Design and Synthesis of New Stannanes, Total Synthesis of Hamigeran B and Synthetic Studies on Halichlorine and Pinnaic Acid

> by Jian Wang C

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

DEPARTMENT OF CHEMISTRY

Edmonton, Alberta

Fall, 2004



Library and Archives Canada

Published Heritage Branch

Patrimoine de l'édition

395 Wellington Street Ottawa ON K1A 0N4 Canada 395, rue Wellington Ottawa ON K1A 0N4 Canada

Bibliothèque et

Direction du

Archives Canada

Your file Votre référence ISBN: 0-612-96039-0 Our file Notre référence ISBN: 0-612-96039-0

The author has granted a nonexclusive license allowing the Library and Archives Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou aturement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis. Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.



To my family

#### ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. D. L. J. Clive for his superb mentorship during the course of my graduate studies, and for his assistance in the preparation of this thesis.

I would also like to thank my co-workers and friends in the Clive group and other groups of the Chemistry Department, past and present, for creating a stimulating scientific environment.

I also thank the supporting members of the Chemistry Department, especially the staff of the IR, MS, NMR, X-Ray crystallography, and elemental analysis laboratories, and the glass blowing, electronic and chemical shops, for their valuable help.

Finally, I would like to thank my family for their support and encouragement.

# TABLE OF CONTENTS

| Chap                                 | ter 1                                                                                                                                                                                                                  | 1                          |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1                                    | Introduction                                                                                                                                                                                                           | 2                          |
| 1.1                                  | Use of Various Workup Procedures to Remove Tin                                                                                                                                                                         | 3                          |
| 1.2                                  | Use of Catalytic Tin Hydride                                                                                                                                                                                           | 5                          |
| 1.3                                  | Use of Polymer-supported Stannanes                                                                                                                                                                                     | 6                          |
| 1.4                                  | Use of Modified Stannanes                                                                                                                                                                                              | 8                          |
| 1.5                                  | Use of Alternatives to Stannanes                                                                                                                                                                                       | 12                         |
| 2                                    | Results and Discussion                                                                                                                                                                                                 | 16                         |
| 3                                    | Experimental Section                                                                                                                                                                                                   | 27                         |
| 4                                    | References and Notes                                                                                                                                                                                                   | 48                         |
|                                      |                                                                                                                                                                                                                        |                            |
| Chap                                 | ter 2                                                                                                                                                                                                                  | 52                         |
| 1                                    | Introduction                                                                                                                                                                                                           | 53                         |
|                                      |                                                                                                                                                                                                                        |                            |
| 1.1                                  | General                                                                                                                                                                                                                | 53                         |
| 1.1<br>1.2                           | General<br>Nicolaou's Synthesis of (-)-Hamigeran B                                                                                                                                                                     | 53<br>55                   |
|                                      |                                                                                                                                                                                                                        |                            |
| 1.2                                  | Nicolaou's Synthesis of (-)-Hamigeran B                                                                                                                                                                                | 55                         |
| 1.2<br>1.3                           | Nicolaou's Synthesis of (-)-Hamigeran B<br>Mehta's Synthesis of 1- <i>epi</i> -(-)-Hamigeran B                                                                                                                         | 55<br>58                   |
| 1.2<br>1.3<br>1.4<br>2               | Nicolaou's Synthesis of (-)-Hamigeran B<br>Mehta's Synthesis of 1- <i>epi</i> -(-)-Hamigeran B<br>Trost's Synthesis of (-)-Hamigeran B                                                                                 | 55<br>58<br>60             |
| 1.2<br>1.3<br>1.4<br>2<br>2.1        | Nicolaou's Synthesis of (-)-Hamigeran B<br>Mehta's Synthesis of 1- <i>epi</i> -(-)-Hamigeran B<br>Trost's Synthesis of (-)-Hamigeran B<br><b>Results and Discussion</b>                                                | 55<br>58<br>60<br>64       |
| 1.2<br>1.3<br>1.4<br>2<br>2.1<br>2.2 | Nicolaou's Synthesis of (-)-Hamigeran B<br>Mehta's Synthesis of 1- <i>epi</i> -(-)-Hamigeran B<br>Trost's Synthesis of (-)-Hamigeran B<br><b>Results and Discussion</b><br>Synthesis of (±)-1- <i>epi</i> -Hamigeran B | 55<br>58<br>60<br>64<br>64 |

| 3    | Experimental Section                      | 99  |
|------|-------------------------------------------|-----|
| 4    | References and Notes                      | 171 |
| 5    | NMR Spectra                               | 174 |
|      |                                           |     |
| Char | oter 3                                    | 180 |
| 1    | Introduction                              | 181 |
| 1.1  | General                                   | 181 |
| 1.2  | Danishefsky's Total Synthesis             | 183 |
| 1.3  | Zhao's Synthetic Studies                  | 188 |
| 1.4  | Shishida's Synthetic Studies              | 190 |
| 1.5  | Arimoto's Formal Synthesis                | 191 |
| 1.6  | White's Synthetic Studies                 | 193 |
| 1.7  | Ihara's Synthetic Studies                 | 194 |
| 1.8  | Kibayashi's Formal Synthesis              | 196 |
| 2    | Results and Discussion                    | 200 |
| 2.1  | Previous Studies in This Laboratory       | 200 |
| 2.2  | Synthesis of the Spirocyclic Core         | 201 |
| 2.3  | Studies to Build up the Left-hand Ring    | 218 |
| 2.4  | Optimizing the Original Synthetic Route   | 222 |
| 2.5  | Overlap with Kibayashi's Formal Synthesis | 229 |
| 2.6  | Conclusion                                | 240 |
| 3    | Experimental Section                      | 242 |
| 4    | References and Notes                      | 293 |

# List of Figures

# Chapter 1

Figure 1 <sup>1</sup>H NMR Spectra

# Chapter 2

| Figure 1 | Crystal | Structure of     | (±)-5.3  | 71 |
|----------|---------|------------------|----------|----|
| Figure 2 | Crystal | Structure of     | 22.1     | 78 |
| Figure 3 | Crystal | Structure of     | (±)-27.2 | 85 |
| Figure 4 | HPLC of | $(\pm)-27.2$ and | (-)-27.2 | 96 |

Chapter 3

| Figure | 1 | Crystal | Structure | of | 25.3 | 211 |
|--------|---|---------|-----------|----|------|-----|
| Figure | 2 | Crystal | Structure | of | 26.2 | 212 |

# List of Schemes

| Chapte | c 1 |  |    |
|--------|-----|--|----|
|        |     |  |    |
| Scheme | T   |  | 2  |
| Scheme | 2   |  | 4  |
| Scheme | 3   |  | 6  |
| Scheme | 4   |  | 6  |
| Scheme | 5   |  | 7  |
| Scheme | 6   |  | 8  |
| Scheme | 7   |  | 9  |
| Scheme | 8   |  | 9  |
| Scheme | 9   |  | 10 |
| Scheme | 10  |  | 11 |
| Scheme | 11  |  | 12 |
| Scheme | 12  |  | 14 |
| Scheme | 13  |  | 15 |
| Scheme | 14  |  | 16 |
| Scheme | 15  |  | 17 |
| Scheme | 16  |  | 18 |
| Scheme | 17  |  | 18 |
| Scheme | 18  |  | 19 |
| Scheme | 19  |  | 20 |
| Scheme | 20  |  | 21 |

| Chapter 2 |  |  |  |    |
|-----------|--|--|--|----|
| Scheme 1  |  |  |  | 54 |
| Scheme 2  |  |  |  | 56 |
| Scheme 3  |  |  |  | 57 |
| Scheme 4  |  |  |  | 59 |
| Scheme 5  |  |  |  | 60 |
| Scheme 6  |  |  |  | 61 |
| Scheme 7  |  |  |  | 62 |
| Scheme 8  |  |  |  | 64 |
| Scheme 9  |  |  |  | 65 |
| Scheme 10 |  |  |  | 66 |
| Scheme 11 |  |  |  | 67 |
| Scheme 12 |  |  |  | 68 |
| Scheme 13 |  |  |  | 68 |
| Scheme 14 |  |  |  | 69 |
| Scheme 15 |  |  |  | 70 |
| Scheme 16 |  |  |  | 72 |
| Scheme 17 |  |  |  | 73 |
| Scheme 18 |  |  |  | 74 |
| Scheme 19 |  |  |  | 75 |
| Scheme 20 |  |  |  | 76 |
| Scheme 21 |  |  |  | 76 |
| Scheme 22 |  |  |  | 77 |
| Scheme 23 |  |  |  | 79 |

| Scheme | 24 | 80 |
|--------|----|----|
| Scheme | 25 | 81 |
| Scheme | 26 | 82 |
| Scheme | 27 | 84 |
| Scheme | 28 | 86 |
| Scheme | 29 | 86 |
| Scheme | 30 | 87 |
| Scheme | 31 | 89 |
| Scheme | 32 | 90 |
| Scheme | 33 | 90 |
| Scheme | 34 | 91 |
| Scheme | 35 | 93 |
| Scheme | 36 | 95 |

# Chapter 3

| Scheme | 1 | 181 |
|--------|---|-----|
| Scheme | 2 | 184 |
| Scheme | 3 | 185 |
| Scheme | 4 | 187 |
| Scheme | 5 | 188 |
| Scheme | 6 | 189 |
| Scheme | 7 | 190 |
| Scheme | 8 | 191 |
| Scheme | 9 | 192 |

| Scheme | 10 | 194 |
|--------|----|-----|
| Scheme | 11 | 195 |
| Scheme | 12 | 196 |
| Scheme | 13 | 198 |
| Scheme | 14 | 199 |
| Scheme | 15 | 200 |
| Scheme | 16 | 202 |
| Scheme | 17 | 203 |
| Scheme | 18 | 203 |
| Scheme | 19 | 204 |
| Scheme | 20 | 204 |
| Scheme | 21 | 205 |
| Scheme | 22 | 207 |
| Scheme | 23 | 208 |
| Scheme | 24 | 209 |
| Scheme | 25 | 210 |
| Scheme | 26 | 210 |
| Scheme | 27 | 213 |
| Scheme | 28 | 213 |
| Scheme | 29 | 214 |
| Scheme | 30 | 216 |
| Scheme | 31 | 217 |
| Scheme | 32 | 218 |
| Scheme | 33 | 218 |

| Scheme 34 | 219 |
|-----------|-----|
| Scheme 35 | 220 |
| Scheme 36 | 221 |
| Scheme 37 | 221 |
| Scheme 38 | 222 |
| Scheme 39 | 223 |
| Scheme 40 | 224 |
| Scheme 41 | 225 |
| Scheme 42 | 226 |
| Scheme 43 | 227 |
| Scheme 44 | 228 |
| Scheme 45 | 229 |
| Scheme 46 | 230 |
| Scheme 47 | 232 |
| Scheme 48 | 233 |
| Scheme 49 | 234 |
| Scheme 50 | 235 |
| Scheme 51 | 236 |
| Scheme 52 | 237 |
| Scheme 53 | 238 |
| Scheme 54 | 239 |
| Scheme 55 | 241 |

# List of Tables

Page

| Chapter 1                                 |       |
|-------------------------------------------|-------|
| Table 1 Stannane 19.6 in Radical Reaction | ns 23 |
|                                           |       |
| Chapter 3                                 |       |

| Table 1 Alkylation of 17.1 with Bisamine 17.2 |
|-----------------------------------------------|
|-----------------------------------------------|

### LIST OF ABBREVIATIONS

| Ac          | acetyl                                       |
|-------------|----------------------------------------------|
| ACVA        | 4,4'-azobis(4-cyanovaleric acid)             |
| AD          | asymmetric dihydroxylation                   |
| AIBN        | 2,2'-azobisisobutyronitrile                  |
| BINAP       | 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl  |
| Bn          | benzyl                                       |
| Вос         | tert-butoxycarbonyl                          |
| BTSE        | 1,2-bis(trimethylsilyloxy)ethane             |
| Bu          | butyl                                        |
| t-Bu        | tert-butyl                                   |
| CAN         | ammonium cerium(IV) nitrate                  |
| ca          | about                                        |
| Cf.         | compare                                      |
| СМ          | complex mixture                              |
| Ср          | cyclopentadiene                              |
| Dba         | trans, trans-dibenzylideneacetone            |
| DBU         | 1,8-diazabicyclo[5.4.0]undec-7-ene           |
| DCC         | N,N-dicyclohexylcarbodiimide                 |
| DDQ         | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone    |
| DEAD        | diethyl azodicarboxylate                     |
| Dess-Martin |                                              |
| Reagent     | 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxo- |

