of the points in the data matrix are considered as missing. This 
is illustrated in Figure 4.4(a) where the missing values have been indicated by ‘NaNs’. 
However, at this stage the ‘percentage of missing data’ in the data matrix would be 
high since in many situations we may encounter highly compressed data, e.g., for a 
compression factor of five, 80% of the data would be missing. This poses difficulty in 
reconstruction as most iterative missing data handling techniques do not converge for 
more than 20% missing data in the data matrix. Therefore a multistage procedure is 
applied to bring down the percentage of missing data in the data matrix. In the first 
step all rows which do not have any original points are taken out of the data matrix. 
Clearly, these rows do not contain any information and it will not have any impact 
on process models as only steady-state models are of interest. This is illustrated in 
Figure 4.4(a) where all the rows which do not contain a single spot value are shaded. 
This data matrix was obtained from a data set which was compressed by a factor of 
three. Therefore 66% of the data axe missing at this stage. After removing the rows 
which do not contain a single spot value, i.e., the shaded rows in Figure 4.4(a), the 
new data matrix takes the form shown in Figure 4.4(b). The ratio of spot values to 
missing values improved at this stage and the ‘percentage missing data’ in the new 
data matrix(Figure 4.4(b)) reduced to ‘50%’. In the next phase, rows which contain 
only one spot value are taken out of the data matrix. This will help to further reduce 
the percentage of missing values in the data matrix. The procedure is repeated until 
the percentage of missing values in the data matrix comes down to 30%, e.g., removing 
rows with two original values in the next step. The PCA based missing data handling 
technique gave good estimates of model and the iterative algorithm converged well 
up to 30% of missing values in the data matrix. After doing extensive simulation 
studies we axrived at this number. However, it is not possible to take out all the 
missing values and create a complete data matrix, because the original spot values of 
different variables are not aligned with each other. If only complete rows are retained 
it will drastically reduce the sample size. After the percentage of missing data is 
within 30%, Principal Component Analysis Iterative Algorithm (PCAIA) is used to
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Figure 4.5: Proposed algorithm for building PCA model from Swinging Door Com­
pressed and Linearly Reconstructed Data
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restore the correlation structure and build PCA model from the data matrix. The 
implementation of PCAIA is carried out as follows:

1. The missing values of the data matrix are filled with the unconditional mean of 
the variables. For example, the missing values of the data matrix are filled by 
the column averages of Y 0bs which gives the augmented data matrix Y aug = 
[ 'Yobsi Y"m is] where Y~mis — TficcLTi(Yoi)$) and Y ~ n.

2. Singular Value Decomposition (SVD) is performed on the augmented data ma­
trix. The loading matrix P  is used to predict the noise free values X  — Y  P P T.

3. Missing values are filled with predicted values, X  and the augmented data 
matrix will be Y aug =  [ Y 0b3, X mis], where X mis are predicted values in the 
previous step.

4. Convergence is monitored by observing the sum of squared errors between the 
observed values and corresponding predicted values from step (2).

N  n  2

S S E ^  =
* 1 J 1 o6s

Step (2) and step(3) are repeated until convergence.

In the current study we assumed that the model order or the dimensions of the 
loading matrix P  are known. However, in many real applications the model order 
may not be known exactly. Because of missing data, the percentage variance ex­
plained by the PCs becomes a function of missing data and model order selection 
gets complicated. In the presence of missing values a cross-validation based detailed 
method is incorporated into the algorithm to find out the model order (Walczak and 
Massart 2001).

Remarks
PCAIA is a pseudo version of the more general Expectation Maximization (EM) 

algorithm (Dempster and Rubin 1977). Here it may be interesting to explore the 
link with EM. Similar to EM we can identify the two major iterative steps of the 
algorithm.

P aram eter E stim a tio n  step is similar to the Maximization (M-Step) of the 
EM algorithm. From the augmented data matrix, where missing values are filled 
with conditional expected values, the loadings of the PCs are calculated. These are 
the parameters in this case. However, the method is optimal in the least squares 
sense contrary to the Maximum Likelihood Estimates obtained in EM.
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M issing  Value E stim a tio n  resembles the Expectation step of the EM algo­
rithm. Using the estimated parameters, missing values are estimated in this step. 
These values are used to fill the missing values and get a better augmented data 
matrix. In the Expectation step of the EM algorithm missing values are not directly 
estimated, rather the expectation of the sufficient statistics of the log-likelihood func­
tion are calculated. Therefore, the two methods will be only equivalent when the 
log-likelihood is linear in data or in other words the sufficient statistics of the log- 
likelihood equation are function of the data values only.

4.5 R esults and Discussions

The results of the analysis are demonstrated using two examples, a simulated flow- 
network system and an industrial case study. The industrial data is taken from a 
petroleum refining process. The description of the Flow-network system and the 
refinery data are given below:

4.5.1 Simulation Example

Data generated from this simulated system were compressed using both Swinging 
Door and Wavelet compression algorithms and subsequently decompressed using the 
commonly used built-in reconstruction methods, and also the proposed PCAIA. To 
investigate the effect of compression on model quality, PCA models were built from 
the decompressed data sets and the estimated models were compared with the true 
model. The total data length for current study is 2000 samples.

4.5.2 Industrial Case Study

The industrial data used in this analysis were obtained from a petroleum refining 
process. All six variables are level measurements at different locations of a distillation 
column. The sampling time interval for the data is 60 sec and the total length of 
the data set is 20000 samples. The data was obtained in uncompressed form. For 
investigative purpose it was compressed to different compression levels. Due to the 
proprietary nature of the refining process, no process information is provided here.

4.5.3 Performance measure for model quality

Principal Component Analysis (PCA) is obtained by the Singular Value Decomposi­
tion (SVD) of the covariance matrix where the loadings of the PCs are given by the 
eigenvectors. In a multidimensional problem the eigenvectors can be multiplied using
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any non-singular matrix to define the same hyperplane. The exact value of each of 
the element depends on how the basis vectors are selected. So a direct comparison 
of the parameter values with actual model parameters is not feasible. Instead one 
should examine it the hyperplane defined by the estimated model is in agreement with 
the actual model hyperplane. In this study the subspace angle, 0 is used to measure 
such agreement. The calculation details of subspace angle is given in Section 3.5.2. 
In reality the exact value of A is seldom known so subspace angle cannot be used 
for monitoring convergence. Convergence of PCAIA was monitored using the calcu­
lated sum squared errors of the observed values and corresponding predicted values. 
In addition to that, subspace angle was used to reaffirm the claims made about the 
performance of the algorithm.

4.5.4 Effect of Compression on Correlation Structure

Almost all multivariate statistical data analysis methods, for example, pattern match­
ing of historical data, fault detection and isolation using PCA, make use of the correla­
tion between the variables. It is important to understand how compression affects the 
correlation structure of the data. A variety of industrial data has been used to visual­
ize the effect of compression on correlation structure. The petroleum refining example 
described earlier will be stated here. The correlation matrix of the raw uncompressed 
data set is mapped in the color coded plot in Figure 4.6(a). The colors in the color- 
map indicate the magnitude of the correlation. This data set was compressed using 
Swinging Door and Wavelet compression algorithms to a compression factor of 10 and 
subsequently reconstructed using linear interpolation and Inverse Wavelet Transform 
respectively. The correlation color-map of the reconstructed data are shown in Fig­
ures 4.6(b) and (c) respectively. It is evident from the correlation color map that in 
the process of compression via the Swinging Door algorithm and linear reconstruc­
tion, the correlation between the variables has been severely distorted at this level of 
compression and the structure is significantly different from the true correlation struc­
ture shown in Figure 4.6(a). On the other hand, reconstructed data from Wavelet 
compression retains the true correlation structure in most parts. Although Wavelet 
compression is able to retain most of the significant correlation structure of the data, 
none of the current commercially available data historians use Wavelet Compression 
Algorithms. Swinging Door Compression or similar direct methods are used almost 
exclusively by commercial process historians. Therefore, in order to use the Swing­
ing Door compressed data, especially for multivariate analysis, alternative methods 
should be used to reconstruct the compressed data so that it retains the true correla-
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(s) Correlation Cotor-map of 
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Door Compressed and PCAIA based 

Reconstructed Data
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Reconstructed Data

Figure 4.6: Correlation color map of variables from a petroleum refining process. 
The intensity of the color shows the level of correlation between the variables. (It is 
recommended that this figure be viewed in color

tion structure between the variables. Instead of linear interpolation based methods, 
it is recommended that PCAIA be used to reconstruct the Swinging Door compressed 
data set. The correlation structure of the reconstructed data using PCAIA is shown 
in Figure 4.6(c). A comparison of Figures 4.6(a) and 4.6(c) shows that the PCAIA 
based reconstruction significantly restores the true correlation between the variables.

4.5.5 Compression and Process Dynamics

In order to get a quantitative measure of the interaction between compression and 
process dynamics, a parametric study was conducted using the Flow-network sys­
tem. The independent flow-rates were generated using transfer functions given in
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Figure 4.7: Variation of subspace angle with the change of the dynamic behavior of 
the flow-network system. Swinging Door Compressed data was reconstructed using 
Linear Interpolation and Wavelet Compressed data was reconstructed using Inverse 
Wavelet Transformation and subsequently used for a building model

Table 3.5.1. The input to the transfer function is a Gaussian random signal. Dif­
ferent dynamic behavior of the process were simulated by varying coefficients a and 
b from 0 to 0.9. As the coefficients vary from 0 to 0.9, the process gradually moves 
from a completely stochastic system to a slowly moving autoregressive process. All 
the signals were compressed by a factor of 3 using both Swinging Door and Wavelet 
compression algorithms. The signals were then decompressed using linear interpola­
tion and Inverse Wavelet Transform respectively, and subsequently models were built 
from these decompressed data sets. Figure 4.7 shows the deviation of the estimated 
models (i.e. subspace angle) from true model with the change of the process dynam­
ics. It is evident from the results that, the effect of compression is more severe on 
the multivariate model when the process exhibits faster dynamic behavior. However, 
as the individual signals become more predictable the effect in multivariate model 
building also gets minimal. The estimated model from ‘Wavelet Compressed and In­
verse Wavelet reconstructed’ data has a smaller subspace angle than ‘Swinging Door 
compressed and Linearly Interpolated’ data in this region. However, as the coeffi­
cients of the AR models increase beyond 0.3, the subspace angles for the estimated 
models from both methods become equal. So the quality of the models are similar 
for processes with slow dynamics.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



©
aic<s
<0a
2
3
CO

35

30

25

20

15

10

♦ WT Compression-Inverse WT Reconstruction 
a SD Compression-Linear Reconstruction
•  SD Compression-PCAIA Reconstruction

i—i-
4 6

C om pression Factor

I
— L _

10

Figure 4.8: Variation of subspace angle with compression ratio. Compressed data 
from flow-network system was reconstructed using the three reconstruction methods, 
and subsequently used for building model

4.5.6 Improving model quality using Missing D ata Handling 
Technique

In the previous section it was observed in the Flow-network system that, compression 
severely affects the model quality if the auto regressive coefficients axe below 0.3. In 
this section we compare the performance of the proposed PCAIA method with the 
linear interpolation method in building a PCA model from Swinging Door compressed 
data. We also plot the subspace angle of the models obtained from data which 
were compressed using Wavelet Transform and reconstructed using Inverse Wavelet 
Transform.

Flow-network Example

The flow-rates X\ and x 2 of the flow-network system axe the output of the transfer 
functions given in Table 3.5.1 with coefficients a — b — 0.3. The methodology of 
building a PCA model from compressed data using missing data handling technique 
has been outlined in Section 4.4. Results of the analysis axe presented in Figure 4.8. 
It is evident from the figure that estimated model from ‘Wavelet Compressed and 
Inverse Wavelet Reconstructed’ and ‘Swinging Door Compressed and Linearly Re­
constructed’ data have poor quality as the data is compressed beyond a compression 
factor of 3. On the other hand, PCAIA based modeling provides minimum sub-
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space angle, i.e., the best model quality among the three methods. Models estimated 
using PCAIA has better quality up to compression ratio as high as 8 . It clearly 
demonstrates that instead of using linear interpolation to reconstruct Swinging Door 
compressed data, use of PCAIA can be significantly beneficial in terms of a model 
that preserves the multivariate relationships between the variables. The main reason 
for the improvement is that, in PCAIA the missing values due to compression were 
reconstructed in a multivariate framework. As a result, the method accounted for 
the changes that took place to other variables as well. On the other hand, in linear 
interpolation a signal is reconstructed in a univariate framework, i.e., using only that 
particular variable, thus the reconstruction is not reliable if changes occur in other 
correlated variables at those instants. In those cases linear interpolation will miss the 
excitations and capture only the average behavior of the signal.

Since compression leads to high percentage of missing data the convergence of 
the iterative algorithm is an important concern. For the Flow-network example, the 
true model was available, so the change of model quality (i.e. subspace angle) at 
each iterative step was tracked. The subspace angle, as a measure of model accuracy, 
has been plotted against iteration number in Figure 4.9. The plot shows a monotonic 
convergence of the subspace angle at each successive step. The algorithm converges in 
less than 10 iterations even for highly compressed data. However, when the percentage 
of missing data is more than 40% (not shown in the figure) or the process does not 
have sufficient excitation in those cases some divergent behavior was also observed. 
In those cases more stringent criteria has to be set and only rows with very few 
missing values should be retained, so that the percentage of missing data is within 
the manageable range. Similar to any data driven modelling the current methodology 
also assumes that the process is sufficiently excited.

