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Abstract

Vision-based algorithms designed to detect and track UAVs from an onboard mov-

ing platform have been the focus of active and extensive research over the last

decade, and dozens of algorithms have been tested, compared and optimized. How-

ever, the existing approaches tend to rely on specific features such as color or edges

which may not be able to detect and track various types of flying quadcopters.

This thesis implements a modified version of an existing vision-based algorithm,

the Cascade Classifier, originally designed to recognize facial features and humans,

and demonstrates its capability of detecting and track any type of quadcopter with

great accuracy over a variety of backgrounds, in both indoors and outdoors flight

conditions. The Cascade Classifier algorithm is demonstrated on two specific quad-

copter models used for this study, the 3DR Solo and the Parrot AR.Drone 2.0. This

thesis introduces a novel method to reduce the amount of information which needs

to be processed by vision-based algorithms when tracking physical objects under-

going non-random motion in 3D space. This method employs a Kalman filter to

predict the estimated position, velocity and acceleration of the tracked object in

order to reduce the image area in which the tracked quadcopter is believed to be.

This enables the Cascade Classifier algorithm, or any other type of vision-based

detection algorithm to track the target vehicle while greatly reducing the required

image processing time. Experimental testing proves that the proposed algorithm

obtains good detection and tracking performance in real-time for both quadcopter

types in indoor and outdoor flight scenarios, as well as the successful performance

of the mimicking control system design.
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Chapter 1

Introduction

1.1 Background

Computer vision has long been of interest to engineering and industrial applications
as a substitute to human eyes, for applications such as inspection, surveillance and
guidance. Given the ongoing increases in computing power and decrease in cost, size
and weight of computer and video hardware, computer vision-based algorithms are
now able to perform detection and command appropriate actions faster than even
the most experienced human operators. An example of vision systems used today are
camera networks, utilizing many wired or wireless cameras spread throughout a site
and transmitting video streams to a central computer. Using such systems, recog-
nition and tracking of one or more objects [66, 49] or humans [38, 18] in both single
view and multi-view [35, 27] settings have been demonstrated. In order to allow a
single camera to move around and obtain multiple camera-like coverage, mounting
the camera on an aerial vehicle such as a quadcopter is a logical development.

The quadrotor UAV platform offers a number of advantages over fixed-wing
(plane) or two-rotor (helicopter) vehicles, namely mechanical simplicity, ability for
hover and flight in any direction, as well as high agility. Given the proliferation
of commercially available off-the-shelf quadrotors over the last decade, the cost of
purchasing and maintaining a fleet of such vehicles has become affordable. This
has also increased the interest of such units for commercial or civil purposes such
as photography, journalism, delivery, art or racing, in addition to military and law
enforcement focused interests [51, 46].

Academic interest in autonomous quadrotor modeling and flight control can be
traced back to the early 2000’s. Early work involved using simple PID or LQR con-
trol to control the attitude and altitude of a quadrotor and performing easy maneu-
vers using data from an onboard IMU-based state estimation system [48, 36, 41, 40].
Today, quadcopters have demonstrated formation flight, aggressive acrobatics, as
well as autonomous recon of unknown environments [55, 12, 64, 50, 30], with spe-
cial mention to the Dr. D’Andrea’s work in quadrotor aggressive maneuvers and
acrobatics at ETH Zurich and Dr. Kumar studies on autonomous recon and mul-
tiple quadrotor communications (swarm control) at Pennsylvania State University.
Therefore, this thesis will assume that quadcopter motion control is a solved problem
and any required motions can be achieved.

Detection and active tracking of target UAVs, which involves measuring its rela-
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tive position and velocity, can be of interest for military and law enforcement, as well
as operators of airports, nuclear power plants or other critical infrastructure. Rogue
UAVs are difficult to detect and agile, and can pose an air threat [58], i.e. recently
Quebec police reported the increasing use of quadrotors to smuggle cell phones, sim
cards, tobacco, marijuana and other drugs into the Bordeaux jail [19]. The ability to
detect, track and follow an unauthorized UAV using an onboard monocular camera
is a useful capability and an interesting engineering problem [51]. Existent commer-
cial quadrotors already offer follow modes, such as DJI Phantom 4 follow-me and
obstacle avoidance modes, however they are not fully vision-based modes.

1.1.1 Motivation of Research

In order to detect and track any kind of target using vision-based sensing, certain
defining features of the target need to be identified. Those features can be simply
detectable such as color, shape, edges/corners, blobs or ridges, or more complex
combinations thereof. This will be the main focus of the vision-based detection
algorithm when determining whether or not there is a target in any frame of the
onboard video stream. Quadcopters vary in colors and shapes, but their main struc-
ture tends to be constant: a fixed X-wing shape with a rotor fixed at each of the
four corners. The first stages of work in this thesis are to identify the types of
features which can be used to detect and track a quadcopter flying over a variety of
backgrounds, and then select a vision-based algorithm to do this. Given the com-
putational constraints involved with onboard or mobile ground station computers,
we need to select an algorithm capable of running in real-time, then optimize its
accuracy in a variety of conditions.

1.2 State of the Art

1.2.1 Detection and Active Tracking Algorithms

The background subject of detecting and tracking flying targets has been studied in
depth since the 1960’s military and aerospace companies [3]. This has traditionally
been done using big sector antennas or radars, which can be seen at for instance
airport control towers [2, 52]. Radar technology has also been miniaturized to fit
onboard small UAVs [20]. However, given the cost and power requirements of such
systems, radars and antennas have been replaced by various types of lower-cost
sensors, such as infrared and ultrasonic range finders or optical flow estimators, often
used in tandem (sensor fusion) to increase accuracy. Using such onboard sensors,
augmented with lightweight inertial measurement units, have made UAVs capable of
performing complex maneuvers while perceiving their environment through obstacle
detection and collision avoidance [33, 6].

The decreasing costs of quadrotors, coupled with lightweight onboard sensors
and wireless communication, allows cooperative flying between UAVs. Within the
target tracking area, for either one or multiple targets, several approaches have
recently been demonstrated: active sensing based on cooperative target tracking
using UAVs [54], or using matched regional adjacency graphs to correlate video feeds
from multiple UAVs to achieve multiple target detection [67]. Aside from multi-
vehicle research, image processing for detection and tracking purposes has been
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extensively studied by the computer vision research community, for applications
which vary from satellites (remote imaging) [53, 44] to quadrotors.

Regarding single-camera imaging onboard a quadrotor, performing autonomous
tracking of multiple moving objects, either on the ground or in the air, has been
demonstrated [29, 14, 11, 65]. However, most if not all of the tracking algorithms
rely on markers or specific features of the target to be able to identify it and achieve
real-time detection. Thus, these algorithms lack the capacity to be easily adapted
to other environments or target types.

1.2.2 Trajectory Tracking Control Systems for UAVs

As discussed in Section 1.1, quadrotor control systems have been developed, tested
and optimized for almost two decades. The mimicking control system in this thesis
belongs to the class of trajectory tracking control systems, but with a modification
in the control loop’s reference. Instead of starting with precisely known desired
trajectory as in most cases [31, 16], the reference trajectory is actively updated
based on the target’s motions. This is a similar problem to an infinite-horizon
linear quadratic tracking optimal control used to track an unknown trajectory of a
moving surface vehicle target [26, 21]. In our case, the trajectory of the target is
less certain due to its capability of moving in any direction in 3D space.

1.3 Outline of Thesis

This chapter provided an overview of vision-based algorithms and the motivations
for undertaking this research, followed by a survey of related literature. An itemized
statement of contributions will be given in Section 1.3.1.

Chapter 2 is a general background summary on the hardware and software that
were used for the research presented in this thesis. We first review the specifications
of two chosen quadcopters, focusing on the relevant hardware and software features
of each UAV type including sensors, connectivity protocols, and code development
capacity. Next, we cover the main hardware components in more depth such as
GPS, Wi-Fi and several inertial sensors whilst reviewing the principal equations
for GPS positioning, Wi-Fi connectivity delays and the inertial sensor accuracy for
both quadcopter types. Finally we detail the software programs and libraries used
for the development of this thesis and the reasons why these were picked.

In Chapter 3 we cover the vision-based algorithms which were tested, the results
obtained, and discuss their limitations for detecting and tracking quadcopters. First,
we review the basic color-based algorithms and give the problems associated with
dealing with moving backgrounds and moving cameras. Afterwards we design a
slight variation of the Histogram of Oriented Gradients (HOG) algorithm, adding
Features from Accelerated Segment Test (FAST) and Hungarian Assignment as
well as Kalman Filtering, which is shown to be promising but not sufficient for our
specific application. Finally we cover the Cascade Classifier Algorithm and the steps
required to customize it in order to make it suitable for quadcopter detection and
tracking. This algorithm is then optimized using the available tuning parameters,
and its results are compared with the previously tested algorithms.

Chapter 4 treats, for both quadcopter models, the logic and control system
designs as well as the motion estimation results from the vision-based algorithms
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seen in Chapter 3. Furthermore, we detail the user interface created to interact
with the pursuing quadcopter, broken down into three principal modules: setup,
scan, and scan and follow states. For the last state, both quadcopters has different
physical inputs, thus some changes had to be made to use the results from the vision-
based algorithm: GPS transformations were needed for the outdoor quadcopter
model, while thrust calibrations were needed for the indoor model. The results
for the Cascade Classifier were proven to be sufficiently reliable for the mimicking
algorithm to work, although performance was degraded by background noise in
certain situations. A novel method was introduced to reduce background noise
while also improving the accuracy of the detection and tracking algorithms — we
named this the image reduction method. A Discrete Kalman Filter or Unscented
Kalman Filter predicts the position of the centroid of the target and, limiting the
processed image area to a smaller zone around the predicted centroid, the probability
of finding the target is maximized. This method speeds up image processing, saving
memory and computational time, which are important when operating on platforms
with limited computing power.

Chapter 5 summarizes the work done in the thesis and the resulting findings.
Possible future research tasks which build on the present thesis are discussed.

1.3.1 Statement of Contributions

The following items are claimed as research contributions of this thesis (listed in
order of appearance):

� Modifying the HOG algorithm for quadrotor detection and integrating FAST
and Hungarian Assignment with Kalman filtering as seen in Section 3.3, which
provides an explicit flow chart for how these algorithms are used.

� Optimizing Cascade Classifier training for quadcopter detection and tracking
for both indoor and outdoor flying as seen in Section 3.4.2.

� Developing a model to obtain the 3D relative motion of a target quadcopter,
given the target’s centroid 2D pixel image coordinates and its corresponding
bounding box obtained from a vision-based algorithm, as seen in Section 4.4.

� Developing a novel method to reduce the computation load for the vision-based
algorithms. This method applies one step-ahead predictors through DKF or
UKF to reduce the image area to be analyzed for the target to be found, and
is covered in Section 4.5.
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Chapter 2

Hardware and Software
Background

2.1 Quadcopter specifications

The scanning algorithm was developed for two separate quadcopter UAVs: an out-
door model, the 3DR Solo, and an indoor model, the AR.Drone Parrot 2.0. Both
of these models are equipped with on-board processors, however these are already
dedicated to running the various on-board control and communication routines, and
so it was decided that running processor-intensive video processing on these would
not be feasible.

Two different approaches were considered: either adding a second onboard pro-
cessor, e.g. a Raspberry Pi, to run the scanning algorithm, or run the algorithm on
a ground computer and send the relevant results to the drone. The advantage of an
onboard processor is avoiding the obvious time delays associated with transmitting
data. This delay is more pronounced for outdoor flights, since it increases propor-
tionally with distance. However, running the algorithm on a ground computer is an
easier approach, because it allows using the stock flight configuration, and makes it
easy to regain manual flight control in the event of a software fault. The resulting
time delays may lead to some desynchronization effects in the mimicking, but will
not destabilize the onboard flight control system.

A short-to-medium range wireless communication protocol is thus needed to
communicate with the drone with as little delay as possible. An easy solution is to
use the Wi-Fi IEEE 802.11n protocol, already supported by both drone models and
whose propagation delay of about 1 µs per 300 meters is acceptable.

The following two drones are controlled via Wi-Fi from a custom Android app
which allows the user to send commands and view the remote video and telemetry
information in nearly real time. Since the objective is to extend the drones’ existing
flight control systems to allow mimicking, it is paramount that the platform be
open-source. Other important parameters are the quality of the onboard camera
and the accuracy of the onboard sensors.
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2.1.1 3DR Solo

The 3DR Solo drone is a quadcopter specifically designed for outdoor videography
by 3DR, based on a classic quadrotor design. The hardware is shock mounted inside
an ABS plastic hard case, making the drone resistant to crashes to a certain degree.
Inside the hard case, individual compartments are shielded with EMI-absorbing
polymer shields to avoid interference between sensors. With an average mass of
1.6 kg, the drone easily resists winds up to 12 km/h. It has a battery life of 15-20
minutes, depending on the situation, and is powered by four 880kV motors with
10” diameter glass-reinforced nylon self-tightening propellers with a 4.5” pitch. The
maximum communication range is 1.6 km for the stock antennas, which can be
extended by further amplifying the signal.

Figure 2.1: 3DR Solo Drone and Controller

The 3DR Solo is powered by two 1 GHz ARM Cortex-A9 Linux-based micropro-
cessors, one on the drone and one in the controller, connected via a dedicated Wi-Fi
signal employing the 3DR Link protocol. This allows the drone to stream live 720p
HD video from the onboard GoPro Hero 4 camera to the 3DR Solo Android app
running on a ground computer. The drone is equipped with an off-the-shelf 3-axis
stabilized gimbal to obtain stable shots even in turbulent flight conditions.

The control system uses the well-known Pixhawk 2 with APM:Copter as the
internal software. The source code for the Solo App for Android, Pixhawk, and
all the flight software developed by 3DR is available on GitHub. In addition, 3DR
has made available a developer platform called DroneKit to help developers design
applications to connect with the drone in both Python and Android, which will be
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described in depth in section 2.3.3.
The figure below is a schematic diagram of the main elements of the Solo archi-

tecture.

Figure 2.2: 3DR Solo System Diagram [47]

2.1.2 Parrot AR.Drone 2.0

The Parrot AR.Drone 2.0 is a smaller and lighter drone based on a classic quadrotor
platform, designed primarily for indoor flights but capable of flying outdoors as
well. It has a battery life of 12 minutes and a maximum range of 50 meters, and
is equipped with 4 ”in-runner” type brushless 14.5 W motors running at 28 500
rpm. The four propellers are supported on carbon-fiber tubes connected to a plastic
fiber-reinforced central cross member. The carbon structure carries an Expanded
Polypropylene (EPP) body carrying the Lithium-Polymer battery, onboard camera
and inertial sensors, and processing unit. A Styrofoam hull covers the body and
surrounds the propellers. The Styrofoam hull makes indoor flight testing safe by
shielding the propellers against contact with walls and other obstacles.
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Figure 2.3: Parrot AR.Drone 2.0

The Parrot AR.Drone 2.0 runs Linux 2.6.32 on an ARM Cortex A8 1 GHz 32-bit
processor with a dedicated video DSP chip running at 800 MHz, allowing its 720p
30fps HD camera video to be transmitted live through Wi-Fi to the AR Free Flight
Android app written by Parrot. The source code for the AR Free Flight App can be
found on GitHub. The onboard computer runs multiple threads simultaneously: Wi-
Fi communications, video data sampling and compressing for wireless transmission,
image processing, sensors acquisition, state estimation and closed-loop control. The
data acquisition and control threads are run at a 200 Hz rate [10]. The onboard
code is closed-source, however.

The drone’s onboard sensors are listed in Table 2.1.

Table 2.1: AR.Drone 2.0 Sensors [42]

Sensor Type Accuracy

3-Axis Gyroscope 2,000 degrees/s

3-Axis Accelerometer +/- 50 mg

3-Axis Magnetometer 6 degrees

Barometer +/- 10 Pa

Altitude Ultrasound Sensor -

2.2 Hardware

Throughout this Section, the hardware components making up the control system
of each drone will be described. These devices provide the data to the onboard flight
control, and as such, the performance of the system depends on them.

2.2.1 GPS

The Global Positioning System (GPS) provides location and time information any-
where on or near the Earth where there is an unobstructed line of sight to four or
more GPS satellites. The GPS system is used by military, civil, and commercial
users all around the world. Competing Global Navigation Satellite Systems (GNSS)
such as Galileo (European Union), GLONASS (Russia) and BeiDou (China) are
also in operation.

8



The GPS concept is based on time and the known position of specialized satel-
lites. The satellites carry very stable atomic clocks which are synchronized to each
other and to ground clocks. GPS satellites continuously transmit their current time
and position. A GPS receiver monitors multiple satellites and triangulates the sig-
nals in order to determine its precise position. At a minimum, four satellites must
be in view of the receiver for it to compute four unknown quantities (three position
coordinates and its clock deviation from the true time). [39, p. 16]

The receiver reports position as a set of coordinates, latitude and longitude,
whose format is usually in degrees with minutes and seconds or decimal degrees as
in figure 2.4.

Figure 2.4: World Geodetic Coordinates [57]

For outdoor flights, GPS provides positioning information to the drone. For the
3DR Solo, this is used to obtain a hover within a radius of around a half meter.

