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Abstract

A matroid bandit is the online version of combinatorial optimization on a matroid, in which

the learner chooses K actions from a set of L actions that can form a matroid basis. Many

real-world applications such as recommendation systems can be modeled as matroid bandits.

In such learning problems, the revealed data may involve sensitive user information. There-

fore, privacy considerations are crucial. We propose two simple and practical differentially

private algorithms for matroid bandits built on the well-known Upper Confidence Bound

algorithms and Thompson Sampling. The key idea behind our first algorithm, Differentially

Private Upper Confidence Bound for Matroid Bandits (DPUCB-MAT), is to construct dif-

ferentially private upper confidence bounds. The second algorithm, Differentially Private

Thompson Sampling for Matroid Bandits (DPTS-MAT), is based on the idea of drawing

random samples from differentially private posterior distributions. Both algorithms achieve

O (L ln(n)/∆+ LK ln(n)min {K, ln(n)} /ε) regret bounds, where ∆ denotes the mean re-

ward gap and ε is the required privacy parameter. Our derived regret bounds rely on novel

technical arguments that deeply explore the special structure of matroids. We show a novel

way to construct ordered pairs between the played actions and the optimal actions, which

contributes to decomposing a matroid bandit problem into K stochastic multi-armed ban-

dit problems. Finally, we conduct experiments to demonstrate the empirical performance

of our proposed learning algorithms on both a synthetic dataset and a real-world movie-

recommendation dataset.
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Preface

This thesis is based on the paper with the same title that is accepted at the Conference on

Lifelong Learning Agents - CoLLAs, 2023. The work was primarily done in collaboration

with Bingshan Hu and Nidhi Hegde. Bingshan Hu suggested the regret decomposition in

Chapter 4 and proof ideas for Theorems 9 and 11. Csaba Szepesvári helped refine Chapters
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Chapter 1

Introduction

In this thesis, we study the problem of stochastic optimization on a matroid in a sequential

and adaptive way, while taking privacy considerations into account. A matroid is a combi-

natorial structure that generalizes the notion of independence which will be made precise

in Chapter 2. To protect the privacy of users in the dataset, we employ differential privacy

as it is the de facto notion for privacy-preserving data analysis. We model the stochastic,

sequential and adaptive nature of the problem as a bandit problem.

1.1 Background

A bandit problem is a classic problem to model sequential decision-making under uncertainty.

The name ‘bandit’ comes from slot machines, also called one-armed bandits, in casinos where

a gambler is trying to maximize their total money won by choosing different slot machines.

More generally, a bandit problem is a sequential game between a learner and an environment.

In each round of the interaction, the learner chooses an action (or an “arm”) and gets some

feedback or a reward. The goal of the learner is to choose actions in a way that maximizes

the total expected reward collected over all the rounds of interaction. The central challenge

that the learner faces is the exploitation-versus-exploration dilemma: The learner needs to

decide whether to choose an action that it knows has given a high reward in the past or to

choose a new action that might give an even higher reward.

In this thesis, we study a variant of the bandit problem called stochastic matroid ban-
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dits first proposed by Kveton, Wen, Ashkan, Eydgahi, et al. (2014). Matroids (Whitney,

1935) are well-studied in combinatorial optimization because many common combinatorial

problems, like finding a minimum spanning tree, can be formulated as a matroid optimiza-

tion problem. Solving a combinatorial optimization problem can be computationally hard

in general. However, optimization on a matroid can be solved greedily and hence problems

that can be modeled on a matroid are often computationally efficient.

We are interested in stochastic and online optimization of a matroid using the framework

of matroid bandits. In a stochastic matroid bandit problem, we have a matroidM = (E, I)

and a stochastic environment ν, where E is a set of L items called base arms and I is a

family of independent sets formed using the subsets of E. Each base arm e ∈ E is associated

with a weight or a reward that is independently drawn from a fixed but unknown probability

distribution Pe. The environment ν is given by ν = (Pe : e ∈ E). As matroids generalize

the notion of independence, we are interested in a basis of a matroid which is a maximal

independent set A ∈ I. All the bases of a matroid have the same size denoted by K. Each

basis can be viewed as a super arm which consists of exactly K base arms. In matroid

bandits, we want to learn the basis or the super arm with the maximum total reward by

interacting sequentially with environment ν over n rounds. In each round t ∈ [n], the learner

chooses a super arm At and simultaneously, the environment generates a random reward

vector wt := (wt(e1), wt(e2), . . . , wt(eL)) with independent components for all the base arms

ei ∈ E. At the end of round t, the learner observes each individual reward wt(e) for all

e ∈ At and obtains as return the sum of the rewards of the base arms in At. The goal of

the learner is to choose super arms sequentially to maximize the total return over a finite

number of n rounds.

As a motivating example, consider the problem of sequentially and adaptively recom-

mending a set of diverse movies to users using their movie-ratings data. Such a problem can

be formulated as a matroid bandit problem (Kveton, Wen, Ashkan, Eydgahi, et al., 2014).

In this example, each movie can be characterized by a feature vector denoting the genres

of that movie. The set of feature vectors for all the movies form the set E of base arms.
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In each round, the set of recommended movies can be viewed as a super arm. Since we

would like the recommended movies to have diverse genres, the matroid structure ensures

that the feature vectors of the recommended movies are linearly independent. This means

that the recommended movies do not include movies with similar genres. At the end of the

round, based on the rating feedback from the users, the learning algorithm adjusts its future

recommendations.

Since the learner only observes the weights associated with base arms in the selected

super arm, it still faces the exploitation-versus-exploration dilemma. In each round, the

learner needs to decide whether to choose a super arm with the highest empirical return

based on the past information (exploitation) or choose an under-explored super arm to

gain information about the unknown environment (exploration). Upper Confidence Bound

(UCB)-based (Auer et al., 2002; Garivier et al., 2011) and Thompson Sampling-based learn-

ing algorithms (Kaufmann et al., 2012; Agrawal et al., 2017) are both successful in balancing

the exploitation-versus-exploration trade-off. In the UCB-based algorithms, each arm main-

tains a UCB index, which is an upper bound of the constructed confidence interval around

the mean reward estimate. The learning algorithm makes a decision based on UCB indices

for all the arms. Different from the UCB-based algorithms that rely on the UCB indices to

tackle the exploitation-versus-exploration dilemma, Thompson Sampling-based algorithms

maintain a posterior distribution on a parameter for each arm. For each arm, a random

sample is drawn from the posterior distribution. The learning algorithm makes a decision

based on the random samples for all the arms. If the learning algorithm knows the mean

rewards of all the arms, choosing the arm with the highest mean reward is always the best

strategy to achieve the highest expected reward. However, we do not know the mean re-

wards and seek to learn them. Recall that the learning algorithm aims to maximize the

total expected reward collected during the interaction with the environment. Equivalently,

the performance of bandit algorithms is measured by regret, which represents the expected

cumulative performance gap between always choosing the arm with the highest expected

reward (fixed but unknown) and the arms selected by the learning algorithm.

3



The example of recommending diverse movies highlights the necessity of preserving the

privacy of users. The feedback information from users (e.g. movie ratings) also reveals their

watch history or preferences towards the recommended movies. Being users, we may wish

to keep this information private. Take the Netflix Prize dataset for example. As shown by

Narayanan et al. (2008), just anonymizing the ratings is not enough to preserve privacy. In

this paper, we focus on the learning problem of matroid bandits with differential privacy.

Differential privacy is the most commonly-used notion of privacy for machine learning algo-

rithms (Dwork and Roth, 2014). If a learning algorithm is implemented in a differentially

private manner, the information associated with an individual has almost no impact on the

output of the learning. In other words, differentially private learning algorithms are not

sensitive to information from a single individual. In this work, we focus on ε-differential

privacy, where ε is the privacy parameter. The parameter ε can be viewed as the privacy

budget that can be distributed among different components of the learning algorithm. It

also measures the information leakage by the learning algorithm.

1.2 Contributions

Now, we summarize the key contributions of this work.

1. In this work, we propose two sample efficient and computationally fast differentially

private algorithms for matroid bandits. Our first algorithm, DPUCB-MAT, is built upon

the well-established UCB1 policy of Auer et al. (2002). The regret bound of DPUCB-MAT

is

O (L ln(n)/∆+min {K, log(n)}LK ln(n)/ε) ,

where ∆ is the mean reward gap and ε is the required privacy parameter. Our second

algorithm, DPTS-MAT, is built on Thompson Sampling which has demonstrated com-

petitive practical performances (Chapelle et al., 2011). The regret bound of DPTS-MAT

is

O (L ln(n)/∆+min {K, log(n)}LK ln(n)/ε) +O (K ln(n)/∆) .

4



2. Regarding the regret analysis, we propose a unified approach to decompose the regret

of DPUCB-MAT and DPTS-MAT. Our novel regret decomposition relies on the introduction

of a round-dependent permutation on the order of the base arms in the optimal super

arm. The permutation contributes to decomposing the regret of matroid bandits into

K different stochastic bandit problems.

3. We conduct experiments to evaluate the empirical performance of our proposed algo-

rithms by using both synthetic and real-world movie-recommendation datasets. The

experimental results demonstrate that our proposed differentially private algorithms

are efficient.

Outline of the thesis. We start off by describing the problem setting in Chapter 2. In

this chapter, we define matroid bandits and give an overview of differential privacy. We also

define how differential privacy is formulated in the context of matroid bandits. In the next

chapter, Chapter 3, we discuss some closely related works to that of ours. In Chapter 4, we

describe our algorithms with their regret bounds. Next, in Chapter 5, we provide proofs for

the regret bounds. We then describe our experimental setting and show the experimental

results in Chapter 6. We conclude with a summary and future work in Chapter 7.
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Chapter 2

Setting

In this chapter, we introduce our problem setting formally. We first introduce matroid

bandits. We then introduce differential privacy and discuss differential privacy in the context

of matroid bandit learning algorithms.

2.1 Matroid Bandits

A stochastic matroid bandit (Kveton, Wen, Ashkan, Eydgahi, et al., 2014) problem is a tuple

(M, ν), where M = (E, I) is a matroid and ν is an environment that a learner interacts

with. Before describing how a matroid characterizes the environment, let us first define what

a matroid is.

2.1.1 Matroids

Definition 1. (Matroid (Kveton, Wen, Ashkan, Eydgahi, et al., 2014)). A matroidM is a

tuple (E, I). The first component of a matroidM = (E, I) is a set E of L items and can be

written as E = {1, . . . , L}. The second component I is a family of subsets of E, also called

the family of independent sets, defined by the following three properties.

1. Empty set is independent: ∅ ∈ I.

2. A subset of an independent set is independent: If X ⊂ Y and Y ∈ I, then X ∈ I.

3. Augmentation: If X, Y ∈ I such that |X| = |Y |+ 1, then there exists e ∈ X \ Y such

that Y ∪ {e} ∈ I.
6



A matroid generalizes the idea of independence, for example, in vector spaces. Similar to

vector spaces, a maximal independent set A ∈ I is called a basis of the matroid M. All

the bases have the same cardinality denoted by K. Additionally, if a weight w̄(e) ∈ [0, 1] is

associated with each item e ∈ E, the matroid is called a weighted matroid.

2.1.2 Environment and the Learning Protocol

Recall that each item e ∈ E is called a base arm. Each base arm e is associated with a weight

that is drawn independently of other base arms and independently over time from a fixed

but unknown probability distribution Pe with mean w̄(e). The collection ν = (Pe : e ∈ E)

defines the environment. We assume that Pe is supported on [0, 1]. In matroid bandits,

we are interested in sequentially choosing a basis. Each basis A ⊂ E can be viewed as a

super arm which consists of exactly K base arms. More concretely, we are interested in

learning the super arm with the maximum total weight, i.e., learn the super arm A∗ =

argmaxA∈I
∑︁

e∈A w̄(e). This is the central challenge of matroid bandits. If we knew w̄(e)

for all e ∈ E, the optimal super arm A∗ could be found greedily as shown in Algorithm 1.

For simplicity, we assume that A∗ is unique.

In the matroid bandit problem, we do not assume we know w̄(e) in advance. Instead, a

learner can interact with the environment ν sequentially to learn w̄(e) with the following

learning protocol. In each round t ∈ [n]:

1a. The environment generates a random weight vector wt = (wt(e1), . . . , wt(eL)) with

each entry wt(ei) i.i.d over time according to Pei . Each component of the vector is also

independent of the others.

1b. Simultaneously, the learner selects a super arm At = {at1, . . . , atK} (or, a basis of the

matroid).

2. The learner observes the random weights {wt(e) : e ∈ At} and receives as return the

sum of all the weights in At, i.e., the learner obtains a return f(At, wt) =
∑︁

e∈At wt(e).
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The goal of the learner is to choose super arms sequentially over a finite of n rounds to

maximize the expected cumulative return. Let A∗ := {a∗1, . . . , a∗k, . . . , a∗K} be the optimal

super arm with w̄(a∗1) ≥ . . . ≥ w̄(a∗k) ≥ . . . ≥ w̄(a∗K). We use (pseudo)-regret Rn to measure

the quality of the learner’s strategy for deciding which super arms to choose, which is defined

as

Rn =
n∑︂

t=1

E
[︁
f(A∗, w̄)− f(At, w̄)

]︁
, (2.1)

where the expectation is over the randomness in the learner’s action selection strategy.1

Algorithm 1 Greedy algorithm to find a maximum weight basis of a matroid (Kveton, Wen,
Ashkan, Eydgahi, et al., 2014)

1: Input: Matroid (E, I) and all weights w̄(e) for all e ∈ E; Output: A∗

2: Sort all weights such that w̄(e1) ≥ . . . ≥ w̄(eL) for all ei ∈ E
3: Initialize A∗ = ∅
4: for i = 1, . . . , K do
5: σ(A∗) = {e : e ∈ E \ A∗, A∗ ∪ {e} ∈ I} ▷ Base arms that can be added to A∗

6: ei = argmax
e∈σ(A∗)

w̄(e).

7: A∗ ← A∗ ∪ {ei} ▷ Add the base arm with the highest weight in σ(A∗) to A∗

8: end for

2.2 Differential Privacy

Differential privacy (DP) is the most commonly used notion for preserving the privacy of

individuals in machine learning algorithms. It is based on the idea that the change of a

single user’s data in the dataset cannot impact the output of the learning algorithm too

much. The insensitivity to a single user’s data guarantees that from the algorithm’s output,

an adversary cannot learn the existence or anything useful about that user. In other words,

differential privacy describes a promise made to a user that the output of a differentially

private algorithm would almost be the same even if the user was not present in the dataset.

So the user might as well participate in the dataset for the statistical analysis carried out by

the algorithm.

1Note that w̄ is the mean reward vector accounting for all the base arms.

8



Before we define differential privacy for matroid bandits, we first define it for any ran-

domized mechanism, along with some of its properties.

Definition 2. (Randomized mechanism). A randomized mechanism A is a map A : X ×

[0, 1] → Y, where X is an arbitrary set and Y is a measurable space. On input x ∈ X , the

mechanism also takes in U ∼ Unif[0, 1] and outputs A(x, U) ∈ Y.

Note that in the definition of a randomized algorithm, we have only used a uniformly

distributed random variable. However, this is not restrictive (as long as Y is “reasonable”).

When Y = R, to get samples from any other distribution, we can use the inverse cumulative

distribution function or inverse CDF. This idea is called inverse transform sampling. To

state this formally, for a real-valued random variable X, we let PX denote its probability

distribution (over the reals).

Claim 1. For any A0 : X×Z → R and a distribution P over Z, there exists A : X×[0, 1]→

R such that for all x ∈ X , PA0(x,Z) = PA(x,U) where Z ∼ P , U ∼ Unif[0, 1].

Proof. Let µ(x, r) = PA0(x,Z)((−∞, r])). Let A(x, u) = sup{r ∈ R : µ(x, r) < u}. Note

that u ↦→ A(x, u) is measurable because the supremum can be taken over rational numbers

r and the function u ↦→ µ(x, r) − u is measurable. Now, for any s ∈ R, since the map

u ↦→ µ(x, u) is lower-semicontinuous and increasing, for any u ∈ [0, 1], A(x, u) ≤ s holds if

and only if u ≤ µ(x, s). Thus,

P(A(x, U) ≤ s) = P(U ≤ µ(x, s)) = µ(x, s) .

Since this holds for any s ∈ R, PA(x,U) = PA0(x,Z).

For convenience, we allow (A0, P ) as randomized mechanisms (Definition 2). Next we

define the notion of neighboring datasets which will be used to define differential privacy.

For the remainder of this chapter, we assume that X0 is some arbitrary set.

Definition 3. (Hamming distance). The Hamming distance between x,x′ ∈ X n
0 is defined

as h(x,x′) =
∑︁n

i=1 1 {xi ̸= x′
i}.

9



Definition 4. (Neighboring datasets). x,x′ ∈ X n
0 are neighboring if h(x,x′) = 1.

Intuitively, if we view each xi ∈ X0 as a user’s record then neighboring datasets x,x′ ∈ X n
0

differ in one user’s record. We remark that even though x ∈ X n
0 is a tuple, we call it a

dataset. Throughout this thesis, we call such a tuple a dataset following the convention of

the differential privacy literature. Now we are ready to define differential privacy.