Industrial Case Study: Refinery Data

The refinery data set used for correlation structure analysis is also used to investi­
gate the performance of different compression algorithms and PCAIA, in a multivari­
ate modelling context. Since this is an industrial data set the actual model of the 
process is unknown. In order to get a performance metric of model accuracy, first a 
benchmark model is built from the uncompressed raw data set. Subsequently mod­
els estimated from the reconstructed data sets are compared with this benchmark 
model. The percentage of total variance explained by the PCs calculated from the 
original uncompressed data with that from various reconstructed data are plotted 
in Figure 4.10. The eigenvalue distribution of the Swinging Door Compressed and 
Linearly reconstructed data set is quite different from the uncompressed data set.
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Figure 4.9: Convergence of PCAIA at different compression ratio
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Figure 4.10: Cumulative percentage of total variance explained by principal compo­
nents from reconstructed data using different methods

For example, for the uncompressed data 90% of the total variance is explained by the 
first two PCs whereas it would require took four PCs to capture 90% variance for the 
linearly interpolated data. This poses a serious problem in selecting the order of a 
PCA model as most of the model order selection criteria are based on the analysis of 
variance. The calculated eigenvalues from Swinging Door Compressed and PCAIA 
reconstructed data set, and Wavelet Compressed and Inverse Wavelet Reconstructed 
data set are closer to the eigenvalues calculated from the original data set and the 
percentage variance explained by the major PCs are also very similar to the uncom­
pressed data set. Thus the model order selection will be more precise for these two 
cases.

Figure 4.11 compares the quality of the models obtained using reconstructed data 
from three different reconstruction techniques. It may be noted here that ‘Linear 
Interpolation’ and ‘PCAIA’ reconstructed the compressed data from Swinging Door 
Compression algorithm while ‘Inverse Wavelet Transform’ reconstructed data which 
has been compressed using ‘Wavelet Transform’. Since the true model of the process 
is unknown, the model obtained from the uncompressed data was taken as the bench­
mark. Subspace Angles of all models obtained from the reconstructed data were cal­
culated relative to this benchmark model. The model built from the ‘Swinging Door 
Compressed and Linearly Reconstructed’ data has very poor quality at moderate to 
high compression ratios, as linear interpolation destroys the correlation structure.
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Figure 4.11: Comparison of estimated model quality from reconstructed data using 
different methods

By using PCAIA, instead of linear interpolation based reconstruction, significant im­
provement could be achieved in model quality. The estimated model from ‘Wavelet 
Compressed and Inverse Wavelet reconstructed’ data has the best quality. This is in 
contrast to the observation in the simulated flow-network system, where PCAIA had 
the best performance. Such result is not unexpected since the true dynamic nature 
of the process is not known, and the effect of compression depends on the dynamic 
behavior of the process. Moreover, the process may be non-stationary and nonlinear 
to some extent and after discarding the rows which do not contain any original values 
the sample size became quite small and PCAIA was applied only on that smaller 
sample size. As a result such small samples may not be completely representative of 
the process and the method may have suffered from small sample limitations.

It was also observed in the analysis that Wavelet compression preserves the cor­
relation structures between the variables better than the Swinging Door algorithm. 
The primary reason for this behavior is, the correlation matrix captures the low 
and medium frequency information. The high frequency excitations in the signals 
are usually due to random noise and average out while calculating the correlation 
matrix. Though Wavelet compression is univariate, during the compression and re­
construction it only chops the high frequency information. On the other hand, during 
the compression and reconstruction of Swinging Door algorithm part of the low and 
medium frequency information is lost. This is illustrated in Figure 4.12, where the 
spectral density plot of a signal and the reconstructed signals from Wavelet compres­
sion and Swinging Door compression are shown. It clearly shows that, in Wavelet
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Figure 4.12: Power Spectra Plot: Original Signal(Top) Reconstructed Signal from 
Wavelet Compression(Middle) Reconstructed Signal from Swinging Door Compres- 
sion(Bottom)
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reconstructed signal all of the low and medium frequency information remained in­
take while in the Swinging Door reconstructed signal part of the low and medium 
frequency information got lost. This will ultimately have an effect on the correlation 
structure between the variables.

We recommend the use of ‘Wavelet Compression and Inverse Wavelet based Re­
construction’ algorithms for process historian. However process industries almost 
exclusively use ‘Swinging Door type Compression and Linear Interpolation’ based re­
construction methods in their data historian and this trend will continue to exist for 
some time. Instead of linear interpolation based reconstruction, missing data tech­
niques based on PCAIA can be used to recover the correlation structure for building 
multivariate models. The ‘Inverse Wavelet based Reconstruction’ can only recon­
struct data which have been compressed using ‘Wavelet Compression’. Therefore ‘In­
verse Wavelet based Reconstruction’ is not an alternative to PCAIA in reconstructing 
Swinging Door compressed data.

4.6 Concluding Remarks

A detailed study on the effect of compression on multivariate analysis, especially 
PCA-based modelling has been performed. Compression has been formulated and 
characterized as a missing data problem. A missing data handling technique (PCAIA) 
has been used successfully to build model from compressed data. The following 
conclusions can be drawn from this study:

• Linear interpolation methods to reconstruct compressed data from direct com­
pression methods (i.e., Swinging Door) are not suitable for multivariate analysis. 
Estimated models from such data can be of poor quality and unreliable.

•  A significant improvement in model quality can be achieved by using missing 
data handling technique to build multivariate models from compressed data.

• The impact of compression on model building increases with the increasing 
stochastic and dynamic nature of the processes.

• Transform compression methods (i.e., Wavelet Compression) are better in re­
taining the correlation structure of the signals, and as such decompressed data 
from transform compression algorithms are suitable for multivariate analysis. 
However, the performance may deteriorate if the signals have excitation only in 
the high frequency range.
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Chapter 5 

Industrial Case Study

The issue of sheet-break prevention is of considerable interest to pulp and paper 
manufacturers. Sheet-break is a significant contributor to lost market opportunity as 
well as increased downtime and greater operating expense. Sheet-breaks can occur at 
different stages of the processing. Prom three month production history of a major 
paper mill in Canada it was observed that 62% of the breaks took place in the dryer 
section, 20% in the press section, 15% were stack breakS and 3% reel breaks. Some 
of the causes of sheet-break build up slowly ultimately leading to sheet-breaks while 
other causes are quite abrupt. The abrupt faults generally come without any prior 
indication and are often difficult to detect in advance. Most of the faults in the 
press section and part of the faults in the dryer section occur because of slow changes 
in the process and are believed to be predictable in advance. In a recent study it 
was reported that the wet-end breaks result in 1.6 hr loss of production time per 
day, which amounts to $6-8 Million per year for each production line (Bonissone 
and Goebel 2002). The detection and diagnosis of the root causes of many of these 
sheet-breaks would bring substantial value to the industry.

The advantages of multivariate monitoring compared to univariate methods are 
well documented in literature. In pulp and paper mills a large set of variables are 
monitored. Monitoring these huge number of variables individually is a difficult task. 
In this context multivariate statistical monitoring of pulp and paper process has been 
advocated by many researchers (Bissessur et al. 1999, Teppola et al. 1998). Large scale 
application of multivariate methods in detecting sheet-breaks is a challenging task for 
several reasons: (i) numerous process variables; Skoglund et al. (2004) reported that 
over 800 process variables are tracked in a cardboard mill. The paper mill that we 
investigated logs around 1100 variables online (ii) the presence of many operational 
regimes due to different grades (iii) frequent downtime and missing data etc.

Different methods and techniques have been used to deal with these problems,
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especially the first two problems. Skoglund et al. (2004) built PCA models with 
hourly averages of 177 variables recorded during the manufacture of two main prod­
ucts. Variables were selected based on the engineering judgement of the project team 
consisting of the operation’s personnel. Clearly use of hourly average limits the pre­
diction capability of the model as the time scale between a cause and sheet-break 
is in the order of few minutes. The other alternative is to divide the variables into 
conceptually meaningful blocks and then apply hierarchical multi-block PLS (or PC) 
models. This blocking leads to two model levels: the relationships between blocks 
are modeled in the upper level and the lower level shows the details of each block. 
On each level, standard PLS or PC scores and loading plots are available for model 
interpretation. This allows an interpretation focused on pertinent blocks and their 
dominant variables (Wold and Tjessem 1996).

Champagne and Ivanov (2002) developed multi-grade model in order to make the 
models consistent for the numerous operational regimes. They grouped similar grades 
into a family and built models for each family. In this way they could limit the number 
of models to a manageable size. The variability within the family was captured using 
PLS-Discriminant Analysis (PLS-DA). This is a two step procedure where at the first 
stage the atypical behavior within the family is modeled. This variability is projected 
on the original data space and subtracted from the data matrix. The calculated 
residues explain what is similar between the grades within a family. Multivariate 
model is built using this residual matrix and subsequently used for fault detection.

Though these methods showed success in fault detection there are several prob­
lems from an industrial implementation perspective. These methods are complex, 
therefore regular maintenance and updating of the monitoring schemes are challeng­
ing tasks in process industries. Inclusion of large number of variables also comes with 
risk of having missing data in some of the variables. Often monitoring schemes are 
implemented without the capability of handling missing data. Because of missing val­
ues in few variables the monitoring system may be turned off. Also with large number 
of variables multivariate PLS (partial least squares projection to latent structures) 
and PC (principal components) models plots and lists of loadings, coefficients, etc. 
become messy and results are difficult to interpret. Therefore, there is a need to 
develop monitoring schemes which are simple in application, easily maintained and 
of manageable size.

In this study, we describe development and implementation of a PCA-based sheet- 
break monitoring scheme that was carried out for a major paper mill. The main 
objective is to detect and isolate the root cause of sheet-breaks well ahead of the 
breaks, so that corrective actions can be taken to prevent the sheet-breaks. An
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important objective of this application is to develop a monitoring scheme that is 
fairly sensitive to detecting sheet-break faults and yet has as few false alarms as 
possible. Though the theory of PCA is well known for fault detection and isolation, 
the successful implementation of the PCA based monitoring partly depends on pre­
processing of the data. In this paper we describe several novel techniques that have 
been developed and used for selection of the good data segments, important tags, 
data scaling and model order selection.

In addition to a multivariate monitoring scheme an extensive root cause analysis 
was carried out by applying data mining techniques combined with process knowl­
edge and engineering judgement. The root causes of sheet-breaks were identified and 
recommendations were made. Implementation of the changes made on the basis of 
these recommendations reduced the frequency of sheet-breaks significantly. The eco­
nomic impact of the changes were evaluated. Savings of more than $1 Million in 
terms of fewer sheet-breaks and reduced downtime per year have been realized as a 
result of implementing the suggested changes. In this paper we also report the key 
performance indices before and after the changes were made.

5.1 Principal Com ponents Analysis

Principal Components Analysis (PCA) is a dimensionality reduction technique intro­
duced by Pearson (1901), and later developed by Hotelling (1933). PCA is being used 
as a multivariate Statistical Process Control (SPC) tool for monitoring a wide range of 
processes (Kresta et al. 1991, Bakshi and Stephanopoulos 1996, Qin 2003). PCA has 
also been developed to monitor dynamic processes (Li and Qin 2001). An excellent 
review on the theory and application of PCA can be found in Jackson (1991).

Principal Components Analysis (PCA) is an effective tool in multivariate data 
analysis. It projects the data set, which typically may have correlated variables, 
onto a new coordinate system where the transformed data is uncorrelated. The 
main coordinates of this new subspace, also known as the principal subspace, are 
known as the principal components (PC). Each PC is a linear combination of original 
variables. For example, given a data matrix or measurement matrix Xe$lNxm, where 
N  represents the number of samples and to is the number of process variables, the 
Principal Components (PCs) are a set of score variables given by linear combination 
of the original variables:

ti = Xpi [i =  1, • • • , m],pie5ftmxl (5.1)

Pi is the basis vector of the principal subspace also known as loadings vector.
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The coefficients of each linear combination are obtained from an eigenvector of the 
covariance matrix of the original variables. In general, the principal subspace has a 
lower dimension than the original Euclidean basis space and yet is able to capture or 
explain significant portion of the information content (or the variance) in the original 
data set. Each of the Principal Components or score vectors, \tx, t2,--- U r ■•tm] 
collected in the matrix Te$lNxm, capture as much variation as possible which has not 
been explained by the former PCs, i.e. the first PC maximizes the covariance in the 
original data and the subsequent PCs maximize the covariance in the residual matrices 
which are left after extracting the former PCs. The maximum number of principal 
components are equal to the total number of the variables. However, most of the 
systematic information of the data can be explained by the first few or ‘r ’ principal 
components where (r < m ). The reduced dimensional latent variables or principal 
components represent a consolidated set of the most important measurements of 
the process. In this respect PCA offers an elegant parsimonious representation of the 
process, presumably along the direction of the most dominant variance of the process. 
In a high-dimensional or multiple unit-operation process such as, pulp and paper 
process, typically hundreds of measurements are available. Such processes thus offer 
an ideal opportunity for extracting the most important information from a myriad of 
sensors in a compact way. This exercise is analogous to obtaining a compact lumped 
parameter and reduced order model of an otherwise high dimensional process. This 
can be done by finding an optimum set of weights or loadings from a nominal data 
set. In this respect the nominal loadings and scores represent a model of the process 
in the principal or latent variable subspace.

Accordingly the scores and loadings matrix are partitioned in two parts: T — 
[Tr Te] and P  =  [Pr Pe] explaining the systematic and random variation in the data 
respectively. The data matrix X  can be expressed in the following way:

X  — [tj, t2, ••• UiU+X Pli PriPr+ 1 Pm] (h-2)
T r T e p T  P T

= TrPj' + TeP? = X  + E  

E  = TeP,T

Ideally r is chosen such that there is no significant process information left in the 
covariance matrix and E  contains only the random error. Thus, the retained loading 
vectors, PT =  \px ■ • • pr] are called Principal Components ‘model’ that describes the 
systematic variation in the data. Addition of extra loading vectors to the PCA model 
would only fit the random error and lower the prediction capability of the model.
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5.1.1 Fault Detection

Two collective test statistics have been defined for fault detection using Principal 
Components Analysis.

Hotteling T2-Statistics

The original form of T 2 is:

i f  =  (Xi -  x)S~ 1 (xi -  x)T (5.3)

Hotelling T2 statistic is used as a measure of the variation within the PCA model. 
T2 is the sum of normalized squared scores. Assuming the data to be mean centered, 
T2-statistics are given by,

T f = k K 1̂  (5-4)

where Ar is a diagonal matrix containing the r largest eigenvalues, A» and U refers 
to the i-th row of TrêR.Nxr, the matrix of r  score vectors from the PCA model. T2- 
statistics are therefore not affected by the inaccuracies of the smaller eigenvalues and 
in this respect are better suited to represent the normal behavior of the process. Sta­
tistical confidence limits for T 2 are directly calculated from the F  distribution (Wise 
and Gallagher 1996).

