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Abstract 

Microbiologically influenced corrosion (MIC) is a difficult degradation mechanism to 

diagnose in pipeline systems due to the complex interaction between biotic (i.e., microbial) and 

abiotic (e.g., fluid chemistry, pipe/vessel metallurgy/corrosion, and operating conditions) 

factors. This complexity often makes it difficult to accurately assess pipeline failures due to 

MIC.  However, even with available data, failure investigators often face a number of challenges 

in diagnosing MIC such as how to properly integrate the available datasets,  questions regarding 

data accuracy (e.g., confidence in the sampling and/or analysis method used) and lack of 

available information from operators (e.g., missing data). As a result, practical MIC failure 

assessments are most often performed by experts or specialists with significant knowledge and 

working experience in this topic. Based on these issues, the objectives of this thesis are three-

fold: 1) to quantify the actual prevalence of MIC related pipeline failures in Alberta’s oil and 

gas sector, 2) to perform a gap analysis of failure investigation methods used to assess these 

pipeline failures, and 3) to develop a novel expert system based on machine learning to assist 

both experts and non-experts in assessing potential MIC related pipeline failures. The first part 

of this study highlights a review and analysis of MIC related pipeline incidents in the province 

of Alberta, Canada over a three-year period (2017-2019). This review was used to quantify the 

occurrence of MIC failures relative to other corrosion mechanisms, and to conduct a gap 

analysis of MIC failure investigation techniques being used relative to the current state of the 

art. Over this three-year period, MIC was found to be responsible for 13.6% and 4.8% of all 

pipeline leak incidents due to internal and external corrosion, respectively (either as the main 

failure mechanism or as a contributing factor). Most of these failures were seen to occur in small 
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diameter upstream pipelines (with less than or equal to 220.3 mm outside diameter) carrying 

mainly multiphase fluids (oil-water emulsions) or produced water. In terms of the failure 

investigation methods currently being used, it was noted that there was some inconsistency 

among reports and a number of important gaps were identified. Various assessments lacked 

microbiological test data, in particular, tests which specifically identify microbial functional 

groups or speciation, which is critical to confirm observed corrosion mechanisms. Furthermore, 

a number of these assessments identified MIC primarily on the basis of corrosion morphology, 

which has been shown to be an incorrect assumption and approach without additional evidence. 

Details related to sampling methods were also lacking in these assessments, which created some 

uncertainty as to the quality of data obtained. Overall, most assessments did a reasonable job in 

characterizing and including chemical (solids, fluids, and corrosion products), metallurgical/ 

corrosion, and operating data. However, the integration of these various layers of evidence (i.e., 

connecting corrosion to microbiological activity, and eliminating possible abiotic corrosion 

mechanisms) was missing in many reports. The second part of this study highlights the 

modeling of an expert system for the classification of internal microbiologically influenced 

corrosion (MIC) failures related to pipelines in the upstream oil and gas industry. The model is 

based on machine learning (artificial neural network) and involves the participation of 15 MIC 

subject matter experts (SMEs). Each expert evaluated a number of model case studies 

representative of both MIC and non-MIC related upstream pipeline failures. The model 

accounts for variations in microbiological testing methods, microbiological sample types, 

degradation morphology, among others, and also incorporates cases with select missing datasets 

which is commonly found in actual failure assessments. The output classifications comprised 

elements of both potential for MIC and confidence in the data available. The results were 
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contrasted for 5- and 3-output classification models (5OC and 3OC, respectively). The 5OC 

model had an overall accuracy of 62.0% while the simpler 3OC model had a better accuracy of 

74.8%. This modelling exercise has demonstrated that knowledge from subject matter experts 

can be captured in a reasonably effective model to screen for possible MIC failures. It is hoped 

that this study contributes to a better understanding of the prevalence of MIC in the oil and gas 

sector, and highlights the key areas necessary to improve the diagnosis of MIC failures in the 

future. 
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speaks to the prevalence of microbiologically influenced corrosion (MIC) failures related to 

oil and gas upstream pipeline operations in Alberta. Chapter 4 carries an extensive review 

and gap analysis to assess the current state of the art with respect to MIC failure investigation 

methods and techniques, and compare these to available best practices. 

Chapter 5 develops an expert system based on artificial neural networks and offers a 

tool to assist both experts and non-experts in screening whether a failure is due to MIC or not 

and how reliant one can be in the output. It counts with the participation of 15 subject matter 

experts on MIC from industry and academia, accumulating 355 years of expertise in MIC 

assessments. A version of Chapter 5 will be submitted to reputable journal for publication as 

A. A. Abilio, J. D. Wolodko, R. B. Eckert, and T. L. Skovhus, “Development of an Expert 

System for Assessing Failures in Oil and Gas Pipelines due to Microbiologically Influenced 

Corrosion (MIC)”. Mr. A. A. Abilio was responsible for conceptualization, methodology, 

software implementation, data collection, data analysis, manuscript composition, manuscript 

review and editing, and fund acquisition. Dr. J. D. Wolodko was responsible for 

conceptualization, methodology, resources, manuscript review and editing, and fund 

acquisition. Mr. R. B. Eckert was responsible for resources, consultancy, manuscript review 

and editing. Dr. T. L. Skovhus was responsible for resources, consultancy, manuscript review 

and editing. This study received research ethics approval from the University of Alberta 

Human Research Ethics Board 2, project name “Development of an Expert System for 

Assessing MIC-Related Failures using Artificial Neural Networks”, study ID ‘Pro00109878’, 

August 16, 2021.  

Chapter 6 points out the novelty of the work, it summarizes the key findings of the 

research, and lists recommendations for future work. 
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Appendices A, B, C, and D are related to Chapter 5 and include the case studies 

provided to the subject matter experts who participated in the study, the inputs utilized to train 

the artificial neural network, the variations related to the experts’ responses, and the 

calculations related to the sensitivity analysis carried out for the input parameters of the expert 

system. 
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Chapter 1: Introduction and Objectives 

Microbiologically influenced corrosion (MIC) is a form of corrosion that is caused by 

the presence and activity of asset-threatening microorganisms that adhere to the asset surface 

(Figure 1.1). Water is the conducive medium for MIC to take place [1,2]. Water both 

transports microorganisms, carrying them along the system, and provides the nutrients utilized 

for their metabolism. 

Consequently, MIC is routinely found in oil and gas production facilities and 

pipelines, as well as in other sectors where a water environment is not only present but also in 

contact with the surface of the asset (e.g., utilities, wastewater processing, marine). When 

water has enough contact time with the surface of the asset, a biofilm is formed. The biofilm 

can take place in both internal and external surfaces of pipelines, tanks, and vessels where 

there is water and sedimentation either due to low flow, stagnant conditions, or accumulation 

of hydrophilic solids (e.g., deposits, soil) [3,4]. 

Corrosion is defined as the deterioration or loss of structure/properties of a material, 

usually a metal, due to its interaction with the surrounding environment. In a more 

mechanistic definition of metal deterioration, corrosion is the electrochemical process where 

the anode deteriorates (i.e., loses mass) due to the migration of electrons to the cathode. For 

corrosion to occur, a flow of electrons has to be stablished between the anode and the cathode 

by the reducible species in the electrolyte while return current path is maintained [5]. 

While MIC has been known as a corrosion mechanism for over a century [6,7], both 

interest in the topic and major advancements in MIC assessment and diagnosis have only 

occurred in the past 20 years [8–10]. Part of the issue is the complexity and challenge in  
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Figure 1.1 Schematic of iron corrosion by sulfate reducing bacteria (SRB) according to 

cathodic depolarization theory – adapted with permission from the International Digital 

Organization for Science Information (IDOSI): Kakooei, Saeid, M. Che Ismail, and Bambang 

Ariwahjoedi. "Mechanisms of microbiologically influenced corrosion: a review." World 

Applied Science Journal, Vol. 17, No. 4 (2012): 524.-531 [11]. 

 

characterizing MIC indicators conclusively. As a result, diagnosing MIC is difficult due to the 

synergistic interaction between a large number of biotic (microorganisms) and abiotic 

(chemical and physical environment) factors. From a practical point of view, this also 

necessitates expertise in a large number of technical areas and disciplines (e.g., microbiology, 

chemistry, materials science and engineering), which is often challenging to find from one 

source/individual.  

Although MIC has been recognized as a problem in the oil and gas industry for some 

time, its occurrence relative to other corrosion threats has not been well documented or 

quantified. Many studies in the literature regularly cite that MIC is responsible for anywhere 

between 10% to 40% of all corrosion issues in the sector [9,12–18]. This range of estimated 

numbers; however, is often quoted without citing the original source or providing the 
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methodology used to justify these numbers. In fact, the original sources of these prevalence 

numbers are difficult to find. For example, one of the most commonly cited references in the 

MIC-related literature is Graves and Sullivan [19]. In reviewing the original paper (which was 

published in 1966 not 1996 as commonly cited), it was determined that there, in fact, was no 

reference to MIC prevalence. It is unclear when the first instance of this erroneous citation 

occurred, but it has since been copied in subsequent MIC-related papers. 

The economic impact due to MIC has been disseminated by a few studies. However, 

the determination of MIC-related economic impact is often obtained by multiplying the total 

cost of corrosion times the estimated prevalence of MIC, which provides numbers that range 

from 10% to 40% depending on the context in which the calculations were carried out (e.g., 

country, sector) [9,12–18,20]. As such, in order to better inform both industry and the research 

community, there is a need to better quantify and document the prevalence of MIC relative to 

other corrosion threats.  

In theory, the prevalence of MIC can be determined using a variety of methodologies: 

1) the occurrence of MIC-related corrosion in a system based on maintenance or inspection 

data/reports, 2) the total cost of maintenance/repair due to MIC-related corrosion based on 

accounting records, or 3) the number of failure incidents due to MIC. Each of these methods 

will likely produce a different value or percentage relative to other corrosion threats.  Of the 

three methods, quantifying failure incidents is likely the easiest method to estimate MIC due 

to the availability of public pipeline failure statistics and reports in many jurisdictions. Many 

of these reports include third-party failure assessments, which provide details on the likely 

root cause of failure including MIC. 
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A broader question, however, is whether the failure analysis methodologies used in 

both current and historical assessments are accurate, particularly with regard to MIC, which 

has seen significant growth over the past few decades in terms of new knowledge and 

technological developments [8–10,21]. The key technological development has been the slow 

adoption of DNA-based molecular microbiological methods (MMM) for identifying and 

characterizing microorganisms in systems and continued improvement in diagnostic and 

integrative methodologies for assessing MIC threats and failures [22–26]. In addition to 

microbiology, a multilayered integration between chemical, metallurgical/corrosion, and 

operating -related evidence is required for a conclusive MIC diagnosis. 

Hence, the work carried out in this thesis is an attempt to better understand the 

underlying factors of MIC failures in order to drive improved asset design, more accurate 

monitoring programs, and more reliable mitigation programs where MIC is taken into 

account. Therefore, the goal of this thesis is to improve the understanding of MIC by 

providing additional aids to augment MIC management practices and to incite the 

consideration of MIC in respect to installation design and asset integrity management. 

Consequently, the improvement in knowledge of MIC damage and failures undertaken by this 

thesis can lead to safer energy production, and enhanced protection of both the environment 

and human health through the reduction of leaks and spills.  

To this end, the specific objectives of this thesis are outlined as follows:  

1. Provide updated, reliable and detailed statistics on the prevalence of MIC in oil and 

gas upstream pipeline systems. 
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2. Highlight key areas necessary to improve diagnosis of MIC failures in oil and gas 

upstream pipeline systems, and provide guidance on the development of future 

recommended practices and standards. 

3. Develop an expert system (a practical tool) to assist with the screening of MIC failure 

investigations in any engineered system, particularly by users who lack 

multidisciplinary knowledge of MIC. 

These objectives are systematically addressed in the subsequent chapters. Chapter 2 

(literature review) highlights the state of the art related to MIC and the sources utilized to 

assess it through the lenses of failure analysis. In addition, an overview of expert systems and 

machine learning methods used in engineering applications are summarized. Chapter 3 

summarizes the occurrence of MIC in Alberta’s oil and gas sector, and highlights the types of 

pipeline systems most affected by MIC. Chapter 4 details a comprehensive gap analysis of 

actual MIC failure assessment reports, and provides recommendations for future 

improvements to MIC failure assessment procedures. Chapter 5 outlines the development of a 

novel expert system based on machine learning techniques to assist integrity engineers in 

assessing MIC failures. Finally, Chapter 6 summarizes the key findings and novelty of the 

thesis, and provides recommendations for future research in this area.  
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Chapter 2: Literature Review 

2.1. Microbiologically Influenced Corrosion 

Microbiologically influenced corrosion (MIC) is a degradation mechanism assisted by 

the metabolic activity of microorganisms where the asset can be either directly degraded, due 

to electron uptake, or indirectly, due to the effect of biotic byproducts [1,27] . Dinh et al. 2004 

[28] describe the reactions related to iron corrosion by sulfate-reducing bacteria (SRB), and 

Enning et al. 2012 [29] and Enning and Garrelfs 2014 [30] classify these reactions based on 

how directly microorganisms influence iron degradation. The indirect influence of 

dissimilatory products from microbiological metabolism is classified as “chemical microbially 

influenced corrosion” (CMIC); while the direct uptake of electrons from iron is referred as 

“electrical microbially influenced corrosion” (EMIC). 

Different groups of microorganisms play different roles in MIC depending on the 

surrounding conditions of the asset. Microorganisms that may pose a threat to the integrity of 

the asset under a specific combination of operating-, chemistry-, and metallurgy/corrosion-

related conditions may pose no threat under a different set of conditions. Therefore, knowing 

the diversity (the different types) of the microorganisms present is essential to link 

microbiology to the abiotic aspects of MIC (i.e., chemistry, metallurgy/corrosion, and 

operating parameters). Hereby, the different types of microorganisms are classified based on 

their metabolic pathways, also referred as microbial functional groups (MFG).  

Table 2.1 lists the MFG most commonly associated with MIC [1,25]. These MFG are 

extensively discussed by Sharma and Voordouw 2017 [31]. 
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Table 2.1 Microbial functional groups most commonly associated with MIC and their 

respective parameters – adapted with permission from DNV: DNVGL-RP-G101, 

Recommended Practice Risk-based inspection of offshore topsides static mechanical 

equipment, Copyright (2021) [1]. 

Microbial 

functional group 
Abbreviation 

Temperature 

(°C) 
pH Metabolic input 

Metabolic 

output 

Sulfate-reducing 

bacteria 
SRB 10 – 74 4 – 9.5 Organic and aromatic 

compounds, 

hydrocarbons, alcohols, 

lactate, acetate, H2, 

SO4
2-, S0, S2O3

2- 

H2S, sulfide 

(HS-), 

iron sulfide 

(FeS) Sulfate-reducing 

archaea 
SRA 60 – 95 4 – 9.5 

Methanogenic 

archaea 
MA 37 – 85 5 – 6 

Organic compounds, 

CO2 (or soluble CO3
2-, 

HCO3
-, H2CO3) or H2 

Methane (CH4), 

carbon 

monoxide (CO) 

Nitrate-reducing 

bacteria 
NRB 15 – 25 7 – 8 

Organic compounds, 

O2, NO3
- 

NO2
-, N2O, NO, 

N2 

Iron-reducing 

bacteria 
IRB 21 – 40 4 – 9 

Fe3+ (insoluble ferric 

iron), O2, NO3
- 

Fe2+ 

Acid-producing 

bacteria 
APB 15 – 90 < 7 

Organic compounds, 

hydrocarbons, O2 

Organic acids 

(e.g., formic, 

acetic), CO2 

Sulfur-oxidizing 

bacteria 
SOB 20 – 50 0.5 – 8 

Sulfide, sulfite, S0 

(elemental sulfur), 

S2O3
2- (thiosulfate), 

organic compounds, 

O2, CO2 

H2SO4 (sulfuric 

acid), S0 

Iron / Manganese 

-oxidizing 

bacteria 

IOB / MnOB 10 – 40 1 – 10 
Fe2+ (soluble ferrous 

iron), Mn2+ 
Fe3+, Mn4+ 

 

Microorganisms are seldomly alone in the system. They form a consortium of multiple 

MFGs, where they synergistically coexist. Therefore, the combination of multiple MFGs tend 

to pose a greater MIC threat than a specific MFG would on its own. Figure 2.1 illustrates a 

biofilm comprised by the MFGs most usually associated with MIC [29–32]. 
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Figure 2.1 Distribution of microbial functional groups most commonly associated with MIC 

across the biofilm (region limited by both the water and the metal interface thick black 

horizontal lines) in relation to the redox potential of their metabolic pathways – adapted with 

permission from NACE International: B.J. Little, P. Wagner, Myths Related to 

Microbiologically Influenced Corrosion, Materials Performance. 36 (1997) 40–44 [32]. 

 

The position of specific MFGs across the biofilm will depend on the outer 

environment; whether it is oxic or anoxic, and it relates to the optimum redox potential range 

of the environment in which those microorganisms can carry out their metabolic processes 

(Figure 2.1). In an anoxic environment, as illustrated in Figure 2.1, the deeper a MFG is 

within the biofilm (closer to the asset surface), the lower is the environmental redox associated 

with their metabolic pathways. SRB and MA, for example, are at the bottom of the biofilm, 

while more oxygen friendly microorganisms are located at the top. This illustrates the 

synergetic relationship between aerobic (top of the biofilm) and anaerobic (bottom of the 

biofilm) microorganisms. This synergy between aerobic and anaerobic microorganisms means 

that even in an oxygen-containing system, strict anaerobes may be a threat. In an anoxic 
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system for instance, where anoxic seawater is present as a source of sulfate (i.e., SO4
2-), SRB 

would be on the top at the outer layer of the biofilm. Hence, it is important to distinguish 

between anoxic and oxic environments when evaluating the positions of MFGs across the 

biofilm, as their position will depend on the redox potential of the environment. Additionally, 

as described by Skovhus et al. 2010 [33] and Larsen et al. 2010 [34], Figure 2.2 summarizes 

the synergy between sulfate-reducing microorganisms (SRM) and MA that results in cathodic 

depolarization MIC. Based on this synergistic effect, the following chemical reactions can be 

described as follows (Equations 2.1 and 2.2): 

 

Sulfate reduction 4Fe0 + 3H2S + SO4
2- + 2H+ → 4FeS + 4H2O (2.1) 

Methane production 4Fe0 + 4H2S + CO2 → 4FeS + 2H2O + CH4 (2.2) 

 

When a comparison is made between the American Society of Materials (ASM) 

Handbook data available for MIC failure investigations between two decades ago and now 

[3,27], advancements in the MIC area become evident. Not only innovations were made 

regarding microbiological testing and mitigation methods, but the understanding over MFGs 

other than only SRB also increased.  
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Figure 2.2 Synergistically relationship between sulfate-reducing microorganisms and 

methanogenic archaea – Adapted by permission from Springer Nature Customer Service 

Centre GmbH: Springer Netherlands, Applied Microbiology and Molecular Biology in 

Oilfield Systems, Problems Caused by Microbes and Treatment Strategies: Rapid Diagnostics 

of Microbiologically Influenced Corrosion (MIC) in Oilfield Systems with a DNA-Based Test 

Kit, T.L. Skovhus, K.B. Sørensen, and J. Larsen [33], Copyright (2010). 

 

Jack 2021 [3] lists mechanisms in which MIC can occur: (1) direct involvement in the 

electrochemical corrosion cell (EMIC), (2) generation of corrosive metabolites (CMIC), (3) 

alteration of chemical conditions at the metal surface, (4) disruption of passivating layers, and 

(5) degradation of coatings, cathodic protection, and treatment chemicals. 

Only when a biofilm is formed on the metal surface (when microorganisms transition 

from planktonic state to sessile state), MIC driven degradation can take place. Therefore, as 

MIC is a biofilm dependent mechanism, MIC degradation morphology, density and 

distribution will depend on the biofilm characteristics. Bacteria and archaea cells may vary in 

size from 0.2 micrometer (µm) to more than 700 µm (0.7 millimeter) [35]. Consequently, 

MIC tends to be a highly localized mechanism, usually resulting in localized corrosion 
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(pitting) and the MIC potential will depend on the biofilm’s growth, reproducibility, and 

viability [36,37]. 

To fully assess the MIC threat, microbiological, chemical, metallurgical/corrosion, and 

operating -related parameters must be evaluated [1–3,26]. Skovhus and Eckert 2021 [38] 

describe the microbiological tools required to address the microbiological aspect of MIC. The 

microbiological aspect of MIC is fully addressed when diversity, abundance, and activity of 

the microorganisms present are evaluated [1,38]. 

The Association for Materials Protection and Performance (AMPP, formerly NACE 

International) has published multiple documents to shed light on the challenge of MIC (Table 

2.2). These documents address microbiological sample and handling, various testing 

methodologies, mitigation methodologies (e.g., biocides) among other fronts [1,39]. 

Other organizations have also published guidelines and standards related to MIC 

including the American Petroleum Institute (API) [40], the American Society of Materials 

(ASM) [3,41–43], the American Society for Testing and Materials (ASTM) [44], the Det 

Norske Veritas (DNV) [1,45], and the Energy Institute (EI) [46,47]. Particular attention has to 

be given to DNVGL-RP-G101 [1], as its appendix B is fully dedicated to a risk-based 

inspection (RBI) approach to assess MIC. It encompasses microbiological considerations, 

corrosion-related testing, mitigation and monitoring, historical operating aspects, and 

metallurgical/corrosion considerations. All in all, Appendix B of DNVGL-RP-G101 [1] 

provides a practical overview to RBI approaches related to MIC and it was developed as part 

of the present research. 
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Table 2.2 MIC dedicated standards, guidelines, and recommended practices by AMPP – 

adapted from Failure Analysis of Microbiologically Influenced Corrosion, T.L. Skovhus, R.B. 

Eckert, Standards for MIC Management in Engineered Systems, 459–465 [39], Copyright 

(2015), reproduced with permission of Taylor and Francis Group LLC (Books) US through 

PLSclear. 

Document Status 

TM0194, Standard Test Method – Field Monitoring of Bacterial 

Growth in Oil and Gas Systems 

Latest version from 

2014 

TM0106, Standard Test Method – Detection, Testing, and 

Evaluation of Microbiologically Influenced Corrosion (MIC) on 

External Surfaces of Buried Pipelines 

Latest version from 

2016 

TM0212, Standard Test Method – Detection, Testing, and 

Evaluation of Microbiologically Influenced Corrosion on Internal 

Surfaces of Pipelines 

Latest version from 

2018 

TM21465, Molecular Microbiological Methods – Sample Handling 

and Laboratory Processing 

Under development, 

expected publishing 

2022* 

TM21495, Laboratory Evaluation of the Effect of Biocides on 

Biofilms 

Under development, 

expected publishing 

2023* 

*Personal communication with the AMPP SC-22 Chair (Dr. Torben Lund Skovhus). 

 

2.2 Review of MIC failure investigation methods in the literature 

There have been numerous studies published in the literature highlighting MIC failure 

cases and their approaches. Historically, there are two high-profile failures that are associated 

with MIC in the oil and gas industry: 1) Carlsbad, New Mexico and 2) Prudhoe Bay, Alaska 

[26].  

The Carlsbad incident occurred in 2000 with the explosion of a 75 cm (30 in) diameter 

natural gas transmission line. An ignition resulted in a rupture that killed 12 people nearby and 

resulted in over $1 million in damages. Investigations confirmed the presence of blackish oily 
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solids blocking 70% of the cross section of the pipe [48,49]. The features associated with MIC 

included: interconnecting pits with undercutting features; chloride concentration increasing 

from top to bottom inside the pits; the presence of SRB, acid producing bacteria (APB), and 

general aerobic and anaerobic bacteria at corrosion pits 630 m away from the rupture; and pH 

from fluid and solid debris of between 6.2 to 6.8.  

The Prudhoe Bay incident occurred in 2006 on an above ground oil production 

pipeline, releasing over 200,000 gallons of fluid [50,51]. A 6.4 mm hole at the bottom of the 

pipe resulted in an unnoticed leak that lasted for several days; which led to the largest oil spill 

on Alaska's north slope to date [52,53]. Microorganisms (e.g., SRB) were found to be present 

in the system and were associated to the internal pitting that eventually led to the through-wall 

perforation. As the system was working at low capacity, the stagnant flow conditions resulted 

in accumulation of both water and solids at the bottom of the pipe.  

Both the Carlsbad and Prudhoe Bay cases, although being high-profile MIC incidents, 

were diagnosed without the integration of all biological, chemical, metallurgical/corrosion, 

and operating layers of evidence together. While technology (e.g., MMM) and the 

understanding of MIC has significantly progressed since these incidents (in the past 15 to 20 

years), the uptake and use of novel methods and techniques has still been limited in terms of 

analyzing suspected MIC failures. 

In terms of microbiological evidence, culture-based analysis methods (as opposed to 

MMM) are still primarily used by industry due to their availability and convenience. Some 

failure studies have highlighted the use of DNA-based tests; however, their significance and 

potential has not yet been fully appreciated or utilized [54–57]. In particular, quantification 
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and identification of microorganisms are not necessarily correlated with available chemical, 

metallurgical/corrosion, and/or operating data. 

Another common indicator that has been historically used to identify MIC failures is 

pitting morphology. A number of studies have suggested that pitting morphology alone can be 

used to identify the activities of specific microorganisms or microbial functional groups [54]. 

For example, terraced pits were commonly associated with SRB, while serrations and 

tunneling were associated with APB [58,59]. The evidence for these types of relationships, 

however, is weak and does not account for the fact that these specific pitting morphologies 

could also be caused by abiotic conditions that often accompany MIC-related mechanisms. 

While MIC generally results in localized corrosion damage (pitting), this idea of MIC specific 

morphological fingerprints has since been discounted [15,23,60]. 

The presence of specific chemical signatures (i.e., elements or microbial nutrients) is 

also common in historical studies. For example, high amounts of both carbon and oxygen 

(between 20% to 30% and above) identified by energy-dispersive X-ray spectroscopy (EDS) 

tests were used as indicators for MIC based on the assumption that the presence of biomass 

(biofilm) would be an additional source of such elements [61]. However, in oil-related 

systems, both oxygen and carbon can be present from sources other than biofilms that can also 

result in EDS peaks – as the elements identified by EDS have no discrimination regarding 

their parent structure. For instance, organic acids (i.e., carbon sources) are abundantly present 

in oil and gas systems while oxygen may be related to CO2 conditions and not necessarily 

indicative of biofilms. 

Finally, the integration of data during MIC failure analyses has also evolved over the 

past number of years. For example, many studies have integrated nutrient availability in MIC 
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failure analyses [56,58,62–70], while only fewer carried out DNA testing [54–57]. The lack of 

failure investigations that use both chemical and microbiological evidence over the years 

illustrate that procedures and integration steps to diagnose MIC are still inconsistent. 

In summary, MIC failure case studies in the literature over the past two decades (1998 

to 2019) have shown a lack of procedural consistency with respect to the diagnosis of MIC. 

As the understanding of MIC has evolved, testing and integration methodologies have 

improved over time. However, even newer case studies often do not fully adopt the current 

best practices and instead rely on older approaches to determine the root cause of corrosion 

which, ultimately, may not be accurate or conclusive. 

 

2.3. Expert Systems and Artificial Neural Network 

Due to the complexity associated with MIC, there is currently neither a computer 

model nor a mechanistic/phenomenological model that accurately assesses it. As a result, in 

order to bridge the current gap in MIC assessments, the present study chose the “expert 

system approach” as the method to assist both experts and non-experts in screening internal 

MIC failures related to oil and gas upstream pipeline operations, as well as to any engineering 

system susceptible to MIC. Such an expert system would be a valuable resource particularly 

for non-specialists since considerable time and effort is often required to master MIC 

diagnosis and assessment.  

Expert systems are rule-based object-oriented systems. They capture the knowledge, 

experience and know-how of experts by mimicking the human decision process [71,72]. 

Expert systems do so by assimilating the interconnections an expert inherently makes when 

diagnosing multivariate topics [73,74]. 
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Expert systems is a mature area of artificial intelligence and has been applied to a 

number of different sectors including finance [75–77], agriculture [78–82], medicine [83–87], 

and engineering [88–91]. At the rise of expert system implementation (late 1980s and early 

1990s), expert systems dedicated to healthcare applications dominated the topic [71]. Now, 

expert systems have expanded to a number of challenging and complex problems including 

diagnosing medical illnesses [72,92] (which is a good proxy to diagnosing MIC failures).  

A variety of computational methods and approaches have been used to implement 

expert systems including fuzzy logic functions [93–96], rule-based methods [74,97,98], 

Bayesian methods [99–101], genetic algorithms [102–104], and most recently, artificial neural 

networks [105–107]. An artificial neural network (ANN) is a machine learning approach of 

artificial intelligence that is related to supervised learning [108], and it is the approached 

chosen to build the expert system developed in this thesis’ work due to its practicality and 

easy of implementation. With the recent advancements in computing science, machine 

learning techniques are seen as a viable avenue for implementation of expert systems. 

Machine learning is a field within artificial intelligence where knowledge and preferred 

decision making pathways can be learned from the data itself, rather than being explicitly 

programmed into an algorithm [109]. To that end, ANNs mimic biological neural networks as 

they are able to capture the multilayered relationships between interconnected variables [110]. 