Definition 5 (ε-differential privacy for randomized mechanisms (Dwork and Roth, 2014,

Definition 2.4)). Fix ε > 0. A randomized mechanism A is ε-differentially private if for all

measurable S ⊆ Range(A) and for every pair of neighboring datasets x,x′ ∈ X n
0 , we have

P {A(x, U) ∈ S} ≤ eε · P {A(x′, U) ∈ S} ,

where U ∼ Unif[0, 1].

Discussion. Notice that differential privacy is a feature of the algorithm or the mechanism.

Therefore, to ensure differential privacy we need to understand the process that generated

the output from the input data. The privacy parameter ε is used to control how far apart

the output distributions of A are under x and x′. It is usually a small number but not

cryptographically small like 2−100. Making the privacy parameter that small would make

the output distributions too close thereby preventing us from doing anything useful with the

algorithm.

We next state two important properties of differential privacy: post-processing and group

privacy. Post-processing states that the privacy guarantee cannot get worse if we release a

function of the output instead of the output itself. Group privacy states that the differential

privacy guarantee degrades nicely for a group of people.

Lemma 2 ((Dwork and Roth, 2014, Proposition 2.1)). Let A : X × [0, 1] → Y and A′ :

Y × [0, 1]→ Z be two randomized mechanisms. If A(·, U) is ε-DP with U ∼ Unif[0, 1], then

the composition A′(A(·, U), U ′) is also ε-DP, where U ′ ∼ Unif[0, 1] is independent of U .
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Lemma 3. (Group privacy). Let x and x′ be two datasets that differ in k positions for

k ≥ 1. If a randomized mechanism A is ε-differentially private, then for all measurable

S ⊆ Range(A), we have

P {A(x, U) ∈ S} ≤ ekε · P {A(x′, U) ∈ S} ,

where U ∼ Unif[0, 1].

The property of group privacy also gives us a lower bound on the privacy parameter below

which no utility can be extracted from a private mechanism. Clearly, two datasets can differ

at maximum n positions. Using group privacy for such datasets, we have that k = n and

P {A(x, U) ∈ S} ≤ enε · P {A(x′, U) ∈ S} .

So if ε≪ 1/n, then the output distributions on the two datasets would almost be the same.

This means that for two datasets that are completely different from each other, the output

distributions are almost the same, which is undesirable (assuming the algorithm needs to

compute something non-constant). Therefore, we want that for useful differential private

algorithms

ε≫ 1

n
.

2.2.1 Privacy guarantees a user gets

The next theorem shows how the success rate of an adversary whose goal is to recover

private information about any one particular user is controlled by an ε-differential private

algorithm. In fact, the result shows that the failure rate of such an adversary is high (and

close to random chance), when ε is close to zero. The theorem’s value is that it gives a

precise expression of how high the failure rate of any adversary needs to be.

To state this result, we need a little preparation. Fix a user i ∈ [n], whose data we need

to protect. Let s : X0 → {0, 1} describe the bit of information we want to protect. The

question we ask is as follows:
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Given a dataset x ∈ X n
0 , with what success rate can an adversary recover

s(xi) having access to (i) the data of all the users (x1, . . . , xi−1, xi+1, . . . , xn) other

than user i, (ii) the output Y of an ε-differentially private algorithm A (i.e.,

Y = A(x, U) with U uniform random from [0, 1]) and (iii) the algorithm A itself.

Of course, if s(x) = 0 for all x ∈ X0, there is no secret, hence to make the problem

meaningful, assume that there is x, x′ ∈ X0 such that s(x) ̸= s(x′). In any case, based

on the above problem definition, an adversary would use some function r : Y → {0, 1} to

recover the bit where Y = Range(A) is the set of values A can produce. (The function r

here can depend on (x1, . . . , xi−1, xi+1, . . . , xn): this dependence is suppressed to minimize

clutter.) Then, given x−i = (x1, . . . , xi−1, xi+1, . . . , xn), we define the failure probability of

the adversary who uses r to be

φx−i
(r) = max

x∈X0

Px,x−i
{r(Y ) ̸= s(x)} .

where Px,x−i
is a probability distribution under which the distribution of Y is the same as

the distribution of Y = A(x, U) and U is a uniform [0, 1]-valued random variable where

x = (x1, . . . , xi−1, x, xi+1, . . . , xn). In words, the failure rate of the adversary using r is the

probability of the adversary failing to recover the truth for some value of x ∈ X0 of the ith

user’s data. For completeness, one could also allow adversaries who randomize. The weakest

adversary then is the one who would guess the secret bit based on the outcome of flipping

an unbiased coin. The failure probability of such an adversary is 1/2. More intelligent

adversaries should have smaller failure rates. Note that adversaries are assessed by their

worst-case failure rate. We do this to capture the notion that we want the failure rate to

reflect how much the adversary can learn from some data release. Indeed, an adversary who

always bets on just a fixed bit of either zero or one will succeed with probability one(!) in

some cases. Yet, this adversary clearly did not learn much about the user from the data

release, but was just merely lucky when its bet was correct.

Theorem 4 (Limits of adversaries against differentially private algorithms). Take any ε > 0,

any non-constant function s : X0 → {0, 1}, any integer i ∈ [n] and any incomplete dataset

12



x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ X n
0 that is missing the data of user i. Then, the best

failure rate that an adversary can achieve against an ε-differentially private algorithm even

when given x−i is 1/(1 + eε):

inf
r:Y→{0,1}

φx−i
(r) ≥ 1

1 + eε
.

While the theorem does not allow for randomizing adversaries, this is only for the sake of

simplicity. At the price of a slightly more complicated notation, the theorem extends easily to

randomizing adversaries, who are subject to the same limits as non-randomizing adversaries.

This should also be intuitive: An adversary should not be able to gain information about

the “secret” hidden from them by just injecting extra noise in the way they decipher the

secret.

Proof. Fix r : Y → {0, 1}. Let x, x′ ∈ X0 such that s(x) = 0 and s(x′) = 1.

These exist because s is not constant. Let x = (x1, . . . , xi−1, x, xi+1, . . . , xn) and x′ =

(x1, . . . , xi−1, x
′, xi+1, . . . , xn). Let A be the ε differentially private mechanism. Let Y =

Range(A) be the range of values that A can produce. Let Px = Px,x−i
and Px′ = Px′,x−i

.

Then,

Px′ {r(Y ) ̸= 0} = P {r(A(x′, U)) ̸= 0}

= P
{︁
A(x′, U) ∈ Y \ r−1(0)

}︁
≤ eεP

{︁
A(x, U) ∈ Y \ r−1(0)

}︁
(using Definition 5)

= eεPx {r(Y ) ̸= 0} . (2.2)
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Hence, we have

φx−i
(r) ≥ max {Px {r(Y ) ̸= s(x)} ,Px′ {r(Y ) ̸= s(x′)}}

= max {Px {r(Y ) ̸= 0} ,Px′ {r(Y ) ̸= 1}}

= max {Px {r(Y ) ̸= 0} , 1− Px′ {r(Y ) ̸= 0}}

≥ max {Px {r(Y ) ̸= 0} , 1− eεPx {r(Y ) ̸= 0}} (because of Eq. (2.2))

≥ inf
0≤γ≤1

max {γ, 1− eεγ} (because Px {r(Y ) ̸= 0} ∈ [0, 1])

=
1

1 + eε
, (γ = 1/(1 + eε) is the minimizer)

finishing the proof.

Figure 2.1 shows the failure probability of an adversary as a function of the privacy

parameter ε. From the figure, we can see that for small values of ε, we can think of the

failure probabilities of optimal adversaries to be linearly related to ε.

There are results similar to Theorem 4 in the literature, for example, Wasserman et al.

(2010, Theorem 2.4). They use the Neyman-Pearson lemma to derive their result which,

as our proof shows, is not needed. Our proof is essentially the same as that of Geng et al.

(2014) who is reproving the result of Wasserman et al. (2010). Kairouz et al. (2015) shows

a similar result for (ε, δ)-differential privacy.

While differential privacy guarantees some protection for the user, any information release,

differentially private or not, can give an adversary critical information with which they can

recover some protected information about a user. To explain how this can happen, consider

the “height parable” told by Dwork and Naor (2010):

“Suppose one’s exact height were considered a sensitive piece of information,

and that revealing the exact height of an individual were a privacy breach. Assume

that the database yields the average heights of women of different nationalities.

An adversary who has access to the statistical database and the auxiliary infor-

mation “Terry Gross is two inches shorter than the average Lithuanian woman”

learns Terry Gross’ height, while anyone learning only the auxiliary information,
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Figure 2.1: Failure probability of an adversary. The shaded region represents that the
failure probability of an adversary is restricted to, as a function of ε. The blue curve repre-
sents the line 1/2− ε/4. This linear approximation gives a lower bound for the adverseries’
failure probabilities, which, for small values of ϵ is tight.
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without access to the average heights, learns relatively little.”

From the above example, we see that there is more information learned about a user (Terry

Gross) after using the average height information than before. How is this possible given

Theorem 4? For example, let the secret bit to be protected is whether Terry Gross is shorter

than a certain number h. Let Terry Gross be the first user in the database, i.e., the height of

Terry Gross is x1. Furthermore, let x2, . . . , xn be the height of the other Lithuanian women.

In the setting of Theorem 4, the adversary has access to x2, . . . , xn. Now, if the adversary

also knows that Terry Gross’s height is 2 inches below the average then they can set up

the linear equation x1 = 1
n

∑︁n
i=1 xi − 2, from which x1 = n

n−1

(︁
1
n

∑︁n
i=2 xi − 2

)︁
, which the

adversary can easily evaluate, and from which, the bit that was supposed to be protected

can be obtained with certainty.

Why does this not contradict Theorem 4? This is because in this result we implicitly

removed the possibility of adversaries that have prior information about what configurations

in X n
0 are possible. The theorem can be trivially extended to the case of adversaries with

such prior information. Let V ⊂ X n
0 be this set. Given V , the definition of the worst-case

failure rate of adversaries that know V needs to be modified to

φx−i,V (r) = max{Px,x−i
{r(Y ) ̸= s(x)} : (x1, . . . , xi−1, x, xi+1, . . . , xn) ∈ V } .

The modified theorem looks as follows:

Theorem 5 (Limits of adversaries that have prior knowledge). Take any ε > 0, any non-

constant function s : X0 → {0, 1}, any integer i ∈ [n] and any incomplete dataset x−i =

(x1, . . . , xi−1, xi+1, . . . , xn) ∈ X n
0 that is missing the data of user i. Let V ⊂ X n

0 arbitrary.

Then, if

there exists x, x′ ∈ X0 such that (x1, . . . , xi−1, x, xi+1, . . . , xn),

(x1, . . . , xi−1, x
′, xi+1, . . . , xn) ∈ V and s(x) ̸= s(x′)

(2.3)

then

inf
r:Y→{0,1}

φx−i,V (r) ≥
1

1 + eε
.
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As the proof goes through without any changes from the last one, it is omitted.

It is also clear that Eq. (2.3) is a necessary condition in the sense that if this condition is

not met, there will be adversaries who can uncover the protected bit of the user with certainty,

no matter the protection applied in the data release. This is, however, an uninteresting case

as the adversary, before the release of the data, already possessed the knowledge that was

supposed to be protected, assuming that they had access to x−i. This nuance is important:

The theorems are formulated so that they allow the adversary to have access to x−i – this

makes the guarantees for user i stronger. However, if an adversary did not have access to

x−i, but if x−i is “leaked”, the adversary gains extra knowledge concerning user i. This

calls attention to the fact that adversaries can gain decisive information about a user even

if the user’s data is not part of the data released. Furthermore, this is not even impacted by

the fact whether the data release was itself differentially private: Any information release,

together with the “right background information”, may reveal sensitive information about

any person: This is just the very nature of information release.

To sum up the discussion, the guarantee for a user that differential privacy can give is

that regardless of whether their data is included in the dataset or not, adversaries will have

approximately the same information about them. Thus, a user whose power is to decide

whether they are willing to participate in a process that leads to data release, should have

no concerns. Yet, this clearly does not imply that differentially private data release will

not contribute to information available to potential adversaries about users. At the risk

of repeating the obvious, the fact that information is released at all can and generally will

increase the knowledge available to anyone who has access to the released information.

Next we discuss how we can make a randomized mechanism differentially private.

2.2.2 The Laplace Mechanism

One way to ensure differential privacy is to add calibrated noise to mask the output of a

function. This function typically computes a statistic that we are interested in, e.g., an

estimate of the mean reward. The scale of the added noise is defined using the sensitivity of
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the function:

Definition 6. (Sensitivity (Dwork and Roth, 2014)). The sensitivity of a function f : X →

R is defined to be ∆f = supx,x′:h(x,x′)=1 |f(x)− f(x′)|.

The idea of adding calibrated noise to satisfy ε-differential privacy is captured by the

Laplace mechanism. In the Laplace mechanism, noise added is calibrated according to the

sensitivity of f and sampled from a Laplace distribution. A Laplace distribution with mean

0 and scale b > 0 has density

hb(y) =
1

2b
e−

|y|
b .

We denote by Lap(b) a Laplace distribution with mean 0 and variance 2b2. For brevity, we

will sometimes denote X ∼ Lap(b) as simply Lap(b). We next define the Laplace mechanism.

Definition 7. (Laplace Mechanism (Dwork, 2006; Dwork, McSherry, et al., 2006)). Let f :

X → R be some function with sensitivity ∆f . For the function f , a dataset x ∈ X , and the

privacy parameter ε > 0, the Laplace mechanism Af,ε is given by the pair (Af,ε,Lap(∆f/ε))

where Af,ε : X n
0 × R→ R is defined as

Af,ε(x, z) = f(x) + z (x ∈ X n
0 , z ∈ R) . (2.4)

Af,ε takes as input a datasaet x and a random variable Z ∼ Lap(∆f/ε) and adds Z to f(x).

Theorem 6. (Dwork and Roth, 2014). The Laplace mechanism given by Definition 7 is

ε-differentially private.

Proof. Fix f : X n
0 → R, the neighboring datasets x and x′. Let Z ∼ Lap(∆f/ε). Let

px and px′ be the density functions of Af,ε(x, Z) and Af,ε(x
′, Z), respectively. Take any real
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z ∈ R. Then we have

px(z)

px′(z)
=

exp
(︂
− ε

∆f
|z − f(x)|

)︂
exp

(︂
− ε

∆f
|z − f(x′)|

)︂
= exp

(︃
ε(|z − f(x′)| − |z − f(x)|)

∆f

)︃
≤ exp

(︃
ε · |f(x′)− f(x)|

∆f

)︃
≤ exp(ε) ,

where the first inequality follows from the triangle inequality and the second inequality

follows from the definition of sensitivity. Now, if the ratio of the densities is bounded by eε

for any z ∈ R, it is easy to see that the ratio of the output probability distributions for any

S ⊆ R is also bounded by eε.

The next theorem reformulates (Dwork, 2006, Theorem 5). We also include a concise

proof. We will use this theorem to prove the privacy guarantees of our algorithms (Algorithm

2 and Algorithm 5) in Chapter 4. To introduce the algorithm we let Lapp(σ) denote the

Laplace distribution for p-dimensional vectors with scale σ. The density of this distribution

at z ∈ Rp is hσ(z1) . . . hσ(zp) (and in particular, the components of a p-dimensional Laplace

distribution are independent of each other).

Theorem 7. Let f1 : X n
0 → Rp, f2 : X n

0 × Rp → Rp, . . ., fd : X n
0 × (Rp)d−1 → Rp for some

positive integers p and d. Let F be defined by

R1 = f1(x) + Y1

R2 = f2(x,R1) + Y2

...

Rd = fd(x,R1, . . . , Rd−1) + Yd ,

where x ∈ X n
0 and Y1, . . . , Yd ∼ Lapp(σ) are Rp-valued and are independent of each other.2

2Formally, the mechanism is (F,Lap⊗d
p (σ)), where F : X × P d → P d where P = Rp and for x ∈ X , y =

(y1, . . . , yd) ∈ P d, F (x, y)1 = f1(x)+y1, F (x, y)2 = f2(x, F (x, y)1)+y2, . . . , F (x, y)d = fd(x, F (x, y)d−1)+yd.
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Then F is ε-differentially private with ε = supz∈Rd−1 ∆fz̃/σ, where

fz̃(x) = (f1(x), f2(x, z1), . . . , fd(x, z1, . . . , zd−1))

and for f : X n
0 → Rd, ∆f = supx,x′:h(x,x′)=1 ∥f(x)− f(x′)∥1 is the sensitivity of f .

Proof. Let px be the density of F (x, ·) ∈ Rd and let hσ be the density of all the Yi’s.

Note that hσ(z) ∝ e−
∥z∥1
σ . Since (Y1, . . . , Yd) are independent of each other, by the chain rule

for densities, we have

px(z1, . . . , zd) = hσ(z1 − f1(x)) · hσ(z2 − f2(x, z1)) · . . . · hσ(zd − fd(x, z1, . . . , zd−1)).