3(1H)-one

| DIBAL-H | diisobutylaluminum hydride               |
|---------|------------------------------------------|
| DIPA    | diisopropylamine                         |
| DIPEA   | diisopropylethylamine                    |
| DMAP    | 4-(dimethylamino)pyridine                |
| DME     | ethylene glycol dimethyl ether           |
| DMF     | N,N'-dimethylformamide                   |
| DMPU    | N,N'-dimethylpropyleneurea               |
| DMSO    | dimethyl sulfoxide                       |
| DP      | desired product                          |
| Dppa    | diphenylphosphoryl azide                 |
| Dppb    | 1,4-bis(diphenylphosphino)butane         |
| Dppe    | 1,2-bis(diphenylphosphanyl)ethane        |
| EDCI    | N'-(3-dimethylaminopropyl)-N-            |
|         | ethylcarbodiimide                        |
| Et .    | ethyl                                    |
| Fmoc    | fluorenylmethoxycarbonyl                 |
| h       | hour(s)                                  |
| HMBC    | heteronuclear multiple bond coherence    |
| НМРА    | hexamethylphosphoric triamide            |
| НМОС    | heteronuclear multiple quantum coherence |
| HOBT    | hydroxybenzenetrizole                    |
| Hz      | Hertz                                    |
| KHMDS   | potassium hexamethyldisilazide           |

| LAH   | lithium aluminum hydride       |
|-------|--------------------------------|
| LDA   | lithium diisopropylamide       |
| LHMDS | lithium hexamethyldisilazide   |
| LN    | lithium naphthalenide          |
| mCPBA | 3-chloroperoxybenzoic acid     |
| Me    | methyl                         |
| MEM   | methoxyethoxymethyl            |
| МеОН  | methanol                       |
| Mes   | 2,4,6-trimethylphenyl          |
| min   | minute(s)                      |
| MOM   | methoxymethoxymethyl           |
| Ms    | methanesulfonyl                |
| MS    | mass spectrometry              |
| NBS   | N-bromosuccinimide             |
| NCS   | N-chlorosuccinimide            |
| NIS   | N-iodosuccinimide              |
| NMO   | 4-methylmorpholine N-oxide     |
| NMR   | nuclear magnetic resonance     |
| NOE   | nuclear Overhauser enhancement |
| NR    | no reaction                    |
| PCC   | pyridinium chlorochromate      |
| PDC   | pyridinium                     |
| PG    | protecting group               |
| Ph    | phenyl                         |

| PPTSA | pyridinium p-toluenesulfonic acid |
|-------|-----------------------------------|
| Pyr   | pyridine                          |
| SET   | single electron transfer          |
| SM    | starting material                 |
| TBAB  | tetrabutylammonium bromide        |
| TBAF  | tetrabutylammonium fluoride       |
| TBAI  | tetrabutylammonium iodide         |
| TBDPS | tert-butyldiphenylsilyl           |
| ТВНР  | tert-butyl hydroperoxide          |
| TBS   | tert-butyldimethylsilyl           |
| Tf    | trifluoromethanesulfonyl          |
| TFA   | trifluoroacetic acid              |
| TFAA  | trifluoroacetic acid anhydride    |
| THF   | tetrahydrofuran                   |
| TIPS  | triisopropylsilyl                 |
| TLC   | thin layer chromatography         |
| TMS   | trimethylsilyl                    |
| TPAP  | tetrapropylammonium perruthenate  |
| Tr    | trityl                            |
| Ts    | p-toluenesulfonyl                 |
| TSOH  | p-toluenesulfonic acid            |

# Chapter One

Design and Synthesis of New Stannanes

### I Introduction

The use of radical reactions in organic synthesis has increased dramatically over the last twenty years. The combination of availability, stability, functional group compatibility, convenient hydrogen transfer rates to alkyl radicals, and excellent chain carrying properties of stannyl radicals have made tributyltin hydride (Bu<sub>3</sub>SnH) and triphenyltin hydride<sup>1</sup> (Ph<sub>3</sub>SnH) the most popular reagents in preparative free radical reactions such as dehalogenation,<sup>2</sup> deoxygenation<sup>3</sup> and radical cyclization.<sup>4</sup> Unfortunately, the tin-containing byproducts produced from these reactions, known as triorganotin halides or sulfides (Scheme 1), tend to hydrolyze slowly on silica gel, a property which sometimes makes column chromatographic separation and purification of the desired products difficult.<sup>5</sup> This problem is of special concern in the pharmaceutical industry because such impurities have to be reduced below trace levels to avoid toxicity.

> > X = halogen, OC(S)SMe *etc*. R' = Ph or n-Bu

### Scheme 1

Numerous approaches have been followed to remove tincontaining impurities from the products. Alternative reagents have also been devised to bypass the use of tin reagents. The following is a brief literature review of these approaches.

1.1 Development of various workup procedures for reactions involving stoichiometric tin hydride.

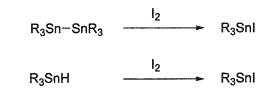
A number of workup procedures have been developed to remove tin-containing byproducts from reaction mixtures. Each method has potential disadvantages and the decision on which one to use often depends on the functional groups present in the products.

(1) Fluoride method.

This method was originally reported by Jacobus *et al.*<sup>6</sup>: organotin chlorides, bromides and iodides are all soluble in nonpolar organic solvents, but trialkyltin fluorides are penta-coordinated polymeric materials (e.g., the crystal structure of Me<sub>3</sub>SnF consists of planar Me<sub>3</sub>Sn units linked by interspersed fluorine) that are not soluble in common organic solvents or in water. Based on this fact, the desired separation of reduction products and organotin halides can be accomplished by conversion of the organotin halides to the insoluble organotin fluorides, which can then be separated readily by filtration.

Generally, the reaction mixture is taken up into Et<sub>2</sub>O, treated with aqueous KF solution for a few hours, and then filtered through a Celite pad. This method is not suitable for compounds containing silicon protecting groups.

# (2) Acetonitrile-hexane method.


Roberts and Berge<sup>7</sup> reported this method to solve the separation problem by partitioning the reaction mixture between hexane and acetonitrile. This procedure is based on the fact that hexane and acetonitrile are immiscible, and that organotin species have a pronounced solubility in hexane. The desired organic products are preferentially

extracted into the acetonitrile layer.

Unfortunately, the partition of some organic compounds, especially those that are nonpolar, between these two solvents is not complete. Therefore, caution should be exercised in using this method with relatively nonpolar products and also in small-scale reactions.

### (3) DBU method.

Curran and Chang<sup>8</sup> have developed this method, which relies on the reaction between DBU and an organotin halide in the presence of water. Generally, the reaction mixture from a tin-mediated radical reaction is diluted with reagent grade (undried)  $Et_2O$  and a slight excess of 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) is added. The excess of DBU is removed by addition of an ethereal solution of iodine until the iodine color just persists. Rapid filtration of this mixture through a short silica gel column, using  $Et_2O$  as eluent, leaves more than 90% of tin containing species on the column.



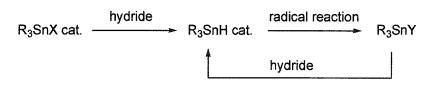
 $\begin{array}{ccc} & \text{DBU, H}_2\text{O} \\ \text{R}_3\text{SnX} & \longrightarrow & \text{DBU}_{\bullet}\text{HX} + \text{R}_3\text{SnOH} & \longleftarrow & (\text{R}_3\text{Sn})_2\text{O} + \text{H}_2\text{O} \end{array}$ 



As shown in Scheme 2, the addition of molecular iodine converts any hexaalkylditins and trialkyltin hydrides in the reaction mixture into trialkyltin iodides. In the presence of water, DBU hydrolyzes all tin halides to tin hydroxides with concomitant formation of DBU hydrohalides, which precipitate. The tin hydroxides are known to be in equilibrium with distannoxanes, and both these species are retained on silica gel with  $Et_2O$  as eluent, presumably due to rapid reaction with the free hydroxyl groups on the silica gel. This workup method requires that the products be insensitive to DBU and  $I_2$ .

(4)  $NH_3$  method.

Davis and Johnson<sup>9</sup> reported this method to remove the trialkyltin halides from reaction products. Generally, the reaction mixture is diluted with  $Et_2O$ , cooled (ice-bath) and saturated with dry ammonia to precipitate the tin byproducts. This method is not suitable for base sensitive substrates.

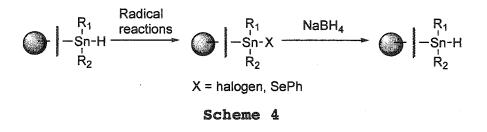

(5) Reduction of tin halides.

Tin halides undergo hydrolysis on silica gel during chromatography, and separation from other compounds is often difficult. Unlike tin halides, tin hydrides (both Bu<sub>3</sub>SnH and Ph<sub>3</sub>SnH) have good chromatographic behavior and can often be separated chromatographically from reaction Based on this fact, Crich and Sun<sup>10</sup> suggested products. that the crude reaction mixture should be reduced with NaCNBH<sub>3</sub> so as to convert the tin species into separable tin This treatment allows a good separation of nonhydrides. polar tin hydrides from the reaction products in most This method should not be used if the reaction cases. products have reducible functionalities.

1.2 Use of catalytic tin hydride.

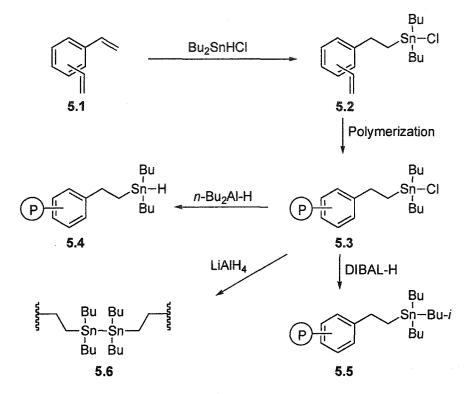
This method uses a catalytic amount of a tin hydride or its precursor, usually a tin halide, and stoichiometric

amounts of another hydride, such as  $LiAlH_4$ ,<sup>11</sup> NaBH<sub>4</sub>,<sup>12</sup> NaCNBH<sub>3</sub>,<sup>13</sup> polymethylhydrosiloxane,<sup>14</sup> or PhSiH<sub>3</sub>.<sup>15</sup> During the reaction, a relatively small amount of tin hydride is constantly available for radical chain transfer by repeated regeneration from the reduction of the corresponding tin halide or sulfide (Scheme 3). Caution should be taken if the reaction products have reducible functionalities.




X, Y = halide, sulfide *etc*.




# 1.3 Use of polymer-supported stannanes.

Polymer-supported tin hydrides would be expected to be the most effective reagents for isolating the desired organic compounds free from tin containing byproducts. The reaction products can be readily isolated from the polymeric tin halides by filtration because the polymers are insoluble in the reaction solvent. The solid polymeric tin halides can also be recycled to hydrides by reduction for further use (Scheme 4), although the recyclability is usually poor.

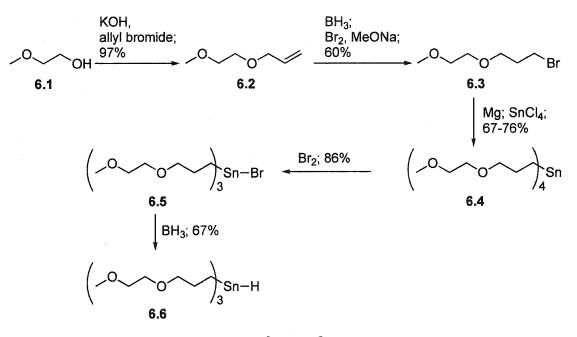


One disadvantage of the solid-supported stannanes is

that their preparation is not a simple task. Scheme 5 shows the preparation of a polymeric stannane developed by Neumann  $et \ al.^{16}$ 



Scheme 5

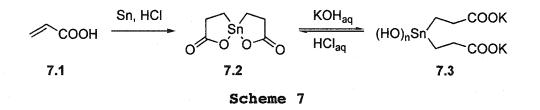

The tin-containing monomer 5.2 was easily synthesized by treatment of divinylbenzene with Bu<sub>2</sub>SnHCl. Polymerization of 5.2 afforded polymer chloride 5.3. Α number of attempts at reduction of 5.3 showed that dibutylaluminum hydride is the best reagent for this The use of LiAlH<sub>4</sub> led to decomposition of the process. resulting tin hydride to distannane 5.6; use of DIBAL-H led to substantial alkylation on tin to give compound 5.5. Several radical dehalogenation reactions were conducted using the polymeric tin hydride 5.4, with acceptable results, and it could be recycled after use at least five times without noticeable loss of activity.

### 1.4 Use of modified stannanes.

Instead of using the traditional reagents  $Bu_3SnH$  and  $Ph_3SnH$ , a number of alternative tin hydrides with modified alkyl chains have been designed to facilitate removal of organotin byproducts from reaction mixtures.

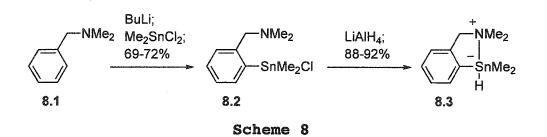
# (1) Water-soluble modified stannanes.

Light and Breslow<sup>17</sup> first synthesized the water-soluble tin hydride **6.6**, which carries three methoxyethoxypropyl groups (Scheme 6).



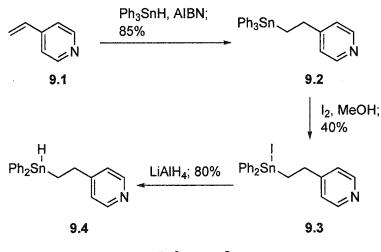

Scheme 6

This stannane could be used to conduct certain radical reactions in organic solvents such as PhH. In addition, its polar alkyl chains gave this stannane sufficient solubility in water (ca 30 mM at room temperature, more upon warming), so that it can reduce alkyl bromides and iodides in water, with 4,4'-azobis(4-cyanovaleric acid) (ACVA) or sunlamp initiation. Although it is not explicitly stated that this stannane leads to byproducts that are easily separated, the water solubility of the material and its polar nature would probably confer such characteristics.


The trialkyltin species resulting from reduction of bromides and iodides can be converted into corresponding tin chlorides simply by acidification with hydrochloric acid, and then extracted into CHCl<sub>3</sub>. Evaporation of the solvent, followed by reduction with BH<sub>3</sub> in THF gives back stannane **6.6**.

Similarly, Rai and Collum<sup>18</sup> reported their synthesis of an aqueous base-soluble polymeric tin species 7.2 (Scheme 7). Together with NaBH<sub>4</sub> and ACVA, this reagent was used to reduce a number of organic bromides, and for certain radical cyclizations. The reagent offers an alternative to the Breslow-Light stannane.




(2) Nitrogen-containing stannanes.

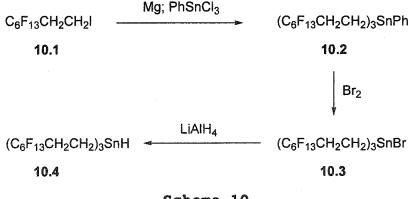
Vedejs *et al.*<sup>19</sup> published the synthesis of an internally activated tin hydride **8.3** (Scheme 8).