ANNs use neurological-like paths to account for the interdependency of multiple 

considerations (multiple parameters). Therefore, similar to brain neurons, ANNs are built on 

“autonomous computational units”. Relative weights are assigned to each variable in order to 

connect the inputs to the hidden layer of neurons and then to output classes. The stronger the 

interrelationship between neurons, the stronger the relative weights of the decision pathways  
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Figure 2.3 Artificial neuron structure – reprinted from Measurement: Journal of the 

International Measurement Confederation, 67, Z.J. Viharos, and K.B. Kis, Survey on Neuro-

Fuzzy systems and their applications in technical diagnostics and measurement, 126–136 

[110], Copyright (2015), with permission from Elsevier.  

 

and subsequently, the greater the influence of a specific input variable on the resulting output 

class (Figure 2.3) [110,111]. 

As shown in Figure 2.3, the transfer function is the algorithm responsible for 

balancing out the relative weights that will result in the output class from a specific 

combination of inputs [112–115]. The activation function introduces non-linearity to the 

neurons’ interrelationships [112]. It influences the output by combining the relative weights 

and biases that should be activated while ignoring the ones that should not. The neurons are 

structured into layers (Figure 2.4) and each layer fully connects to the following one though 

the weights and biases. The weight and bias values are iterated at each training cycle, and the 

values associated with them will determine the degree of influence that each neuron will have 

on each other. In Figure 2.4, the weights (Winp, Wout) and biases (binp, bout) are represented by 

the arrows that connect the neurons. The input layer is composed by the number of input  
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Figure 2.4 Structure of a typical shallow ANN (layers and neurons) – reprinted from 

International Journal of Fatigue, 99, J.F. Durodola, N. Li, S. Ramachandra, A.N. Thite, A 

pattern recognition artificial neural network method for random fatigue loading life prediction, 

55–67 [116], Copyright (2017), with permission from Elsevier.  

 

variables to the model. The hidden layer is composed by the number of neurons used to build 

the ANN. The output layer is composed by the number of output classes. 

ANNs work with supervised learning which means they require targets (correct 

outputs) to be linked with the inputs. That is called the ‘input-output pair relationship’. At 

each training cycle a backpropagation algorithm calculates the derivative of the network’s 

error. Backpropagation is the training algorithm which is based on a minimization method. It 

is responsible for tracking the output error to the error source in order to increase modelling 

accuracy [117]. 

In order to decrease the final error, the associations between relative weights and 

biases are adjusted until the stopping criteria is met. The stopping criteria is met whether the 

minimum gradient is reached, the maximum number of epochs (training cycles) is achieved, 

or validation error increases consecutively for a number of iterations [110,118,119]. 
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Chapter 3: Prevalence of MIC-Related Failures in Alberta’s Upstream Oil 

and Gas Operations 

3.1. Overview of Alberta’s Oil and Gas Sector and Regulatory Structure 

The Province of Alberta is the center of the oil and gas industry in Canada with the 

third largest proven oil reserves in the world (only behind Venezuela and Saudi Arabia). The 

sector accounts for 97% of Canada’s petroleum inventory [120], and is responsible for 

approximately 82% of Canada’s oil production [121]. The vast majority of Alberta’s reserves 

(over 90%) are related to unconventional production, which includes in-situ heavy oil and 

mined oilsands. Since the first discovery of oil in the province over 70 years ago, the oil and 

gas sector has grown substantially in Alberta to create Canada’s largest petrochemical supply 

chain that includes upstream production (conventional and unconventional), pipeline 

transport, and downstream processing (upgrading, refining and associated petrochemical 

processing).  

Regulation of these pipelines mainly fall under the jurisdiction of two government 

bodies: a) the Alberta Energy Regulator (AER) which regulates all pipelines that do not cross 

provincial or international borders, and b) the Canadian Energy Regulator (CER) that 

regulates all pipelines (mainly large transmission lines) that cross provincial or international 

borders. Within Alberta, the AER regulates over 433,000 km of pipelines that are used for the 

transportation of both produced crude and refined products, and includes operating, 

discontinued, abandoned and permitted pipelines [122]. These pipelines consist of a broad 

range of pipe sizes (upstream, midstream and transmission pipelines) and products types (e.g., 

crude oil, water, natural gas, sour gas, natural gas liquids, refined products). The AER 

enforces compliance with various Canadian legislative and technical standards and 
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requirements (e.g., CSA Z662:19 [123], Pipeline Act [124], Pipeline Rules [125]) throughout 

the operating life of pipelines and facilities in order to ensure public safety and environmental 

protection [126]. The regulatory framework starts with the application process (before 

construction begins), and extends to inspection of the construction, operation and maintenance 

(integrity management), monitoring, surveillance, leak detection, emergency response, 

discontinuation and abandonment.  

In the event of an incident, the responsible party (e.g., operating company) must report 

it immediately to the regulatory bodies, and is responsible for all levels of incident response 

(e.g., isolation, containment, recovery of lost product, remediation and reclamation). In the 

case of a pipeline damage incident, the operating companies are required to investigate and 

implement measures to prevent reoccurrence [123]. The AER conducts the incident review by 

assessing the information the companies provide. Companies often use third-party labs and 

consultants to aid in their assessment (e.g., materials failure analysis labs). The regulatory 

bodies provide oversight to this process in order to understand the causes of the incident and 

to ensure that compliance is met and deficiencies are addressed. As failure assessments are 

conducted, various pieces of evidence are gathered, including failure reports carried out by 

third-party consultants to identify the degradation mechanism that led to the failure. 

Information of pipeline incidents are made publicly available by both federal and provincial 

regulators to provide transparency to both the public and industry, and to better track and 

classify these incidents in order to ultimately identify trends, improve safety and ensure 

compliance.  

In Alberta, a dedicated database managed by AER is made publicly available for 

incident classification and inventory. Pipeline related incidents in the province are classified 
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under a number of different damage types [127] as shown in Table 3.1. These include 

important damage modes that commonly occur during normal operation of pipelines such as 

leaks, ruptures, and mechanical damage; and also include damage modes that occur during 

pipeline construction, commissioning and maintenance, such as integrity tests and pressure 

tests (specific definitions of each damage type are provided as a footnote in Table 3.1). Leaks 

are further classified into a number of descriptors including “leaks” (which typically 

encompass failures in main pipe bodies due, for example, to corrosion), “GSPT Releases” 

(which include any releases due failure of gaskets, seals, packing glands, or threaded fittings) 

and “installation leaks” (which encompass releases specifically at auxiliary sites along the 

pipeline such as compressor, pumping or metering stations). 

Table 3.1 also lists the number of incidents in the province of Alberta based on 

damage type between January 1, 2017, and December 31, 2019. Of the 1,479 total incidents 

during the three-year period, “leaks” account for the majority (62%) of pipeline related 

incidents in the province, while “GSPT releases” (i.e., leaks in gaskets or fittings) represent 

16% of total incidents. Releases resulting from pipeline “integrity tests” and “pressure tests” 

only represent 8% and 4% of all incidents, respectively. It should be noted that failures from 

these tests are somewhat beneficial in that they successfully locate weaknesses in the system 

and do not take place under normal operating conditions [126]. While pipeline “ruptures” 

(bursts) have the potential for most harm due to an abrupt release of fluid content, it can be 

seen that these are relatively infrequent (only 3% of all incidents over the three-year period). 

In addition to the main damage types outlined in Table 3.1, the AER database also 

categorizes specific failure modes within these broad damage types. For pipeline corrosion 

failures, for example, two categories have been historically used to track incidents since 1975:  



22 

 

Table 3.1 Number of Pipeline Incidentsa by Pipe Damage Type in Alberta, Canada from 

January 1, 2017 to December 31, 2019, as per the AER Database Classification [127]. 

Pipe Damage Type 

Categoryb 
2017 2018 2019 

Total Number of 

Incidents per 

Category 

Total Percentage 

per Category 

Leak 309 324 291 924 62% 

GSPT Release 63 79 80 222 16% 

Integrity Test Failure 44 46 30 120 8% 

Hit 41 28 21 90 6% 

Pressure Test Failure 22 18 20 60 4% 

Rupture 21 12 14 47 3% 

Installation Leak 2 5 9 16 1% 

Total per Year 502 512 465 1479 100% 

a Note that these statistics are dynamic in nature, and may not represent the AER database at any 

specific point in time due to possible changes during ongoing reviews. 

b In the table, “Leak” refers to incidents where the substance released does not immediately stop the 

operation. “GSPT Release” refers to leaks specifically due to failure (or lack of sealing) of gaskets, 

seals, packing glands, or threaded fittings (GSPT). “Integrity Test Failure” are leak incidents 

originating from failures occurring during an integrity test. “Pressure Test Failure” refers to a failure 

during qualification of new pipe construction. A “Hit” is an incident that occurs due to contact damage 

to a pipe or its coating due to a ground disturbance event that do not result in substance release (e.g., 

backhoe impact during construction). “Rupture” means a burst where the pipeline immediate ceases to 

operate. “Installation Leak” relates to releases which take place at auxiliary sites along the pipeline 

(e.g., compressor, pumping or metering stations). 

 

 “internal corrosion” and “external corrosion”. While these two general categories are useful 

for classifying and tracking corrosion failures, they do not identify and differentiate specific 

mechanisms involved in the incident. Subcategories have historically been added to the 

database to better identify these various mechanisms, and are based on the failure assessments 

by the operator or third-party consultants. This extended classification allows for improved 

tracking and classification of common corrosion issues. 

 



23 

 

3.2. Prevalence of MIC Related Failures in Alberta 

This section aims to quantify the prevalence of MIC related failure incidents in 

Alberta. The intent is to provide a better understanding of failure statistics associated with 

MIC in comparison with other common failure modes. The data was further analyzed based 

on operating factors such as pipe diameter/length and fluid type to identify where MIC is most 

commonly found.   

This analysis was conducted by reviewing the AER’s internal database and files 

associated with all corrosion incidents classified in the “leak” damage category over a three-

year period from January 1, 2017 to December 31, 2019. For this period, there was a total of 

573 corrosion related incidents with 447 classified as internal corrosion (78% of all corrosion 

related incidents) and 126 classified as external corrosion failures (22%). Each of these 573 

incident files were manually reviewed to flag those cases where MIC was identified as either 

the main corrosion mechanism or a contributing cause. This was determined based on third-

party failure reports and/or by information provided by the pipeline operator. 

Overall, there was a total of 67 MIC related failures (or 11.7%) out of the 573 corrosion 

related leak incidents reported over the three-year period. These MIC related incidents were 

then sub-divided into internal corrosion failures or external corrosion failures based on 

categorizations in the database and files. As shown in Table 3.2 and Table 3.3, MIC was 

involved in 13.6% of all internal corrosion incidents (61 out of 447 cases) and 4.8% of all 

external corrosion incidents (6 out of 126 cases), respectively. For the internal corrosion cases, 

MIC was found to be the main cause or a contributing factor under a number of corrosion sub-

categories in the AER database including microbiologically influenced corrosion (as 

expected), multi-mechanism corrosion, under deposit corrosion, CO2 corrosion, and others.   
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Table 3.2 Breakdown of all internal corrosion related “leak” incidents in Alberta based on 

reported damage mechanism (including MIC) over a three-year period from January 1, 2017 

thru December 31, 2019. 

Subcategories for Internal Corrosion 
Total Incidents 

Per Subcategory 

Number of 

MIC 

Related 

Failures  

MIC Related 

Failures 

as a Percentage of 

Total  

Internal Corrosion 

Incidents 

Equipment Failure - Internal 

corrosion 
140 19 4.3% 

Multi Mechanism 124 13 2.9% 

Under Deposit Corrosion 60 7 1.6% 

Microbiologically Influenced 

Corrosion 
27 19 4.3% 

CO2 Corrosion 24 2 0.4% 

Corrosion Under Internal Coating 18 1 0.2% 

Interference Corrosion 13 - - 

Corrosion at Valve or Fitting 7 - - 

H2S Corrosion 6 - - 

Corrosion at Internally Coated Riser 5 - - 

Preferential Weld Corrosion 5 - - 

Corrosion Behind Plastic Liner 4 - - 

Other 4 - - 

Corrosion Under Cement Lining 3 - - 

Oxygen Induced Corrosion 3 - - 

Corrosion at Inline Coupler 2 - - 

Erosion Corrosion 2 - - 

Total Internal Corrosion Incidents 447 61 13.6% 
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Table 3.3 Breakdown of all external corrosion “leak” incidents in Alberta based on reported 

damage mechanism (including MIC) over a three-year period from January 1, 2017 thru 

December 31, 2019. 

Subcategories for External Corrosion 
Total Incidents 

Per Subcategory 

Number 

of MIC 

Related 

Failures  

MIC Related Failures 

as a Percentage of 

Total  

External Corrosion 

Incidents 

Equipment Failure - External 

corrosion 
43 4 3.2% 

Coating Disbonded or Shielding 34 2 1.6% 

Missing or Damaged Coating  30 - - 

Corrosion Under Insulation 11 - - 

Atmospheric 5 - - 

Soil-to-Air Interface 2 - - 

Corrosion at Valve or Fitting 1 - - 

Total External Corrosion Incidents 126 6 4.8% 

 

For the external corrosion cases, MIC occurred in two sub-categories: equipment failure 

(external) and coating disbondment. This broad range of categories where MIC was found 

highlights the breadth and complexity of potential MIC impacts, and the associated  

challenges faced by the industry and regulators in assessing and classifying MIC related 

failures.   

It should be noted that these numbers reflect failures caused by MIC and not the 

prevalence of MIC found from inspection and integrity management programs (i.e., non-

failure events). To the authors’ knowledge, these MIC failure statistics (13.6% of all internal 

corrosion incidents and 4.8% of all external corrosion incidents) represent the first time that 

the prevalence of MIC has been accurately quantified in the literature based on a single, 

reliable data set. 
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Table 3.4 Frequency of MIC Incidents by Total Length of Steel Pipelines for Various Carrier 

Fluid Types Over a Three-Year Period from January 1, 2017 thru December 31, 2019. 

Fluid Type 

Number of MIC 

Incidents Over 

3 Year Period 

Total Steel Pipeline 

Length (km)a 

MIC Incidents per km 

per year 

Water 11 2,438 150 x 10-5 

Multiphase 31 22,735 45 x 10-5 

Natural Gas 23 152,913 5 x 10-5 

Sour Gas 1 13,952 2 x 10-5 

Other 1 31,937 1 x 10-5 

Crude Oil 0 13,809 0 

Total 67 237,784 N/A 

a Note that these lengths only represent steel pipelines (excludes non-metallics) that are either in operation 

or discontinued (excludes abandoned and permitted lines). 

 

To further understand where MIC failures most commonly occur, the 67 MIC related 

cases were further categorized based on the pipeline contents and size of pipe. Table 3.4 

highlights the number of MIC incidents and their frequency (per km per year) for various  

pipeline fluid types. It can be seen that MIC is most prevalent in water and multiphase 

pipelines at 150 x 10-5 and 45 x 10-5 MIC incidents per km per year, respectively. This 

translates to one MIC failure (on average) every 667 kilometers in water pipelines and every 

2,222 kilometers in multiphase pipelines, each year. 

This same analysis was also performed based on pipeline outside diameter (O.D.), as 

shown in Table 3.5. This table shows that all recorded MIC incidents occurred in relatively 

small diameter pipelines (i.e., 220.3 mm O.D./8 in. nominal or less), which are more 

representative of upstream production flowlines and collection systems. Furthermore, a  
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Table 3.5 Frequency of MIC Incidents by Total Length of Steel Pipelines for Various Outer 

Diameters of Pipe Over a Three-Year Period from January 1, 2017 thru December 31, 2019. 

Pipe Outer Diameter 

Number of MIC 

Incidents Over 

3 Year Period 

Total Steel Pipeline 

Length (km)a 

MIC Incidents 

per km per year 

82.6 mm – 101.6 mm 

(3 in. and 3½ in. nominal) 

29 49,205 20 x 10-5 

≤ 80.9 mm 

(≤ 2½ in. nominal) 

11 20,698 18 x 10-5 

114.0 mm – 116.8 mm 

(4 in. nominal) 

14 63,405 7 x 10-5 

139.7 mm – 177.8 mm 

(5 in. and 6 in. nominal) 

9 47,107 6 x 10-5 

219.0 mm – 220.3 mm 

(8 in. nominal) 

4 20,782 6 x 10-5 

≥ 255.3 mm 

(≥ 10 in. nominal) 

0 36,587 0 

Total 67 
237,784 

N/A 

a Note that these lengths only represent steel pipelines (excludes non-metallics) that are either in operation 

or discontinued (excludes abandoned and permitted lines). 

 

majority of MIC failures occurred in pipelines with outside diameters less than 101.6 mm (3½ 

in. nominal pipe sizes or less). The highest MIC failure frequency was 20 x 10-5 MIC 

incidents per km per year which was found in pipelines with an O.D. between 82.6 mm and 

101.6 mm (3 in. and 3½ in. nominal pipe diameters). This translates to one MIC failure (on 

average) every 5,000 kilometers per year. The next highest MIC failure frequency was 18 x 

10-5 MIC incidents per km per year which was found in pipelines with an O.D. less than 80.9 

mm (2½ in. nominal pipe sizes or less). This translates to one MIC failure (on average) every  



28 

 

Table 3.6 Frequency of MIC Incidents by Total Length of Steel Pipelines for Various Outer 

Diameters and Fluid Types of Pipe Over a Three-Year Period from January 1, 2017 thru 

December 31, 2019. 

Fluid Type Pipe Outer Diameter 

Number of 

MIC Incidents 

Over 

3 Year Period 

Total Steel Pipeline 

Length (km)a 

MIC Incidents 

per km per 

year 

Water  
≤ 80.9 mm 

(≤ 2½ in. nominal) 
7 497 470 x 10-5 

Water  
114.0 mm – 116.8 mm 

(4 in. nominal) 
3 405 247 x 10-5 

Multiphase  
82.6 mm – 101.6 mm 

(3 in. and 3½ in. nom.) 
18 9,297 65 x 10-5 

Water  
82.6 mm – 101.6 mm 

(3 in. and 3½ in. nom.) 
1 594 56 x 10-5 

Multiphase  
114.0 mm – 116.8 mm 

(4 in. nominal) 
7 5,155 45 x 10-5 

Multiphase  
219.0 mm – 220.3 mm 

(8 in. nominal) 
2 1,526 44 x 10-5 

Multiphase  
≤ 80.9 mm 

(≤ 2½ in. nominal) 
2 2,037 33 x 10-5 

Multiphase  

139.7 mm – 177.8 mm 

(5 in. and 6 in. 

nominal) 

2 3,692 18 x 10-5 

Other  
219.0 mm – 220.3 mm 

(8 in. nominal) 
1 3,043 11 x 10-5 

Natural 

Gas  

82.6 mm – 101.6 mm 

(3 in. and 3½ in. nom.) 
10 34,323 10 x 10-5 

Sour Gas  

139.7 mm – 177.8 mm 

(5 in. and 6 in. 

nominal) 

1 4,594 7 x 10-5 

Natural 

Gas  

139.7 mm – 177.8 mm 

(5 in. and 6 in. 

nominal) 

6 34,309 6 x 10-5 

Natural 

Gas  

≤ 80.9 mm 

(≤ 2½ in. nominal) 
2 12,301 5 x 10-5 

Natural 

Gas  

219.0 mm – 220.3 mm 

(8 in. nominal) 
1 11,521 3 x 10-5 

Natural 

Gas  

114.0 mm – 116.8 mm 

(4 in. nominal) 
4 50,005 3 x 10-5 

Remaining Combinations of Fluid 

Type and Pipe Outer Diameter 
0 64,486 0 

Total 67 237,784 N/A 

a Note that these lengths only represent steel pipelines (excludes non-metallics) that are either in operation 

or discontinued (excludes abandoned and permitted lines). 
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5,556 kilometers each year. The main reason for the high MIC failure frequencies in small 

diameter pipelines is likely due to the fact that many of these systems have significant water 

content in the fluid (i.e., produced water, or unprocessed crude emulsions), which is a 

necessary precursor for MIC to occur. Additionally, smaller diameter lines are often more 

difficult to inspect and maintain (e.g., pig) relative to larger diameter pipelines that may also 

contribute to the frequency of MIC incidents. 

Finally, the fluid type and outer diameter datasets were combined to identify specific 

field conditions where MIC was found to be most prevalent. As shown in Table 3.6, water 

pipelines with outer diameters smaller than 80.9 mm (2-1/2 in. nominal pipe size) and 114 –  

116.8 mm (4 in. nominal pipe size) had the highest MIC failure frequencies at 470 x 10-5 and 

247 x 10-5 incidents per km per year, respectively. This translates to one MIC failure (on 

average) every 213 and 405 kilometers, respectively each year. The remainder of fluid-

diameter combinations in Table 3.6 have much lower failure frequencies, and consist of a 

mixture of multiphase and water pipelines of varying diameters. Natural gas pipelines had the 

lowest MIC failure frequencies between 3 x 10-5 and 10 x 10-5 incidents per km per year 

suggesting these lines were typically carrying dehydrated natural gas. 

 

3.3 Conclusions 

This chapter highlights a review and analysis of MIC related pipeline incidents in the 

province of Alberta, Canada over a three-year period (2017-2019). The intent was to present 

an analysis of the occurrence of MIC failures relative to other corrosion mechanisms.  

Over this three-year period, MIC was found to be involved in 13.6% of all internal 

corrosion incidents (61 out of 447 cases) and 4.8% of all external corrosion incidents (6 out of 
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126 cases), either as the main failure mechanism or as a contributing factor. Furthermore, all 

of these failures occurred in small diameter upstream pipelines (with less than or equal to 

220.3 mm outside diameter) mainly carrying produced water or multiphase fluids (oil-water 

emulsions). The highest MIC failure frequencies occurred in water pipelines with outer 

diameters smaller than 80.9 mm (2-1/2 in. nominal pipe size) and 114 – 116.8 mm (4 in. 

nominal pipe size) at 470 x 10-5 and 247 x 10-5 incidents per km per year, respectively. This 

translates to one MIC failure (on average) every 213 and 405 kilometers, respectively each 

year. To the authors’ knowledge, this is one of the few well documented instances 

documenting MIC prevalence in the open literature with supporting evidence and data. 
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Chapter 4: Review and Gap Analysis of MIC Failure Investigation Methods 

in Alberta’s Upstream Oil and Gas Operations 

In this section, MIC failure investigation and analysis methods were reviewed from 

assessments of recent pipeline failure incidents in Alberta over a three-year period from 

January 1, 2017 to December 31, 2019 (see Chapter 3 for more details). Fifty failure 

assessments were sampled for the period of interest and each was reviewed to identify the 

information that was typically collected during these assessments and how this information 

was used to confirm MIC. These assessments consisted of reports from third-party consultants 

or from summaries prepared by AER inspectors based on available information/data from the 

incident and operations. All incident information regarding specific operators, asset name and 

location, and the third-party consultant has been blinded to ensure confidentiality. 

As shown in Table 4.1, a broad range of assessments was used in this review, covering 

cases where MIC was either identified as the primary failure mechanism or as a contributing 

(secondary) factor in conjunction with some other possible failure mechanism (e.g., CO2 or 

H2S corrosion). Out of the 50 incidents that were reviewed, 19 were categorized as “MIC”, 10 

as “multi-mechanism”, 6 as “under deposit corrosion”, 1 as “under internal coating” while 14 

were categorized simply as internal corrosion (subcategory not discriminated). Although there 

is a dedicated category for MIC, it can be seen that MIC is often reported in addition with 

several other failure causes. 

The information compiled from these assessments was then compared to the latest best 

practises used to diagnose MIC failures as determined through expert elicitation and from 

methodologies published in the open literature [24,26,128]. The intent of this exercise was to 

identify gaps in current MIC failure assessment methodologies, and suggest improvements on  
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Table 4.1 Breakdown of the 50 mic failure assessments considered in this study based on 

corrosion subcategory and primary/secondary contribution. 

Corrosion Subcategory Classification 

in AER Database 

Number of 

Reviewed 

Assessments 

where MIC 

was the 

Primary 

Mechanism 

Number of 

Reviewed 

Assessments 

where MIC was 

a Secondary 

Mechanism 

Total Number 

of Reviewed 

Assessments 

Microbiologically Influenced 

Corrosion 
17 2 19 

Multi-Mechanism 4 6 10 

Under Deposit Corrosion 2 4 6 

Under Internal Coating 1 – 1 

<Subcategory not discriminated> 8 6 14 

Total 32 18 50 

 

how industry and regulators can better identify potential MIC incidents. To accomplish this 

task, a checklist [21,23,124] of information and methods was created based on the current best 

practises, and was used to evaluate each of the 50 MIC assessments from the AER database to 

identify potential gaps in both the data and/or analysis methods used. The checklist was 

grouped into five major information and analysis groups as shown in Figure 4.1. These 

categories outline the main layers of evidence required to conduct a successful assessment for 

MIC. These include four key information groups (microbiological, chemical, 

metallurgical/corrosion, and operating data) and a data integration step, which is required to 

properly identify MIC as a possible failure mechanism. In addition to these five main 

categories, this gap analysis also examined a number of other important factors that may affect 

a successful MIC diagnosis, including proper sampling and the availability/use of standards.   
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Figure 4.1 Major information and analysis groups required for conclusive and reliable MIC 

diagnosis. 

 

Details for each of these categories and results from the gap analysis are provided in 

the following sections. The results are presented in comprehensive figures that identify 

whether a particular MIC failure assessment (numbered 1 thru 50) has included a specific 

dataset/analysis method or not.  This allows quantification of select layers of evidence, and an 

overall indicator of whether certain analytical practises are being followed. In addition, the 

same 50 MIC failure cases are used throughout the remainder of the chapter to ensure 

consistency in the gap analysis. 

Operating

Metallurgical/

Corrosion

Microbiological

Chemical Integration
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4.1. Overall Summary  

One goal of a failure assessment is to understand why the failure took place at a 

specific location and the underlying cause. For assessing suspected MIC related corrosion 

failures, there is a need to determine whether the failure mechanism was due to abiotic factors 

(e.g., CO2, H2S, O2, Cl- in the system), biotic factors (due to microbiological processes), or a 

combination of both. It is the contrast and integration between the multiple layers of evidence, 

as shown in Figure 4.1 (microbiological, chemical, metallurgical/corrosion, and operating 

data, and its integration), that can lead to the most conclusive and reliable diagnosis given the 

limits of current technology and knowledge. 

In general, all five of these layers of evidence were to some extent fulfilled in a 

majority of the 50 MIC assessments reviewed, as listed in Table 4.2. Over 90% of the 50 MIC 

assessments reviewed took chemical data, metallurgical/corrosion data, operating data, and 

integration steps into consideration. However, the greatest gap is observed for microbiological 

data, where only 70% of the MIC assessments reviewed conducted some sort of 

microbiological analysis. While this shows that most of the MIC assessments incorporated the 

five general categories of information in their reports (other than microbiological), a larger 

discrepancy can be seen when exploring specific details within each category as outlined in 

the following sections. 
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Table 4.2 Inclusion of key information and analysis groups in the reviewed mic failure 

assessments. 

Information and Analysis Group 

Percentages of Failure Assessments that 

Included Specific Information and Analysis 

Groups 

Microbiological  70% 

Chemical  92% 

Metallurgical/Corrosion  98% 

Operating  92% 

Integration 90% 

 

4.2.  Reported Microbiological Data 

Microbiological information is a key component to identify MIC. MIC can only occur 

if specific types of microbial functional groups (MFG) are present at the surface of the pipe as 

part of a biofilm (sessile microorganisms). Furthermore, these microorganisms must be active 

for MIC to occur. It should be noted that many species of microorganisms commonly exist in 

oil and gas systems; however, not all are responsible for MIC. For this reason, it is important 

to assess three key microbiological factors in the investigation: microbial diversity, activity 

and abundance. Diversity characterizes the community of microorganisms present in a system 

(both MIC and non-MIC related functional groups). Activity indicates whether the 

microorganisms present are actively involved in metabolic functions (versus those that are 

either dormant or deceased).  Finally, abundance quantifies the numbers of specific 

microorganisms present in the system.  

A detailed listing of the microbiological information used in the 50 MIC failure 

assessments is shown in Figure 4.2, including sample type and whether microbiological 

analysis was performed using modern MMM or older culture-based techniques (e.g., Most  
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Figure 4.2 Inclusion of specific microbiological information and analysis methods for each of the failure assessments reviewed (1 thru 

50). 

Assessment Number (1-50):

Key Microbiological Information %

Liquid Sample (Planktonic) 52

Solid Sample (Sessile) 10

Surface Swab (Sessile) 16

Molecular Microbiological Methods (MMM) 34

· Next Generation Sequencing (NGS) 6

· Quantitative Polymerase Chain Reaction (qPCR) 10

· Adenosine Triphosphate Assay (ATP) 32

Selective Media for Culturing 44

· Biological Activity Reaction Test (BART) 4

· Most Probable Number (MPN) 40

1 35 40 45 505 10 15 20 25 30
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Probable Number [MPN] from serial dilution or Biological Activity Reaction Tests, [BART]). 

The figure represents a matrix highlighting the pieces of information or analyses that were 

performed (rows) for each MIC failure assessment 1 thru 50 (columns). Those intersections 

that are marked in “black” indicate that a given piece of information or method was used in 

that particular failure assessment/report. The failure assessment numbers are consistent 

throughout each figure in the remainder of the chapter, which allows the reader to cross-

reference different data sets based upon the same set of data. 

 

4.2.1. Microbiological Sample Type 

As shown in Figure 4.2, a majority of the 50 MIC failure assessments performed 

microbiological testing using liquid samples (52%), followed by solids (10%) and surface 

swabs (16%). In terms of best practices, swabbing at or near the failure location is considered 

the most representative microbiological sample since MIC is highly dependent on activity 

happening at the pipeline surface. Microbiological sampling of solids is also considered a 

reasonable indicator if the sample is related to the corrosion location. Both swab and solid 

samples represent potential sessile microorganisms (those found to congregate at surfaces in 

the form of biofilms), while fluid samples can only identify planktonic (free floating) 

microorganisms in the system. While fluid samples are relatively easy to obtain, it has been 

shown that planktonic microorganisms do not necessarily represent sessile (surface) 

populations and should only be used as supplementary information [24,33,122–124].  