T u c M  = (r, N - r )  (5.5)

where Fa (r, N  — r) is the 100(1 — a)% critical point of the F  distribution with r 
and (N-r) degrees of freedom.

Squared Prediction Error(SPE) or Q-Statistics

This collective test, also known as Rao-statistics employs the portion of the observa­
tion space corresponding to the (m-r) smallest singular values. The collective test is 
defined by,

Qi or SPEi — (Xi -  x) (Xi — x f  (5.6)

The distribution of the Q-statistic has been approximated by Jackson and Mudholkar 
(1979):

■h0caSfW 2 e2h0(h0 -  i y 1/hoQa or SP E a = + 1 +ex e\

Jj — x

(5.7)

71

where 0* =  y  crf,h0 =  1 — ^ l^ a n d  ca is the normal deviate corresponding to
i= o + l

the 1 — a  percentile. Given a level of significance, the threshold for the SPE can
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be calculated by Equation 5.7 and used to detect the fault. Geometrically SPE is 
the projection distance from a point in Rm to the hyper-plane defined by the PCs. 
It is a measure of the degree of agreement with the correlation structure identified 
by the set of PCs. When the process is ‘in-control’ SPE is the random variations 
of the process, for example, the measurement noise, that cannot be accounted by 
the PCA model. A violation of the threshold would indicate that the random noise 
has significantly changed or the correlation of the data no longer holds. The T2 and 
SPE along with their appropriate thresholds detect different types of faults, and the 
advantage of both statistics can be utilized by employing the two measures together. 
To simplify the fault detection task Raich and Cinar (1996) suggested the following 
combined statistics

C h  =  + ( 1 " k) (5-8)
where k € (0,1) is a constant. Therefore, if the value of combined index (Cl) is 
less than 1 the process is considered normal. In the current study we used such a 
combined index (Cl) as sheet-break predictor. For detecting the faults we mainly 
relied on the SPE plots. However, the pulp and paper process is subject to many 
external disturbances and the SPE plots contained several false alarms even during 
the normal operation. On the other hand, the T2 plot was below the threshold and 
indicated the normal operation very distinctly. But at the same time it was not as 
sensitive to the sheet-break faults as the SPE. Therefore it was evident that the T 2 

and SPE complement each other in fault detection. Combining T2 with SPE helped 
to suppress the false positives during normal operations, at the same time it was also 
sensitive to faults. The fault sensitivity of the combined index (Cl) can be further 
increased or decreased by changing the tuning parameter k.

5.2 D ata  D escription

All the data analyzed during this study were obtained from Paper Machine 7 (PM7) 
of ABITIBI Consolidated. A block diagram showing the different units of the process 
is given in Figure 5.1. The plant is located at Fort Frances, Ontario, Canada and 
the analysis was done at an off site location, Matrikon Inc. located in Edmonton, 
Canada. An online data transfer link was established between the plant historian 
and the desktop at Matrikon Inc. This gave direct access to all variables which are 
measured online. In addition to this, the downtime report and the grade change log 
were supplied by the plant personnel. The downtime report contained the operational 
state of the plant as well as the comments and findings of the operators for different
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fault conditions. This information base was used to select the training data set, 
separating the normal data from abnormal data and subsequently for tuning of the 
models against known faults. The data collection started from July 2004. The initially 
collected data was analyzed to find out different types of sensor problems (e. g., poor 
resolution, broken sensor), data compression etc. These findings were reported to the 
plant personnel. They fixed many of the sensor problems and set the compression 
thresholds to very low values so that no compression was applied while archiving 
the data in the data historian. All the variables are continuous except a few binary 
variables indicating the plant status. Later the training data set was collected during 
the time period of October, 1 2004 to December, 31 2004.

5.3 Pre-processing o f D ata

Pre-processing of data is important for any data based analysis to ensure that data 
truly represent the different events of the process. In this analysis we used different 
qualitative and quantitative measures to investigate the data quality. For example, 
a quantization factor was used to detect any sensor resolution problem, compression 
factor to detect loss of information during the archiving etc. Based on the data 
quality analysis some of the variables were deemed unsuitable for inclusion in the 
multivariate models. In this way this also helped in variable selection for the models. 
The methodology and the rationale for using these data analysis tools are described 
below.

5.3.1 Quantization Factor

This is a quantitative measure of the resolution of the measuring instrument. If the 
variability in the measurement and the resolution of the instrument are not of the 
same order then much of the excitation appearing in the data may be due to the 
low resolution of the instrument. For example, if the measured values of a variable 
are varying between 0.04 and 0.06 and the resolution of the instrument is 0.1 then 
it will show values in quantum jumps of 0.1, e.g. from 0.0 and 0.1. This type of 
artificial variation may deteriorate the model quality. The mathematical definition of 
quantization factor is:

Q p min. d if  ference between consecutive points _
standard deviation o f the signal

Quantization factor of all the variables were calculated to find out whether the in­
struments’ resolutions are commensurate with the variation of the respective variable.
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Figure 5.1: Block diagram of different processing units of the pulp and paper process
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Figure 5.2: Trend plots, and calculated compression factor and quantization factor of 
signals from the pulp and paper process

Variables which have quantization factor greater than 0.4 were eliminated from the 
data matrix, for example, in Figure 5.2 variable 2 is highly quantized and it was 
eliminated from the data set.

5.3.2 Compression Factor

Process data are often compressed before storage in the data historian. Therefore, it 
is important to check the compression factor of the retrieved data from the process 
historian. Compression Factor (CF) is defined as follows:

number o f original measurementsCF  = (5.10)number o f recorded measurements

When data is retrieved from a process data historian, it uses a decompression algo­
rithm to provide a data matrix with the specified sampling rate. These decompression 
methods mostly use linear interpolation to fill the in-between points of the originally 
stored spot values. The compression detection algorithm takes advantage of this lin­
ear structure. The algorithm calculates the double derivative of the signal, therefore 
at the linearly interpolated points, the double derivative would be ‘O’ (Thornhill 
et al. 2004). Severe compression destroys the correlation between different variables 
and therefore is not suitable for multivariate statistical modelling (Imtiaz et al. 2005).
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Variables with compression factors greater than 3 axe normally not suited for model 
building. We identified the variables with high compression factor and asked the plant 
personnel to set the threshold to small values so that no compression is applied during 
the archiving. Therefore, the data included in the final models are uncompressed raw 
values.

Apart from data compression there may be other reasons for linear segments in 
the data, e.g. sensor failure for a period of time or no sensor activity over a long 
period. Compression factors will be high for these data sets as well. Therefore, the 
compression detection algorithm can also be used to check the excitation or the infor­
mation content in the data. In this current study we used a compression factor mainly 
for accessing the information content of the signals. Though we are building steady 
state model, in reality the process is never at one steady state. We observed that the 
process is time varying and even within the same grade the operating conditions and 
the correlation between the variables change. In building the model we would like 
to capture the average correlation that will cover most of the natural variations of 
the process. Inclusion of the segments which remain constant for a long period the 
model may get biased towards these operating conditions. The compression factor 
can easily detect those segments with long constant periods or variables which have 
little sensor activity, and those variables may not be included in the model. The 
trend plots of some of the variables and corresponding compression factors are given 
in Figure 5.2. For the sheet-break industrial case study, variables with compression 
factors greater than 3 were deemed to be detrimental for data quality and as such 
multivariate statistical modelling.

5.3.3 Spectral Density Plot

Spectral density plot shows the signal strength at different frequency. Except for 
the speed signals, most of the variables in the pulp and paper process have slow 
dynamics. Therefore, we expect that signals with good excitation should have high 
strength in the low and medium frequency range. In the models we mainly included 
variables with spectral strength in the low and medium frequency range for two 
reasons: (i) we are mainly interested in detection and isolation of faults which build 
up slowly (ii) variables which oscillates in the same frequency are strongly correlated 
with each other and the correlation arises from process constraints. Variables which 
have strength only at high frequency regions axe not good candidates for building a 
model as the excitation may be mainly due to measurement noise and short lived 
disturbances. Spectral plots together with the trend plots give complete information
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Figure 5.3: Time trend and spectral density of signals from the wet end of the pulp 
and paper process

about a signal. The frequency domain feature extraction capabilities of the spectral 
density plots are shown in Figure 5.3. The plots depict the normalized spectral 
strength of few typical variables from the pulp and paper process, at normalized 
frequencies. Variables that have very flat power spectra are highlighted in the figure.

5.4 P C A  m odel for fault prediction

There are many challenges in building a PCA model to predict the sheet-break faults 
consistently. Primarily the challenges come from the fact that pulp and paper data are 
subject to many external disturbances, high number of variables, production of many 
different paper grades and frequent changes in grades. In this section, the techniques 
used to surmount these challenges and the step-by-step method of building the PCA 
model for sheet-break prediction are described.

5.4.1 Selection of Tags

The number of variables which are measured on-line in a pulp and paper mill is quite 
substantial. Initially 1024 tags were downloaded from the process data historian. 
Instead of building models with all these variables we chose to build parsimonious 
models which are easy to manage yet sensitive to most of the faults.
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A detailed study of the flow sheet suggested that the stock preparation, head box 
and initial portion of the dryer sections may be the best places to look for slowly 
developing or impending faults. In the PCA model, variables from these sections 
only were included. The more downstream sections of the paper making process have 
very fast dynamics. Causes developing in these sections will lead to abrupt faults and 
therefore are difficult to predict. The sections from where the variables were selected 
are close to each other. Therefore, transportation delay is minimal and hence we did 
not choose to lag the variables in the data matrix. The limitation to fewer variables 
comes with other advantages also, for example, in case of a successful detection, 
isolation becomes easier as the number of variables are limited. In combination with 
data pre-processing other criteria were also used to eliminate variables from the list. 
Initially we built several models with a large set of variables for each of the grades. 
Those grade specific models were used locally for fault detection and isolation. We 
went through several trials and selected a set of variables which were identified as 
the causes to different kinds of faults. Finally, 39 variables were selected and used 
to build the PCA model. The importance of the right tag selection is illustrated in 
Figure 5.4. It shows the T 2 and SPE plot of a validation data set obtained using two 
different models. There is a confirmed sheet-break at the end of the data segment. 
Initially a model was built using 164 variables. Sixty six PCs were selected, which 
explained 80% of the total variance. The T 2 and SPE plot for the model are shown 
in Figures 5.4 (a) and (b). Both statistics are prone to false positives and the plots 
show many false alarms during the normal operation. Subsequently 39 variables 
were selected using engineering judgement and the data pre-processing techniques as 
discussed in the previous section. The T2 and SPE values were calculated for the 
same validation data set using the 39-variable model and are shown in Figures 5.4(c) 
and (d). In this case both T 2 and SPE plots have fewer false positives compared 
to the previous case. However, the model needs further refinement in order to give 
consistent results.

5.4.2 Grade Specific Model

In order to meet market demand, pulp and paper mills have to produce paper of 
different grades. Some of the distinguishing features of the grades are basis weight, 
caliper and shade. Papers of 7 different basis weights,13 different calipers and 3 dif­
ferent shades axe produced in the plant. With the combination of these three qualities 
the total number of grades becomes very large. For the current plant, in a particular 
month 42 grades were produced and during that month alone the change over between
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Figure 5.4: Performance of different type of models in fault prediction
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Figure 5.5: Clustering algorithm identifying the data from two basis weights as two 
clusters

these grades took place 204 times. If the model is not trained to accommodate such 
changes, grade changes can be wrongly detected as faults and conversely if the model 
is trained with such changes, the abnormalities may be perceived as grade change 
events. One way to circumvent this difficulty is to build a separate model for each 
grade. However, given the large number of grades and frequency of grade changes, 
this is not a feasible option. In an effort to reduce the number of grades, basis weight 
was taken as the main criterion for classifying data into different grades. There are 
several reasons that justify this criterion. Firstly, changes for adjusting basis weight is 
carried out in the stock preparation region while changes for adjusting caliper occur 
further down stream, mainly in the dryer section. The causes that develop in the 
dryer section usually lead to abrupt sheet-breaks hence undetectable by the monitor­
ing scheme. Secondly, a change of shade does not affect the strength of the paper. 
In addition to this, a classification algorithm also verified that basis weight is a good 
criteria to divide the data in different grades. Data with two different basis weights 
were put together and the classification algorithm was used to search for two clusters. 
The result is shown in Figure 5.5, where the actual grade based on basis weight and 
the grade identified by the clustering algorithm are plotted. Except for very few data 
points, the classification algorithm was very successful in identifying the two basis 
weights as two different grades.

Subsequently using ‘basis weight’ as the criterion for grade classification, data
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was divided into seven different grades and a separate model was built for each grade. 
These grade specific models showed superior performance in explaining the normal 
behavior of the plant and also in detecting any abnormalities in the process. This is 
illustrated in Figures 5.4 (e) and (f) with the T 2 and SPE plot respectively. During 
the normal operation the T2 statistics is well below the threshold, yet it predicted 
the fault 40 minutes before the sheet-break occurred. The SPE plot has few false 
positives and lies just below the threshold. This is a typical pattern observed in other 
validation data sets as well. False positives in the SPE plot are not desirable as this 
will significantly lower the reliability of the model. However, the pattern suggests 
that instead of using T2 and SPE separately if they axe combined together, this will 
suppress the false positives of the SPE plot. Equation 5.8 was used to calculate the 
combined index. Warnings were generated only if the combined index goes outside the 
threshold limit. Figure 5.6 demonstrates the improved performance of the combined 
index in fault prediction. Though there were few false positives in the SPE plot, the 
combined index is within the limit during the normal operation. However, there are 
few false positives initially. This is primarily because the process was resumed after 
an upset and it is still in a transition phase, where the correlation structure is much 
different from the training data set.