The authors reported that this stannane could reduce ketones in a protic solvent such as methanol, and it could also serve as a radical reagent in an aprotic solvent such as PhH. The penta-coordinated nature of the tin, as shown in Scheme 8, could be the reason why this reagent has increased hydride donor reactivity. The tin halide byproducts from the reductions were crystalline and insoluble in  $Et_2O$ , and could be easily removed by filtration. However, the instability of compound 8.3 to heat limits its utility.

In our laboratory, a nitrogen containing stannane was also synthesized<sup>20</sup> (compound **9.4**, Scheme 9).




Scheme 9

Stannane 9.4 was tested in typical radical reactions for a number of organic bromides and selenides. Both yields and conditions were comparable to those with the traditional reagents Bu<sub>3</sub>SnH and Ph<sub>3</sub>SnH, but chromatographic separation is simplified in those cases where the desired product is non-polar, because of the high polarity of the stannane itself and its derivatives. Disappointingly, the stannane and its derivatives were not freely soluble in

#### dilute hydrochloric acid.

### (3) Fluorous tin hydrides.

Curran et al.<sup>21</sup> reported the synthesis and use of this new family of highly fluorinated tin hydrides. Based on the facts that fluorohydrocarbon solvents such as perfluoromethylcyclohexane (PFMC) are not miscible with common organic solvents or aqueous solutions, and that most highly fluorinated compounds are only soluble in perfluorohydrocarbon solvents, a number of special fluorous tin hydrides were synthesized and tested. One member of this group, stannane 10.4, could be easily synthesized from 2-perfluorohexyl-1-iodoethane 10.1, as shown in Scheme 10. This stannane was used in several typical radical reactions, with a lightly fluorinated solvent such as trifluoromethylbenzene, which can dissolve both fluoro compounds and regular hydrocarbons. After reaction, the trifluoromethylbenzene could be removed by evaporation and the residue was then partitioned between PFMC and CH<sub>2</sub>Cl<sub>2</sub>, with the desired product staying in the ordinary organic solvent and fluorous tin halides remaining in the PFMC.



Scheme 10

#### 1.5 Use of alternatives to stannanes.

Many efforts have been made to seek replacements for traditional stannanes in radical reactions.<sup>22</sup>

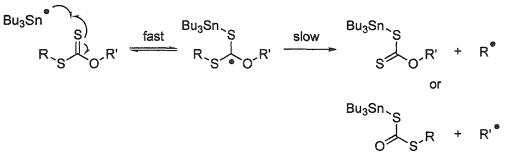
(1) Organosilanes in radical reactions.<sup>23</sup>

Trialkylsilanes are poor reducing agents in free radical processes because the silicon-hydrogen bond is too strong for ready hydrogen transfer. Therefore chain processes are difficult to maintain under normal conditions and usually a higher reaction temperature (120-140 °C) is required. A way to avoid this problem is by adding a catalytic amount of an alkane thiol to the reaction mixture, because the nucleophilic alkyl radicals abstract hydrogen much more readily from thiols than from electronrich trialkylsilanes, and the resulting electrophilic thiyl radicals abstract hydrogen more readily from silanes than do alkyl radicals; consequently, the chain processes are maintained (Scheme 11).

> $R^{\bullet} + R'SH \longrightarrow RH + R'S^{\bullet}$   $R'S^{\bullet} + R''_{3}SiH \longrightarrow R'SH + R''_{3}Si^{\bullet}$   $R''_{3}Si^{\bullet} + RX \longrightarrow R''_{3}SiX + R^{\bullet}$ Scheme 11

It was found that the silicon-hydrogen bond is dramatically weakened by successive substitution of silyl groups at the Si-H function. The most successful and widely used example, tris(trimethylsilyl)silane (TTMSS), has a Si-H bond that is only about 5 kcal·mol<sup>-1</sup> stronger than the Sn-H bond of Bu<sub>3</sub>SnH. This silicon reagent is a good hydrogen donor and is able to maintain radical chain processes. It can reduce a variety of organic functional

groups with comparable yields to the tin hydride methods.

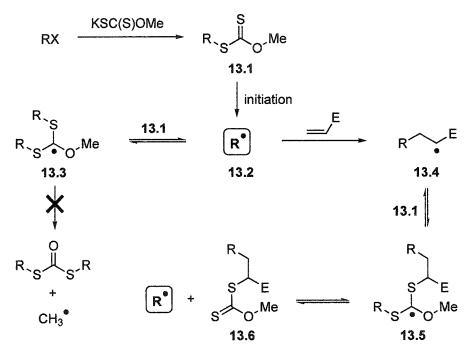

(2) Dialkyl phosphates and hypophosphorous acid.

Barton et al.<sup>24</sup> reported that reagents containing a P-H bond, such as dimethyl phosphite, diethyl phosphate, hypophosphorous acid  $[H_3PO_2, H_2P(0)OH]$  and various salts could be used as much cheaper, less toxic and easily removable radical reducing agents and chain carriers in the reduction of organic halides, thionoesters and isocyanides. These reactions were usually carried out with a radical initiator, such as benzoyl peroxide, in dioxane at reflux. For the reactions in aqueous solutions, a crystalline salt hypophosphorous of acid with a base  $(H_3PO_2.N$ ethylpiperidine) was required to avoid acid-catalysed hydrolysis of water sensitive substrates. Oshima et al.<sup>25</sup> also reported their studies on this subject, in which various of organic halides were reduced efficiently by a combination of phosphinic acid, a base (e.g. NaHCO<sub>3</sub>, KOH and  $Et_3N$ ) and a radical initiator in aqueous ethanol at reflux. After the radical reaction, the excess reagents and phorphorus-containing byproducts could be easily removed from the reaction mixture by extraction.

(3) Gallium hydride.

Oshima et al.<sup>26</sup> reported that a gallium hydride  $(HGaCl_2)$  could be employed as a radical mediator - just like tin hydrides. A number of organic halides were reduced with this reagent in excellent yields, using Et<sub>3</sub>B and air as initiator. Radical cyclization of halo acetals could also be done successfully with this reagent. In addition, use of only a catalytic amount of GaCl<sub>3</sub> along with an excess of Red-Al, which generates  $HGaCl_2$  in situ, was also possible

for the radical reactions.

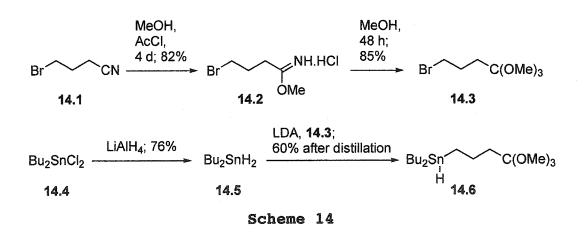



Scheme 12

(4) Xanthates as a new radical generating system.<sup>27</sup>

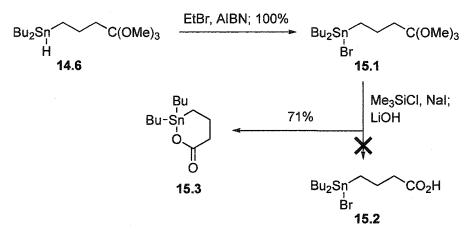
During studies on the mechanism of the Barton-McCombie reaction,<sup>28</sup> the Barton group concluded that the addition of the tin radical to the thiocarbonyl group is fast and reversible (Scheme 12), and the rate-determining step is  $\beta$ scission of the carbon-oxygen or carbon-sulfur bond. The carbon-sulfur bond cleavage is more favored when radicals of similar stability are produced from both cleavages.

Based on this fact, xanthates of type 13.1 (Scheme 13), which were made by nucleophilic displacement of alkyl halides, tosylates, or methylsulfonates by potassium Omethyl xanthate, could be used in the radical-chain processes. As shown in Scheme 13, after the initiation step, only radical 13.2 could be generated by cleavage of the carbon-sulfur bond of xanthate 13.1. This radical could react with starting xanthate to give radical 13.3, which does not undergo carbon-oxygen cleavage because the resulting methyl radical is thermodynamically less stable than radical 13.2. Rupture of either of the carbon-sulfur bonds in 13.3 affords radical 13.2 again and starting xanthate 13.1. On the other hand, radical 13.2 could also be captured by a radical trap in the reaction medium, such as an olefin, to give radical 13.4. This radical could then react with starting xanthate 13.1 to afford radical 13.5, which undergoes another reversible step to provide a new xanthate 13.6 and to regenerate radical 13.2 as the chain carrier. In this process, a new carbon-carbon and a new carbon-sulfur bond are created. One limitation of this process is that the last two steps  $(13.4 \rightarrow 13.6)$  are reversible, so that radical 13.4 should be more stable than radical 13.2 in order to avoid the reverse reaction.



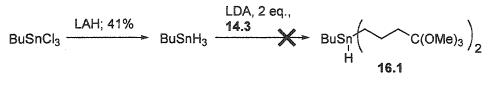

Scheme 13

#### II Results and Discussion


In connection with some free radical experiments done in this laboratory, a need was developed for a readily accessible stannane,  $R_1R_2R_3SnH$ , whose derivatives,  $R_1R_2R_3SnX$ (X = halogen or SePh) could be converted by acid or base treatment under mild conditions into a carboxylic acid that is soluble in aqueous NaHCO<sub>3</sub>.

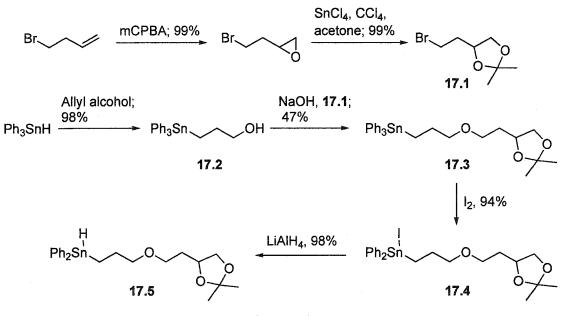
Our first aim was to make stannane 14.6 (Scheme 14), which bears an orthoester side chain. The synthesis of this stannane is summarized in Scheme 14. The required alkyl bromide 14.3 was made from 4-bromobutanenitrile (14.1) by the literature procedure<sup>29</sup> in high yield (14.1  $\rightarrow$ 14.2  $\rightarrow$  14.3, Scheme 14). Dibutyltin dihydride (14.5), freshly made by LiAlH<sub>4</sub> reduction of Bu<sub>2</sub>SnCl<sub>2</sub>,<sup>30</sup> was first deprotonated with 1 equiv of LDA,<sup>31</sup> and then alkylated with 14.3 to afford stannane 14.6 in 60% yield after ultra-high vacuum distillation (bp 120-125 °C, 0.003 mmHg).




Stannane 14.6 is a thick colorless oil which decomposed on either silica gel or Grade III alumina. To see if this tin hydride had the desired features, we used

it in the reduction of bromoethane under standard radical conditions, and we were able to separate the tin bromide **15.1** quantitatively (Scheme 15). However, after we treated this compound with Me<sub>3</sub>SiI and then LiOH, we did not obtain the expected acid **15.2**; only the cyclized compound **15.3** was isolated (71% yield).

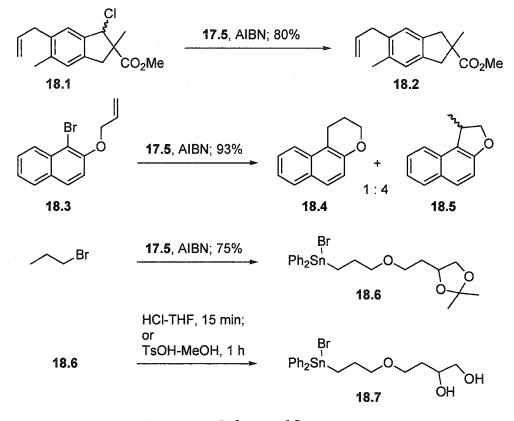



Scheme 15

Because of the unexpected replacement of tin-bound halide by the oxygen on the polar alkyl chain, we decided to make a tin hydride with two polar sites, such as stannane 16.1 (Scheme 16), so that we would have at least one site left after possible cyclization. To this end, BuSnH<sub>3</sub>, freshly made by LiAlH<sub>4</sub> reduction of BuSnCl<sub>3</sub><sup>30</sup> (41% after distillation), was treated with 2 equiv of LDA and then with an excess of bromide 14.3. However, we were unable to obtain any pure 16.1 after ultra high vacuum We did not establish whether this stannane distillation. was not generated from the above experiment or whether the desired stannane actually decomposed upon heating before it distilled.



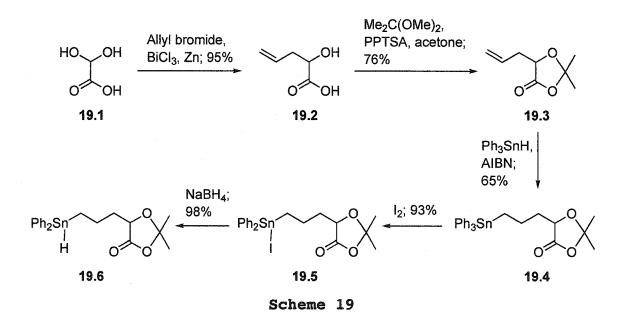
Scheme 16


We felt that making stannanes with two polar alkyl chains would be rather difficult, and so we decided to concentrate on stannanes having a *single* alkyl chain which would bear two or more polar functionalities. Based on this decision, we first made stannane **17.5** (Scheme 17).