It should be noted that a number of failure reports commented that no microbiological 

samples were collected due to the absence of liquid material on the cut-out pipe samples. In 

such cases, surface solids collection via swabbing is still a viable option for microbiological 
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assessment.  However, in some cases, swab or solid sampling may not be possible due to poor 

preservation of the failure location, or possible disruption of the surface during the 

investigation (e.g., inadvertent cleaning to examine the corrosion defect). In these cases, fluid 

sampling may be the only option. 

 

4.2.2 Microbiological Analysis Methods 

In terms of microbiological testing methodologies, 34% of assessments used some 

aspect of newer MMM while 44% of the assessments used culture-based techniques including 

MPN or BART, as shown in Figure 4.2.   

Of the MMM tests conducted, the Adenosine Triphosphate assay (ATP) was most 

commonly used (32%) followed by Quantitative Polymerase Chain Reaction (qPCR) at 10% 

and Next Generation Sequencing (NGS) at 6%. ATP measures microbiological activity in the 

system which is critical for MIC to occur. NGS measures microbiological diversity, which can 

identify a range of MIC related MFG present in any given sample, and is a key factor for 

identifying MIC as the links between microbiology and chemistry (both from potential 

corrosion products to energy sources and electron acceptors in the environment measured in 

other samples). qPCR measures the abundance of a particular microorganism or functional 

gene present in a sample and it may be a good indicator of the MIC related microorganisms 

that are most likely responsible for the observed corrosion. In terms of portability, ATP assays 

can be performed in the field [129], while qPCR and NGS testing are still moving to be more 

portable and are mostly conducted in a laboratory setting. However, results from ATP tests 

only represent microbiological activity at one specific point in time (i.e., one value does not 
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indicate historical activity). In all three cases (ATP, qPCR, and NGS), tests should be 

conducted on actual or preserved samples as soon as possible to ensure representative results. 

DNA sequencing of 16S ribosomal RNA (rRNA) genes via NGS allows for the 

identification of all bacteria and archaea present in the system, while qPCR of functional 

genes uses primers targeted to specific MFG based on their metabolic pathways [23,25]. 

When it comes to assessing microbial diversity, activity and abundance to diagnose MIC, 

MMM outputs reliable results that can be linked to other layers of evidence, such as corrosion 

products and environment chemical composition [21,26,128–136].  

Of the culture-based methods conducted, the determination of MPN via serial dilution 

was most common (40%) with only a few of the assessments using BART (4%). MPN and 

BART both identify the presence and quantity of specific microorganism groups or traits (e.g., 

slime forming bacteria) based on their response to conditions in the culture medium. Many 

third-party consultants and test labs are familiar with these methods, and prefer them due to 

availability, low cost and ease of use (e.g., they do not require sophisticated equipment for 

analysis). Culture-based methods can also provide some clues regarding the operating 

environment inside the pipeline if properly linked to other layers of evidence (such as 

chemical, corrosion and/or operating data). However, the main challenge with culture-based 

methods is the fact they can only identify a limited number of MIC related microorganisms 

based on selective growth media available. As a result, they may not be able to characterize 

the full diversity of the actual microbiological community present in the sample [23]. By 

contrast, MMM-based NGS has a distinct advantage in that it can provide a full analysis of the 

microbial community present in any given sample. This does not preclude the use of culture-

based methods; however, there is a possibility that some MIC related microorganism present 
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in the system are not being properly identified (i.e., false negatives due to a lack of selective 

media for a particular microbial function group). Another challenge with culture-based 

methods is that they do not distinguish between active and dormant microorganisms in the 

actual environment since all living microorganisms (whether active or dormant) can grow 

during lab-based culturing.  Conversely, commercially available ATP assays currently only 

identify those microorganisms that are active (and not dormant) at the time of testing. 

The difference between MMM and culture-based methods in their ability to measure 

microbiological diversity can be clearly seen in Figure 4.3 for each of the MIC failure 

incidents studied. Note that the figure only represents the types of tests conducted, not 

necessarily the microorganisms that were found. Those assessments that used MMM (NGS 

and qPCR) were able to distinguish a wide range of possible MFG, including sulfate reducing 

bacteria, sulfate reducing archaea, thiosulfate reducing bacteria, methanogenic archaea, acid 

producing bacteria, nitrate reducing bacteria, sulfate oxidizing bacteria, iron reducing bacteria, 

iron oxidizing bacteria, manganese reducing bacteria, and manganese oxidizing bacteria. 

Conversely, those failure assessments that used culture-based techniques were only able to test 

for a limited number of MIC related microbial functional groups (e.g., APB, SRB). The list of 

culture-based tests; however, also includes assays for a number of broad groups of 

microorganisms, such as aerobic (AERO), anaerobic (ANA), iron related bacteria (IReB), low 

nutrient bacteria (LNB), slime forming bacteria (SLYM), and heterotrophic anaerobic bacteria 

(HAB). While these media may provide some additional information on the pipeline 

environment, they have limited use in assessing MIC directly as they are not specific to MIC 

related microorganisms. Historically, these general groups were often characterized to 

compensate for the limited ability to identify the microbiological diversity of MIC species.  
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Figure 4.3 Contrast between the microbial functional groups (MFG) identified by molecular microbiological methods and culture-

based methods for each of the failure assessments reviewed (1 thru 50). 

Assessment Number (1-50):

Key Microbiological Information

In Relation to Molecular Microbiological Methods %

Total Bacteria 10

Total Archaea 10

Acid Producing Bacteria (APB) 6

Sulfate Reducing Bacteria (SRB) 10

Sulfate Reducing Archaea (SRA) 6

Iron Oxidizing Bacteria (IOB) 10

Iron Reducing Bacteria (IRB) 10

Methanogenic Archaea (MA) 10

In Relation to Selective Media for Culturing %

Acid Producing Bacteria (APB) 42

Sulfate Reducing Bacteria (SRB) 40

Iron Related Bacteria (IReB) 16

Aerobic Bacteria (AERO) 2

Anaerobic Bacteria (ANA) 12

Low Nutrient Bacteria (LNB) 12

Slime Forming Bacteria (SLYM) 4

Heterotrophic Anaerobic Bacteria (HAB) 4

1 505 10 15 20 25 30 35 40 45
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The intent was to look for other traits that could suggest the presence of microorganisms in the 

system. With the increasing availability (and declining cost) of more comprehensive 

Microbiological Molecular Methods, these assays are not as relevant today.   

In terms of microorganisms linked to the failure assessments reviewed, 60% of all failure 

incidents examined were attributed to either SRB and/or APB, while the remaining 40% of 

assessments diagnosed MIC without identification of any specific MFG. Instead of using 

available microbiological tests, such as serial dilution, qPCR or NGS, some of these latter 

assessments inferred MIC related MFG or mechanisms based on either chemical analysis of 

the corrosion products (26%) or visual analysis of the pitting morphology (12%). While 

analysis of corrosion products is an important step in confirming specific MIC mechanisms, it 

alone cannot give a conclusive diagnosis of MIC without other layers of evidence including 

microbiological diversity data. Conversely, correlating corrosion morphology with specific 

MFGs has been shown to be inconclusive since common MIC morphologies can also be 

associated with abiotic corrosion mechanisms [15,22,23,60]. It should be pointed out that a 

number of these MIC assessments based solely on corrosion products or morphologies, also 

conducted ATP measurements to confirm the presence of microbiological activity in the 

system. However, ATP results are unable to confirm whether any of the “active” 

microorganisms detected are in fact, MIC related. 

 

4.3 Reported Chemical Analysis Data 

Chemical analysis data can validate or invalidate MIC as a viable failure mechanism. 

The hypothesis is based on the contrast between corrosion products (e.g., solids) and the 

corrodents present in the water and in the gas. Therefore, the chemical composition of solids, 
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liquids, and gases should be known in order to answer to what extent the environment 

supported either microbiological processes or abiotic mechanisms (e.g., CO2, H2S). 

Figure 4.4 lists the chemical compounds tested in the different MIC failure 

assessments for solids, liquids and gases. As Table 4.2 displays, 92% of the failure 

assessments gathered some sort of chemical data; supporting the importance of chemical 

considerations for a conclusive failure diagnosis and also demonstrating a better industry 

familiarity with abiotic drivers. 

The importance of chemical evidence to the MIC investigation framework is twofold: 

(1) it indicates the abiotic and biotic potential for corrosion by comparing dissolved chemical 

species in the water and in the gas with those found in the corrosion products; and (2) it 

provides evidence for linking microbiological diversity with corrosion products and dissolved 

nutrients (i.e., energy sources and electron acceptors) in the water. 

 

4.3.1 Reported Solids Data 

Identification of corrosion products is used as evidence to show that a corrosion 

process took place. In order to track whether the source of corrosion products is abiotic or 

biotic, their composition is contrasted to the chemistry of the water and the gas in the system, 

along with microbiological community characterization. As Figure 4.4 shows, 82% of 

incidents provided characterization of solids, either by qualitative chemical spot testing (66%), 

elemental analysis (46%, Energy Dispersive X-ray Spectroscopy [EDS]) and/or mineral 

analysis (42%, X-Ray Diffraction [XRD]). Spot testing was most routinely performed due to 

its simplicity and low cost. Qualitative spot testing is commonly used as a high-level 
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Figure 4.4 Inclusion of specific chemical information and analysis methods for each of the failure assessments reviewed (1 thru 50). 

Assessment Number (1-50):

Key Chemical Information %

Solid Analysis 82

Chemical Spot Testing 66

· Sulfides Tested 62

· Carbonates Tested 54

· Chlorides Tested 44

Energy Dispersive X-Ray Spectroscopy (EDS) 46

X-Ray Diffraction (XRD) 42

· Iron Oxides Found 34

· Iron Hydroxides Found 32

· Iron Carbonates Found 40

· Iron Sulfides Found 34

· Mackinawite Found 26

· Iron Related Chlorides Found 20

Water Analysis 70

CO2 Dissolved 20

H2S Dissolved 28

Chlorides (Cl
-
) 68

Total Dissolved Solids (TDS) 40

Iron (Fe
+2

) 54

Manganese (Mn
+2

) 42

Sulfate (SO4
-2

) 50

Nitrate (NO3
-
) 20

Nitrite (NO2
-
) 20

Gas Analysis 78

Oxygen (O2) 10

Carbon Dioxide (CO2) 78

Hydrogen Sulfide (H2S) 76

1 505 10 15 20 25 30 35 40 45
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screening step to identify expected corrosion products and was used to check for sulfides 

(62%), carbonates (54%), and chlorides (44%). 

EDS and XRD analyses of solids provide more specific evidence than spot testing as 

EDS identifies the chemical species at an elemental level (e.g., sulfur, carbon, oxygen, iron, 

calcium, etc.), while XRD identifies crystalline (e.g., oxides, carbonates, sulfides, etc.) 

compounds [137–139]. Iron carbonates (40%) and iron sulfides (34%) were the compounds 

most found by XRD. Mackinawite, an iron sulfide compound, was found in 26% of the failure 

assessments, accounting for 13 of the reviewed incidents. In 11 of these incidents, SRB were 

diagnosed as a contributing cause, showcasing how strongly SRB driven MIC is currently 

attributed to the presence of mackinawite. The correlation between mackinawite as a corrosion 

product and SRB is believed to be more significant when the system is known to have no 

obvious sources of hydrogen sulfide (the main abiotic cause of iron sulfide formation). 

 

4.3.2 Reported Water Data 

Water soluble chemical species are both the source of nutrients for microbiological 

activity and potential abiotic corrosion drivers. The evaluation of the water content and 

composition provides a means to track the source of corrosive constituents and corrosion 

products and, therefore, to add discrimination as to whether the corrosion is driven abiotically 

or biotically. Chemical analysis of water samples, present in 70% of the incidents, was used 

less as evidence of corrosion as compared to solids analyses, 82% (Figure 4.4). Although 

68% of failure assessments tested for chlorides, only 20% tested for dissolved CO2 and 28% 

for dissolved H2S in the water. 
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None of the failure assessments tested for O2 dissolved in the water, most likely 

because production pipelines are anaerobic environments where CO2 and H2S, along with 

chlorides, are the most significant drivers for abiotic corrosion and oxygen is rarely present. 

Yet, the presence of oxygen should be taken into consideration, as it can be more corrosive 

than both CO2 and H2S [140] and its concentrations may lead to shifts in MIC potential and 

microbiological community populations [141,142]. 

Chloride concentration can also impact MIC in terms of both limitations on growth 

and the diversity of microorganisms present [137–139]. Therefore, the presence of dissolved 

chlorides, which contributes to the salinity and the total dissolved solids (TDS) of the water, 

may help indicate to what extent MIC is a viable failure cause. 

In regard to both CO2 and H2S corrosion, the levels of these species in a flowing 

system can give some initial indication of whether there is an abiotic contribution to the 

corrosion. The presence of dissolved CO2 and H2S in water is a function of their concentration 

(partial pressure) in the gas and system pressure (Henry’s law), along with water chemistry. 

Hence, based on corrosion rate modeling, the CO2 and H2S levels provide abiotic corrosion 

rates that can be used as a starting point for assessing a possible abiotic origin of the 

corrosion. In contrast, very low gas flow rates or stagnant systems may experience local 

accumulation of high concentrations of CO2 and H2S that are biotically produced. The 

considerations made by the reviewed failure assessments regarding the relationship between 

CO2 gas and H2S gas to the solids associated with them is discussed later in this chapter. 

The concentration of both CO2 and H2S in the water indicate to some extent the 

potential of these corrodents to drive the corrosion process (abiotic) as compared to MIC 

(biotic). Carbon dioxide is required for the activity of some microorganisms, such as 
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methanogenic archaea and acetogenic bacteria [143,144]. In flowing systems where CO2 is 

abundant, iron carbonates will tend to form abiotically. In stagnant systems, consumption of 

carbon dioxide by microorganisms can result in an increase in both bicarbonate and carbonate 

alkalinity, along with pH, which can cause precipitation of carbonate minerals (e.g., iron 

carbonates). Enning and Garrelfs 2014 [30] mention a case where electrical MIC (EMIC) by 

SRB also can result in iron carbonate precipitation. 

On the other hand, the presence of sulfidic corrosion products can be more meaningful 

evidence to differentiate biotic from abiotic corrosion. Mackinawite formation is associated 

with the same environmental conditions in which SRB and SRA can be present [145–147]. 

Therefore, the presence of mackinawite may be considered a potential indicator of the 

contribution of SRB and/or SRA to the corrosion process when they are found to be present in 

the system; while other iron sulfide forms (e.g., troilite, pyrrhotite, pyrite, marcasite, greigite, 

etc.) indicate either abiotic H2S corrosion or potential decomposition of mackinawite [60] or 

other iron sulfides. Hence, when H2S is not present in the gas (and consequently not dissolved 

in the water) but iron sulfides are present, that can be a significant indication that SRB and/or 

SRA may be contributing to the degradation process, since there is no apparent source for 

sulfide formation except for microbial activity. However, when H2S is present, this 

comparison becomes more complex, as there are now two potential sources for iron sulfide 

formation. One way to discriminate between biotic and abiotic sulfidic corrosion products is 

by comparison of stable S isotope ratios [148–150]; however, this was not observed to be 

common practice. 

Regarding dissolved chemical species that influence MIC, electron acceptors/donors 

(e.g., Fe, Mn, S, SO4
2-, NO3

-, NO2
-, etc.) are of particular importance [36,140] as they may 
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represent a limiting factor for microbial growth in oil and gas systems. Therefore, their 

presence indicates to what extent the operating environment could support the microorganisms 

identified (diversity) and their potential activity. However, while electron donors/acceptors 

were used as indication for abiotic potential, the reviewed failure assessments overlooked the 

ability to use this evidence to support MIC as a credible failure cause.  

In terms of carbon that can be used as energy source by microorganisms, as the 

reviewed pipeline environments handle hydrocarbons, some form of carbon will nearly always 

be present for microorganisms to metabolize [134,145,146]. Additionally, oilfield chemicals 

related to production, drilling, completion, hydraulic fracturing can also work as sources of 

carbon and nutrients. 

While 52% of the failure assessments concluded the failure to be SRB driven (either 

due to microbiological, chemical, and/or metallurgical/corrosion related evidence), and 50% 

tested for SO4
2- (Figure 4.4), only 24% of the cases both tested for SO4

2- and concluded the 

failure to be SRB driven. Therefore, as sulfate was not considered in many cases as an 

essential electron acceptor for SRB activity, this identifies a current shortcoming in the 

approach to water composition evidence to support a MIC diagnosis. 

Hence, for the chemical species listed in Figure 4.4, it is possible that relevant 

chemical data were assessed in some cases; however, some failure assessments missed the 

opportunity to use the information to support the MIC diagnosis. 
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4.3.3 Reported Gas Data  

Gas concentration is used with operating pressure to determine the partial pressure of 

each gas present. The partial pressure of some gases allows one to assess to some extent 

whether abiotic drivers are reasonable contributors to the corrosion process or not [151]. 

In respect to gas analysis, 78% of failure assessments determined gas compositions 

(Figure 4.4). CO2 and H2S were tested in 78% and 76% of the time, respectively, as they are 

the main drivers for abiotic corrosion in anaerobic oil and gas systems [152]. As these 

compounds were tested in the gas, that may explain why they were not as extensively tested in 

water samples. 

 

4.4 Reported Metallurgical/Corrosion Data 

Evidence of metal loss as supporting proof of corrosion was gathered in 98% of failure 

assessments reviewed (Table 4.2). Visual features related to pipe wall loss due to chemical 

and/or microbiological reactions are the first indicators of corrosion degradation. It is the 

contrast of microbiological (diversity, activity, abundance), chemical and operating factors 

between the corroded and non-corroded areas that best helps determine the failure mechanism. 

Figure 4.5 displays the metallurgical/corrosion data gathered by the failure 

assessments reviewed. Only 42% of failure assessments had samples analyzed from the 

failure/corrosion location. In respect to MIC, the comparison between the evidence at the 

failure/corroded area and the non-corroded area is essential. MIC is biofilm dependent, 

therefore, it is highly localized [23,34,147–152]. Consequently, diversity, activity and 

abundance results may vary considerably between the corroded area and the non-corroded 

area when MIC is the cause of failure. 
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Figure 4.5 Inclusion of specific metallurgical/corrosion and operating information and analysis methods for each of the failure 

assessments reviewed (1 thru 50). 

Assessment Number (1-50):

Key Metallurgical/Corrosion Information %

Corrosion Products at Failure 42

Failure at the Bottom 92

Presence of General Corrosion 10

Presence of Pitting 96

Description of Pitting Morphology 82

Presence of Solid Deposition 86

Wall Loss 24

Coupons 36

General Corrosion Rate 48

Pitting Rate 32

Microstructural Optical Imaging 48

Metal Hardness Tested 38

Presence of Welding 44

Key Operating Information %

Water cut 82

Flow Rate/Regime/Condition 72

Temperature 74

pH 54

Pressure 86

1 35 40 45 505 10 15 20 25 30
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Additionally, although ruptures account for only 3% of the incidents in Alberta 

between 2017 and 2019 (Table 3.1) and no rupture was caused by MIC between this time 

period, the effect of ruptures can affect the validity of MIC failure samples. Sometimes 

damage by post rupture events (e.g., leak, fire, ignitions, groundwater intrusion in 

underground pipes) affect the substance at the through-wall perforation where the leak 

originates, which causes the evidence no longer to be representative. Hence, when evidence at 

the leak site is compromised by post rupture events, sampling from a nearby corroded area 

(where corrosion products are still present in the pits) is a valid strategy to obtain undisturbed 

representative evidence. 

In terms of corrosion, pitting was the dominant feature, present in 96% of incidents, 

while general corrosion was present in only 10% (and always in conjunction with pitting). The 

vast majority (92%) of the failure assessments identified that the failure occurred at the 

bottom half of the pipes, which may be interpreted as demonstrating the contribution of water 

accumulation on the degradation process.  

Pitting morphology was described in 82% of the failure assessments, showcasing how 

strongly diagnoses take this layer of evidence into consideration. MIC was reported to be 

associated with tunneling, undercutting, pits within pits (“bulls’ eye” appearance) and faceted 

pitting morphologies, even though pitting alone is not diagnostic for MIC as it cannot be 

related to a unique type of MIC morphology [20,57,147]. 

Solid deposition (e.g., deposits, scales, corrosion products, biomass) on the pipe 

surface was identified by 86% of failure assessments. However, no clear distinction between 

deposits, scales and corrosion products was made and such terms were used interchangeably. 
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General corrosion rates were estimated in 48% of failure assessments, either as part of 

the third-party failure report (where the wall loss was measured and divided by the length of 

time the pipe was operating) or as provided by coupon monitoring results. Averaging 

corrosion rates over the entire life of an asset may be non-conservative, as higher corrosion 

rates may have initiated later in the asset life when conditions changed.  

Coupon monitoring, corrosion pitting rates and general wall loss, either from previous 

inspection or from examination of the pipe sample, were pieces of information included in 

36%, 32% and 24% of the failure assessments, respectively. MIC is known to occur at 

unpredictably high rates, being normally associated with “premature” failures. However, when 

a leak occurs on a pipeline that is 30 years old, there is no way to determine when the 

corrosion began and therefore a linkage between corrosion rate and MIC is unfeasible.  

Metallographic examination of the failure cross-section surface and metal hardness 

testing were assessed in 48% and 38% of the failure assessments, respectively. Based on these 

two factors, none of the cut outs were deemed to be out of specification. However, neither 

spectrographic analysis for chemical composition nor mechanical strength testing (e.g., tensile 

strength, yield strength, percent of elongation) were carried out to augment material 

compatibility verification for comparison with pipe manufacturing specifications. 

In terms of welding, electric resistance welding (ERW) seams and/or girth welds were 

present in 44% of the failure assessments reviewed. Aside from one specific case where MIC 

was directly related to the welding position due to the presence of morphological features 

(e.g., tunneling and undercutting) over the weld line, MIC was not associated with welding 

features in the reviewed failure assessments. Although 4 cases tested for the hardness of the 
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weld heat affected zone (HAZ), no failure assessment included a cross-section of the weld to 

evaluate the potential influence of weld microstructure on the failure. 

 

4.5 Reported Operating Data 

Operating parameters serve to validate (or invalidate) either MIC and abiotic failure 

mechanisms. The corrosion products and microorganisms (e.g., metabolic functional groups) 

identified are correlated with operating conditions in order to determine which corrosion 

mechanisms (biotic, abiotic or both combined) could be supported. 

Operating parameters (e.g., temperature, pH, flow velocity, oil/water wetting) not only 

are some of the most influential parameters towards pipeline internal corrosion [36] in 

general, but also play a major role in MIC as they influence the activity and abundance of the 

MFG (diversity) present in the system. Consequently, operating data may rule out MIC if 

historical temperature, pH and water accumulation do not support MIC as a credible failure 

cause.  

Figure 4.5 displays the operating data gathered by the failure assessments tabulated. 

Water cut and flow conditions were gathered by 82% and 72% of failure assessments, 

respectively. Although MIC is directly related to the presence of water (biofilm formation and 

corrosion requires water wetting on the metal surface), water data was not significantly 

correlated to the potential for MIC. 

Temperature and pH were reported in 74% and 54% of the failure assessments, 

respectively. pH was either calculated or measured as a part of the water analyses. The fact 

that pH is a parameter not as readily available as temperature explains its lower percentage. 

Even though specific ranges of temperature and pH have an effect on microbiological 
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proliferation [41,128], no failure assessment took these two parameters into account as 

supporting evidence to diagnose MIC. 

Similarly, pressure was not explicitly linked to either biotic or abiotic conditions, 

although 86% of failure assessments gathered such information. Pressure is relevant when 

combined with gas composition. The partial pressure of H2S and CO2 provides some degree of 

aid to determine if these abiotic corrosion drivers are expected to contribute to the failure. 

 

4.6 Integration of Data 

Although not an information group per se, data integration is a key element for 

effective MIC failure analysis, as no information group is diagnostic on its own; a 

consequence of the multidisciplinary nature of MIC. Therefore, only by adequately integrating 

multiple layers of evidence (microbiological, chemical, metallurgical/corrosion, and operating 

factors), is it possible to conclusively diagnose MIC as the failure cause with the technologies 

currently available. 

Figure 4.6 shows the integration steps taken into consideration by the reviewed MIC 

failure assessments. The top of Figure 4.6 tabulates the microbiological data considered for 

the diagnosis of the failure assessments reviewed. In the middle of Figure 4.6, the chemical 

considerations used to either validate or invalidate MIC (diversity and abiotic drivers 

contrasted to corrosion products, water and gas) are tabulated. And finally, on the bottom of 

Figure 4.6), the considerations regarding metallurgical/corrosion and operating are included. 

data. 

Although microbiological activity was tested for 32% of failure assessments (Figure 

4.2), only 10% of assessments considered that activity in their MIC diagnoses. Similarly, 10%  
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Figure 4.6 Inclusion of key integration steps for each of the failure assessments reviewed (1 thru 50). 

Assessment Number (1-50):

Key Integration Information %

Activity Considered in the Diagnosis 10

Activity Tested ONLY (No Diversity) 18

Abundance Considered in the Diagnosis 4

Tested Diversity Contrasted to Product Chemistry 18

Microorganisms Inferred by Corrosion Product Chemistry 32

Diversity Contrasted to Water Chemistry 4

Gas Analysis Contrasted to Corrosion Product Chemistry 60

Pitting Morphology Used to Conclude MIC 80

MIC Based on Pitting Morphology ONLY 20

Operating Conditions Contrasted to MIC Potential 26

1 35 40 45 505 10 15 20 25 30
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of failure assessments tested for microbial abundance (Figure 4.2), but only 4% used 

abundance as an integration piece. It has been stated that no layer of evidence 

(microbiologically related or not) is diagnostic on its own. However, ATP activity was used as 

the sole layer of microbiological evidence for 18% of the failure assessments. Therefore, as 

microbiological evidence is not as frequently used for integration (Figure 4.6) as it is gathered 

(Figure 4.2), it is reasonable to say that the use and integration of microbiological evidence to 

draw a conclusive diagnosis is yet not fully understood. Therefore, the significance of 

microbiological evidence in the MIC diagnosis is under appreciated. This lack of appreciation 

results in the statistical mismatch observed between Figure 4.6 and Figure 4.2. 

Microbiological diversity was gathered either by culture-based techniques or MMM 

(Figure 4.2 and Figure 4.3). However, only 18% of failure assessments compared microbial 

diversity to corrosion product chemistry. More than twice as many failure assessments, 38%, 

inferred a contribution by APB and/or SRB either from carbonate and sulfide corrosion 

products, respectively, or due to corrosion morphology; without any evidence of 

microbiological diversity to support the conclusions. 

In terms of solids chemistry and microbial diversity integration, the reviewed failure 

assessments strongly related mackinawite to SRB, particularly when the gas composition 

analysis found no H2S to be present. As a result, the identified sulfides were assumed to be of 

biotic origin. A similar rationale was used for APB when CO2 was absent: the presence of iron 

carbonate (siderite) was the key evidence for assuming the participation of acid producing 

bacteria in the failure. However, the relationship between APB and siderite finds no support in 

the literature as it currently stands, as siderite formation is a function of abiotic CO2 corrosion 
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[153], rather than APB driven MIC. APB participation in MIC is usually associated with 

production of organic acids, not CO2 or siderite. 

The correlation between the composition of the gas and the composition of the solids 

was the strongest piece for integration used in the reviewed failure assessments and it was 

used to either conclude or invalidate the role of MIC. When corrosion products were present 

in the absence of their abiotic drivers, MIC was concluded as the failure cause. Additionally, 

the extent of contribution by specific damage mechanisms in the degradation process was 

directly related to the amounts of their respective mineral corrosion products (XRD) in the 

solids. 

The significance of water chemistry and operating conditions to the MIC diagnosis 

were in general overlooked in the reviewed failure assessments. In regard to water chemistry 

and microbial diversity evaluation, only 4% of failure incidents linked nutrient availability to 

microbiological potential; despite the fact that 70% of failure assessments had water 

composition data in their records. Operating conditions (temperature, pH and the potential for 

water accumulation) were taken into consideration in 26% of failure assessments for the MIC 

diagnosis. The majority of the cases related to water settlement and how this factor is 

conducive to MIC. The low percentage of nutrient availability and operating conditions being 

considered in the failure assessments indicates that the importance of integrating supporting 

conditions to the potential for MIC is yet being overlooked in the MIC diagnosis. 

Metal loss features were frequently associated with MIC diagnosis. In fact, out of the 

45 cases (90% of the total 50 assessments reviewed) that made some sort of integration 

between the different information groups included in the diagnosis, 30 used pitting 

morphology as supporting evidence to conclude MIC as the mechanism, along with other 
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complementary layers of evidence. In fact, 10 (20% of the 50 total) of the cases reviewed used 

pitting morphology as the sole diagnostic evidence to conclude MIC, even though MIC has no 

unique morphological fingerprint. 

As per Figure 4.6, pit morphology (80%) and the comparison between gas 

composition and corrosion product chemistry (60%) were the two layers of evidence most 

often considered in the reviewed failure assessments to diagnose MIC. Consequently, it can be 

concluded that although the reviewed failure assessments did a fair job in terms of integrating 

the data gathered, there are still gaps related to integration that must be addressed to increase 

the reliability of MIC diagnoses. 