Hence, for two neighboring datasets x, x′ ∈ X n
0 , we have

px(z)

px′(z)
=

exp
(︁
− 1

σ
(∥z1 − f1(x)∥1 + ∥z2 − f2(x, z1)∥1 + . . .)

)︁
exp

(︁
− 1

σ
(∥z1 − f1(x′)∥1 + ∥z2 − f2(x′, z1)∥1 + . . .)

)︁
= exp

(︃
1

σ
(∥z1 − f1(x

′)∥1 − ∥z1 − f1(x)∥1

+ ∥z2 − f2(x
′, z1)∥1 − ∥z2 − f2(x, z2)∥1 + . . .)

)︃
≤ exp

(︃
1

σ
(∥f1(x)− f1(x

′)∥1 + ∥f2(x, z1)− f2(x
′, z1)∥1 + . . .)

)︃
≤ exp

(︄
∆f̃ z1,...,zd−1

σ

)︄
≤ exp

(︄
supz∈Rd−1 ∆fz̃

σ

)︄
,

finishing the proof.

2.2.3 Differential Privacy in Matroid Bandits

First, let us define a matroid bandit algorithm.

Definition 8. (Matroid bandit algorithm). Let AM be the set of all bases of a matroidM.

Let WK := [0, 1]K, where K is the total number of base arms. A matroid bandit algorithm

is a map B :
(︂⋃︁

t∈[n−1]A
t
M ×W t

K

)︂
× [0, 1]→ AM.

In applications, the data that needs to be protected is Wn
L since the rewards wt come

from users. For example, in movie-recommendation, if movie e is recommended to a user in
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round t, then the feedback wt(e) could be whether the user has watched the movie or not,

which we want to keep private. An adversary can try to reconstruct a particular user’s data

using the output of a matroid bandit algorithm, which is a super arm. Protection from such

adversaries can be provided by making the the mechanism that maps user data to super

arms differentially private. So we restate the definition of differential privacy for matroid

bandits in terms of such a map.

Definition 9. (Differential privacy for matroid bandits). Fix ε > 0. LetWL := [0, 1]L, where

L is the total number of base arms and recall that AM is the set of all bases of a matroid

M. Further, for a ⊂ [L] and w ∈ WL, let w(a) := (wa1 , . . . , wak) with a1 < . . . < ak.

We call a matroid bandit algorithm B ε-differentially private if B̃ : Wn
L × [0, 1] → An

M

defined by B̃(w1, . . . ,wn, U) = (a1, . . . , an) where

a1 = B(U)

a2 = B(a1,w1(a1), U)

...

an = B(a1,w1(a1), . . . , an−1,wn−1(an−1), U) ,

is ε-differentially private, where U ∼ Unif[0, 1].

In the matroid bandit setting, each reward vector w ∈ WL can encode private information

associated with an individual, which we wish to protect. Definition 9 expresses the view that

the data to be protected is (w1, . . . ,wn) ∈ Wn
L. A dataset for a matroid bandit algorithm

can be viewed as a sequence of reward vectors (w1, . . . ,wn) ∈ Wn
L which is fed into B̃ as

defined in Definition 9. Recalling the definition of neighboring datasets, two reward sequences

w1:n ∈ Wn
L and w′

1:n ∈ Wn
L are called neighboring if the Hamming distance between them is

1, that is, h(w1:n,w
′
1:n) = 1. More concretely, w1:n and w′

1:n are neighboring if they differ in

one round r ∈ [n]. That is, wr ̸= w′
r and ws = w′

s for all s ∈ [n] \ {r}.
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Chapter 3

Related Works

Kveton, Wen, Ashkan, Eydgahi, et al. (2014) initiated the study of learning the maximum

weight basis for matroid bandits. They proposed a UCB-based algorithm, Optimistic Ma-

troid Maximization (OMM), that achieves the optimal O(L ln(n)/∆) regret bound. The key

idea in OMM is to construct upper confidence bounds based on UCB1 of Auer et al. (2002) for

all base arms. As OMM is built upon UCB1, OMM cannot be asymptotically optimal. Later,

Talebi et al. (2016) proposed another UCB-based algorithm, Efficient Sampling for Matroids

(KL-OSM), that achieves the asymptotically optimal L ln(n)∆/dKL(µ∗−∆, µ∗)+o(ln(n)) re-

gret bound, where µ∗ denotes the mean reward of an optimal base arm and dKL(a, b) denotes

the KL-divergence between two Bernoulli distributions with parameters a, b ∈ (0, 1). The

key idea to achieve asymptotic optimality is to construct upper confidence bounds based

on KL-UCB of Garivier et al. (2011). Other than the aforementioned UCB-based algo-

rithms, Wang et al. (2018) proposed Combinatorial Thompson Sampling (CTS), a Thomp-

son Sampling-based algorithm with Beta priors, for combinatorial bandits. Combinatorial

bandits generalize the setting of matroid bandits with the following key features. In com-

binatorial bandits, the set of super arms does not have any special structure that we can

utilize. Also, the size of a super arm is at most K instead of exactly K. Since matroid

bandits are special cases of combinatorial bandits, by a refined regret analysis, CTS achieves

an O(L ln(n)/∆) +O (L/∆4) regret for matroid bandits.

Mishra et al. (2015) initiated the study of stochastic multi-armed bandits with differential
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privacy and proposed both the UCB-based and Thompson Sampling-based learning algo-

rithms. Their proposed algorithms rely on the post-processing property of differential pri-

vacy (Lemma 2). More specifically, they first guarantee that the internal learning algorithm

computing the empirical means is ε-differentially private (ε-DP). Then, from post-processing,

they immediately conclude that the proposed bandit algorithms are ε-DP. However, their pro-

posed learning algorithms are very sub-optimal due to the usage of the Tree-based Mechanism

(Chan et al., 2011; Dwork, Naor, et al., 2010) to inject noise to preserve privacy. Later, Chen

et al. (2020) introduced differential privacy in combinatorial bandits and proposed a UCB-

based algorithm, Differentially Private Combinatorial UCB (CUCB-DP), for differentially

private combinatorial bandits. CUCB-DP achieves an O
(︁
LK ln2(n)/∆

)︁
+ Õ

(︁
LK ln3(n)/ε

)︁
regret upper bound and an Ω (LK ln(n)/∆+ LK ln(n)/ε) regret lower bound.1

Recently, Hu, Huang, et al. (2021) and Azize et al. (2022) devised optimal UCB-based

algorithms and Hu and Hegde (2022) devised an optimal Thompson Sampling-based algo-

rithm with Beta priors for differentially private stochastic bandits. These algorithms all

achieve the optimal O (L ln(n)/∆+ L ln(n)/ε) regret bound. The key ideas to achieve op-

timality are the usage of “laziness” and “forgetfulness” along with the Laplace Mechanism

(Theorem 6) to inject noise to mask the true empirical means instead of using the Tree-based

Mechanism. The idea of laziness is to update the differentially private empirical mean of

an arm in a delayed manner. We only update the DP empirical mean of an arm when a

certain number of observations are available from that arm. The idea of forgetfulness is

to use fresh observations to update the DP empirical mean. Once observations have been

used, we abandon them. By the definition of DP, since the change of one reward vector only

impacts the aggregated reward by at most one, from the Laplace Mechanism, we can add

a noise drawn from Lap (1/ε) to the aggregated reward of each arm when updating the DP

empirical mean.

Our proposed UCB-based algorithm DPUCB-MAT (Algorithm 2) can be viewed as a differ-

entially private version of OMM of Kveton, Wen, Ashkan, Eydgahi, et al. (2014). When

1The Õ(·) notation hides an extra log log n factor.
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ε → ∞, i.e., in the non-private matroid bandit setting, the regret bound of DPUCB-MAT

(Theorem 9) recovers the regret bound of OMM. With a suitable privacy parameter ε, our

regret bound removes an extra log(n) factor as compared to the regret bound shown by

Chen et al. (2020). Although our proposed Thompson Sampling-based algorithm DPTS-MAT

(Algorithm 5) could be seen as a differentially private version of CTS (Wang et al., 2018)

for matroid bandits, we use different proof techniques. Section 4.1.3 presents more detail.

Table 3.1 summarizes the regret bounds for matroid bandits in both the non-private and the

private settings. A point to note here is that the regret bound for the TS-based algorithm

in the non-private setting in Table 3.1 is for Beta priors whereas our private result is for

Gaussian priors.

Algorithms Non-private results Private results (ours)

UCB1-based O
(︂

L ln(n)
∆

)︂
O
(︂

L ln(n)
∆

+ min{K,log(n)}LK ln(n)
ε

)︂
TS-based O

(︂
L ln(n)

∆
+ L

∆4

)︂
O
(︂

L ln(n)
∆

+ min{K,log(n)}LK ln(n)
ε

)︂
Table 3.1: Regret upper bounds for UCB and TS-based algorithms for matroid bandits.
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Chapter 4

Algorithms and Results

In this chapter, we present our algorithms and their theoretical guarantees. We first start

with some notation used by our algorithms.

Notation. We denote by Te(t−1) the “effective” number of observations used to compute

the empirical mean of a base arm e ∈ E by the end of round t−1 and denote by ŵe,Te(t−1)(t−1)

the empirical mean of a base arm e using these Te(t − 1) observations. Let ε0 := ε/K. Let

w̃e,Te(t−1)(t − 1) = ŵe,Te(t−1)(t − 1) + Lap(1/ε0)
Te(t−1)

denote the differentially private (DP) mean

estimate of a base arm e, where Lap(1/ε0) is a random variable sampled from a Laplace

distribution with scale 1/ε0. For each base arm e, we store the reward observations in a list

Te, which is initialized as an empty set. We also have a counter se which is incremented by

1 every time we update the differentially private mean estimate w̃e,Te(t−1)(t− 1).

For the regret bounds presentation, we also need the following notation. Let Ā
∗
= E \A∗

denote the set of all sub-optimal base arms. Let ∆e,k = w̄(a∗k)−w̄(e) denote the mean reward

gap between a base arm e ∈ E and an optimal base arm a∗k ∈ A∗. For a sub-optimal base

arm e ∈ Ā
∗
, let ∆e,min = mink∈[K] ∆e,k denote the minimum mean reward gap.

4.1 Algorithms

Now we introduce our two algorithms. Our algorithms are based on the popular ideas of

Upper Confidence Bound and Thompson Sampling. For both algorithms, we use the Laplace

mechanism (Definition 7) to add noise and ensure differential privacy. To have a differentially
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private version of ŵe,Te(t−1)(t − 1), both the algorithms employ the ideas of “laziness” and

“forgetfulness” introduced in Hu, Huang, et al. (2021), Azize et al. (2022), and Hu and

Hegde (2022). Using the idea of laziness, we do not update the differentially private mean

estimates w̃e,Te(t−1)(t − 1) after every round. Instead, we update it after every 2k number

of rounds for k = 0, 1, . . .. Using the idea of forgetfulness, we do not reuse the observations

after using them once to update w̃e,Te(t−1)(t−1). Both the ideas of laziness and forgetfulness

help in ensuring that we do not add too much noise in the mean estimates. The noise to be

added during each update of w̃e,Te(t−1)(t− 1) is a random variable sampled from the Laplace

distribution as described in Chapter 2. The Laplace noise added has a scale of 1/ε0, where

ε0 = ε/K. We explain later why we need to calibrate the noise in this way. Both our

algorithms also pay a regret of LK for the first L rounds. This can be slightly improved by

using the algorithm in Edmonds (1965). However, the extra LK regret is a lower order term

in our bounds hence the improved initialization is not required in our case.

4.1.1 Differentially Private UCB for Matroid Bandits

The central idea of UCB-based algorithms is to construct confidence bounds around the

mean estimates. Then the action with the largest upper bound on the confidence intervals

is selected. This ensures sufficient exploration of the arms in the algorithm.

The UCB-based differentially private algorithm for matroid bandits, DPUCB-MAT, is shown

in Algorithm 2. The idea is to construct differentially private upper confidence bound Ut(e)

(Line 5) for each base arm e ∈ E. We construct Ut(e) as

Ut(e) := w̃e,Te(t−1)(t− 1) +

√︄
3 ln(Kt)

Te(t− 1)
+

3 ln(Kt)

ε0 · Te(t− 1)
. (4.1)

We set Ut(e) := ∞ when Te(t − 1) = 0. After we have all these private upper confidence

bounds Ut(e) in hand, DPUCB-MAT selects the best super arm At in a greedy way, i.e., invoking

Algorithm 1 with all Ut(e) as input and At as output. In other words, DPUCB-MAT plays

At = argmaxA∈I
∑︁

e∈A Ut(e). Then, the rewards wt(e) for e ∈ At are revealed. For each

wt(e), we add it to the corresponding Te (Line 9). If the number of observations of any base
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arm e hits 2se+1, then, it is the right time to update the DP mean estimate w̃e,Te(t−1)(t− 1)

using the 2se+1 observations stored in Te (Line 12). Since now all the observations in Te have

been processed, we increment the counter se by 1 and reset Te (Line 13).

Note that when any of the Ut(e)’s are ∞, they are placed at the end after the sorting in

Algorithm 1. If there are multiple ∞ values, ties are broken randomly.

Algorithm 2 DPUCB-MAT

1: Input: Matroid (E, I) and privacy parameter ε
2: Set Te ← 0, se ← −1, w̃e,Te ← 0, Te ← (), where ε0 = ε/K ▷ Initialization
3: for t = 1, 2, . . . do
4: for e ∈ E do

5: Ut(e) := w̃e,Te +
√︂

3 ln(Kt)
Te

+ 3 ln(Kt)
ε0·Te

▷ Set to ∞ when Te = 0

6: end for
7: Invoke Algorithm 1 with Ut(e) for all e ∈ E as input and At as output
8: Incur reward for choosing super arm At

9: Add wt(e) to Te for all e ∈ At

10: Find Bt = {e ∈ At : |Te| = 2se+1} ▷ Find all the base arms with the number of
observations hitting 2se+1

11: for e ∈ Bt do

12: Te ← 2se+1, w̃e,Te =
(
∑︁

s∈Te s)+Lap(1/ε0)

Te

13: se ← se + 1, Te ← () ▷ Doubling the “effective” number of observations and reset
Te

14: end for
15: end for

We now present theoretical guarantee for Algorithm 2. We first provide the privacy

guarantees for Algorithm 2.

Theorem 8. Algorithm 2 is (2ε)-differentially private.

Proof. We use Theorem 7 and the postprocessing property (Lemma 2) to show that

Algorithm 2 is differentially private. First, we express the algorithm in the notation of

Theorem 7.

Let WL = [0, 1]L, where L is the number of base arms. We let W = Wn
L. We define

the functions f1 : W → RL, f2 : W × RL → RL, . . . , fi : W × (RL)i−1 → RL, . . . ,

fn : W × (RL)n−1 → RL as follows: Fix i ∈ [n], w ∈ W , zi ∈ (RL)i−1. Here, recalling

Theorem 7, zi encodes all the private information created in previous steps of the algorithm
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and fi(w, zi) is the information to be protected in step i. In our case, the private information

is going to be the sums computed in Line 12. To define the function for all base arms e,

the function fi will not only store these sums but also return zero at coordinates which

correspond to base arms e ∈ [L] whose private information is not updated in round i.

Algorithm 3 shows how the functions ft’s can be computed in the context of Algorithm 2:

lines in red show the difference compared to Algorithm 2 and lines in blue show how the

output ft∗ is calculated for some t∗. Apart from the matroid and ε, Algorithm 3 takes as

input the target time t∗ for which we want to calculate f , the user data w = (w1, . . . , wn),

and function values z = (z1, · · · , zt∗−1) for previous time steps. The change on Line 9

emphasizes the fact that user data is not accessed on Line 9 but only on Line 12, where the

sum
∑︁

t∈Te wt(e) is calculated. On Line 15 - Line 18, we are just calculating dummy outputs

so that the ft is well-defined for all e ∈ E. Further, κe is the last time when the stats of e

was updated.

We also need the function ai(z) that computes the super-arm to be recommended in round

i (line 7). That this super-arm can be computed based on z only follows by construction,

again. For z = (z1, . . . , zn−1) ∈ (RL)n−1 define

a∗(z) = (a1, a2(z1), . . . , an(z1, . . . , zn−1)) .

Thus, a∗ : (RL)n−1 → (2[L])n.

Now, to express our algorithm in the notation of Theorem 7, we also need to compute

noisy sums

R1 = f1(w) + Y1

R2 = f2(w, R1) + Y2

...

Rn = fn(w, R1, . . . , Rn−1) + Yn ,

where Y1, . . . , Yn ∈ RL are independent, with Yi ∈ Lap(1/ε0) (each component of Yi is

sampled from Lap(1/ε0)). We show this computation in Algorithm 4, which outputs a
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sequence (rt,e)t∈[n],e∈[L] of noisy sums. Again, the changes compared to Algorithm 2 are in

red and how the output is computed is in blue.