Additionally, the input of the Solo flight control systems consists of a set of de-
sired latitude and longitude coordinates, which are compared against the measured
coordinates. This means that the implementation of the mimicking algorithm for
the 3DR Solo needs to output a set of GPS coordinates for the drone to fly to.

Because the scanning algorithm reports the position of the second drone with
respect to a reference frame fixed to the UAV body, its results need to be converted
into geodetic longitude and latitude coordinates for the flight control system. The
GPS transformation used by the control system will be covered in more depth in
section 4.2.6.

Although GPS is a powerful technology for localizing the UAV, it is not perfect.
Signal lock is not perfect and can be lost during flight. That can happen if the line
of sight between the GPS receiver and the satellites is blocked, e.g. when flying
close to tall buildings. This leads to a loss of hover stabilization, and may lead
to a drone crash if the human operator is unable to manually take over the flight
controls. Another issue is magnetic interference, such as when the drone is close to
a ferromagnetic structure, in which case the estimates of attitude may be wrong.

2.2.2 Wi-Fi

Wi-Fi is a technology which allows electronic devices to connect to a wireless LAN
network, mainly using UHF to SHF ISM radio bands around 2.4 and 5 GHz frequen-
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cies. The communication protocol is specified in the IEEE 802.11 standard. Devices
which use Wi-Fi include computers, consoles, smartphones, digital cameras, tablet
computers or wireless printers. Although signal interference may happen and the
protocol is not heavily encrypted, it is sufficiently good for flight purposes and is
used by both the Solo and the Parrot drones.

For indoor Wi-Fi connections, interference problems are typically low given that
the distance between the emitter and the receiver is small, although signal loss is
important through walls, as represented in figure 2.5. Given the high frequency
of Wi-Fi signals, the time delay of the signal traveling through the air is almost
non-existent.

Figure 2.5: Wi-Fi Signal Propagation Indoors

Source: www.technews.tw

In the case of outdoor Wi-Fi connections, long distances may cause signal or
packet loss. Moreover, any large obstacles such as trees or buildings can interfere in
the signal transmission between controller and UAV.

2.2.3 Inertial Sensors

In both UAV models, the use of low cost inertial sensors means that sensor bias,
misalignment angles and scale factors are significant and cannot be neglected. For
this reason, a calibration has to be performed in order to obtain correct readings.

The 3DR Solo has the software capability to automatically calibrate compass,
level sensors, accelerometers and gyroscopes, as shown below:
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Figure 2.6: Solo App Calibration Options

Moreover, it actively validates the output of those sensors and give errors when
the readings are incorrect, as can be seen in figures 2.7 and 2.8.

Figure 2.7: Level Calibration Error Figure 2.8: Compass Calibration Error

Meanwhile, the Parrot AR.Drone 2.0 inertial sensor calibration is not as ad-
vanced. Although the compass and accelerometer sensors can be calibrated in the
application settings, as seen in figure 2.9, other data (e.g. tilt sensing) cannot be
modified.

Figure 2.9: Parrot Free Flight App Calibration Button
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2.3 Software

Through this Section, the software used to develop the system algorithms and flight
control and telemetry systems will be detailed.

2.3.1 Matlab

Matlab or matrix laboratory is a numerical computing environment. This software
allows to easily manipulate matrices, plotting functions or data, implement algo-
rithms or create graphical user interfaces (GUI). Matlab was originally designed for
numerical computing, but thanks to additional toolboxes it can be used for feedback
control and image processing, the main topics of this research project.

For the present work, Matlab was used for initial development, testing and op-
timization of the vision-based algorithm for UAV mimicking, as well as testing the
designs on videos recorded during hardware experiments. However, when attempt-
ing to use Matlab’s code generation feature to port the algorithms onto the ground
computer for testing, the system refused to proceed due to a software digital rights
management (DRM) lock built into the Computer Vision Toolbox. This motivated
moving further development to open-source software tools.

2.3.2 Android

Android is an operating system (OS) developed by Google, based on the Linux
kernel and designed for touchscreen mobile devices or smartphones.

Android’s source code is released by Google under open source licenses, which
makes the OS and any App customizable. Its application programming interface
or API is well documented and easy to use. An API is a set of subroutine defi-
nitions, protocols and tools to build software, in this case, for Android. Google’s
primary integrated development environment (IDE) for native Android applications
is Android Studio, based on JetBrains’ IntelliJ IDEA software, and is available for
Windows, Linux or Mac OS X under Apache License 2.0. Its IDE relies on Oracle’s
Java development kit or JDK.

The Android API most interesting feature is to be able to access the different
threads of the microprocessor directly and customize the use. This way any App
can use several threads to maximize its performance.

2.3.3 DroneKit

DroneKit is a native C library, designed by the creators of Ardupilot and developed
by 3DR, to allow remote devices to communicate with Ardupilot’s software running
onboard UAVs. The DroneKit library has been ported to Android, which allows
developers to create new applications quickly and easily. DroneKit-Android pro-
vides interfaces for Android applications to control Ardupilot based vehicles using
MAVLink.

MAVLink or Micro Air Vehicle Link is a protocol for communicating with small
unmanned vehicles. It is designed as a header-only message marshaling library.
MAVLink was first released in early 2009 by Lorenz Meier under LGPL license.
Nearly all commercial Ardupilot based UAVs use MAVLink as the primary commu-
nication protocol.
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A MAVLink message contains all the telemetry needed to check the state of the
UAV while flying, where conventional software debugging is not feasible. A sample
received message is shown below.

<message id = "24" name="GPS_RAW_INT">

<description >The global position , as returned by

the Global Positioning System (GPS). This is

NOT the global position estimate of the

system , but rather a RAW sensor value. See

message GLOBAL_POSITION for the global

position estimate. Coordinate frame is

right -handed , Z-axis up (GPS

frame).</description >

<field type="uint64_t"

name="time_usec">Timestamp (microseconds

since UNIX epoch or microseconds since system

boot)</field >

<field type="uint8_t" name="fix_type" >0-1: no

fix , 2: 2D fix , 3: 3D fix. Some applications

will not use the value of this field unless

it is at least two , so always correctly fill

in the fix.</field >

<field type="int32_t" name="lat">Latitude

(WGS84), in degrees * 1E7 </field >

<field type="int32_t" name="lon">Longitude

(WGS84), in degrees * 1E7 </field >

<field type="int32_t" name="alt">Altitude

(WGS84), in meters * 1000 (positive for

up) </field >

<field type="uint16_t" name="eph">GPS HDOP

horizontal dilution of position in cm

(m*100). If unknown ,set to: UINT16_MAX </field >

<field type="uint16_t" name="epv">GPS VDOP

vertical dilution of position in cm (m*100).

If unknown ,set to: UINT16_MAX </field >

<field type="uint16_t" name="vel">GPS ground

speed (m/s * 100). If unknown ,set to:

UINT16_MAX </field >

<field type="uint16_t" name="cog">Course over

ground (NOT heading , but direction of

movement) in degrees * 100, 0.0..359.99

degrees. If unknown ,set to: UINT16_MAX </field >

<field type="uint8_t"

name="satellites_visible">Number of

satellites visible. If unknown ,set to

255</field >

DroneKit-Android allows the user to access pre-coded actions in the control
system such as take off, landing, return home (which makes the drone return to
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where it took off), return to me, rotate, pause in the current location, or move to a
specified location.

2.3.4 OpenCV

OpenCV or Open Source Computer Vision is a library of programming functions
mainly aimed at real-time computer vision applications, originally developed by
Intel. The library is cross-platform and free for use under the open source BSD
license. OpenCV runs in Android as native code with the Native Development Kit
(NDK), but because this kit is still experimental, a lot of time was spent in order
to make the overall system work.

The Cascade Classifier (see section 3.4) and the Kalman Filter (see section 3.3.3)
are available within OpenCV 2.4.11.
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Chapter 3

Vision-Based
Detection-Tracking Algorithms

3.1 Overview

Computer vision offers the ability to detect and track moving objects, which is useful
in applications such as surveillance, manufacturing or self-perception. The funda-
mental challenges that drive much of the research in this field are the enormous
data bandwidths associated with high-resolution video, the need for real-time per-
formance and a typically vague or ill-defined specification of the tracking problem
itself.

This chapter addresses the development of a vision-based detection-and-tracking
algorithm for a small UAV. It should autonomously perform detection and track-
ing of a single moving target UAV which may be actively moving and changing
its pose. The available UAV hardware imposes hard constraints on camera resolu-
tion and computational power, which directly affects the choice of algorithm to be
implemented. Moreover, the UAV-mounted camera is likely to be moving, and is
also subject to significant vibrations from the airframe, even when a 3-axis camera
stabilization gimbal is used such as on the 3DR Solo drone. Among other things,
this implies that background removal will be quite challenging.

In order to select an algorithm for detection and tracking, consider the following.
The cameras onboard both UAVs are capable of capturing ARGB-8888 1280x720
resolution video at 30 frames per second, and the 3DR Solo camera supports even
higher numbers. However a single 1280x720 video frame in ARGB-8888 takes 3.6864
MB of memory, meaning the video frames will need to be downsized, down-sampled
and pre-processed in other ways (for instance employing a grayscale version of the
image reduces memory usage to 921.6 kB) before being used in the vision algorithm.
Given that computational time is fixed, a balance needs to be made between the
bandwidth of the input video and the complexity of the vision algorithm processing
this data.

3.2 Color-Based Algorithms

The simplest type of vision-based detection-tracking approach that can be imple-
mented to process the video stream is an algorithm based exclusively on color in-
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formation. Color-based algorithms have been successfully used for mobile detection
and tracking purposes over many decades [15].

A simple tracking method which employs color information is based on tracking
regions of normalized color which are similar from frame to frame and comparing
them against a template representation of the UAV, taken to be rectangular for
convenience. Specifically, the region to be tracked is characterized by a color vec-
tor (3.1) which represents the averaged color of pixels within the region Ri. The size
of this region cannot be overly large in order to keep the range of detection realistic.

(αi, ri, gi, bi) =

∑
(x,y)∈Ri

(α(x, y), r(x, y), g(x, y), b(x, y))

|Ri|
(3.1)

A sample vector (α̂, r̂, ĝ, b̂) is considered as the ideal color vector for the object
being detected and tracked, and it can be computed a priori. As only one UAV is
expected to be in the frame, the best fit between this sample vector and the region
Ri is then considered to be the location of the desired target. The fitting between the
sample vector and the color vectors obtained from the frame is done by employing
a goodness of fit test [15].

In order to make the color-based algorithm more robust, an Extended Kalman
Filter can be added on. This allows keeping track of the target even under high
occlusion conditions [28].

Although detection and tracking of mobile objects can be accomplished through
color-based algorithms, the problem is that the algorithm fails in environments
where the tracked object and the background have similar normalized color vectors,
for instance when a dark background (e.g. trees) is behind the black-colored UAV.
Since this situation is often encountered in our flight testing conditions, color-based
algorithms were found to be insufficient for our purposes.

3.3 Histogram of Oriented Gradients (HOG)-Based Al-
gorithm

3.3.1 Blob Analysis and HOG Detection

In computer vision, blob detection methods are aimed at detecting parts of a digital
image which differ in properties, such as brightness or color, from their neighboring
areas. A blob is a relatively small region of an image in which these properties are
approximately constant; thus all the points inside a blob can be considered to be
similar to each other in some sense. The minimum size of blob regions needs to be
specified at the initialization of the algorithm; in our case, we will use 20x20 pixel
blobs.

The detected blobs are invariant to translations, rotations and uniform rescal-
ing of the image. Input images to a computer vision system are, however, subject
to perspective distortions from the optical camera used to acquire them. To ob-
tain blob descriptors which are more robust to such perspective transformations, a
natural approach is to devise a blob detector which is invariant to affine transfor-
mations. In this way, we can define affine-adapted versions of blob detectors such as
the Laplacian of Gaussian (LoG) operator, the difference of Gaussians (DoG), the
determinant of the Hessian, and the Hessian-Laplace operator [32].
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Blobs may signal the existence of objects or their parts in the image, which
is useful for object recognition and/or tracking. Because the UAV target has a
uniform color, blob analysis can be performed on grayscale images in order to reduce
computational power, while retaining the ability to detect possible UAVs in the
image.

The results of the blob analysis will be a function of the brightness of edges,
as determined by the LoG operator. In this way, the algorithm is able to identify
regions of the digital image which exhibit marked differences between the blob’s
brightness and its surroundings. Given that the target UAV is known to be black-
colored in our case, LoG results can be filtered to retain only the blobs with a
positive gradient edge. However, as for the color-based algorithms, dark-colored
blobs defined by their brightness are not specific to the UAV, for instance shadows
in the image will also be identified as a positive result by this approach. This makes
it impossible, in most cases, to use blob detection on its own to track target UAVs.

Although blob detection is not able to fully determine and track the UAV’s
position, the results identify regions of interest (ROI) in the image which can be
analyzed further. We thus look for another algorithm which can be run on these
identified regions.

The histogram of oriented gradients (HOG) is a feature descriptor used in com-
puter vision and image processing. This technique counts the occurrences of gradient
orientation in regions of an image, more specifically in the regions identified by the
blob analysis. The HOG algorithm is a detection method based on evaluating nor-
malized local histograms of image gradient orientations in a dense grid. The basic
idea is that local object appearance and shape is well characterized by the distribu-
tion of local intensity gradients or edge directions, even without precise knowledge
of the corresponding gradient or edge positions [37, 45, 7].

As the HOG algorithm results are not affected by scaling or rotation, we can
create a template for each UAV which is obtained by running a clear digital image
of a given UAV through the HOG algorithm (see Figures 3.1 and 3.2).

Figure 3.1: HOG Algorithm Template for 3DR Solo
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Figure 3.2: HOG Algorithm Template for Parrot AR.Drone 2.0

3.3.2 Features from Accelerated Segment Test (FAST) Algorithm

Although the UAV templates are matrices with relatively small dimensions, this
approach is not efficient from a computational point of view since much of their
data is either redundant or of no importance. It would be preferable to define each
UAV by a cloud of points instead of a matrix. The HOG algorithm can be used in
conjunction with the Features from Accelerated Segment Test (FAST) algorithm to
find feature points in the UAV. The specified feature points are the characteristic
corners of each UAV as shown in Figures 3.3 and 3.4.

Figure 3.3: HOG Algorithm Template with FAST for 3DR Solo
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Figure 3.4: HOG Algorithm Template with FAST for Parrot AR.Drone 2.0

The template is loaded in the initialization process of the algorithm and serves
as a comparison array for each ROI obtained from blob analysis. This process
allows to determine whether a blob corresponds to the target UAV or if it should
be considered as background noise. While not done here, this approach would work
for tracking multiple UAVs as well.

The overall process is summarized in Figure 3.5. Both blob analysis and the
HOG algorithm are available as software modules in OpenCV and Matlab, which
can be used for implementation and simulation purposes, respectively.

Figure 3.5: Blob Analysis with HOG-FAST Detection Process Diagram

While the algorithms presented in this Section provide a computationally effi-
ciently way to detect UAVs in a single video frame, the detections are carried out
independently of each other. In order to keep track of the UAV’s movements from
frame to frame, we need a way to associate a UAV detected in frame n at pixel
coordinates [xnn, ynp ] to the UAV detected in frame n+ 1 at pixel coordinates [xn+1

p ,
yn+1
n ], using the assumption that they are the same UAV.
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3.3.3 Hungarian Assignment Algorithm and Kalman Filtering

The Hungarian Assignment Algorithm is used for tracking multiple objects by as-
sociating detections to tracks [34]. A track is an individual detection followed over
time, here a UAV in a video. This algorithm allows to algebraically determine
whether a positive detection corresponds to an existing track or if it is a new track.
It also determines if there are missing tracks. The assignment of tracks to detections
is based on a cost function which the algorithm tries to minimize. In case of multiple
detections, the cost function is a cost matrix in which each detection is associated
to a cost for each existing track as well as to the creation of a new track. The lower
the cost, the more likely that a detection gets assigned to a track.

The cost function is proportional to the distance between the previous track
location and the detection location (in pixels). The cost of creating a new track
is always higher than the cost of assigning the detection to an existent track, and
in fact the algorithm tries to minimize the number of tracks which helps to keep
the memory usage down. Moreover, in order to reduce the required computational
power, we assign a non-assignment cost as the upper limit of the cost for a case
where a detection will not be assigned to a track. The algorithm also deletes tracks
that have been missing during a certain amount of sample periods.

The Hungarian Assignment Algorithm has its own limits: being a purely alge-
braic algorithm, it cannot discern whether a given detected UAV location makes
sense physically, e.g. if the UAV was moving towards the east, the next UAV detec-
tion cannot be located in the west. This physical sense is provided by employing a
Kalman Filter.

The Kalman Filter is an efficient and real-time computational solution for track-
ing a dynamic target under noisy measurements, which is done by minimizing the
covariance of the error of the estimate. It is one of the most widely used methods
for tracking and estimation applications due to its simplicity, optimality and robust-
ness [25]. In computer vision, Kalman filtering is used to track specific pixel regions
through uncertain motions and noisy measurements. More about Kalman filtering
can be found in Section 4.5. The Kalman filter itself solves the problem of optimally
estimating the state of the discrete-time linear system 3.2 subject to process and
measurement noise:

xk+1 = Axk +Buk + wk

zk = Hxk + vk
(3.2)

where x is the state vector, u is the process input, z is the measurement vector, A
is the state transition matrix, B is the input matrix, H is the measurement matrix,
and v and w are the measurement and process noises, respectively.