 

4.7 Sampling and Preservation 

Sampling and preservation have a marked importance in the validity of the analytical 

data used to diagnose MIC. Microbiological and chemical changes to samples take place over 

time and as soon as the samples are exposed to air. Since the chemical and microbiological 

conditions must be integrated to identify MIC, significant misconclusions can occur if 

potential shifts in microbiological community and/or degradation of corrosion products after 

sampling are not taken into consideration [128,134].  

Figure 4.7 displays factors that influence validity of microbiological and chemical 

samples in terms of time of sampling and analysis. Assessing the time between the failure, 

sample collection and sample analysis can provide aid to determine the degree of degradation 

that a sample may have undergone. Only 12% of failure assessments explicitly mention cut 

out dates and even fewer, 8%, mention when the cut-out sections were received for analysis. 

Consequently, only the 4% of failure assessments (which recorded the dates of the incident,  
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Figure 4.7 Inclusion of specific sampling considerations reported for each of the failure assessments reviewed (1 thru 50). 

Assessment Number (1-50):

Key Sampling Information

General Information %

Date of Incident 70

Date of Cut Out 12

Date Cut Out is Received in the Lab 8

Microbiological Sampling %

Date of Sample Collection 28

Date of Testing 32

Data Gathered After Failure Incident 20

Historical Data 18

Sample at Failure Location 16

Sample Away from Failure Location 22

Sample Preserved 0

Chemical Sampling

Solids %

Date of Sample Collection 2

Date of Testing 0

Data Gathered After Failure Incident 2

Historical Data 0

Water %

Date of Sample Collection 48

Date of Testing 42

Data Gathered After Failure Incident 10

Historical Data 38

Gas %

Date of Sample Collection 38

Date of Testing 38

Data Gathered After Failure Incident 2

Historical Data 36

30 35 40 45 50251 5 10 15 20
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the cut out, and the lab analysis) would be able to evaluate to what degree the effect of time may 

have shifted sample characteristics. 

Based on the failure assessments that recorded the date when pipe sample cut outs were 

received for analysis, it was observed that cut outs take from up to 3 days to be received by the 

third-party failure consultants after being cut, and may take between 10 to 18 days to be received 

by the third-party failure consultants after the failure date. Despite these delays in sampling and 

analysis, which could have been enough for significant shifts in both chemical and biological 

related evidence, no considerations to sample validity were mentioned in the reviewed failure 

assessments. 

In respect to microbiological sampling, only 28% of failure assessments reported the date 

of sample collection and only 32% indicated the date of testing. Additionally, 18% of failure 

assessments considered historical microbiological data (as tests were run prior to the failure as 

part of monitoring programs) while 20% of the cases gathered microbiological data after the 

failure dates. 

Additionally, out of the 16% of failure assessments that had samples taken near the 

failure location and 22% that had samples taken distal from it, only 8% had samples taken from 

both locations. Therefore, only 8% of the failure assessments would be able to make a 

comparison between microbiological diversity, activity, and abundance at the location of the 

corrosion failure and distal from it (where corrosion was not present); voiding the ability to more 

accurately determine to what extent MIC was a driver of the corrosion. 

In terms of sample preservation, none (0%) of the incidents indicated they preserved the 

samples and no preservation related comments were made in the cases reviewed. Consequently, 



61 

 

the lack of information on preservation decreases the confidence in the final diagnosis, as 

considerations about sample validity are precluded.  

In respect to chemical samples, only one incident mentions the date for solid sample 

collection, which occurred 33 days after the incident. In terms of water samples, out of the 48% 

of failure assessments that recorded sampling dates, 10% included dates for samples collected 

after the incident, which varied between 0 to 36 days. The other 38% of failure assessments took 

into consideration the results of water samples taken over a variety of time periods prior to the 

incident. Those taken closest to the time of the incident varied from 3 to 7 months after, while 

others varied from 1 to 3 years and the most extreme were taken 5 to 9 years prior to the leak. 

Regarding gas sampling, out of the 38% of failure assessments that mention sampling 

dates, only 2% were taken after the incident (32 days after). The other 36% of failure 

assessments were taken at a variety of time periods prior to the incident. Those closest to the 

incidents varied from 2 to 10 months, while others varied from 1 to 3 years and the most extreme 

were taken 5 to 8 years prior to the leak. 

Therefore, in most cases both water (38%) and gas (36%) chemical considerations are 

based on historical evidence, as the information taken into account was collected prior to the 

incident. In cases where it was unfeasible to collect a reliable sample at the time of failure due to 

post rupture events, it is reasonable to utilize chemical samples gathered prior to the incident, as 

they will tend to more accurately represent the conditions at the time of the failure. 

Craig 2002 [137], Eckert 2003 [60], Larsen et al. 2008 [130], Kilbane 2014 [154], De 

Paula et al. 2018 [134], and Gieg et al. 2020 [136] discuss variations that both microbiological 

and chemical samples may undergo due to changes caused by sampling and preservation 

methods. Additionally, Price 2012 [155], Eroini et al. 2015 [156], and Eroini et al. 2017 [157] 
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provided suggestions in terms of sampling and preservation methods that could be used in order 

to avoid changes in sample composition during collection and transport. 

 

4.8 Standards Referenced in the Failure Assessments 

There are few standards that provide guidance on MIC sampling, testing and 

interpretation that have been published and updated over the years. NACE TM0194 [158] 

discuss MPN best practices and provides a high-level introduction to MMM. Conversely, 

TM0106 [159] and NACE TM0212 [160] are best practices dedicated to the use of MMMs to 

address both external and internal MIC, respectively. 

However, only 22% of the reviewed failure assessments explicitly refer to the use of 

standards in their failure assessments. This number is even lower when it comes to 

microbiological standards. Only 4% of the failure assessments reviewed mentioned a standard 

dedicated to microbiological testing: NACE TM0194 [158]. No mention was either made to 

NACE TM0106 [159] or NACE TM0212 [160]. These low percentages may be one more 

indicator of the lack of familiarity of the sector with microbiological considerations, which are 

even more pronounced in relation to applying and interpreting MMM data. Table 4.3 lists all the 

standards mentioned in the tabulated failure assessments and how often they were referenced. 
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Table 4.3 List of standards mentioned in the reviewed mic failure assessments. 

Standard ID Standard Title 
Number of 

Mentions 

General 

ASTM E3[161] Standard Guide for Preparation of Metallographic 

Specimens 
7 

NACE SP0775[162] Preparation, Installation, Analysis, and Interpretation of 

Corrosion Coupons in Oilfield Operations 
3 

ASTM A370[163] Standard Test Methods and Definitions for Mechanical 

Testing of Steel Products 
2 

ASTM D93[164] Standard Test Methods for Flash Point by Pensky-Martens 

Closed Cup Tester 
1 

ASTM D422[165] Standard Test Method for Particle-Size Analysis of Soils 1 

   

ASTM E1404[166] Standard Specification for Laboratory Glass Conical Flasks 1 

Microbiological 

NACE TM0194[158] Field Monitoring of Bacterial Growth in Oil and Gas 

Systems 
2 

 

4.6 Conclusions 

This chapter highlights a gap analysis of MIC failure investigation techniques based on a 

review of 50 failure reports submitted to the Alberta Energy Regulator (AER) over a three-year 

period (2017-2019). This gap analysis was performed to assess MIC failure investigation and 

analysis methods compared to current state-of-the art and best practises as determined by expert 

elicitation and recent literature. A total of 50 failure assessments/third party failure reports from 

MIC related pipeline failures in Alberta that occurred over a three-year period (2017-2019) were 

reviewed in detail to identify the information that was typically collected during these 
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assessments and how this information was used to confirm MIC as a cause. Specific analysis 

methods, collected data, and integration steps of key information groups (microbiological, 

chemical, metallurgical/corrosion, and operating data) were evaluated. 

Overall, over 90% of the 50 MIC assessments reviewed included chemical data, 

operating data, metallurgical/corrosion data and integration steps, however, only 70% of the MIC 

assessments reviewed conducted some sort of microbiological testing. In addition, only half of 

all assessments reviewed included tests to identify specific MFG, either using culturing methods 

or more advanced Microbiological Molecular Methods (MMM). This lack of identification of 

both diversity and abundance of specific microbial groups significantly reduces the confidence in 

a MIC diagnosis.  

Furthermore, it was found that current failure assessments are not utilizing more modern 

microbiological (MMM) testing approaches, such as qPCR and Next Generation Sequencing. 

These advanced methods provide more robust datasets as compared to culture-based methods 

that can only identify a fraction of the possible MIC related microorganisms in a system. While 

MMM approaches are currently more expensive than MPN (but decreasing over time) their value 

can be justified by a more accurate diagnosis of MIC (and specific MIC mechanisms), which 

allows for improved selection of tailored mitigation approaches to prevent future incidents. 

The lack of microbiological testing suggests that industry and the failure analysis 

community are most familiar with methods used for assessing abiotic corrosion mechanisms 

(e.g., CO2 and H2S corrosion in oil and gas systems). This is not surprising since most failure 

analyses are performed by materials/metallurgical engineers/technicians who are not specifically 

trained in microbiology, which is a significant challenge in the multidisciplinary field of MIC. 
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In terms of metallurgical analysis, a significant number of failure assessments diagnosed 

MIC solely based on corrosion products and/or pit morphology without identification of specific 

microbial functional groups (a requirement to confirm MIC). Those diagnoses based on 

corrosion products used chemical analysis to infer the presence of specific microorganisms, 

which cannot be conclusive without microbiological testing. While MIC most commonly 

manifests itself as localized corrosion (pitting), the use of morphological features alone (such as 

tunnelling and undercutting) has been refuted in current best practices and standards since these 

morphological features can also be created by abiotic (non-MIC) corrosion mechanisms. Again, 

microbiological testing is an indispensable step to help confirm MIC mechanisms. 

In terms of integration of data, the biggest gap was found in the correlation of 

microbiological data with chemical, metallurgical/corrosion, and operating data to conclusively 

confirm specific MIC mechanisms, and to identify MIC as a primary or secondary contributor to 

the failure. In general, the integration of microbiological data (activity, diversity and abundance) 

along with the chemical composition of corrosion products, gas analysis and elimination of 

abiotic corrosion mechanisms, are the key pieces of information required to conclusively confirm 

MIC specific mechanisms.  

Overall, this gap analysis highlights the need for further education and training with 

respect to diagnosis of MIC particularly with respect to microbiological methods, and integration 

of biotic and abiotic data to confidently confirm MIC. Standardized guidelines, protocols and 

analysis tools (e.g., online checklists) should also be developed to allow both specialists and non-

specialists to better assess and diagnose MIC for both failure analysis and maintenance/integrity 

management activities. Finally, further work is also required to develop low-cost, rapid and easy-

to-use microbiological diagnostic methods that can be handled in the field by both specialists and 



66 

 

non-specialists. These recommendations will go a long way to improve how the industry 

diagnoses and prevents MIC failures in the future.  
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Chapter 5: Development of an Expert System for Assessing Failures in Oil 

and Gas Pipelines due to Microbiologically Influenced Corrosion (MIC) 

5.1. Introduction 

Microbiologically influenced corrosion (MIC) is a degradation mechanism in oil and gas 

operations resulting from the activity of microorganisms. When MIC related microorganisms are 

present and active, they enhance local deterioration of pipelines and facilities by the formation of 

biofilms that may result in accelerated corrosion [1,2]. MIC is challenging to manage and 

prevent [167], mostly because it can result in unexpected, localized failures [59,63–65,70,168–

171] with corrosion rates as high as 0.93-2.43 mm/year [167,172,173]. An example of this 

failure mode is highlighted in Figure 5.1 which shows tubercles in the presence of localized 

(pitting) corrosion in a carbon steel tubing subjected to intermittent flow (i.e., a few hours a day) 

from an enhanced oil recovery (EOR) water injection well. The tubing depicted in Figure 5.1 

was inside a casing and in contact with produced water.  A recent study by the authors analyzing 

corrosion failures of oil and gas pipelines over a three-year period (2017-2019) in the province of 

Alberta, Canada, found that MIC accounts for 13.6% of all internal corrosion failures, and 4.8% 

of all external corrosion failures [2]. In contrast, Kock et al. [18] mentioned that MIC is 

estimated to account for 20 to 30% of all corrosion in pipelines. Additional statistics also speak 

to the prevalence of MIC, but its occurrence has not been well quantified [2,9,12–18,20].  
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Figure 5.1 Presence of tubercles in conjunction with pitting degradation driven by MIC in a 

carbon steel tubing subjected to intermittent produced water flow. 

 

In general, MIC is a complex corrosion mechanism, and a conclusive diagnosis requires 

data from at least four information groups: microbiology, chemistry, metallurgy/corrosion, and 

operating related parameters [26,174]. To fully cover the microbiological aspect of MIC, three 

microbiological parameters need to be assessed: diversity (speciation), abundance, and activity 

[1,38]. When evaluating the microbiological aspects of MIC, multiple types of microorganisms 

can be present in the system and can influence the corrosion process. The microorganisms 

involved in MIC are often classified into specific microbial functional groups (MFGs) based on 

the function that different nutrients will play in their metabolism. Table 5.1 lists the MFGs 

(types of microorganisms) most commonly associated with MIC. Understanding the diversity of 

the microbial population allows for the  
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Table 5.1 Microbial functional groups most commonly associated with MIC and their nutritional 

requirements and byproducts – adapted with permission from DNV: DNVGL-RP-G101, 

Recommended Practice Risk-based inspection of offshore topsides static mechanical equipment, 

Copyright (2021) [1]. 

Microbial functional group 

(MFG) 
Metabolic input Metabolic output 

SRB 

Sulfate-reducing bacteria 
Organic and aromatic compounds, 

hydrocarbons, alcohols, lactate, 

acetate, H2, SO4
2-, S0, S2O3

2- 

H2S, sulfide (HS-), 

iron sulfide (FeS) SRA 

Sulfate-reducing archaea 

MA 

Methanogenic archaea 

Organic compounds, CO2 (or soluble 

CO3
2-, HCO3

-, H2CO3) or H2 

Methane (CH4), 

carbon monoxide 

(CO) 

NRB 

Nitrate-reducing bacteria 
Organic compounds, O2, NO3

-, NO2
-, N2O, NO, N2 

IRB 

Iron-reducing bacteria 
Fe3+ (insoluble ferric iron), O2, NO3

-, Fe2+ 

APB 

Acid-producing bacteria 
Organic compounds, hydrocarbons, O2 

Organic acids 

(e.g., formic, acetic), 

CO2 

SOB 

Sulfur-oxidizing bacteria 

Sulfide, sulfite, S0 (elemental sulfur), 

S2O3
2- (thiosulfate), organic 

compounds, O2, CO2 

H2SO4 (sulfuric 

acid), S0 

IOB/MnOB 

Iron/Manganese-oxidizing 

bacteria 

Fe2+ (soluble ferrous iron), Mn2+ Fe3+, Mn4+ 
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integration of microbiological information and abiotic data (i.e., chemical-, metallurgical/ 

corrosion-, and operating-related information). Furthermore, microorganisms need to be both 

abundant and active in the system for MIC to occur. As such, the potential for MIC can be 

determined by the presence of active and abundant MFGs and a supporting environment 

conducive to biofilm formation (i.e., fluid chemistry, operating conditions). For example, a group 

of sulfate-reducing bacteria (SRB) in combination with acid-producing bacteria (APB) and 

methanogenic archaea (MA) will tend to pose more of a MIC threat than APB alone, as the 

synergy between SRB, APB, and MA may compensate for nutritional limitations of the 

environment [32,33,57,144]. Consequently, the integration of MFG characterization with abiotic 

data is paramount for a reliable MIC failure assessment, and it is directly related to the potential 

for MIC leading to a failure. 

The confidence in the microbiological data will depend on the testing method carried out 

to evaluate diversity, abundance, and activity. Molecular microbiological methods (MMM) 

which are based on the evaluation of the DNA and/or the enzymes associated with the 

microorganisms present in the system tend to provide greater confidence when contrasted with 

culture-based media for testing. Culture-based media related methods such as most probable 

number (MPN) and biological activity reaction test (BART) depend on media selection and 

incubation times and temperatures, which have been found to evaluate only up to 15% of the 

viable microorganisms [130,175]. 

The chemical characterization in a MIC failure assessment encompasses the testing of 

constituents present in the system which includes any liquids (e.g., the water phase and the 

chemical species dissolved in it; the oil phase and the carbon species present in it), gases (e.g., 

presence and compositions of CO2, H2S, hydrocarbons) and/or available solids (e.g., wax, sand, 
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deposits, corrosion products) [2]. As certain chemical constituents associated with MIC are also 

associated with abiotic corrosion mechanisms [60,145–147], identifying the source of chemical 

constituents in the system is essential to add confidence to the discrimination between MIC and 

abiotic corrosion drivers [26]. 

Characterization of the metallurgy of the failed pipe or vessel allows the investigator to 

assess the susceptibility of the specific material of construction to the different MIC related 

degradation mechanisms. This will depend on material composition, manufacturing process, and 

assembling/construction processes (e.g., welding) [56,58,169,171]. Furthermore, corrosion 

surface features (i.e., morphology, failure position), corrosion products, and their spatial 

relationship are also required to properly assess MIC. Information from both corrosion and 

chemical testing can also help differentiate whether the failure mechanism is due to biotic (MIC 

related), abiotic (non-microbiological), or possibly both [2,26]. 

Operating factors describe conditions in the system in terms of temperature, pressure, 

ratio of solids and fluids present (e.g., water cut, solid deposits, presence of wax), flow 

conditions (e.g., velocity, rate) and other conditions inherent to the process. Each of the 

parameters listed influence each other and can also change over time (temporal) [60,176]. In 

addition to specific operating parameters, operational history of the pipeline system including 

construction, commissioning (hydrotesting), repair and corrosion mitigation (e.g., mechanical 

pigging and/or chemical treatment) also provides important information.   

In summary, these four information groups (microbiology, chemistry, 

metallurgy/corrosion, and operating-related factors) are all essential to link the cause of the 

failure to the degradation mechanism that drove it. However, even with these datasets, failure 

investigators often face a number of challenges in diagnosing MIC including 1) how to properly 
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integrate the available datasets, 2) questions regarding data accuracy (e.g., confidence in the 

sampling and/or analysis method used), and 3) lack of available information from operators (e.g., 

missing data) [2]. The complexity driven by the multiple lines evidence required to conclusively 

assess MIC also results in variability of the data gathered and the testing methods carried out in 

MIC failure assessments.  

In a recent gap analysis of failure assessment methods used to assess MIC in upstream 

pipeline failures, Abilio et al. 2021 [2] found that there was considerable variability in data 

collected and lack of consistency used to assess MIC. In this study, over 90% of the failure 

assessments included aspects of chemical, metallurgical/corrosion, and operating data, but only 

70% assessed microbiology (which is critical to confirm MIC). When these statistics are more 

closely evaluated, the significant variation of methods used between assessments and the 

different levels of data availability for the diagnoses becomes clear (different failure assessments 

have different pieces of missing data to base their diagnoses). Some failure assessments may 

include characterization of corrosion products based on X-ray diffraction (XRD), others based on 

energy-dispersive X-ray spectroscopy (EDS), some on chemical spot testing (CST), while others 

combine some of these methods. Some failure assessments may combine corrosion evaluation 

with activity evaluation of microorganisms via adenosine triphosphate assays (ATP), while 

others use culture-based testing (e.g., most probable number [MPN]) and/or quantitative 

polymerase chain reaction (qPCR) to assess microbiological diversity and/or abundance. More 

surprising, 30% of the failure assessments did not perform any microbiological evaluation at all 

with many basing their diagnosis solely on corrosion morphology which has been proven to be 

inadequate [3]. As a result, data availability and data confidence are key considerations in MIC 

failure assessments. 
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Various approaches to integrate available datasets and to diagnosis potential MIC related 

failures have been proposed in the literature, although there is no universal consensus yet as to 

the best overall methodology [15,22–26]. This is further complicated by the fact that the 

scientific knowledge about MIC and the methods used to characterize both biotic and abiotic 

samples are continuing to evolve [9,10,177,178]. While a number of mechanistic/ 

phenomenological models have been developed to predict MIC, they are often too simplistic to 

be used to accurately assess real life (field) conditions [179,180]. As a result, practical MIC 

failure assessments are most often performed by experts or specialists with significant 

knowledge and working experience in this topic.   

For other complex failure mechanisms, expert systems have been developed to assist 

(both experts and non-experts) in assessing failure mode and root cause [181–183]. Expert 

systems are rule-based, object-oriented tools that capture the knowledge, experience and know-

how accumulated by experts [72]. Expert systems translate the interconnections an expert 

inherently makes when diagnosing intricate, multivariate topics [73,74] and assist non-specialists 

in decision making when experts are scarce. Consequently, the expert system approach poses 

itself as an advantageous evaluation methodology that can combine concepts from various 

disciplines and sources to diagnose specific failure modes. 

There are different approaches to develop expert systems [93–104]. With recent 

advancements of computing science, machine learning techniques are seen as a viable avenue for 

the implementation of expert systems. Machine learning is a field within artificial intelligence 

where knowledge and preferred decision-making pathways can be learned from the data itself, 

rather than being explicitly programmed into an algorithm [109]. Artificial neural networks 

(ANNs) stand out as a machine learning technique that is able to learn and capture the inherent 
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considerations and correlations used by experts in their decision making. As ANN is able to 

build a non-parametric, non-linear model, it can not only outperform conventional polynomial 

techniques [184–186], but can also capture the intricate considerations an expert may consider 

when determining an outcome. These correlations between the input variables and outcomes are 

stored in “autonomous computational units” called neurons. The stronger the interrelationship 

between inputs and outputs, the greater the weight assigned to each neuron. For these reasons, 

ANNs have been utilized for a variety of corrosion assessment applications, and are well known 

for mimicking the human decision process [102,185,187–190]. Castellanos et al. [191,192] 

utilized ANN methods to build an expert system to assess the failure analysis of multiple 

mechanisms associated with onshore pipeline incidents, however, this system did not include 

MIC. Their tool was concluded to be useful, and they highlighted the influence of quantity and 

quality of data for the ANN training. Additionally, they stress that the ANN output has to be 

taken with caution when the system does not deal with oil and gas.  Based on a different 

approach, Bastian et al. [193] also developed a pattern recognition ANN but to classifying 

general corrosion severity using visual images of corroded sites. Bastian et al. [193] pointed out 

that their approached outperformed the two convolutional neural network architectures used for 

image classification to which they compared their model. 

The objective of the current study is to highlight the development of a novel expert 

system for assessing internal pipeline failures due to MIC. This model was developed using 

machine learning algorithm (ANN based), and was based on the evaluation of 65 failure cases 

assessed by 15 international experts with experience in MIC failure assessment. Two versions of 

the model were created including one version that includes confidence level of the predicted 
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outcome, and one that does not. The intent is to create a simple tool to be used by both experts 

and non-experts for the preliminary screening of potential pipeline failures due to MIC.   

 

5.2. Materials and Methods 

Development of the MIC failure expert system was conducted in 5 steps as outlined in 

Figure 5.2. First, a list of key input parameters necessary to identify a MIC failure, and possible 

failure assessment outcomes were determined based on best practises used to diagnose MIC 

failures as determined through expert elicitation and from methodologies published in the open 

literature. Using these inputs, a series of case studies were developed to provide a wide range of 

possible failure assessment outcomes. A group of subject matter experts (SMEs) were recruited 

to review these case studies and provide their assessment based on a set of possible outcomes. 

This combined dataset (input parameters and SME derived outcomes) was then used to create an 

expert system using an artificial neural network (ANN) approach. Details of each step are 

provided in the sections below. 

 

5.2.1. Determination of Key Input and Output Parameters 

Key input parameters for the expert system model were determined based on the latest 

best practises determined through three sources: 1) expert elicitation, 2) from suggested failure 

analysis methodologies published in the open literature [24–26,51,56,61,62,64,67,69,70,171], 

and 3) from the authors’ gap analysis of MIC failure investigation reports of pipeline incidents in 

the province of Alberta, Canada from 2017 to 2019 [2]. As shown in Table 5.2, 16 input 

parameters were selected from the four main information groups required to assess internal 

pipeline failures due to MIC (i.e., microbiological data, chemical data, metallurgical/corrosion  
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Figure 5.2 Research methodology. 

 

data, and pipeline operating conditions). These are the necessary parameters that would be 

collected by the user of the expert system during a pipeline failure investigation.  

Operating related parameters speak to the potential for biofilm formation (i.e., water 

wetting), as it relates to settlement potential [176]; and to what extent the environment provides 

conducive environment for the different MFGs present, as the operating temperature relates to 

the optimum metabolic temperature for the microorganisms identified, indicating to which extent 

microorganisms can be threatening [128,140,194].  

Chemistry related parameters speak to how conducive the environment is to the threat posed by 

the MFGs present, where the logic used for temperature also applies for pH ranges [140,195–

198]. The logic of water wetting applies to total dissolved solids (TDS), as TDS are also related  
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Table 5.2 Artificial neural network input parameters and their information groups. 

Input 

Variable 

Number 

ANN Input Variable 

 Operating related parameters 

1 Water wetting 

2 Temperature 

 Chemistry related parameters 

3 pH 

4 Total dissolved solids (TDS) 

5 H2S 

6 CO2 

 Metallurgy/corrosion related parameters 

7 Corrosion product testing method (EDSa, XRDb, CSTc) 

8 Presence of sulfur related species 

9 Contrast of sulfur related species (corroded vs. non-corroded area) 

10 
Degradation morphology: general corrosion, pitting uniformly distributed, 

isolated pits 

 Microbiology related parameters 

11 Microbiological sample type: swab (cm-2) vs. liquid (mL-1) 

12 Microbiological testing method: MMM vs. MPN 

13 Activity level (ATP above/below 10E6 M.E.d/s.u.e) 

14 Contrast of activity (corroded vs. non-corroded area) 

15 MIC related microorganisms 

16 Contrast of diversity and abundance (corroded vs. non-corroded area) 

a Energy-dispersive X-ray spectroscopy  

b X-Ray diffraction  

c Chemical spot testing 

d Microbial equivalent 

e Sample unit (cm-2 or mL-1) 

 



78 

 

to settlement potential and how settled solids can work as both additional surface for biofilm 

formation and a protection barrier for the biofilm within the pipeline [133]. Complementarily, 

chemistry related parameters provide the first lines of evidence that allow to contrast between 

MIC and abiotic corrosion drivers (e.g., H2S, CO2) [26]. 

Metallurgy/corrosion related parameters work as additional lines of evidence to 

discriminate between MIC and abiotic corrosion drivers (e.g., elemental sulfur [EDS] and iron  

sulfides [XRD, CST]), introduce the importance of contrasting the corroded area versus the non-

corroded area in order to provide greater confidence in contrasting between MIC and abiotic 

corrosion drivers [137,145–147,153]. Confidence has a greater level of complexity in relation to 

metallurgy/corrosion related parameters, where data is not only absent or present at different 

combinations, but also different testing methods are considered (i.e., CST, EDS, and XRD). 

Finally, it considers the corrosion morphology related to the failure spot as an indicator of MIC 

likelihood, where an isolated pit is a stronger indicator of MIC while general corrosion is a 

stronger indicator that it is not MIC, despite MIC not outputting a unique morphological 

fingerprint [3,23]. 

Microbiology related parameters also include additional complexity in terms of 

confidence, as different sample types (i.e., swab, and liquid), and testing methods (i.e., MMM, 

and MPN) are contrasted. Similarly to metallurgy/corrosion related parameters, data is contrasted 

between the corroded area and the non-corroded area to enhance confidence in the discrimination 

between MIC and abiotic corrosion mechanisms [24–26] but in this informational group it 

speaks to diversity, abundance, and activity [8]. 

In terms of output parameters, two different output classifications were considered and 

their performance contrasted. The first expert system was designed with 5 output classifications 
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(5OC) as shown in Table 5.3. The output of the 5OC model is intended to identify whether a 

given failure scenario is due to MIC or not, or whether the dataset provided is inconclusive (i.e., 

needs more data). The latter outcome (inconclusive) is possible due to a lack of available data 

which is common in actual pipeline failure investigations [2]. In addition to the main outcomes, 

the 5OC model also includes variations of the predicted outcome in terms of confidence of the 

assessment.  

The second expert system model was designed with 3 output classifications (3OC) as shown in 

Table 5.4. This 3OC model is a simplified version of the 5OC model expert system but does not 

account for confidence level of the assessment. It is derived from the same dataset obtained from 

expert engagement but combines the “MIC High Confidence” and “MIC Low Confidence” 

scores from the 5OC model into a simple “MIC” only category (without a confidence indicator). 

In addition, the “No MIC High Confidence” and “No MIC Low Confidence” scores are also 

combined into a “No MIC” only category. The inconclusive category (i.e., needs more data) is 

kept the same. The intent of examining two separate expert system models (5OC and 3OC) is to 

evaluate the accuracy and utility of a more simplified model (3OC) versus a more complex 

model that incorporates confidence level (5OC). 

 

5.2.2. Development of Model Case Studies 

Sixty-five (65) model case studies were developed for training, validation and testing of 

the artificial neural network (56 cases for training and validation, and 9 for testing). These case 

studies mimicked information commonly found in investigations of internal corrosion failures in 

carbon steel upstream operation pipelines, and were built based on a review of both the literature  
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Table 5.3 5-Output classification (5OC) model categories. 