Note that for some t∗ and e ∈ Bt∗ , rt∗,e = ft∗(w; z1:t∗−1) + (yt)e, where ft∗ is the output

from Algorithm 3. That is, Algorithm 4 indeed computes noisy sums as desired. Since user

data is accessed only on Line 12 in Algorithm 4, for computing private statistics we only

care about values of rt∗,e for e ∈ Bt∗ , that is, base arms whose statistics are updated in time

step t∗. So for fixed user data w = (w1, . . . , wn), if e ∈ Bt∗ , then the sum
∑︁

s∈Te s computed

on Line 12 is the same as ft∗(w; z1:t−1). Therefore, for fixed user data w and a fixed noise

sequence y1, . . . , yn, we have rt∗,e = ft∗(w; z1:t∗−1) + (yt)e.

Further, note that that for fixed user data w = (w1, . . . , wn) and noise sequence y1, · · · , yn,

the super arms chosen by Algorithm 4 is the same as Algorithm 2. Let Algorithm 2 also take

as input the same noise sequence y1, . . . , yn as Algorithm 4, that is, Lap(1/ε0) on Line 12 in

Algorithm 2 is (yt)e for some t and e. Again, since the user data is accessed only on Line 12,

and the noise sequence is same for both Algorithm 2 and Algorithm 4, the UCBs computed

on Line 5 will be the same for both the algorithms and therefore, the super arms chosen on

Line 7 will also be the same.

It follows that, with the user weights fixed to w, running Algorithm 2 is equivalent to

computing R1, . . . , Rn as defined above and then returning a∗(R1, . . . , Rn−1).

Now, by Theorem 7, the mechanism w ↦→ (R1, . . . , Rn) is κ-private with κ = ∆∗ε0 =

∆∗ε/K where

∆∗ = sup
z∈(RL)n−1

∆fz̃

and for z = (z1, . . . , zn−1) ∈ (RL)n−1,

fz̃(w) = (f1(w), f2(w, z1), . . . , fn(w, z1, . . . , zn−1))

while for f : Wn
L → (RL)n−1, ∆f = supw,w′∈Wn

L:h(w,w′)=1 ∥f(w) − f(w′)∥1. By the postpro-

cessing lemma (Lemma 2), the mechanism w ↦→ a∗(R1, . . . , Rn−1) is also κ-private and thus

the result follows if we show that ∆∗ ≤ 2K.
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To upper bound ∆∗, fix z ∈ (RL)n−1 and let w,w′ ∈ W be neighbours. In particular,

assume that w,w′ differ only at their i-th component: wi ̸= w′
i and wj = w′

j for j ̸= i. Then,

∥fz̃(w)− fz̃(w
′)∥1 = ∥f1(w)− f1(w

′)∥1 + ∥f2(w, z1)− f2(w
′, z1)∥1

+ . . .

+ ∥fn(w, z1:n−1)− fn(w
′, z1:n−1)∥1 ,

where we introduced the shorthand z1:i = (z1, . . . , zi).

Since w and w′ differ in their ith component, and this is not accessed until round i, we

have

f1(w) = f1(w
′), . . . , fi−1(w, z1:i−2) = fi−1(w

′, z1:i−2) . (4.2)

Now, the super-arm chosen in round i is ai(z1:i−1), by the definition of ai. Let e1, . . . , eK

denote the elements of this super-arm: ai(z1:i−1) = {e1, . . . , eK}. It follows that this choice

is independent of the weights of user i. Let τ1(w, z1:n), . . . , τK(w, z1:n) be the first rounds

after round i when wi(e1), . . . , wi(eK) are accessed in line 12.

Let i ≤ t ≤ n be such that t /∈ {τ1(w, z), . . . , τK(w, z), τ1(w
′, z), . . . , τK(w

′, z)}. For such

a t, we have

ft(w, z1:t−1) = ft(w
′, z1:t−1) .

Now consider the case when t ∈ {τ1(w, z), . . . , τK(w, z), τ1(w
′z), . . . , τK(w

′, z)}. If e /∈

{ei : t = τi(w, z) or t = τi(w
′, z) for i ∈ [K]}, then

(ft(w, z1:t−1))e = (ft(w
′, z1:t−1))e .

Otherwise,

|(ft(w, z1:t−1))e − (ft(w
′, z1:t−1))e| ≤ 1

since wi(e) ∈ [0, 1]. Hence,

∥fz̃(w)− fz̃(w
′)∥1 =

n∑︂
t=i

∥ft(w, z1:t−1)− ft(w
′, z1:t−1)∥1

≤
n∑︂
t=i

| {ej : t = τj(w, z) or t = τj(w
′, z) for j ∈ [K]} |

≤ 2K .
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It follows that ∆fz̃ ≤ 2K and since z is arbitrary, it also follows that ∆∗ ≤ 2K, finishing

the proof.

Algorithm 3 DPUCB-MAT-for-DP-proof

1: Input: Matroid (E, I), privacy parameter ε,
target time t∗ ∈ [n], user data w = (w1, . . . , wn) ∈ ([0, 1]L)n,
function values for previous time steps z = (z1, . . . , zt∗−1) ∈ (RL)t∗−1.
Output: ft∗(w, z1, . . . , zt∗−1).

2: Set Te ← 0, se ← −1, w̃e,Te ← 0, z0,e = 0, κe = 0, Te ← (), where ε0 = ε/K ▷
Initialization

3: for t = 1, 2, . . . , t∗ do
4: for e ∈ E do

5: Ut(e) := w̃e,Te zκe,e +
√︂

3 ln(Kt)
Te

+ 3 ln(Kt)
ε0·Te

▷ Set to ∞ when Te = 0

6: end for
7: Invoke Algorithm 1 with Ut(e) for all e ∈ E as input and At as output
8: Incur reward for choosing super arm At

9: Add wt(e) to Te for all e ∈ At

Add t to Te for all e ∈ At

10: Find Bt = {e ∈ At : |Te| = 2se+1} ▷ Find all the base arms with the number of
observations hitting 2se+1

11: for e ∈ Bt do

12: Te ← 2se+1, w̃e,Te =
(
∑︁

s∈Te s)+Lap(1/ε0)

Te
, κe = t

if t = t∗ then ft(w; z1:t−1)e =
∑︁

i∈Te wi(e)

13: se ← se + 1, Te ← () ▷ Doubling the “effective” number of observations and reset
Te

14: end for
15: if t = t∗ then
16: for e ∈ [L] \Bt do
17: ft(w; z1:t−1)e = 0
18: end for
19: end if
20: end for
21: return ft∗(w; z1:t∗−1)

We remark that the algorithm can be made ε-differentially private by choosing ε0 as ε/2K.

Now we show the regret guarantee for Algorithm 2.

Theorem 9. The regret of Algorithm 2 is

Rn =
∑︁

e∈Ā∗
:∆e,min>0

O
(︂

ln(Kn)
∆e,min

+ min{K,log(Kn)}·ln(Kn)
ε/K

)︂
, (4.3)
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Algorithm 4 DPUCB-MAT-for-DP-proof-2

1: Input: Matroid (E, I) and privacy parameter ε
Noise sequence y1, . . . , yn ∈ RL, user data w = (w1, . . . , wn) ∈ ([0, 1]L)n

2: Set Te ← 0, se ← −1, w̃e,Te ← 0, Te ← (), where ε0 = ε/K ▷ Initialization
3: for t = 1, 2, . . . do
4: for e ∈ E do

5: Ut(e) := w̃e,Te +
√︂

3 ln(Kt)
Te

+ 3 ln(Kt)
ε0·Te

▷ Set to ∞ when Te = 0

6: end for
7: Invoke Algorithm 1 with Ut(e) for all e ∈ E as input and At as output
8: Incur reward for choosing super arm At

9: Add wt(e) to Te for all e ∈ At

10: Find Bt = {e ∈ At : |Te| = 2se+1} ▷ Find all the base arms with the number of
observations hitting 2se+1

11: for e ∈ Bt do

12: Te ← 2se+1, w̃e,Te =
(
∑︁

s∈Te s)+����
Lap(1/ε0)(yt)e

Te
, rt,e =

(︁∑︁
s∈Te s

)︁
+ (yt)e

13: se ← se + 1, Te ← () ▷ Doubling the “effective” number of observations and reset
Te

14: end for
15: end for
16: return (rt,e)t∈[n],e∈[L]

where ∆e,min = min
k∈[K]:∆e,k>0

∆e,k.

Discussion. Algorithm 2 can be viewed as a differentially private version of OMM of

Kveton, Wen, Ashkan, Eydgahi, et al. (2014). When ε → ∞, the differentially private

matroid bandit problem boils down to the non-private matroid bandits. In this special

setting, the regret bound shown in Theorem 9 matches both the regret upper and lower

bounds presented in Kveton, Wen, Ashkan, Eydgahi, et al. (2014). This shows that we pay

an additional min{K,log(Kn)}·ln(Kn)
ε/K

price for introducing differential privacy which goes to 0 as

ε→∞. With a suitable privacy parameter ε, our regret bound improves the state-of-the-art

regret bound presented in Chen et al. (2020) by removing an extra log(n) factor 1.

1For the discussion, we already translate their regret bound (Theorem 8) from combinatorial bandits to
matroid bandits.
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Algorithm 5 DPTS-MAT

1: Input: Matroid M = (E, I) and privacy parameter ε
2: Set Te ← 0, se ← −1, w̃e,Te ← 0, Te ← (), where ε0 =

ε
K

▷ Initialization
3: for t = 1, 2, . . . do
4: for e ∈ E do
5: Set w′

e,Te
(t) := w̃e,Te +

3 ln(Kt)
ε0·Te

▷ Boost the parameters of the posterior
distributions

6: Sample θe(t) ∼ N
(︂
w′

e,Te
(t), 1

Te

)︂
▷ Draw random samples from a Gaussian

distribution
7: end for
8: Invoke Algorithm 1 with θe(t) for all e ∈ E as input and At as output
9: Incur reward for playing super arm At

10: Add wt(e) to Te for all e ∈ At

11: Find Bt = {e ∈ At : |Te| = 2se+1} ▷ Find all the base arms with the number of
observations hitting 2se+1

12: for e ∈ Bt do

13: Te ← 2se+1, w̃e,Te =
(
∑︁

s∈Te s)+Lap(1/ε0)

Te

14: se ← se + 1, Te ← () ▷ Doubling the “effective” number of observations and reset
Te

15: end for
16: end for

4.1.2 Differentially Private Thompson Sampling for Matroid Ban-
dits

Thompson Sampling-based algorithms assume a prior distribution on the unknown mean

reward parameters of each arm. They also assume a likelihood function which is the prob-

ability of a reward given the mean reward parameter. The posterior is proportional to the

prior times the likelihood. Gaussians prior and likelihood have the nice property that the

posterior is also Gaussian. In each round, such algorithms sample a mean reward parameter

from the posterior and pick the arm with the highest mean reward in the sample. As our

goal is to design learning algorithms that have good regret guarantees with a finite time

horizon, we can use Gaussian priors and likelihood2.

Our Thompson Sampling differentially private algorithm for matroid bandits, DPTS-MAT, is

shown in Algorithm 5. The general idea is to boost the parameter of the posterior distribution

2As proved in Agrawal et al. (2017), Beta-Bernoulli Thompson Sampling can be asymptotically optimal
while Thompson Sampling with Gaussian prior and likelihood may not be asymptotically optimal.
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from w̃e,Te(t−1)(t − 1) to w′
e,Te(t−1)(t), where w′

e,Te(t−1)(t) = w̃e,Te(t−1)(t − 1) + 3 ln(Kt)/(ε0 ·

Te(t − 1)) for each base arm e ∈ E. Then, DPTS-MAT draws a random sample θe(t) ∼

N
(︂
w′

e,Te(t−1)(t), 1/Te(t− 1)
)︂
for all e ∈ E. We set θe(t) :=∞ if Te(t−1) = 0. After we have

all these posterior samples θe(t) in hand, DPTS-MAT selects the best super arm At in a greedy

way, i.e., invoking Algorithm 1 with all θe(t) as input and At as output. That is also to say,

DPTS-MAT plays At = argmaxA∈I
∑︁

e∈A θe(t). DPTS-MAT uses the same way as Algorithm 2

to process the revealed observations, i.e., it only updates the DP mean estimate of a base

arm e ∈ At if the number of observations in Te hits 2se+1.

Similar to Algorithm 2, when any of the θe(t)’s are ∞, they are placed at the end after

the sorting in Algorithm 1. If there are multiple ∞ values, ties are broken randomly. We

now present theoretical guarantees for Algorithm 5.

Theorem 10. Algorithm 5 is (2ε)-differentially private.

We omit the proof of Theorem 10 as it is almost identical to Theorem 8.

Theorem 11. The regret of Algorithm 5 is

Rn =
∑︁

e∈Ā∗
:∆e,min>0

O
(︂

ln(Kn)
∆e,min

+ min{K,log(Kn)}·ln(Kn)
ε/K

)︂
+

∑︁
k∈[K]:∆min,k>0

O
(︂

ln(Kn)
∆min,k

)︂
, (4.4)

where ∆e,min = min
k∈[K]:∆e,k>0

∆e,k and ∆min,k = min
e∈Ā∗

:∆e,k>0
∆e,k.

Discussion. Different from Theorem 9 where the regret bound only has one term which

is linear in the size of the sub-optimal base arms, there are two terms in Theorem 11. The

first term is the same as the regret bound shown in Theorem 9 and it captures the regret for

introducing differential privacy. This term characterizes the regret in all the rounds when

the posterior distributions of the sub-optimal base arms are not concentrated. It is not

surprising that we have the second non-private term which is linear in the size of the optimal

base arm set. The second term upper bounds the regret among all the rounds when the

posterior distributions of the optimal base arms are not concentrated. As will be shown in

Section 4.1.3, the core of our regret decomposition is to decompose a matroid bandit problem
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into K stochastic bandit problems. For each of the K bandit problems, we get an additional

regret of O (ln(n)/∆min) for all the rounds when the Gaussian posterior distributions of

the optimal arm are not concentrated. To get this additional term, we modify the regret

analysis in Agrawal et al. (2017) for the case when using Gaussian priors. In contrast, when

using Beta priors, the additive term can be Õ (1/∆4
min), where Õ hides problem-dependent

constants. Since the regret for a matroid bandit is composed of K different stochastic bandit

problems, we have the second term in Theorem 11.

4.1.3 Regret Decomposition

In this section, we present an approach to decompose the regret of any index-based algo-

rithm. For matroid bandits, an index-based algorithm computes some index Jt(e) for all

e ∈ E then uses Algorithm 1 to compute At. Both DPUCB-MAT (Algorithm 2) and DPTS-MAT

(Algorithm 5) are index-based. The core of regret decomposition is to introduce a round-

dependent permutation πt over {1, . . . , K}. Using πt, the regret can be decomposed into

regret of K different stochastic bandit problems. The construction of πt is inspired by

Lemma 1 in Kveton, Wen, Ashkan, Eydgahi, et al. (2014).

Recall At = {at1, at2, . . . , atK} with the base arm indices Jt(a
t
1) ≥ Jt(a

t
2) ≥ . . . ≥ Jt(a

t
K).

The indices Jt(e) for e ∈ E are UCBs in Algorithm 2 and posterior samples in Algorithm 5.

Also recall A∗ = {a∗1, a∗2, . . . , a∗K} with w̄(a∗1) ≥ w̄(a∗2) ≥ . . . ≥ w̄(a∗K). The purpose of

introducing permutation πt : {1, . . . , K} → {1, . . . , K} is to construct K ordered pairs

between At and A∗ so that we can get the regret of choosing a suboptimal base arm instead

of an optimal one.

We construct πt in a backward order as follows. We first focus on atK . Fix BK ={︁
at1, . . . , a

t
K−1

}︁
. If atK ∈ A∗, i.e., atK = a∗i for some i ∈ [K], we set πt(K) = i, i.e., we

pair atK to itself. If atK /∈ A∗, due to the augmentation property of matroids (Property (3)

in Section 2.1), we set πt(K) = min {i : a∗i ∈ A∗ \BK , BK ∪ {a∗i } ∈ I}, i.e., we can pair atK

with the optimal base arm with the smallest index that can be added to BK to form a ma-

troid basis. Now fix BK−1 =
{︂
at1, . . . , a

t
K−2, a

∗
πt(K)

}︂
. If atK−1 = a∗i for some i ∈ [K], we set
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πt(K− 1) = i. If atK−1 /∈ A∗, we set πt(K− 1) = min {i : a∗i ∈ A∗ \BK−1, BK−1 ∪ {a∗i } ∈ I}.

The same idea is applied to all the remaining base arms atK−2, . . . , a
t
1 in At.

The construction of πt can be summarized as follows. For k = K,K − 1, . . . , 2:

1. Bk =
{︂
at1, . . . , a

t
k−1, a

∗
πt(k+1), . . . , a

∗
πt(K)

}︂
.

2. Let j = min {i ∈ [K] : a∗i ∈ A∗ \Bk, Bk ∪ {a∗i } ∈ I}. Set

πt(k) =

{︄
i, if atk = a∗i for some i ∈ [K] (case 1)

j, otherwise (case 2) .
(4.5)

Next we show that πt is indeed a permutation on [K]. First, let B̃k := Bk ∪
{︂
a∗πt(k)

}︂
.

Note that B̃k ∈ I by the augmentation property of matroids.