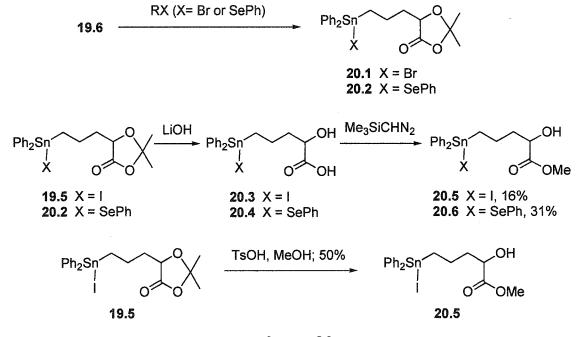


Scheme 17

As shown in Scheme 17, the bromide unit 17.1 was easily made in excellent yield from 4-bromobutene by epoxidation and then direct ketal formation from the epoxide.<sup>32</sup> Ph<sub>3</sub>SnH, freshly made from Ph<sub>3</sub>SnCl,<sup>33</sup> was used for hydrostannylation of allyl alcohol to afford compound 17.2. Nucleophilic displacement by this alcohol on bromide 17.1 furnished the stannane 17.3 (50% aqueous NaOH, 47%). One of the phenyl groups was then replaced by treatment with 1 equiv of  $I_2^{34}$  to give iodide 17.4. Reduction of 17.4 with LiAlH<sub>4</sub> gave stannane 17.5 in 98% yield after aqueous workup.


We carried out a few reductions and a radical cyclization with stannane 17.5, under standard radical reaction conditions, and the results were very satisfactory (Scheme 18).





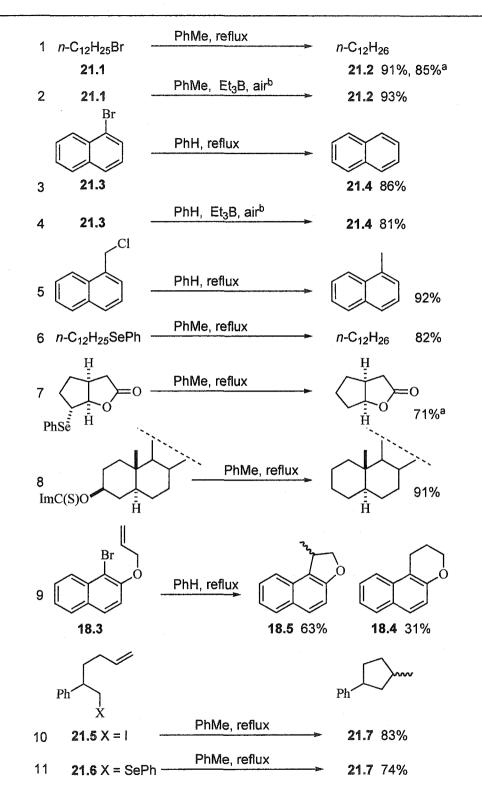

To see if this new stannane led to easily removable tin species, we also collected the tin bromide 18.6 after the reduction of 1-bromopropane (75%, Scheme 18). Treatment of compound 18.6 with either aqueous HCl (3%) in THF for 15 min or TsOH in MeOH for 1 h did indeed hydrolyze the ketal unit to give diol 18.7. Both compound 18.6 and 18.7 are polar substances (e.g. for compound 18.6, one needs 1:4 EtOAc-hexane for an  $R_f$  of 0.2 to 0.3 on silica gel plates), and so they could usually be easily separated from the reaction products by a single flash chromatography.

Although stannane 17.5 could serve as a polar tin hydride in radical reactions and the tin residues could be easily removed by flash chromatography, it still did not satisfy our objectives because the hydrolyzed product 18.7 is not water-soluble. After some further exploratory work, we settled on stannane 19.6 (Scheme 19), which matched all our requirements.

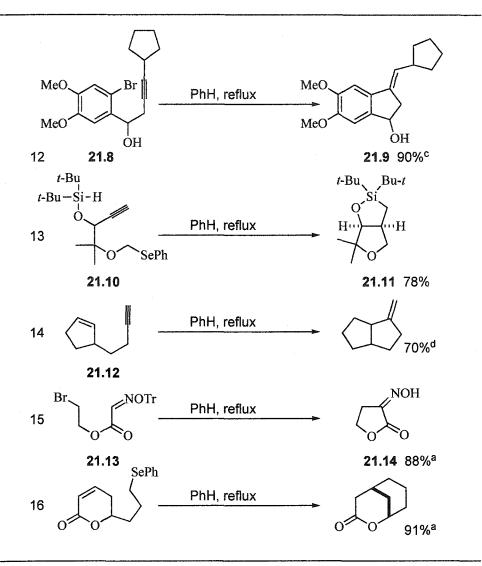


The synthesis of the new stannane **19.6** is shown in Scheme 19. The known hydroxy acid **19.2** was easily prepared in 95% yield by a literature procedure<sup>35</sup> that calls for treatment of glyoxylic acid hydrate (**19.1**) with BiCl<sub>3</sub>, Zn and allyl bromide. Ketalization under standard conditions (2,2-dimethoxypropane, TsOH·pyridine, acetone) gave the derived ketal **19.3** in 76% yield. When this was heated with an excess (1.5 equiv) of freshly prepared Ph<sub>3</sub>SnH in PhH, in the presence of a catalytic amount of AIBN, the hydrostannylated product 19.4 could be isolated in 65% yield. Treatment of compound 19.4 with 1 equiv of  $I_2^{34}$  again served to replace one of the phenyl groups by I (19.4  $\rightarrow$  19.5), and then reduction with NaBH<sub>4</sub> gave the required stannane 19.6 (98%) as a colorless oil, which was obtained pure by rapid flash chromatography over silica gel. We stored this stannane under Ar in a refrigerator; the material was stable for at least two months under these conditions and was still reactive even after 2 years of storage (and was used by other members of this laboratory).






To establish the properties of the anticipated tin containing reaction products, the tin bromide 20.1 and the tin selenide 20.2 were also prepared (Scheme 20). The former was prepared by reaction of stannane 19.6 with 1bromopropane under standard conditions (see Experimental Section), and the latter by reaction of 19.6 with selenide 21.6 (see Table 1, entry 11). Compounds 19.5 and 20.2 (we

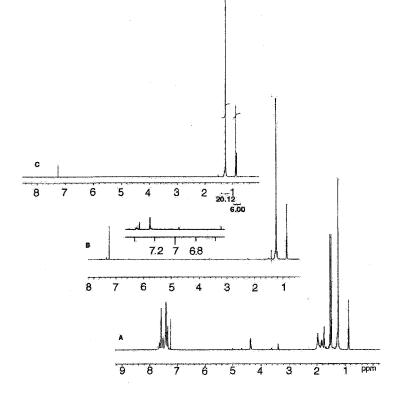

did not examine 20.1) were stirred in an aqueous THF solution of LiOH (ca 10 equiv) for several hours, and the presumed acid products 20.3 and 20.4, obtained by acidification, were then esterified with  $Me_3SiCHN_2$  to give esters 20.5 (16%) and 20.6 (31%), respectively. Compound 19.5 was also hydrolyzed under acidic conditions (TsOH·H<sub>2</sub>O) in MeOH, to give 20.5 (50%) directly.

We have evaluated the performance of stannane 19.6 by using it in typical radical reactions, as summarized in Table 1. The Table shows reduction of bromides (entries 1-4), a benzylic chloride (entry 5), and selenides (entries 6 and 7), radical cyclization onto a carbon-carbon double bond (entries 9, 10, 11, and 16), radical cyclization onto a triple bond (entries 12 and 13), stannane addition to a triple bond, followed by cyclization of the resulting vinyl radical and subsequent protodestannylation (entry 14), and cyclization onto an oxime (entry 15). Entry 8 shows an example of Barton-McCombie deoxygenation.

The reactions with stannane **19.6** could be initiated by AIBN in PhH or PhMe at reflux, or by Et<sub>3</sub>B and air at room temperature. In all cases, except those of entries 1 (procedure giving 85% yield), 7, 15 and 16, the crude reaction mixture was stirred with a solution of LiOH in aqueous THF for 1.5-3 h (TLC control), and the organicsoluble product was purified by flash chromatography. For reduction of **21.1** (entry 1) we also tried acidic workup, the crude reaction mixture in this case being stirred with an aqueous THF solution of TSOH. The product **21.2** was then isolated in 85% yield.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Reaction conditions, unless indicated otherwise: **19.6**, AIBN, PhH or PhMe, relfux. Workup, unless indicated otherewise: LiOH, water-THF, extract with  $Et_2O$ , wash with NaHCO<sub>3</sub>, flash chromatography.

- <sup>a</sup> Workup: TsOH.H<sub>2</sub>O, aqueous THF, extract with Et<sub>2</sub>O, wash with NaHCO<sub>3</sub>, flash chromatography.
- <sup>b</sup> Room temperature.
- <sup>c</sup> A single isomer of unestablished geometry.
- <sup>d</sup> The initial radical cyclization product was treated with CF<sub>3</sub>CO<sub>2</sub>H before LiOH.

In one case (entry 2), the  ${}^{1}\text{H}$  NMR spectrum of the organic-soluble product was measured before and after flash chromatography. In two cases (entries 1 and 6) the same

two measurements were again made, but in addition, the <sup>1</sup>H NMR spectrum was run before workup. The three spectra for entry 1 (91% yield) are shown in Figure 1. These spectra establish that the LiOH treatment removes all but traces of aryl-containing species, but leaves slight impurities (signals at  $\delta$  1.4, 1.5, and 3.6). All these impurities are removed by flash chromatography (in this case, using hexane as eluent). When acidic workup was used after reduction of **21.1** (entry 1, 85% yield), the three corresponding <sup>1</sup>H NMR spectra were very similar to those shown in Figure 1.



<u>Trace A:</u> <sup>1</sup>H NMR spectrum measured after evaporation of reaction solvent for entry 1 of Table 1.

<u>Trace B:</u> <sup>1</sup>H NMR spectrum measured after LiOH treatment. Inset: expansion (ca 4 x) of region  $\delta$  6.5-7.4. The chloroform signal is truncated. <u>Trace C:</u> <sup>1</sup>H NMR spectrum measured after chromatography.

Figure 1

While most of the experiments listed in Table 1 gave products that are stable to mild base (LiOH and NaHCO<sub>3</sub>), for the examples of entries 7, 15, and 16 we used acidic conditions for workup, followed by extraction of the tin species into saturated aqueous NaHCO<sub>3</sub>.

# Conclusion

We have designed and synthesized three new stannane reagents, which are suitable as replacements for traditional tin hydrides. Among our new compounds, stannane **19.6** behaves similarly to the standard Bu<sub>3</sub>SnH and Ph<sub>3</sub>SnH, with the additional characteristic that the tin containing by-products are easily removed. This substance is clearly our preferred stannane for radical reactions that would otherwise give products that are difficult to separate from tin residues.

#### III Experimental Section

## General procedure

Unless stated to the contrary, reactions were carried out under a slight static pressure of Ar that had been purified by passage through a column (3.5 x 42 cm) of R-311<sup>36</sup> catalyst and then through a similar column of Drierite. Glassware was dried in an oven for at least 3 h before use (120 °C) and either cooled in a desiccator over Drierite, or assembled quickly, sealed with rubber septa, and allowed to cool under a slight static pressure of Ar. Reaction mixtures were stirred by Teflon-coated magnetic stirring bars.

Hexane and EtOAc used for chromatography were distilled before use. t-BuOMe was used directly from the bottle.

Products were isolated from solution by concentration under water-aspirator vacuum at, or below, room temperature, using a rotary evaporator.

Cannula transfers were done by supplying Ar under slight pressure to the flask containing the solution to be transferred.

Commercial thin layer chromatography (TLC) plates (silica gel, Merck 60F-254) were used. Spots were detected by examination under UV light, or by spraying the plate with a solution of phosphomolybdic acid followed by charring with a heat gun. Silica gel for flash chromatography was Merck type 60 (230-400 mesh).

Dry solvents were prepared under an inert atmosphere and transferred by syringe or cannula. Dry THF, PhH, PhMe, dioxane and Et<sub>2</sub>O were distilled from sodium and benzophenone

ketyl.  $CH_2Cl_2$ , acetonitrile, DMF, and pyridine were stirred overnight with crushed  $CaH_2$ , and then distilled (under water pump vacuum in the case of DMF), with protection from moisture.

FTIR measurements were made as casts from the specified solvent using potassium bromide plates.

The symbols s, d, t, and q used for <sup>13</sup>C NMR signals indicate zero, one, two, or three attached hydrogens, respectively. In cases where the number of signals is less than expected, we assume this is due to coincident chemical shifts.

Known reaction products were identified by comparison of their NMR spectra (usually both  $^{1}\text{H}$  NMR and  $^{13}\text{C}$  NMR) with reported values.

# General procedures for radical reaction and workup (a) Thermal radical reactions

The substrate (0.2 mmol) was placed in a dry roundbottomed flask carrying a reflux condenser closed by a The flask was flushed with Ar, and the contents septum. were kept under a slight positive pressure of Ar. PhH or PhMe (3 mL) was injected, and the flask was lowered into a preheated oil bath at 85 °C, or at 125 °C in the case of A solution of both stannane 19.6 (0.28 mmol, 1.4 PhMe. equiv) and AIBN (1 mg) in the same solvent (3 mL plus 1 mL as a rinse) was injected in one portion (except for the radical cyclizations, in which case the addition was made over 6 h). In the case of slow addition, care was taken to make sure that the tip of the syringe needle rested in a cold part of the reflux condenser. Refluxing was continued for 2-10 h after the addition. The mixture was cooled and concentrated. Aqueous LiOH (1.0 M, 2 mL) in THF (2 mL) or

aqueous TSOH (0.25 M, 2 mL) in THF (2 mL) was added to the residue, and the mixture was stirred at room temperature for 1.5-3 h (TLC control). After all the tin dioxolanone had been hydrolyzed,  $Et_2O$  (20 mL) was added, the organic layer was washed with saturated aqueous NaHCO<sub>3</sub> (3 x 20 mL), dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel then gave the product.