5.4.3 Building a Training Data Bank

Pulp and paper processes are interrupted frequently both intentionally and uninten­
tionally. From the grade run report of the plant it appeared that the process operation 
was interrupted more than 100 times during a particular month. Once the process 
operation is interrupted it takes approximately 30 minutes to bring the process back 
to its normal state. In order to make a large data bank, data from different segments 
of normal operation were concatenated. For ‘seamless’ ‘patching’ or fusion of data 
segments in the temporal domain, transient data from the initial region of operation 
after any event has taken place, and abnormal data before any event were eliminated 
before ‘patching’ the data, i.e., 50 samples (1 minute interval) were discarded from 
either side of each data segment and subsequently concatenated. However, concate­
nation of data has also some disadvantages, as different segments may have different 
means and covariances. This gives rise to false alarms or ‘blips’ at the joining points 
in the T2 and SPE plot of the normal model. Some of these issues can be taken care 
of by doing the scaling judiciously as discussed in the next section.
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Figure 5.7: Simulation study showing the effect of different type of mean centering 
and scaling

5.4.4 Scaling and Centering of Data

In a data set where the variance of the measurement noise are unequal, PCA will 
be scaling invariant only if each variable is scaled with the standard deviation of its 
measurement error. However, estimation of error variances for these large number of 
variables is not very accurate and hence the general practice is to auto scale the data. 
PCA is not scale invariant with regard to auto scaling. In order to enrich the data 
bank, data segments which were lying further apart in time were stitched. Though 
these segments belong to the same grade, yet significant changes were observed in the 
mean value. To visualize the effect of scaling on concatenated data we carried out 
a simple simulation study. The results of the study are shown in Figure 5.7. Two 
segments of data segment (a) and segment (b) with different means and variances, 
were concatenated and scaled in three different ways.

1. Stitching the segments together and subsequently auto-scaling the whole data set:
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This completely destroys the variance structure of the signal. The standard de­
viation of the stitched signal is 5.23, which is much higher than the original 
standard deviation of either segment (a) or segment (b). When this high stan­
dard deviation was used to scale the signal, the excitation of the original signal 
got attenuated.

2. Mean Centering of Each Segment, Stitching and Auto Scaling: Each segment 
of data was first mean centered to its local mean and stitched together. The 
resulting signal was auto scaled. The excitation pattern of original signal was 
retained after scaling and the standard deviation of the concatenated signal is 
a value in between the standard deviation of the two segments.

3. Auto Scaling Each Segment and then Stitching: The resulting signal retains the 
excitation pattern but there is a problem from an application point of view. If 
any segment of the signal is near constant, estimated standard deviation will 
be very low and the signal can get artificially inflated.

In the current application the second strategy was used where each segment was 
first mean centered, then stitched and auto scaled. The primary purpose of mean 
centering is to express the variables in deviation form or in regression terminology 
subtract the ‘intercept’ term. However, in this application, instead of mean centering 
all variables were median centered, since median is a more robust measure of the 
‘intercept’ in the presence of large unwanted deviations such as outliers.

5.4.5 M odel Order Selection

Model order selection is very crucial for the satisfactory performance of PCA. There 
are many different methods for selecting model order, e. g. broken stick method, 
‘SCREE plot’, cross validation etc. Of these methods from a prediction point of 
view cross validation is regarded as the most reliable method. It selects the number 
of latent variables which give the lowest prediction error sum of square (PRESS). 
However, cross validation is a computationally intensive method and does not offer 
an easy technique to tune the model against known faults. There are also other 
methods, e.g., Backward Q\um  (BQ), Variable Importance in Projection (VIP) which 
can be used to simultaneously select the model order and the important variables for 
prediction (Lazraqa et al. 2003).

In the current study we adopted a different approach in selecting the model order 
or number of retained PCs in the model. In combination with the eigenvector plot 
or variance plot a trial and error method was used to select the number of PCs. The
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Figure 5.8: Fault prediction of a particular grade using Combined Index in one month
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main objective is to get a model, which gives the fewest number of false alarms during 
the normal operating condition and yet has enough power to detect the fault. We 
had a large repository of validation data sets with known faults. Therefore we used 
the validation data sets with faults to tune the models. Models were built by varying 
number of PCs and fault detection performance was evaluated for each of the cases. 
After several trials 11 principal components were included in the model. These 11 

PCs cover approximately 65% of the total variance. The notable fact here is that, the 
model explains much lower amount of variance of the data then usually suggested. 
An increase in the number of PCs reduced the SPE threshold and gave rise to false 
alarms in the SPE plot whereas, a decrease in number of PCs gave rise to false alarms 
in the T2 plot during the normal operation.

5.5 Fault D etection  and Isolation

5.5.1 Combined Index

For detection of a fault there are two indicators, the T2 plot and the SPE plot. A 
violation of the limit in T2 plot indicates that the process is drifting away from its 
normal operation region. On the other hand, violation in SPE plot indicates that the 
correlation structure has broken down. A violation of both SPE and T2 limits is a 
strong indication of an impending fault. So, in this analysis we relied on a combined 
index which combines both of these indicators. A warning is issued whenever several 
consecutive points of the combined index go outside the threshold. The model was 
tested using three months of data. The fault prediction of a particular grade in one 
month is shown in Figure 5.8. Following any shutdown the combined index always 
goes outside the threshold immediately after the start up. This is because during this 
time period the process is in a transition phase and the model was not trained with 
the transient data. It takes approximately 30 minutes for the process to reach its 
normal states. To avoid false warnings it is recommended that the alarms be turned 
off during this initial period. The models were tested against some faulty test data 
sets selected by the plant personnel. If the Cl gave a consistent warning 15 minutes 
prior to the sheet-break event then it was considered to be a good detection. The 
models detected 63% of the faults successfully from these selected test cases with very 
few or no false alarms. This was considered quite satisfactory by the plant personnel 
considering that a small number of variables were included in the model and among 
the test cases many of the faults are abrupt and hence undetectable until the very end. 
SPE contribution plots were mainly used to isolate the faulty variables. The score’s

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



contribution plots did not give any additional information. This may be due to the 
fact that with the mean centering of each segment of data some systematic variation 
also got removed from the data matrix. Subsequently, a ‘process trouble-shooting’ 
exercise was carried out to diagnose the root causes.

5.5.2 Dynamic SPE Chart

Break down of the correlation structure of the data are reflected in the SPE chart. 
Therefore, SPE-contribution plot points towards the variables which are responsible 
for the deviation in the correlation structure. Typical SPE-contribution plots give 
the contribution of the variables at a specific instant. In this current study we used 
color coded Dynamic SPE-contribution plot to isolate the faulty variables. Dynamic 
SPE-contribution plot gives the contribution of the faulty variables at each time 
instant. Therefore, the exact time at which the variables started deviating is clearly 
indicated in the figure. This is very helpful in differentiating the causes from the 
effect. Furthermore, since it is color coded the faulty variables stand out in the plot 
and can be isolated very easily. A representative Dynamic SPE-contribution plot is 
shown in Figure 5.9. The plot shows the exact instant at which the variables started 
behaving abnormally, and color code shows the relative contribution of the variables 
in the SPE. It is evident from the figure that, in this case the ‘Speed’ started behaving 
abnormally prior to the ‘Dryer Pressure’. The change in the ‘Speed’ may be the main 
cause for the sheet-break while change in ‘Dryer Pressure’ may have been due to the 
speed change. The trend plots of the two variables are shown in Figure 5.9 which also 
suggest that change in the speed occurred prior to the change in the dryer pressure.

Dynamic SPE contribution plot was used to analyze all the faults of November 
2004 and December 2004 data. Variables which were most frequently detected as 
probable causes of sheet-breaks are listed in Figure 5.10. The information from the 
list combined with process engineering knowledge led to the conclusion that the stock 
proportioning and the dryer pressure systems are two most likely areas where the 
causes of sheet-breaks originated. Therefore, the detected variables from these two 
areas were further investigated for confirming the root causes of sheet-breaks.

5.6 D iagnosis R esults

In order to establish connection between the isolated variables from the multivari­
ate analysis and the root causes, further investigation was done using process flow­
sheet, the downtime report and data visualization tool. For visualization of the data,
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Figure 5.9: Color Coded Dynamic SPE contribution plot showing the relative contri­
bution of the variables in the SPE chart. The trend plots show the exact changes in 
the corresponding variables
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Serial Tag Description
1 PM7 BROKE FLOW
2 PM7 S/A CLOUDY DILUENT FLOW
3 PM7 2 DRYER PRESSURE DIFFERENTIAL
4 PM7 1 DRYER PRESSURE DIFFERENTIAL
5 N 02 BROKE STORAGE TO PM7 FLOW
6 PM7 ANSILEX FLOW
7 PM7 JET TO WIRE RATIO
8 PM7 KRAFT REFINER POWER
9 PM7 KRAFT CONSISTENCY
10 PM7 BROKE CONSISTENCY
11 PM7 S/A REPULP CONSISTENCY
*PM7= Paper Machine 7

Figure 5.10: List of variables which were detected most frequently by dynamic SPE 
contribution plot as the probable causes of sheet-break

ProcessDoctor®  was used extensively. It has many useful features such as, stacking 
several plots, conveniently importing the tag names and time stamps etc. In this 
section we discuss some of the identified root causes.

5.6.1 Stock Proportioning

The flow diagram of the stock proportioning system is shown in Figure 5.11. The 
stock in paper machine seven (PM7) consists of mainly three types of stock solu­
tions: (i) groundwood stock, (ii) kraft stock and (iii) the broke solution. Of these 
the kraft stock has the best fiber quality while the broke stock has poor fiber quality 
and high variability in its composition. Broke consists of pulp obtained from the 
paper making process drains (waste) and from the off quality products because of 
non-conformity to the specifications. The waste pulp is collected at different loca­
tions of the paper machine such as couch pit, press pit, dryers, calendar, reel drum 
and winder areas. The collected refuges are then re-pulped and sent back to Broke 
storage tanks. The Broke system helps recover wasted fibers and is an essential step 
in loss prevention, i.e. it helps in maintaining high fiber yield and thus reduces the 
cost of paper since less fiber that has been treated (pulped and bleached) is lost to 
the secondary facility. Recycling ‘broke’ also minimizes the environmental impact. 
Broke from two other paper machines are also fed to the PM7 production line and is 
marked as ‘make-up’ broke in Figure 5.11, while broke from PM7 is labeled as ‘mar 
chine broke’. Broke is later blended with the kraft pulp and the groundwood pulp. 
The mixed stock is used as a feed to the machine chest. Broke addition rate is largely 
dictated by the broke inventory. The storage tanks are connected with parallel piping

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



connections. Typically broke is fed from one or two of the tanks and the other tanks 
are kept as stand by. Once the level of the feeding tank is below a certain level the 
flow is switched to the stand-by tanks.

The trend plots of different broke flowrates and the sheet-break indicator are 
shown in Figure 5.12. The break indicator is a binary signal,‘O’ indicates normal op­
eration while ‘1’ is for abnormal conditions. Our preliminary study showed significant 
broke flow variation before several sheet-breaks. To further investigate this issue and 
confirm consistency of results, a comprehensive analysis was performed on the data 
with a window of 1 hour before the sheet-breaks on three months of data. The result 
of the study showed that as many as 30% of the sheet-breaks occurred soon after 
large changes in broke flowrate or when switching between the tanks took place.

Based on this observation we put together the following hypothesis as the probable 
mechanism how changes in broke flow can lead to sheet-breaks. As the broke is stored 
in the tanks for a significant amount of time the fibers get settled at the bottom of the 
tank. This creates a large concentration gradient within the tank. At the beginning 
of feeding from a new tank, the fiber concentration will be high in the feed and it 
will diminish gradually. So whenever there is a change over of the feed tank the 
consistency of the broke will increase drastically. Therefore, the portion of recycled 
fibers coming from the broke will be much higher in the sheet. Since recycled fibers 
have poor bonding capacity the tensile strength of the sheet is expected to be poor, 
and ultimately this can lead to sheet-breaks.

This hypothesis is also supported by the studies on the effect of re-pulping on 
fiber bonding by other investigators (McKee 1971, Jahan 2003, Garg and Singh 2006). 
They concluded that the properties of the fibers are altered by the recycling processes 
particularly because the fibers have been completely dried, which causes shrinkage 
in the open structure, and internal bonding takes place within the fiber itself. With 
fresh pulp, the beating process normally works on internal delamination and opening 
up of the structure of the fiber walls so that they bond between each other. However, 
with the dried fiber it can only restore the bonding property partially. In addition to 
the internal fiber property, there may be reduction of fiber length and some fragmen­
tation of fibers, resulting from the mechanical stresses which are incidental during 
re-pulping of the dried paper. The conspicuous change in fiber properties upon dry­
ing and recycling results in an increase in stiffness and decrease in the flexibility and 
conformability. In terms of paper properties, this is manifested in decreased bursting 
and tensile strength, decreased density, increased tearing strength, increased opacity 
and increased stiffness (Robinson 1980).

Based on the hypothesis, the piping of the broke system has since been changed
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Figure 5.12: Variation in the broke flowrate and the break indicator showing the close 
correlation

from the parallel configuration to a series piping connection, i.e. in Figure 5.11 
storage tank 1, 2 and 3 were connected in series and the out flow from storage tank 3 
was blended with fresh stock. In this new arrangement the age of the broke remains 
constant and there is less variation in the consistency and composition (e.g., fiber mix, 
ash content) of the broke. Therefore, the re-pulped fiber amount will be proportional 
to the combined flowrate of the broke, and the proportioning of the ‘fresh fiber’ to 
‘recycled fiber’ can be achieved simply by manipulating the flowrates. In addition to 
piping changes the furnish control logic was also changed. In contrast to the earlier 
arrangement where broke replaced all virgin stock, in the new arrangement broke was 
used as a make up only for the virgin groundwood stock. Therefore, the kraft stock 
portion which contains the fibers with best bonding capacity, remains constant in the 
combined stock.

5.6.2 Dryer Pressure System

The sheet leaving the press section contains 60% moisture which is removed in the 
dryer section. The paper moisture content is controlled by measuring paper moisture 
at the dry end and manipulating steam inlet pressure and differential pressure across 
the dryer cylinders. The paper drying process and proper moisture control has major 
impact on sheet-break. According to the downtime report 60% of sheet breaks took 
place in the dryer section. Following is a summary of observations from dryer data
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Figure 5.13: Changes in Dryer Variables before sheet-break

analysis :

•  Several sheet-breaks are preceded by a large decrease in differential pressure 
of dryer 3 and 4. This is an indication of possible condensate build up in the 
dryers’ can. A representative case of changes in dryer 4 before sheet break is 
shown in Figure 5.13. Large decrease in pressure and differential pressure is 
observed from the data. Also a decrease in dryer current is noticed.