Claim 12. |B1̃| = |B2̃| = . . . = |B̃K | = K.

Proof. We show the claim by induction.

Base case: In the base case, we have BK =
{︁
at1, . . . , a

t
K−1

}︁
and |BK | = K − 1. If we are in

case 1 of 4.5, we have atK = a∗i for some i ∈ [K]. Now, since atK /∈
{︁
at1, . . . , a

t
k−1

}︁
and

B̃K = At, we have |B̃K | = |At| = K. If we are in case 2 of 4.5, since a∗πt(K) /∈ BK , we

have |B̃K | = BK̃ + 1 = K.

Induction step: Assume that the claim holds for k = K,K − 1, . . . , l + 1, i.e., |B̃K | =

|B̃K−1| = . . . = |B̃l+1| = K (induction hypothesis). We now show that it also holds

for k = l. Recall B̃l =
{︂
at1, . . . , a

t
l−1, a

∗
πt(l+1), . . . , a

∗
πt(K)

}︂
.

If we are in case 1 of 4.5, we know that atl = a∗i for some i ∈ [K]. Now we have,

B̃l = Bl ∪
{︂
a∗πt(l)

}︂
= B̃l+1. Therefore by the induction hypothesis, |B̃l| = |B̃l+1| = K.

If we are in case 2 of 4.5, we know that B̃l = Bl ∪
{︂
a∗πt(l)

}︂
and a∗πt(l)

/∈ Bl by

construction of πt. Note that Bl = B̃l+1 \
{︂
a∗πt(l)

}︂
. By the induction hypothesis, since

|B̃l+1| = K, we have |Bl| = K − 1. Since a∗πt(l)
/∈ Bl, we have |B̃l| = K − 1 + 1 = K.
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Corollary 13. πt is a permutation on [K].

Proof. By Claim 12, we have |B̃1| =
⃓⃓⃓{︂

a∗πt(1)
, . . . , a∗πt(K)

}︂⃓⃓⃓
= K. This implies that πt is

a permutation on [K].

After applying πt, all the optimal base arms in A∗ will be ordered as

A∗
πt

=
(︁
a∗πt(1), . . . , a

∗
πt(k), . . . , a

∗
πt(K)

)︁
Still, the order of all the base arms in At is (at1, . . . , a

t
k, . . . , a

t
K). Now, we can construct the

following ordered pairs

(︁
at1, a

∗
πt(1)

)︁
, . . . ,

(︁
atk, a

∗
πt(k)

)︁
, . . . ,

(︁
atK , a

∗
πt(K)

)︁
.

It is not hard to verify that each
(︂
atk, a

∗
πt(k)

)︂
has the following properties.

1. If the selected base arm atk in round t is an optimal base arm, i.e., atk ∈ A∗, then its

pair is itself which gives ∆atk,πt(k) = 0 (recall ∆e,k = w̄(a∗k) − w̄(e) for any two base

arms a∗k and e).

2. Given {at1, at2, . . . , atk−1}, both atk and its pair a∗πt(k)
can be added to {at1, at2, . . . , atk−1}

without breaking matroid independence using the construction of πt and the fact that

a subset of an independent set is independent. In other words, both {at1, . . . , atk−1, a
t
k}

and {at1, . . . , atk−1, a
∗
πt(k)
} are in I.

3. If the selected base arm atk in round t is a suboptimal base arm, i.e., atk /∈ A∗, we

have Jt(a
t
k) ≥ Jt(a

∗
πt(k)

). Intuitively, this is because if this was not the case then the

super-arm selection algorithm, Algorithm 1, would have chosen a∗πt(k)
instead of atk.

Recall that Jt would be the UCBs or the posterior samples in round t for Algorithm 2

and Algorithm 5 respectively.

To permute A∗
πt

back to the original order (a∗1, . . . , a
∗
K), we can use π−1

t : {1, . . . , K} →

{1, . . . , K}, the inverse permutation of πt. Note that for each k ∈ [K], we have π−1
t (πt(k)) =

k. We apply π−1
t to permute the ordered sets A∗

πt
and At separately. Applying π−1

t
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over A∗
πt

gives us the original order, which is (a∗1, . . . , a
∗
K). Applying π−1

t over At gives(︂
at
π−1
t (1)

, . . . , at
π−1
t (k)

, . . . , at
π−1
t (K)

)︂
. Based on the new order, we construct the following or-

dered pairs (︂
at
π−1
t (1)

, a∗1

)︂
, . . . ,

(︂
at
π−1
t (k)

, a∗k

)︂
, . . . ,

(︂
at
π−1
t (K)

, a∗K

)︂
. (4.6)

Since a single π−1
t is used to permute both the ordered sets, π−1

t can be viewed as a permu-

tation that permutes

(︁
at1, a

∗
πt(1)

)︁
, . . . ,

(︁
atk, a

∗
πt(k)

)︁
, . . . ,

(︁
atK , a

∗
πt(K)

)︁
to (︂

at
π−1
t (1)

, a∗1

)︂
, . . . ,

(︂
at
π−1
t (k)

, a∗k

)︂
, . . . ,

(︂
at
π−1
t (K)

, a∗K

)︂
.

Recall Ā
∗
= E \ A∗. Now, we are ready to decompose the regret:

Rn =
n∑︂

t=1

E

[︄∑︂
e∈A∗

w̄(e)−
∑︂
e∈At

w̄(e)

]︄
(a)
=

n∑︂
t=1

E

[︄
K∑︂
k=1

(︂
w̄(a∗k)− w̄

(︂
at
π−1
t (k)

)︂)︂]︄

≤
K∑︂
k=1

n∑︂
t=1

E
[︃
∆at

π−1
t (k)

,k · 1
{︃
∆at

π−1
t (k)

,k > 0

}︃]︃

=
K∑︂
k=1

∑︂
e∈Ā∗

:∆e,k>0

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
·∆e,k

⏞ ⏟⏟ ⏞
Ik

.

(4.7)

Equality (a) uses the ordered pairs shown in (4.6). Note that Ik can be viewed as the regret

of a stochastic bandit problem with a∗k as the optimal arm and
{︁
e ∈ Ā

∗
: ∆e,k > 0

}︁
as the

set of sub-optimal arms. The regret bounds for both DPUCB-MAT (Theorem 9) and DPTS-MAT

(Theorem 11) can be derived based on the regret decomposition shown in (4.7). We defer

the details of the proof to Chapter 5.
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Chapter 5

Regret Analysis

For the regret analysis, we will need the following concentration inequalities.

5.1 Concentration Inequalities

Lemma 14. (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables with

each Xi ∈ [ai, bi]. Then, for any ϵ > 0, we have

P

(︄⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

(Xi − EXi)

⃓⃓⃓⃓
⃓ ≥ ϵ

)︄
≤ 2 exp

(︃
−2n2ϵ2∑︁n

i=1(bi − ai)2

)︃
. (5.1)

Lemma 15. ((Dwork and Roth, 2014, Fact 3.7); tail probability for Laplace distribution).

If Y ∼ Lap(b), for any 0 < δ ≤ 1, we have

P {|Y | ≥ b ln(1/δ)} = δ . (5.2)

Lemma 16. (Gaussian tail bound). Let X be a Gaussian distributed random variable with

mean E[X] and variance σ2, then for any t > 0 we have

P {X − E[X] > t} ≤ e−
t2

2σ2 . (5.3)

In this chapter, we provide proofs for Theorem 9 and Theorem 11. Before we begin, let

us recall the definition of the regret for matroid bandits:

Rn =
n∑︂

t=1

E

[︄∑︂
e∈A∗

w̄(e)−
∑︂
e∈At

w̄(e)

]︄
.
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5.2 Regret Upper Bound Proof for DPUCB-MAT

Notation. Throughout this chapter, we will write 1 {A ∩B} as 1 {A,B} for sets A and

B.

We seek to prove the regret bound for DPUCB-MAT (Algorithm 2) as given in Theorem 9:

Rn =
∑︂

e∈Ā∗
:∆e,min>0

O

(︃
ln(Kn)

∆e,min

+
min {K, log(Kn)} · ln(Kn)

ε/K

)︃
.

The proof of Theorem 9 makes use of the following two claims.

Lemma 17. The regret of DPUCB-MAT (Algorithm 2) is∑︂
e∈Ā∗

:∆e,min>0

O

(︃
ln(Kn)

∆e,min

+
K ln(Kn)

ε/K

)︃
. (5.4)

Lemma 18. The regret of DPUCB-MAT (Algorithm 2) is∑︂
e∈Ā∗

:∆e,min>0

O

(︃
ln(Kn)

∆e,min

+
ln2(Kn)

ε/K

)︃
. (5.5)

Proof of Theorem 9. The proof follows directly by combining Lemmas 17 and 18.

5.2.1 Proofs of Lemmas 17 and 18

To prove Lemmas 17 and 18, we will need Lemmas 20, 21, 22 and 23.

First, to prove Lemma 20, we need the following lemma from Kveton, Wen, Ashkan,

Eydgahi, et al. (2014).

Lemma 19. (Kveton, Wen, Ashkan, Eydgahi, et al., 2014, Lemma 3). Let ∆1 ≥ . . . ≥ ∆K

be a sequence of reals in (0, 1]. Then we have

∆1
1

∆2
1

+
K∑︂
k=2

∆k

(︃
1

∆2
k

− 1

∆2
k−1

)︃
≤ 2

∆K

. (5.6)

We now state and prove Lemma 20.

Lemma 20. Let ∆1 ≥ . . . ≥ ∆K be a sequence of reals in (0, 1]. For any ε0 > 0, we have

∆1
1

∆1 ·min {∆1, ε0}
+

K∑︂
k=2

∆k

(︃
1

∆k ·min {∆k, ε0}
− 1

∆k−1 ·min {∆k−1, ε0}

)︃
≤ 2

∆K

+
K

ε0
.

(5.7)

Proof of Lemma 20.
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Case 1: When ε0 ≥ ∆1, we have

LHS of (5.7) = ∆1
1

∆2
1

+
K∑︂
k=2

∆k

(︃
1

∆2
k

− 1

∆2
k−1

)︃
≤ 2

∆K

≤ 2

∆K

+
K

ε0
, (5.8)

where the first inequality uses Lemma 19.

Case 2: When ∆K ≥ ε0, we have

LHS of (5.7) =
1

ε0
+

1

ε0

K∑︂
k=2

(︃
1− ∆k

∆k−1

)︃
≤ 1

ε0
+

1

ε0
· (K − 1) ≤ K

ε0
+

2

∆K

.

Case 3: When ∆1 ≥ . . .∆j ≥ ε0 ≥ ∆j+1 ≥ . . . ≥ ∆K for some j ∈ [K − 1]. We rewrite

the LHS of (5.7) as

K−1∑︂
k=1

∆k −∆k+1

∆k ·min {∆k, ε0}
+

1

min {∆K , ε0}
=

j∑︂
k=1

∆k −∆k+1

∆k · ε0
+

K−1∑︂
k=j+1

∆k −∆k+1

∆2
k

+
1

∆K

≤
j∑︂

k=1

[︃
1

ε0
− ∆k+1

ε0∆k

]︃
+

K−1∑︂
k=j+1

∆k −∆k+1

∆k ·∆k+1

+
1

∆K

=

[︄
j

ε0
−

j∑︂
k=1

∆k+1

ε0∆k

]︄
+

[︃
1

∆K

− 1

∆j+1

]︃
+

1

∆K

≤ j

ε0
+

2

∆K

≤ K

ε0
+

2

∆K

,

(5.9)

which concludes the proof.

For the next lemmas, let le,k = O

(︃
ln(Kn)

∆e,k·min{∆e,k,ε0}

)︃
.

Lemma 21. For any ε0 > 0, we have

0.50 · le,1 +
rmax,e∑︂
r=2

0.5r−1 · (le,r − le,r−1) = O(ln(Kn)) ·
(︃

2

∆e,min

+
log(Kn)

ε0

)︃
. (5.10)
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Proof of Lemma 21. We have that LHS in (5.10) is

0.50 · le,1 +
rmax,e∑︂
r=2

0.5r−1 · (le,r − le,r−1)

= O(ln(Kn)) ·
(︃
0.50

1

0.50 ·min {0.50, ε0}
+ (5.11)

rmax,e∑︂
r=2

0.5r−1

(︃
1

0.5r−1 ·min {0.5r−1, ε0}
− 1

0.5r ·min {0.5r, ε0}

)︃)︄

= O(ln(Kn)) ·
(︃

2

∆e,min

+
log(Kn)

ε0

)︃
,

where the last step uses Lemma 20.

Note that 0.50 ≥ 0.51 ≥ . . . ≥ 0.5rmax,e and from rmax,e = min {log(1/∆e,min), log(Kn)},

we have 2rmax,e ≤ ∆e,min and rmax,e ≤ log(Kn). Combining the previous two facts, we get

that 5.11 can be written as(︄
0.50

1

0.50 ·min {0.50, ε0}
+

rmax,e∑︂
r=2

0.5r−1

(︃
1

0.5r−1 ·min {0.5r−1, ε0}
− 1

0.5r ·min {0.5r, ε0}

)︃)︄
≤ 2

0.5rmax,e
+

rmax,e

ε0
,

which concludes the proof.

To prove Lemma 23, we need the Lemma 22 which shows that the optimal base arm a∗k

was available when Algorithm 2 or Algorithm 5 selected at
π−1
t (k)

.

Lemma 22. Fix k ∈ [K]. Let At = (at1, . . . , a
t
K) be the super arm chosen by Algorithm 2 in

round t and At
π−1
t

=
(︂
at
π−1
t (1)

, . . . , at
π−1
t (k)

, . . . , at
π−1
t (K)

)︂
be a permutation of At according to

π−1
t . We have

(︂
at
π−1
t (1)

, . . . , at
π−1
t (k−1)

, a∗k, a
t
π−1
t (k+1)

, . . . , at
π−1
t (K)

)︂
∈ I.

Proof of Lemma 22. Let π−1
t (k) = i so that πt(i) = k. Now, permuting At

π−1
t

to the original order, we have At = (at1, . . . , a
t
i, . . . , a

t
K) ∈ I. Since a subset of an inde-

pendent set is independent, we have (at1, . . . , a
t
i−1) ∈ I. From the construction of πt, we

have (at1, . . . , a
t
i−1, a

∗
πt(i)

, . . . , a∗πt(K)) ∈ I and therefore At
i := (at1, . . . , a

t
i−1, a

∗
πt(i)

) ∈ I. Since

At, At
i ∈ I and |At| ≥ |At

i|, using the augmentation property of matroids, we can add ele-

ments from At to At
i such that the result is still independent. We add ati+1, . . . , a

t
K ∈ At to
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At
i such that (at1, . . . , a

t
i−1, a

∗
πt(i)

, ati+1, . . . , a
t
K) ∈ I. Denote (at1, . . . , a

t
i−1, a

∗
πt(i)

, ati+1, . . . , a
t
K)

as At˜ = (ãt1, . . . , ã
t
K) such that ãti = a∗πt(i)

and ãtj = atj for j ̸= i. Permuting At˜ us-

ing π−1
t , we get

(︂
ãt
π−1
t (1)

, . . . , ãt
π−1
t (k−1)

, ãt
π−1
t (k)

, ãt
π−1
t (k+1)

, . . . , ãt
π−1
t (K)

)︂
which is the same as(︂

ãt
π−1
t (1)

, . . . , ãt
π−1
t (k−1)

, ãti, ã
t
π−1
t (k+1)

, . . . , ãt
π−1
t (K)

)︂
. Since ãti = a∗πt(i)

= a∗k and ãtj = atj for

j ̸= i, we get the result.

The next lemma is adapted from Hu, Huang, et al. (2021). An alternate proof can be

found in Azize et al. (2022).

Lemma 23. Fix k ∈ [K]. For a suboptimal base arm e ∈ Ā
∗
and an optimal base arm

a∗k ∈ A∗, we have

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Te(t− 1) > le,k

}︂]︂
∆e,k = O

(︃
1

K2

)︃
. (5.12)

Proof of Lemma 23.

L.H.S =
n∑︂

t=1

P
{︂
at
π−1
t (k)

= e, Te(t− 1) > le,k

}︂
·∆e,k

=
n∑︂

t=1

P {Ut(e) ≥ Ut(a
∗
k), Te(t− 1) > le,k} ·∆e,k

=

log(n)∑︂
s=⌊log(le,k)⌋+1

2s+1−1∑︂
t=2s

P

{︄
w̃e,2s−1(t− 1) +

√︃
3 ln(Kt)

2s−1
+

3 ln(Kt)

ε0 · 2s−1
≥

w̃a∗k,Ta∗
k
(t−1)

(t− 1) +

√︄
3 ln(Kt)

Ta∗k
(t− 1)

+
3 ln(Kt)

ε0 · Ta∗k
(t− 1)

}︄
·∆e,k

≤
log(n)∑︂

s=⌊log(le,k)⌋+1

2s+1−1∑︂
t=2s

log(t)∑︂
τ=0

P

{︄
w̃e,2s−1(t− 1) +

√︃
3 ln(Kt)

2s−1
+

3 ln(Kt)

ε0 · 2s−1
≥

w̃a∗k,2
τ (t− 1) +

√︃
3 ln(Kt)

2τ
+

3 ln(Kt)

ε0 · 2τ

}︄
·∆e,k ,

where the second equality above used the fact that the base arm a∗k was available from

Lemma 22, but instead the suboptimal base arm e was chosen.