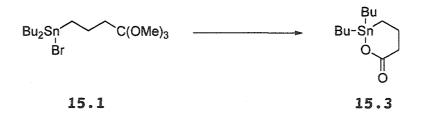
## (b) Room temperature radical reactions

Stannane 19.6 (1.4 mmol) in PhH (4 mL) and  $Et_3B$  (1.0 M in hexane, 1.1 mL, 1.1 mmol) were added to a stirred solution of the substrate (1.0 mmol) in hexane (5 mL) contained in a flask fitted with a calcium sulfate guard tube. The mixture was stirred for 11 h with exposure to air (via the guard tube), and the same work-up procedure was followed as for the thermal method.

# Dibutyl(4,4,4-trimethoxybutyl)stannane (14.6).

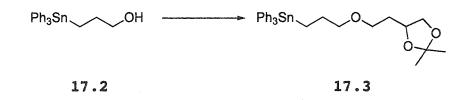


*n*-BuLi (2.5 M in hexane, 6.4 mL, 16.0 mmol) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of  $i-Pr_2NH$  (2.7 mL, 19.0 mmol) in THF (20 mL). After 15 min, a solution of freshly prepared Bu<sub>2</sub>SnH<sub>2</sub> (4.13 g, 17.6 mmol) in THF (10 mL) was added dropwise over ca. 15 min. Stirring at -78 °C was continued for 30 min and a solution of 4-bromo-1,1,1-trimethoxybutane (14.3) (3.60 g, 15.9 mmol) in THF (10 mL) was added dropwise over ca. 15 min. The cold bath was left in place but not recharged and


stirring was continued for 6 h. The reaction mixture was quenched by the addition of water (50 mL) and then extracted with Et<sub>2</sub>O (3 x 50 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Ultra high vacuum (0.003 mmHg) distillation of the residue, gave stannane 14.6 (fraction bp 120-125 °C, 3.68 g, 61%) as a colorless oil: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  0.90-1.05 (m, 12 H), 1.30-1.43 (m, 4 H), 1.50-1.70 (m, 4 H), 1.80-1.90 (m, 4 H), 3.20 (s, 9 H), 5.09-5.13 (m, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 50.3 MHz)  $\delta$  8.1 (t), 8.3 (t), 13.6 (q), 21.5 (t), 27.1 (t), 29.9 (t), 35.7 (t), 49.0 (q), 115.3 (s); exact mass *m/z* calcd for C<sub>13</sub>H<sub>27</sub>O<sup>120</sup>Sn (M - C<sub>2</sub>H<sub>7</sub>O<sub>2</sub>) 319.1084, found 319.1083.

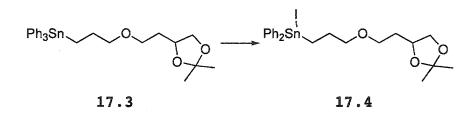
#### Bromodibutyl(4,4,4-trimethoxybutyl)stannane (15.1).




1-Bromopropane (0.33 g, 2.7 mmol) was added in one portion to a stirred solution of stannane 14.6 (0.62 g, 1.4 mmol) and AIBN (9 mg) in PhH (10 mL). The mixture was heated at reflux (85 °C) for 5 h and then cooled to room temperature. Evaporation of the solvent gave bromide 15.1 (0.71 g, 94%) as a colorless oil: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$ 0.90-1.05 (m, 6 H), 1.20-1.98 (m, 18 H), 3.10 (s, 9 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  13.5 (q), 17.1 (t), 17.8 (t), 20.0 (t), 26.8 (t), 28.3 (t), 34.6 (t), 49.1 (q), 115.3 (s).

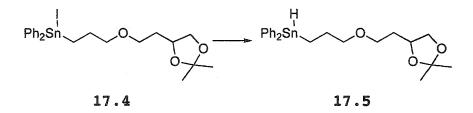
2,2-Dibutyl-1,2-oxastanninan-6-one (15.3).




NaI (1.14 g, 7.6 mmol) was added in one portion to a stirred solution of stannane 15.1 (1.17 g, 2.5 mmol) in MeCN (30 mL). Stirring was continued for 5 min and then Me<sub>3</sub>SiCl (0.96 mL, 7.6 mmol) was added dropwise over ca. 5 Stirring was continued for 3 h at room temperature. min. The reaction mixture was diluted with  $Et_2O$  (50 mL) and washed with water (30 mL), saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (30 mL), saturated aqueous NaHCO<sub>3</sub> (2 x 30 mL) and brine, dried (MgSO<sub>4</sub>) and concentrated. Aqueous LiOH (1.0 M, 20 mL) was added to a stirred solution of the residue in THF (20 mL). Stirring was continued for 1 h and the reaction mixture was extracted with  $Et_2O$  (3 x 30 mL). The combined organic extracts were washed with water and brine, dried and concentrated. Flash chromatography of the residue over silica gel (2 x 20 cm), using 1:4 EtOAc-hexane, gave compound 15.3 (0.54 g, 71%) as a colorless oil: FTIR (CHCl<sub>3</sub> cast) 2954, 1541, 1431 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.90 (t, J = 8.0 Hz, 6 H), 1.08-1.40 (m, 10 H), 1.45-1.62 (m, 4H), 1.80-1.90 (m, 2 H), 2.08-2.14 (m, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  13.8 (t), 14.0 (q), 19.1 (t), 22.1 (t), 27.2 (t), 28.4 (t), 36.4 (t), 182.4 (s); exact mass m/z calcd for  $C_{10}H_{20}O_2^{120}Sn$  (M -  $C_2H_4$ ) 292.0485, found 292.0488.

[3-[2-(2,2-Dimethyl-1,3-dioxolan-4-yl)ethoxy]propyl]triphenylstannane (17.3).




Aqueous NaOH (50%, 10 mL) was added to a solution of 3-(triphenylstannyl)propan-1-ol (17.2) (3.48 g, 8.5 mmol)and 4-(2-bromoethyl)-2,2-dimethyl-1,3-dioxolane (17.1) (2.00 g, 9.6 mmol) in THF (20 mL). The reaction mixture was heated at reflux (70 °C) for 48 h and cooled to room temperature. The mixture was diluted with water (50 mL) and then extracted with  $Et_2O$  (3 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO4) and Flash chromatography of the residue over concentrated. silica gel (3 x 25 cm), using 1:19 EtOAc-hexane, gave compound 17.3 (1.35 g, 47%) as a colorless oil: FTIR  $(CD_2Cl_2 \text{ cast})$  3063, 2985, 1480 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CD_2Cl_2, 400 \text{ MHz})$ δ 1.15 (s, 3 H), 1.17 (s, 3 H), 1.50-1.75 (m, 4 H), 1.92-2.01 (m, 2 H), 3.30-3.47 (m, 5 H), 3.91-4.08 (m, 2 H), 7.15-7.60 (m, 15 H); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 50.3 MHz)  $\delta$  9.1 (t), 27.5 (g), 28.5 (t), 28.6 (g), 32.7 (t), 69.4 (t), 71.4 (t), 75.4 (t), 75.7 (d), 110.2 (s), 130.3 (d), 130.7 (d), 138.9 (d), 141.2 (s); exact mass (electrospray) m/z calcd for  $C_{28}H_{34}NaO_{3}^{120}Sn (M + Na) 561.1428$ , found 561.1432.

[3-[2-(2,2-Dimethyl-1,3-dioxolan-4-yl)ethoxy]propyl]iododiphenylstannane (17.4).



A solution of  $I_2$  (0.57 g, 2.3 mmol) in PhH (20 mL) was added dropwise over ca. 30 min to a stirred solution of stannane 17.3 (1.22 g, 2.3 mmol) in PhH (10 mL). Stirring was continued for 1 h at room temperature and the solvent was concentrated. Flash chromatography of the residue over silica gel (2.5 x 20 cm), using 1:4 EtOAc-hexane, gave iodide 17.4 (1.27 q, 94%) as a colorless oil: <sup>1</sup>H NMR  $(CD_2Cl_2, 400 \text{ MHz}) \delta 1.20 \text{ (s, 3 H), } 1.22 \text{ (s, 3 H), } 1.30-1.40$ (m, 2 H), 1.95-2.03 (m, 2 H), 2.11-2.20 (m, 2 H), 3.08-3.20 (m, 3 H), 3.50-3.70 (m, 4 H), 7.38-7.50 (m, 6 H), 7.60-7.80 (m, 4 H); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 100.6 MHz)  $\delta$  17.5 (t), 25.7 (q), 26.9 (q), 27.1 (t), 32.9 (t), 68.7 (t), 69.3 (t), 71.9 (t), 73.1 (d), 108.9 (s), 129.0 (d), 129.9 (d), 136.4 (d), 141.2 (s); exact mass m/z calcd for  $C_{22}H_{29}O_3^{120}Sn$  (M - I) 461.1139, found 461.1146.

[3-[2-(2,2-Dimethyl-1,3-dioxolan-4-yl)ethoxy]propyl]diphenylstannane (17.5).



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


A solution of iodostannane 17.4 (150 mg, 0.26 mmol) in Et<sub>2</sub>O (5 mL) was added slowly to a stirred and cooled (0 °C) suspension of LiAlH<sub>4</sub> (10 mg, 0.26 mmol) in Et<sub>2</sub>O (10 mL) over The ice bath was left in place but not ca. 5 min. recharged and stirring was continued for 3 h. The reaction mixture was cooled to 0 °C and slowly guenched by addition of aqueous NaOH (1.0 N, 1 mL). The mixture was diluted with water (5 mL) and extracted with  $Et_2O$  (3 x 10 mL). The combined organic extracts were washed with brine, dried  $(MgSO_4)$  and concentrated to afford stannane 17.5 (112 mg, 95%) as a colorless oil: <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 400 MHz)  $\delta$  1.28 (s, 3 H), 1.37 (s, 3 H), 1.38-1.45 (m, 2 H), 1.60-1.80 (m, 2 H), 1.92-2.00 (m, 2 H), 3.38-3.45 (m, 5 H), 3.95-4.00 (m, 1 H), 4.02-4.10 (m, 1 H), 6.18-6.20 (m, 1 H), 7.35-7.40 (m, 6 H), 7.44-7.62 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  5.9 (t), 25.6 (g), 26.9 (g), 30.8 (t), 32.9 (t), 68.7 (t), 69.3 (t), 71.9 (t), 73.1 (d), 108.9 (s), 129.0 (d), 129.9 (d), 136.4 (d), 141.2 (s).

## 2-Hydroxy-4-pentenoic Acid (19.2).35



Glyoxylic acid hydrate (1.90 g, 20.0 mmol) and allyl bromide (2.50 mL, 28.0 mmol) were added to a stirred suspension of BiCl<sub>3</sub> (8.80 g, 28.0 mmol) and Zn (2.77 g, 42.0 mmol) in THF (60 mL) at 0 °C. The ice bath was removed and stirring was continued for 16 h. The mixture was quenched by addition of aqueous hydrochloric acid (1.0 M, 40 mL) and then extracted with Et<sub>2</sub>O (3 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue was over silica gel (2.5 x 25 cm), using 7:3 EtOAc-hexane, gave acid **19.2** (2.38 g, 95%) as white crystals: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.44-2.52 (m, 1 H), 2.59-2.66 (m, 1 H), 4.35 (dd, J =4.6, 6.6 Hz, 1 H), 5.15-5.21 (m, 2 H), 5.75-5.85 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  38.4 (t), 69.8 (d), 119.4 (t), 131.8 (d), 178.6 (s).

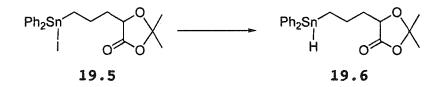
2,2-Dimethyl-5-(2-propenyl)-1,3-dioxolan-4-one (19.3).



Acid 19.2 (6.00 g, 51.7 mmol) was dissolved in 2,2dimethoxypropane (150 mL). Pyridinium *p*-toluenesulfonate (0.50 g, 1.99 mmol) was added, and the mixture was stirred for 5 h (TLC control). Evaporation of the solvent and flash chromatography of the residue over silica gel (2.5 x 20 cm), using 1:19 EtOAc-hexane, gave acetonide 19.3 (6.14 g, 76%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 2918, 1797 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.53 (s, 3 H), 1.60 (s, 3 H), 2.45-2.54 (m, 1 H), 2.62-2.70 (m, 1 H), 4.45 (dd, *J* = 4.6, 6.6 Hz, 1 H), 5.16-5.26 (m, 2 H), 5.77-5.88 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  25.9 (q), 27.2 (q), 35.8 (t), 73.8 (d), 110.7 (s), 119.2 (d), 131.9 (t), 172.6 (s); exact mass *m/z* calcd for C<sub>8</sub>H<sub>12</sub>O<sub>3</sub> 156.0786, found 156.0783. 2,2-Dimethyl-5-[3-(triphenylstannyl)propyl]-1,3dioxolan-4-one (19.4).



A solution of **19.3** (1.56 g, 10.0 mmol) in dry PhH (10 mL) was added to freshly prepared Ph<sub>3</sub>SnH (5.26 g, 15.0 mmol). AIBN (10 mg) was added to the mixture, which was then heated at 85 °C for 10 h (TLC control; N<sub>2</sub> atmosphere). Evaporation of the solvent, and rapid (no more than 30 min) flash chromatography of the residue over silica gel (3 x 25 cm), using 1:49 EtOAc-hexane, gave stannane **19.4** (3.29 g, 65%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3063, 1792, 1429 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.48 (two s, each 3 H), 1.50-1.53 (m, 2 H), 1.75-1.97 (m, 4 H), 4.35 (dd, J = 4.0, 7.0 Hz, 1 H), 7.33-7.39 (m, 9 H), 7.46-7.59 (m, 6 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  10.4 (t), 22.3 (t), 25.8 (q), 27.1 (q), 35.9 (t), 73.6 (d), 110.4 (s), 128.5 (d), 130.0 (d), 137.0 (d), 138.6 (s), 173.2 (s); exact mass *m/z* calcd for C<sub>26H28</sub>O<sub>3</sub><sup>120</sup>Sn 508.1060, found 508.1056.