# Output Class Abbreviation MIC Potential Data Confidence 

1 MIC High Confidence MH Likely High 

2 MIC Low Confidence ML Likely Low 

3 Need More Data ND Inconclusive Negligible 

4 No MIC Low Confidence NL Unlikely Low 

5 No MIC High Confidence NH Unlikely High 

 

 

Table 5.4 3-Output classification (3OC) model categories. 

# Output Class MIC Potential 

1 MIC  Likely 

2 Need More Data Inconclusive 

3 No MIC  Unlikely 

 

 

and actual failure investigation reports as reviewed by Abilio et al. 2021 [2]. Each case study 

included full or partial datasets of the 16 key parameters outlined in the previous section.  

The 56 cases for training and validation were divided into 3 subsets. The first subset 

comprises 14 case studies (1-14), where all 4 information groups are fully populated. The second 

subset of 14 cases (15-28) is partially populated to evaluate the importance of the contrast 

between the corroded and the non-corroded area for microbiological and metallurgical/corrosion 

related considerations needed in MIC failure investigations [26]. The third subset comprises 28 

cases (29-56) with missing data at various levels across the 4 main information groups 

(microbiology, chemistry, metallurgy/corrosion, and operating related parameters). The 

remaining 9 cases for testing were depicted within the 3 subsets as follows: 2 fully populated 
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cases (57-58), 3 partially populated (59-61), and 4 with various levels of missing data (62-65). 

The major conditions encapsulated in the developed case studies are: a) presence and/or absence 

of data at various levels, but specially related to microbiological information, which is currently 

the primary gap for internal MIC failure analyses in oil and gas upstream pipelines [2]; b) the 

need of contrast between the corroded and the non-corroded area for both corrosion and 

microbiological evaluation; and c) the influence of corrosion morphology in the final MIC 

diagnosis. These three major conditions were the drivers to depict the case studies into 14 cases 

fully populated, 14 cases partially populated and the 28 cases with missing data. 

The effect of testing methods on confidence for both the corrosion and microbiological 

data gathered was also evaluated. For the confidence in corrosion assessments, the developed 

case studies account for the comparison between qualitative chemical spot testing and 

quantitative x-ray-based testing (EDS alone or in combination with XRD). For microbiology, 

confidence was assessed for the contrast between MMM and MPN methods. Additionally, the 

effect of measurement units for microbiological testing of planktonic (cells/mL) versus swabs 

(cells/cm2) was also assessed. The presence/absence of microbiological datasets on the outcome 

confidence was also assessed by testing various combinations of available microbiological data 

include ATP assays, qPCR, next generation DNA sequencing (NGS) and/or MPN. These tests 

are included in the case studies in different arrangements: no microbiological data at all, ATP 

alone, ATP in combination with MPN, ATP in combination with MMM (qPCR and NGS), MPN 

alone, or MMM (qPCR and NGS) alone. 

In order to evaluate the weight of corrosion morphology in diagnosing MIC, 3 possible 

morphological scenarios were also included: isolated pits, pitting uniformly distributed, and 

general corrosion with no pitting. The variations in presence/absence of data, contrast between 
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the corroded and the non-corroded areas, microbiological tests, corrosion tests, microbiological 

sampling units and morphological combinations were used to build the final case studies which 

are detailed in Appendix A. 

 

5.2.3. Expert Engagement 

Fifteen (15) subject matter experts (SMEs) in MIC were recruited to participate in the 

current study, and were tasked with reviewing the case studies and providing their expert opinion 

(i.e., recommended failure assessment outcome as per Table 5.3). As a highly specialized set of 

experts was needed, the participants were directly invited to participate. The SMEs recruited 

each had a minimum of 12 years of practical experience in evaluating MIC, and consisted of 

participants from both industry (operators and service providers) and academia. In total, 355 

man-years of MIC based experience was captured in the present expert system (average of 23 

years per expert).  

Each SME only reviewed up to 22 case studies each due to the time-consuming nature of 

the process. Each case study, however, was reviewed by multiple SMEs in order to capture 

variation in opinions. For the 56 training and validation cases, each was evaluated by 4 to 6 

different experts, while the 9 cases for testing was evaluated by 2 to 4 different SMEs. As a 

result, a total of 329 individual failure assessments were completed in this exercise. 

Of the 65 cases developed, a unique combination of 22 cases was provided to each expert 

to evaluate. Twenty cases for the training and validation set (5 cases fully populated, 5 cases 

partially populated, 10 cases with missing data), and 2 cases for the testing set (1 fully populated 

or partially populated, and 1 with missing data). To evenly distribute the 65 cases among the 15 
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SMEs, bipartite matching coding algorithms were developed to randomly assign cases to 

individuals. 

Each SME was asked to provide three answers for each of the case studies reviewed: 1) 

the failure output category based on their assessment (Table 5.3), 2) comments as to how they 

came up with their diagnosis/decision, and 3) five “yes-no” questions on whether the expert 

agrees if the provided conditions are conducive to MIC or not. As the present model is dedicated 

to MIC assessments, SMEs were asked to overlook the impact of abiotic corrosion in their 

evaluations so a MIC focused diagnosis could be obtained. The combination of input parameters 

that forms the case studies and the output categories provided by the SMEs (targets) were 

ultimately used to train the ANN as outlined in the next sections. The commentary from the 

experts were used to provide context of the final results and any variation in opinion. 

 

5.2.5. ANN Architecture Development, Training, Testing, and Validation 

The final expert system was implemented using the pattern recognition toolbox in 

MATLAB® (nprtool) based on a supervised shallow ANN model. Supervised ANNs require 

targets linked to the inputs (input-output pairs) to learn their relationships. Datafiles with all 

analyzed cases were compiled with both inputs (key parameters in Table 5.2) and targets (failure 

analysis outcomes from the SMEs in Table 5.3 and the merged output classes in Table 5.4) and 

fed into the ANN platform. 

The input values from the case studies were translated into one of three values: (1) when 

the variable is within the range, (0) when it is outside of the range, and (-1) when the specific 

variable is absent (missing data). This approach allows one to decrease the number of input 

variables to train the ANN without compromising the scenarios developed for the experts to 
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evaluate. Additionally, as ANNs do not perform well with incomplete datasets [118], this 

approach circumvents the challenge of real-life case scenarios that often have missing data. 

Therefore, the considerations included in the cases evaluated by the experts are condensed in the 

16 input variables used to train, validate and test the ANN used to develop the present expert 

system. The translated version of the case studies is included in Appendix B. 

The ANNs use targets as the true values from which the interrelationships between inputs 

will be built upon to develop the classification network. The training function used to develop 

the present ANN is the scaled conjugate gradient method (trainscg). Conjugate gradient methods 

locate local minimums at multiple fronts of search along conjugate directions. As a result, 

conjugate gradient methods achieve faster convergence in contrast to gradient-descent methods, 

and therefore are preferred for classification problems [119,185] . 

Two transfer functions are used in the current ANN model. The transfer function used for 

both the input and hidden layers is the sigmoid function provided in Equation (5.1), while the 

output layer utilizes the softmax function provided in Equation (5.2), which is the indicated 

transfer function for classification problems [112–115]. The ANN related features for the present 

expert system are listed in Table 5.5. 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (5.1) 

𝑓(𝑦) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑗) =
𝑒𝑦𝑗

∑ 𝑒𝑦𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, … , 𝐾 (5.2) 

 

Since the 65 case studies were evaluated multiple times by different SMEs for 

replication, the same inputs were associated to different targets and equated to a database with  
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Table 5.5 Features of the developed ANN. 

ANN Feature Description 

Number of data points (input-output pairs) 329 

Number of input variables 16 

Number of hidden layers 1 

Number of hidden neurons 10 

Number of output classes 5 

Performance Cross entropy 

Training Algorithm Scale conjugate gradient 

Input/Hidden layer transfer function Sigmoid 

Output layer transfer function Softmax 

 

329 data points. The database was manually divided into 3 datasets by the utilization of specified 

indices (divideind): training set, validation set, and test set, which contained 74% (242 cases), 

18% (58 cases), and 9% (29 cases) of the data points, respectively. The test set was a fully 

independent set of case studies separate from the training and validation test sets. The 

performance of pattern recognition ANNs is delivered by the cross-entropy error (crossentropy) 

of the validation samples. Training halts when generalization stops improving. For the present 

ANN, training continued until validation error increased consecutively for more than 6 iterations. 

The final output classification is a result of the iteration of weights and biases of each neuron 

accumulated over each training cycle (epoch) [110,119,199].  

 

5.2.6. Classification Performance Metrics and Sensitivity Analysis 

The metrics used to evaluate the classification performance of the present ANN-expert 

system were overall accuracy (Equation (5.3), precision (Equation (5.4), and sensitivity 

(Equation (5.5). A true result occurs when the predicted outcome by the ANN matches the 
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target determined by the expert. A false result takes place when the ANN predicts an output 

different from the target provided by the expert. The ‘positive’ and ‘negative’ terms relate to the 

specific class evaluated. For example, when evaluating output class 1 (MIC High Confidence), 

class 1 is positive and the other output classes are negatives. The same rationale applies when 

evaluating other classes. “TP” stands for true positive, “TN” for true negative, “FP” for false 

positive, and “FN” for false negative. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃 + ∑ 𝑇𝑁

∑ 𝑇𝑃 + ∑ 𝑇𝑁 + ∑ 𝐹𝑃 + ∑ 𝐹𝑁
 

(5.3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑃
 

(5.4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑁
 

(5.5) 

 

The accuracy of the model relates to how close the outputs predicted by the model are to 

the overall consensus among the experts. The precision of a class identifies how many of the 

predicted items are true, instead of resulting in false positives (error type I). Finally, sensitivity of 

a class identifies how many of the true items are correctly predicted, instead of resulting in false 

negatives (error type II). 

In order to evaluate the relative influence of each input variable in the experts’ 

considerations, Garson’s equation is used and is given by Equation (5.6) [200–202], 
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𝐼𝑗 =
∑ ((|𝑊𝑗𝑚

𝑖ℎ|/ ∑ |𝑊𝑘𝑚
𝑖ℎ |

𝑁𝑖
𝑘=1 ) ∗ |𝑊𝑚𝑛

ℎ𝑜|)
𝑚=𝑁ℎ
𝑚=1

∑ {∑ (|𝑊𝑘𝑚
𝑖ℎ |/ ∑ |𝑊𝑘𝑚

𝑖ℎ |
𝑁𝑖

𝑘=1 ) ∗ |𝑊𝑚𝑛
ℎ𝑜|

𝑚=𝑁ℎ
𝑚=1 }

𝑘=𝑁𝑖

𝑘=1

 (5.6) 

 

where 𝐼𝑗 is the relative importance of the 𝑗𝑡ℎ input variable on the output variable, 𝑁𝑖 and 𝑁ℎ are 

the numbers of input and hidden neurons, respectively; 𝑊 represents the connection weights, the 

superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output layers, respectively; and subscripts 

‘k’, ‘m’ and ‘n’ refer to input, hidden and output neurons, respectively. 

 

5.3. Results and Discussion 

5.3.1. Accuracy, Precision, and Sensitivity Analysis of the MIC Failure Expert Systems 

The results from the 5OC model (with confidence level) and 3OC model (without 

confidence level) are shown in Figure 5.3 and Figure 5.4, respectively. These plots display 

“confusion matrices” (a term commonly used in machine learning theory), which represent the 

classification performance of pattern recognition problems [203–205]. Using the true positive, 

true negative, false positive, and false negative counts from the confusion matrix, the 

performance metrics of the model can be calculated using Equations 5.3 thru 5.5.  

Based on this method, the overall accuracy for 5OC model was calculated to be 62.0% 

(Figure 5.3). This accuracy is relatively low which is due mainly to differences of expert opinion 

of the case studies evaluated. The output class with the highest precision in the 5OC model is the 

inconclusive category (need more data) at 68.9% followed by ‘no MIC high confidence’ 

category at 63.0%. Regarding sensitivity, ‘no MIC high confidence’ category had the best 

performance at 76.7%, followed by the ‘MIC high confidence’ category at 72.5% and 

inconclusive (need more data) category at 70.7%. The ‘MIC low confidence’ classification had  
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  Expert Response  

  MH ML ND NL NH Precision 
M
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MH 29 14 5 3 0 56.9% 

ML 9 20 10 1 0 50.0% 

ND 1 17 82 12 7 68.9% 

NL 1 2 9 27 7 58.7% 

NH 0 4 10 13 46 63.0% 

 Sensitivity 72.5% 35.1% 70.7% 48.2% 76.7% 62.0% 

Figure 5.3 Confusion matrix for the 5-output classification (MH = MIC High Confidence, ML = 

MIC Low Confidence, ND = Need Data/Inconclusive, NL = No MIC Low Confidence, NH = No 

MIC High Confidence). 

 

 

  Expert Response  

  MIC 

(MH + ML) 
ND 

No MIC 

(NL + NH) 
Precision 

M
o
d
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d
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o
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MIC 

(MH + ML) 
79 22 6 73.8% 

ND 11 74 17 72.5% 

No MIC 

(NL + NH) 
7 20 93 77.5% 

 Sensitivity 81.4% 63.8% 80.2% 74.8% 

Figure 5.4 Confusion matrix for 3-output classification (MIC, ND = Need Data/Inconclusive, 

No MIC). 

 

 

the lowest performance (precision of 50.0% and sensitivity of 35.1%), indicating the difficulty 

that the ANN model had in evaluating the different perspectives of the experts for this outcome. 

Conversely, the overall accuracy of the 3OC model (Figure 5.4) was calculated to be 

74.8% which is significantly higher than the overall accuracy of the 5OC model. For the 3OC 
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model, the ‘no MIC’ category had the highest precision at 77.5%, while the ‘MIC’ category had 

the highest sensitivity at 81.4%. Additionally, the 3OC has a better distribution of cases across its 

diagonal than the 5OC model. 

The noted difference in performance between the 3OC and 5OC model highlights the 

subjective nature of assessing confidence level attributes. The threshold of ‘high’ and ‘low’ 

confidence is seen to be inherently different amongst the various experts participating in the 

study. As a result, the simplified 3OC expert system model is shown to perform better in 

predicting failure analysis outcomes, and ultimately, may have more utility in actual practice. 

In order to assess the relative influence of each of the 16 input parameters on the final 

output, sensitivity analyses were carried out for both the 5OC and the 3OC models. The 

calculations of the sensitivity analyses are included in Appendix D. Table 5.6 lists the relative 

weights and ranks the importance (highest to lowest) of each input variable for both the 5OC and 

the 3OC models, and also their relative rankings, in accordance with Equation (5.6) 

[200,201,206–208]. 

Overall, the importance of the various input parameters ranged from 11.8% to 3.2% for 

the 5OC model, and 10.5% to 2.8% for the 3OC model which is quite similar. In addition, the 

degradation morphology (input variable 10) was seen to be the most influential parameter for 

both models. However, the ranking order of the remaining input parameters were quite different 

between the two models. For the 5OC model, the degradation morphology (input variable 10) 

was the most influential parameter at 11.8% followed by microbiological testing method (input 

variable 12), at 9.2%; and presence of MIC related organisms (input variable 15) at 7.8%. For the 

3OC model, the degradation morphology (input variable 10) was the most influential parameter 

at 10.5% followed by the presence of sulfur (input variable 8) and microbiological sample type  
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Table 5.6 Sensitivity analysis of the 16 input variables for the 5- and 3-output classifications. 

Input 

Variable 
ANN Input Variable 

5 Output 

Classification  

3 Output 

Classification 

  
Relative 

Weight 
Rank 

Relative 

Weight 
Rank 

 Operating related parameters     

1 Water wetting 4.2% 15 3.8% 15 

2 Temperature 5.9% 8 5.2% 11 

 Chemistry related parameters     

3 pH 6.0% 6 5.8% 9 

4 Total dissolved solids (TDS) 5.9% 9 4.4% 13 

5 H2S 5.9% 7 4.2% 14 

6 CO2 6.8% 5 6.9% 7 

 Metallurgy/corrosion related parameters     

7 Corrosion product testing method (EDSa, XRDb, CSTc) 5.4% 11 4.7% 12 

8 Presence of sulfur related species 7.8% 4 8.2% 2 

9 
Contrast of sulfur related species (corroded vs. non-

corroded area) 
3.2% 16 7.6% 6 

10 
Degradation morphology: general corrosion, pitting 

uniformly distributed, isolated pits 
11.8% 1 10.5% 1 

 Microbiology related parameters     

11 
Microbiological sample type: swab (cm-2) vs. liquid 

(mL-1) 
5.1% 13 8.2% 3 

12 Microbiological testing method: MMM vs. MPN 9.2% 2 7.9% 5 

13 Activity level (ATP above/below 10E6 M.E.d/s.u.e) 5.7% 10 5.7% 10 

14 Contrast of activity (corroded vs. non-corroded area) 4.2% 14 6.2% 8 

15 MIC related microorganisms 7.8% 3 8.0% 4 

16 
Contrast of diversity and abundance (corroded vs. non-

corroded area) 
5.1% 12 2.8% 16 

a Energy-dispersive X-ray spectroscopy      
b X-Ray diffraction      
c Chemical spot testing     
d Microbial equivalent     
e Sample unit (cm-2 or mL-1)     
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(input variable 11), both at 8.2%. The least influential input parameter for the 5OC model 

appeared to be the contrast between the corroded and the non-corroded areas for sulfur related 

species (input variable 9). For the 3OC model, the least influential input parameter was the 

contrast of diversity and abundance between the corroded and the non-corroded areas (input 

variable 16). While there are differences between the rankings, it should be noted that the 

importance of all input parameters is of a similar order of magnitude indicating that the 

relative influence of each is relatively equal from an ANN perspective (i.e., no one variable 

dominates the outcome). Any small variation in importance is likely due to some differences 

in how each SME integrates data from the case studies and comes to a conclusion in the 

failure assessment. This is in-line with published best practices for MIC assessment in the 

literature which suggests that multiple lines of evidence are required to conclusively diagnose 

MIC as opposed to drawing a conclusion based on only 1 or 2 pieces of information [1,174]. 

 

5.3.2. Consensus Amongst the Experts 

There were points of both agreement and disagreement between the experts in terms of 

the pieces of data included in the case studies, their significance, and how they integrated the 

available datasets for a final MIC diagnosis. In terms of consensus, cases 1 (MH), 14 (NH), 15 

(NH), 29 (ND), 33 (ND), 41 (ND), 45 (ND), and 46 (ND) were conclusively agreed upon by 

all experts reviewing those specific cases (note: abbreviations in brackets refer to the outcome 

predicted by the model – see Table 5.3 for definitions). These 8 cases include 3 high 

confidence assessments (one MIC and two No MIC) and 5 inconclusive (need data) 

assessments, but no low confidence assessments.  
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In addition to the selection of a specific outcome (diagnosis), each expert was also 

asked to provide comments explaining how they made their decision. These comments are an 

important set of information to better understand the rationale behind the outcomes chosen. 

Based on the experts’ comments, one of the most important factors in the decision-making 

process was the contrast of corrosion and microbiological data between the corroded and non-

corroded areas. Lack of one of these datasets was often the driver to shift a diagnosis from 

high confidence to low confidence or to inconclusive (need more data). 

The contrast between planktonic (fluid) and sessile (surface) samples also drove shifts 

in classification. Swab-based (biofilm) samples shifted confidence to high while planktonic 

samples did the opposite. However, the influence of microbiological testing method (i.e., 

MMM versus MPN) was not as important as the sample type. For the majority of the experts, 

MMM increased the confidence of the assessment while MPN reduced it. However, certain 

experts preferred MPN data to fully make sense of the DNA-related data available in the cases 

(determined via MMM). The desire to use traditional MPN data, even though it is known to be 

less definitive, indicates that there are biases which exist which may impact a resulting failure 

assessment. These biases may be due to the familiarity with certain test methods, or lack of 

knowledge/interest in more modern approaches.  

Multiple experts also agreed on the influence of sulfur-utilizing microorganisms 

(SUM) in MIC. More specifically for sulfate-reducing bacteria (SRB), where the absence of 

sulfate reducers was enough to shift a MIC classification to a ‘no MIC’, even when 

methanogens, fermenters and/or acetogens were present. However, the presence of multiple 

microbial functional groups (MFGs) in combination with sulfate reducers was taken as a 

stronger indication of MIC as opposed to SUM alone.  



93 

 

The relationship between corrosion products and abiotic corrosion drivers (e.g., H2S 

and CO2) was also present in the experts’ comments. There were cases where the confidence 

on the final classification was increased even when limited pieces of data were present 

because sulfur and/or iron sulfide corrosion products were found in conjunction with SUM, 

while H2S was otherwise absent in the pipeline fluids. 

The role of corrosion morphology was a bit controversial based on the experts’ 

comments. It was clear to the experts that isolated pitting was a strong indication of MIC, and 

that general corrosion was a strong indication that the corrosion mechanism was not MIC 

related. However, the presence of uniformly distributed pitting caused some disagreement. For 

specific cases that were based on the same set of conditions, certain experts considered pits 

uniformly distributed as an indication of MIC, while others considered pits uniformly 

distributed as an indication of some other corrosion mechanism other than MIC.  

 

5.3.3. Variation in Experts’ Opinions 

In order to better understand and quantify the variation in responses between experts, a 

quantitative analysis was performed. To accomplish this, each output class for the 5OC and 

3OC model was assigned a numerical index (1 thru 5 for the 5OC model, and 1 thru 3 for the 

3 OC model) as shown in Table 5.3 and Table 5.4, respectively. Using these numeric indices, 

the mean value and standard deviation of all the experts’ responses for each case was 

calculated. The standard deviation of the responses represents the variation of expert opinion 

for any given failure assessment case study; the greater the standard deviation in responses, 

the greater the difference in expert opinion.  
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Based on this methodology, the top 10 cases with the highest standard deviations were 

highlighted for the 5OC model and for the 3OC model in Table 5.7 and Table 5.8, 

respectively. In these tables, the responses from each of the experts that reviewed each case is 

provided (up to 6 experts per case). Also, the cells highlighted in light blue indicate that the 

output predicted by ANN matched the target used to train it, while cells highlighted in light 

red indicate that the prediction of the ANN did not match the target provided by the expert. 

The variation of responses for entire 65 case studies for both the 5OC and the 3OC models are 

provided in Appendix C. 

By comparing Table 5.7 and Table 5.8, it can be seen that a number of cases with the 

highest standard deviations overlap in both the 5OC and 3OC models. Seven of the same 

cases are listed for both models (i.e., 3, 5, 13, 17, 23, 25, and 26), three are unique to the 5OC 

(i.e., 9, 22, and 47) and other three are unique to the 3OC (i.e., 8, 18, and 24).  

It can be observed that for the 5OC model, 5 out of the 10 top cases with the greatest 

standard deviation (i.e., greatest difference in expert opinion) are related to the ‘no MIC high 

confidence’ class (NH) and 2 to the ‘MIC high confidence’ (MH). This lack of consensus 

likely resulted from the different MFGs presented in these case studies, which indicates that 

even among experts, there is no clear consensus on the exact MFG or combination of MFGs 

that cause MIC. There were cases where either acid producing microorganisms (APM), or 

methanogenic archaea (MA) were present alone. This fact was a driver for disagreement 

among experts. Some experts considered that the presence of APM and MA alone pose a 

threat, while other experts considered that the presence of sulfur utilizing microorganisms 

(SUM) would be a requirement for APM and MA to pose a threat. 
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In relation to the unique high standard deviation cases for the 3OC model, all 3 were 

similarly limited in available data used to make a determination, which resulted in the 

variation observed. Since the microbiological data was limited, the corrosion morphology 

neither point toward nor away from a MIC diagnosis. Furthermore, the corrosion product 

results were also limited with low confidence in testing. These uncertainties resulted in wide 

range of responses from the experts including each possible outcome (i.e., ‘MIC’, 

‘inconclusive/need more data’, and ‘no MIC’ were all selected outcomes). 

Based on the experts’ comments that were provided in their submissions, we are able 

to discern some of the reasons for the variations that occur. This list for all the top 10 variants 

related to both the 5OC and the 3OC is shown Table 5.9. 

Based on the variations pointed out for the top 10 cases with the highest standard 

deviations, it can be observed that there was no clear threshold between high and low 

confidence, as different combinations of available data may influence the MIC diagnosis. 

Similarly, the overlap between MIC and abiotic degradation mechanisms (which was not 

intended to be included in the experts’ assessments) also contributed to higher standard 

deviations. Case 9 is illustrative that on top of microbiological data, MIC cannot be 

conclusively diagnosed without considering drivers of abiotic corrosion. Also, due to the 

complex relationship between multiple MFGs, there is still disagreement on the role that 

MFGs play either individually or in mixed communities. Hence, there remains a need to 

develop a standardized methodology for MIC failure analysis, including the necessary data to 

collect, the role of abiotic corrosion with MIC, the roles of various MFGs and the integration 

framework to assist in decision making. 
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Table 5.7 Top 10 cases with greatest standard deviation on experts’ consensus for the 5-output classification. 

5 Output Classesa 

Top 10 
Case 

Number 

Case Data 

Typeb 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Response 

Standard 

Deviation 

1 17 P 5 2 5 3 2 4 5 3.5 1.4 

2 13 F 5 5 2 5 5 5  –  4.4 1.3 

3 26 P 3 5 5 3 3 2 – 3.6 1.3 

4 25 P 5 2 5 5 4 3 – 3.8 1.3 

5 3 F 2 1 1 2 3 4 1 2.0 1.3 

6 5 F 1 3 1 1 2 4 1 2.0 1.3 

7 23 P 1 1 4 1 2 3 1 2.0 1.3 

8 22 P 3 2 3 3 5 2 3 3.0 1.1 

9 9 F 5 5 4 3 3 5 5 4.2 1.0 

10 47 M 5 4 3 5 5 5 3 4.2 1.0 

a “1” represents output class ‘MIC high confidence’. “2” represents output class ‘MIC low confidence’. “3” represents output class ‘need more data’. “4” represents output class ‘no MIC low 

confidence’. “5” represents output class ‘no MIC high confidence’. 

b “F” (fully) refers to cases where all layers of evidence included are fully populated. “P” (partially) refers to cases where all layers of evidence included are fully populated, but the corrosion 

and microbiological related results associated to the non-corroded area (allowing for no contrast). “M” (missing) refers to cases with missing data at various levels across the 4 information 

groups. 
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Table 5.8 Top 10 Cases with Greatest Standard Deviation on Experts’ Consensus for the 3-Output Classification. 

3 Output Classesa 

Top 10 
Case 

Number 

Case Data 

Typeb 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Response 

Standard 

Deviation 

1 17 P 3 1 3 2 1 3 3 2.2 0.9 

2 8 F 3 1 3 3 3 3 – 2.6 0.8 

3 13 F 3 3 1 3 3 3 – 2.6 0.8 

4 25 P 3 1 3 3 3 2 – 2.4 0.8 

5 18 P 3 3 3 2 2 1 – 2.2 0.8 

6 24 P 2 2 1 3 2 3 – 2.2 0.8 

7 26 P 2 3 3 2 2 1 – 2.2 0.8 

8 3 F 1 1 1 1 2 3 1 1.5 0.7 

9 5 F 1 2 1 1 1 3 1 1.5 0.7 

10 23 P 1 1 3 1 1 2 1 1.5 0.7 

a “1” represents output class ‘MIC’; “2” represents output class ‘need more data’; “3” represents output class ‘no MIC’. 

b “F” (fully) refers to cases where all layers of evidence included are fully populated. “P” (partially) refers to cases where all layers of evidence included are fully populated, but the corrosion 

and microbiological related results associated to the non-corroded area (allowing for no contrast). “M” (missing) refers to cases with missing data at various levels across the 4 information 

groups. 
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Table 5.9 Causes of variation regarding the top 10 cases with most variation based on the experts’ opinions for both the 5-output 

classification and the 3-output classification. 

Case Number Causes of variation based on the experts’ comments 

Case 17 The variation in case 17 may be associated to the fact that its operating, chemical, and metallurgical/corrosion pieces of data were conducive 

to MIC, while the microbiological evidence indicated low to negligible microbiological influence on the failure. Also, experts associated iron 

related bacteria (IRB) and nitrate reducing bacteria (NRB) identified by NGS as possible MIC drivers, which shifted the provided answers 

toward the ‘MIC low confidence’ side. 

Case 13 Regarding case 13, only one of the experts associated the failure with ‘MIC low confidence’. The other 4 diagnosed it as ‘no MIC high 

confidence’. In this case, operating, corrosion and chemical data are not conducive to MIC and indicate the potential for abiotic degradation 

mechanisms (e.g., H2S, CO2). Additionally, similarly to case 17, the presence of IRB and NRB identified by NGS was the reason that shifted 

the answer of one of the experts toward the ‘MIC low confidence’ side. 

Case 26 Case 26 was targeted as ‘MIC low confidence, ‘need more data’, and ‘no MIC high’, and classified as ‘need more data’ by both 5OC and 

3OC. Although temperature was conducive to MIC, pH and TDS were out of the usual ranges for MIC. Hydrogen sulfide gas was absent 

while carbon dioxide concentrations were significant, indicating possible participation of abiotic CO2 corrosion. The lower confidence 

method for corrosion product evaluation (qualitative CST) indicated no sulfides but with no results for the non-corroded area to be 

contrasted. Similarly, microbiological evidence was also of low confidence – based on liquid (planktonic) data for ATP and MPN, and 

without contrast between the corroded and the non-corroded area. Both ATP and MPN indicated low to no microbiological influence. These 

low confidence factors with low indication on MIC could shift the case to ‘no MIC low confidence’, however none of the experts deemed 

case 26 as such. The ‘no MIC high confidence’ classifications were driven by the low to negligible level of microbiological results, in 

combination with the significant potential for abiotic CO2 corrosion. While the ‘need more data’ classification was driven by the low 

confidence results from both corrosion products and microbiological evidence, and sample type. 
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Table 5.9 (continued) 

Case Number Causes of variation based on the experts’ comments 

Case 25 Case 25 has operating conditions conducive to MIC, but the low pH and the presence of abiotic corrosion drivers (H2S and CO2) shifted the 

case to no MIC. Corrosion product evaluation indicates significant sulfur and iron sulfides present that may be due to H2S present or sulfur 

related microorganisms – depending on microbiological data. The high confidence microbiological information (swabs and MMM) indicated 

low to no microbiological influence on the failure. These conditions together directed two of the expert answers to be ‘no MIC high 

confidence’, which was also the predicted answer by the 5OC model. 