Now, when w̃e,2s−1(t− 1)+
√︂

3 ln(Kt)
2s−1 + 3 ln(Kt)

ε0·2s−1 ≥ w̃a∗k,2
τ (t− 1)+

√︂
3 ln(Kt)

2τ
+ 3 ln(Kt)

ε0·2τ , at least
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one of the following events must happen:

w̃e,2s−1(t− 1) ≥ w̄(e) +

√︃
3 ln(Kt)

2s−1
+

3 ln(Kt)

ε0 · 2s−1
(5.13)

w̃a∗k,2
τ (t− 1) ≤ w̄(a∗k)−

√︃
3 ln(Kt)

2τ
− 3 ln(Kt)

ε0 · 2τ
(5.14)

∆e,k

2
<

√︃
3 ln(Kt)

2s−1
+

3 ln(Kt)

ε0 · 2s−1
. (5.15)

We first bound the probability of the first event (5.13) using the concentration bounds for

Laplace random variables (Lemma 15) and Hoeffding’s inequality (Lemma 14).

P

{︄
w̃e,2s−1(t− 1) ≥ w̄(e) +

√︃
3 ln(Kt)

2s−1
+

3 ln(Kt)

ε0 · 2s−1

}︄

≤ P
{︃
w̃e,2s−1(t− 1) ≥ ŵe,2s−1(t− 1) +

3 ln(Kt)

ε0 · 2s−1

}︃
+

P

{︄
ŵe,2s−1(t− 1) ≥ w̄(e) +

√︃
3 ln(Kt)

2s−1

}︄

= O

(︃
1

K2t2

)︃
.

Similarly, for the second event (5.14) we have

P

{︄
w̃a∗k,2

τ (t− 1) ≤ w̄(a∗k)−
√︃

3 ln(Kt)

2τ
− 3 ln(Kt)

ε0 · 2τ

}︄
≤ O

(︃
1

K2t2

)︃
.

We show that the third event (5.15) cannot happen using contradiction. From the R.H.S,

we have √︃
3 ln(Kt)

2s−1
+

3 ln(Kt)

ε0 · 2s−1
≤
√︃

3 ln(Kt)

2log(le,k)
+

3 ln(Kt)

ε0 · 2log(le,k)

=

⌜⃓⃓⎷ 3 ln(Kt)
27 ln(Kn)

∆e,k·min{∆e,k,ε0}
+

3 ln(Kt)

ε0 · 27 ln(Kn)

∆e,k·min{∆e,k,ε0}

<
∆e,k

2
,
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which cannot happen since the L.H.S is
∆e,k

2
. Therefore, we have

n∑︂
t=1

P
{︂
at
π−1
t (k)

= e, Te(t− 1) > le,k

}︂
·∆e,k

≤
log(n)∑︂

s=⌊log(le,k)⌋+1

2s+1−1∑︂
t=2s

log(t)∑︂
τ=0

(︄
P

{︄
w̃e,2s−1(t− 1) ≥ w̄(e) +

√︃
3 ln(Kt)

2s−1
+

3 ln(Kt)

ε0 · 2s−1

}︄
+

P

{︄
w̃a∗k,2

τ (t− 1) ≤ w̄(a∗k)−
√︃

3 ln(Kt)

2τ
− 3 ln(Kt)

ε0 · 2τ

}︄)︄

=

log(n)∑︂
s=⌊log(le,k)⌋+1

2s+1−1∑︂
t=2s

log(t)∑︂
τ=0

O

(︃
1

K2t2

)︃

=
n∑︂

t=1

O

(︃
log(t)

K2t2

)︃
=

∫︂ n

t=1

O

(︃
1

K2t2

)︃
= O

(︃
1

K2

)︃
.

We are now ready to prove our first main lemma, Lemma 17.

Proof of Lemma 17. Recall from the regret decomposition in Chapter 4 (Equation

4.7) that the regret can be expressed as

Rn ≤
K∑︂
k=1

∑︂
e∈Ā∗

:∆e,k>0

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
·∆e,k⏞ ⏟⏟ ⏞

Ie,k

.
(5.16)

The indicator function 1
{︂
at
π−1
t (k)

= e
}︂
will be 1 when the learner selects a sub-optimal base

arm e instead of the optimal base arm a∗k. This further implies the differentially private

upper confidence bound of e is no smaller than that of a∗k in that round, i.e. Ut(e) ≥ Ut(a
∗
k),

which we use to prove Lemma 23. We decompose Ie,k in (5.16) as

Ie,k =
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Te(t− 1) ≤ le,k

}︂]︂
⏞ ⏟⏟ ⏞

Γ1,k,e

∆e,k

+
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Te(t− 1) > le,k

}︂]︂
∆e,k⏞ ⏟⏟ ⏞

Γ2,k,e

.

(5.17)
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From Lemma 23, Γ2,k,e = O(1/K2). Now, we use similar arguments as the one shown by

Kveton, Wen, Ashkan, Eydgahi, et al. (2014) to complete the proof for Lemma 17. As for

a fixed e ∈ Ā
∗
, we maintain a counter Te(t − 1) during learning. The counter counts the

number of observations that are used to compute the differentially private empirical mean

and the value of the counter doubles each time we update the mean. Note that since the

gaps are ordered with ∆e,1 ≥ ∆e,2 ≥ . . . ≥ ∆e,K , we have that le,1 ≤ le,2 ≤ . . . ≤ le,K .

Now, for all the rounds when the values of the counter are in the range of [0, le,1], the total

regret among all these rounds ∆e,1 · O(le,1). Similarly, for all the rounds when the values

of the counter are in the range of [le,1 + 1, le,2], the total regret among all these rounds is

∆e,2 · O (le,2 − le,1) + Γ2,1,e = ∆e,2 · O (le,2 − le,1) + O(1/K). Finally, for all the rounds when

the values of the counter are in the range of [le,K−1 + 1, le,K ], the total regret among all these

rounds is at most ∆e,K ·O (le,K − le,K−1)+
∑︁K−1

k=1 Γ2,k,e = ∆e,K ·O (le,K − le,K−1)+O(1/K). For

all the rounds after the counter hits le,K , the total regret is at most
∑︁K

k=1 Γ2,k,e = O(1/K).

Using the above reasoning and Lemma 20, we have

K∑︂
k=1

Ie,k = ∆e,1 ·O(le,1) +
K∑︂
k=2

∆e,k ·O (le,k − le,k−1) +
K+1∑︂
k=2

k−1∑︂
q=1

Γ2,q,e (5.18)

= O

(︃
ln(Kn)

∆e,min

+
K ln(Kn)

ε0

)︃
, (5.19)

which yields the result in the first claim, i.e., the regret is

∑︂
e∈Ā∗

:∆e,min>0

O

(︃
ln(Kn)

∆e,min

+
K ln(Kn)

ε/K

)︃
.

Now we prove our second main lemma, Lemma 18.

Proof of Lemma 18. Let rmax,e := min
{︂
log
(︂

1
∆e,min

)︂
, log(Kn)

}︂
. For any 1 ≤ r ≤

rmax,e, let Φr := {k ∈ [K] : ∆e,k ∈ [0.5r, 0.5r−1)} and le,r = O
(︂

ln(Kn)
0.5r·min{0.5r,ε0}

)︂
.

The algorithm chooses random super arms for the first L rounds since it needs to select

all the base arms once. In this initialization phase, the maximum regret suffered is LK. As

touched upon in Chapter 4, this can be improved using the matroid partitioning algorithm
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by Edmonds (1965). However this only contributes a lower order term in our regret as we

will see. Therefore we do not need the improved initialization for our purposes. We have

the following regret decomposition.

Rn =
K∑︂
k=1

∑︂
e∈Ā∗

:∆e,k>0

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
·∆e,k

≤ LK +
∑︂
e∈Ā∗

∑︂
k∈[K]:∆e,k≥ 1

Kn

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
·∆e,k

≤ LK +
∑︂
e∈Ā∗

rmax,e∑︂
r=1

∑︂
k∈Φr

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
·∆e,k

≤ LK +
∑︂
e∈Ā∗

rmax,e∑︂
r=1

∑︂
k∈Φr

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
· 0.5r

≤ LK +
∑︂
e∈Ā∗

rmax,e∑︂
r=1

n∑︂
t=1

E
[︂
1

{︂
∃k ∈ Φr : a

t
π−1
t (k)

= e
}︂]︂
· 0.5r⏞ ⏟⏟ ⏞

Ie,r

.

(5.20)

Let Fe,r denote the event that
{︂
∃k ∈ Φr : a

t
π−1
t (k)

= e
}︂
.

Now, we decompose Ie,r as

Ie,r =
n∑︂

t=1

E[1 {Fe,r ∩ {Te(t− 1) ≤ le,r}}]⏞ ⏟⏟ ⏞
Γ1,r,e

·0.5r

+
n∑︂

t=1

E[1 {Fe,r ∩ {Te(t− 1) ≤ le,r}}] · 0.5r⏞ ⏟⏟ ⏞
Γ2,r,e

.

(5.21)

Lemma 23 can be adapted to show that Γ2,r,e = O(1/K2). So the total regret is

∑︂
e∈Ā∗

(︄
0.50 ·O (le,1) +

rmax,e∑︂
r=2

0.5r−1 ·O (le,r − le,r−1) +O(1)

)︄

=
∑︂
e∈Ā∗

O

(︃
ln(Kn)

∆e,min

+
ln2(Kn)

ε0

)︃
,

(5.22)

where we use Lemma 21.

In the next section, we prove Theorem 11.
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5.3 Regret Upper Bound Proof for DPTS-MAT

First, let’s recall the regret bound for DPTS-MAT as given in Theorem 11 that we seek to

prove:

Rn =
∑︂

e∈Ā∗
:∆e,min>0

O

(︃
ln(Kn)

∆e,min

+
min {K, log(Kn)} · ln(Kn)

ε/K

)︃

+
∑︂

k∈[K]:∆min,k>0

O

(︃
ln(Kn)

∆min,k

)︃
.

Now recall from the regret decomposition (Equation 4.7) the regret can be expressed as

Rn ≤
K∑︂
k=1

∑︂
e∈Ā∗

:∆e,k>0

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
·∆e,k .

Similar to the DPUCB-MAT case, the indicator function 1

{︂
at
π−1
t (k)

= e
}︂
will be 1 when the

learner selects a sub-optimal base arm e instead of the optimal base arm a∗k. This implies

that the posterior sample of e is no smaller than the posterior sample of a∗k in that round.

For a fixed k ∈ [K] and e ∈ Ā
∗
, we define the event

Eθe,k(t) := {θe(t) ≤ ye,k} ,

where ye,k := w̄(a∗k)− 1
3
∆e,k , to decompose the regret. By introducing Eθe,k(t), the regret can

be decomposed as

Rn ≤
K∑︂
k=1

∑︂
e∈Ā∗

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e
}︂]︂
·∆e,k

=
K∑︂
k=1

∑︂
e∈Ā∗

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t)
}︂]︂
·∆e,k⏞ ⏟⏟ ⏞

Ve,k⏞ ⏟⏟ ⏞
V

+
K∑︂
k=1

∑︂
e∈Ā∗

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t)
}︂]︂
·∆e,k⏞ ⏟⏟ ⏞

Ue,k⏞ ⏟⏟ ⏞
U

.

(5.23)

We give the following two lemmas to provide bounds on V and U in 5.23, which in turn

gives us the final regret bound.
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Lemma 24. The value of as V as defined in 5.23 is

V =
∑︂
e∈Ā∗

O

(︃
ln(Kn)

∆e,min

+
min {K, ln(Kn)} · ln(Kn)

ε0

)︃
.

Lemma 25. The value of as U as defined in 5.23 is

U =
K∑︂
k=1

O

(︃
ln(Kn)

∆k,min

)︃
.

Proof of Theorem 11. The proof follows directly by combining Lemmas 24 and 25.

5.3.1 Proof of Lemma 24

To show our first main lemma, Lemma 24, we will need the following result.

We first define two events. Let

Ce(t) :=

{︄
|ŵe,Te(t−1)(t− 1)− w̄(e)| ≤

√︄
3 ln(Kt)

Te(t− 1)

}︄

and

Ge(t) :=

{︃
|w̃e,Te(t−1)(t− 1)− ŵe,Te(t−1)(t− 1)| ≤ 3 ln(Kt)

ε0 · Te(t− 1)

}︃
.

So Ce is the event that the mean reward of e ∈ E is within the confidence interval in round

t and Ge is the event that the noise added is not too much in round t. Let Ce(t) and Ge(t)

denote the complements of events Ce(t) and Ge(t), respectively.

Lemma 26. We have
n∑︂

t=1

E
[︂
1

{︂
Ge(t)

}︂]︂
= O

(︃
1

K2n2

)︃
,

and
n∑︂

t=1

E
[︂
1

{︂
Ce(t)

}︂]︂
= O

(︃
1

K2n2

)︃
.
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Proof of Lemma 26. We have

n∑︂
t=1

E
[︂
1

{︂
Ge(t)

}︂]︂
=

n∑︂
t=1

P
{︃
|w̃e,Te(t−1)(t− 1)− ŵe,Te(t−1)(t− 1)| > 3 ln(Kt)

ε0 · Te(t− 1)

}︃

≤
n∑︂

t=1

⌊log(t)⌋∑︂
s=0

P
{︃
|w̃e,2s(t− 1)− ŵe,2s(t− 1)| > 3 ln(Kt)

ε0 · 2s

}︃

≤
n∑︂

t=1

⌊log(t)⌋∑︂
s=0

P
{︃
|2s · w̃e,2s(t− 1)− 2s · ŵe,2s(t− 1)| > 3 ln(Kt)

ε0

}︃

=
n∑︂

t=1

⌊log(t)⌋∑︂
s=0

e−3 ln(Kt)

= O

(︃
1

K2n2

)︃
,

where the second inequality used the concentration bound of a Laplace random variable

(Lemma 15).

Similarly, we have

n∑︂
t=1

E
[︂
1

{︂
Ce(t)

}︂]︂
=

n∑︂
t=1

P

{︄
|ŵe,Te(t−1)(t− 1)− w̄(e)| >

√︄
3 ln(Kt)

Te(t− 1)

}︄

≤
n∑︂

t=1

⌊log(t)⌋∑︂
s=0

P

{︄
|ŵe,2s(t− 1)− w̄(e)| >

√︃
3 ln(Kt)

2s

}︄

≤
n∑︂

t=1

⌊log(t)⌋∑︂
s=0

2e−2·2s· 3 ln(Kt)
2s

= O

(︃
1

K2n2

)︃
,

where the second inequality uses Hoeffding’s inequality (Lemma 14).

Now we are ready to prove our first main lemma, Lemma 24.

Proof of Lemma 24. The proof is very similar to the regret analysis of DPUCB-MAT

(Algorithm 2).
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Let le,k :=
72 ln(nK)

min{∆2
e,k,ε0·∆e,k} . Then, Ve,k can be further decomposed as

Ve,k =
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Te(t− 1) ≤ le,k

}︂]︂
⏞ ⏟⏟ ⏞

Γ1,k,e

·∆e,k

+
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Te(t− 1) > le,k

}︂]︂
·∆e,k⏞ ⏟⏟ ⏞

Γ2,k,e

.

(5.24)

We further decompose Γ2,k,e as

Γ2,k,e =
n∑︁

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Te(t− 1) > le,k

}︂]︂
·∆e,k

≤
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), Te(t− 1) > le,k

}︂]︂
·∆e,k⏞ ⏟⏟ ⏞

γ

+
n∑︂

t=1

E
[︂
1

{︂
Ce(t)

}︂]︂
+

n∑︂
t=1

E
[︂
1

{︂
Ge(t)

}︂]︂
⏞ ⏟⏟ ⏞

=O( 1
K2n2 ), Lemma 26

.

(5.25)

Let de,k := ⌈log (le,k)⌉. Let τs denote the round by the end of which there are exactly 2s

fresh observations that will be used to compute the differentially private empirical mean of

a sub-optimal base arm e. Also, let Ft−1 denote the history till the end of round t− 1 that

contains the selected base arms, the weights observed corresponding to those arms, and the

noise added for differential privacy. Now we upper bound γ. We have

γ =
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), Te(t− 1) > le,k

}︂]︂
·∆e,k

≤
logn∑︂
s=de

E

[︄
τs+1∑︂

t=τs+1

1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), Te(t− 1) > le,k

}︂]︄
·∆e,k

≤
logn∑︂
s=de

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), Te(t− 1) = 2s
}︂]︂
·∆e,k

=

logn∑︂
s=de

n∑︂
t=1

E
[︂
E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ce(t), Ge(t), Te(t− 1) = 2s
}︂
| Ft−1

]︂]︂
·∆e,k

≤
logn∑︂
s=de

n∑︂
t=1

E

⎡⎢⎣1 {Ce(t), Ge(t), Te(t− 1) = 2s}E
[︂
1

{︂
Eθe,k(t)

}︂ ⃓⃓⃓
Ft−1

]︂
⏞ ⏟⏟ ⏞

λ

⎤⎥⎦
⏞ ⏟⏟ ⏞

Λ

·∆e,k .