• Differential pressures of dryer 1 and 2 were not controlled adequately. The set 
point and the measured differential pressure had significant bias and very little 
tracking. A segment of the differential pressure and corresponding set point of 
dryer 2 is shown in Figure 5.14. This lack of control causes inefficient thermal 
efficiency in dryer 1 and 2, which has to be compensated in 3rd and 4th dryers.

•  The steam temperature in the dryer is almost 100 degrees above the saturation 
temperature, this decreases the efficiency of drying process.

Based on the observations several changes were made in the dryer control system. 
The feed pressure valve of the 1st dryer was not working properly. Some repair work 
was done on the valve. Pressure set points for the dryers were adjusted to keep them 
within the control range and also the controllers were tuned so that it tracks the set 
point. After making these changes the drying profile of the paper, i.e. how much 
water should be removed in each dryer section, improved significantly and a more 
‘text book’ like profile could be achieved.
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Figure 5.14: Dryer pressure and set point showing poor tracking performance

5.7 K ey Perform ance Indicator

A data analysis project has many tangible and in-tangible benefits. Some of the 
benefits result from the mere fact that more attention is given to the process during 
such an exercise. As a result it is not easy to attribute the quantifiable and non- 
quantifiable benefits to the recommendations reported in this paper. However it is 
clear that, some of the bottlenecks in the process operation were removed due to the 
additional insight gained in the data analysis. The principal benefits that were gained 
from this analysis are:

• Detection and diagnosis of cause of some of the sheet-breaks.

•  Additional insight in process operation.

• Isolation of the faulty sensors.

In order to quantify the benefits, several key performance indices were calculated 
from the historical data before and after the changes were made. The performance 
of the plant prior to the changes are an average of 13 months production history, and 
performance indices after the changes are calculated from 9 months of data. These 
two phases have been termed as ‘Pre-Project’ and ‘Post-Project’ respectively. The
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Figure 5.15: Key Performance Indicators of the process before and after the imple­
mentation of the corrective measures

different Key Performance Indicators (KPI) are shown in Figure 5.15. The y-axis 
values of the plots have been masked in order to retain confidentiality. However, 
the relative changes have been stated. A direct impact of the corrective measures is 
the reduced number of sheet-break occurrences. The number of breaks were reduced 
almost by one per day. As a result the downtime of the plant was reduced by half 
an hour per day. The better control of the dryer and lower number of sheet-break 
gave confidence in the operation. So the machines were operated at significantly 
higher speeds. This together with the increase in operation time gave a boost in 
the production. Average production rate of the plant has since increased by 35.1 
tons/day.

5.8 Concluding Remarks

In this chapter we describe the successful application of a PCA based monitoring 
scheme for sheet-break detection and the root cause analysis in a pulp and paper
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mill. Several conclusions can be drawn from this study. Some of these apply to 
general process data analysis while others are specific to pulp and paper process. 
These conclusions are summarized below:

• Preprocessing of data is important for the success of PCA. Engineering judge­
ment as well as the excitation quality or informative content of the data should 
be taken into account before including a variable in the data matrix.

•  Basis weight was found to be a good criteria for classifying the data into different 
grades. Grade specific model built for each grades showed better performance 
in fault detection than a unified model based on data from all grades.

•  In the paper industry much of the excitation observed in the variables are due to 
random variation. Therefore, the PCA model should be used to explain much 
lower variability than conventionally used.

• The Combined T2 and SPE Index is a better predictor of sheet-break and gives 
fewer false alarms.

• Data based analysis can be used for root cause analysis of different operational 
problems. Corrective measures can significantly improve the machine operation 
performance and has a direct impact on the total revenue.
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Chapter 6

State Estim ation of Nonlinear 
Processes

The estimation of unmeasured states is an important problem in process industries, 
primarily because knowledge of such states lead to better control. Processes (e.g., 
power generation, nuclear, chemical etc.) are generally nonlinear. However, often 
within the region of operation they can be approximated by linear models. The 
Kalman Filter is by fax the most popular linear state estimator and gives unbiased 
minimum variance estimate under linear and Gaussian circumstances. When the 
Gaussian assumption of noise is violated, the Kalman Filter is still optimal in a mean 
squared error sense, but the estimate does not produce the conditional mean (i.e., 
it is biased) (Chen 2005). However, in many real applications the process dynamics 
and the measurement equation are non-linear. Therefore a non-linear extension of 
the Kalman Filter has been developed by many researchers. The Extended Kalman 
Filter (EKF) is a natural extension of the Kalman Filter to deal with non-linearity 
and is used widely as a non-linear estimator. The EKF linearizes the nonlinear model 
using a Taylor series expansion and applies the linear Kalman filter locally. How­
ever, in practice EKF has two well-known drawbacks: (i) linearization can produce a 
highly unstable filter if the assumptions of local linearity is violated (ii) the deriva­
tion of the Jacobian matrices often lead to significant implementation difficulties. The 
Unscented Kalman Filter (UKF) is an elegant way of dealing with the nonlinearity. 
UKF is based on the idea that it is easier to approximate a Gaussian distribution 
than to approximate an arbitrary nonlinear function (Julier et al. 2004). The UKF, 
like the Kalman Filter still is only optimal for a Gaussian posterior which can fail in 
certain non-Gaussian problems with multi-mode and heavy tailed posterior distribu­
tions (van der Merwe 2004).

In this context, Sequential Monte Carlo (SMC) methods are very relevant, as
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these methods can deal with the nonlinearities, as well as, non-Gaussianity in the 
posterior density of the states and measurements (Gordon et al. 1993). The improved 
performance of the filters have been demonstrated by many researchers (Doucet 1998, 
Doucet et al. 2000, Arulampalam et al. 2002, Chen et al. 2004a, Chen 2005). In 
these applications the filtering of the noisy signals has been the main focus and the 
estimation of unmeasured states received little attention. Therefore, the application of 
SMC filters in unmeasured state estimation is not yet popular as the implementation 
details are missing in the literature. Many of the application challenges arise from the 
fact that obtaining a non-linear model is time consuming and not easy, as it requires 
fairly accurate physio-chemical or mechanistic description of the process. Therefore, 
it is not uncommon to see significant mismatch between the process and the model, 
and unless due attention is given to tuning the filter, the performance of the filter may 
be very poor. In addition, there also may arise challenges due to the imperfections 
in the measurements. In process industries all measurements may not be always 
available at every sampling event. Often measurements may be missing due to lack of 
sensors, multi-rate sampling strategies or asynchronous sampling, process upset etc. 
So there is a need to adapt the estimation filter for missing data. In this chapter we 
investigate these implementation issues and propose novel techniques for tuning the 
Particle filter and dealing with multi-rate data.

The objectives of the current study axe as follows:

• Provide an engineering insight into the SMC filter. Explain different steps of 
SMC filter in the light of Kalman filter.

• Investigate the effect of measurement noise, process noise and plant model mis­
match on state estimation and provide guidelines for the tuning of the SMC 
filter.

•  Develop techniques to implement SMC and Unscented Kalman filters for missing 
or multi-rate data.

• Compare the performance of SMC filter with Unscented Kalman Filter (UKF).

This chapter is organized as follows: Section 6.1, formulates the problem with 
the notation details. The theory of recursive Bayesian filter is briefly covered in Sec­
tion 6.2. Section 6.3 is a tutorial on sampling. Section 6.4 describes the SMC filter, 
the selection of the ‘importance function’ and the classification of the filters. The rela­
tionship of the particle filter or SIR filter to the broader family of the Bayesian filters 
is also explored here. An important step in the implementation of the particle filter is
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Re-sampling, which is often viewed as a fixing step in the filtering operation. In this 
section we explain re-sampling from a different perspective and show that re-sampling 
is an integral part of the particle filter. Different implementation issues of SIR filters 
are discussed in Section 6.5. The proposed techniques for tuning the particle filter in 
the presence of significant process-model mismatch and large measurement noise are 
described in this section. We also present the strategy for handling multi-rate data 
in a particle filter. Section 6.6 briefly describes the Unscented Kalman Filter (UKF). 
Section 6.7 contains implementation results of the SIR filter to demonstrate better 
performance of the proposed techniques on a simulated non-linear CSTR and a lab­
oratory scale four tank system. The results of the comparative study between the 
SIR and Unscented Kalman filter are reported in this section followed by concluding 
remarks in Section 6 .8 .

6.1 Problem  Formulation and N otations

The following non-linear form of the state-space model is used for the present filtering 
and estimation problem.

Xk — f  i,Xk—1) Hk—l)
Vk =  g{xk) + vk ( 6 . 1 )

where Xk is the state vector, /(.) is the non-linear system equation, g(.) is mea­
surement equation and yk is the measurement vector. The process system noise term, 
wjs,, represents disturbances and all unmodelled dynamics; and the measurement noise 
term, Vk, captures the inaccuracy and the noise in the measuring devices. Unlike most 
other state estimation methods, the process noise or measurement noise terms do not 
necessarily have to be Gaussian, rather depending on the behavior of the process 
noise or the measurement noise any standard or non-standard distribution can be 
attributed to the noise characteristics.

Similar to other stochastic filtering problems, the Sequential-Monte-Carlo filter­
ing is an inverse problem. Given the process model /(.) and measurement model 
g(.), collected measurements yk at discrete time steps up to the current time y1:n = 
[yi y2 2/3 - - - yn\ and knowledge about the distribution of the process noise, u>k and
measurement noise, Uk, the objective is to find optimal Xk or Ep(xk\yi:k)[xk] where
k =  1, 2 • • • , n.
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6.2 Recursive Bayesian Filter

The non-linear filtering problem described in the previous section can also be formu­
lated as a Bayesian estimation problem. The objective of the filter is to obtain the 
posterior conditional density of the states, p(xn\y1:n). It is also assumed that states 
are first order Markovian p{xn\xo-n-i)  =  p(xn\xn_i)

Prom Bayes rule we have

p W * , )  =  (6 -2)

_  p(yn,yun-i\xn)p(xn) 
p(yn,yi:n-l)

_  p(yn\yi:n-l,xn)p{y1:n- l \xn)p(xn)
P(yn\yi:n-l)p(yi:n-l)

_  P(Vn\Vi-.n-i,xn)p(xn\y1:n- 1)p(yi:n̂ 1)p(xn) 
P(yn\yi-.n-l)p(yi:n-l)p(xn)

P(yn\xn)p(xn\yi:n-l) (ff ^
Piynlyi-.n-x) 1 j

In Equation 6.3 the different terms can be identified as follows:

• p{xn\y\,n-i)  is the prior term, which can be further expressed in the following 
form

p{xn\yv.n-\) = J  p(x„|x„-i)p(x„-i|yi:„_i)da;„-i (6.4)

where p{xn-i\y\,n-i)  is the estimate of the conditional density of the state from 
the previous time step, p(xn\xn-i)  is the transition density between (n — 1) — th 
to n — th  time step, equivalent to the state equation /(.)  .

•  P(yn\xn) is the likelihood function and similar to the measurement equation g(.).

• The denominator p{yn\yv.n-\)  is a constant, called evidence and often seen as a 
normalization factor.

The recursive relation of Equation 6.3 does not have a general analytical solution, 
except for some very restrictive cases, such as, the Kalman Filter for linear systems 
Gaussian noise models. The Sequential Monte Carlo Filter is also an approximation 
of the general Recursive Bayesian Filter where the densities are approximated by 
samples and instead of the density function, samples are propagated in time and the 
measurements axe used to weight the samples. Thereby, the priors are transformed in 
to the posterior density. The samples truly represent the density function when the
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number of samples, Np —► oo. Since the densities are represented by samples, one of 
the challenges is how to sample from a desired distribution. In the following section 
we discuss the most commonly used methods of sampling from a distribution.

6.3 Sam pling from a D istribution

Sampling from a distribution is a fundamental numerical problem that arises in 
all statistical inference or estimation problems. For example, given conditional pdf 
P ixn\y\-.n) our filtering objective is to obtain the expected value of xn.

For many density functions it is difficult to evaluate the integration analytically 
and therefore one has to adopt a Monte Carlo method of integration. Monte Carlo 
integration requires xn to be sampled from p {xn\y\:n). However it is often not possible 
to sample directly from the desired distribution, as the probability density function 
may not be integrable analytically. Therefore, the indirect methods of sampling such 
as, Rejection Sampling or Importance Sampling are used to sample from the desired 
distribution. These two methods are described in the following sections.

6.3.1 Rejection Sampling

Rejection sampling is a method to draw independent samples from a probability dis­
tribution. Let us consider a case where we would like to sample from the distribution 
p{x). First we choose a distribution Q(x) from which we can easily draw independent 
samples and evaluate Q*(x) at any x. Since the area under each density function 
is 1, a constant c is chosen such that cQ(x) will cover the total p(x) or equivalently 
cQ* > p*(x)\/x. Now samples are drawn from the tractable distribution Q(x) instead 
of target distribution p(x). At each location Xi ~  Q(x) and the function cQ*(xi) is 
evaluated. A random height is drawn such that hi ~  uniform[0 cQ*(xi)\. If 
hi < p*(xi) then Xi is accepted as a random sample from p(x) otherwise both and 
hi are rejected. This process is repeated until sufficient samples have been collected. 
The scheme is depicted in Figure 6.1 (Murray 2004). There is an optimal value for 
the coefficient Copt when the envelope density curve touches the target density curve. 
The method is most efficient for c =  as this minimizes the number of rejected 
samples and algorithm will break down if c < Copt.

(6.5)
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Figure 6.1: Rejection sampling from a bi-modal distribution using a Gaussian Distri­
bution as Proposal Distribution (Murray 2004)

6.3.2 Importance Sampling

The idea of importance sampling is to choose a proposal distribution in place of the 
target probability distribution. The support of the proposal distribution has to cover 
the support of the target distribution. Instead of sampling from the target probabil­
ity distribution, each sample is drawn from the proposal distribution, and a weight, 
equal to the ratio of the two density functions evaluated at the sampled point, is 
assigned to the sample. The idea is explained using the integration problem stated 
in Equation 6.5. In order to evaluate the integration we need to sample from the 
distribution p(xn\yi:n). In case it is difficult to sample directly from the distribu­
tion importance sampling can be used to carry out the integration. In order to use 
importance sampling we cast the problem in the following form:

£p(*nl2/i:«)H = f  x n^ ~ ^ Y ^ - q { x n)dxn (6.6)
J x n <l\x n )

Using direct sampling method independent samples x%n are drawn from q(x) and 
weight W (xln) — where i — 1 - ■■ Np are assigned to the samples. The weighted
sum of these samples approximate the expectation.