Case 3 The lack of consensus on case 3 can be linked to its pH, the MFGs identified by NGS, and the high potential for abiotic CO2 corrosion. 

Acetogens (ACE) and fermenters (FER), both considered APM, were identified in combination with NRB at the corroded area, while the 

non-corroded area was comprised by IRB and NRB. Therefore, despite the high numbers for microorganisms (qPCR) and high activity 

(ATP), the presence of APM alone in combination to CO2 affected the consensus among experts. 

Case 5 Similar to case 3, case 5 also had lower consensus due to the presence of APM. The high standard deviation of case 23 was also due to low 

pH, that shifted one of the responses to the opposite side of the spectrum (to no MIC). However, the high results for activity, abundance and 

diversity directed the diagnoses to the potential of MIC, as three of the responses were ‘MIC high confidence’. But the lack of contrast data 

between the corroded and the non-corroded area led one of the experts to classify the case as ‘MIC low confidence’. 

Case 22 Case 22 had also high standard deviation due to low pH and the potential for abiotic CO2 corrosion which led one of the experts to classify it 

as ‘no MIC high confidence’. The other 4 responses were related to low confidence (‘MIC low confidence’ and ‘need more data’)  which 

resulted in the ‘need more data’ class predicted by 5OC and 3OC. 
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Table 5.9 (continued) 

Case Number Causes of variation based on the experts’ comments 

Case 9 The variation in opinion related to case 9 was a result of uncertainty around the potential for abiotic mechanisms. As case 9 (like all other 

cases in this study) had no data related to oxygen presence or descriptors of the TDS present to evaluate under deposit corrosion (UDC), this 

inherent lack of info resulted in the lack of consensus for the case. But as all its responses were on the side for no potential of MIC, the model 

classified case 9 as ‘no MIC high’. 

Case 47 Case 47 is similar to case 9. All responses are related to no potential of MIC, which resulted in the 'no MIC high' classification by the model. 

The variation in opinion was related to the extent of confidence in the data. As both CST and MPN were carried out without contrast 

between the corroded and the non-corroded areas, the responses varied between ‘need more data’ and ‘no MIC low confidence’. 

Case 8 Case 8 had a relatively high standard deviation because while 4 of the classifications pointed out to ‘no MIC’, there was one pointing to 

MIC. This is due to the relative low confidence that can be assigned to this case study. Although there was available contrast information 

between the corroded and the non-corroded areas for microbiological data, it was related to ATP and MPN only. Additionally, although the 

contrast could potentially indicate MIC due to the significant difference in the numbers, temperature was out of the usual conducive range for 

MIC. Pitting morphology neither indicated nor excluded MIC and the CST, which provides a relative lower confidence for corrosion 

products, was positive for sulfide at both the corroded and the non-corroded areas in a H2S reach environment. Therefore, without surface 

related microbiological data, in an environment conducive to both MIC and abiotic corrosion with no strong indicators (or combination of 

indicators) to either point towards or away from MIC, the variation in classification for case 8 is understandable. 
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Table 5.9 (continued) 

Case Number Causes of variation based on the experts’ comments 

Case 18 Case 18, similarly to case 8, have limited pieces of data, and the ones available provide limited confidence. High TDS and the relative high 

temperature point away from MIC. CST provides lower confidence and identifies sulfides (with no contrast between the corroded and the 

non-corroded areas) in H2S reach environment. This fact in combination with pitting morphology neither point toward nor away from MIC. 

Additionally, the presence of liquid microbiological data for both ATP and MPN, with no contrast between the corroded and the non-

corroded areas, can be considered limited to make a determination. Additionally, the high numbers for ATP conflict with the low values 

found for MPN. 

Case 24 Case 24 had all environmental conditions conducive to MIC (i.e., temperature, pH, TDS within the usual ranges for MIC). But the presence 

of abiotic drivers coupled with limited corrosion product data and corrosion morphology that neither points toward nor away from MIC, 

made it hard to classify. Specially because the microbiological data is also limited and provided limited confidence, as only ATP and MPN 

results related to liquid samples are available. 
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5.4. Conclusions 

A novel expert system based on an artificial neural network (ANN) approach was 

successfully developed to assist both specialists and non-specialists in screening internal MIC 

failures in oil and gas upstream pipelines. Two versions of the model were created including 

one which considers confidence level of the predicted outcome (5OC model), and one that 

does not (3OC model). The ANN model was trained using 65 model case studies reviewed by 

15 subject matter experts (SMEs) in MIC failure assessment.  

The developed expert systems were shown to have an overall accuracy of 62.0% for 

the 5OC model (with confidence levels) and 74.8% for the 3OC model (without confidence 

levels). The lower accuracy of the 5OC model stems from inherent differences of opinion 

between experts and in the subjective nature of assessing confidence level attributes. As a 

result, the simplified 3OC expert system model is shown to perform better in predicting failure 

analysis outcomes, and ultimately, may have more utility in actual practice as a potential MIC 

screening tool for both experts and non-experts. Based on the results from the sensitivity 

analyses (where all 16 input parameters had similar relative weights), it can also be concluded 

that all 4 information groups (microbiology, chemistry, metallurgy/corrosion, and operating 

factors) are important in assessing a MIC failure diagnosis. 

In closing, this study has demonstrated that knowledge from subject matter experts 

regarding the assessment of MIC failures can be captured in a reasonably effective model. 

Performance improvement of the expert system may be possible by adding more case studies 

and/or experts to the existing data set, and re-training the ANN models. However, further 

improvement in the accuracy of the overall expert system may only be possible with the 

development and adoption of a standardized methodology for MIC failure analysis based on 
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expert consensus. While the current expert system model provides a reasonably accurate 

screening tool, further testing would be required with a broad range of case studies to ensure 

its general use in practice. 
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Chapter 6: Conclusions and Recommendations 

6.1. Summary of Key Findings 

- The present thesis poses itself as a credible source for the prevalence of MIC in oil and 

gas upstream operations, where it identified that MIC accounts for 13.6% and 4.8% of 

the internal and external failures, respectively (in Alberta, Canada between the three-

year period of January 1, 2017 and December 31, 2019). 

- The reviewed failures occurred in small diameters upstream pipelines (with less than 

or equal to 220.3 mm outside diameter) mainly carrying produced water or multiphase 

fluids (oil-water emulsions). 

- The highest MIC failure frequencies occurred in water pipelines with outer diameters 

smaller than 80.9 mm (2-1/2 in. nominal pipe size) and 114 – 116.8 mm (4 in. nominal 

pipe size) at 470 x 10-5 and 247 x 10-5 incidents per km per year, respectively (one 

MIC failure (on average) every 213 and 405 kilometers, respectively each year). 

- Overall, over 90% of the 50 MIC assessments reviewed included chemical data, 

operating data, metallurgical/corrosion data, and integration steps, however, only 70% 

of the MIC assessments reviewed conducted some sort of microbiological testing. 

- Only half of all assessments reviewed included tests to identify specific MFG, either 

using culturing methods or more advanced Microbiological Molecular Methods 

(MMM). 
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- Current failure assessments are not utilizing more modern microbiological (MMM) 

testing approaches, such as qPCR and Next Generation Sequencing. 

- The lack of microbiological testing suggests that industry and the failure analysis 

community are most familiar with methods used for assessing abiotic corrosion 

mechanisms (e.g., CO2 and H2S corrosion in oil and gas systems). 

- A significant number of failure assessments diagnosed MIC solely based on corrosion 

products and/or pit morphology without identification of specific microbial functional 

groups (a requirement to confirm MIC). 

- The biggest gap was found in the correlation of microbiological data with chemical, 

metallurgical/corrosion, and operating data to conclusively confirm specific MIC 

mechanisms, and to identify MIC as a primary or secondary contributor to the failure. 

- Overall, the gap analysis highlights the need for further education and training with 

respect to diagnosis of MIC particularly with respect to microbiological methods, and 

integration of biotic and abiotic data to confidently confirm MIC. 

- A relatively effective expert system to assist both specialists and non-specialists in 

screening internal MIC failures in oil and gas upstream pipelines was developed. 

- This thesis represents the first time that such a large number of MIC related model 

case studies have been analyzed by fifteen highly experienced MIC SMEs, and the 

results analyzed and documented. 
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- The variation in opinion by the experts on the same cases and variables clearly 

indicated that there remains a need to develop and adopt a standardized methodology 

for MIC failure analysis, including the necessary data to collect and the means by 

which the data should be integrated and used for decision making. 

- The developed ANN model was shown to have an accuracy of 62.0% (with confidence 

levels) and 74.8% (without confidence levels). 

- The sensitivity analyses indicated that all 16 input parameters had similar relative 

weights, meaning that all 4 information groups (microbiology, chemistry, 

metallurgy/corrosion, and operating factors) are comparably influential to MIC, and all 

are required layers of evidence for a conclusive MIC diagnosis. 

- The layers of data included in the model case studies evaluated not only can assist on 

the development of standards for industry but also can be used to drive checklists and 

guidelines for scientific experimental design. 

- Variation of results can be attributed to the differences in expert opinion especially 

pertaining to confidence levels and relative assessment of various input parameters 

(i.e., subjectivity) – current limitation of MIC assessment. 

- This thesis has highlighted that the understanding and knowledge about MIC 

assessment is varied among experts and is still evolving. Based on the variation in 

opinion by these experts on required data and testing approaches, it is clear that there 

remains a need to develop and adopt a standardized methodology for MIC failure 
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analysis, including the necessary data to collect and the means by which the data 

should be integrated and used for decision making. This also underscores the need for 

continued education and research on the topic of MIC. 

- Performance improvement of the expert system may be possible by adding more case 

studies and/or experts to the existing data set, and re-training the ANN models. 

However, further improvement in the accuracy of the overall expert system may only 

be possible with the development and adoption of a standardized methodology for 

MIC failure analysis based on expert consensus. 

- While the current expert system model provides a reasonably accurate screening tool, 

further testing would be required with a broad range of case studies to ensure its 

general use in practice. 

 

6.2. Novelty of work 

- The MIC failure statistics (13.6% of all internal corrosion incidents and 4.8% of all 

external corrosion incidents) tabulated by the MIC prevalence study represents, to the 

authors’ knowledge, the first time that the prevalence of MIC has been accurately 

quantified in the literature based on a single, reliable data set. 

- The reliable identification of the current gap of microbiological considerations on MIC 

failure investigations (only 70% of MIC related failure assessments take microbiology 

into consideration). 
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- The developed approach in this thesis, where the expert system method is coupled with 

ANN to assess MIC, can be utilized to develop MIC assessment frameworks related to 

other engineered systems susceptible to MIC. 

- This research was able to provide updated, detailed statistics related to the current 

status of MIC assessments in oil and gas upstream operations. 

- This work highlighted a number of current pitfalls in MIC assessments. 

- The research identified the most influential parameters to MIC that can be used to 

drive improved standards and both asset and experimental design. 

- The ANN provides a practical and efficient tool to assist both experts and non-experts 

with screening corrosion failures to determine the potential for MIC. 

 

6.3 Recommendations for future work 

- Develop a natural language processing-based system, which would be able to 

automatically quantify the information included in failure reports, rather than being 

manually translated (which is a very time-consuming exercise). This will not only 

increase access to historical failure reports, but could be automated to allow input of 

data from future failure reports with continual updating of the ANN model.  

- Base the expert system on fuzzy logic methods as an alternative to ANN. The use of 

fuzzy logic methods allow for the utilization of SME comments and insights to 
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recalibrate the relative weights defined by the ANN. Since fuzzy logic is based on 

inference rules (i.e., if <premise> then <consequence>), it takes linguistic variables 

into consideration. Therefore, the commentary by the experts can be potentially used 

to increase the accuracy of the model. 

- Future work can be also carried out in terms of evaluating how the performance of a 

MIC failure expert system would be affected if based on a non-supervised approach – 

rather than using experts’ targets to supervise its learning, as it has been done in the 

present thesis.  

- Adapt input variables to include the latest microbiological analysis methodologies that 

are in development (e.g., move from lower resolution ATP results, which are 

irrespective to diversity characterization, to higher resolution RNA-based data that 

directly links activity to diversity). 

- Other parameters can be included in further iterations of the model such as: steel 

grade, chemical composition of the material of construction of the pipe, its 

microstructure, corrosion products other than only sulfides and elemental sulfur; flow 

rate, water cut; potential microbiological nutrients in the fluid (e.g., sulfate, nitrate, 

organic carbon, phosphate); RNA results, historical data on previous failures due to 

MIC. In addition, the ANN model could be expanded to include more temporal data 

sets in the analysis (i.e., history of previous MIC related failures and/or issues). 
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- The development of MIC standard for failure assessment would include input and 

review from a wide range of experts and stakeholders to ensure that methodologies are 

agreed upon in a normative manner. 
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Appendix A. 65 Case Studies Provided to the Experts (Chapter 5) 

Appendix A: First set of supplementary data to Chapter 5: Tables A1 thru A26 

 

Table A1 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 1 thru 5. 

Case ID Case 1 Case 2 Case 3 Case 4 Case 5 

Operating related parameters           

Water Wetting (flow information) 

Flowing line at 

stratified flow 

with continuous 

contact of water 

with the metal 

surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow 

with continuous 

contact of water 

with the metal 

surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Temperature (°C) 24 °C 33 °C 32 °C 24 °C 32 °C 

Chemistry related parameters           

pH 5.9 6.5 3.5 6.5 6.9 

Amount of Total Dissolved Solids in the water (mg/L) 85,567 mg/L 40,340 mg/L 40,340 mg/L 56,964 mg/L 56,964 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) 0.00% 3.45% 0.00% 0.00% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) 3.50% 2.54% 12.65% 0.00% 0.00% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area 19.00% No data 0.00% No data 0.00% 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area 9.00% No data 0.00% No data 0.00% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area 45% No data 0% No data 0% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area 5% No data 0% No data 0% 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data YES No data NO No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data NO No data NO No data 

What is the corrosion morphology in the system? 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 
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Table A2 Microbiology-related parameters included in the case studies provided to the experts – cases 1 thru 5. 

Case ID Case 1 Case 2 Case 3 Case 4 Case 5 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Swab/Surface (cm-2) Liquid (mL-1) Swab/Surface (cm-2) Liquid (mL-1) Swab/Surface (cm-2) 

ATPa results - Corroded Area 1.00E+08 1.00E+02 1.00E+08 1.00E+02 1.00E+08 

ATP results - NON-Corroded Area 1.00E+01 1.00E+02 1.00E+01 1.00E+02 1.00E+01 

qPCRb results - Corroded Area - Total Bacteria 2.00E+10 No data 2.00E+10 No data 2.00E+10 

qPCR results - Corroded Area - Total Archaea 3.00E+09 No data 8.00E+04 No data 8.00E+04 

qPCR results - NON-Corroded Area - Total Bacteria < 1.00E+04 No data < 1.00E+04 No data < 1.00E+04 

qPCR results - NON-Corroded Area - Total Archaea < 1.00E+04 No data < 1.00E+04 No data < 1.00E+04 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 54.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 8.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 12.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) 17.00% No data 45.00% No data 45.00% 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) 9.00% No data 35.00% No data 35.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 0.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 0.00% No data 15.00% No data 15.00% 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified 0.00% No data 5.00% No data 5.00% 

NGS results - Corroded Area - Relative Abundance (%) - Total 100.00% No data 100.00% No data 100.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 0.00% No data 0.00% No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 0.00% No data 0.00% No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 0.00% No data 0.00% No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) 0.00% No data 0.00% No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) 0.00% No data 0.00% No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 35.00% No data 35.00% No data 35.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% No data 0.00% No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% No data 0.00% No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 60.00% No data 60.00% No data 60.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified 5.00% No data 5.00% No data 5.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total 100.00% No data 100.00% No data 100.00% 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data 1.00E+01 No data 1.00E+01 No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data 1.00E+01 No data 1.00E+01 No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data 1.00E+01 No data 1.00E+01 No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data 1.00E+01 No data 1.00E+01 No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A3 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 6 thru 10. 

Case ID Case 6 Case 7 Case 8 Case 9 Case 10 

Operating related parameters           

Water Wetting (flow information) 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Water stagnant 

at a dead leg 

with continuous 

water wetting on 

the metal 

surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Temperature (°C) 22 °C 75 °C 99 °C 24 °C 24 °C 

Chemistry related parameters           

pH 6.2 7 5.7 5.9 6 

Amount of Total Dissolved Solids in the water (mg/L) 85,567 mg/L 3,456 mg/L 52,957 mg/L 223,904 mg/L 5,987 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) 3.45% 0.00% 3.45% 0.00% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) 2.56% 0.00% 2.45% 0.00% 1.54% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area No data 0.00% No data 0.00% No data 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data 0.00% No data 0.00% No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area No data 0% No data 0% No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data 0% No data 0% No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? YES No data YES No data NO 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? YES No data YES No data NO 

What is the corrosion morphology in the system? 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position 

of the pipe with 

no uniform 

corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 
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Table A4 Microbiology-related parameters included in the case studies provided to the experts – cases 6 thru 10. 

Case ID Case 6 Case 7 Case 8 Case 9 Case 10 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Liquid (mL-1) Swab/Surface (cm-2) Liquid (mL-1) Swab/Surface (cm-2) Liquid (mL-1) 

ATPa results - Corroded Area 1.00E+08 1.00E+08 1.00E+08 1.00E+02 1.00E+08 

ATP results - NON-Corroded Area 1.00E+08 1.00E+01 1.00E+01 1.00E+02 1.00E+01 

qPCRb results - Corroded Area - Total Bacteria No data 8.00E+04 No data < 1.00E+04 No data 

qPCR results - Corroded Area - Total Archaea No data 2.00E+10 No data < 1.00E+04 No data 

qPCR results - NON-Corroded Area - Total Bacteria No data < 1.00E+04 No data < 1.00E+04 No data 

qPCR results - NON-Corroded Area - Total Archaea No data < 1.00E+04 No data < 1.00E+04 No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data 80.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data 0.00% No data 35.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data 15.00% No data 60.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified No data 5.00% No data 5.00% No data 

NGS results - Corroded Area - Relative Abundance (%) - Total No data 100.00% No data 100.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data 0.00% No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data 0.00% No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data 0.00% No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data 0.00% No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data 0.00% No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data 35.00% No data 35.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data 0.00% No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data 0.00% No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data 60.00% No data 60.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data 5.00% No data 5.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data 100.00% No data 100.00% No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) 1.00E+01 No data 1.00E+09 No data 1.00E+09 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) 1.00E+01 No data 1.00E+01 No data 1.00E+08 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) 1.00E+01 No data 0.00E+00 No data 0.00E+00 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) 1.00E+01 No data 0.00E+00 No data 0.00E+00 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A5 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 11 thru 15. 

Case ID Case 11 Case 12 Case 13 Case 14 Case 15 

Operating related parameters           

Water Wetting (flow information) 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Water stagnant 

at a dead leg 

with continuous 

water wetting on 

the metal 

surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Temperature (°C) 2 °C 34 °C 99 °C 2 °C 99 °C 

Chemistry related parameters           

pH 3.5 6.9 3.5 6.2 5.8 

Amount of Total Dissolved Solids in the water (mg/L) 223,904 mg/L 261,456 mg/L 3,456 mg/L 52,957 mg/L 261,456 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) 3.45% 3.45% 3.45% 0.00% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) 12.54% 0.00% 12.54% 5.87% 6.74% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area 11.00% No data 11.00% 0.00% 0.00% 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area 11.00% No data 11.00% 0.00% No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area 14% No data 24% 0% 0% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area 14% No data 24% 0% No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data YES No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data YES No data No data No data 

What is the corrosion morphology in the system? 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General 

corrosion 

uniformly 

distributed all 

over the pipeline 

General corrosion 

uniformly 

distributed all over 

the pipeline 

  



144 

 

Table A6 Microbiology-related parameters included in the case studies provided to the experts – cases 11 thru 15. 

Case ID Case 11 Case 12 Case 13 Case 14 Case 15 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Swab/Surface (cm-2) Liquid (mL-1) Swab/Surface (cm-2) Swab/Surface (cm-2) Swab/Surface (cm-2) 

ATP15 results - Corroded Area 1.00E+02 1.00E+08 1.00E+02 1.00E+02 1.00E+02 

ATP results - NON-Corroded Area 1.00E+02 1.00E+01 1.00E+02 1.00E+02 No data 

qPCR16 results - Corroded Area - Total Bacteria < 1.00E+04 No data < 1.00E+04 < 1.00E+04 < 1.00E+04 

qPCR results - Corroded Area - Total Archaea < 1.00E+04 No data < 1.00E+04 < 1.00E+04 < 1.00E+04 

qPCR results - NON-Corroded Area - Total Bacteria < 1.00E+04 No data < 1.00E+04 < 1.00E+04 No data 

qPCR results - NON-Corroded Area - Total Archaea < 1.00E+04 No data < 1.00E+04 < 1.00E+04 No data 

NGS17 results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 0.00% No data 0.00% 0.00% 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 0.00% No data 0.00% 0.00% 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 0.00% No data 0.00% 0.00% 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) 0.00% No data 0.00% 0.00% 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) 0.00% No data 0.00% 0.00% 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 35.00% No data 35.00% 35.00% 35.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% No data 0.00% 0.00% 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% No data 0.00% 0.00% 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 60.00% No data 60.00% 60.00% 60.00% 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified 5.00% No data 5.00% 5.00% 5.00% 

NGS results - Corroded Area - Relative Abundance (%) - Total 100.00% No data 100.00% 100.00% 100.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 0.00% No data 0.00% 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 0.00% No data 0.00% 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 0.00% No data 0.00% 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) 0.00% No data 0.00% 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) 0.00% No data 0.00% 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 35.00% No data 35.00% 35.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% No data 0.00% 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% No data 0.00% 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 60.00% No data 60.00% 60.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified 5.00% No data 5.00% 5.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total 100.00% No data 100.00% 100.00% No data 

MPN18 bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data 1.00E+09 No data No data No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data 1.00E+08 No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data 0.00E+00 No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data 0.00E+00 No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A7Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 16 thru 20. 

Case ID Case 16 Case 17 Case 18 Case 19 Case 20 

Operating related parameters           

Water Wetting (flow information) 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow 

with continuous 

contact of water 

with the metal 

surface 

Flowing line at 

stratified flow 

with continuous 

contact of water 

with the metal 

surface 

Temperature (°C) 34 °C 32 °C 72 °C 34 °C 45 °C 

Chemistry related parameters           

pH 6.7 5.7 5.9 3.5 6.1 

Amount of Total Dissolved Solids in the water (mg/L) 261,456 mg/L 5,987 mg/L 261,456 mg/L 78,456 mg/L 78,456 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) 3.45% 3.45% 4.53% 3.45% 4.53% 

Amount of CO2 dissolved in the gas (mole fraction, %) 0.00% 0.00% 4.53% 12.65% 2.56% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area No data 19.00% No data 19.00% No data 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data No data No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area No data 45% No data 45% No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data No data No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? NO No data YES No data YES 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

  



146 

 

Table A8 Microbiology-related parameters included in the case studies provided to the experts – cases 16 thru 20. 

Case ID Case 16 Case 17 Case 18 Case 19 Case 20 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Liquid (mL-1) Swab/Surface (cm-2) Liquid (mL-1) Swab/Surface (cm-2) Liquid (mL-1) 

ATPa results - Corroded Area 1.00E+02 1.00E+02 1.00E+08 1.00E+08 1.00E+08 

ATP results - NON-Corroded Area No data No data No data No data No data 

qPCRb results - Corroded Area - Total Bacteria No data < 1.00E+04 No data 2.00E+10 No data 

qPCR results - Corroded Area - Total Archaea No data < 1.00E+04 No data 3.00E+09 No data 

qPCR results - NON-Corroded Area - Total Bacteria No data No data No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea No data No data No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data 0.00% No data 54.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data 0.00% No data 8.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data 0.00% No data 12.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data 0.00% No data 17.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) No data 0.00% No data 9.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data 35.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data 0.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data 60.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified No data 5.00% No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) - Total No data 100.00% No data 100.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data No data No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) 1.00E+01 No data 1.00E+01 No data 1.00E+09 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) 1.00E+01 No data 1.00E+01 No data 1.00E+08 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A9 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 21 thru 25. 

Case ID Case 21 Case 22 Case 23 Case 24 Case 25 

Operating related parameters           

Water Wetting (flow information) 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Water stagnant 

at a dead leg 

with continuous 

water wetting on 

the metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Temperature (°C) 34 °C 27 °C 34 °C 34 °C 34 °C 

Chemistry related parameters           

pH 6.3 3.5 3.5 6.8 3.5 

Amount of Total Dissolved Solids in the water (mg/L) 261,456 mg/L 56,964 mg/L 78,456 mg/L 3,456 mg/L 78,456 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) 3.45% 0.00% 0.00% 3.45% 3.45% 

Amount of CO2 dissolved in the gas (mole fraction, %) 2.34% 12.30% 12.65% 5.60% 12.65% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area 19.00% No data 11.00% No data 19.00% 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data No data No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area 45% No data No data No data 45% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data No data No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data NO No data YES No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position 

of the pipe with 

no uniform 

corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 
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Table A10 Microbiology-related parameters included in the case studies provided to the experts – 21 thru 25. 

Case ID Case 21 Case 22 Case 23 Case 24 Case 25 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Swab/Surface (cm-2) Liquid (mL-1) Swab/Surface (cm-2) Liquid (mL-1) Swab/Surface (cm-2) 

ATPa results - Corroded Area 1.00E+08 1.00E+08 1.00E+08 1.00E+08 1.00E+02 

ATP results - NON-Corroded Area No data No data No data No data No data 

qPCRb results - Corroded Area - Total Bacteria 2.00E+10 No data 2.00E+10 No data < 1.00E+04 

qPCR results - Corroded Area - Total Archaea 3.00E+09 No data 3.00E+09 No data < 1.00E+04 

qPCR results - NON-Corroded Area - Total Bacteria No data No data No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea No data No data No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 54.00% No data 54.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 8.00% No data 8.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 12.00% No data 12.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) 17.00% No data 17.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) 9.00% No data 9.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 0.00% No data 0.00% No data 35.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% No data 0.00% No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 0.00% No data 0.00% No data 60.00% 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified 0.00% No data 0.00% No data 5.00% 

NGS results - Corroded Area - Relative Abundance (%) - Total 100.00% No data 100.00% No data 100.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data No data No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data 1.00E+01 No data 1.00E+01 No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data 1.00E+08 No data 1.00E+08 No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A11 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 26 thru 30. 

Case ID Case 26 Case 27 Case 28 Case 29 Case 30 

Operating related parameters           

Water Wetting (flow information) 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Water stagnant 

at a dead leg 

with continuous 

water wetting on 

the metal surface 

No data 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Temperature (°C) 34 °C 35 °C 34 °C 22 °C No data 

Chemistry related parameters           

pH 3.5 3.5 3.5 6.8 6.9 

Amount of Total Dissolved Solids in the water (mg/L) 261,456 mg/L 78,457 mg/L 78,456 mg/L 3,456 mg/L 34,567 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) 0.00% 0.00% 3.45% 3.45% 3.45% 

Amount of CO2 dissolved in the gas (mole fraction, %) 12.65% 12.65% 12.65% 3.50% 0.00% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area No data No data 11.00% No data 11.00% 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data No data No data No data 11.00% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area No data No data 14% No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data No data No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? NO YES No data NO No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data NO No data 

What is the corrosion morphology in the system? 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General 

corrosion 

uniformly 

distributed all 

over the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General corrosion 

uniformly 

distributed all over 

the pipeline 
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Table A12 Microbiology-related parameters included in the case studies provided to the experts – cases 26 thru 30. 

Case ID Case 26 Case 27 Case 28 Case 29 Case 30 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Liquid (mL-1) Liquid (mL-1) Swab/Surface (cm-2) No data Liquid (mL-1) 

ATPa results - Corroded Area 1.00E+02 1.00E+08 1.00E+02 No data 1.00E+02 

ATP results - NON-Corroded Area No data No data No data No data No data 

qPCRb results - Corroded Area - Total Bacteria No data 2.00E+10 < 1.00E+04 No data No data 

qPCR results - Corroded Area - Total Archaea No data 3.00E+09 < 1.00E+04 No data No data 

qPCR results - NON-Corroded Area - Total Bacteria No data No data No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea No data No data No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data 54.00% 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data 8.00% 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data 12.00% 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data 17.00% 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) No data 9.00% 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data 0.00% 35.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data 0.00% 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data 0.00% 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data 0.00% 60.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified No data 0.00% 5.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) - Total No data 100.00% 100.00% No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data No data No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) 1.00E+01 No data No data No data No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) 1.00E+01 No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A13 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 31 thru 35. 