(5.26)
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Now we consider two cases based on whether the event E = Ce(t) ∩ Ge(t) ∩ {Te(t) = 2s}

happens or not.

Case 1: When E does not happen, we have Λ = 0.

Case 2: When E happens, we construct an upper bound for λ to upper bound Λ. To do so,

recall that θe(t) ∼ N
(︂
w′

e,Te(t−1)(t),
1

Te(t−1)

)︂
, where w′

e,Te(t−1)(t) = w̃e,Te(t−1)(t− 1) + 3 ln(Kt)
ε0·Te(t−1)

and N (µ, σ2) is a normal distribution with mean µ and variance σ2. We have

w′
e,Te(t−1)(t) = w̃e,Te(t−1)(t− 1) +

3 ln(Kt)

ε0 · Te(t− 1)

≤ ŵe,Te(t−1)(t− 1) +
6 ln(Kt)

ε0 · Te(t− 1)
(since 1 {Ge(t− 1)} = 1)

≤ w̄(e) +
6 ln(Kt)

ε0 · Te(t− 1)
+

√︄
3 ln(Kt)

Te(t− 1)
(since 1 {Ce(t− 1)} = 1)

= w̄(e) +
6 ln(Kt)

ε0 · 2s
+

√︃
3 ln(Kt)

2s
(since 1 {Te(t− 1) = 2s} = 1)

≤ w̄(e) +
∆e,k

12
+

∆e,k√
18

(︄
for s ≥

⌈︄
log

72 ln(nK)

min
{︁
∆2

e,k, ε0 ·∆e,k

}︁⌉︄)︄
≤ w̄(e) +

1

3
∆e,k .

We say that a Gaussian random variable with mean µ is stochastically dominated by

a Gaussian random variable with mean µ′ if µ′ ≥ µ. Therefore, by the last display,

a N
(︂
w′

e,Te(t−1)(t),
1

Te(t−1)

)︂
distributed random variable is stochastically dominated by a

N
(︂
w̄(e) + 1

3
∆e,k,

1
Te(t−1)

)︂
distributed random variable.

Next, we introduce the tail function Lµ,σ2(x) that maps x ∈ R to the tail probability

P {X > x} of X ∼ N (µ, σ2). Now, we upper bound E
[︂
1

{︂
Eθe,k(t)

}︂ ⃓⃓⃓
Ft−1

]︂
using stochastic

dominance between two Gaussian distributed random variables. We have
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E
[︂
1

{︂
Eθe,k(t)

}︂ ⃓⃓⃓
Ft−1

]︂
= P

{︃
θe(t) > w̄(e) +

2

3
∆e,k

⃓⃓⃓⃓
Ft−1

}︃
= Lw′

e,Te(t−1)
(t), 1

Te(t−1)

(︃
w̄(e) +

2

3
∆e,k

)︃
≤ Lw̄(e)+ 1

3
∆e,k,

1
Te(t−1)

(︃
w̄(e) +

2

3
∆e,k

)︃
= Lw̄(e), 1

Te(t−1)

(︃
w̄(e) +

1

3
∆e,k

)︃
(♣)

≤ exp

(︄
− 1

18
·∆2

e,k ·
72 ln(nK)

min
{︁
∆2

e,k, ε0 ·∆e,k

}︁)︄

= O

(︃
1

(nK)4

)︃
,

(5.27)

where (♣) uses the concentration bounds for a normally distributed random variable that is

shown in Lemma 16, and the fact that Te(t− 1) = 2s ≥ 72 ln(nK)

min{∆2
e,k,ε0·∆e,k} .

Putting all the pieces together, we have Γ2,k,e = O
(︁

1
K2

)︁
. Now, we use similar arguments

that have been used for the proofs of Theorem 9 to upper bound term V in (5.23). Recall

that Te(t − 1) is a counter that counts the number of fresh observations that have been

used to compute the differentially private empirical mean of a sub-optimal base arm e. For

all the rounds when the counter is in the range of [0, le,1], the total regret among all these

rounds is at most ∆e,1 · O (le,1). For all the rounds when the values of the counter are

in the range of [le,1 + 1, le,2], the total regret among all these rounds is upper bounded by

∆e,2 · O (le,2 − le,1) + Γ2,1,e ≤ ∆e,2 · O (le,2 − le,1) + O(1/K). Finally, for all the rounds when

the values of the counter are in the range of [le,K−1 + 1, le,K ], the total regret among all these

rounds is at most ∆e,K ·O (le,K − le,K−1)+
∑︁K−1

k=1 Γ2,k,e = ∆e,K ·O (le,K − le,K−1)+O(1/K). For

all the rounds after the counter hits le,K , the total regret is at most
∑︁K

k=1 Γ2,k,e = O(1/K).

By using Lemma 20, we have

V =
∑︁
e∈Ā∗

(︃
∆e,1 ·O (le,1) +

K∑︁
k=2

∆e,k ·O (le,k − le,k−1) +
K+1∑︁
k=2

k−1∑︁
q=1

Γ2,q,e

)︃
=

∑︁
e∈Ā∗

O
(︂

ln(Kn)
∆e,min

+ K ln(Kn)
ε0

)︂
.

(5.28)
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Similarly, by using Lemma 21, we have

V =
∑︂
e∈Ā∗

O(ln(Kn)) ·
(︃

2

∆e,K

+
log(Kn)

ε0

)︃
(5.29)

=
∑︂
e∈Ā∗

O

(︃
ln(Kn)

∆e,min

+
ln2(Kn)

ε0

)︃
. (5.30)

Combining (5.28) and (5.29), we have

V =
∑︂
e∈Ā∗

O(ln(Kn)) ·
(︃

2

∆e,K

+
log(Kn)

ε0

)︃
=
∑︂
e∈Ā∗

O

(︃
ln(Kn)

∆e,min

+
min {K, ln(Kn)} · ln(Kn)

ε0

)︃
.

5.3.2 Proof of Lemma 25

To prove Lemma 25, we need the following results. The proof of Lemma 28 is omitted and

can be found in Agrawal et al. (2017).

For the next lemma, let Y θ
e,k(t) := P

{︁
θa∗k(t) > ye,k

⃓⃓
Ft−1

}︁
.

Lemma 27. For all t ∈ N we have

P
{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t)
⃓⃓⃓
Ft−1

}︂
≤

1− Y θ
e,k(t)

Y θ
e,k(t)

P
{︂
at
π−1
t (k)

= a∗k, Eθe,k(t), Ga∗k
(t)
⃓⃓⃓
Ft−1

}︂
. (5.31)

Proof of Lemma 27. We start by noting that the event Ga∗k
(t) is determined by the

history Ft−1.

Case 1: If Ft−1 is the one such that Ga∗k
(t) is false, then both sides of the inequality

shown in (5.31) are zero, and the inequality trivially holds.

Case 2: If Ft−1 is the one such that Ga∗k
(t) is true, we can omit Ga∗k

in both sides in

(5.31). Let π−1
t (k) = i and At

i−1 =
{︁
at1, . . . , a

t
i−1

}︁
be the set of the first i − 1 base arms

selected greedily by Algorithm 5. To complete the proof, it suffices to show

P
{︂
at
π−1
t (k)

= e, Eθe,k(t)
⃓⃓⃓
Ft−1, A

t
i−1

}︂
≤

1− Y θ
e,k(t)

Y θ
e,k(t)

P
{︂
at
π−1
t (k)

= a∗k, Eθe,k(t)
⃓⃓⃓
Ft−1, A

t
i−1

}︂
. (5.32)
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Let σ(At
i−1) =

{︁
e : e ∈ E \ At

i−1, A
t
i−1 ∪ {e} ∈ I

}︁
be the set of base arms that can be added

to the current solution set At
i−1. Note that a∗k ∈ σ(At

i−1) and a∗k /∈ At
i−1.

We first construct an upper bound for the LHS of (5.32). We have

P
{︂
at
π−1
t (k)

= e, Eθe,k(t)
⃓⃓⃓
Ft−1, A

t
i−1

}︂
≤ P

{︁
θj(t) ≤ ye,k, ∀j ∈ σ(At

i−1)
⃓⃓
Ft−1, A

t
i−1

}︁
(♠)
= P

{︁
θa∗k(t) ≤ ye,k

⃓⃓
At

i−1,Ft−1

}︁
·

P
{︁
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
⃓⃓
Ft−1, A

t
i−1

}︁
= P

{︁
θa∗k(t) ≤ ye,k

⃓⃓
Ft−1

}︁
· P
{︁
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
⃓⃓
Ft−1, A

t
i−1

}︁
= (1− Y θ

e,k(t)) · P
{︁
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
⃓⃓
Ft−1, A

t
i−1

}︁
,

(5.33)

where (♠) uses the fact that θa∗k(t) and all base arms in σ(At
i−1) are independent.

Similarly, the RHS of (5.32) is lower bounded by

P
{︂
at
π−1
t (k)

= a∗k, Eθe,k(t)
⃓⃓⃓
Ft−1, A

t
i−1

}︂
≥ P

{︁
θa∗k(t) > ye,k ≥ θj(t),∀j ∈ σ(At

i−1) \ {a∗k}
⃓⃓
Ft−1, A

t
i−1

}︁
= P

{︁
θa∗k(t) > ye,k

⃓⃓
Ft−1A

t
i−1

}︁
·

P
{︁
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
⃓⃓
Ft−1, A

t
i−1

}︁
= Y θ

e,k(t) · P
{︁
θj(t) ≤ ye,k,∀j ∈ σ(At

i−1) \ {a∗k}
⃓⃓
Ft−1, A

t
i−1

}︁
.

(5.34)

Combining (5.33) and (5.34) gives

P
{︂
at
π−1
t (k)

= e, Eθe,k(t)
⃓⃓⃓
Ft−1, A

t
i−1

}︂
≤

1− Y θ
e,k(t)

Y θ
e,k(t)

P
{︂
at
π−1
t (k)

= a∗k, Eθe,k(t)
⃓⃓⃓
Ft−1, A

t
i−1

}︂
. (5.35)

To get the stated result, we use the law of total expectation and the fact that Y θ
e,k is deter-
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mined by Ft−1. We have

P
{︂
at
π−1
t (k)

= e, Eθe,k(t)
⃓⃓⃓
Ft−1

}︂
=E

[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t)
}︂ ⃓⃓⃓
Ft−1 = Ft−1

]︂
=E
[︂
P
{︂
at
π−1
t (k)

= e, Eθe,k(t)
⃓⃓⃓
At

i−1,Ft−1

}︂ ⃓⃓⃓
Ft−1 = Ft−1

]︂
≤E

[︄
1− Y θ

e,k(t)

Y θ
e,k(t)

P
{︂
at
π−1
t (k)

= a∗k, Eθe,k(t)
⃓⃓⃓
At

i−1,Ft−1

}︂ ⃓⃓⃓⃓⃓Ft−1 = Ft−1

]︄

=
1− Y θ

e,k(t)

Y θ
e,k(t)

P
{︂
at
π−1
t (k)

= a∗k, Eθe,k(t)
⃓⃓⃓
Ft−1

}︂
,

(5.36)

where the only inequality uses (5.35).

For the next lemma, let θ̂ ∼ N
(︃
ŵa∗k,Ta∗

k
(t−1)

(t− 1), 1
Ta∗

k
(t−1)

)︃
.

Lemma 28. (Agrawal et al., 2017, Lemma 2.13). Let τs be the round by the end of which

we use fresh 2s observations to update the empirical mean of an optimal base arm a∗k. Then,

we have

E

[︄
1− Y θ̂

r,k(τs + 1)

Y θ̂
r,k(τs + 1)

]︄
≤

{︄
O(1) ∀s ,
O
(︁

1
L2n

)︁
s ≥ log

(︁
l∗e,k
)︁
,

where l∗e,k :=

⌈︃
log

(︃
288 ln(L2(n+e32))

∆2
e,k

)︃⌉︃
.

Now we are ready to prove the second main lemma for the regret bound of DPTS-MAT,

Lemma 25.

Proof of Lemma 25.

Recall

U =
K∑︂
k=1

∑︂
e∈Ā∗

n∑︂
t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t)
}︂]︂
·∆e,k⏞ ⏟⏟ ⏞

Ue,k

. (5.37)
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Let l∗e,k :=

⌈︃
288 ln(L2(n+e32))

∆2
e,k

⌉︃
and d∗e,k = log

(︁
l∗e,k
)︁
. We first decompose Ue,k as

Ue,k =
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t)
}︂]︂
·∆e,k

≤
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t)
}︂]︂

+
n∑︂

t=1

E
[︂
1

{︂
Ga∗k

(t)
}︂]︂

⏞ ⏟⏟ ⏞
O( 1

K2 ), Lemma 26

=
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t), Ta∗k

(t− 1) ≤ l∗e,k

}︂]︂
⏞ ⏟⏟ ⏞

Γ1,k,e

·∆e,k

+
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t), Ta∗k

(t− 1) > l∗e,k

}︂]︂
·∆e,k +O

(︃
1

K2

)︃
⏞ ⏟⏟ ⏞

Γ2,k,e

.

(5.38)

Recall Y θ
e,k(t) := P

{︁
θa∗k(t) > ye,k

⃓⃓
Ft−1

}︁
. Then, we have

Γ1,k,e =
n∑︂

t=1

E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t), Ta∗k

(t− 1) ≤ l∗e,k

}︂]︂
=

n∑︂
t=1

E
[︂
E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t), Ta∗k

(t− 1) ≤ l∗e,k

}︂ ⃓⃓⃓
Ft−1

]︂]︂
=

n∑︂
t=1

E
[︂
E
[︂
1

{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t)
}︂
· 1
{︁
Ta∗k

(t− 1) ≤ l∗e,k
}︁ ⃓⃓⃓
Ft−1

]︂]︂
=

n∑︂
t=1

E
[︂
1
{︁
Ta∗k

(t− 1) ≤ l∗e,k
}︁
· P
{︂
at
π−1
t (k)

= e, Eθe,k(t), Ga∗k
(t)
⃓⃓⃓
Ft−1

}︂]︂
(a)

≤
n∑︂

t=1

E

[︄
1
{︁
Ta∗k

(t− 1) ≤ l∗e,k
}︁
·
1− Y θ

e,k(t)

Y θ
e,k(t)

P
{︂
at
π−1
t (k)

= a∗k, Eθe,k(t), Ga∗k
(t)
⃓⃓⃓
Ft−1

}︂]︄

≤
n∑︂

t=1

E

⎡⎢⎢⎢⎣1{︁Ta∗k
(t− 1) ≤ l∗e,k

}︁
·
1− Y θ

e,k(t)

Y θ
e,k(t)

1

{︂
at
π−1
t (k)

= a∗k, Ga∗k
(t)
}︂

⏞ ⏟⏟ ⏞
η

⎤⎥⎥⎥⎦ ,

(5.39)

where inequality (a) uses Lemma 27.

We now reduce the proof to the non-private setting. First, we divide all the realizations

Ft−1 of Ft−1 into two groups depending on whether 1
{︁
Ga∗k

(t), Ta∗k
(t− 1) ≤ l∗e,k

}︁
is 1 or 0.
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Case 1: For Ft−1 such that 1
{︁
Ga∗k

(t), Ta∗k
(t− 1) ≤ l∗e,k

}︁
= 0, we have η = 0.

Case 2: For Ft−1 such that 1
{︁
Ga∗k

(t), Ta∗k
(t− 1) ≤ l∗e,k

}︁
= 1, we have w′

a∗k,Ta∗
k
(t−1)(t) =

w̃a∗k,Ta∗
k
(t−1)(t− 1) + 3 ln(Kt)

ε0·Ta∗
k
(t−1)

≥ ŵa∗k,Ta∗
k
(t−1)(t− 1).

Since a random variable drawn from N (µ, σ2) stochastically dominates a random variable

drawn from N (µ′, σ2) if µ ≥ µ′, we have

1− Y θ
e,k(t)

Y θ
e,k(t)

=
P
{︁
θa∗k(t) ≤ ye,k

⃓⃓
Ft−1

}︁
P
{︁
θa∗k(t) > ye,k

⃓⃓
Ft−1

}︁ ≤ P
{︂
θ̂a∗k(t) ≤ ye,k

⃓⃓⃓
Ft−1

}︂
P
{︂
θ̂a∗k(t) > ye,k

⃓⃓⃓
Ft−1

}︂ ,

where θ̂a∗k(t) ∼ N
(︃
ŵa∗k,Ta∗

k
(t−1)(t− 1), 1

Ta∗
k
(t−1)

)︃
.