Np

Xn = J 2 W (< > n  (6‘7)
i= 1

Rem arks
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The objective of both Importance Sampling (IS) and Rejection Sampling (RS) 
is to overcome the difficulty of sampling from a distribution which is not integrable 
analytically. Therefore, more direct methods of sampling, i.e. inverse method can­
not be used to sample from the distribution. However, from a implementation and 
computational point of view these two algorithms axe quite different.

•  The proposal distribution of Importance Sampling needs to have the same sup­
port as the target distribution, however it is not necessary to cover the target 
distribution. On the other hand, in Rejection Sampling the proposal needs to 
cover the whole target distribution. This is ensured by selecting a large enough 
multiplier ‘c’. Typically a Gaussian or a mixture of Gaussian probability den­
sity function will be used as proposal distribution. If target distribution is 
non-standard with large peaks in those cases a larger ‘c’ has to be used.

•  In Rejection Sampling, the total number of samples drawn from the proposal 
distribution will be always higher than the required number (i.e., particle size, 
Np) from the target distribution. The number of samples from the proposal 
distribution will depend on lc \ For large value of ‘c’ more samples will be re­
jected, therefore the computational load will be higher. In Rejection Sampling, 
no extra sampling is required, the number of samples generated from the ‘pro­
posal distribution’ will be equal to the required number of samples as a result 
computational load is lower.

•  Samples generated using ‘Rejection Sampling’ have equal weights (^-), on the 
other hand, a weight equal to the ratio of the target density to proposal density, 
evaluated at the sampled point (j$f$) is assigned to the samples generated using 
‘Importance Sampling’.

6.4 Sequential M onte Carlo M ethods

One of the important aspects of the SMC methods is the recursive update of the 
posterior. Recursion in time translates the information from one time step to the 
next time step. Recursion is important mainly for three reasons: i) it minimizes 
the calculation cost, ii) the effect of the initial condition dies out as more and more 
measurements become available and iii) the variance of the posterior decreases with 
time.

Importance Sampling (IS) discussed in the previous section can be used to sam­
ple from probability distributions which are difficult to sample from. However, the
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formulation as shown in Equation 6.6 is not suitable for recursive estimation. There­
fore, an importance function q(xun\yi:n) is proposed instead of q(xn), and instead of 
p{xn\yi:n) we will assume that we would like to sample from p{xi-n\y\:n) though we 
are interested only on the latest state, xn. Such importance functions allow recursive 
evaluation of the importance weights in time.

E p(x1:n\yi:n)\Xn] =  /  Xn j -  " ^ (a^n\y1:n)dXn (6 .8)

In Equation 6.8  the recursive weight, Wn =  where the proposal distribution
q(xi:n\yi-.n) can be factorized in the following form:

q(Xl-.n\yi-.n) =  q(Xn\Xl:n-l,yi:n)q(Xl:n-l\yi:n-l) (6.9)

Since the states are Markovian g(a:n|xi;n_i) =  q(xn\xn_i). Therefore, Equation 6.9 
can be further simplified and written as

q(xi:n\yi:n) = q{xn\xn- i , yi:n)q(Xl:n-l\yi:n-l) (6.10)

The target distribution p(xi:„|yi:„) can be factorized in the following form:

P(.Xl:n\yi:n) — p(,Xn\X\:n— i, y\:n)p{Xx-.n~ 112/l:r») (6 -H)
=  P(Xn\yi:n)p(x1:n....i\yi,n) (6 .12)

—  P{yn\Xn)p{xn\yi:n-l) , > x m
— / I \ P \£ l : n —l\U l:n —l )  (O .loJ

P(yn\yi:n-l)
Using the factored form of Equation 6.10 and 6.13 the importance weight, W„ can 

be updated recursively,

w  =  (6.i4)
q(xi..n\yi:n)
P(yn\Xn)P(Xn\xn- 1)p(xhn^1\y1,n_i )  ^

q(x„\xi:n-l, yi:n)q(xi:n- 1 \VUn-l)
OC ^ . |x „ M x „ |x  (616)

q [ X n \ X l - . n — li y v . n j

The recursive form of Equation 6.16 essentially transfers the state and measure­
ment information from all previous time steps to the current time.

6.4.1 Selection o f Importance Function

One of the difficult steps in the implementation of the SMC filter is selection of the 
importance function. Selection of an arbitrary density function q(xi:n\xi:n- i ,y i :n)
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can lead to increase in the variance over time (Doucet et al. 2000). Thus after a 
few iterations all the particles will collapse to one point, meaning one normalized 
weight will be close to ‘1’ and all other weights will become close to zero. This 
is also known as degeneracy. One way to avoid degeneracy is to select importance 
function optimally. The concept of optimal importance function was introduced by 
Zaritskii et al. (1975). The optimal importance function is the one which minimizes 
the variance of the weights to zero and is given by p(xk\xik_1,yk) (Doucet et al. 2000). 
However, it may not be easy to sample directly from the optimal importance density 
function (Arulampalam et al. 2002). Analytical evaluation of optimal importance 
function may be possible for some special classes of models. Doucet et al. (2000) has 
derived the optimal importance function for a useful class of models when the state 
transition equation is nonlinear but measurement equation is linear and the noise is 
Gaussian. Such a system is given by,

xk =  f ( x k- i ,u k-i)+<jJk (6-17)
yk =  Hxk + Vk (6.18)

/  is a nonlinear function, H  is an observation matrix, and uik and uk are mutually 
independent and each of them are i.i.d.-Gaussian sequences with Eu > 0 and E„ > 0. 
Defining

XT1 =  + (6.19)

mk =  E(EI//(a;fe_i) +  i7tE„~1yfc) (6 .20)

Therefore, the importance density and the likelihood are given by the following 
equations respectively,

p(xk\xk-.u yk) -  N (xk-,mk, E) (6.21)

p(yk\xk) =  A(yfc; # /(* * _ !) ,£ „ +  7 ^ /7 * )  (6 .22)

For nonlinear measurement equation an approximate optimal importance func­
tion can be obtained by linearizing the measurement equation. Once linearized, 
Equations 6.20 through 6.22 may be used to calculate the optimal importance func­
tion (Doucet et al. 2000). However, this method requires the calculation of the Ja- 
cobian of the measurement equation at each time step. Therefore, the method is 
computationally intensive and may not be easy to implement. Several Monte Carlo 
methods have been proposed to approximate the importance function and the as­
sociated importance weight based on importance sampling (Doucet 1998), Rejection
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Sampling and Markov Chain Monte Carlo methods (Berzuini et al. 1997, Liu and 
Chen 1998). However, these methods are iterative in nature, computationally expen­
sive and they lack theoretical convergence results. A simple choice is to use the prior 
as an importance function which was originally proposed by Handschin and Mayne 
(1969). This is closely related to the method developed by Gordon et al. (1993). The 
method essentially uses the transition density p(xk+i\xk) as the importance function 
and applies re-sampling or Bootstrap to shape the importance function to the pos­
terior. Therefore the method is known as Bootstrap Filter or Particle Filter. In the 
current study we mainly restrict ourselves to the class of filters which use transition 
density as the importance function.

6.4.2 SMC with Transition Density

SMC filters have essentially two steps, (i)Prediction and (ii) Update. If the transition 
density is used as the importance function these two reduce to the implementation of 
the following actions:

P red ic tion  Each sample is passed through the system model to obtain samples from 
the prior at time step k: x^*  = +  Wk-i where Wk-i is a sample from
P(Wk-1).

U pdate  The update step is essentially an implementation of Bayes rulep(xk\xk-i, Uk) — 
' however, instead of performing the calculation on density 

functions, the operation is carried out on the discrete samples. On receipt of 
the measurement y*, the likelihood is used to calculate the weights. With the 
transition density as the importance function, the weight is given by:

Wn = p{yn\xn)p{xn\xn- 1)p(x1,n-i\yi,n-i)  
( l(xn \X\.n—i ,  yx-.n)(l{X\\n— 1 l)

P(yn\xn)p{xn\Xn-l)OC , - v i
9(^n|^l:n-i)2/l:n) 

oc p{yn\xn)Wn^i

(6.23)

(6.24)

(6.25)

The generated weights are used to shape the samples from the prior p(xk\xk-i) 
to the samples from posterior p(xk\xk-i,yk)-

The above recursive form of the weights can be used directly to implement the 
update-step or a re-sampling strategy may be applied to shape the priors as proposed 
by Gordon et al. (1993). Based on the implementation strategy of the update-step,
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‘the SMC algorithm with transition density as importance function’ can be classi­
fied into two major classes: (i) Sequential Importance Sampling (SIS) (ii) Sequential 
Importance Re-sampling (SIR) filter commonly known as Particle filter or Bootstrap 
filter.

6.4.3 Sequential Importance Sampling

In Sequential Importance Sampling (SIS) algorithm the transition density function, 
p(xk\xk~i) is used as the proposal, therefore q(xn\xim- i ,y i :n) =  p(xk\xk~i) and the 
weight update equation reduces to the following form:

W . cc (6.26)
Q\%n |^ l:n—lj  V l :n)

oc p{yn\xn)Wn- X (6.27)

The implementation of SIS algorithm is explained using a flow diagram in Fig­
ure 6.2. In the flow diagram the superscript sign is used with the states to empha­
size that the sampled states have not been updated, for example, denotes a sample 
at k — th  step before measurement update. Clearly the transition of the samples from 
one time step to the next time step take place through the state transition equation. 
On the other hand, the measurement information flow through the recursion of the 
weights. The implementation steps of the SIS algorithm are given in Table 6.1

6.4.4 Sequential Importance Re-sampling

The SIR filter differs from SIS filter in the update step. Measurement update is 
essentially implementation of Bayes rule. The primary objective of the update step 
is to shape the prior, p(xk\xk-i,yi:k-i) based on the newly available measurement 
Uk■ In Sequential Importance Re-sampling (SIR) the update step is executed using a 
re-sampling strategy. After re-sampling the weights of the particles axe reset to 4-.

2Vp

Therefore, the weight update (Equation 6.16) takes the following form:

Wn

oc

p(Xl:n\yi:n)
q(Xl:n\yi:n)
P(yn\Xn)p(Xl:n-l\yi-.n-l)

q{%l:n—l\yi:n—l)

oc p(yn\xn)Wn-i

OC p ( y „ |x „ ) —

(6.28)

(6.29)

(6.30)

(6.31)
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Prediction

Time = k +1Time = k

State
Equation

State
Equation

Measurement
Equation

Measurement
Equation

Update

Figure 6.2: Schematic diagram explaining the implementation steps of the SIS algo­
rithm

At any given time step, the weight is given by the likelihood function p{yk\xk)- The 
justification of using bootstrap or re-sampling is based on the result from Smith 
and Gelfand (1992), where it is shown that Bayes theorem can be implemented as 
a weighted bootstrap. The theorem states, suppose samples \x* ,i = 1,• • • ,N] are 
available from a continuous density function G(x) and it is required to sample from 
L(x)G(x), where L(x) is a known function. In that case the discrete distribution 
[;x *, i =  1, • • • , N] with probability mass assigned to the samples xt* tends= l -k(Xt )
in distribution to the required distribution as N  tends to infinity. Here G(x) can 
be identified with p(xk\xk-i,yi:k~i) and L(x) with p{yk\xk)- The other aspect of the 
update stage is the progression of the measurement information in time direction, so 
at any time instant the estimated state is based on all the previous measurements 
as well. In SIR the weight information are transferred to the samples by applying a
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Sequential Importance Sampling

Initialization:^ ~ p(x0}, i = \,---,Np with W0‘ = —̂—
^p

For , k,...., n
Importance Sampling: Use the state transition equation to translate samples to the 
next time step, draw Np samples, x lk ~ p(xk | xk_A) i = l,---,Np

Weight Update: Calculate importance weights, Wk ~ p{yk | x ‘k )x Wk_k; i = 1, • • •, N p
__

Normalize Importance Weights: Wk —; i = l,---,Np
Y w ‘

State Estimation: Expected value of state is given by, ** =Z_ixt x  5 *= ^ ' ‘' > Np

Table 6.1: Sequential Importance Sampling Algorithm using transition prior as pro­
posal and without any re-sampling

re-sampling or bootstrap strategy. This can be explained using a simple dartboard 
(e.g., Figure 6.3) analogy.