Given a specific video frame, let’s assume that the HOG-FAST algorithm (see
Sections 3.3.1 and 3.3.2) returns at least one positive UAV detection. The resulting
array consists of a set of parameters describing each detected blob, such as its size
and centroid, which are used to define the dimensions of a bounding box. The
parameters obtained completely characterize each blob, and thus any of them can
be used with a Kalman filter, which in the present case is applied to the location of
a blob’s centroid.

A blob centroid is defined by a pair of pixel coordinates [xpn,ypn] which act as the
state vector x in the Kalman Filter. Since the blob does not possess an input, we
take B = 0. The A and H matrices are obtained by assuming a constant velocity
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motion model of the blob as discussed below. The measurement noise v represents
the sensor noise associated to the video camera, while the process noise w represents
noise effects which affect the motion model such as vibrations of the UAV on which
the camera is mounted on.

The motion model of the blob is constant velocity. The constant velocity model
has the following state transition and measurement matrices for a Kalman filter:

A =

[
1 1
0 1

]
; H =

[
1 0

]
The Kalman Filter is often conceptualized as two distinct phases: “Prediction”

and “Correction”. The “Prediction” phase uses the state estimate from the previous
sample time to produce an estimate of the state at the current time. The predicted
state x̂k|k−1 is also called the a priori state estimate. The “Correct” phase uses the
a priori state estimate together with the current measurement to refine the state
estimate. The improved estimate is then called the a posteriori state estimate, x̂k|k.

The a priori state estimate is always computed, irrespective of the output of
the detection algorithm. In case this algorithm does not detect a UAV, the state
estimation returns the UAV location for this frame based solely on the motion
model of the filter. Conversely in case of a detection, the a posteriori state estimate
improves the measurement accuracy of the detection algorithm by complementing
it with the target UAV’s motion model used by the Kalman filter. Both estimates
are computed as shown in Equations 3.3:

x̂k|k−1 = Ax̂k−1|k−1

x̂k|k = x̂k|k−1 + Pk|k−1H
TS−1

k

(3.3)

where Pk|k−1 is the predicted (a priori) estimate covariance and Sk is the covariance
of the residual error. Both are computed using the covariance matrix of the process
noise Q(w) and the covariance matrix of the observation noise R(v) as follows:

Pk|k−1 = APk−1|k−1A
T +Qk(wk)

Sk = HPk|k−1H
T +Rk(vk)

where, Pk−1|k−1 = (I − Pk−1|k−2H
TS−1

k−1H)(APk−2|k−2A
T +Qk−1)

(3.4)

Therefore, referring to the diagram in Figure 3.5, the overall system with blob
analysis, HOG-FAST detection algorithm with Hungarian Assignment algorithm,
and Kalman filtering tracking is summarized in Figure 3.6.

Figure 3.6: Flowchart of Algorithm to Estimate Centroid of a Target UAV from
a Digital Image. From left to right: Blob Analysis with HOG-FAST, Hungarian
Assignment Algorithm with Kalman Filter.
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In the next section, we will implement the algorithms discussed in Section 3.3
and discuss their performance.

3.3.4 Algorithm Implementation

The components discussed in Sections 3.3.1, 3.3.2 and 3.3.3, namely blob analysis,
the FAST algorithm, the HOG algorithm, the Hungarian Assignment algorithm
and the Kalman Filter, are all available in Matlab in the Computer Vision System
Toolbox. Thus, before implementation onboard UAV hardware, the system will be
tested within Matlab.

First, testing was performed using a recorded video of a 3DR Solo drone taken
with a moving camera (camera carried in hand). The UAV first flies away to the
limit of the controller transmission range, then flies towards the camera such that
the drone takes up a large part of the image viewpoint. In this way we can evaluate
the algorithm’s performance at the full range of distances. Running the algorithm
on the recorded video yields the results shown in Figure 3.7.

Figure 3.7: Blob Analysis Test with Moving Camera: HOG-FAST Detection Process
plus Hungarian Assignment Algorithm with Kalman Filter Tracking

Within Figure 3.7, the yellow boxes labeled with numbers correspond to the blobs
which were assigned tracks. The numbering is incremented at every detection, so
in another words, the first detection assigned a track is labeled by the number ‘1’,
and the last detection assigned a track has the highest number. Some intermediate
numbers may disappear due to being assigned to tracks which have been lost. We
see 4 blobs around the UAV (labeled ‘1’, ‘18’, ‘27’ and ‘31’) which were unable to
create a bounding box around the UAV and thus create a positive detection. This
no-detection is due to the amount of other blobs which were detected at the same
time. The analyzed blobs are noisy when the camera is in motion, and in this case
the HOG algorithm cannot discern between blobs to decide which one corresponds
to the UAV. Therefore, even if the Hungarian Algorithm is able to keep track of
blobs for a short amount of time, the blobs appear and disappear very fast making
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the Kalman Filter useless, since it requires a stable detection over a sufficiently large
number of frames to adapt its gain and filter out noise.

After further testing with other videos recorded of the 3DR Solo, we discovered
that the noisy results from the blob analysis were due to the motion of the camera.
The more stable the camera is, the less the number of detected blobs. However,
even small vibrations in the camera due to factors such as wind gusts or walking
over uneven surfaces would trigger the detection of noisy blobs within the video.
We can conclude that blob analysis works well mainly when the camera is static.

At this point, we still haven’t evaluated how the UAV detecting and tracking
parts of the algorithm perform. In order to do this, we chose to retest the 3DR Solo
drone in flight and to record the video using a static camera.

Figure 3.8: Blob Analysis Test with Static Camera: HOG-FAST Detection Process
plus Hungarian Assignment Algorithm with Kalman Filter Tracking

As seen in the left image of Figure 3.8, the UAV is now the only detected blob
in the entire frame which gets assigned a track. For a few seconds following take-off
from the gray platform, the background of the UAV is dark (a building) and therefore
the HOG algorithm is unable to determine whether or not the blob associated to
the track corresponds to a UAV. However, the tracking of the blob is correct despite
the noisy background. In the right image of Figure 3.8, the UAV is flying above the
building, with a cloudy sky as background. As soon as this happens, the detected
track gets labeled as “drone”, indicating that the HOG algorithm is able to recognize
the blob as a 3DR Solo drone. This behavior lasts for the remainder of the video.
The tracking performance will be discussed in Section 4.4.3.

Despite the good performance of the overall algorithm, this solution is not ap-
propriate for our application due to the requirement of a static camera. Because
the use of the tracking process gave good results, we will look for another algorithm
which does not employ blob analysis and so can work with cameras in motion.

3.4 Cascade Classifier

In their groundbreaking papers, Viola and Jones [61, 62] described a face detection
algorithm which was able to process images quite rapidly (up to 15 fps on conven-
tional computers circa 2000) while achieving high accuracy. The paper changed the
way images where processed and how features were used by detection algorithms.
The first innovation was “Integral Imaging” where the value of the image at point
(x, y) is replaced by the sum of all the pixels above and to the left. This eased
the way in which features are created (see Figure 3.9). The second innovation was
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to build an efficient classifier of features with a variant of the AdaBoost learning
algorithm [17] to select, from all the available features, the most critical ones. The
third one was a method to combine classifiers which allowed the background regions
of each image to be discarded quickly and thus focus computational time on regions
of the face within a frame.

Figure 3.9: Integral Imaging Graphical Description

The resulting algorithm is a learning algorithm which is divided into two very
different steps. The first is to train the algorithm using positive and negative images
in order to eliminate weak classifiers and features from the object to track. The
training is computationally quite demanding, on the time scale from hours to even
weeks. However, the resulting selection of strong classifiers and their thresholds are
summarized into a single XML file which can then be used by other devices. Thus,
the training step can be performed offline on a powerful computer and the results
exported to e.g. an Android device which will run the second step, the classification
algorithm, in real time. The XML file can easily be employed with various languages
such as C++, Python or Java, to name a few.

The training step can be performed either through an OpenCV module in Python
or C++, or within Matlab running on Windows/Mac OS/Linux. Both options
create an XML file which is cross-compatible with the other system. Due to ease of
implementation, the training was performed in Matlab. The real-time classification
was implemented in Android.

The Cascade Classifier algorithm was first designed, analyzed and optimized for
facial detection [63, 13]. However, we wonder if the trainer can be used to detect any
kind of object by the selection of positive and negative images given to it. Thus, in
the next Sections, we will tailor the cascade trainer for UAV detection, and analyze
the impact of each user parameter (true positive rate, feature type and false alarm
rate) on detection accuracy as well as computational time in order to optimize the
performance of the cascade classifier algorithm.

3.4.1 Cascade Classifier Trainer Overview

The training of the Cascade Classifier for UAV detection uses a set of N positive
images of each UAV, either flying or on the ground and in different backgrounds, as
well as a set of M negative images with outdoor or indoor backgrounds, not specific

24



to the test flight zone, and including other flying objects which could look like a
UAV, e.g. birds.

Within Matlab, the set of positive images can be created using the “Training
Image Labeler” App. This allows to pick the ROI within images in order to avoid
having to manually crop each input image. The App transforms the set of positive
images into a table which is ready to use. The set of negative images is read from
a specified folder as an imageDatastore.

The Matlab Cascade Classifier trainer (trainCascadeObjectDetector command)
produces a single XML file but requires several parameters to be specified in addition
to the positive and negative sets of images. The parameters available for the trainer
are:

� Object Training Size: this is a two-entry vector which specifies the height and
width, in pixels, of the object to be detected. Before the training starts, the
trainer resizes the positive and negative samples to the specified object size.
By default, the trainer determines this size automatically based on the median
width-to-height ratio of the positive instances.

� Negative Samples Factor: this defines the number of negative images used at
each training stage relative to the number of positive samples used. By default,
the trainer uses double the number of negative images from the positive images.
The number of negative images used at each stage is thus

M = NegativeSamplesFactor ∗ N

� Number of Cascade Stages: this specifies the number of stages for the trainer.
Increasing the number of stages results in a more accurate detector but also
increases training time as well as the size of the cascade classifier XML file.
Higher numbers of stages may also require more training images, since at each
stage a certain part of positive and negative samples can be eliminated. The
number of eliminations depends on the values of FalseAlarmRate and True-
PositiveRate. By default, the trainer uses all the images available, maximizing
the number of stages.

� Acceptable False Alarm Rate: the maximum fraction of negative training
samples which can be incorrectly classified as positive. The false alarm rate
is a number between 0 and 1. The overall false alarm rate can be calculated
as the specified false alarm rate to the power of the number of stages. Lower
values for acceptable false alarm rate increase the complexity of each stage.
By default, this value is set to 0.5.

� Minimum True Positive Rate: the minimum fraction of correctly classified
positive training samples. A true positive occurs when a positive sample is
correctly classified. The true positive rate is a number between 0 and 1. The
overall true positive rate can be calculated as the specified true positive rate
to the power of the number of stages. By default, this is set to 0.995.

� Feature Type: specifies the type of feature used by the cascade classifier. The
three options available are: Haar-like features (Haar), local binary patterns
(LBP) and histogram of oriented gradients (HOG).
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An example of the output of the code used to train the Cascade Classifier de-
tection algorithm code can be seen in Figure 3.10.

Figure 3.10: Matlab Cascade Classifier Trainer Output Example

Certain factors need to be considered when setting the parameter values. On
one hand, a small set of training images will lead to a lower overall number of stages.
It will need a lower false positive rate, thus achieving a less accurate detection, but
which is also less computationally demanding. On the other hand, a large training
set (in the thousands of images) increases the number of stages and can employ
a higher false positive rate for each stage, leading to a more accurate detection
algorithm but which is also more computationally demanding. As well, we can
increase the true positive rate to reduce the chance of missing the target, but a high
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true positive rate can prevent meeting the specified false positive rate per stage,
making the detector more likely to produce false detections. However, increasing
the number of stages or decreasing the false alarm rate can reduce the number
of false detections. Therefore, we need to balance getting a reasonably accurate
algorithm which keeps the required computational power as small as possible.

3.4.2 Cascade Classifier Trainer Optimization

The optimization of the training parameters is focused on accuracy and computa-
tional time. Given the large amount of parameters available, some of them will be
fixed in order to reduce the number of variables in the optimization problem: the
object training size will be set automatically, the negative sample factor will be kept
at its default (value of 2), and the number of cascade stages will be set automati-
cally but we will limit it by choosing a maximum number of positive instances and
negative images for training [43]. Specifically, we will employ 845 positive images
and 3144 negative images.

The rest of the parameters, namely the false alarm rate, the true positive rate
and the feature type, will be optimized. Table 3.1 defines the range or options for
each of the parameters.

Table 3.1: Cascade Classifier Trainer Parameter Ranges

Parameter Range Step

True Positive Rate FoV 0.975-0.995 0.005

False Positive Rate FoV 0.1-0.9 0.1

Feature Type Haar - LBP - HOG N/A

Once all the cascade classifiers were created, they were tested on different short
videos: first, a video of a 3DR Solo flying through a clear background (sky); second,
a video of the 3DR Solo standing still on the ground; and finally, a video of the 3DR
Solo flying in front of a noisy background (trees). The detection algorithm accuracy
as well as the computational time were measured in all videos. Tables 3.2 to 3.4 show
the measured computational time needed to run the detection algorithm. Tables 3.5
to 3.13 show the accuracy results for the different cascade classifiers created.
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Table 3.2: Cascade Classifier Trainer Computational Time Estimation Results for
HOG Features (in seconds)

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 72.51 72.9 72.3 71.8 71.8

0.2 72.3 72.4 72.3 72.0 71.9

0.3 72.38 72.5 72.4 72.0 71.9

0.4 72.43 72.5 72.4 72.0 71.8

0.5 72.37 72.5 72.4 72.0 71.9

0.6 72.45 72.5 72.4 72.0 71.9

0.7 72.45 72.4 72.3 72.1 72.0

0.8 72.39 72.5 72.3 72.0 71.9

0.9 72.39 72.5 72.3 72.0 71.9

Table 3.3: Cascade Classifier Trainer Computational Time Estimation Results for
Haar Features (in seconds)

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 17.6 14.4 14.2 14.4 14.5

0.2 17.0 14.4 14.1 14.4 14.4

0.3 17.2 14.3 14.1 14.4 14.4

0.4 17.2 14.4 14.1 14.4 14.4

0.5 17.2 14.4 14.1 14.4 14.4

0.6 17.3 14.3 14.1 14.4 14.4

0.7 17.2 14.3 14.1 14.4 14.4

0.8 17.3 14.3 14.1 14.4 14.4

0.9 17.3 14.3 14.0 14.4 14.4

Table 3.4: Cascade Classifier Trainer Computational Time Estimation Results for
LBP Features (in seconds)

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 19.36 16.9 16.6 15.5 15.9

0.2 19.29 17.4 16.7 15.6 15.8

0.3 19.31 17.3 16.7 15.7 15.8

0.4 19.25 17.2 16.6 15.6 15.7

0.5 19.26 17.3 16.7 15.5 15.8

0.6 19.25 17.3 16.9 15.6 15.8

0.7 19.28 17.2 16.7 15.6 15.8

0.8 19.22 17.2 16.8 15.5 15.9

0.9 19.22 17.3 16.8 15.6 15.9
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Table 3.5: Cascade Classifier Trainer Efficiency Results for HOG Features with
Clear Background

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 88.7 24.0 21.3 5.3 1.7

0.2 95.3 4.0 24.0 2.7 2.0

0.3 91.3 31.3 10.7 0.7 2.0

0.4 89.3 8.3 15.3 2.3 3.3

0.5 87.3 26.3 36.0 0.7 1.7

0.6 96.7 5.3 32.7 4.3 3.3

0.7 86.0 16.0 28.0 3.7 3.3

0.8 85.3 15.0 6.7 0.7 3.3

0.9 96.7 14.7 6.7 0.7 3.3

Table 3.6: Cascade Classifier Trainer Efficiency Results for Haar Features with Clear
Background

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 92.7 92.0 95.3 71.3 99.3

0.2 100.0 94.7 100.0 78.7 99.3

0.3 100.0 56.3 91.3 90.0 99.3

0.4 100.0 94.7 100.0 90.0 99.3

0.5 100.0 88.3 99.3 90.0 99.3

0.6 100.0 93.3 99.3 70.7 99.3

0.7 100.0 70.0 99.3 70.7 99.3

0.8 100.0 67.3 99.3 70.7 99.3

0.9 100.0 67.3 99.3 70.7 99.3

Table 3.7: Cascade Classifier Trainer Efficiency Results for LBP Features with Clear
Background

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 48.1 0.0 0.6 0.6 0.0

0.2 7.2 0.0 0.0 0.0 0.0

0.3 3.1 0.0 0.0 0.0 0.0

0.4 19.2 0.0 0.0 0.0 0.0

0.5 9.7 0.0 0.0 0.0 0.0

0.6 11.1 0.0 0.0 0.0 0.0

0.7 10.6 0.0 0.0 0.0 0.0

0.8 10.6 0.0 0.0 0.0 0.0

0.9 10.6 0.0 0.0 0.0 0.0
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Table 3.8: Cascade Classifier Trainer Efficiency Results for HOG Features with
Static UAV