2,2-Dimethyl-5-[3-[iodo(diphenyl)stannyl]propyl]-1,3dioxolan-4-one (19.5).



A solution of  $I_2$  (0.64 g. 2.5 mmol) in PhH (30 mL) was

added over 30 min to a stirred solution of **19.4** (1.28 g, 2.5 mmol) in PhH (20 mL). Stirring was continued for 5-10 h (TLC control), and the solvent was concentrated. Rapid (less than 30 min) flash chromatography of the residue over silica gel (2 x 15 cm), using 1:4 EtOAc-hexane, gave **19.5** (1.31 g, 93%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3065, 1790, 1430 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.49 (s, 3 H), 1.53 (s, 3 H), 1.72-2.04 (m, 6 H), 4.34-4.39 (m, 1 H), 7.35-7.70 (m, 10 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  16.2 (t), 22.7 (t), 25.8 (q), 27.2 (q), 35.0 (t), 73.6 (d), 110.6 (s), 129.0 (d), 130.1 (d), 136.1 (d), 137.0 (s), 173.0 (s); exact mass *m/z* calcd for C<sub>20</sub>H<sub>23</sub>IO<sub>3</sub><sup>120</sup>Sn 557.9714, found 557.9729.

2,2-Dimethyl-5-[3-(diphenylstannyl)propyl]-1,3dioxolan-4-one (19.6).



NaBH<sub>4</sub> (44 mg, 1.1 mmol) was added to a stirred and cooled (0 °C) solution of **19.5** (636 mg, 1.1 mmol) in dry MeOH (20 mL). Stirring was continued for 3 h at 0 °C, and the reaction mixture was then quenched by addition of EtOAc (20 mL) and water (20 mL). The mixture was extracted with EtOAc (3 x 20 mL), and the combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 10 cm), using 1:4 EtOAc-hexane, gave stannane **19.6** (484 mg, 98%) as a colorless oil: FTIR (CD<sub>2</sub>Cl<sub>2</sub> cast) 3068, 1792, 1429 cm<sup>-1</sup>;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.35-1.41 (m, 2 H), 1.49 (s, 3 H), 1.52 (s, 3 H), 1.75-1.97 (m, 4 H), 4.34-4.38 (m, 1 H), 6.16 (t, J = 1.8 Hz, 1 H), 7.31-7.37 (m, 6 H), 7.45-7.56 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  16.9 (t), 21.5 (t), 25.8 (q), 27.2 (q), 35.2 (t), 73.6 (d), 110.6 (s), 129.0 (d), 130.2 (d), 135.7 (d), 138.4 (s), 172.9 (s); exact mass (electrospray) m/z calcd for C<sub>20</sub>H<sub>24</sub>NaO<sub>3</sub><sup>120</sup>Sn (M + Na) 455.0645, found 455.0654.

2,2-Dimethyl-5-[3-[bromo(diphenyl)stannyl]propyl]-1,3dioxolan-4-one (20.1).



1-Bromopropane (0.5 mL) was added to a solution of stannane **19.6** (217 mg, 0.5 mmol) and AIBN (3 mg, 0.02 mmol) in PhMe (8 mL). The mixture was then heated at 115 °C for 3 h, cooled to room temperature, and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:4 EtOAc-hexane, gave bromide **20.1** (153 mg, 60%) as a colorless oil: FTIR (CHCl<sub>3</sub> cast) 3066, 1789, 1430 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.49 (s, 3 H), 1.54 (s, 3 H), 1.66-2.04 (m, 6 H), 4.34-4.39 (m, 1 H), 7.38-7.68 (m, 10 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  16.7 (t), 21.8 (t), 25.7 (q), 27.1 (q), 35.0 (t), 73.5 (d), 110.6 (s), 129.0 (d), 130.2 (d), 135.8 (d), 137.9 (s), 173.0 (s); exact mass m/z calcd for C<sub>20</sub>H<sub>23</sub><sup>81</sup>BrO<sub>3</sub><sup>120</sup>Sn 511.9832, found 511.9825.

2,2-Dimethyl-5-[3-[diphenyl(phenylseleno)stannyl]propyl]-1,3-dioxolan-4-one (20.2).



Stannane 19.6 (227 mg, 0.5 mmol) and AIBN (5 mg, 0.03 mmol) in PhMe (5 mL, plus 3 mL as a rinse) were added in one portion to a refluxing solution of  $(3a\alpha, 6\alpha, 6a\alpha)$ hexahydro-6-(phenylseleno)-2H-cyclopenta[b]furan-2-one<sup>37</sup> (see entry 7, Table 1) (106 mg, 0.4 mmol) in PhMe (3 mL). Refluxing was continued for 10 h, and the solvent was then concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:9 EtOAc-hexane, gave 20.2 (152 mg, 69%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3064, 2925, 1791, 1576, 1474 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.40-1.45 (m, 2 H), 1.48 (s, 3 H), 1.50 (s, 3 H), 1.65-1.88 (m, 4 H), 4.28 (dd, J = 4.0, 7.0 Hz, 1 H), 7.02 (t, J = 7.5 Hz, 2 H), 7.12 (t, J = 7.4 Hz, 1 H), 7.30-7.50 (m, 12 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  13.9 (t), 22.2 (t), 25.9 (q), 27.2 (q), 35.5 (t), 73.5 (d), 110.4 (s), 124.6 (s), 126.6 (d), 128.6 (d), 128.7 (d), 129.4 (d), 136.4 (d), 136.5 (d), 138.2 (s), 172.9 (s); exact mass (electrospray) m/z calcd for  $C_{26}H_{28}NaO_3^{80}Se^{120}Sn$  (M + Na) 611.0123, found 611.0118.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Methyl 5-[Iodo(diphenyl)stannyl]-2-hydroxypentanoate (20.5).



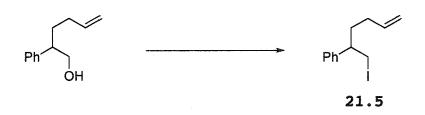
(a) Aqueous LiOH (1.0 M, 2 mL) was added to a stirred solution of compound 19.5 (133 mg, 0.24 mmol). Stirring was continued for 1 h, and the mixture was acidified with concentrated hydrochloric acid. The precipitate was collected, washed with CH<sub>2</sub>Cl<sub>2</sub>, and dried under oil pump This solid (62 mg) was then suspended in a mixture vacuum. of MeOH (2 mL) and PhMe (5 mL), and Me<sub>3</sub>SiCHN<sub>2</sub> (2.0 M in hexane, 0.3 mL, 0.60 mmol) was added dropwise with stirring. Stirring was continued for 15 min. AcOH (0.5 mL) was added to destroy the excess of Me<sub>3</sub>SiCHN<sub>2</sub>, and the mixture was extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 10 cm), using EtOAc, gave 20.5 (20 mg, 16%). See following experiment for characterization data.

(b) TsOH·H<sub>2</sub>O (3 mg) was added to a stirred solution of compound **19.5** (40 mg, 0.07 mmol) in MeOH (3 mL). Stirring was continued for 1.5 h and the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using EtOAc, gave **20.5** (19.6 mg, 50%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3425 (br), 3064, 1733, 1429 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.65-2.00 (m, 6 H), 2.72 (br s, 1 H), 3.72 (s, 3 H), 4.15 (d, J = 7.1 Hz, 1 H), 7.33-7.43 (m, 6

H), 7.54-7.62 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75.5 MHz)  $\delta$  17.2 (t), 22.5 (t), 37.4 (t), 52.6 (q), 70.0 (d), 128.9 (d), 130.0 (d), 136.1 (d), 137.5 (s), 175.3 (s); exact mass (electrospray) m/z calcd for  $C_{18}H_{21}INaO_3^{120}Sn$  (M + Na) 554.9450, found 554.9454.

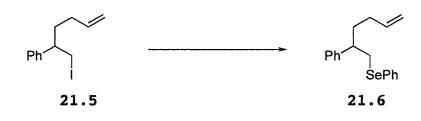
Methyl 5-[(Diphenyl)(phenylseleno)stannyl]-2-hydroxypentanoate (20.6).




Conversion of 20.2 into 20.6 was done in two slightly different ways:

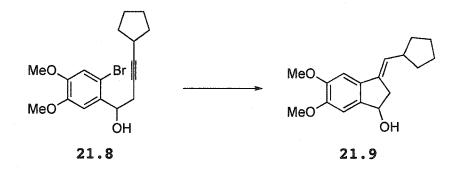
(a) After the LiOH hydrolysis of a crude mixture from reduction of 1-(phenylseleno)dodecane (59 mg, 0.11 mmol) (entry 6, Table 1), the aqueous LiOH layer was acidified with concentrated hydrochloric acid, and the precipitate was collected, washed with  $CH_2Cl_2$ , and dried under oil pump The solid (63 mg) was then suspended in a mixture vacuum. of MeOH (2 mL) and PhMe (5 mL), and Me<sub>3</sub>SiCHN<sub>2</sub> (2.0 M in hexane, 0.25 mL, 0.50 mmol) was added dropwise with stirring. Stirring was continued for 15 min. ACOH (0.5 mL) was added to destroy the excess of Me<sub>3</sub>SiCHN<sub>2</sub>, and the mixture was extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 10 cm), using 1:9 EtOAc-hexane, gave 20.6 (20 mg, 31%) as a yellow oil: FTIR (CHCl<sub>3</sub> cast) 3485, 3063, 1958, 1735, 1576 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.37-1.85

(m, 6 H), 2.57 (d, J = 5.7 Hz, 1 H), 3.71 (s, 3 H), 4.07– 4.13 (m, 1 H), 7.02 (t, J = 7.4 Hz, 2 H), 7.12 (tt, J = 1.2, 7.4 Hz, 1 H), 7.30–7.54 (m, 12 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  14.1 (t), 22.0 (t), 38.2 (t), 52.5 (q), 69.9 (d), 124.7 (s), 126.5 (d), 128.6 (d), 128.6 (d), 129.3 (d), 136.4 (d), 136.5 (d), 138.4 (s), 175.4 (s); exact mass m/z calcd for  $C_{18}H_{21}O_{3}^{120}Sn$  (M – PhSe) 405.0513, found 405.0523.


(b) Anhydrous  $K_2CO_3$  (3 mg, 0.02 mmol) was added to a stirred solution of 20.2 (94 mg, 0.16 mmol) in MeOH (5 mL), and stirring was continued for 3 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 15 cm), using 1:19 EtOAc-hexane, gave 20.6 (65 mg, 72%) as a yellow oil.

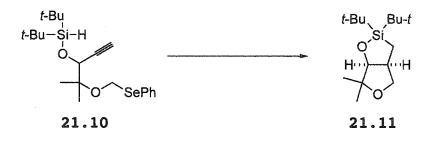
[1-(Iodomethyl)-4-pentenyl]benzene (21.5).




Ph<sub>3</sub>P (1.44 g, 5.5 mmol) and imidazole (0.375 g, 5.5 mmol) were added in one portion to a stirred solution of 2phenyl-5-hexen-1-ol<sup>38</sup> (0.485 g, 2.8 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL).<sup>39</sup> Stirring was continued for 10 min, and I<sub>2</sub> (1.40 g, 5.5 mmol) was added to the mixture. Stirring was continued for 3 h, and the reaction mixture was then diluted with saturated aqueous  $Na_2S_2O_3$  (20 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 30 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 15 cm), using 1:99 EtOAc-hexane, gave 21.5 (751 mg, 95%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3062, 2929, 1640 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.67-1.76 (m, 1 H), 1.85-2.03 (m, 3 H), 2.82-2.89 (m, 1 H), 3.32-3.41 (m, 2 H), 4.92-4.97 (m, 2 H), 5.69-5.78 (m, 1 H), 7.13-7.16 (m, 2 H), 7.22-7.34 (m, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  13.7 (t), 31.6 (t), 34.9 (t), 47.6 (d), 115.0 (t), 127.0 (d), 127.4 (d), 128.5 (d), 137.8 (d), 142.7 (s); exact mass m/z calcd for C<sub>12</sub>H<sub>15</sub>I 286.0219, found 286.0215.

[(2-Phenylhex-5-enyl)seleno]benzene (21.6).




NaBH<sub>4</sub> (52 mg, 1.35 mmol) was added to a stirred solution of 21.5 (250 mg, 0.87 mmol) and PhSeSePh (136 mg, 0.44 mmol) in MeOH (7 mL), more MeOH (3 mL) being used as a rinse to transfer all the NaBH4. Stirring was continued for 10 h and the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using hexane, gave 21.6 (230 mg, 83%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3072, 3027, 2926, 1640, 1579, 1477  $cm^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 1.68-1.76 (m, 1 H), 1.82-2.00 (m, 3 H), 2.82-2.88 (m, 1 H), 3.12-3.19 (m, 2 H), 4.87-4.94 (m, 2 H), 5.67-5.76 (m, 1 H), 7.10-7.44 (m, 10 H); <sup>13</sup>C NMR  $(CDCl_3, 100.6 \text{ MHz}) \delta 31.5$  (t), 35.2 (t), 35.3 (t), 45.6 (d), 114.7 (t), 126.62 (d), 126.64 (d), 127.5 (d), 128.4 (d), 128.9 (d), 130.8 (s), 132.5 (d), 138.1 (d), 143.9 (s); exact mass m/z calcd for  $C_{18}H_{20}^{80}Se$  316.0730, found 316.0727.

3-Cyclopentylmethylene-2,3-dihydro-5,6-dimethoxy-1Hinden-1-ol (21.9).