Case ID Case 31 Case 32 Case 33 Case 34 Case 35 

Operating related parameters           

Water Wetting (flow information) No data 

Water stagnant 

at a dead leg 

with continuous 

water wetting on 

the metal surface 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Temperature (°C) 33 °C No data 24 °C 24 °C 12 °C 

Chemistry related parameters           

pH 6 3.5 No data 6.2 No data 

Amount of Total Dissolved Solids in the water (mg/L) 56,964 mg/L 261,456 mg/L No data 40,340 mg/L No data 

Amount of H2S dissolved in the gas (mole fraction, %) 0.00% No data 3.45% 3.45% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) 4.45% No data 0.00% 5.22% 0.00% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area No data No data No data 19.00% No data 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data No data No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area No data No data No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data No data No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data YES No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General 

corrosion 

uniformly 

distributed all 

over the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

General 

corrosion 

uniformly 

distributed all 

over the pipeline 
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Table A14 Microbiology-related parameters included in the case studies provided to the experts – cases 31 thru 35. 

Case ID Case 31 Case 32 Case 33 Case 34 Case 35 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Liquid (mL-1) Liquid (mL-1) No data Liquid (mL-1) Liquid (mL-1) 

ATPa results - Corroded Area 1.00E+02 No data No data 1.00E+08 1.00E+08 

ATP results - NON-Corroded Area No data No data No data No data No data 

qPCRb results - Corroded Area - Total Bacteria No data < 1.00E+04 No data No data No data 

qPCR results - Corroded Area - Total Archaea No data < 1.00E+04 No data No data No data 

qPCR results - NON-Corroded Area - Total Bacteria No data < 1.00E+04 No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea No data < 1.00E+04 No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data 35.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data 60.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified No data 5.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) - Total No data 100.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data 35.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data 60.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data 5.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data 100.00% No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) 1.00E+01 No data No data No data 1.00E+08 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) 1.00E+01 No data No data No data 1.00E+08 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) 1.00E+01 No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) 1.00E+01 No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 

  



153 

 

Table A15 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 36 thru 40. 

Case ID Case 36 Case 37 Case 38 Case 39 Case 40 

Operating related parameters           

Water Wetting (flow information) 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

No data 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the metal 

surface 

No data 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Temperature (°C) 34 °C 45 °C No data No data 33 °C 

Chemistry related parameters           

pH 6.3 No data 6.5 No data No data 

Amount of Total Dissolved Solids in the water (mg/L) 78,456 mg/L No data 12,856 mg/L No data No data 

Amount of H2S dissolved in the gas (mole fraction, %) No data 3.45% 0.00% 0.00% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) No data 7.10% 2.40% 4.56% 7.10% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area 19.00% 0.00% No data 9.00% 0.00% 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area 9.00% No data No data No data 0.00% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area 45% 0% No data No data 0% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area 5% No data No data No data 0% 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data No data YES No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

General 

corrosion 

uniformly 

distributed 

all over 

the 

pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General corrosion 

uniformly 

distributed all over 

the pipeline 
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Table A16 Microbiology-related parameters included in the case studies provided to the experts – cases 36 thru 40. 

Case ID Case 36 Case 37 Case 38 Case 39 Case 40 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Swab/Surface (cm-2) No data Liquid (mL-1) Liquid (mL-1) Swab/Surface (cm-2) 

ATPa results - Corroded Area No data No data 1.00E+08 1.00E+08 1.00E+02 

ATP results - NON-Corroded Area No data No data 1.00E+02 No data No data 

qPCRb results - Corroded Area - Total Bacteria 2.00E+10 No data No data No data < 1.00E+04 

qPCR results - Corroded Area - Total Archaea 3.00E+09 No data No data No data < 1.00E+04 

qPCR results - NON-Corroded Area - Total Bacteria No data No data No data No data < 1.00E+04 

qPCR results - NON-Corroded Area - Total Archaea No data No data No data No data < 1.00E+04 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 54.00% No data No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 8.00% No data No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 12.00% No data No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) 17.00% No data No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) 9.00% No data No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 0.00% No data No data No data 35.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% No data No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% No data No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 0.00% No data No data No data 60.00% 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified 0.00% No data No data No data 5.00% 

NGS results - Corroded Area - Relative Abundance (%) - Total 100.00% No data No data No data 100.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data No data 35.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data No data 0.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data No data 60.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data No data 5.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data No data No data No data 100.00% 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data 1.00E+08 No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data No data No data 1.00E+08 No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A17 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 41 thru 45. 

Case ID Case 41 Case 42 Case 43 Case 44 Case 45 

Operating related parameters           

Water Wetting (flow information) 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Water stagnant 

at a dead leg 

with continuous 

water wetting on 

the metal 

surface 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

No data 

Temperature (°C) No data No data 2 °C 28 °C 29 °C 

Chemistry related parameters           

pH No data 6.3 No data No data No data 

Amount of Total Dissolved Solids in the water (mg/L) No data 78,456 mg/L No data No data No data 

Amount of H2S dissolved in the gas (mole fraction, %) 0.00% 0.00% No data 0.00% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) 4.60% 0.00% No data 5.90% 0.00% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area No data 0.00% 9.00% 19.00% 0.00% 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data 0.00% 9.00% 9.00% No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area No data No data No data No data 0% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data No data No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data No data No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General 

corrosion 

uniformly 

distributed all 

over the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 
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Table A18 Microbiology-related parameters included in the case studies provided to the experts – cases 41 thru 45. 

Case ID Case 41 Case 42 Case 43 Case 44 Case 45 

Microbiology related parameters           

Microbiological Sample Type (s.u.) No data Liquid (mL-1) Liquid (mL-1) Swab/Surface (cm-2) No data 

ATPa results - Corroded Area No data 1.00E+02 1.00E+02 1.00E+08 No data 

ATP results - NON-Corroded Area No data No data 1.00E+02 No data No data 

qPCRb results - Corroded Area - Total Bacteria No data No data No data 2.00E+10 No data 

qPCR results - Corroded Area - Total Archaea No data No data No data 3.00E+09 No data 

qPCR results - NON-Corroded Area - Total Bacteria No data No data No data < 1.00E+04 No data 

qPCR results - NON-Corroded Area - Total Archaea No data No data No data < 1.00E+04 No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data 54.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data 8.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data 12.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data 17.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data 9.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data 0.00% No data 

NGS results - Corroded Area - Relative Abundance (%) - Total No data No data No data 100.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data 35.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data 0.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data 60.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data 5.00% No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data No data No data 100.00% No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data 1.00E+01 No data No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data No data 1.00E+01 No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data 1.00E+01 No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data 1.00E+01 No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A19 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 46 thru 50. 

Case ID Case 46 Case 47 Case 48 Case 49 Case 50 

Operating related parameters           

Water Wetting (flow information) No data 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Temperature (°C) 34 °C No data 34 °C 2 °C 34 °C 

Chemistry related parameters           

pH No data 3.5 6.3 6.8 5.3 

Amount of Total Dissolved Solids in the water (mg/L) 261,456 mg/L 78,456 mg/L No data 261,456 mg/L 34,567 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) No data 3.45% 0.00% 3.45% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) No data 12.65% 2.34% 6.40% 5.90% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area No data No data 19.00% 11.00% No data 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data No data 9.00% 11.00% No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area No data No data No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data No data No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data YES No data No data NO 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

Isolated pit at 

6 o'clock 

position of 

the pipe with 

no uniform 

corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General corrosion 

uniformly 

distributed all over 

the pipeline 
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Table A20 Microbiology-related parameters included in the case studies provided to the experts – cases 46 thru 50. 

Case ID Case 46 Case 47 Case 48 Case 49 Case 50 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Liquid (mL-1) Liquid (mL-1) Swab/Surface (cm-2) No data Swab/Surface (cm-2) 

ATPa results - Corroded Area 1.00E+08 1.00E+02 1.00E+08 No data 1.00E+02 

ATP results - NON-Corroded Area 1.00E+08 1.00E+02 No data No data No data 

qPCRb results - Corroded Area - Total Bacteria No data No data 2.00E+10 No data No data 

qPCR results - Corroded Area - Total Archaea No data No data 3.00E+09 No data No data 

qPCR results - NON-Corroded Area - Total Bacteria No data No data No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea No data No data No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data 54.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data 8.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data 12.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data 17.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data 9.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data 0.00% No data No data 

NGS results - Corroded Area - Relative Abundance (%) - Total No data No data 100.00% No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data No data No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data 1.00E+01 No data No data No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data 1.00E+01 No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A21 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 51 thru 55. 

Case ID Case 51 Case 52 Case 53 Case 54 Case 55 

Operating related parameters           

Water Wetting (flow information) 

Water stagnant 

at a dead leg 

with continuous 

water wetting on 

the metal 

surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Flowing line at 

stratified flow with 

continuous contact 

of water with the 

metal surface 

Temperature (°C) 27 °C 2 °C 28 °C 28 °C 28 °C 

Chemistry related parameters           

pH No data No data 6.3 No data No data 

Amount of Total Dissolved Solids in the water (mg/L) No data 261,456 mg/L 5,897 mg/L No data No data 

Amount of H2S dissolved in the gas (mole fraction, %) 3.45% 3.45% 0.00% 0.00% 0.00% 

Amount of CO2 dissolved in the gas (mole fraction, %) 0.00% 0.00% 2.34% 0.00% 8.20% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area No data 11.00% No data No data No data 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area No data 11.00% No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area No data 14% No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area No data 14% No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? YES No data YES No data YES 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

Isolated pit at 6 

o'clock position 

of the pipe with 

no uniform 

corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

Isolated pit at 6 

o'clock position of 

the pipe with no 

uniform corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 
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Table A22 Microbiology-related parameters included in the case studies provided to the experts – cases 51 thru 55. 

Case ID Case 51 Case 52 Case 53 Case 54 Case 55 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Liquid (mL-1) Swab/Surface (cm-2) No data Swab/Surface (cm-2) Swab/Surface (cm-2) 

ATPa results - Corroded Area No data 1.00E+02 No data 1.00E+08 No data 

ATP results - NON-Corroded Area No data No data No data 1.00E+01 No data 

qPCRb results - Corroded Area - Total Bacteria No data < 1.00E+04 No data No data No data 

qPCR results - Corroded Area - Total Archaea No data < 1.00E+04 No data No data No data 

qPCR results - NON-Corroded Area - Total Bacteria No data No data No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea No data No data No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data 35.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data 60.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified No data 5.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) - Total No data 100.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified No data No data No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total No data No data No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) 1.00E+08 No data No data No data 1.00E+08 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) 1.00E+08 No data No data No data 1.00E+08 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A23 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 56 thru 60. 

Case ID Case 56 Case 57 Case 58 Case 59 Case 60 

Operating related parameters           

Water Wetting (flow information) 

Flowing line at 

stratified flow 

with continuous 

contact of water 

with the metal 

surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow 

with continuous 

contact of water 

with the metal 

surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Flowing line at 

stratified flow 

with continuous 

contact of water 

with the metal 

surface 

Temperature (°C) 99 °C 34 °C 2 °C 34 °C 2 °C 

Chemistry related parameters           

pH No data 3.5 6.3 6.7 3.5 

Amount of Total Dissolved Solids in the water (mg/L) No data 40,340 mg/L 85,567 mg/L 261,456 mg/L 85,567 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) No data 0.00% 3.45% 3.45% 3.45% 

Amount of CO2 dissolved in the gas (mole fraction, %) No data 12.65% 5.90% 0.00% 12.65% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area 0.00% 19.00% 11.00% No data No data 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area 0.00% 9.00% No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area 0% 45% 14% No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area 0% 5% No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data No data No data NO YES 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

General corrosion 

uniformly 

distributed all 

over the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 
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Table A24 Microbiology-related parameters included in the case studies provided to the experts – cases 56 thru 60. 

Case ID Case 56 Case 57 Case 58 Case 59 Case 60 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Swab/Surface (cm-2) Liquid (mL-1) Liquid (mL-1) Liquid (mL-1) Liquid (mL-1) 

ATPa results - Corroded Area 1.00E+02 1.00E+08 1.00E+08 1.00E+02 1.00E+02 

ATP results - NON-Corroded Area 1.00E+02 1.00E+02 No data No data No data 

qPCRb results - Corroded Area - Total Bacteria < 1.00E+04 2.00E+10 No data No data No data 

qPCR results - Corroded Area - Total Archaea < 1.00E+04 3.00E+09 No data No data No data 

qPCR results - NON-Corroded Area - Total Bacteria < 1.00E+04 < 1.00E+04 No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea < 1.00E+04 < 1.00E+04 No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 0.00% 54.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 0.00% 8.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 0.00% 12.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) 0.00% 17.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) 0.00% 9.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 35.00% 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 60.00% 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified 5.00% 0.00% No data No data No data 

NGS results - Corroded Area - Relative Abundance (%) - Total 100.00% 100.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 35.00% 35.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 60.00% 60.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified 5.00% 5.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total 100.00% 100.00% No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data 1.00E+08 1.00E+08 1.00E+01 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data No data 1.00E+08 1.00E+01 1.00E+01 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Table A25 Operating, chemistry, and metallurgy/corrosion related parameters included in the case studies provided to the experts – 

cases 61 thru 65. 

Case ID Case 61 Case 62 Case 63 Case 64 Case 65 

Operating related parameters           

Water Wetting (flow information) 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Water stagnant at a 

dead leg with 

continuous water 

wetting on the 

metal surface 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

No data 

Water stagnant at 

a dead leg with 

continuous water 

wetting on the 

metal surface 

Temperature (°C) 2 °C 2 °C 34 °C 2 °C 2 °C 

Chemistry related parameters           

pH 3.5 No data 6.7 No data No data 

Amount of Total Dissolved Solids in the water (mg/L) 261,456 mg/L No data 78,456 mg/L No data 78,456 mg/L 

Amount of H2S dissolved in the gas (mole fraction, %) 0.00% 0.00% 3.45% No data 3.45% 

Amount of CO2 dissolved in the gas (mole fraction, %) 12.65% 5.90% 2.34% No data 12.65% 

Metallurgy/corrosion related parameters           

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - Corroded Area 0.00% 19.00% No data No data 11.00% 

Energy-dispersive X-ray spectroscopy (EDS) results - Amount of Sulfur present (Mass %) - NON-Corroded Area 0.00% 9.00% No data No data 11.00% 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - Corroded Area 0% 45% No data No data No data 

X-Ray Diffraction (XRD) results - Amount of Total Iron Sulfides present (Mass %) - NON-Corroded Area 0% 5% No data No data No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the corroded area? No data No data YES YES No data 

Did Chemical Spot Testing get POSITIVE for Sulfides at the NON-corroded area? No data No data No data No data No data 

What is the corrosion morphology in the system? 

General 

corrosion 

uniformly 

distributed all 

over the pipeline 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

Isolated pit at 6 

o'clock position 

of the pipe with 

no uniform 

corrosion 

Pitting uniformly 

distributed over a 

large area across 6 

o'clock position of 

the pipeline 

General 

corrosion 

uniformly 

distributed all 

over the pipeline 
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Table A26 Microbiology-related parameters included in the case studies provided to the experts – cases 61 thru 65. 

Case ID Case 61 Case 62 Case 63 Case 64 Case 65 

Microbiology related parameters           

Microbiological Sample Type (s.u.) Swab/Surface (cm-2) Swab/Surface (cm-2) Liquid (mL-1) Liquid (mL-1) Swab/Surface (cm-2) 

ATPa results - Corroded Area 1.00E+02 1.00E+08 1.00E+08 1.00E+08 1.00E+02 

ATP results - NON-Corroded Area 1.00E+02 1.00E+01 1.00E+01 No data 1.00E+02 

qPCRb results - Corroded Area - Total Bacteria < 1.00E+04 2.00E+10 No data No data < 1.00E+04 

qPCR results - Corroded Area - Total Archaea < 1.00E+04 3.00E+09 No data No data < 1.00E+04 

qPCR results - NON-Corroded Area - Total Bacteria < 1.00E+04 < 1.00E+04 No data No data No data 

qPCR results - NON-Corroded Area - Total Archaea < 1.00E+04 < 1.00E+04 No data No data No data 

NGSc results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 0.00% 54.00% No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 0.00% 8.00% No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 0.00% 12.00% No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Acetogens (ACE) 0.00% 17.00% No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Fermenters (FER) 0.00% 9.00% No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 35.00% 0.00% No data No data 35.00% 

NGS results - Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% 0.00% No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% 0.00% No data No data 0.00% 

NGS results - Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 60.00% 0.00% No data No data 60.00% 

NGS results - Corroded Area - Relative Abundance (%) of Others/Unidentified 5.00% 0.00% No data No data 5.00% 

NGS results - Corroded Area - Relative Abundance (%) - Total 100.00% 100.00% No data No data 100.00% 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Bacteria (SRB) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Sulfate Reducing Archaea (SRA) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Methanogenic Archaea (MA) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Acetogens (ACE) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Fermenters (FER) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Reducing Bacteria (IRB) 35.00% 35.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Iron Oxidizing Bacteria (IOB) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Manganese Oxidizing Bacteria (MnOB) 0.00% 0.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Nitrate Reducing Bacteria (NRB) 60.00% 60.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) of Others/Unidentified 5.00% 5.00% No data No data No data 

NGS results - NON-Corroded Area - Relative Abundance (%) - Total 100.00% 100.00% No data No data No data 

MPNd bacteria/mL as per number of bottles - Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Sulfate Reducing Bacteria (SRB) No data No data No data No data No data 

MPN bacteria/mL as per number of bottles - NON-Corroded Area - Acid Producing Bacteria (APB) No data No data No data No data No data 

a Adenosine triphosphate assay (enzymatic assay) 

b Quantitative polymerase chain reaction (DNA target quantification) 

c Next generation sequencing (DNA sequencing) 

d Most probable numbers (culture-based test) 
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Appendix B. Translation of Case Study Variables into 16 ANN Input Variables for ANN Training, 

Validation, and Testing (Chapter 5) 

Appendix B: Second set of supplementary data to Chapter 5: Tables B1 thru B5. 

 

Table B1 The 16 Input Variables used to Train, Validate, and Test the ANN – 1 thru 15. 

# Input 

Parameter 
Case ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  Operating related parameters                               

1 
Is the liquid water accumulated on the metal surface STAGNANT (1), 

STRATIFIED (0) or NOT TESTED (-1)? 
0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 

2 
Is the operating temperature of the system between 10°C ≤ T ≤ 95°C? [YES 

(1), NO (0), NOT TESTED (-1)] 
1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 

  Chemistry related parameters                               

3 
Is the operating pH of the system between 4 ≤ pH ≤ 9? [YES (1), NO (0), NOT 

TESTED (-1)] 
1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 

4 
Is the total dissolved solids (TDS) in the water in the system below 200,000 

mg/L? [YES (1), NO (0), NOT TESTED (-1)] 
1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 

5 Is H2S present in the system? [YES (1), NO (0), NOT TESTED (-1)] 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 

6 Is CO2 present in the system? [YES (1), NO (0), NOT TESTED (-1)] 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 

  Metallurgy/corrosion related parameters                               

7 
Was the chemistry of solids present on the surface analysed by EDSa [1], EDS 

+ XRDb [2], spot testing [0], or not tested at all [-1]? 
2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 

8 
Did chemical testing of corrosion products identify the presence of sulfur 

related species (sulfur, sulfides)? [YES (1), NO (0), NOT TESTED (-1)] 
1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 

9 

Is the contrast of chemical testing results for sulfur related species greater in 

the corroded area than in the non-corroded area? [MORE (1), SAME (0), NOT 

CONTRASTED (-1)] 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

10 
What is the morphology of the corrosion present? [Uniform/General (1), 

Clustered/Scattered Pits (2), Isolated Pits (3)] 
3 2 3 2 3 2 3 2 2 2 2 2 2 1 1 
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Table B1 (continued) 

# Input 

Parameter 
Case ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  Microbiology related parameters                               

11 

Are the microbiological related tests (e.g., ATPc, BARTd, MPNe, qPCRf, DNA 

sequencing) taken from surface/solid samples or liquid samples? [SURFACE 

(1), LIQUID (0), NEED DATA (-1)] 

1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 

12 

Were abundance and diversity assessed by Molecular Microbiological 

Methods, MMMg, (e.g., qPCR, NGSh) or culturing methods (e.g., MPN, 

BART)? [MMM (1), Culturing (0), NEED DATA (-1)] 

1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 

13 
Is the ATP result equal to or greater than 10E6 cells/sample unit? [YES (1), 

NO (0), NEED DATA (-1)] 
1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 

14 
Is the contrast between the ATP result at the corroded area greater than at 

uncorroded areas? [YES (1), NO (0), NEED DATA (-1)] 
1 0 1 0 1 0 1 1 0 1 0 1 0 0 -1 

15 
Are MIC related microorganisms present in abundance (e.g., >10E6, 6 bottles) 

in the system? [YES (1), NO (0), NEED DATA (-1)] 
1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 

16 

Is there a difference between the corroded area and the non corroded area in 

terms of the diversity and abundance of the MIC related microorganisms 

present? [YES (1), NO (0), NEED DATA (-1)] 

1 0 1 0 1 0 1 1 0 1 0 1 0 0 -1 

a Energy-dispersive X-ray spectroscopy 

b X-ray diffraction 
c Adenosine triphosphate assay (enzymatic assay) 

d Biological activity reaction test 

e Most probable numbers (culture-based test) 
f Quantitative polymerase chain reaction (DNA target quantification) 

g Molecular microbiological methods 

h Next generation sequencing (DNA sequencing) 
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Table B2 The 16 Input Variables used to Train, Validate, and Test the ANN – 16 thru 30. 

# Input 

Parameter 
Case ID 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

  Operating related parameters                               

1 
Is the liquid water accumulated on the metal surface STAGNANT 

(1), STRATIFIED (0) or NOT TESTED (-1)? 
1 1 1 0 0 1 0 1 0 0 0 0 1 -1 0 

2 
Is the operating temperature of the system between 10°C ≤ T ≤ 

95°C? [YES (1), NO (0), NOT TESTED (-1)] 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 

  Chemistry related parameters                               

3 
Is the operating pH of the system between 4 ≤ pH ≤ 9? [YES (1), 

NO (0), NOT TESTED (-1)] 
1 1 1 0 1 1 0 0 1 0 0 0 0 1 1 

4 
Is the total dissolved solids (TDS) in the water in the system below 

200,000 mg/L? [YES (1), NO (0), NOT TESTED (-1)] 
0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 

5 
Is H2S present in the system? [YES (1), NO (0), NOT TESTED (-

1)] 
1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 

6 
Is CO2 present in the system? [YES (1), NO (0), NOT TESTED (-

1)] 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 

  Metallurgy/corrosion related parameters                               

7 
Was the chemistry of solids present on the surface analysed by 

EDSa [1], EDS + XRDb [2], spot testing [0], or not tested at all [-1]? 
0 2 0 2 0 2 0 1 0 2 0 0 2 0 1 

8 

Did chemical testing of corrosion products identify the presence of 

sulfur related species (sulfur, sulfides)? [YES (1), NO (0), NOT 

TESTED (-1)] 

0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 

9 

Is the contrast of chemical testing results for sulfur related species 

greater in the corroded area than in the non-corroded area? [MORE 

(1), SAME (0), NOT CONTRASTED (-1)] 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 

10 
What is the morphology of the corrosion present? [Uniform/General 

(1), Clustered/Scattered Pits (2), Isolated Pits (3)] 
2 2 2 3 2 2 2 3 2 2 2 2 1 2 1 
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Table B2 (continued) 

# Input 

Parameter 
Case ID 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

  Microbiology related parameters                               

11 

Are the microbiological related tests (e.g., ATPc, BARTd, MPNe, 

qPCRf, DNA sequencing) taken from surface/solid samples or 

liquid samples? [SURFACE (1), LIQUID (0), NEED DATA (-1)] 

0 1 0 1 0 1 0 1 0 1 0 0 1 -1 0 

12 

Were abundance and diversity assessed by Molecular 

Microbiological Methods, MMMg, (e.g., qPCR, NGSh) or culturing 

methods (e.g., MPN, BART)? [MMM (1), Culturing (0), NEED 

DATA (-1)] 

0 1 0 1 0 1 0 1 0 1 0 1 1 -1 -1 

13 
Is the ATP result equal to or greater than 10E6 cells/sample unit? 

[YES (1), NO (0), NEED DATA (-1)] 
0 0 1 1 1 1 1 1 1 0 0 1 0 -1 0 

14 
Is the contrast between the ATP result at the corroded area greater 

than at uncorroded areas? [YES (1), NO (0), NEED DATA (-1)] 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

15 

Are MIC related microorganisms present in abundance (e.g., 

>10E6, 6 bottles) in the system? [YES (1), NO (0), NEED DATA (-

1)] 

0 0 0 1 1 1 1 1 1 0 0 1 0 -1 -1 

16 

Is there a difference between the corroded area and the non-

corroded area in terms of the diversity and abundance of the 

microbiologically influenced corrosion (MIC) related 

microorganisms present? [YES (1), NO (0), NEED DATA (-1)] 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

a Energy-dispersive X-ray spectroscopy 

b X-ray diffraction 

c Adenosine triphosphate assay (enzymatic assay) 
d Biological activity reaction test 

e Most probable numbers (culture-based test) 

f Quantitative polymerase chain reaction (DNA target quantification) 
g Molecular microbiological methods 

h Next generation sequencing (DNA sequencing) 
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Table B3 The 16 Input Variables used to Train, Validate, and Test the ANN – 31 thru 45. 

# Input 

Parameter 
Case ID 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

  Operating related parameters                               

1 
Is the liquid water accumulated on the metal surface STAGNANT 

(1), STRATIFIED (0) or NOT TESTED (-1)? 
-1 1 1 0 1 1 -1 1 -1 1 1 1 1 0 -1 

2 
Is the operating temperature of the system between 10°C ≤ T ≤ 

95°C? [YES (1), NO (0), NOT TESTED (-1)] 
1 -1 1 1 1 1 1 -1 -1 1 -1 -1 0 1 1 

  Chemistry related parameters                               

3 
Is the operating pH of the system between 4 ≤ pH ≤ 9? [YES (1), 

NO (0), NOT TESTED (-1)] 
1 0 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 

4 
Is the total dissolved solids (TDS) in the water in the system below 

200,000 mg/L? [YES (1), NO (0), NOT TESTED (-1)] 
1 0 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 

5 
Is H2S present in the system? [YES (1), NO (0), NOT TESTED (-

1)] 
0 -1 1 1 0 -1 1 0 0 0 0 0 -1 0 0 

6 
Is CO2 present in the system? [YES (1), NO (0), NOT TESTED (-

1)] 
1 -1 0 1 0 -1 1 1 1 1 1 0 -1 1 0 

  Metallurgy/corrosion related parameters                               

7 
Was the chemistry of solids present on the surface analysed by 

EDSa [1], EDS + XRDb [2], spot testing [0], or not tested at all [-1]? 
-1 0 -1 1 -1 2 2 0 1 2 -1 1 1 1 2 

8 

Did chemical testing of corrosion products identify the presence of 

sulfur related species (sulfur, sulfides)? [YES (1), NO (0), NOT 

TESTED (-1)] 

-1 1 -1 1 -1 1 0 1 1 0 -1 0 1 1 0 

9 

Is the contrast of chemical testing results for sulfur related species 

greater in the corroded area than in the non-corroded area? [MORE 

(1), SAME (0), NOT CONTRASTED (-1)] 

-1 -1 -1 -1 -1 1 -1 -1 -1 0 -1 0 0 1 -1 

10 
What is the morphology of the corrosion present? [Uniform/General 

(1), Clustered/Scattered Pits (2), Isolated Pits (3)] 
2 1 2 3 1 3 1 2 2 1 2 1 2 2 2 
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Table B3 (continued) 

# Input 

Parameter 
Case ID 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

  Microbiology related parameters                               

11 

Are the microbiological related tests (e.g., ATPc, BARTd, MPNe, 

qPCRf, DNA sequencing) taken from surface/solid samples or 

liquid samples? [SURFACE (1), LIQUID (0), NEED DATA (-1)] 

0 0 -1 0 0 1 -1 0 0 1 -1 0 0 1 -1 

12 

Were abundance and diversity assessed by Molecular 

Microbiological Methods, MMMg, (e.g., qPCR, NGSh) or culturing 

methods (e.g., MPN, BART)? [MMM (1), Culturing (0), NEED 

DATA (-1)] 

0 1 -1 -1 0 1 -1 -1 0 1 -1 -1 0 1 -1 

13 
Is the ATP result equal to or greater than 10E6 cells/sample unit? 

[YES (1), NO (0), NEED DATA (-1)] 
0 -1 -1 1 1 -1 -1 1 1 0 -1 0 0 1 -1 

14 
Is the contrast between the ATP result at the corroded area greater 

than at uncorroded areas? [YES (1), NO (0), NEED DATA (-1)] 
-1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 0 -1 -1 

15 

Are MIC related microorganisms present in abundance (e.g., 

>10E6, 6 bottles) in the system? [YES (1), NO (0), NEED DATA (-

1)] 

0 0 -1 -1 1 1 -1 -1 1 0 -1 -1 0 1 -1 

16 

Is there a difference between the corroded area and the non-

corroded area in terms of the diversity and abundance of the 

microbiologically influenced corrosion (MIC) related 

microorganisms present? [YES (1), NO (0), NEED DATA (-1)] 

0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 0 1 -1 

a Energy-dispersive X-ray spectroscopy 

b X-ray diffraction 

c Adenosine triphosphate assay (enzymatic assay) 
d Biological activity reaction test 

e Most probable numbers (culture-based test) 

f Quantitative polymerase chain reaction (DNA target quantification) 
g Molecular microbiological methods 

h Next generation sequencing (DNA sequencing) 
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Table B4 The 16 Input Variables used to Train, Validate, and Test the ANN – 46 thru 60. 