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 24.2 0.0 0.0 5.3 1.7

0.2 6.7 0.0 0.0 2.7 2.0

0.3 5.8 0.0 0.0 0.7 2.0

0.4 11.7 0.0 0.0 2.3 3.3

0.5 5.8 0.0 0.0 0.7 1.7

0.6 0.8 0.0 0.0 4.3 3.3

0.7 3.3 0.0 0.8 3.7 3.3

0.8 0.0 0.0 0.0 0.7 3.3

0.9 10.0 0.0 0.0 0.7 3.3

Table 3.9: Cascade Classifier Trainer Efficiency Results for Haar Features with Static
UAV

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0

0.4 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.6 0.0 0.0 0.0 0.0 0.0

0.7 0.0 0.0 0.0 0.0 0.0

0.8 0.0 0.0 0.0 0.0 0.0

0.9 0.0 0.0 0.0 0.0 0.0

Table 3.10: Cascade Classifier Trainer Efficiency Results for LBP Features with
Static UAV

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0

0.4 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.6 0.0 0.0 0.0 0.0 0.0

0.7 0.0 0.0 0.0 0.0 0.0

0.8 0.0 0.0 0.0 0.0 0.0

0.9 0.0 0.0 0.0 0.0 0.0
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Table 3.11: Cascade Classifier Trainer Efficiency Results for HOG Features with
Noisy Background

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0

0.4 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.6 0.0 0.0 0.0 0.0 0.0

0.7 0.0 0.0 0.0 0.0 0.0

0.8 0.0 0.0 0.0 0.0 0.0

0.9 0.0 0.0 0.0 0.0 0.0

Table 3.12: Cascade Classifier Trainer Efficiency Results for Haar Features with
Noisy Background

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0

0.4 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0

0.6 0.0 0.0 0.0 0.0 0.0

0.7 0.0 0.0 0.0 0.0 0.0

0.8 0.0 0.0 0.0 0.0 0.0

0.9 0.0 0.0 0.0 0.0 0.0

Table 3.13: Cascade Classifier Trainer Efficiency Results for LBP Features with
Noisy Background

False Alarm Rate
True Positive Rate

0.995 0.990 0.985 0.980 0.975

0.1 12.6 0.0 0.0 11.5 2.0

0.2 0.0 0.0 0.6 0.0 1.1

0.3 9.8 0.0 0.0 0.9 1.1

0.4 9.2 1.2 1.4 0.9 1.1

0.5 16.2 0.0 5.8 0.9 1.1

0.6 2.3 1.8 5.8 0.0 1.1

0.7 0.0 0.0 5.8 0.0 1.1

0.8 5.8 3.5 5.8 0.0 1.1

0.9 3.9 3.5 5.8 0.0 1.1
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The results provide the following conclusions: the LBP features are not suited for
this kind of detection problem. Between Haar and HOG, Haar offers better accuracy
with clear backgrounds, but fails to detect the target while it’s static or over a noisy
backgrounds; however, HOG still offers good performance with high true positive
rates and can also to some extent detect the UAV while it static. Further, the Haar
cascade classifier is around 5 times faster than the HOG cascade classifier.

Based on these results, it is clear that the best result for both features, all things
considered, occurs when the false alarm rate is at its minimum (0.1) and the true
positive rate is at its maximum (0.995). Therefore, we will create and retest the
cascade classifiers in the lowest ranges of the false alarm rate (between 0.001 and
0.1) and the highest ranges of the true positive rate (between 0.995 and 1). The
results of the new tests can be found in Tables 3.14 to 3.17.

Table 3.14: Cascade Classifier Trainer Efficiency Results for HOG Features with
Clear Background

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 98.0 98.0 97.7 97.0 92.0

0.002 78.7 62.3 91.0 97.0 92.3

0.003 84.0 70.7 92.7 100.0 95.0

0.004 85.7 77.3 91.3 98.7 95.3

0.005 86.3 77.3 82.0 98.7 95.3

0.006 79.0 76.7 80.3 95.3 93.3

0.007 81.7 73.7 82.3 89.3 92.7

0.008 82.0 73.7 76.7 92.7 89.3

0.009 84.7 76.7 81.7 85.3 93.0

0.01 79.3 73.3 76.3 87.7 89.0

0.02 66.0 78.3 74.0 100.0 90.0

0.04 72.7 78.3 87.7 81.0 95.3

0.06 86.7 69.7 53.7 96.0 98.7

0.08 75.0 97.3 97.7 100.0 96.7
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Table 3.15: Cascade Classifier Trainer Efficiency Results for Haar Features with
Clear Background

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 99.0 100.0 100.0 100.0 100.0

0.002 97.3 100.0 100.0 100.0 100.0

0.003 99.3 100.0 100.0 98.3 100.0

0.004 100.0 100.0 100.0 99.0 100.0

0.005 100.0 100.0 100.0 99.0 100.0

0.006 100.0 100.0 100.0 99.0 100.0

0.007 99.3 100.0 100.0 97.7 100.0

0.008 99.7 100.0 100.0 97.7 100.0

0.009 100.0 100.0 100.0 98.3 100.0

0.01 99.7 100.0 98.3 98.3 100.0

0.02 99.7 87.3 100.0 100.0 100.0

0.04 98.7 95.7 91.7 89.7 100.0

0.06 92.7 98.0 100.0 100.0 97.0

0.08 99.0 99.3 98.0 100.0 100.0

Table 3.16: Cascade Classifier Trainer Efficiency Results for HOG Features with
Static UAV

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 100.0 70.8 90.8 60.0 0.0

0.002 100.0 17.5 97.5 58.3 0.0

0.003 100.0 17.5 98.3 70.0 4.2

0.004 100.0 99.2 61.7 81.7 5.0

0.005 100.0 79.2 90.0 80.0 1.7

0.006 100.0 84.2 90.0 85.0 13.3

0.007 100.0 78.3 81.7 25.0 15.8

0.008 100.0 80.8 23.3 27.5 34.2

0.009 100.0 100.0 25.0 80.8 38.3

0.01 100.0 98.3 23.3 79.2 33.3

0.02 100.0 92.5 100.0 87.5 38.3

0.04 100.0 94.2 90.8 15.0 1.7

0.06 100.0 72.5 27.5 90.0 2.5

0.08 100.0 100.0 100.0 12.5 6.7
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Table 3.17: Cascade Classifier Trainer Efficiency Results for Haar Features with
Static UAV

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 100.0 0.0 0.0 0.0 0.0

0.002 100.0 1.7 0.0 0.0 0.0

0.003 100.0 1.7 0.0 0.0 0.0

0.004 100.0 0.8 0.0 0.0 0.0

0.005 100.0 0.0 0.0 0.0 0.0

0.006 100.0 0.0 0.0 0.0 0.0

0.007 100.0 0.8 0.0 0.0 0.0

0.008 100.0 0.0 0.0 0.0 0.0

0.009 100.0 0.8 0.0 0.0 0.0

0.01 100.0 0.8 0.0 0.0 0.0

0.02 100.0 0.0 0.0 0.0 0.0

0.04 100.0 0.0 0.0 0.0 0.0

0.06 100.0 0.8 0.0 0.0 0.0

0.08 100.0 8.3 0.8 0.8 0.0

Table 3.18: Cascade Classifier Trainer Efficiency Results for HOG Features with
Noisy Background

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 0.0 0.0 0.0 7.9 0.0

0.002 0.0 0.0 0.9 7.9 0.0

0.003 0.0 0.0 0.9 0.0 0.3

0.004 0.0 0.0 1.5 0.0 0.3

0.005 0.0 3.3 3.3 0.0 0.3

0.006 0.0 3.3 3.3 0.0 0.0

0.007 0.0 3.3 0.9 0.0 0.0

0.008 0.0 3.3 3.3 0.0 0.0

0.009 0.0 3.3 3.3 0.0 0.0

0.01 0.0 3.3 3.3 0.0 0.0

0.02 3.5 0.0 0.0 0.0 0.0

0.04 0.0 0.0 0.0 0.7 0.0

0.06 0.0 0.6 0.0 0.0 0.0

0.08 0.4 0.0 0.0 0.0 0.0
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Table 3.19: Cascade Classifier Trainer Efficiency Results for Haar Features with
Noisy Background

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 100.0 0.0 0.0 0.0 0.0

0.002 100.0 1.7 0.0 0.0 0.0

0.003 100.0 1.7 0.0 0.0 0.0

0.004 100.0 0.8 0.0 0.0 0.0

0.005 100.0 0.0 0.0 0.0 0.0

0.006 100.0 0.0 0.0 0.0 0.0

0.007 100.0 0.8 0.0 0.0 0.0

0.008 100.0 0.0 0.0 0.0 0.0

0.009 100.0 0.8 0.0 0.0 0.0

0.01 100.0 0.8 0.0 0.0 0.0

0.02 100.0 0.0 0.0 0.0 0.0

0.04 100.0 0.0 0.0 0.0 0.0

0.06 100.0 0.8 0.0 0.0 0.0

0.08 100.0 8.3 0.8 0.8 0.0

In order to find the best solution, we formulate an optimization problem to
maximize a cost function. The cost function will be a sum of the efficiencies of the
algorithms weighted by the background or conditions of the detection:

J = max

3∑
i=1

αidi (3.5)

where di is the efficiency of the cascade classifier and αi is the weight of the ith

type of detection problem. The weights [α1,α2,α3] respectively correspond to a high
contrast between background and detection target, i.e. drone flying in a clear blue
sky, a static target detection, and a low contrast between the background and the
detection target, i.e. drone flying in front of a dark background.

The weights were tuned by hand, taking into account the amount of time the
detection algorithm runs in each type of conditions, as well as the importance of said
conditions for good behavior of the algorithm. UAVs typically fly in open spaces and
at high altitudes, meaning a high-contrast background, however it is also important
that a UAV can be detected even if it is static on the ground. The weights should be
tuned along these lines. For this reason, we take α1 = 2/3, α2 = 1/4 and α3 = 1/12.
The efficiency cost function results are shown in Tables 3.20 and 3.21.
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Table 3.20: Cascade Classifier Trainer Efficiency Cost Function Results for HOG
Features

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 90.3 83.0 74.0 80.3 61.3

0.002 77.4 45.9 85.1 79.9 61.5

0.003 81.0 51.5 86.4 84.2 64.4

0.004 82.1 76.3 76.4 86.2 64.8

0.005 82.6 71.6 77.4 85.8 64.0

0.006 77.7 72.4 76.3 84.8 65.6

0.007 79.4 69.0 75.4 65.8 65.7

0.008 79.7 69.6 57.2 68.7 68.1

0.009 81.4 76.4 61.0 77.1 71.6

0.01 77.9 73.7 57.0 78.2 67.7

0.02 69.3 75.3 74.3 88.5 80.8

0.04 73.4 75.8 81.2 57.8 64.0

0.06 82.8 64.6 42.7 86.5 66.4

0.08 75.0 90.1 90.1 69.8 66.1

Table 3.21: Cascade Classifier Trainer Efficiency Cost Function Results for Haar
Features

False Alarm Rate
True Positive Rate

0.999 0.998 0.997 0.996 0.995

0.001 91.3 67.3 66.8 67.3 67.7

0.002 90.5 67.1 68.0 67.3 67.7

0.003 92.1 68.0 68.0 66.5 68.0

0.004 92.5 67.8 68.0 66.9 68.0

0.005 92.5 67.7 67.4 66.9 68.0

0.006 92.2 67.7 67.4 66.9 67.4

0.007 91.7 67.0 67.4 65.9 67.4

0.008 91.6 66.8 67.4 65.9 67.6

0.009 91.8 67.0 67.4 66.3 67.6

0.01 91.6 67.0 66.3 66.3 67.9

0.02 91.5 58.2 66.7 66.7 66.7

0.04 90.8 63.9 61.2 59.8 66.7

0.06 86.9 65.6 66.7 66.7 64.7

0.08 91.2 68.6 65.6 66.9 66.7

Based on the results from our cascade classifier optimization, we will further test
the cascade classifiers highlighted in green in Tables 3.20 and 3.21 in Section 4.4.3.
Note that in Table 3.21, the column corresponding to the highest true positive rate
is highlighted in gray since the efficiency results are unexpectedly high and so must
be treated with caution. Some of these will be analyzed further.
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3.4.3 Cascade Classifier Implementation

The Cascade Classifier algorithm is implemented in an Android environment, using
the OpenCV library, in three steps:

� Load OpenCV library: the OpenCV library should be loaded when the App
initializes, making all the internal methods available immediately. This way,
we avoid the situation where the App calls for a library method before it has
been successfully loaded, which would lead to a software crash. To load exter-
nal libraries while an Android App initializes, the loading method is called as
a static variable. The OpenCV method called is OpenCVLoader.initDebug()
which opens a debugging thread for the OpenCV methods while the App is
executing (see [1]).

� Load Cascade Classifier XML File: as soon as the App is fully operational,
we need to load the XML file created during training (see Section 3.4.2). For
this, the XML file should be kept in the device memory and accessible to the
App. The method to read the XML file on the device and write it into the
App is:

public void load_cascade (){

try {

InputStream is =

getResources ().openRawResource(R.raw.solocascade);

File cascadeDir =

getDir("Cascade",Context.MODE_PRIVATE);

File mCascadeFile = new

File(cascadeDir ,"solocascade.xml");

FileOutputStream os = new

FileOutputStream(mCascadeFile);

byte[] buffer = new byte [4096];

int bytesRead;

while (( bytesRead = is.read(buffer)) != -1) {

os.write(buffer ,0,bytesRead);

}

is.close ();

os.close ();

droneClassifier = new

CascadeClassifier(mCascadeFile.getAbsolutePath ());

droneClassifier.load(mCascadeFile.getAbsolutePath ());

if(droneClassifier.empty ()) {

showToast("SHORT","(!) Error loading XML File!");

} else {

showToast("SHORT","Success loading cascade

classifier algorithm.");

}

} catch (IOException e) {
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e.printStackTrace ();

}

}

� Use the “CascadeClassifier” class: the use of the loaded Cascade Classi-
fier XML file is done through the “CascadeClassifier” class. This class al-
lows access to the detection algorithm through the method CascadeClassi-
fier.detectMultiScale (see [1]).
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Chapter 4

UAVs Logic And Control
System

4.1 Overview

As stated in Sections 2.1.1 and 2.1.2, the two UAVs (Solo and AR.Drone 2.0) run
onboard control systems which stabilize attitude and position. These controllers
are already well tuned and provide robust performance in flight conditions. Conse-
quently, we will continue using the stock onboard control system, and use it to track
reference trajectories generated by our vision-based following algorithm (see Chap-
ter 3), which runs as an Android App on a ground computer. This approach lets
us take advantage of the UAV’s well-tuned control performance, and provides the
important safety feature of reverting to default flight operation in case of a software
bug or loss of contact with the ground computer.

The existing UAV control system will be adapted to our vision-based algorithm
as shown in Figure 4.1.

Figure 4.1: Control System Modification for Mimicking UAV

The Kalman Filter inside the vision-based algorithm uses the measured centroid
of the UAV in its calculations. As discussed in the previous Chapter, the result
of the algorithm is a vector [δx,δy,δz]N , representing the desired motion of the
UAV in the navigation reference frame. This vector is translated into a series of
commands transmitted over Wi-Fi to the UAV. The delay block represents the
inherent transmission and processing delays within the system.
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4.2 Logic and Control Strategy for 3DR Solo

4.2.1 Overview

The control strategy for the 3DR Solo is to make the flight autonomous, from the
take-off to the UAV following phase, with only a minimum number of user actions
on the graphical interface of the Android App. In other words, no stick inputs on
the manual flight controller are required for the Detection and Following algorithms
to operate.

The overall system design is illustrated as a state machine in Figure 4.2. Each
state involves issuing one or more commands to the Solo, then letting them complete
while monitoring the system’s output. Each state block creates and deletes software
threads as needed. The control strategy for the 3DR Solo is divided into three main
states: “Setup”, “Scan” and “Scan and Follow”.

Figure 4.2: Simplified State Machine for 3DR Solo Control Strategy

The “Setup” state handles all the pre-flight steps, including enabling the camera
and the actively stabilized camera gimbal, plus the initial flight phase of arming
the motors followed by autonomous take-off to a pre-specified altitude. This state
is triggered by the Start Setup button in the user interface of the App. If any
command in the setup sequence fails to execute, the system returns to the previous
state, which waits for the user to press Start Setup. Once the Setup state completes
successfully, the Start button becomes available.

The “Scan” state follows the “Setup” state and is triggered by the user pressing
the Start button in the user interface of the App. Within this state, the vision-
based algorithm from Section 3.4 will run persistently in its own thread. This state
puts the UAV in hover, runs the vision algorithm for 10 seconds, then commands a
90◦ clockwise turn and loops back to running the vision algorithm. At any time, if a
target UAV is detected by the vision algorithm over at least 40 consecutive frames,
the system proceeds to the following state.