From these two cases, for any Ft−1, we have

η ≤
P
{︂
θ̂a∗k(t) ≤ ye,k

⃓⃓⃓
Ft−1

}︂
P
{︂
θ̂a∗k(t) > ye,k

⃓⃓⃓
Ft−1

}︂ 1

{︂
at
π−1
t (k)

= a∗k, Ga∗k
(t)
}︂

. (5.40)

Now, the proof is reduced to the non-private setting. We divide all the n rounds depending

on when the empirical mean of a∗k changes, i.e., whether ŵa∗k,Ta∗
k
(t−1)(t − 1) changes. Let τs

denote the round by the end of which we use fresh 2s observations to update the empirical

mean of a∗k. Note that τs is random. Then, we have

(5.39) ≤
d∗e,k∑︁
s=0

E
[︃

τs+1∑︁
t=τs+1

P
{︂
θ̂a∗

k
(t)≤ye,k

⃓⃓⃓
Ft−1

}︂
P
{︂
θ̂a∗

k
(t)>ye,k

⃓⃓⃓
Ft−1

}︂ · 1{︂at
π−1
t (k)

= a∗k

}︂
· 1
{︁
Ga∗k

(t)
}︁]︃

≤
d∗e,k∑︁
s=0

E
[︃

τs+1∑︁
t=τs+1

P
{︂
θ̂a∗

k
(t)≤ye,k

⃓⃓⃓
Ft−1

}︂
P
{︂
θ̂a∗

k
(t)>ye,k

⃓⃓⃓
Ft−1

}︂ · 1{︂at
π−1
t (k)

= a∗k

}︂]︃
≤

d∗e,k∑︁
s=0

E
[︃
2s+1 ·

P
{︂
θ̂a∗

k
(τs+1)≤ye,k

⃓⃓⃓
Fτs=Fτs

}︂
P
{︂
θ̂a∗

k
(τs+1)>ye,k

⃓⃓⃓
Fτs=Fτs

}︂
]︃

= O
(︂

ln(Kn)

∆2
e,k

)︂
,

(5.41)

where the last inequality uses Lemma 28.

Similarly, we will have

Γ2,k,e ≤
log(n)∑︁

s=d∗e,k+1

E
[︃
2s+1 ·

P
{︂
θ̂a∗

k
(τs+1)≤ye,k

⃓⃓⃓
Fτs=Fτs

}︂
P
{︂
θ̂a∗

k
(τs+1)>ye,k

⃓⃓⃓
Fτs=Fτs

}︂
]︃
·∆e,k

= O
(︁

1
L2

)︁
.

(5.42)
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We use the following arguments to complete the proof. Now, as we are tracking the

number of observations of the optimal base arm a∗k, i.e., we are tracking Ta∗k
(t − 1). For

a fixed k, we arrange all the mean reward gaps ∆e,k for all e ∈ Ā
∗
in a descending order

∆e1,k ≥ ∆e2,k ≥ . . . ≥ ∆eL−K ,k =: ∆emin,k.

For all the rounds when the counter is in the range of
[︁
0, l∗e1,k

]︁
, the total regret among all

these rounds is at most ∆e1,k ·O
(︁
l∗e1,k

)︁
. When the counter is in the range of

[︁
l∗e1,k + 1, l∗e2,k

]︁
,

the total regret is at most ∆e2,k ·O
(︁
l∗e2,k − l∗e1,k

)︁
+Γ2,k,e1 = ∆e2,k ·O

(︁
l∗e2,k − l∗e1,k

)︁
+O(1/K).

Finally, when the counter is in the range of
[︂
l∗eL−K−1,k

+ 1, l∗eL−K ,k

]︂
, the total regret among

all these rounds is at most ∆eL−K−1,k · O
(︂
l∗eL−K+1,k

− l∗eL−K ,k

)︂
+

L−K−1∑︁
q=1

Γ2,k,eq ≤ ∆eL−K−1,k ·

O
(︂
l∗eL−K ,k − l∗eL−K−1,k

)︂
+O(1/K). For all the rounds after the counter hits l∗eL−K ,k, the total

regret is at most
K∑︁
k=1

O(1/L2) = O(1/K).

By combining all these pieces together and using Lemma 19, we have

U =
K∑︂
k=1

O

(︃
ln(Kn)

∆k,min

)︃
. (5.43)
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Chapter 6

Experiments

6.1 Overview

We perform experiments in two different settings. In Section 6.1.1, we evaluate our algo-

rithms on a synthetic dataset and in Section 6.1.2, we use a real-world movie-rating dataset

with the purpose of recommending diverse and popular movies to users in a differentially

private manner. To measure the performance of our algorithms we use the expected per-

round return as suggested in Kveton, Wen, Ashkan, Eydgahi, et al. (2014). The expected

per-round return in round s is computed as 1
s

∑︁s
t=1

∑︁
e∈At w̄(e).

For DPUCB-MAT, we compare its empirical performance with two baselines. The first base-

line is the optimal return f(A∗, w̄) =
∑︁

e∈A∗ w̄(e) denoted as Optimal Policy in the plots.

The second baseline is Optimistic Matroid Maximization (OMM) from Kveton, Wen, Ashkan,

Eydgahi, et al. (2014), which is the non-private UCB1-based algorithm for matroid bandits.

Similarly, for DPTS-MAT, we compare its empirical performance with the optimal return and

the non-private Combinatorial Thompson Sampling (CTS) in Wang et al. (2018). Note that

CTS was developed for the more general combinatorial bandits but can be easily adapted

to matroid bandits. To have a fair empirical performance comparison, we adapt CTS to

the matroid bandit setting by enforcing the matroid constraints. Also, we show the perfor-

mance of our algorithms with different values of ε ∈ {105, 2, 10−4}. Additionally, we show

asymptotic regret growth and the variation of regret with 1/ε for both our algorithms.
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Base arm e Mean reward w̄(e)

(1, 0, 0) 0.80

(0, 1, 0) 0.75

(0, 0, 1) 0.60

(1, 0, 1) 0.20

(0, 1, 1) 0.30

(2, 0, 0) 0.40

(0, 0, 0) 0.70

Table 6.1: Synthetic dataset.

6.1.1 Synthetic Dataset

In this section, we report the experimental results of our proposed algorithms on a set of

3-dimensional vectors taken from Neel et al. (2009). We set ε = 2. The base arm set is

E = {e1, . . . , e7} which is shown in the first column of Table 6.1. Here each base arm is a

3-dimensional vector in the Euclidean space. Table 6.1 also shows the mean rewards of all

the base arms. Matroid independence is defined by the linear independence of the vectors.

Since for a 3-dimensional space, all bases are of size 3, we have |A∗| = |At| = 3 for all t.

From Table 6.1, we can also see that A∗ = {e1, e2, e3}. Since the total privacy budget is ε,

the privacy budget for each e ∈ At is ε0 = ε/3 = 2/3. The reward wt(e) for each e ∈ E

is generated from a Bernoulli distribution with mean w̄(e). The total number of rounds of

interaction is n = 10, 000. The experimental results for DPUCB-MAT, OMM, and Optimal

Policy are presented in Figure 6.1a. From the results, we can see that DPUCB-MAT and OMM

have a similar growth rate in terms of expected per-round return. The results for DPTS-MAT,

CTS, and Optimal Policy also show similar trends and are shown in Figure 6.1b.

Effect of large and small ε’s. Figure 6.2 shows the expected per-round return for dif-

ferent values of the privacy parameter ε ∈ {105, 2, 10−4}. In Figure 6.2a, we show the per-

formance of DPUCB-MAT (Algorithm 2). We observe that when ε decreases, the performance
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(a) DPUCB-MAT.
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(b) DPTS-MAT.

Figure 6.1: Performance on the synthetic dataset. Figure 6.1a compares the perfor-
mance of DPUCB-MAT (Algorithm 2) against the non-private OMM and the Optimal Policy.
Figure 6.1b shows the performance of DPTS-MAT (Algorithm 5 against the non-private CTS
(with Gaussian prior and likelihood) and the Optimal Policy. Even after adding differential
privacy, both our algorithms do not perform much worse than their non-private counterparts.

of DPUCB-MAT deteriorates, and when ε increases, the performance of DPUCB-MAT becomes

better. This is expected as a good differentially private learning algorithm should balance

the privacy and regret guarantees. When ε is too small (10−4) the scale of the Laplace noise

added becomes too large. Hence, too much noise is added which deteriorates the algorithm’s

performance. We also observe that when the privacy parameter ε is large (105), i.e., in the

non-private regime, the performance of DPUCB-MAT approaches that of the non-private OMM.

This is also expected as in the non-private regime, we do not pay any price for preserving

privacy. Similar trends can also be seen for DPTS-MAT (Algorithm 5) in Figure 6.2b.

Other experiments. In Figure 6.3a, we plot the asymptotic growth of the regret for the

synthetic dataset. Figure 6.3a shows the accumulated regret Rn till round n over ln(n) for

n = 1, 2, . . . , 106 rounds for both our private algorithms DPUCB-MAT and DPTS-MAT on the

synthetic dataset. The quantity lim
n→∞

Rn/ ln(n) characterizes the asymptotic rate of growth

of the regret (Lai et al., 1985). We observe that both DPUCB-MAT and DPTS-MAT converge

but with different rates. In addition, we also observe that the Thompson Sampling-based

algorithm, DPTS-MAT, empirically outperforms the UCB-based algorithm DPUCB-MAT, since
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Figure 6.2: Effect of large and small ε’s. Figure 6.2a shows the performance of DPUCB-MAT
(Algorithm 2) for different values of ε on the synthetic dataset. We observe that the per-
formance of DPUCB-MAT decreases as the value of ε decreases. We also observe that as ε in-
creases, we approach the non-private regime and the performance of DPUCB-MAT approaches
the performance of the non-private OMM. Figure 6.2b shows similar trends for DPTS-MAT

(Algorithm 5).

it converges to a smaller value.

Figure 6.3b studies the relationship between the accumulated regret Rn and 1/ε for

DPUCB-MAT and DPTS-MAT on the synthetic dataset. The values of ε are 50 evenly spaced

numbers between 0.5 and 50. We run our algorithms for n = 10, 000 rounds for each value of

ε and plot the accumulated regret. From the experimental results, we can see that for both

the algorithms the regret trend is linear in 1/ε and the Thompson Sampling-based algorithm

empirically outperforms the UCB-based one.

6.1.2 Movie Rating Dataset

In this experiment, we learn to recommend a set of diverse and popular movies with differ-

ential privacy from the MovieLens dataset (Harper et al., 2015). The experiment design is

adopted from Kveton, Wen, Ashkan, Eydgahi, et al. (2014). We report experimental results

with the total privacy budget ε = 2. The total number of rounds is n = 20, 000.

The entire dataset contains 1 million ratings from 6040 users. The total number of movies

is 3883 from 18 different genres. To recommend popular movies, we select 100 movies that

have received the most ratings. These 100 movies constitute the base arm set E of a matroid.
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Figure 6.3: Regret of DPUCB-MAT and DPTS-MAT on the synthetic dataset. Figure 6.3a
shows the accumulated regret Rn till round n divided by ln(n) for n = 1, 2, . . . , 106 rounds for
both DPUCB-MAT and DPTS-MAT. The expression lim

n→∞
Rn/ ln(n) characterizes the asymptotic

growth rate of the regret. Figure 6.3b shows the accumulated regret versus 1/ε for both
DPUCB-MAT and DPTS-MAT.

To form an independent set A of the matroid, we construct a binary feature vector ue for

each movie e ∈ E, which denotes the genres of that movie. If the feature vectors ue for all

e ∈ A are linearly independent, all the movies in A form an independent set, which further

indicates that these movies are diverse. The expected reward w̄(e) for each movie e is given

by the total number of ratings for e divided by the total number of users in the dataset.

The optimal solution A∗ is computed greedily with respect to w̄ using Algorithm 1. In each

round, we recommend 17 movies, i.e., |A∗| = |At| = 17. Since ε = 2, the privacy budget for

each e ∈ At is ε0 = ε/17 = 2/17. The randomness comes from the fact that in each round t,

a random user is selected. For each movie e ∈ At, if e is rated by that selected random user,

then the reward wt(e) is set to 1 otherwise 0.

Figure 6.4a shows the results for DPUCB-MAT, OMM, and Optimal Policy. We observe

that the expected per-round return of DPUCB-MAT is comparable to that of the non-private

baseline (OMM) and is also close to that of the Optimal Policy. We see similar results

for DPTS-MAT as shown in Figure 6.4b. Table 6.2 lists the overlapping movies learned by

DPUCB-MAT and Optimal Policy at the end of all the rounds of interaction. We can see that

DPUCB-MAT recommends a lot of the same movies as the Optimal Policy and the movie genres
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Movie e w̄(e) Genres

American Beauty 0.568 Comedy, Drama

Star Wars: Episode IV 0.496 Action, Adventure, Fantasy, Sci-Fi

Star Wars: Episode VI 0.478 Action, Adventure, Romance, Sci-Fi, War

Saving Private Ryan 0.440 Action, Drama, War

Men in Black 0.420 Action, Adventure, Comedy, Sci-Fi

L.A. Confidential 0.379 Crime, Film-Noir, Mystery, Thriller

Ghostbusters 0.361 Comedy, Horror

The Wizard of Oz 0.285 Animation, Children’s, Comedy, Musical

Table 6.2: Movies recommended by DPUCB-MAT that overlap with movies in A∗ after 20k
rounds.

of those movies appear to be diverse. This validates our modeling choice of using matroids

to recommend movies with diverse movie genres.
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Figure 6.4: Performance on the movie rating dataset. Figure 6.4a and Figure 6.4b show
the performance of both of our algorithms on the movie rating dataset to recommend diverse
and popular movies. In Figure 6.4a, we can see that the DPUCB-MAT algorithm’s performance
is close to that of the non-private OMM and the Optimal Policy. Similar results can be seen
for DPTS-MAT in Figure 6.4b.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we explored how we can efficiently and privately learn to choose items in a

sequential and adaptive manner. In particular, we looked at the setting of matroid bandits,

where the learner selects base arms or a super arm in each round of interaction with an

environment, and improves on the selection based on the reward feedback. The items chosen

at each step satisfy the matroid independence constraints. The goal of the learner was to

maximize the total cumulative reward over all rounds of interaction, or equivalently, minimize

regret. In applications like movie recommendations, the reward feedback might represent

sensitive user data that we wish to keep private. For that purpose, we looked into differential

privacy and defined differential privacy for matroid bandits.

We took differential privacy into account and showed that the problem of minimizing regret

to learn a super arm (also known as the maximum weight basis) for matroid bandits can be

solved efficiently. We proposed two simple differentially private algorithms DPUCB-MAT and

DPTS-MAT. We showed differential privacy guarantees and logarithmic regret upper bounds

for both algorithms. To achieve the regret bound, we decomposed the regret by introducing

a round-dependent permutation πt that helps in mapping a suboptimal base arm to an

optimal base arm. The permutation πt helps us decompose the regret into K stochastic

bandit problems. Finally, we conducted experiments to evaluate our algorithms’ empirical

performance on a synthetic and a real-world movie rating dataset to recommend movies.
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7.2 Future Directions

For future work, there are some open problems remaining in this line of work. To the

best of our knowledge, there is no lower bound for matroid bandits with differential pri-

vacy. By modifying the regret lower bound for differentially private combinatorial ban-

dits as shown by Chen et al. (2020, Theorem 9), we conjecture a regret lower bound of

Ω (L ln(n)/∆+ LK ln(n)/ε) for differentially private matroid bandits. However, our upper

bound (Theorem 9) is still an extra min {K, ln(n)} factor far from this conjectured regret

lower bound. We are not sure yet whether our derived regret bound is not tight or whether

a better regret lower bound exists for differentially private matroid bandits.

More broadly, for the general differentially private combinatorial bandits with no matroid

constraints (Chen et al., 2020; Kveton, Wen, Ashkan, and Szepesvari, 2015), the regret

upper bounds are still suboptimal (for example, Chen et al. (2020, Theorem 8)) and a

tighter analysis is needed. Moreover, there are other similar settings like bandits with graph-

structured feedback (Alon et al., 2017) where there are no differentially private algorithms

yet. Ideas developed in this thesis can be applied to get differentially private algorithms for

such combinatorial/graph-structured settings.
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Garivier, Aurélien and Olivier Cappé (2011). “The KL-UCB Algorithm for Bounded Stochas-
tic Bandits and Beyond”. In: Conference on Learning Theory, pp. 359–376.

69



Geng, Quan and Pramod Viswanath (2014). “The Optimal Mechanism in Differential Pri-
vacy”. In: International Symposium on Information Theory, pp. 2371–2375.

Harper, F. Maxwell and Joseph A. Konstan (2015). The MovieLens Datasets: History and
Context.

Hu, Bingshan and Nidhi Hegde (2022). “Near-Optimal Thompson Sampling-based Algo-
rithms for Differentially Private Stochastic Bandits”. In: Uncertainty in Artificial Intel-
ligence, pp. 844–852.

Hu, Bingshan, Zhiming Huang, and Nishant A Mehta (2021). “Optimal Algorithms for Pri-
vate Online Learning in a Stochastic Environment”. In: arXiv preprint arXiv:2102.07929.

Kairouz, Peter, Sewoong Oh, and Pramod Viswanath (2015). “The Composition Theorem for
Differential Privacy”. In: International conference on machine learning, pp. 1376–1385.

Kaufmann, Emilie, Nathaniel Korda, and Rémi Munos (2012). “Thompson Sampling: An
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