The numbers or points on the dartboard may be assumed to be the samples xki 
and the !% area’ assigned to each of the numbers is the corresponding weight, of 
the samples. Now if someone throws a dart on the board the probability of hitting 
a number will be proportional to the corresponding area’. For large number of 
throws we will have a pool of samples which are distributed according to the weights. 
Weighted Re-sampling or Bootstrap essentially performs the same operation. How­
ever, to make the algorithm computationally efficient and the samples truly random 
many different re-sampling algorithms have been developed, for example, multinomial 
re-sampling, residual re-sampling, stratified re-sampling (Douc et al. 2005). The re­
sampled samples are translated through the transition equation to the next time step 
and used as priors in that time step. Re-sampling shapes the priors and thereby pro­
vides a mechanism of transferring the measurement information from one time step 
to the next time step. The implementation of SIR algorithm is shown schematically 
in Figure 6.4.
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o

Figure 6.3: A simple dartboard analogy showing how the weight information is trans­
formed to the samples
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Figure 6.4: Schematic diagram explaining the implementation steps of the SIR algo­
rithm

6.5 Im plem entation Issues in SIR Filter

Several implementation issues have been pointed out by Gordon et al. (1993) in their 
original paper. The problems arise from the fact that a limited sample size, Np is used 
for approximating the probability density function. Because of the limited samples, 
it is important that there is good overlap between the prior and the likelihood. The 
prior should be proposed in a way such that there will exist many samples from the 
prior p{xk\xk~i,y\-.k-i) in the region where the likelihood p{yk\%k) takes significant 
values. This will ensure that many samples from the prior will receive large weights. 
If the prior space and the likelihood space are very different, most of the samples will 
receive very small weights and thereby get wasted. Gordon et al. (1993) suggested 
use of a larger process noise than the actual process noise to expand the proposal 
distribution. This was called ‘roughening’ of the prior. Results have been shown that 
the tracking performance was improved by roughening the priors. However if the 
SIR filter is used for estimating the unmeasured states, an arbitrary increase of the 
process noise will introduce mismatch between the process and the model. Therefore, 
the estimated states may be very oscillatory and in the extreme cases diverge from 
the true values. Also there is no direct way of tuning the parameters if the filter is 
being used for estimation of unmeasured states. In this chapter we investigate tuning 
issues further from a state estimation perspective and propose the following practical 
ways of tuning the filter.
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6.5.1 Weights vs. a-priori state plot

SIR filter uses the transition density as the importance function therefore, the struc­
ture of the prior and the likelihood are fixed. The only two parameters that can be 
used for tuning are the process noise and the measurement noise. The process noise 
essentially governs the spread of the prior samples and the measurement noise con­
trols the variance of the weights. The increase in the measurement noise makes the 
weights more uniform. The relative magnitude of the process noise and the measure­
ment noise is also important as it decides whether more weight will be given on the 
model or the measurement in the estimation process. Therefore, it is important to 
maintain a balance between these two quantities. However, in the estimation problem 
the states are not readily available to tune the parameters. We propose a qualitative 
way of finding the range of the tuning parameters by visualizing the ‘weights vs. a 
priori states’ plot. Both the process noise and the measurement noise appear in the 
likelihood expression. Depending on the relative magnitude of the tuning parameters 
the shape of the plot will change. A schematic diagram of the weights vs. a priori 
states plot is shown in Figure 6.5. The region within the dotted lines is the desired 
shape for the weights. The top curve with large variance in weights may lead to 
excessive re-sampling and ultimately select only very few samples from the priors. 
On the other hand, a flat distribution of weights signifies that the update step is not 
taking a part in shaping the priors. Though according to the discussion of optimal 
prior we would like to have the variance in the weights close to zero, but from a prac­
tical point of view this is not feasible. Primarily because the importance function 
is not optimal and in this case we would like the re-sampling to shape the priors. 
From a process model mismatch point of view, since there is mismatch between the 
process and the model we would like the measurements to play a role in updating the 
states. Therefore, it is more justified to use a distribution of weights which is slightly 
curved. The exact shape will depend on a case by case basis. The strategy would 
be to first select a process noise large enough to show some jitters in the estimated 
states but such that it does not make it too oscillatory. Then the measurement noise 
can be increased until we reach the weights’ plot which looks similar to that shown 
in Figure 6.5. The measurement noise can be further tuned to get rid of jitters of 
the estimated weights. Finally, more tuning can be done to match the measurements 
with the predicted values.
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Noise too Large

Measurement 
Noise too SmallA priori States

Figure 6.5: A schematic diagram of ‘weight vs. a priori state’ plot depicting the 
optimum region for tuning purpose

6.5.2 Annealing of the Weights

An increase in process noise produces jitters in the estimated states and increases 
the variance of the weights. According to the optimal weight estimation strategy, 
decrease in the variance of the weights leads to selecting diverse samples during the 
re-sampling and gives better estimates. Therefore, an intuitive way is to use an 
annealing parameter with the likelihood in order to calculate the weights,

wtk =  piVkl^kT where a  ~  [0 1] (6.32)

Normalized weights, wtk1 =  — —77-----  (6.33)
E i = 1 w tk

where a  is the annealing parameter. Decrease of variance of the weights has a 
direct effect on the re-sampling step. Since the values of weights will be close, the re­
sampled values will be a progeny of many values from the original samples. Therefore, 
the estimate of the state will be an average of a set of diverse samples and any unusual 
spiking will die out.

The implementation of these two strategies will be further explained using simu­
lation examples in Section 6.7.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.5.3 M ulti-rate Data Handling in SIR

In the process industry often quality variables (e.g., composition) are less frequently 
measured compared to the condition variables (e.g., temperature) which gives rise 
to multi-rate data. Since the filters are developed for regularly sampled data, it 
needs to be adapted for multi-rate data so that it can make use of all available 
information. Let us consider the system described in Section 6.1. In a multi-rate 
sampling setting, at any time instant k, the measurements can be divided into two 
distinct parts yk =  [ykSastykslow]- Vk*ast is from sensors with faster sampling rate 
and ykslow is from sensors with a slower sampling rate and only available at some 
intermittent sampling points, we call these sampling points ‘Major Sampling Events’ 
while the instants where only fast sampled measurements are available are called 
‘Minor Sampling Events’. The prediction step remains unchanged, only the update 
step needs to be adapted for multi-rate data. The following two modifications of the 
update step are proposed for dealing with multi-rate data in the SIR filter.

Strategy I  The weights at the update step of a SIR filter axe given by the
likelihood equation:

wtl = p{Vk\xk)
A two step update procedure can be used to calculate the weights of the SIR filter.

Minor Sampling Event: At the minor sampling event y* =  y ^ ast and the weights 
are given by,

r t f  = p(ykfast\x j 'fast) (6.34)

R  =  [Rfast] (6.35)

Major Sampling Event: The slow sampled measurements are available at the 
major sampling event and the measurements become yk =  [yk*astykslow] • Weights can 
be calculated by the following conditional density function:

wtl =  p([ykfastykslmv ] | [ x k ^ W ' 31̂ } )  (6-36)

R  =
R f a s t  o

0 R slow

Also R slow is set to a value much smaller than R fast to give more weight to slow 
sampled measurements at the major sampling events. The main disadvantage of 
the method is that, at the minor sampling events the method mainly relies on the 
prediction equation for estimating the states associated with the slow sampled mea­
surements. This is disadvantageous because in most of the cases there will be a
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mismatch between the process and the model. Therefore, the states estimated by the
prediction equation should not be trusted absolutely.

Strategy I I  The major sampling events contain information about the mismatch 
between the model predicted value and the slow sampled measurement. This infor­
mation can be used to correct the model predicted value. However, in order to make 
the estimation robust, a Multiple Imputation (Rubin 1987) strategy can be adopted 
in the update stage. The main idea of Multiple Imputation is to fill the missing mea­
surements with all possible estimates of the measurements. This will result in several 
complete data sets. Parameters are estimated for each of the imputed data sets and 
an average can be used as the estimate. The method provides a way of evaluating the 
sensitivity of the estimated parameters to the imputed missing values. The details of 
the method can be found in (Rubin 1987). In the MI framework the update step of 
SIR filter can be implemented as follows:

Major Sampling Event: At the major sampling event both fast and slow mea­
surements are available yk = {yk*astVkslow] and the weights are calculated using Equa­
tion 6.36. In addition to that, the residual between the slow sampled measurement 
and the predicted state, rk — yk — Xk is calculated. These residuals are stored in 
vector r and used for predicting the unmeasured measurements at minor sampling 
events.

Minor Sampling Event: All possible values of the missing measurements, ykslow' ^  
are calculated by adding the residuals calculated at the Major Sampling Events,

The estimated values are imputed in the data set and the complete data sets are 
given by: yk^  = [yk*astykalow’̂ ]  where d = [!•••£)]. Weights are calculated for each

These d vectors of weights are used to re-sample the predicted states. This will 
result in d estimates of states. Finally expected values and the variances of the states 
are calculated as follows:

data set:
w t ^  =  p{[ykfastyks lo w 'd }! [ x k ^ x ^ 1™])

Ep(xk\Vk) (xk) (6.37)

Np D

(6.38)
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It has an effect similar to prior boosting and therefore helps in m i n i m i z i n g  sample 
impoverishment. However, the method is computationally intensive.

6.6 U nscented Kalm an Filter

The Unscented Kalman Filter (UKF) is a recursive minimum mean squared error 
estimator, that addresses some of the issues of EKF. Since EKF only uses the first 
order Taylor series expansion to linearize the nonlinear function, it often introduces 
large error in the estimated statistics of the posterior distribution of states. This is 
specially evident if the model is highly nonlinear and the assumption of local linearity 
breaks down. In order to deal with the nonlinearity UKF takes a different route and 
Unscented Transform is at the center of the method. We will first explain Unscented 
Transform and describe the algorithm.

6.6.1 Unscented Transformation

The basic idea of Unscented Transform is that, it is easier to approximate the prob­
ability density function instead of the arbitrary nonlinear function and it introduces 
less approximation error. A set of sample points called sigma points, Xi are chosen 
so that their sample mean and sample covariance are x and Pxx. These points are 
selected deterministically so that they capture the mean and covariance information. 
The n-dimensional random variable x with mean x and covariance Pxx is approxi­
mated by 2n +  1 weighted points given by,

X o =  x  Uo — k / ( u  +  k ) (6.39)
Xi = x  + W {n  + K)PXXi Ui = 1/2 (n +  k) (6.40)

X(i+ n) = x -  ( \J{n + K)Pxxi U(i+n) = 1/2(n +  «) (6.41)

where k  is a tuning parameter that gives an extra degree of freedom to ‘fine tune’ the 
higher order moments of approximation. When x(k) is assumed Gaussian, a useful 
heuristic is to select n + k  =  3. The associated weights with the sigma points are 
essentially the probability density function evaluated at the respective points. Each 
of these points are translated through the nonlinear state transition equation and the 
measurement equation, which gives a cloud of points and y and Pyy are the statistics 
of the transformed points. In order to make the estimated statistics unbiased the 
transformed points are also weighted accordingly. The implementation steps of the 
algorithm are given in Table 6.2.
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Steps of the Unscented Kalman Filter Algorithm

In a recursion from k-th time step to (k+l)-th time step

Step 1: The set of sigma points are created by applying Equation 2.39 to 2.41.

Step 2: The transformed set is given by translating each point through the process model, 

%'(k + \\k )  = f f y i k l  k), u(k))

Step 3: The predicted mean and covariance are calculated,

x(k + \ \k )  = '£JUix i{k + \\k )
/= 0

P j k  + l \k )  = X u i\z ‘(k  + 1 1 *)-*(*  + 1 1 k ) \x l{k + 1 1 * ) -  x{k + 1 1
(=0

Step 4: Translate each sigma point through the measurement equation. Predicted
observation and mean of predicted observation are given by,

y i(k + l \ k )  = g ( z i(k + l \ k ) M k ) )
2 n

y{k + \\ k )= ^ T J iy i (k + l\ k)

Step 5: The innovation covariance is given by,

Pyy (k + 1 1 k) = R(k +1) ̂+ J  U‘ [y' {k + 1 1 k ) -  x(k + 1 1 k %>'' (k + 1 1 k) -  x{k + 1 1 k $

Step 6 : Finally the cross correlation matrix is calculated,

{k + 1 1 k) = ^ U ‘ \x' (k + 1 1 k) -  x(k +1 1 (k +1 1 A) -  x(k +1 1
i=0

Table 6.2: Implementation steps of Unscented Kalman Filter
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The Unscented Kalman Filter also needs to be adapted for multi-rate or missing 
data. However, UKF can be easily modified in a similar fashion as the Extend Kalman 
Filter (EKF) and these issues have been extensively investigated by Gudi et al. (1995) 
and Prasad (2001). Therefore in this thesis we do not further explore this area. We 
restrict ourselves in investigating the computational efficiency of UKF. In this study 
we compared the computation time of UKF with SIR filter for similar type of systems 
and implemented UKF on a laboratory scale experimental system.

Remarks

•  Sequential Monte Carlo Filter (SMC) and Unscented Kalman Filter (UKF) 
both use the same idea of approximating the probability density by samples. 
However, in UKF the sampled points are selected deterministically whereas in 
SMC filters the samples are completely random.

• Since UKF represents the probability density function with only a few strate­
gic points (e.g., in a correlated multivariable Gaussian distribution sigma points 
will be located on the eigenvector directions) it has more success in representing 
symmetric Gaussian distributions. For representing skewed Gaussian distrib­
ution more points will be required and the weights also need to be adjusted 
accordingly. Derivation of weights may not be possible for non standard distri­
butions.

6.7 R esults

In this section we illustrate the proposed methodology to overcome different im­
plementation difficulties of Particle Filter using a simulated non-linear adiabatic 
CSTR (Henson and Seborg 1997) and a laboratory scale Four Tank setup.

6.7.1 Non-linear CSTR

A non-linear CSTR is simulated where the operating conditions have been taken 
from (Henson and Seborg 1997). This system was also studied by (Chen et al. 2004b) 
to demonstrate the different aspects of SIR Filters. The governing equations of the 
system are as follows:

^  =  £(C „ - O - k C e - * * / *

f  “  (6.42)
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where C is the concentration, T  is the temperature, q is the flowrate, V  is the volume 
of the reactor, Cq and To are inflow concentration and temperature, kCe~EÂ T is the 
reaction rate, A H  is the heat of reaction, p is the density, Cp is the specific heat, 
U and A are the effective overall heat-transfer coefficient and area of heat transfer, 
Tc is the temperature of the cooling fluid. The continuous differential equations are 
discretized via finite difference, resulting in the following discrete model:

c t  =  C&-i +  (^(Cfl — Cfc-i) -  kCk-ie~E^ Tk-x)M  +

where u ^ i1]T is the process noise and At is the time interval between two 
consecutive time steps.

We consider two measurement strategies for the system. In a single rate sampling 
setup only the temperature sensor is available and measured at 1 sec sampling interval. 
The measurement equation has the following form:

yk =  0.5Tfc +  v\ (6.43)

A multi-rate sampling strategy was also considered to demonstrate the performance 
of the proposed multi-rate SIR filter. In a multi-rate sampling setup the temperature 
measurements are available at every second, while concentration is measured at every 
10 sec interval. The measurement equation at the major sampling instant can be 
written as,

y T 1"  -  0.5 [ °-5  ] +  ■ C * ' (6-44)

The operating conditions of the CSTR are given in Table 6.3. The system was also
studied for these operating conditions by Henson and Seborg (1997) and Bakshi and
Stephanopoulos (1996). The normalization factors used for this operating condition 
are Cr =  1 m ol/L  and Tr = 100AT.