The final state, “Scan and Follow”, is triggered by finding a target UAV. This
state executes a pursuit control while running the vision-based algorithm, each in
its own thread. This state runs until the target is lost, at which point the system
returns to the previous state, “Scan”.

Within any state, pressing the Stop button in the user interface App reverts the
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system to the end of the “Setup” state, i.e. hovering in place and waiting for the
user to press the Start button.

In the following subsections, we will describe the user interface and its compo-
nents. Then, we will detail the individual states and transition conditions, either
logical or mathematical, of the 3DR Solo control strategy.

4.2.2 User Interface

Figure 4.3: User Interface for the 3DR Solo Android App

The App’s user interface (UI) is divided into three zones denoted as A, B and C in
Figure 4.3. The first zone (A) displays real-time information about the UAV status
such as altitude, battery charge (in %), the flight mode, ground speed, wind speed
and GPS location. Zone B is a surface texture where the video streamed from the
UAV is displayed. Zone C contains relevant information about the status of the
connection with the UAV, the GPS lock-on status, the number of detected GPS
satellites, as well as a series of user buttons:

� Start Stream: connects the UAV’s onboard GoPro Hero 4 camera and starts
streaming real time video from it. The video is also recorded onto the camera’s
SD card. Once clicked this changes into the Stop Stream button.

� Stop Stream: ends connection with the onboard camera and freezes the video
display (zone B in Figure 4.3) on the last frame. The video recording onto the
SD card is stopped. Once clicked this changes back into the Start Stream
button.

� Start Setup: triggers the “Setup” state, described in Section 4.2.3.

� Start: triggers the “Scan” state, described in Section 4.2.4.
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� Stop: when the UAV is in flight, allows the operator to regain manual control
of the UAV. This is a safety measure for testing and can be used to terminate
the running algorithm at any time.

� Save Logs: saves all the logs of the App into a .txt file for analysis and
debugging.

4.2.3 Setup State

As mentioned in Section 4.1, the “Setup” state prepares the UAV to run the vision-
based following algorithm, starting with pre-flight preparations and ending with
hovering in the air waiting for the user to launch the scanning algorithm. This state
employs three separate threads: the main thread, the UI thread and the UAV control
thread. The main thread and the UI thread are created when the App launches,
while the UAV control thread is created only when needed and destroyed as soon
as possible in order to keep the number of threads to a minimum and economize
memory and computational load.

The entire process is automatic and does not require user intervention. Figure 4.4
illustrates the details of the “Setup” state.

Figure 4.4: 3DR Solo State Machine of the Setup State

The state is triggered by clicking the Start Setup button in the UI. This is
done through a button listener, a method to communicate actions from the UI to
the main thread in real time provided by the Android API. A listener behaves as a
boolean variable: it is set to true when clicked and false when it is not. The moment
the button is clicked, it stays enabled such that it cannot be clicked twice.

Once the button is enabled, the main thread executes the pre-flight sequence.
This establishes connection between the UAV and the App via MAVLink over UDP
and awaits an acknowledgment from the UAV. Typically this connection was already
established when the Android device first connected to the UAV’s Wi-Fi, and this
step only verifies the connection, as shown in Figure 4.5. The setup process will not
continue until the connection is successful.
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Figure 4.5: Sample MAVLink Log of Solo-App UDP Connection

If the connection is successful, the next stage creates an alert dialog. A dialog
is a pop-up screen which freezes the UI until either the dialog is closed or a certain
action is completed by the user, here inputting a desired altitude. An alert dialog
is already provided by the Android API and does not need to be implemented. The
alert dialog appears in the UI as shown in Figure 4.6. Once the user enters a valid
number into the dialog, it is stored for later use and the dialog is dismissed.

Figure 4.6: Alert Dialog in the Setup State

Because the setup can be restarted at any time, including while the UAV is
airborne, a Fly Check had to be introduced. This works by reading a boolean value
within the Solo’s control system. If the UAV is not flying then the takeoff sequence
continues, otherwise the system skips ahead to the step of turning the hovering UAV
towards the North, explained further below.

The next step initializes the gimbal, creating the corresponding listeners to its
parameters and commanding the camera to point forward. Then, the UAV mode
is set to guided, which is required to allow the UAV to receive autonomous flight
commands.

If all the previous steps were successful, then the UAV arms its motors and
takes off. The use of the commands ‘arm’ and ‘take off’ requires some caution.
First, the ’arm’ command will arm or disarm the UAV motors if they are disarmed
or armed, respectively, independently of the altitude of the UAV. This is the reason
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why the fly check step was implemented: to avoid issuing this command when the
Start Setup button is pressed once the UAV is in the air. Second, the ’take off’
command requires not issuing any other commands until the UAV takes off and
climbs to the altitude pre-specified by the user. In order to accomplish this, the
speed of the UAV take off is set to its default value, and the following time delay is
observed before issuing further commands:

delay = altitude ∗ 500 + 1000

where the delay is in milliseconds and the altitude in meters.
Once the take off is successfully completed, the UAV is commanded to turn

North, then hovers in place waiting for the user to press the Start button in the
UI. The ‘rotation’ command is used to turn the UAV. The turn direction can be
specified as relative or absolute, where the former makes the UAV rotate a specified
amount of degrees from its original position, and the latter orients the UAV with
respect to geographic north. Relative mode specifies the turn as a number between
-180 and 180 (degrees), while absolute mode specifies it as a number between 0
and 360, where 0 denotes North. To make the UAV hover, the ‘pause’ command is
used. This commands the UAV to maintain a level attitude and constant position
in the air through closed-loop stabilization, meaning the performance is subject to
the accuracy of the onboard sensors and state estimation system.

Until the “Scan” state is triggered, both the UI and control threads stay in the
‘Enable Start Button’ and ‘Hover’ blocks in Figure 4.4, respectively.

4.2.4 Scan State

As described in Section 4.1, the “Scan” state implements the vision-based algorithm
of Section 3.4.3 and handles all the details required for its correct execution. This
state runs the same threads as the “Setup” state, namely the main, UI and UAV
control threads, and creates a new thread for the scanning algorithm.

The scan thread is responsible for running extensive computations for the vision-
based algorithm and is implemented separately from the UI thread. This way, the
mathematical calculations running on the CPU do not freeze the UI and do not
block any user interaction. The whole process does not require user action other
than triggering entry into this state, whose details are illustrated in Figure 4.7.
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Figure 4.7: 3DR Solo State Machine of the Scan State

As in the “Setup” state, the “Scan” state is triggered by a listener in the Start
button in the UI. Once clicked, this button stays enabled such that it cannot be
clicked twice.

After clicking the Start button, the main thread creates the scan thread and
runs the main loop in which the vision-based algorithm is executed. The timing is
performed by the main thread. The scan thread is entered when the UAV is hovering
and is run until a target is positively identified or 10 seconds have elapsed. In the
latter case, the UAV performs a 90◦ clockwise relative rotation (see section 4.2.3)
and the scan thread is redone.

While running, the UI thread stores the bitmap of every video frame streamed
from the camera but only one at a time. The Android bitmap is a matrix which
stores the color value of each pixel in ARGB 8888 (8-bit packed values of alpha,
red, green and blue) format. This bitmap is then converted to grayscale to conform
with OpenCV standards, using the following equation [1]:

Y = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B

where Y is the grayscale value and R, G and B are the red, green and blue color
values of the pixel.

The grayscale matrix is inputted into the Cascade Classifier algorithm (see Sec-
tion 3.4) at each frame. If a match is made, a counter is started for the number
of consecutive frames in which the target was detected. For each frame where a
target is positively detected, the UI thread draws a red rectangle around it to give
visual feedback to the user, as shown in Figure 4.8. If a target is detected over
15 consecutive frames, the UI thread displays the message “Target Locked” to the
user and proceeds to enter the “Scan and Follow” state. Conversely, if a target is
not locked onto within 10 seconds, the system executes a rotation and the scanning
process is restarted.

45



Figure 4.8: User Interface Target Detection Example

Since this state runs autonomously, an emergency exit from the state is imple-
mented, which can be triggered by either the user or the state of the battery. If the
user presses the Stop button in the UI, they regain manual control of the UAV. The
same things happens if the battery charge of the UAV falls below 25%. The latter
provides the user sufficient time to find a safe landing spot and set the UAV down.

4.2.5 Scan and Follow State

As described in Section 4.1, the “Scan and Follow” state runs the vision-based
Cascade Classifier algorithm (c.f. Section 3.4.3) in addition to the control system
which allows the UAV to follow its target. This state runs the same threads as the
“Scan” state: the UI thread, the UAV control thread and the scan thread. However,
the control thread will now be used to make the UAV to follow its target. The state
does not require user interaction and is shown in detail in Figure 4.9.

46



Figure 4.9: 3DR Solo State Machine of the Scan and Follow State

The “Scan and Follow” state is triggered from within the “Scan” state once
a UAV target is locked, designating it as a the target to follow for the control
system. The pair of pixels in which the UAV target’s centroid is located [x, y] and its
bounding box size [z] are obtained from the preceding “Scan” state. First, the pixel
correction transforms the input position of the UAV into a real relative distance in
meters from the center of the field of view of the camera, as described in Section 4.4.
Next, the relative distance is transformed into GPS geodesic coordinates, described
in Section 4.2.6.

Once the GPS transformations are done, we have two sets of parameters: a set
of geodesic coordinates [λ,φ] and a relative movement [∆x,∆y,∆z]. Both are needed
by the Follow control system. The set of coordinates will be the position to which
the UAV will be commanded to fly to, but these are subject to accuracy errors of
the onboard state estimation system. Thus the relative position of the target will
be employed to fine-tune the position of the drone relative to its target.

Once the flight motion is done, the drone hovers while a new scan is performed,
identically to the “Scan” state. Due to the fast processing of the frames and the
high frame rate (30 FPS in the lowest case scenario), the UAV appears as being in
constant movement.

If the target is not detected in a frame, for instance due to occlusion of the
camera, the Kalman Filter will continue to predict the position of the target UAV
(c.f. Section 3.3.3). If the target is not detected over 30 consecutive frames, the
“Target Locked” message disappears and the system reverts back to the “Scan”
state.

4.2.6 GPS Transformations

As previously mentioned in Chapter 2, the control system for the 3DR Solo accepts
target positions specified as a set of geodetic coordinates (latitude and longitude)
in decimal degrees. However, the actual control calculations are performed in the
(orthogonal) ECEF frame, and the results are translated into the geodetic coordi-
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nates.
As seen in Section 3.4, the vision-based tracking algorithm returns, after running

a Kalman Filter (c.f. Section 4.4), the desired motion [∆x,∆y,∆z] of the UAV in the
navigation North-East-Down reference frame, in units of centimeters. This reference
frame can rotate in relation to the ECEF frame so it is paramount to know the
absolute direction in which the camera is looking at. The GPS transformation
equations depend on whether the camera points North, South, East or West, but
this orientation is available from the on-board compass on the UAV. Due to the
complexity of the calculus of small 3D motions in geodetic coordinates, we will
estimate the small changes in latitude and longitude from small changes in North
and East positions [59]. Therefore, the flat Earth ∆x and ∆y coordinates are then
transformed to North East coordinates:[

δN
δE

]
=

[
cosψ − sinψ
sinψ cosψ

] [
∆x
∆y

]
(4.1)

where ψ is the angle in degrees, clockwise, between the x-axis and the North.
Then, to convert the North East coordinates to geodetic latitude and longitude
coordinates, the estimation uses the radius of curvature in the prime vertical RN

and the radius of curvature in the meridian RM . Both are defined in Equation 4.2.

RN =
R√

1− (2f − f2) sin2 λ0

RM = RN
1− 2f + f2

1− (2f − f2) sin2 λ0

(4.2)

where R is the equatorial radius and f is the flattening of the planet. Small
changes in both latitude and longitude are then approximated by the following
equations:

δλ = tan−1(
1

RM
)δN

δφ = tan−1(
1

RN cosλ
)δE

(4.3)

Then, the output latitude and longitude are obtained adding the small variation
to the previous location. The altitude is the negative flat z-axis value minus the
reference height, href .

λ = λ0 + δλ

φ = φ0 + δφ

h = −∆z − href
(4.4)

These geodetic [λ,φ,h] coordinates represent the position in which the drone
must be in order to mimic the movement of the target UAV.
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4.3 Logic and Control Strategy for Parrot AR.Drone
2.0

4.3.1 Overview

The control strategy for the Parrot AR.Drone 2.0 is to make the flight autonomous,
from the take-off to the UAV following phase, with only a minimum number of user
actions on the graphical interface of the Android app. In other words, no inputs on
the virtual sticks are required for the Detection and Following algorithms to operate.
For the Parrot UAV, most of the autonomous flight functionality is already imple-
mented in the open-source Parrot SDK, and our Detection and Following algorithms
were implemented by adding new modules into the SDK codebase.

The overall system design for the Parrot AR.Drone 2.0 can be defined in the
same three main states as for the 3DR Solo (see Figure 4.2), but the main and most
important difference is that the Parrot AR.Drone 2.0 is unable to sense and feedback
its own position in space, due to the lack of GPS signals in the indoor lab. For this
reason, the control strategy is an open-loop feed-forward control. In the future, an
indoor optical motion capture system such as the one seen in [5] will be installed in
order to provide this missing data.

As before, each state block creates and deletes software threads as needed in
order to reduce memory use and computation time on the ground computer tablet.

The “Setup” state handles all the pre-flight steps, including connecting via Wi-
Fi to the UAV, enabling the camera and starting the video stream from it, plus the
initial flight phase of arming the motors followed by autonomous take-off to a pre-
specified altitude. This state is triggered by the Piloting button in the dashboard
activity section within the user interface (UI) of the app running on the ground
computer.

The “Scan” state follows the “Setup” state and is triggered by the user pressing
the Target button in the video activity section of the UI. Within this state, the
vision-based algorithm from Section 3.4 runs persistently in its own thread. This
state puts the UAV in hover, runs the vision algorithm for 10 seconds, then com-
mands a 90◦ clockwise yaw and loops back to the vision algorithm. At any time, if a
target UAV is detected by the vision algorithm over at least 40 consecutive frames,
the system moves to the next state.

The next and final state, “Scan and Follow”, is triggered when a target UAV is
found. This state executes a pursuit control while running the vision-based algo-
rithm, each in its own thread. This state runs until the target is lost, at which point
the system returns to the previous state, “Scan”.

Within any state, pressing the Target button in the video activity section of
the UI reverts the system to the end of the “Setup” state, i.e. hovering in place and
waiting for the user to press the Start button.

In the following subsections, we will describe the user interface and its com-
ponents. Then, we will provide the details of the individual states as well as the
transition conditions between them.
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4.3.2 Parrot App User Interface

Figure 4.10: Parrot App Initial Menu UI

The Parrot SDK App for Android starts with a tabloid-like high-level menu shown
in Figure 4.10. While a wide range of modes, such as accessing a library of photos
and videos taken by the drone, or accessing an online academy which teaches how
to fly the Parrot UAV, we are only interested in the piloting mode. Clicking the
“Piloting” button enters the flight user interface.

This UI is divided into three zones denoted as A, B and C in Figure 4.11.
The top zone (A) displays real-time information about the UAV status including
the battery charge (in %), a button to access UAV connection settings, the Wi-
Fi signal intensity, the emergency status signal which flashes when an emergency
occurs during flight (this triggers a forced landing and shutdown of the motors), plus
buttons for recording videos and taking pictures from the onboard camera. Zone B
is a custom surface texture displaying the video streamed from the UAV’s camera.
Zone B is a touch-surface which displays virtual joysticks on the left and right sides
of the display, allowing the user to control the UAV directly from the App UI. Zone
C has one toggle button used to autonomously take off or land the UAV, depending
on its state, and a second toggle button (blue or red ⊕ icon) which allows triggering
or interrupting the vision-based algorithm thread, respectively. This button will be
henceforth be referred to as the Scan or Stop button, respectively. Other than the
start/stop button, all the elements of the UI are provided by the stock SDK code.
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Figure 4.11: Flight User Interface

4.3.3 Setup State

As mentioned in Section 4.3.1, the “Setup” state prepares the UAV to run the vision-
based pursuit algorithm, starting with pre-flight preparations and ending at hovering
in the air waiting for the user to launch the scanning algorithm. This state employs
a number of software threads to accomplish its tasks, but we will focus mainly on
our custom-written threads which implement the vision-based algorithm. We will
focus primarily on the main thread, the UI thread and the UAV control thread.
The main thread and the UI thread are created when the App launches, while the
UAV control thread is created only when needed and removed immediately after, in
order to minimize the number of running threads and thus economize memory and
computational load.

The “Setup” state is automated and requires user input at one point only. This
state is triggered by the Piloting button in the activity section of the Parrot App UI.
Once the button is clicked, the main thread executes the pre-flight sequence. This
establishes a connection between the UAV and the App over Wi-Fi and waits for
an acknowledgment from the UAV. Typically this connection is already established
by the tablet before the App is launched, and in this case the thread only confirms
the connection. The setup process will not proceed until the Wi-Fi is successfully
established.

Once the connection is successful, the next stage initializes a live video stream
from the onboard camera, which is displayed within Zone B of the UI.