The general thermal procedure for radical cyclization was followed, using 21.840 (83.5 mg, 0.23 mmol) in PhH (10 mL), stannane 19.6 (143 mg, 0.33 mmol) and AIBN (2 mg, 0.01 mmol) in PhH (8 mL, plus 2 mL as a rinse), an addition time of 5 h, and an arbitrary reflux time of 5 h after the addition. The general basic workup procedure was followed, using aqueous LiOH (1.0 M, 2 mL) in THF (2 mL), and a reaction time of 3 h. Flash chromatography of the crude product over silica gel (1 x 15 cm), using 3:7 EtOAchexane, gave 21.9 (58.8 mg, 90%) as a colorless oil (a single isomer, stereochemistry not established): FTIR  $(CH_2Cl_2 \text{ cast})$  3383, 2949, 1605, 1500 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz)  $\delta$  1.25-2.00 (m, 9 H), 2.46-2.56 (m, 1 H), 2.58-2.73 (m, 1 H), 2.96-3.08 (m, 1 H), 3.41 (two s, each 3 H), 5.05 (dd, J = 3.2, 7.3 Hz, 1 H), 5.82 (dt, J = 2.3, 9.1 Hz, 1 H),6.80 (s, 1 H), 6.91 (s, 1 H);  $^{13}$ C NMR (C<sub>6</sub>D<sub>6</sub>, 75.5 MHz)  $\delta$ 25.5 (t), 33.7 (t), 40.2 (t), 40.8 (d), 55.3 (q), 73.4 (d), 102.8 (d), 107.9 (d), 123.1 (d), 133.7 (s), 137.9 (s), 139.5 (s), 150.9 (s), 151.1 (s); exact mass m/z calcd for C<sub>17</sub>H<sub>22</sub>O<sub>3</sub> 274.1569, found 274.1571.

cis-2,2-Bis(1,1-dimethylethyl)hexahydro-6,6-dimethylfuro[3,4-d]-1,2-oxasilole (21.11).



The general thermal procedure for radical cyclization was followed, using 21.10<sup>41</sup> (42.5 mg, 0.10 mmol) in PhH (3 mL), stannane 19.6 (65 mg, 0.15 mmol) and AIBN (2 mg, 0.01 mmol) in PhH (6 mL, plus 1 mL as a rinse), an addition time of 7 h, and an arbitrary reflux time of 5 h after the addition. The general basic workup procedure was followed, using aqueous LiOH (1.0 M, 1 mL) in THF (2 mL), and a reaction time of 1 h. Flash chromatography of the crude product over silica gel (1 x 10 cm), using 1:19 EtOAchexane, gave **21.11** (20.9 mg, 78%) as a colorless oil: FTIR  $(CH_2Cl_2 \text{ cast})$  2931, 2857, 1472, 1057 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.62 (dd, J = 2.8, 15.5 Hz, 1 H), 1.00 (s, 9 H), 1.06 (s, 9 H), 1.06-1.10 (m, 1 H), 1.14 (s, 3 H), 1.28 (s, 3 H, 2.90-3.00 (m, 1 H), 3.46 (dd, J = 6.6, 9.0 Hz, 1 H), 4.00 (t, J = 8.9 Hz, 1 H), 4.08 (d, J = 6.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  10.1 (s), 19.7 (s), 21.2 (t), 22.4 (q), 25.6 (q), 27.5 (q), 27.9 (t), 41.9 (d), 73.1 (t), 84.2 (s), 89.1 (d); exact mass m/z calcd for  $C_{15}H_{30}O_2Si$  270.2015, found 270.2017.



n-BuLi (2.5 M in hexane, 7.10 mL, 17.7 mmol) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of ethynyltrimethylsilane (2.45 mL, 17.0 mmol) in THF (100 mL). Stirring at -78 °C was continued for 1.5 h, and neat  $3-(2-iodoethyl)cyclopentene^{42}$  (4.00 g, 18.1 mmol) was added dropwise over ca. 30 min (syringe pump). The cold bath was removed and stirring was continued for 10 h. The reaction mixture was quenched by addition of water (100 mL), and extracted with  $Et_2O$  (3 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of residue over silica gel (2.5 x 20 cm), using hexane, gave recovered starting material (2.67 g) and [4-(2-cyclopenten-1-yl)but-1ynyl]trimethyl-silane (1.02 g, 88% corrected for recovered starting material) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3051, 2956, 2175, 1614, 1450 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ 0.12 (s, 9 H), 1.35-1.42 (m, 1 H), 1.45-1.53 (m, 1 H), 1.58-1.66 (m, 1 H), 1.99-2.07 (m, 1 H), 2.20-2.36 (m, 4 H), 2.69-2.77 (m, 1 H), 5.63-5.73 (m, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  0.3 (q), 18.4 (t), 29.5 (t), 32.0 (t), 34.9 (t), 44.9 (d), 84.3 (s), 107.6 (s), 130.7 (d), 134.3 (d); exact mass m/z calcd for  $C_{12}H_{20}Si$  192.1334, found 192.1337.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) 4-(2-Cyclopenten-1-yl)-1-butyne (21.12).



Aqueous NaOH (2.0 N, 20 mL) was added in one portion to a stirred solution of [4-(2-cyclopenten-1-yl)but-1ynyl]trimethylsilane (1.00 g, 5.2 mmol) in MeOH (30 mL). Stirring was continued for 3 h, and the mixture was then extracted with pentane (3 x 50 mL). The combined organic extracts were washed with water and brine, and then dried (MgSO<sub>4</sub>). Evaporation of the solvent at 1 atmosphere (short Vigreux column) and flash chromatography of the residue over silica gel (1 x 15 cm), using pentane, gave **21.12**<sup>43</sup> (0.30 g, 49%) as a colorless oil: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  16.8 (t), 29.4 (t), 31.9 (t), 34.6 (t), 44.6 (d), 68.0 (d), 84.7 (s), 130.9 (d), 134.2 (d).

#### IV References and Notes

1 Clive, D. L. J. Encyclopedia of Reagents for Organic Synthesis Paquette, L. A. Ed.; Wiley: New York, 1994, Vol. 8, 5412-5416. 2 Chem. & Eng. News. 1997, Oct. 27, p 23. 3 Barton, D. H. R.; Motherwell, W. B.; Stange, A. Synthesis 1981, 743-745. Hanessian, S.; Dhanoa, D. S.; Beaulieu, P. L. Can. J. 4 Chem. 1987, 65, 1859-1866. 5 Motherwell, W. B.; Crich, D. Free Radical Chain Reactions in Organic Synthesis, Academic Press: London, 1992. 6 Jacobus, J.; Leibner, J. E. J. Org. Chem. 1979, 44, 449-450. 7 Berge, J. M.; Roberts, S. M. Synthesis 1979, 471-472. Curran, D. P.; Chang, C. T. J. Org. Chem. 1989, 54, 8 3140-3157. 9 Davis, D. D.; Johnson, H. T. J. Organomet. Chem. 1975, 86, 75-87. 10 Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 7200-7201. 11 Kuivilla, H. G.; Menapace, W. J. Org. Chem. 1963, 28, 2165-2167. 12 Corey, E. J.; Suggs, J. W. J. Org. Chem. 1975, 40, 2554-2555. 13 Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1986, 108, 303-304. 14 Review on the use of polymethylhydrosiloxane as Lawrence, N. J.; Drew, M. stoichiometric reductant: D.; Bushell, S. M. J. Chem. Soc., Perkin Trans. 1 1999, 3381-3391.

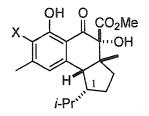
- 15 E. g., see: (a) Hays, D. S.; Fu, G. C. J. Org. Chem. 1996, 61, 4-5. (b) Hays, D. S.; Fu, G. C. J. Org. Chem. 1996, 61, 6751-6752.
- (a) Gerlach, M.; Jördens, F.; Kuhn, H.; Neumann, W.
  P.; Peterseim, M. J. Org. Chem. 1991, 56, 5971-5972.
  (b) Gerigk, U.; Gerlach, M.; Neumann, W. P.; Vieler, R.; Weintritt, V. Synthesis 1990, 448-452.
- 17 Light, J.; Breslow, R. Tetrahedron Lett. **1990**, 31, 2957-2968.
- 18 Rai, R.; Collum, D. B. Tetrahedron Lett. 1994, 35, 6221-6224.
- 19 Vedejs, E.; Duncan, S. M.; Haight, A. R. *J. Org. Chem.* **1993**, *58*, 3046-3050.
- 20 Clive, D. L. J.; Yang, W. J. Org. Chem. 1995, 60, 2607-2609.
- (a) Curran, D. P.; Hadida, S. J. Am. Chem. Soc. 1996, 118, 2531-2532.
  (b) Hadida, S.; Super, M. S.; Beckman, E. J.; Curran, D. P. J. Am. Chem. Soc. 1997, 119, 7406-7407.
  (c) Horner, J. H.; Martinez, F. N.; Newcomb, M.; Hadida, S.; Curran, D. P. Tetrahedron Lett. 1997, 38, 2783-2786.
  (d) Ryu, I.; Niguma, T.; Minakata, S.; Komatsu, M.; Hadida, S.; Curran, D. P. Tetrahedron Lett. 1997, 38, 7883-7886.
  (e) Curran, D. P.; Hadida, S.; Kim, S. Y.; Luo, Z. J. Am. Chem. Soc. 1999, 121, 6607-6615.
- 22 Review on alternatives to stannanes: Baguley, P. A.; Walton, J. C. Angew. Chem. Int. Ed. 1998, 37, 3072-3082.
- 23 Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188-194.
- 24 Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. J. Org. Chem. 1993, 58, 6838-6842.

- 25 Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2001, 74, 225-235.
- 26 Mikami, S; Fujita, K.; Nakamura, T.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1853-1855.
- 27 Zard, S. Z. Angew. Chem. Int. Ed. 1997, 36, 672-685.
- 28 Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1. 1975, 1574-1585.
- 29 Solladie, G; Kovenski, J; Colobert, F. Tetrahedron Asym. 1993, 4, 2173-2178.
- 30 Kuivila, H. G.; Beumel, O. F. Jr. J. Am. Chem. Soc. 1961, 83, 1246-1250.
- 31 Conil, M. F.; Jousseaume, B.; Noiret, N.; Pereyre, M. Organometallics 1994, 13, 24-25.
- 32 Sugai, S.; Ikawa, H.; Hasegawa, Y.; Yoshida, S.; Kutsuma, T.; Akaboshi, S. Chem. Pharm. Bull. 1984, 32, 967-976.
- 33 Van der Kerk, G. J. M.; Noltes, J. G.; Luijten, J. G.
   A. J. Appl. Chem. 1957, 7, 366-369.
- 34 Cf. Wardell, J. L.; Wigzell, J. McM. J. Chem. Soc., Dalton Trans. 1982, 2321-2326.
- 35 Wada, M.; Honna, M.; Kuramoto, Y.; Miyoshi, N. Bull. Chem. Soc. Jpn. 1997, 70, 2265-2267.
- 36 Supplied by Chemical Dynamics Corporation (South Plainfield, NJ).
- 37 Clive, D. L. J.; Russell, C. G.; Chittattu, G.; Singh, A. Tetrahedron 1980, 36, 1399-1408.
- 38 Jung, M. E.; Vu, B. T. J. Org. Chem. 1996, 61, 4427-4433.
- 39 Cf. Berkenbusch, T.; Brückner, R. Tetrahedron 1998, 54, 11461-11470.

- 40 Compound **21.8** was a gift from Haikang Yang of this laboratory.
- 41 Clive, D. L. J.; Yang, W.; MacDonald, A.; Wang, Z.; Cantin, M. J. Org. Chem. 2001, 66, 1966-1983.
- 42 This compound is reported, without experimental details, in Curran, D. P.; Yu. H.; Liu, H. Tetrahedron 1994, 50, 7343-7366. We prepared the iodide from the corresponding alcohol (Lee, C. C.; Wong, E. W. C. Tetrahedron 1965, 21, 539-545) by treatment with PPh<sub>3</sub>, I<sub>2</sub> and imidazole.
- 43 Piers, E.; Chong, M. J.; Howard, M. Tetrahedron 1989, 45, 363-380.

Chapter Two

Total Synthesis of  $(\pm)-1-epi$ -Hamigeran B,  $(\pm)$ -Hamigeran B and (-)-Hamigeran B


## I, Introduction

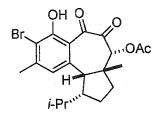
## 1.1 General

Research on bioactive natural compounds isolated from marine organisms has been studied extensively for over 30 years,<sup>1</sup> and a number of potentially important pharmaceutical leads have been uncovered. Moreover, marine organisms have provided a seemingly endless parade of novel structures which challenge synthetic chemists to develop new methods to synthesize these structures and to provide sufficient material for further biological studies. One such set of intriguing compounds is the subject of this section of the thesis.

In 1999, Cambie and coworkers isolated<sup>2</sup> a group of new compounds from the poecilosclerid marine sponge *Hamigera tarangaensis* Bergquist and Fromont (family Anchinoidae, syn. Phorbasidae) collected in shallow waters near the Hen and Chicken Islands off the north western coast of New Zealand.

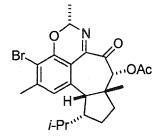
These eight phenolic compounds (1 - 8, Scheme 1) have a unique carbon skeleton in which a substituted aromatic nucleus is fused to a [4.3.0] or a [5.3.0] bicyclic system featuring a *cis* junction and bearing three or more stereogenic centers. The structures, which are shown in Scheme 1, were assigned mainly from extensive NMR examination.<sup>2</sup> The absolute configuration of hamigeran A (1) was determined by single crystal X-ray analysis<sup>3</sup> and the authors assumed that all other hamigerans have the same absolute configuration.