# Input 

Parameter 
Case ID 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

  Operating related parameters                               

1 
Is the liquid water accumulated on the metal surface STAGNANT 

(1), STRATIFIED (0) or NOT TESTED (-1)? 
-1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 

2 
Is the operating temperature of the system between 10°C ≤ T ≤ 

95°C? [YES (1), NO (0), NOT TESTED (-1)] 
1 -1 1 0 1 1 0 1 1 1 0 1 0 1 0 

  Chemistry related parameters                               

3 
Is the operating pH of the system between 4 ≤ pH ≤ 9? [YES (1), 

NO (0), NOT TESTED (-1)] 
-1 0 1 1 1 -1 -1 1 -1 -1 -1 0 1 1 0 

4 
Is the total dissolved solids (TDS) in the water in the system below 

200,000 mg/L? [YES (1), NO (0), NOT TESTED (-1)] 
0 1 -1 0 1 -1 0 1 -1 -1 -1 1 1 0 1 

5 
Is H2S present in the system? [YES (1), NO (0), NOT TESTED (-

1)] 
-1 1 0 1 0 1 1 0 0 0 -1 0 1 1 1 

6 
Is CO2 present in the system? [YES (1), NO (0), NOT TESTED (-

1)] 
-1 1 1 1 1 0 0 1 0 1 -1 1 1 0 1 

  Metallurgy/corrosion related parameters                               

7 
Was the chemistry of solids present on the surface analysed by 

EDSa [1], EDS + XRDb [2], spot testing [0], or not tested at all [-1]? 
-1 0 1 1 0 0 2 0 -1 0 2 2 2 0 0 

8 

Did chemical testing of corrosion products identify the presence of 

sulfur related species (sulfur, sulfides)? [YES (1), NO (0), NOT 

TESTED (-1)] 

-1 1 1 1 0 1 1 1 -1 1 0 1 1 0 1 

9 

Is the contrast of chemical testing results for sulfur related species 

greater in the corroded area than in the non-corroded area? [MORE 

(1), SAME (0), NOT CONTRASTED (-1)] 

-1 -1 1 0 -1 -1 0 -1 -1 -1 0 1 -1 -1 -1 

10 
What is the morphology of the corrosion present? [Uniform/General 

(1), Clustered/Scattered Pits (2), Isolated Pits (3)] 
3 2 3 2 1 3 2 3 3 2 1 2 2 2 2 

  



172 

 

Table B4 (continued) 

# Input 

Parameter 
Case ID 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

  Microbiology related parameters                               

11 

Are the microbiological related tests (e.g., ATPc, BARTd, MPNe, 

qPCRf, DNA sequencing) taken from surface/solid samples or 

liquid samples? [SURFACE (1), LIQUID (0), NEED DATA (-1)] 

0 0 1 -1 1 0 1 -1 1 1 1 0 0 0 0 

12 

Were abundance and diversity assessed by Molecular 

Microbiological Methods, MMMg, (e.g., qPCR, NGSh) or culturing 

methods (e.g., MPN, BART)? [MMM (1), Culturing (0), NEED 

DATA (-1)] 

-1 0 1 -1 -1 0 1 -1 -1 0 1 1 0 0 0 

13 
Is the ATP result equal to or greater than 10E6 cells/sample unit? 

[YES (1), NO (0), NEED DATA (-1)] 
1 0 1 -1 0 -1 0 -1 1 -1 0 1 1 0 0 

14 
Is the contrast between the ATP result at the corroded area greater 

than at uncorroded areas? [YES (1), NO (0), NEED DATA (-1)] 
0 0 -1 -1 -1 -1 -1 -1 1 -1 0 1 -1 -1 -1 

15 

Are MIC related microorganisms present in abundance (e.g., 

>10E6, 6 bottles) in the system? [YES (1), NO (0), NEED DATA (-

1)] 

-1 0 1 -1 -1 1 0 -1 -1 1 0 1 0 1 0 

16 

Is there a difference between the corroded area and the non-

corroded area in terms of the diversity and abundance of the 

microbiologically influenced corrosion (MIC) related 

microorganisms present? [YES (1), NO (0), NEED DATA (-1)] 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 -1 -1 -1 

a Energy-dispersive X-ray spectroscopy 

b X-ray diffraction 

c Adenosine triphosphate assay (enzymatic assay) 
d Biological activity reaction test 

e Most probable numbers (culture-based test) 

f Quantitative polymerase chain reaction (DNA target quantification) 
g Molecular microbiological methods 

h Next generation sequencing (DNA sequencing) 
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Table B5 The 16 Input Variables used to Train, Validate, and Test the ANN – 61 thru 65. 

# Input 

Parameter 
Case ID 61 62 63 64 65 

  Operating related parameters           

1 Is the liquid water accumulated on the metal surface STAGNANT (1), STRATIFIED (0) or NOT TESTED (-1)? 1 1 1 -1 1 

2 Is the operating temperature of the system between 10°C ≤ T ≤ 95°C? [YES (1), NO (0), NOT TESTED (-1)] 0 0 1 0 0 

  Chemistry related parameters           

3 Is the operating pH of the system between 4 ≤ pH ≤ 9? [YES (1), NO (0), NOT TESTED (-1)] 0 -1 1 -1 -1 

4 
Is the total dissolved solids (TDS) in the water in the system below 200,000 mg/L? [YES (1), NO (0), NOT TESTED (-

1)] 
0 -1 1 -1 1 

5 Is H2S present in the system? [YES (1), NO (0), NOT TESTED (-1)] 0 0 1 -1 1 

6 Is CO2 present in the system? [YES (1), NO (0), NOT TESTED (-1)] 1 1 1 -1 1 

  Metallurgy/corrosion related parameters           

7 
Was the chemistry of solids present on the surface analysed by EDSa [1], EDS + XRDb [2], spot testing [0], or not 

tested at all [-1]? 
2 2 0 0 1 

8 
Did chemical testing of corrosion products identify the presence of sulfur related species (sulfur, sulfides)? [YES (1), 

NO (0), NOT TESTED (-1)] 
0 1 1 1 1 

9 
Is the contrast of chemical testing results for sulfur related species greater in the corroded area than in the non-corroded 

area? [MORE (1), SAME (0), NOT CONTRASTED (-1)] 
0 1 -1 -1 0 

10 What is the morphology of the corrosion present? [Uniform/General (1), Clustered/Scattered Pits (2), Isolated Pits (3)] 1 2 3 2 1 
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Table B5 (continued) 

# Input 

Parameter 
Case ID 61 62 63 64 65 

  Microbiology related parameters           

11 
Are the microbiological related tests (e.g., ATPc, BARTd, MPNe, qPCRf, DNA sequencing) taken from 

surface/solid samples or liquid samples? [SURFACE (1), LIQUID (0), NEED DATA (-1)] 
1 1 0 0 1 

12 
Were abundance and diversity assessed by Molecular Microbiological Methods, MMMg, (e.g., qPCR, NGSh) or 

culturing methods (e.g., MPN, BART)? [MMM (1), Culturing (0), NEED DATA (-1)] 
1 1 -1 -1 1 

13 Is the ATP result equal to or greater than 10E6 cells/sample unit? [YES (1), NO (0), NEED DATA (-1)] 0 1 1 1 0 

14 
Is the contrast between the ATP result at the corroded area greater than at uncorroded areas? [YES (1), NO (0), 

NEED DATA (-1)] 
0 1 1 -1 0 

15 
Are MIC related microorganisms present in abundance (e.g., >10E6, 6 bottles) in the system? [YES (1), NO (0), 

NEED DATA (-1)] 
0 1 -1 -1 0 

16 

Is there a difference between the corroded area and the non-corroded area in terms of the diversity and 

abundance of the microbiologically influenced corrosion (MIC) related microorganisms present? [YES (1), NO 

(0), NEED DATA (-1)] 

0 1 -1 -1 -1 

a Energy-dispersive X-ray spectroscopy 
b X-ray diffraction 

c Adenosine triphosphate assay (enzymatic assay) 

d Biological activity reaction test 
e Most probable numbers (culture-based test) 

f Quantitative polymerase chain reaction (DNA target quantification) 
g Molecular microbiological methods 

h Next generation sequencing (DNA sequencing) 
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Appendix C. Complete Standard Deviation Tables for 5- and 3-Output Classifications (Chapter 5) 

Appendix C: Third set of supplementary data to Chapter 5: Tables C1 thru C6. 

 

Table C1 List of case responses (targets), model predicted classes, and the standard deviation results associated with each of the 

training and validation cases for the 5-output classification – 1 thru 28. 

General 5 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

1 Fully 6 1 1 1 1 1 1 1 1.0 0.0 

2 Fully 5 4 3 4 3 3 2 - 3.0 0.7 

3 Fully 6 2 1 1 2 3 4 1 2.0 1.3 

4 Fully 5 3 4 3 5 3 4 - 3.8 0.8 

5 Fully 6 1 3 1 1 2 4 1 2.0 1.3 

6 Fully 6 4 4 4 4 3 5 3 3.8 0.8 

7 Fully 4 1 2 2 2 1 - - 1.8 0.5 

8 Fully 5 4 2 4 4 4 4 - 3.6 0.9 

9 Fully 6 5 5 4 3 3 5 5 4.2 1.0 

10 Fully 5 2 2 3 2 2 2 - 2.2 0.4 
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Table C1 (continued) 

General 5 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

11 Fully 5 5 5 4 5 4 3 - 4.2 0.8 

12 Fully 6 2 3 3 1 3 2 2 2.3 0.8 

13 Fully 5 5 5 2 5 5 5 - 4.4 1.3 

14 Fully 5 5 5 5 5 5 5 - 5.0 0.0 

15 Partially 5 5 5 5 5 5 5 - 5.0 0.0 

16 Partially 5 3 3 4 3 5 3 - 3.6 0.9 

17 Partially 6 5 2 5 3 2 4 5 3.5 1.4 

18 Partially 5 3 4 4 3 3 2 - 3.2 0.8 

19 Partially 5 1 1 2 2 3 1 - 1.8 0.8 

20 Partially 6 3 1 3 2 3 3 3 2.5 0.8 

21 Partially 6 2 2 1 2 2 1 2 1.7 0.5 

22 Partially 6 3 2 3 3 5 2 3 3.0 1.1 
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Table C1 (continued) 

General 5 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

23 Partially 6 1 1 4 1 2 3 1 2.0 1.3 

24 Partially 5 3 3 2 4 3 2 - 2.8 0.8 

25 Partially 5 5 2 5 5 4 3 - 3.8 1.3 

26 Partially 5 3 5 5 3 3 2 - 3.6 1.3 

27 Partially 4 1 1 3 2 1 - - 1.8 1.0 

28 Partially 6 5 5 5 4 5 5 5 4.8 0.4 

a “1” represents output class ‘MIC high confidence’. “2” represents output class ‘MIC low confidence’. “3” represents output class ‘need more data’. “4” represents output class ‘no MIC low 

confidence’. “5” represents output class ‘no MIC high confidence’. 

b “Fully” refers to cases where all layers of evidence included are fully populated. “Partially” refers to cases where all layers of evidence included are fully populated, but the corrosion and 

microbiological related results associated to the non-corroded area (allowing for no contrast). “Missing” refers to cases with missing data at various levels across the 4 information groups. 
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Table C2 List of case responses (targets), model predicted classes, and the standard deviation results associated with each of the 

training and validation cases for the 5-output classification – 29 thru 56. 

General 5 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

29 Missing 5 3 3 3 3 3 3 - 3.0 0.0 

30 Missing 5 3 3 3 4 5 3 - 3.6 0.9 

31 Missing 5 3 3 3 3 3 5 - 3.4 0.9 

32 Missing 6 4 4 4 5 5 4 4 4.3 0.5 

33 Missing 5 3 3 3 3 3 3 - 3.0 0.0 

34 Missing 5 3 3 3 3 3 2 - 2.8 0.4 

35 Missing 5 3 2 3 3 4 3 - 3.0 0.7 

36 Missing 6 1 1 1 2 1 2 1 1.3 0.5 

37 Missing 4 5 4 5 4 4 - - 4.3 0.5 

38 Missing 5 3 2 3 3 3 2 - 2.6 0.5 

39 Missing 5 2 2 2 3 3 1 - 2.2 0.8 

40 Missing 5 5 5 5 5 5 3 - 4.6 0.9 
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Table C2 (continued) 

General 5 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

41 Missing 6 3 3 3 3 3 3 3 3.0 0.0 

42 Missing 5 3 3 3 3 3 4 - 3.2 0.4 

43 Missing 6 4 4 3 4 3 5 4 3.8 0.8 

44 Missing 5 1 3 2 1 1 2 - 1.8 0.8 

45 Missing 6 3 3 3 3 3 3 3 3.0 0.0 

46 Missing 6 3 3 3 3 3 3 3 3.0 0.0 

47 Missing 6 5 4 3 5 5 5 3 4.2 1.0 

48 Missing 5 1 1 1 1 2 1 - 1.2 0.4 

49 Missing 5 5 5 5 4 4 3 - 4.2 0.8 

50 Missing 6 4 4 4 4 3 4 3 3.7 0.5 

51 Missing 6 2 2 3 2 1 2 2 2.0 0.6 

52 Missing 4 4 5 4 4 4 - - 4.3 0.5 
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Table C2 (continued) 

General 5 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

53 Missing 6 3 3 3 3 3 2 3 2.8 0.4 

54 Missing 5 3 3 3 2 2 2 - 2.4 0.5 

55 Missing 6 2 2 1 3 3 2 2 2.2 0.8 

56 Missing 6 4 4 5 4 5 4 4 4.3 0.5 

a “1” represents output class ‘MIC high confidence’. “2” represents output class ‘MIC low confidence’. “3” represents output class ‘need more data’. “4” represents output class ‘no MIC low 

confidence’. “5” represents output class ‘no MIC high confidence’. 

b “Fully” refers to cases where all layers of evidence included are fully populated. “Partially” refers to cases where all layers of evidence included are fully populated, but the corrosion and 

microbiological related results associated to the non-corroded area (allowing for no contrast). “Missing” refers to cases with missing data at various levels across the 4 information groups. 
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Table C3 List of case responses (targets), model predicted classes, and the standard deviation results associated with each of the 

training and validation cases for the 3-output classification – 1 thru 28. 

General 3 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

1 Fully 6 1 1 1 1 1 1 1 1.0 0.0 

2 Fully 5 2 2 3 2 2 1 - 2.0 0.7 

3 Fully 6 1 1 1 1 2 3 1 1.5 0.8 

4 Fully 5 2 3 2 3 2 3 - 2.6 0.5 

5 Fully 6 1 2 1 1 1 3 1 1.5 0.8 

6 Fully 6 2 3 3 3 2 3 2 2.7 0.5 

7 Fully 4 1 1 1 1 1 - - 1.0 0.0 

8 Fully 5 3 1 3 3 3 3 - 2.6 0.9 

9 Fully 6 3 3 3 2 2 3 3 2.7 0.5 

10 Fully 5 1 1 2 1 1 1 - 1.2 0.4 

11 Fully 5 3 3 3 3 3 2 - 2.8 0.4 

12 Fully 6 1 2 2 1 2 1 1 1.5 0.5 
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Table C3 (continued) 

General 3 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

13 Fully 5 3 3 1 3 3 3 - 2.6 0.9 

14 Fully 5 3 3 3 3 3 3 - 3.0 0.0 

15 Partially 5 3 3 3 3 3 3 - 3.0 0.0 

16 Partially 5 3 2 3 2 3 2 - 2.4 0.5 

17 Partially 6 3 1 3 2 1 3 3 2.2 1.0 

18 Partially 5 3 3 3 2 2 1 - 2.2 0.8 

19 Partially 5 1 1 1 1 2 1 - 1.2 0.4 

20 Partially 6 2 1 2 1 2 2 2 1.7 0.5 

21 Partially 6 1 1 1 1 1 1 1 1.0 0.0 

22 Partially 6 1 1 2 2 3 1 2 1.8 0.8 

23 Partially 6 1 1 3 1 1 2 1 1.5 0.8 

24 Partially 5 2 2 1 3 2 3 - 2.2 0.8 
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Table C3 (continued) 

General 3 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

25 Partially 5 3 1 3 3 3 2 - 2.4 0.9 

26 Partially 5 2 3 3 2 2 1 - 2.2 0.8 

27 Partially 4 1 1 2 1 1 - - 1.3 0.5 

28 Partially 6 3 3 3 3 3 3 3 3.0 0.0 

a “1” represents output class ‘MIC’; “2” represents output class ‘need more data’; “3” represents output class ‘no MIC’. 

b “Fully” refers to cases where all layers of evidence included are fully populated. “Partially” refers to cases where all layers of evidence included are fully populated, but the corrosion and 

microbiological related results associated to the non-corroded area (allowing for no contrast). “Missing” refers to cases with missing data at various levels across the 4 information groups. 
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Table C4 List of case responses (targets), model predicted classes, and the standard deviation results associated with each of the 

training and validation cases for the 3-output classification – 29 thru 56. 

General 3 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

29 Missing 5 2 2 2 2 2 2 - 2.0 0.0 

30 Missing 5 2 2 2 3 3 2 - 2.4 0.5 

31 Missing 5 2 2 2 2 2 3 - 2.2 0.4 

32 Missing 6 3 3 3 3 3 3 3 3.0 0.0 

33 Missing 5 2 2 2 2 2 2 - 2.0 0.0 

34 Missing 5 2 2 2 2 2 1 - 1.8 0.4 

35 Missing 5 2 1 2 2 3 2 - 2.0 0.7 

36 Missing 6 1 1 1 1 1 1 1 1.0 0.0 

37 Missing 4 3 3 3 3 3 - - 3.0 0.0 

38 Missing 5 2 1 2 2 2 1 - 1.6 0.5 

39 Missing 5 1 1 1 2 2 1 - 1.4 0.5 

40 Missing 5 3 3 3 3 3 2 - 2.8 0.4 
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Table C4 (continued) 

General 3 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

41 Missing 6 2 2 2 2 2 2 2 2.0 0.0 

42 Missing 5 2 2 2 2 2 3 - 2.2 0.4 

43 Missing 6 3 3 2 3 2 3 3 2.7 0.5 

44 Missing 5 1 2 1 1 1 1 - 1.2 0.4 

45 Missing 6 2 2 2 2 2 2 2 2.0 0.0 

46 Missing 6 2 2 2 2 2 2 2 2.0 0.0 

47 Missing 6 3 3 2 3 3 3 2 2.7 0.5 

48 Missing 5 1 1 1 1 1 1 - 1.0 0.0 

49 Missing 5 3 3 3 3 3 2 - 2.8 0.4 

50 Missing 6 3 3 3 3 2 3 2 2.7 0.5 

51 Missing 6 1 1 2 1 1 1 1 1.2 0.4 

52 Missing 4 3 3 3 3 3 - - 3.0 0.0 

  



186 

 

Table C4 (continued) 

General 3 Output Classesa 

Case 

Number 

Case 

Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response 

A 

Expert 

Response 

B 

Expert 

Response 

C 

Expert 

Response 

D 

Expert 

Response 

E 

Expert 

Response 

F 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

53 Missing 6 2 2 2 2 2 1 2 1.8 0.4 

54 Missing 5 1 2 2 1 1 1 - 1.4 0.5 

55 Missing 6 1 1 1 2 2 1 1 1.3 0.5 

56 Missing 6 3 3 3 3 3 3 3 3.0 0.0 

a “1” represents output class ‘MIC’; “2” represents output class ‘need more data’; “3” represents output class ‘no MIC’. 

b “Fully” refers to cases where all layers of evidence included are fully populated. “Partially” refers to cases where all layers of evidence included are fully populated, but the corrosion and 

microbiological related results associated to the non-corroded area (allowing for no contrast). “Missing” refers to cases with missing data at various levels across the 4 information groups. 
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Table C5 List of case responses (targets), model predicted classes, and the standard deviation results associated with each of the 

testing cases for the 5-output classification – 57 thru 65. 

General 5 Output Classesa 

Case 

Number 

Case Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response A 

Expert 

Response B 

Expert 

Response C 

Expert 

Response D 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

57 Fully 2 4 1 4 - - 2.8 2.1 

58 Fully 4 3 3 4 4 2 3.3 1.0 

59 Partially 3 3 2 3 3 - 2.8 0.6 

60 Partially 3 5 3 5 5 - 4.2 1.2 

61 Partially 4 5 5 5 5 5 4.8 0.0 

62 Missing 4 1 1 4 2 1 2.2 1.4 

63 Missing 2 3 3 2 - - 2.5 0.7 

64 Missing 4 3 3 3 3 3 3.2 0.0 

65 Missing 3 5 5 4 5 - 4.4 0.6 

a “1” represents output class ‘MIC high confidence’. “2” represents output class ‘MIC low confidence’. “3” represents output class ‘need more data’. “4” represents output class ‘no MIC low 

confidence’. “5” represents output class ‘no MIC high confidence’. 

b “Fully” refers to cases where all layers of evidence included are fully populated. “Partially” refers to cases where all layers of evidence included are fully populated, but the corrosion and 

microbiological related results associated to the non-corroded area (allowing for no contrast). “Missing” refers to cases with missing data at various levels across the 4 information groups. 
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Table C6 List of case responses (targets), model predicted classes, and the standard deviation results associated with each of the 

training and validation cases for the 3-output classification – 57 thru 65. 

General 3 Output Classesa 

Case 

Number 

Case Data 

Typeb 

Number of 

Case 

Replications 

Model 

Prediction 

Expert 

Response A 

Expert 

Response B 

Expert 

Response C 

Expert 

Response D 

Average 

Expert 

Response 

Expert 

Standard 

Deviation 

57 Fully 2 1 1 3 - - 1.8 1.4 

58 Fully 4 3 2 3 3 1 2.7 1.0 

59 Partially 3 1 1 2 2 - 1.8 0.6 

60 Partially 3 3 2 3 3 - 2.8 0.6 

61 Partially 4 3 3 3 3 3 3.2 0.0 

62 Missing 4 1 1 3 1 1 1.8 1.0 

63 Missing 2 2 2 1 - - 1.8 0.7 

64 Missing 4 2 2 2 2 2 2.3 0.0 

65 Missing 3 3 3 3 3 - 3.0 0.0 

a “1” represents output class ‘MIC’; “2” represents output class ‘need more data’; “3” represents output class ‘no MIC’. 

b “Fully” refers to cases where all layers of evidence included are fully populated. “Partially” refers to cases where all layers of evidence included are fully populated, but the corrosion and 

microbiological related results associated to the non-corroded area (allowing for no contrast). “Missing” refers to cases with missing data at various levels across the 4 information groups. 
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Appendix D. Sensitivity Analysis Calculations – Weights and Biases of ANN (Chapter 5) 

Appendix D: Fourth set of supplementary data to Chapter 5: Tables D1 thru D10. 

 

Table D1 Weight matrix of hidden layer (10×16) for the 5-output classification. 

Wij,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0.227 -0.367 -0.265 -0.841 -1.291 -0.605 0.423 0.634 -0.311 1.343 -0.333 -0.832 1.127 0.436 0.852 0.104 

2 0.768 0.331 0.323 -1.062 0.299 0.294 -0.050 -0.069 -0.413 0.045 -0.097 -0.272 -0.269 -0.097 1.058 0.578 

3 0.264 -0.672 1.105 -0.273 0.095 -0.082 -0.533 0.126 -0.378 1.063 -0.597 0.416 -0.340 0.245 0.220 -0.426 

4 -0.247 0.453 0.080 -0.052 0.929 1.159 0.099 0.753 -0.148 0.947 0.297 0.521 0.543 0.182 0.671 -0.406 

5 0.020 0.351 0.436 -0.313 -0.621 0.388 0.085 -0.921 0.429 -0.187 -0.526 0.586 0.722 -0.039 0.428 0.206 

6 0.032 -0.786 -1.145 -0.218 -0.245 0.465 1.274 -0.182 -0.007 0.603 0.147 0.529 -0.167 -0.181 -0.332 -1.067 

7 0.270 0.004 0.142 -0.020 0.222 -0.793 -0.234 0.811 0.068 0.866 -0.594 0.676 0.487 0.875 -0.080 -0.017 

8 -0.060 -0.593 -0.267 0.606 -0.307 -0.759 0.284 0.486 -0.142 -1.183 -0.558 1.421 -0.372 0.452 0.619 0.259 

9 -0.605 0.442 -0.297 0.569 0.043 -0.418 -0.466 -0.550 0.193 1.548 -0.226 -0.936 -0.128 -0.264 0.242 -0.290 

10 0.401 -0.321 0.195 0.316 -0.478 -0.015 -0.529 -1.053 -0.172 -1.039 0.231 -0.620 -0.050 0.294 -1.173 0.266 
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Table D2 Weight matrix of output layer (5×10) for the 5-output classification. 

ϴij,5 1 2 3 4 5 6 7 8 9 10 

1 0.5233 -0.3623 -0.0505 -0.0440 0.9672 -0.4230 1.3817 -0.0037 0.4017 -2.5675 

2 0.2101 0.5753 0.3447 1.7469 0.1379 0.3631 0.4654 -0.3573 0.9036 0.0277 

3 -0.4771 -0.3850 -0.1382 -0.7127 -0.1932 -0.1945 0.3951 -1.7764 0.7817 0.3984 

4 -0.9841 -0.5762 -1.4018 -0.2359 -0.3968 -1.2371 0.5598 0.9602 -1.4924 0.3152 

5 -1.8503 -0.7353 -0.0323 0.8960 0.8048 1.2766 0.0847 1.7584 -0.0331 1.3023 
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Table D3 Ten Bias vectors of first hidden layer (10×1) for the 5-output classification. 

Wi1,5 1 

1 0.8386 

2 -1.5837 

3 0.9590 

4 0.5602 

5 -0.6830 

6 0.2300 

7 0.4190 

8 -1.1462 

9 -1.6515 

10 2.1039 
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Table D4 Five Bias vectors of output layer (5×1) for the 5-output classification. 

ϴ1j,5 1 

1 -0.5147 

2 0.0908 

3 1.3623 

4 0.8419 

5 0.1487 

 

Table D5 Relative weights for the 16 input variables of the 5-output classification. 

RIj,5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Relative 

Weight 

4.2% 5.9% 6.0% 5.9% 5.9% 6.8% 5.4% 7.8% 3.2% 11.8% 5.1% 9.2% 5.7% 4.2% 7.8% 5.1% 
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Table D6 Weight matrix of hidden layer (10×16) for the 3-output classification. 

Wij,3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0.212 0.175 -0.248 0.084 0.077 -0.091 -0.516 -0.441 -0.475 -0.263 -0.462 0.194 -0.428 0.869 0.272 0.003 

2 0.001 -0.533 0.705 -0.153 0.040 0.378 0.310 1.043 0.615 0.227 -0.474 0.539 -0.248 -0.547 -0.373 -0.214 

3 -0.537 0.046 0.489 0.065 0.727 0.810 -0.274 -0.25 0.412 -0.211 -0.040 -0.401 -0.343 -0.441 0.212 -0.245 

4 -0.420 0.342 0.766 -0.271 -0.200 -0.783 -0.17 0.146 0.622 -0.692 -0.562 -0.341 -0.398 -0.377 -0.367 0.092 

5 0.518 0.667 -0.267 -0.438 0.236 0.865 -0.000 0.075 -0.722 1.704 -0.046 0.489 0.794 0.409 0.164 0.12 

6 0.197 0.224 -0.005 -0.422 0.704 0.443 0.029 0.813 0.024 -1.204 -0.887 1.414 0.406 -0.130 0.965 0.289 

7 0.067 -0.526 -0.145 0.678 -0.081 -0.917 0.424 -1.575 0.222 0.576 -0.948 -0.887 0.137 -0.241 -0.372 0.186 

8 -0.371 -0.770 0.254 0.734 0.594 -0.260 -0.168 -0.036 0.627 -1.496 -0.614 -0.518 -0.139 -0.507 -1.454 0.443 

9 0.078 0.030 0.688 -0.335 -0.049 -0.166 -0.417 0.397 0.518 0.845 -0.701 0.234 -0.648 0.314 1.263 0.168 

10 -0.141 -0.556 -0.203 0.133 -0.259 -0.028 -0.787 1.037 0.997 0.659 -1.196 -0.810 -0.290 0.093 0.445 0.273 

 

Table D7 Weight matrix of output layer (3×10) for the 3-output classification. 

ϴij,3 1 2 3 4 5 6 7 8 9 10 

1 0.4302 1.4562 0.5185 -0.7253 1.0789 -1.5370 -0.0914 -1.3752 0.4961 0.2639 

2 -0.2930 0.1733 0.1172 0.2562 0.3036 -0.9838 1.1920 0.2782 -1.2185 0.2478 

3 0.2531 0.1006 -0.8012 -0.5256 -1.8525 1.1889 -0.7712 2.2359 -0.6615 -0.9801 
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Table D8 Ten Bias vectors of first hidden layer (10×1) for the 3-output classification.  

Wi1,3 1 

1 -2.07424 

2 -1.25781 

3 1.258245 

4 0.611601 

5 -0.19441 

6 0.699818 

7 -0.28913 

8 1.672056 

9 -1.33494 

10 1.166353 
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Table D9 Three Bias vectors of output layer (3×1) for the 3-output classification. 

ϴ1j,3 1 

1 0.408727 

2 0.388524 

3 -0.72564 

 

Table D10 Relative weights for the 16 input variables of the 3-output classification. 

RIj,3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Relative 

Weight 

3.8% 5.2% 5.8% 4.4% 4.2% 6.9% 4.7% 8.2% 7.6% 10.5% 8.2% 7.9% 5.7% 6.2% 8.0% 2.8% 
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