If all the previous stages complete successfully, the UAV arms its four motors

51



then sends a confirmation of success to the ground tablet. Upon receipt of this
confirmation, the App displays the “Take Off” button and waits for it to be pressed,
which lets the user decide when the conditions are right for take off and flying. After
the button is pressed and the take off sequence is completed successfully, the UAV
is commanded to hover in place and the app starts waiting for the user to press the
Scan button in the UI. The performance of the UAV in maintaining a steady hover
is subject to the accuracy of the onboard sensors, optical flow calculations and the
performance of the onboard state estimation system.

4.3.4 Scan State

As described in Section 4.3.1, the “Scan” state implements the vision-based algo-
rithm described in Section 3.4.3 and handles the details of its execution. This state
runs the same threads as the “Setup” state, namely the main, UI and UAV control
threads, and also creates a new thread to run the scanning algorithm.

The scan thread requires extensive computation resources to run the vision-
based algorithm. It is thus implemented separately from the UI thread such that its
computations do not freeze the UI and do not block any user interaction. The entire
process does not require any user interactions, and its details are almost identical
to the ones for the 3DR Solo as illustrated in Figure 4.7.

As in the “Setup” state, the “Scan” state is triggered by a listener in the Scan
button within the UI. Once clicked, this button changes into the Stop button, which
allows interrupting the algorithm at any time.

After clicking the Scan button, the main thread launches the scan thread which
runs the main loop of the vision-based detection algorithm. Timing is performed
by the main thread. The scan thread is entered when the UAV is hovering and
runs until either a target is positively identified or 10 seconds have elapsed. In
the latter case, the UAV performs a 90◦ clockwise rotation and the scan thread is
restarted. The ‘turn’ command is used to turn the UAV. The turn direction can be
specified as clockwise or counterclockwise, where the former makes the UAV rotate
a specified amount of degrees from its original position towards the right and the
latter towards the left. Similarly to the process described in Section 4.3.6, the ’turn’
command needs to be calibrated.

While running, the UI thread stores a bitmap of the latest video frame streamed
from the camera. This bitmap is then converted to grayscale as required by OpenCV
to speed up calculations, as discussed in Section 4.2.4. The grayscale image is
inputted into the Cascade Classifier algorithm (see Section 3.4) at each frame. The
detection logic for the Parrot AR.Drone 2.0 is exactly the same as the one specified
for the 3DR Solo in Section 4.2.4.

Since the “Scan” state runs autonomously, an emergency exit from the state is
implemented, which is triggered either by the user or by the state of the battery. If
the user presses the Stop button in the UI, they regain manual control of the UAV.
The same thing occurs if the battery charge of the UAV falls below 10%. The latter
condition provides sufficient time for the user to safely land the UAV.
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4.3.5 Scan and Follow State

As described in Section 4.1, the “Scan and Follow” state runs the Cascade Classifier
vision algorithm (c.f. Section 3.4.3) as well as the control system which allows the
UAV to pursue its target. This state runs the same threads as the “Scan” state:
the UI thread, the UAV control thread and the scan thread. However, the control
thread is now used to make the UAV follow its target. This state does not require
user interaction and is shown in detail in Figure 4.12.

Figure 4.12: Parrot AR.Drone 2.0 State Machine of the Scan and Follow State

The “Scan and Follow” state is entered from within the “Scan” state once a
UAV target is locked, designating it as the target to follow for the control system.
The UAV target’s pixel location [x, y] and its size [z] is obtained from the earlier
“Scan” state. First, as described in Section 4.4, the perspective correction equations
transform the input position of the UAV into a real relative distance in meters from
the center of the field of view of the camera.

The vision algorithm outputs a set of coordinates [δx,δy,δz] which represent the
relative movement to be mimicked by the UAV in the interval between frames. The
control system executes the movements along the three axis independently. This
is accomplished using the ‘set’ command provided by the SDK. The ‘set roll’ and
‘set pitch’ commands set the fraction of the maximum inclination angle, which is
preset in the quadcopter settings, while the ‘set gaz’ command sets the fraction of the
maximum vertical speed. Because the Parrot does not provide position measurement
feedback (c.f. Section 4.3.1), this adds the problem of having to time the commands
issued by the control system. Therefore, an extensive calibration of the relation
between input power, time of execution (which will always be smaller than the
frame rate) and distance needs to be carried out (see Section 4.3.6).

Once the flight motion is done, the drone hovers while a new scan is performed,
identically to the “Scan” state. Due to the fast processing of the frames and the
high frame rate of the video feed (30 FPS for the Parrot AR.Drone 2.0), the UAV
appears as being in constant movement.

If the target is not detected in a given frame, for instance due to occlusion of
the camera, a Kalman Filter continues to predict the position of the target UAV
(c.f. Section 3.3.3). If the target is not detected over 30 consecutive frames, the
“Target Locked” message disappears and the system reverts back to the “Scan”
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state.

4.3.6 Input Thrust Calibration

The Parrot AR.Drone 2.0 control system defines a body-fixed reference frame whose
origin is placed at the UAV’s center of gravity, as illustrated in Figure 4.13. The
UAV moves forward and backwards along the Pitch axis, left and right along the
Roll axis, and up and down along the Gaz axis (the french-language equivalent of
the Thrust axis).

Figure 4.13: Parrot AR.Drone 2.0 Motion Axis Representation

The Parrot AR.Drone 2.0 native commands ’setRoll’, ’setPitch’ and ’setGaz’
command movements of the UAV along each axis at a specified “power” value.
“Power” is a real number between −1 and 1 which represents a normalized version
of the tilting angle or vertical speed at which the UAV will perform motion along
the specific axis. However, the tilting angle relates directly with the velocity of the
quadcopter on each axis (pitch or roll), for instance the UAV will move to the right at
its maximum speed when the ’setRoll’ command is set to 1, and conversely will move
to the left at its maximum speed when the ’setRoll’ command is set to −1. Once
a ‘set’ command is issued, the UAV maintains the commanded speed indefinitely,
meaning the commands need to be progressively issued in order to obtain smooth
flight motions.

Because the outputs from the vision-based algorithm as well as the Kalman filter
provide estimates of the relative movement of the target UAV in meters, we need to
establish a mathematical model which relates input power and time of execution of
the velocity command with the resulting distance traveled.
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In order to obtain this model, a set of experiments were carried out. Each of the
three ‘set’ commands were executed individually for a specific amount of time and
a given power value. The distance flown along the given axis was measured using
a laser distance meter (Leica Disto D2). An example of the method called in the
control thread to perform this test is the following:

private void testingMove () {

AsyncTask.execute(new Runnable () {

@Override

public void run() {

long startTime = System.currentTimeMillis ();

int testTime = 200;

droneControlService.setProgressiveCommandEnabled (1);

Log.d("ControlDroneParrot","Started moving. For " +

Integer.toString(testTime) + "ms.");

while(System.currentTimeMillis () - startTime <

testTime) {

// droneControlService.setPitch(power); Going

forward (-1) and backwards (1)

// droneControlService.setRoll(power); Going Left

(-1) right (1)

// droneControlService.setGaz(power); Going up (1)

and down (-1)

droneControlService.setGaz (1);

}

droneControlService.setGaz (0);

Log.d("ControlDroneParrot","Finished moving.");

}

});

}

The Parrot AR.Drone 2.0 streams video from its onboard video camera to the
Parrot App at 30 frames per second. The control system for the UAV has to perform
the 3-axis movement in-between frames, meaning each command may run over a
maximum of 0.03 seconds. Preliminary testing showed that for this UAV hardware,
even at full power it was not possible to perform a measurable movement in such
a short interval of time, meaning the vision system cannot run at 30 frames per
second. Further testing showed that at full power, the minimum time required for
the UAV to exhibit measurable movement (not considered drifting) is around 0.2
seconds (see Figure 4.14). We can thus conclude that the Parrot AR.Drone 2.0 will
be limited to 1 frame per second, which will limit the achievable performance by
the control system.
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Figure 4.14: Parrot AR.Drone 2.0 Input Expected Thrust Calibration Results

Testing was performed to obtain a relationship between the time spent at full
input power and the resulting distance traveled. Given the quadratic relationship
between thrust and distance, as show in Figure 4.14, the testing interval will be
limited to values near 0.2 seconds to allow linearization without inferring excessive
error. The results of these tests are shown in Table 4.15:

Figure 4.15: Parrot AR.Drone 2.0 Input Thrust Calibration Results

Note that the pitch and roll axes exhibit nearly identical results, which is as
expected due to highly symmetric design of the Parrot AR.Drone 2.0. The relation-
ship is obtained through regression analysis with a standard linear model: y = b0

+ b1x.
The fitting results for movements along the three individual axes is shown in

Figure 4.16.
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(a) Regression Analysis For The Roll Axis Movement

(b) Regression Analysis For The Pitch Axis Movement

(c) Regression Analysis For The Gaz Axis Movement

Figure 4.16: Regression Analysis Fitting Results
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The results of the regression analysis provide the linear fit between the time
elapsed during the command execution and the distance travelled by the UAV. The
results are as follows:

DRoll =− 60.52 + 1350t

DPitch =− 62.66 + 1358t

DGaz =− 70.30 + 959.6t

(4.5)

where DRoll, DPitch and DGaz are the distances along each axis in millimeters, and
t is the time elapsed in seconds during the execution of each command.

For all three models, the coefficient of determination R2 is close to one, indicating
that a linear model is appropriate, however the estimation may be biased. There-
fore, all three linear models are validated through a residual analysis performed in
MiniTab, checking the homogeneity of the “residual versus fit” plot and the isotropy
of the residuals in the “normal probability” plot.

Figures 4.17a, 4.17b and 4.17c represent the scatter plot of the distance residuals
vs the fitted values (estimated distance). From them we note that the magnitude of
the residuals is reasonable (less than 10% error) and that they are centered around
zero. Based on these observations we are able to conclude homogeneity of all the
experimental residuals.

Figures 4.18a, 4.18b and 4.18c represent the normal probability plot of the dis-
tance residual for each motion. From them, we see that all the residuals are equally
distributed with respect to the null residual along the fitting line and that there
are no outliers. Thus, we consider all the experimental residuals to be isotropically
distributed.

We can thus conclude that the linear models assumed in Equations 4.5 are indeed
valid.
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(a) Residual Versus Fit For The Roll Axis Movement

(b) Residual Versus Fit For The Pitch Axis Movement

(c) Residual Versus Fit For The Gaz Axis Movement

Figure 4.17: Residual Versus Fit Results
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(a) Normal Probability Residual For The Roll Axis Movement

(b) Normal Probability Residual For The Pitch Axis Movement

(c) Normal Probability Residual For The Gaz Axis Movement

Figure 4.18: Normal Probability Residual Results
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4.4 Motion Estimation

4.4.1 Overview

The vision-based tracking algorithm described in Section 3.4 does not output data
which can be directly used for closed-loop target tracking. For a given frame num-
ber n, the data consists of a bounding box which delineates the dimensions of the
detected UAV. This box is described by an array of 4 variables: the first two,
[xbboxn ,ybboxn ], are the pixel coordinates of the top left corner of the bounding box,
while the third and fourth are its width, bwn , and height, bhn, respectively. The
centroid of the target UAV can be calculated as:

xpn = xbboxn + round(
bwn
2

)

ypn = ybboxn + round(
bhn
2

)

where [xpn,ypn] are the pixel coordinates of the centroid of the target UAV. The set of
pixel coordinates [xp,yp] needs to be converted into a set of relative movement axes
[X,Y,Z] in the UAV reference frame in order to provide a valid reference trajectory
for the position control system of the UAV. This requires calculating a 3D movement
from a 2D image (see Figure 4.19).

Figure 4.19: Target Reference Representation in Camera Frame

In order to estimate the relative depth movement of the UAV, or more generally
the relative 3D movement of the UAV, we will subtract the results of the vision-based
algorithm over two consecutive frames and then transform this result from pixels to
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centimeters. For this last step, the exact dimensions of the target UAV need to be
known. The equations in (4.6) summarize the distance estimation calculations for
the nth frame. These equations assume that the pursuer is stationary because there
is currently no easy way of obtaining precise velocity of the pursuing vehicle.

δxn = xuavflx(xcorrn − xcorrn−1)

δyn = yuavfly(ycorrn − ycorrn−1)

δdn =
√
|bhnbwn − bhn−1b

w
n−1|

δr2
n = flx((xcorrn )2 − (xcorrn−1)2) + fly((ycorrn )2 − (ycorrn−1)2)

δzn = zuavsign(bhnb
w
n − bhn−1b

w
n−1)

√
|δd2

n − δr2
n|

(4.6)

where flx and flx are the focal length coordinates of the camera as calculated in
Section 4.4.2, [δxn,δyn,δzn] is the relative movement of the target UAV in the nth

frame, [xcorrn ,ycorrn ] are the corrected set of pixel coordinates of the target UAV (see
Section 4.4.2), δdn is the estimated relative distance in a straight line between the
target UAV and the pursuing UAV, and [xuav,yuav,zuav] is the relative size vector
of the target UAV in cm/pixel, which is calculated in the first frame at which the
target UAV has been locked on by the vision-based algorithm. This vector needs to
be re-computed whenever a lock has been lost then re-established.

4.4.2 Camera Parametrization for 2D Depth Estimation

In order to get a correct estimation of the motion of the target UAV, it is important
to identify the optical parameters of the camera. We are mostly interested in ob-
taining the angles for the vertical and horizontal field of view (see Figure 4.20) of the
GoPro Hero4 Black camera equipped onboard the 3DR Solo, as well as the distortion
in the distance measurements caused by the lens being spherical. For the Parrot
AR.Drone 2.0, no camera parametrization was performed as the on-board camera
field of view is relatively small and no pronounced fish-eye effect was observed.

Figure 4.20: Graphic Representation of the Field of View

62



To obtain the distortion parameters, we use the camera calibration module avail-
able in OpenCV. The algorithm outputs five distortion parameters in a row matrix
[k1,k2,p1,p2,k3], related to the pixel correction of the image (see equations (4.7)).
The distortion in the GoPro Hero 4 Black is modeled by a radial factor, which man-
ifests itself as a fish-eye effect in the image, and a tangential distortion due to the
image not being parallel to the imaging plane. For a set of pixel coordinates [xp,yp],
we denote their corresponding position in the corrected output image as [xcorrp ,ycorrp ].
The distortion can be corrected by the following formulas [8, 9]:

x =
xp − xmax

flx

y =
yp − ymax

fly

r2 = x2 + y2

xcorrp = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r2 + 2x2)

ycorrp = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y2) + 2p2xy

(4.7)

To identify the distortion parameter values, a black-and-white chessboard pat-
tern shown in Figure 4.21 is printed. In order to employ the OpenCV camera
calibration algorithm, we need to take snapshots of this pattern with the camera
from different angles and distances. Because of noise effects in the input images,
a high number of snapshots is preferred. For this test, we will use 20 different
snapshots.

Figure 4.21: Image of the Test Chessboard

The resulting identified parameter values are given in Table 4.1.
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Table 4.1: OpenCV GoPro Hero 4 Black Calibration Results

Parameter Estimation

Horizontal FoV 93.5°

Vertical FoV 61.7°

k1 -0.25722 ± 0.00228

k2 0.09022 ± 0.00276

k3 -0.00060 ± 0.00020

p1 0.00009 ± 0.00018

p2 -0.01662 ± 0.00098

Pixel error [0.30 0.28]

The calibration vector is thus [k1,k2,p1,p2,k3] = [-0.25722, 0.09022, -0.00060,
0.00009, -0.01662] and the focal length fl = [flx,fly] can be calculated from the
horizontal and vertical field of view using the following Equations:

flx =
Iw

2 tan(0.5HFoV)

fly =
Ih

2 tan(0.5VFoV)

where Iw is the image width and Ih is the image height. Therefore, the focal length
is [602.05 602.71] pixels.

4.4.3 Impact of the Vision-based Tracking Algorithm

Using the provided formulas, the onboard control algorithm can keep track of the
movement of the target UAV throughout a sequence of frames in the video stream.
In this section, the impact of the efficiency and accuracy of the distance estimation
on the vision-based algorithms discussed in Sections 3.3.3 and 3.4 will be discussed.

In order to fairly compare the HOG-based and the Haar-based Cascade Classifier
vision algorithms, a video of the 3DR Solo was recorded from a static GoPro Hero4
Black camera. The video consists of the 3DR Solo moving through a predetermined
path where the UAV’s motion per frame is known. The predetermined motion can
be seen in Figure 4.22. Each black dot in the figure represents 6 inches or 15.24
centimeters, which corresponds to the expected movement of the UAV per frame.
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Figure 4.22: Predetermined Path for the Cascade Classifier Initial Test Diagram

Given that we know certain parameters of the motion of the UAV along all axes,
we will employ these to evaluate the accuracy of the distance estimation for each
Cascade Classifier. These known parameters are:

� The expected movement between frames (or linear speed) in each axis: 6
inches/frame or 15.24 cm/frame for the X and Z axis.

� The total motion along the three axes: 56 inches or 142.24 cm in the X axis
back and forth and 12 inches or 30.48 cm back and forth. No movement is
expected along the Y axis.