The normalized initial condition of the system is, Ciniuai — 0.5 and Tinitiai — 3.5. 
One of the main objectives of this exercise is to study the effect of system noise and 
process noise on the estimation performance of the SIR filter. Therefore, the system 
was simulated for a wide range of process noise and measurement noise. We also 
consider poor guesses as initial condition for the system which is common in many 
practical situations, to demonstrate the convergence of the algorithm.
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parameter value units parameter value units
q 1 0 0 L/min cp 0.239 J/g/K
V 1 0 0 L u 5.0x10s J/crri/min/K

Co 1 . 0 mol/L Ea 8750 K
k 7 .2x l0 10 l/min To 350 K

SH -5.0x1 & J/mol A 1 0 cm2

r 1 0 0 0 g/L Tc 305 K

Table 6.3: Parameters of the non-linear CSTR 

Tuning of SIR  filter

The graphical method described in Section 6.5.1 has been used to tune the SIR filter 
for the CSTR system. The process noise and the measurement noise for the system 
on a normalized scale are,

,  v AT (  0 0.0001 0 \
p(wfc) ~  Q 0 ooo4  )  ( ^

p{vk) ~  JV(0,0.2) (6.46)

In the filter we used a process noise one order higher than the actual process noise. 
Setting the process noise to a higher value makes the prior wide and helps the prior to 
cover the actual state of the system. However, the variance should not be increased 
more than one order of magnitude as it gives rise to large oscillations in the estimated 
states of the unmeasured variables. Keeping the process noise to the above value we 
changed the measurement noise of the process and at the same time observed the 
shape of the ‘weight vs. arpriori state’ plots. The shape of the weights for four 
different cases are shown in Figures 6 .6 (a) to (d). In each of these figures we also 
plotted the distribution of the states before and after re-sampling. Clearly if the 
variance of the weights is very large, the distribution of the state changes significantly 
after re-sampling. The sum of squared errors between the estimated concentration 
and actual concentration for these four cases are plotted in Figure 6.7 in the same 
order. The smallest sum squared error is obtained for Case (c). From the ‘weight 
vs. a-priori state plot’ it is also evident that the variance of the weights is moderate 
for Case (c), and due to re-sampling the distribution of the weights did not change 
significantly. Therefore under this condition both the model and the measurements 
played equal roles in estimating the states.

The ‘Weights vs. a-priori plot’ gives a qualitative idea about the ratio of the

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 B efore R e-
w  sam pling

0 1 2 ' 0  
C oncentration

After R e- 
Sam pling

J  30

I  20
c

10

1 2 ' 0
C oncentration

!.5  r “ "-------1------------ , 40 r

1 2 
C oncentration

^!e 1 0 !eIe
T em p e ra tu re T em p e ratu re T em p e ratu re

A lter R e- 
Sam pling

B efore R e­
sam pling

0 1 2 
C oncentration C oncentration Concentration

40

u 30|  20

a
T em p e ra tu re

2 3

T em p e ratu re T em p eratu re

B efore R e- After R e­
sam pling Sam pling

o 1 2  0 1 2 0 1 ;
C oncentration  C oncentration  C oncentration

x 1040 40

4

T em p e ra tu re T em p e ratu reT em p e ratu re

Before R e- After R e­
sam pling Sam pling

0 1 2 
C oncentration  C oncentrationy m C oncentration

T em p eratu re T em p e ratu re T em p e ra tu re

Figure 6 .6 : Weights vs. a priori state plot depicting the tuning methodology of the 
non-linear CSTR

Ui
I§ 40
O*W
i  20OT

0

Figure 6.7: Effect of tuning measurement noise on the sum squared error between the 
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Figure 6 .8 : Trend plots of the actual and predicted concentration and temperature 
showing jitters in the estimates due to poor tuning

process noise and the measurement noise where the filter may work best. The method 
works well if an order of magnitude information about the variance of the process noise 
is available. However, in addition to the ‘Weights vs. a-priori plot’ we suggest visual 
inspection of the trend plots of the measured states and the estimated states.

Annealing of the weights is another way of tuning the particle filter. The effect 
of annealing of the weights is demonstrated in Figures 6.8 and 6.9. In both cases we 
used the same process noise and measurement noise as tuning parameter. However 
Figure 6.9 shows the estimates of the states when an annealing parameter a — 0.2 
was used. Clearly the jitters have disappeared and the trend of the estimated states 
are very similar to the expected behavior of the states.

Application to  Multi-rate Data

The Sum Squared Error between the actual concentrations and the estimated con­
centrations are plotted in Figure 6.10. The SSE are calculated from 20 Monte Carlo 
simulations. The additional information made the system states more observable and 
improved the estimates of the states if the filter is well tuned. For example, in the 
multi-rate case there are two tuning parameters. Figure 6.10 shows the SSE values 
for different level of errors in concentration measurements. Cases where only temper­
atures measurements are used for updating do not change with this tuning parameter 
as in the weight calculation concentration error term do not appear in the likelihood 
equation. For the well tuned case, the Multiple Imputation strategy gives the lowest 
SSE, however computationally by far it is the most expensive method. Computar
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Figure 6.9: Trend plots of the actual and predicted concentration and temperature 
showing smooth behavior of the predicted states due to annealing of weights

tional load is approximately one order higher than that of Strategy-I. In addition 
to this, performance of the Multiple Imputation strategy depends on the number of 
imputations.

6.7.2 Experimental Four Tank System

Experiment on the Four Tank system was carried out at the process control laboratory 
at the University of Alberta. A mechanistic model of the system was developed using 
the measured dimensions of the tank. The schematic diagram of the process is shown 
in Figure 6.11. A comprehensive analysis of the process can be found in Johansson 
(2000). Mass balance and Bernoulli’s law yield the following set of equations:

^  + <6'47) 
IT  = ~ 5 v' ^ +S '/^ +S
f  -
dhj ®4 / 0 , . f i
—  -  -J iV W u  + j ;

where A* is the cross-sectional area of the tank, a, cross-section of the outlet hole and 
hi water level. The process inputs are water flowrates, [fi, h ,  f 3 , f4  and outputs are 
measurements of the bottom two levels [y\, y2]- The dimensions of the laboratory 
process are given in Table 6.4.

The process has four states(i.e., heights of the tanks are states of the system). 
While the measurements of all four heights are available, in applying the filter we
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Figure 6.10: Mean Squared Error comparing the estimation performance of the multi­
rate strategy with the single rate strategy

parameter unit value
A i , A 2 cm"* 392.7
A3 , A4

„ 2  cm 392.7
ai, a2 cm2 1.54
8 3 , a4 cm2 0.75

Table 6.4: Parameters of the laboratory scale four tank system
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Figure 6.11: Schematic diagram of the laboratory scale four tank system
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Figure 6.12: Trend plots of the heights of the Experimental Four tank system and the 
predicted values by Particle Filter and Unscented Kalman Filter

assume that only the heights of tank 1 and tank 2 are measured and heights of 
tank 3 and tank 4 are unmeasured. Thereafter both SIR filter and UKF are applied 
to estimate these two unobserved states. The SIR filter is tuned using the tuning 
rule discussed in the previous sections. The trend plots in Figure 6.12 shows good 
agreement between the true states and the estimated states by the SIR filter. The 
tuning of UKF was done by trial and error and the trend plots of the measured and 
unmeasured states were used to see the effect. The UKF also gives a similar estimate 
of the states. In terms of estimation quality the two methods are comparable for 
this system. We also recorded the execution time for both filters. The execution 
time for this system is shown in Figure 6.13. This is an average of twenty monte 
carlo simulations. It is clearly evident that the computational load of the Unscented 
Kalman Filter is much lower than SIR filter. Therefore the UKF is suitable for 
extremely fast sampling rates, for example, filtering of vibration data. However, we 
have to remember that the UKF has limited applicability and is not optimal for 
estimating skewed and heavy tailed states.

6.8 Concluding Remarks

The following conclusions can be drawn from the study.
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Particle Filter Uncented KF

Figure 6.13: Execution time for the SIR filter and the UKF on the experimental 
four-tank system

•  The proposed tuning of Particle Filter using ‘Weights vs. a priori state’ plot 
was tested on non-linear processes with a wide range of process noise and mea­
surement noise. Here we reported partial results from one simulated and one 
experimental case study. This is an easy to use effective visualization tool which 
can help the practicing engineers to tune the Particle Filter.

• The Particle Filter is also extended to the Multiple Imputation framework for 
dealing with multi-rate data. In the presence of large process and measurement 
noise, the additional information from slow sampled measurements improve the 
estimates of the states.

•  The Unscented Kalman Filter (UKF) is very fast compared to the SIR or Par­
ticle Filter. Therefore, the UKF may be suitable for state estimation of fast 
non-linear processes. However, the tuning of the UKF for state estimation 
remains an open problem.
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Chapter 7 

Concluding Remarks and 
Recom m endations for Future Work

This chapter lists the contributions of this thesis and the directions identified for
future research.

7.1 C ontributions o f This Thesis

The main contribution of this thesis can be summarized as follows:

• This thesis acts as a bridge between the vast literature on missing data in the 
area of statistics and analysis of process data with missing values. It explores the 
similarities and dissimilarities of missing value problem in process data analysis 
and related subjects (e.g., statistical surveys).

• A tutorial introduction of different concepts and methods related to missing 
data problem is presented in Chapter 2. These concepts have been explained 
with examples related to process data analysis.

• A general framework for classifying the symmetrical latent variable models is 
proposed. Commonly used latent variable models are classified according to this 
framework. This classification can serve as a guideline to select latent variable 
models for different process characteristics.

• Principal Component Analysis (PCA), Iterative Principal Component Analy­
sis (IPCA) and Maximum Likelihood Factor Analysis (MLFA) have been ex­
tended to Data Augmentation framework for building model from data with 
missing values. The estimated models using proposed methods are of better 
quality compared to the models from use of the conventional methods.
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•  Multivariate missing data handling technique is combined with Dynamic Time 

Warping (DTW) to synchronize the un-even length batch process data. The 
proposed method conserves the correlation between the variables and leads to 
a compact latent variable model.

•  A detailed study is carried out on the impact of data compression on multi­
variate modeling. The analysis shows that, transform methods preserves the 
correlation between the variables better compared to direct methods.

• Compressed data have been formulated as a missing data problem. A multi­
variate missing data handling technique has been used to restore the correlation 
between the variables.

• The importance of data pre-processing is highlighted in Chapter 5. Besides 
missing values, process data suffer from many different types of flaws (e.g., 
frequent downtime, grade change etc.). These issues have been dealt with in 
connection with an industrial case study. A PCA based monitoring scheme 
is developed to detect and diagnose the root cause of sheet-breaks in a pulp 
and paper mill. The pre-processing of the data played a significant role in the 
success of the monitoring scheme.

• A tutorial on the Sequential Monte Carlo (SMC) methods is presented in Chap­
ter 6 . In general chemical engineers are not familiar with sampling theory. This 
tutorial will serve as an introduction to this area.

• Several tuning methods have been developed to implement SIR or Particle filter 
in the presence of large measurement noise and process model mismatch.

• The Particle filter has been extended to Multiple Imputation (MI) framework 
so that the filter can be updated using multi-rate data.

7.2 R ecom m endations for Future Work

Treatment of missing data in process industries remains a challenging area for further 
research. Some areas of further research that were identified during the course of our 
research are listed below:

• In this thesis we mainly focused on building latent variable models from histor­
ical data. On-line application of latent variable models have been investigated 
by Nelson and MacGregor (1996). However, calculation of T2 and SPE test 
statistics and their confidence interval still remains an open problem.
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• The treatment of missing data in dynamic process monitoring models (e.g., Dy­
namic PCA) have been outlined in this thesis. Extension of IPCA for dynamic 
data and dealing with missing data is still an open problem.

• The EM algorithm has been used for building time series models from data 
with missing values (Shumway and Stoffer 1982). However, the algorithm can 
be difficult to implement if the closed form solution of the parameters are not 
available. Instead of using EM, Data Augmentation may be used to estimate 
time series models from data containing missing values.
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A ppendix A  

Derivation of the D istribution of a 

Covariance M atrix

The conditional posterior density of the covariance matrix for multivariate normal 
data is derived below. The complete data Y  = (Yobs, Ymis) where Y0&s and Ymis are 
the observed and missing portion of the matrix respectively. The *-th row of the 
data matrix is yt =  (yn,yi2 , ■ • • , 2/m)- We assume that Y  — (Yi,Y2, ■ ■ ■ ,Yn) has a 
multivariate normal distribution witn mean vector fi and covariance matrix E. There 
is no prior restrictions on E other than positive definiteness. Since Y  is normally 
distributed the complete data likelihood is:

L (6 \Y) oc |E |- f  e x p { - i  £  (Vi -  E_1 (Vi -  » f }  (A.l)

L (6 \Y) oc |E| 2 exp{-]- ' f ^ i y i - y  + y + n) E 1 (yi - y  + y + n)T} (A.2)
i = 1

Following algebraic manipulation, the complete-data likelihood can be written as,

L  (e\Y) a  |E |- ^  e x p { -y irE _15} x exp{-^  (y -  ft) E_1 (y -  n f }  (A.3)

Now let us apply the following prior distribution, given E, /z is assumed to be 
conditionally multivariate normal

/i |E~JV(/ i0sr - 1E) (A.4)
where the hyperparameters y0eRn and r  are fixed and known. Moreover E is 

inverted -Wishart,
E ~  W -1  (AT, A) (A.5)

for fixed hyperparameters N  > n  and A > 0. Then the prior density of (fi, E) is:
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7T (p, E) oc |E| (N+2+2) eXp { ~ t r A  *E x} x e x p { ~  (p -  p0) E 1 (p -  p0)T} (A.6)

Multiplying equation(A.3) and (A.6), it follows that the posterior distribution of 
(p, E) has the same form as the prior distribution but with different hyperparameters. 
The complete-data posterior is inverted-Wishart,

E |Y (AT', A') ,

where the updated hyperparameters are

t  —r  + n 
N' = N  + n

and

A' =  [A-1  +  N S +  (V ~  Mo)T (y ~  P o T 1

In the absence of any prior information on the distribution of the covariance matrix 
|A| —> oo. If we also assume that mean is exactly known then, y = po- Under these 
conditions, the posterior distribution of the covariance matrix is:

P  (E|ymis, Yobs) ~  W- 1 (N  + n, ( NS) - 1)
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