Recall that all distance estimations are calculated relative to the motion of the
body-fixed frame of the target UAV viewed from a ground-fixed inertial frame.
Figures 4.23 to 4.35 represent the distance estimation results [x,y,z] compared to
the reference trajectory [xref ,yref ,zref ] as well as errors along each axis [ex,ey,ez]
from the three Cascade Classifier types listed in Section 3.4.2.

Figure 4.23: Distance Estimation Results for Cascade Classifier with Haar Features,
0.002 False Alarm Rate and 0.997 True Positive Rate
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Figure 4.24: Distance Estimation Results for Cascade Classifier with Haar Features,
0.003 False Alarm Rate and 0.995 True Positive Rate

Figure 4.25: Distance Estimation Results for Cascade Classifier with Haar Features,
0.003 False Alarm Rate and 0.997 True Positive Rate

Figure 4.26: Distance Estimation Results for Cascade Classifier with Haar Features,
0.003 False Alarm Rate and 0.998 True Positive Rate
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Figure 4.27: Distance Estimation Results for Cascade Classifier with Haar Features,
0.004 False Alarm Rate and 0.995 True Positive Rate

Figure 4.28: Distance Estimation Results for Cascade Classifier with Haar Features,
0.004 False Alarm Rate and 0.997 True Positive Rate

Figure 4.29: Distance Estimation Results for Cascade Classifier with Haar Features,
0.004 False Alarm Rate and 0.999 True Positive Rate
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Figure 4.30: Distance Estimation Results for Cascade Classifier with Haar Features,
0.005 False Alarm Rate and 0.995 True Positive Rate

Figure 4.31: Distance Estimation Results for Cascade Classifier with Haar Features,
0.005 False Alarm Rate and 0.999 True Positive Rate

Figure 4.32: Distance Estimation Results for Cascade Classifier with Haar Features,
0.08 False Alarm Rate and 0.998 True Positive Rate
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Figure 4.33: Distance Estimation Results for Cascade Classifier with HOG Features,
0.001 False Alarm Rate and 0.999 True Positive Rate

Figure 4.34: Distance Estimation Results for Cascade Classifier with HOG Features,
0.08 False Alarm Rate and 0.997 True Positive Rate

Figure 4.35: Distance Estimation Results for Cascade Classifier with HOG Features,
0.08 False Alarm Rate and 0.998 True Positive Rate
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Figure 4.36: Distance Estimation Results for Cascade Classifier with HOG Features,
0.1 False Alarm Rate and 0.9 True Positive Rate

In order to compare the results, we performed a statistical analysis of the error
signals (see Tables 4.2 and 4.3). Recall that FAR is the False Alarm Rate and TPR
is the True Positive Rate of each cascade classifier.

Table 4.2: Statistical Study of the Distance Estimation Error Signals for the “Op-
timal” HOG Cascade Classifiers

Cascade
Axis

Mean Standard Variance Mean Squared
Classifier [m] Deviation [m] [m] Error [m2]

HOG Features x -0.1160 0.0942 0.0089 0.0219
0.001 FAR y -0.0200 0.0405 0.0016 0.0020
0.999 TPR z -0.0905 0.0713 0.0051 0.0130

HOG Features x -0.1269 0.0982 0.0096 0.0253
0.08 FAR y -0.0235 0.0370 0.0014 0.0019

0.997 TPR z -0.1312 0.0909 0.0083 0.0251

HOG Features x -0.1036 0.0958 0.0092 0.0195
0.08 FAR y -0.0102 0.0398 0.0016 0.0016

0.998 TPR z -0.0367 0.0799 0.0064 0.0074

HOG Features x -0.2402 0.2561 0.0656 0.1203
0.1 FAR y -0.0322 0.1669 0.0279 0.0276
0.9 TPR z -0.0349 0.2596 0.0674 0.0656
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Table 4.3: Statistical Study of the Distance Estimation Error Signals for the “Op-
timal” Haar Cascade Classifiers

Cascade
Axis

Mean Standard Variance Mean Squared
Classifier [m] Deviation [m] [m] Error [m2]

Haar Features x -0.2790 0.1366 0.0187 0.0957
0.002 FAR y -0.0222 0.0463 0.0021 0.0025
0.997 TPR z 0.6003 0.3399 0.1155 0.4707

Haar Features x -0.4923 0.2037 0.0415 0.2816
0.003 FAR y -0.0225 0.0345 0.0012 0.0016
0.995 TPR z 0.0342 0.2421 0.0586 0.00565

Haar Features x -0.2790 0.1366 0.0187 0.0957
0.003 FAR y -0.0222 0.0463 0.0021 0.0025
0.997 TPR z 0.6003 0.3399 0.1155 0.4707

Haar Features x -0.2868 0.1998 0.0399 0.1204
0.003 FAR y 0.0203 0.0797 0.0064 0.0065
0.998 TPR z -0.2514 0.2070 0.0428 0.1041

Haar Features x -0.4923 0.2037 0.0415 0.2816
0.004 FAR y -0.0225 0.0345 0.0012 0.0016
0.995 TPR z 0.0342 0.2421 0.0586 0.00565

Haar Features x -0.2790 0.1366 0.0187 0.0957
0.004 FAR y -0.0222 0.0463 0.0021 0.0025
0.997 TPR z 0.6003 0.3399 0.1155 0.4707

Haar Features x -0.4666 0.1922 0.0369 0.2530
0.004 FAR y -0.2604 0.0979 0.0096 0.0769
0.999 TPR z -0.0875 0.2741 0.0751 0.0794

Haar Features x -0.4923 0.2037 0.0415 0.2816
0.005 FAR y -0.0225 0.0345 0.0012 0.0016
0.995 TPR z 0.0342 0.2421 0.0586 0.00565

Haar Features x -0.4627 0.1895 0.0359 0.2484
0.005 FAR y -0.2742 0.0906 0.0082 0.0830
0.999 TPR z 0.1167 0.2593 0.0672 0.0778

Haar Features x -0.4649 0.2405 0.0579 0.2713
0.08 FAR y -0.1885 0.3058 0.0935 0.1248

0.998 TPR z -0.0608 0.3623 0.1313 0.1290

Based on the test results, we can observe that:

� The Haar-based Cascade Classifier algorithms have, in general, big problems
with getting a stable bounding box detection, making the depth or Z axis
estimation incorrect (up to 100% error) as well as noisy. Since our distance
estimation relies heavily on the accuracy of the initially detected bounding
box, any error in these first detections will be accumulated during the entire
experiment. This explains why the shape of the distance estimation in both
X and Y axis is qualitatively correct, but the actual values are incorrect (up
to 15% error).

� Given that the distance estimation will serve as reference for the quadcopter’s
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position control system, the signal must have as little noise as possible. Al-
though the Haar-based Cascade Classifiers were shown to be about five times
faster than the HOG-based ones, in addition to having a good detection accu-
racy, due to both the distance estimation errors along each of the axes and the
exhibited noise we consider that the Haar-based Cascade Classifiers cannot be
used for experimental flight testing.

� Meanwhile, the HOG-based Cascade Classifier algorithms exhibit a distance
estimation error roughly one order of magnitude less than the Haar-based Cas-
cade Classifiers. This is due to having a more stable bounding box throughout
the experiment, leading to more stable and accurate estimations. Therefore,
the use HOG-based Cascade Classifiers for UAV detection and tracking is
advised.

Out of all the HOG-based Cascade Classifiers, and focusing on the detection
error along the Z axis, we pick the 0.08 false alarm rate and 0.998 true positive rate
as the optimal parameters for detection and tracking of quadcopters.

The best-performing Cascade Classifier from the above analysis will be retested
to evaluate the impact of the background on distance estimation in a more realistic
flight experiment. This consists of the drone taking off to 3 meters, moving left 2.25
m and then landing. As before, a video of the 3DR Solo was recorded from a static
GoPro Hero4 Black camera. The distances were pre-measured in order to serve as
a ground truth for testing the accuracy of the tracking algorithm. The drone takes
off from an elevated plastic platform in order to eliminate magnetic field distortions
due to ferromagnetic materials in the ground.

The upcoming figures will illustrate the results of running two vision-based al-
gorithm designs in Matlab. We will analyze the raw output data of the optimal
HOG-based Cascade Classifier and compare it with the output of the HOG-FAST
with Kalman Filter algorithm seen in Section 3.3.4. Based on Chapter 3, some
differences can be highlighted in the behavior of the two algorithms:

� The HOG-FAST with Kalman Filter algorithm needs a set of initialization
frames, thus the tracking of the target UAV will be delayed compared to the
Cascade Classifier.

� The HOG-FAST with Kalman Filter algorithm depends on motion to be able
to detect the target UAV, i.e. a stable hover or a stationary UAV on the
ground would reset the algorithm, and require a set of frames with movement
to reinitialize it. Meanwhile, the Cascade Classifier detection is not affected
by the motion of the target UAV.

By choosing to use HOG instead of Haar features for the detection Cascade
Classifier, we have selected the more computationally demanding algorithm. In
order to improve performance, we will analyze the raw data output from the Cascade
Classifier to see if the amount of data obtained could be reduced. This is further
discussed in Section 4.5.
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Figure 4.37: Pixel Coordinates of the Target UAV Centroid

Figure 4.37 shows the trajectory of position coordinates [xpn,ypn] during the flight
experiment. Since the camera is static, and thus the background does not move, the
curve represents the motion of the target UAV, while the other horizontal sets of
points are false positives of the Cascade Classifier algorithm for this particular ex-
periment. The presence of false positives is typical when using the Cascade Classifier
algorithm without filtering.

In the present case, the output noise is simple to filter out. The Cascade Classifier
output data is an array containing a set of bounding boxes which describe all target
UAV matches identified in each frame. This array is ordered from best to worst
match, with all results above the minimum boundary specified by the algorithm.
Thus, by assuming a single target UAV, we retain only the best match at each
frame, and discard the remaining results as noise.

Since we expect some UAV motions to be lost during the initialization phase
of the HOG-FAST with Kalman Filter algorithm, in order to compare the results
of both algorithms for distance estimation accuracy we will manually set the first
non-zero value of each axis distance estimation to equalize the initial point of both
algorithms.
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Figure 4.38: Distance Estimation for HOG-FAST with Kalman Filter and Cascade
Classifier along the X Axis

Figure 4.38 shows both the HOG-FAST with Kalman Filter and Cascade Classi-
fier distance estimations along the X axis. We see that there is no distance estimation
for the HOG-FAST with Kalman Filter algorithm during the first 243 frames nor for
the last 118, which together accounts for a substantial 33.36% of the entire experi-
ment. As explained above, the cause of this is the lack of motion in the pre-take off
and post-landing regimes. Meanwhile, the Cascade Classifier can detect the target
UAV throughout the entire length of the experiment. We can also observe that
the Cascade Classifier outputs motion earlier than the HOG-FAST with Kalman
Filter, due to the initialization period required by the latter. By retaining only the
best match, the noise in the Cascade Classifier estimates is drastically reduced as
compared to Figure 4.37, although not completely eliminated. The residual noise
is caused by frames in which the target UAV was considered a false positive or no
match was found.

The results of both algorithms are empirically correct, with both trajectories
tending to x = -2.3 m as expected. However, the accuracy of the two algorithms is
different, with the HOG-FAST with Kalman Filter algorithm ending at x= -2.031 m
and the Cascade Classifier ending at x= -2.243 m, representing 11.69% and 2.48%
relative error, respectively.
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Figure 4.39: Distance Estimation for HOG-FAST with Kalman Filter and Cascade
Classifier along the Y Axis

Figure 4.39 shows the HOG-FAST with Kalman Filter and Cascade Classifier
distance estimations along the Y axis. We observe the same qualitative behaviors
for the HOG and Cascade Classifier algorithms as for the X axis. The result of both
algorithms are empirically correct, with both trajectories first tending to y = 3 -
0.65 = 2.35 m, remaining stable as the UAV moves along the X axis, and finally
tending to y = -0.65 m.

The altitude loss observed in this experiment is due to hardware and/or soft-
ware issues in the 3DR Solo. Based on extensive flight testing, we have observed
that the UAV loses altitude over the first 10 seconds of hovering, while reporting
the measured altitude as constant. This error stabilizes once the error reaches 1.1
meters. The cause of this effect may be due to a low-cost GPS receiver, lack of an
accurate altimeter, or a poorly tuned state estimation system onboard the UAV.
Unfortunately, this means the altitude reporting during hovering cannot be trusted.

Nevertheless, the results can still be evaluated in the takeoff and landing phases.
The HOG-FAST with Kalman Filter algorithm ends up at y=2.146 m and y=-
0.004 m or 8.68% and 34.0% relative error respectively. The Cascade Classifier
algorithm ends up at y=2.212 m and y=-0.3122 m or 5.48% and 17.77% relative
error respectively. We can conclude that for the X and Y axes, the Cascade Classifier
is more accurate than the HOG-FAST with Kalman Filter algorithm, in addition to
being faster and more reliable for detection tasks.

For depth estimation, the previous approach cannot be used. As shown in Fig-
ure 4.40, noise greatly affects the estimated depth values, making it impossible to
accurately measure its values.
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Figure 4.40: Distance Estimation for HOG-FAST with Kalman Filter with Kalman
and Cascade Classifier in the Z Axis

Depth estimation is very sensitive to bounding box variations and possible back-
ground noise. In the present flight experiment, the true depth of the target UAV
is close to constant. While the HOG-FAST with Kalman Filter depth estimation
diverges, the Cascade Classifier depth estimation has variable but bounded error
and does not diverge. Nevertheless, the depth estimation obtained as-is is unusable
as a reference trajectory for any control system. We thus need to find a way to get
a more consistent and stable depth estimation, either by stabilizing the bounding
box size or by reducing the amount of background noise.

Whereas the stability of the bounding box output of the vision-based algorithm
is of utmost importance for depth estimation, it is not the only factor which limits
depth tracking. The bounding box size is limited by the Cascade Classifier to a
minimum and a maximum, meaning the depth estimation has an effective working
range inside which the depth error will be bounded, but this error will increase
indefinitely outside this range. In the present case, the minimum bounding box size
is 60x60 pixels while the maximum is the size of the video frame, here 1280x720
pixels. Given an initial bounding box size, we can determine the effective range for
the depth estimation, shown in Figure 4.41.
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Figure 4.41: Cascade Classifier Depth Estimation Range

Given the quadratic relationship between the depth estimation and the bounding
box size, the error beyond the lower limit is not negligible. The detection error will
increase considerably once the lower limit is reached. Moreover, note that if the
first detection gives a bounding box of minimum or maximum size, then the depth
estimation will be limited to negative (target getting closer) or positive (target
getting further) depth respectively.

4.5 Image Reduction

Thus far, when running the vision-based algorithms of Chapter 3, the full frame
was processed in order to detect the target UAV. However, this approach is com-
putationally expensive, especially when using high-resolution images. For target
tracking, we know that the sought features are located close to the estimated target
location. In addition, features risk being affected by background noise, which leads
to false positive identifications and may degrade the performance of the mimicking
system. Therefore, if the target’s position can be predicted beforehand, an area of
interest in the video frame can be defined in which the target UAV is likely to be
located. The vision-based algorithm could then focus on this specific area of the
image rather than the full frame, reducing computational time and reducing the
effect of background noise on false positive identifications.

Because the target UAVs position needs to be available in real time, a one-
step ahead predictor is needed. Among the various possible approaches, a Kalman
filter can be used. Kalman filters are recursive state estimators which employ a
dynamics model of the system. The state estimation is causal, i.e. uses only the
current measurements as well as the estimated state propagated from the previous
time-step. In contrast to other Bayesian estimation techniques, no history of obser-
vations or estimates is needed, making Kalman filters well suited for environments
where computational power is limited [23]. We will be focusing our attention on
the Discrete linear Kalman Filter (DKF) and the Unscented Kalman Filter (UKF)
algorithms [24].
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4.5.1 Target Motion Model

Both filters use a system dynamics model in order to predict the target’s motion.
The target UAV’s flight is governed by Newton’s laws of motion, meaning that
its trajectory cannot change instantaneously. Based on observations of real UAV
flight, where the stick inputs lead to aerodynamic force generation on the vehicle,
we assume that the target motion in the plane can be modeled as having a constant
jerk, meaning that acceleration is a slowly varying signal. In discrete time, given
a pair of pixel coordinates rk = [xp,yp] within the kth frame, the target’s motion
dynamics are thus governed by:

rk+1 = rk + ∆Tvk +
∆T 2

2
ak +

∆T 3

6
jk + wr

vk+1 = vk + ∆Tak +
∆T 2

2
jk + wv

ak+1 = ak + ∆Tjk + wa

jk+1 = jk + wj

(4.8)

where vk, ak and jk are the planar velocity, acceleration and jerk at the kth frame,
respectively, ∆T is the period of time between frames and wk = [wr, wv, wa, wj ]

T

is the vector of position, velocity, acceleration and jerk noise, respectively. The
previous equations are a discrete state-space system with zero deterministic inputs,
process noise wk and xk = [rk, vk, ak, jk] as the state vector. This is written as

Xk+1 = AXk + wk

Yk+1 = CXk+1 + nk+1

(4.9)

where the process noise, wk, is assumed to be zero-mean Gaussian with known
covariance Q = E〈wkw

T
k 〉, and nk is the measurement noise, assumed to be zero-

mean Gaussian with known covariance R = E〈nknTk 〉. We assume both noise vectors
are uncorrelated. The output of the system is the planar position of the target, rk.
The matrices A and C in (4.9) are thus given as (4.10). Note that both matrices
are time-invariant [56].

A =



1 0 ∆T 0 ∆T 2

2 0 ∆T 3

6 0

0 1 0 ∆T 0 ∆T 2

2 0 ∆T 3

6

0 0 1 0 ∆T 0 ∆T 2

2 0

0 0 0 1 0 ∆T 0 ∆T 2

2
0 0 0 0 1 0 ∆T 0
0 0 0 0 0 1 0 ∆T
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, C =

[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]

(4.10)
Note that ∆T can be associated to the inverse of the framerate. Therefore, all

its expected possible values will be small and even smaller for its squared and cubic
values.
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4.5.2 Discrete-time Kalman Filter (DKF)

To predict the position of the target UAV in the frame, rk, a discrete-time Kalman
filter is designed. For a linear system, a Kalman filter is an optimal estimator
provided all noise is normally distributed, i.e. the filter estimates the nominal state
from indirect and uncertain outputs. The DKF minimizes the steady-state error
covariance matrix P as Equation (4.11):

P = lim
t→∞

E[(X − X̂)(X − X̂)T ] (4.11)

Kalman filtering is a convenient form of recursive estimation for real-time pro-
cessing. Kalman filters are usually computed in two steps: first, an a priori estima-
tion is calculated from the previous data; then, the computed estimation is corrected
by the actual measurement. Given the system model in the previous section, the a
priori X̂−k and a posteriori X̂+

k estimated solutions of the DKF are given by

X̂−k+1 = AX̂+
k

X̂+
k+1 = CX̂−k+1 +Kk(yk − CX̂−k+1)

(4.12)

where Kk is the filter gain, determined by solving the algebraic Riccati equation.
The results are given as

Kk = P−k C
T (CP−k C

T +R)−1

where, P−k = AP(k − 1)+AT +Q

P+
k = (I −KkC)P−k

(4.13)

The DKF design will be implemented as the block diagram shown Figure 4.42.

Figure 4.42: Discrete Kalman Estimator Schematic

In the present model, the system can be verified to be uncontrollable (as the
input matrix B is zero) but observable. The conditions for convergence of the
Kalman filter are the observability of the system model and that matrix M defined
in Equation (4.14), must be positive semi-definite.

M =

[
Q N

NT R

]
(4.14)

where N = E〈wkv
T
k 〉 = 0. The eigenvalues of M∗ = (M + MT ) define the

positiveness of M . Let λ = [λ1, ..., λ9] the set of eigenvalues of M∗. Given the
system model in Section 4.5.1, Q ∈ R8 and R ∈ R. Therefore, λ is composed of
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the diagonal values of Q and R. If Q ≥ 0 and R ≥ 0, then the associated discrete
Kalman filter will be stable. Note that if M∗ is positive semi-definite, the filter
convergence may have some error in the steady-state.

4.5.3 Unscented Kalman Filter (UKF)

In cases where the system model is highly nonlinear, the UKF tends to perform
better than the regular linearization-based Extended Kalman Filter (EKF). Even if
the system model is linear, the UKF uses a deterministic sampling method known
as the “unscented transform” which results in a more accurate estimation of the
true mean and covariance of the model [22].

Just like the DKF, the UKF is implemented in two steps: a predictive step and
a correction step. The predictive step needs the state and covariance matrix to be
augmented with the mean and covariance of the process noise, as follows:

Xa
k = [XT

k E(wT
k )]T

P a
k =

[
Pk 0
0 Q

]
(4.15)

A set of 2Na+1 sigma points, σik, is derived from the augmented state and
covariance matrix where Na is the dimension of the augmented state. All the sigma
points are propagated through the state function (4.9) and then recombined to
produce the predicted state and covariance by Equation (4.16):

X̂−k+1 =

2Na∑
i=0

W i
sσ

i
k

P−k+1 =

2Na∑
i=0

W i
c [σik − X̂−k+1][σik − X̂−k+1]T

(4.16)

where Ws and Wc are the weights for the state and covariance, respectively, defined
as Equation (4.17):

W 0
s =

α2(Na + κ)−Na

α2(Na + κ)

W 0
c = W 0

s + 1− α2 + β

W i
s = W i

c =
1

2α2(Na + κ)
, i = 1, ..., 2Na

(4.17)

where α, β and κ are parameters of the UKF. The values used are α = 0.001, β =
2 and κ = 0. If the distribution of the states is Gaussian, the estimation will be
optimal under those parameters [4].

The correction step uses an augmented state and covariance matrix, exactly as
in the prediction step, except that the measurement noise mean and covariance are
used:

Xa
k = [XT

k E(vTk )]T

P a
k =

[
Pk 0
0 R

]
(4.18)
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As before, a set of 2Na+1 sigma points, γik, is derived from the augmented
state and covariance matrix where Na is the dimension of the augmented state. All
the sigma points are propagated through the measurement function (4.9) and then
recombined to produce the predicted state and covariance, Equation (4.19):

X̂+
k+1 = X̂−k+1 +Kk(yk −

2Na∑
i=0

W i
sγ

i
k)

P+
k+1 = P−k+1 −KkPykK

T
k

(4.19)

whereKk is the UKF Kalman gain, computed as the product of the state-measurement
cross-covariance matrix, Pxy, and the inverse of the updated measurement covari-
ance matrix Py:

Kk = PxykP
−1
yk

Pxyk =

2Na∑
i=0

W i
c [σik − X̂−k+1][γik −

2Na∑
i=0

W i
sγ

i
k]T

Pyk =

2Na∑
i=0

W i
c [γik −

2Na∑
i=0

W i
sγ

i
k][γik −

2Na∑
i=0

W i
sγ

i
k]T

(4.20)

4.5.4 Predicted Motion Boundary Area

Given the a posteriori estimation for either of the Kalman filter designs, r̂−k+1, we can
define a geometrical zone χ in which the probability of finding rk+1 is maximized,
as shown in Figure 4.43.

Figure 4.43: Predicted Motion Boundary Area Representation

The area will be defined as a bounding box around r̂−k+1. The width and height
of χ must be inline with the predicted motion of the target during the time elapsed
between frames, as expressed in Equation (4.8). In that time, the target’s accelera-
tion can linearly change from its maximum positive value to its minimum negative
value along both axes. Assuming the maximum possible change in acceleration, we
can define upper and lower limits of the motion change in between frames for the
velocity and position of the target. Recall that r̂k = [x̂k, ŷk]. Given the Kalman
filter prediction step, Equations (4.12) and (4.16), the area χ can be defined by the
following inequalities:
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x̂−k+1 −∆x−∆vx ≤ xk+1 ≤ x̂−k+1 + ∆x+ ∆vx

ŷ−k+1 −∆y −∆vy ≤ yk+1 ≤ ŷ−k+1 + ∆y + ∆vy
(4.21)

Therefore, the area χ will be centered around r̂−k+1 with ∆x+∆vx and ∆y+∆vy
as the bounding box width and height, respectively, where ∆x and ∆y represent
the previously corrected error for both pixel coordinates (see Equation (4.22)) and
∆vx and ∆vy represent the maximum variation of the velocity between frames along
both frame axes. Note that Equations (4.21) are in pixels, therefore only integer
values can be obtained from them. The area χ will thus increase with the Kalman
filter error and decrease with the frame rate.

∆x = |x̂+
k − xk|

∆y = |ŷ+
k − yk|

(4.22)

The value of ∆vx and ∆vy varies from one target to another as the maximum
achievable velocity, vmax, varies. Given a certain target, the maximum variation of
the velocity can be computed as:

∆vx =
vxmax

2fxUAV

∆vy =
vymax

2fyUAV

(4.23)

where f is the video sequence frame rate in frames per second and xUAV and yUAV

represent the cm/pixel ratio in the frame and are considered constant throughout
the video stream. These are obtained at the first detection by the vision-based
algorithm as discussed in Section 4.4. For a more pragmatic approach, to get a
squared bounding box, set the width and height as the maximum of ∆x+ ∆vx and
∆y + ∆vy.

In most cases, the χ area width and height depends on the value of ∆v, since this
tends to be greater than the error of the Kalman filter. Recall that it is inversely
proportional to the frame rate and the cm/pixel ratio of the frame. Whereas the
target gets smaller as it moves away from the camera, the vision-based algorithm
outputs a bounding box around the target centroid which has a minimal size of
60x60 pixels. Thus, even at higher frame rates and with a large cm/pixel ratio, the
χ area should have a width and height larger than the minimum achievable output
of the vision-based algorithm, otherwise it will fail to detect the target. It is thus
advisable to limit the minimum size of the reduced image.

4.6 Image Reduction Implementation

To test the performance of the DKF and UKF designed previously, we will use the
same experimental test as in Section 4.4.3. A 1280x720 video stream of a flying
quadcopter is recorded in a built-up area at 30 frames per second. The video is then
processed by the optimized HOG-based Cascade Classifier with Kalman filtering
and image reduction. The tracking results and computational times were obtained
through Monte Carlo simulation using a total of 15416 simulations. The tracking
results can be seen in Figure 4.44, with its outliers highlighted. Over the length of
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the video, the vision-based algorithm gives consistent results at all frames except for
seven, at which the algorithm gave false positive results due to background noise.

Figure 4.44: HOG-based Cascade Classifier Tracking Results and Outlier Detection
in X and Y Axes Respectively

For this experimental test, the process and measurement noise covariances were
determined following the conditions of the experiment and the vision-based algo-
rithm used.

We assume the process noise affects mostly the jerk while the acceleration, ve-
locity and position remain unaffected. The process noise covariance matrix is Q =
diag(Qx, Qy, Qvx, Qvy, Qax, Qay, Qjx, Qjy), where (Qx,...,Qjy) are the variances
of the process noise for the position, velocity, acceleration and jerk in the x and y
axes, respectively. We assign Qax = Qay = Qvx = Qvy = Qrx = Qry = 0. For the
specific quadcopter used for the flight experiment, the variance for the jerk is set to
Qx = Qy = 0.1 [56].

The measurement noise will represent the assumed error induced when the 3D
motion of the target is transformed into a 2D motion on a video frame. The mea-
surement noise can be compared to the quantization error of any digital image
processing as seen in Figure 4.45. In all cases, the maximum error possible is half a
pixel along both axes, therefore we will take R = 0.25.
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Figure 4.45: Pixel Quantization Error Diagram

Figures 4.46 and 4.47 show the results obtained using a DKF and UKF, re-
spectively, for the vision-based algorithm’s tracking results along both axes. The
resulting prediction and corresponding error (with the upper and lower bounds) are
also shown.

Figure 4.46: Average Discrete Kalman Filter Results

The results in Figure 4.46 show that the DKF prediction error is correctly
bounded, except for the seven false positive frames and the frames during which
the DKF converges. The results show a negligible drop of 1.38% in accuracy of po-
sition tracking with this approach. Meanwhile, in terms of image processing costs,
the number of pixels to be processed per frame decreased from 921600 to 8281 pixels,
a 99.10% reduction.
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Figure 4.47: Average Unscented Kalman Filter Results

The results in Figure 4.47 show that the UKF prediction error is bounded, except
for the same seven false positive frames as in the DKF. However, this version of the
Kalman filter does not require a period of initialization to achieve convergence. The
results show a drop of 1.06% in the accuracy of the position tracking. Meanwhile,
the number of pixels to be processed per frame decreases from 921600 to 6561 pixels,
a 99.29% reduction.

Regarding computational time, both the DKF and UKF offer very similar re-
sults, with a difference of approximately 0.1%. On average over the 15416 simu-
lations, processing the whole image takes 0.1113 seconds to be processed. Under
image reduction, the average computational time reduced to 0.0013 seconds, a re-
duction of two orders of magnitude. In other words, we can save up to 98.83% of
the computational time to process the image. We also save, on average, 6.98 MB
of memory, which is important for implementation in a resource-limited computer
equipped onboard a typical UAV.

Finally, we fuse the image reduction method with the vision-based detection
algorithm. The results for the centroid pixel coordinates can be seen in Figures 4.48
and 4.49.
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Figure 4.48: Discrete Kalman Filter Implementation Results

Figure 4.49: Unscented Kalman Filter Implementation Results

As predicted, the accuracy of the vision-based algorithm increases, e.g. the earlier
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outliers which were due to background noise are now avoided. Since all the outliers in
this video are gone, the error is kept close to zero throughout most of the experiment.
Both Kalman filters offer very similar performance for the positive detection rate:
a 0.21% and 0.43% increase is observed for the DKF and the UKF, respectively.
Although the increase itself is not significant, it does however confirm that the
method does not degrade the detection rate of the algorithm, which was not the
case in our previous experiments.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has successfully validated the initial hypothesis that existing vision-
based algorithms could be tuned or modified to provide real-time detection and 3D
tracking of agile UAVs from another UAV using a commercial monocular camera,
in both indoor or outdoor conditions. Simple control systems enabling mimicking
behavior were designed for two different UAV models.

Between all the tested vision-based algorithms, the Cascade Classifier was shown
to offer the best performance in terms of accuracy and computational time. Con-
sidering both parameters, the training of the Cascade Classifier was optimized for
indoor and outdoor conditions. Outdoor flight testing provided a better detection
rate but worse accuracy results as compared to indoor flight tests. The initial vision
designs were very sensitive to background noise, which was not acceptable since
their outputs are used as the reference trajectory for the mimicking control design.

To solve the issue of background noise, a novel method was introduced to re-
duce the problem of background noise in the input video stream. This method
employs a DKF or UKF to reduce the size of the image region of interest, which
reduces false positive detections as well as the computational load of the overall
algorithm. Using this method was shown to provide better reliability and a higher
framerate, improving the accuracy and detection rate for both indoor and outdoor
environments.

5.2 Limitations of the Work

While the results of this thesis are promising, some limitations were found in both
the chosen vision-based algorithm and the UAV mimicking control strategy:

� The depth estimation calculations used to estimate the relative movement of
the target UAV are limited to a certain range of distances, which depend on
the initial distance of the target UAV to the camera. This limitation is due to
the fact that the vision-based algorithm calculates a bounding box around the
target. The minimum size of this bounding box is user-specified, but values
lower than approximately 30x30 pixels give unstable results.
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� The mimicking control system accuracy for the 3DR Solo is directly related
to the accuracy of the on-board GPS receiver. Whereas the existing receiver
achieves a positioning accuracy of approximately ±1 meter, the motions of
the mimicking UAV in the time between frame scans are on the order of
centimeters or less. Therefore, the performance of the mimicking UAV will be
limited.

� The mimicking control system for the Parrot AR.Drone 2.0 is a feedforward
“bang-bang” control design, due to the position of the vehicle not being re-
ported by the Parrot API, and the control inputs requiring full throttle to
achieve movement along the lateral axes.

� Although the Kalman filtering used for centroid pixel coordinates has shown
excellent performance for recorded video streams, it has not been completely
implemented in the onboard vehicle due to the Kalman filter implementation
within OpenCV being buggy, and no UKF support being available. A custom
DKF and UKF implementation would need to be added to the onboard real-
time code.

� The proposed image reduction method will work only if the vision-based detec-
tion and tracking algorithm are able to provide stable detection of the target
UAV. The method needs to be broadened to handle and recover from detection
and tracking losses which may occur during experimental conditions.

5.3 Future Work

Further works needs to be done to iterate on the results presented in this thesis.
Most of the points discussed in this section will focus on reducing or eliminating the
limitations listed in Section 5.2.

While the issues with the mimicking control system accuracy for the 3DR Solo are
due to insufficiently precise positioning sensors, the Parrot AR.Drone 2.0 system is
less complicated and thus easier to modify. By installing an external optical motion
capture system in the lab, the system could gain a high-accuracy position aiding
signal, which could be used to implement a true closed-loop control design. However,
the introduction of such a system would force the use of a ground computer, and
thus require a change in the software framework. Regarding the 3DR Solo, a solution
for the GPS positioning inaccuracy would be to replace the existing receiver with an
after-market GPS module employing RTK, such as the Hero+ RTK GPS module.
RTK-GPS or Real-Time Kinematic GPS is one of the most precise commercially
available positioning technologies, ”with which users can obtain centimeter level
accuracy of the position in real-time by processing carrier-phase measurements of
GPS signals” [60].

More real-world testing is required to fully assess the performance of the image
reduction technique and to evaluate the gains in scanning frame rate. Also, more
work needs to be done for handling the transition between reduced image processing
and whole-image processing, e.g. when the target is visually lost and needs to be
found again.

Finally, regarding the depth perception limits, two approaches can be consid-
ered: either employ a different vision-based detection algorithm which handles larger
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depth ranges, or adapt the existing system to use a secondary approach to depth
estimation, for instance stereo vision or a dedicated depth sensor. Adding a second
camera would entail challenges with mounting two cameras and synchronizing their
video feeds, but the results could be on par with the current performance along the
X and Y lateral axes. A dedicated depth sensor, such as ultrasound or radar, could
prove to be an easier approach, but it will also be associated with extra noise which
would need to be filtered out by the onboard software.
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