Br H I *i*-Pr<sup>1</sup>

3 X = H, hamigeran B

**4** X = Br, 4-bromohamigeran B


CO<sub>2</sub>H

CO2H



5 hamigeran C

1 X = Br, hamigeran A 2 X = H, debromohamigeran A

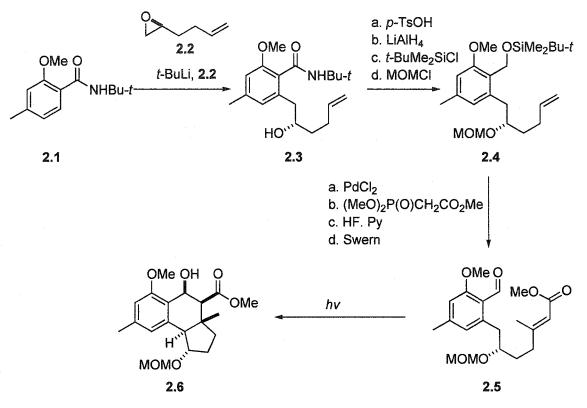




7 X = Br, hamigeran E 8 X = H, debromohamigeran E

Scheme 1

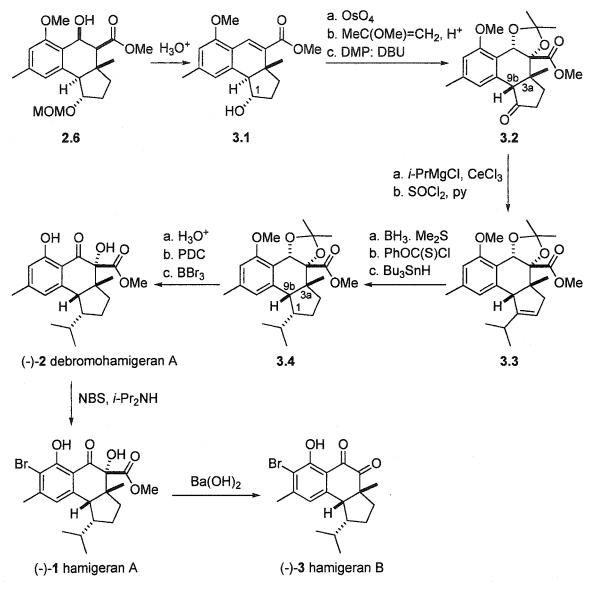
i-Pr


Evaluation of these compounds for biological activity<sup>2</sup> showed that hamigeran A (1), hamigeran B (3), 4 – bromohamigeran B (4), hamigeran C (5) and hamigeran D (6) have in vitro antitumor activity against P-388 leukemia cell lines with IC<sub>50</sub> values between 8  $\mu$ M and 31.6  $\mu$ M. Compounds 3, 4, 5, and 6 inhibited the growth of the Grampositive bacterium Bacillus subtilis. Compounds 3, 5, and also showed slight activity against Trichophyton 6 mentagrophytes. The most pronounced biologically activity observed for compound 3, as it had 100% virus was inhibition against both the Herpes and Polio viruses, with only slight cytotoxicity. Although hamigeran B is one of the structurally simpler members of the group, it is the most biological active one. Consequently, it has drawn the most intense attention as a synthetic target. When we began our own work no synthesis had been described, but before we had finished our synthesis, the Nicolaou research group<sup>4,5</sup> reported the first synthesis of (-)-hamigeran B and several other members of this family in 2001. The full details of their synthesis were also described in a recent full article.<sup>6</sup> After we published our synthesis of  $(\pm)$ hamigeran B,<sup>7</sup> a route to (-)-1-epi-hamigeran B was reported by the Mehta group<sup>8</sup> in the middle of 2003. And a few months ago, a third total synthesis of (-)-hamigeran B was published by the Trost group.<sup>9</sup> These studies are summarized in the following sections, where the atom numbering of hamigeran B is used for all compounds so that the isopropyl group is always at the position labeled C(1).

## 1.2 Nicolaou's Synthesis of (-)-Hamigeran B.

Based on their methodology of photoenolization of substituted benzaldehydes and *in situ* Diels-Alder trapping of the resulting hydroxy-o-quinodimethanes, the Nicolaou group was able to finish the total synthesis of (-)hamigeran B, as well as several of its congeners.<sup>4,5</sup>

Their synthesis started with the known benzamide 2.1 (Scheme 2). The dianion, which was obtained by treatment of benzamide 2.1 with 2 equiv of t-BuLi, opened the enantiomerically enriched epoxide (S)-2.2 to give the secondary alcohol 2.3. Acid-induced intramolecular attack of this alcohol at the amide group, followed by reduction with LiAlH<sub>4</sub> and selective stepwise protection of the resulting diol, afforded 2.4. Wacker oxidation of 2.4, followed by Horner-Emmons-Wadsworth reaction of the resulting methyl ketone with (MeO)<sub>2</sub>P(O)CH<sub>2</sub>CO<sub>2</sub>Me, desilylation and Swern oxidation, furnished benzaldehyde 2.5 as an E/Z mixture. The key step (2.5  $\rightarrow$  2.6) is the photochemically induced intramolecular Diels-Alder reaction to form the benzannulated system of the hamigerans. Scheme


2 shows the photochemical result for the *E*-olefin only, but the product from the *Z*-isomer was also used, as the next step converts both products to the same compound.



Scheme 2

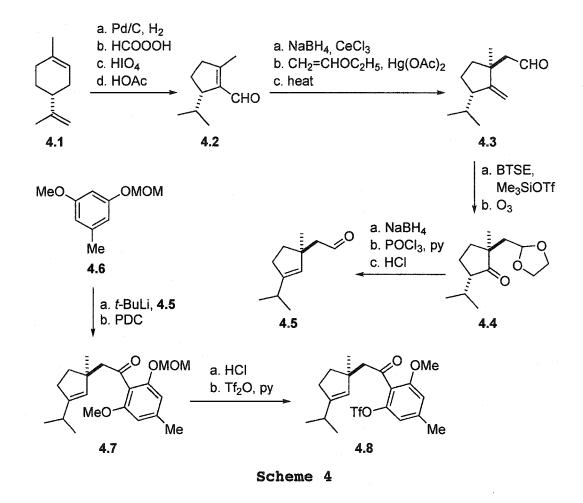
At this point, treatment of the key building block 2.6 (Scheme 3) with methanolic HCl at 60 °C led both to dehydration and cleavage of the MOM protecting group  $(2.6 \rightarrow$ 3.1). Olefin 3.1 was dihydroxylated stereoselectively from the under face, and the resulting vicinal diol was protected as its acetonide. The free hydroxyl group at C(1) was then oxidized with the Dess-Martin reagent, and a base induced isomerization at C(9b) now afforded ketone 3.2 with *cis* ring fusion at C(3a) and C(9b). Reaction of this ketone with *i*-PrMgCl in the presence of CeCl<sub>3</sub> introduced the

required isopropyl group at C(1), and then treatment with  $SOCl_2$  and pyridine gave olefin 3.3 as the major product.



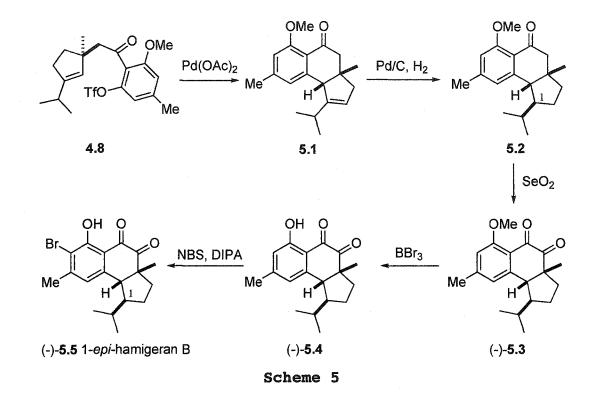
Scheme 3

The crucial stereochemistry at C(1) was set by hydroboration of olefin **3.3** under sonication conditions. After oxidative workup, the desired 1R, 2R alcohol can be separated as the major product (11:6 ratio against the *endo* addition product). The free hydroxyl group at C(2) was then removed under standard Barton deoxygenation conditions


to give acetonide 3.4 with the correct stereochemistry at C(1), C(3a) and C(9b).

The acetonide protecting group of 3.4 was removed; and PDC oxidation of the benzylic position followed by BBr<sub>3</sub>induced demethylation of the phenolic methyl ether led to the first natural product, (-)-debromohamigeran A [(-)-2]. (-)-Hamigeran A [(-)-1] was obtained by NBS-mediated selective bromination at the ortho position of 2. Finally, treatment of (-)-hamigeran A (1) with Ba $(OH)_2$  in MeOH/H<sub>2</sub>O brought about а cascade of reactions, including saponification, decarboxylation and oxidation at C(4) to furnish (-)-hamigeran B [(-)-3].

### 1.3 Mehta's Synthesis of 1-epi-(-)-Hamigeran B.

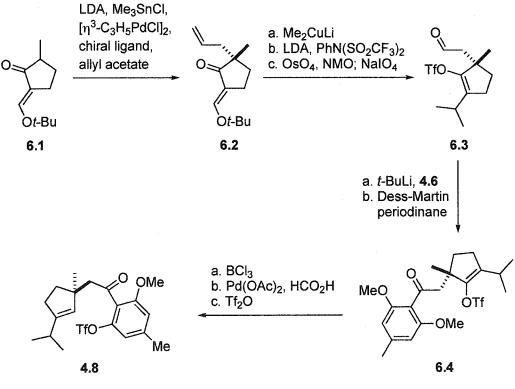

After we finished our synthesis of  $(\pm)$ -hamigeran B,<sup>7</sup> Mehta and Shinde reported their approach to optically pure (-)-1-epi-hamigeran B in the middle of 2003.<sup>8</sup>

Their synthesis (Scheme 4) began with abundantly available (+)-limonene 4.1. Hydrogenation, followed by oxidation with performic acid, gave a mixture of *trans-p*menth-1,2-diols. Cleavage of the diols with periodic acid and cyclization of the resultant keto aldehyde with acetic acid afforded aldehyde 4.2.<sup>10</sup> This aldehyde was reduced and the resulting alcohol transformed into a vinyl ether by Hg<sup>2+</sup> catalyzed transetherification. Thermolysis of the vinyl ether afforded aldehyde 4.3 via Claisen rearrangement.<sup>11</sup> Protection of the aldehyde group by reaction with 1,2bis(trimethylsilyloxy)ethane in the presence of catalytic Me<sub>3</sub>SiOTf, followed by ozonolysis of the terminal olefin gave ketone 4.4. Reduction of the carbonyl group and further dehydration of the resulting alcohol, followed by removal of the aldehyde protecting group, delivered the unsaturated aldehyde 4.5. Directed metalation of the aromatic compound 4.6 and reaction with 4.5, followed by PDC oxidation, furnished 4.7. The MOM group was then transformed in two steps into the optically pure key triflate 4.8.



At this stage an intramolecular Heck coupling led to tricyclic compound 5.1 (Scheme 5). Surprisingly, catalytic hydrogenation of this compound occurred exclusively from the more hindered *endo* face of the molecule with Pd-C, to furnish compound 5.2 with the C(1) isopropyl group being epimeric with respect to hamigeran B (3). Changes to the catalyst and solvent did not alter the stereochemical outcome. With compound 5.2 in hand, selenium dioxide oxidation delivered optically pure diketone (-)-5.3. The

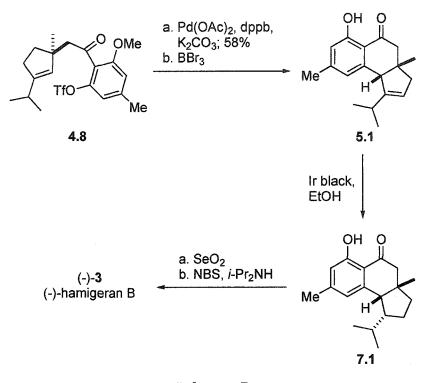
methyl ether moiety was deprotected to give phenol (-)-5.4and finally, selective bromination with NBS in the presence of a catalytic amount of  $i-\Pr_2NH$  afforded (-)-1-epihamigeran B [(-)-5.5].




#### 1.4 Trost's Synthesis of (-)-Hamigeran B.

Very recently, the Trost group reported their approach to optically pure (-)-hamigeran B.<sup>9</sup>

The key steps of their synthesis - construction of the tricyclic system and the stereochemical centers of hamigeran B - are very similar to Mehta's route, although they have used a different approach to make the substrate for the Heck reaction (Scheme 6). The lithium enolate formed from 6.1, itself derived in a one-pot reaction of 2-methylcyclopentanone and ethyl formate first with *t*-BuONa and then with sulfuric acid, was subjected to asymmetric alkylation using the Trost methodology<sup>12</sup> to afford ketone


6.2 with >90% ee. The alkoxymethylene group of 6.2 was then converted into an isopropyl group upon treatment with lithium dimethylcuprate. The reaction was quenched by addition of a triflating agent, leading to direct formation of a vinyl triflate. At this point, oxidative cleavage of the pendant double bond gave aldehyde 6.3. Direct reaction of this aldehyde with lithiated 4.6, followed by oxidation with the Dess-Martin periodinane, gave ketone 6.4. One of the aryl ethers was demethylated and the vinyl triflate was reductively cleaved [Pd(OAc)<sub>2</sub>, HCO<sub>2</sub>H]. The free phenol was then converted into the required triflate 4.8.



Scheme 6

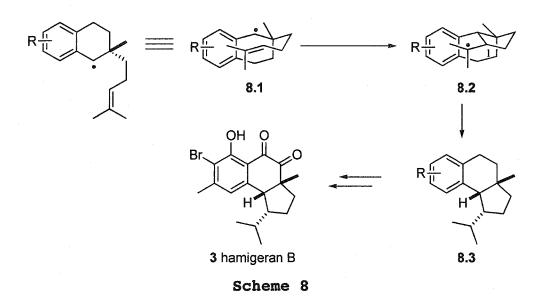
The required intramolecular Heck reaction was effected by using dppb as the ligand, and  $K_2CO_3$  as base. The expected alkene **5.1** was obtained in 58% yield (Scheme 7). The phenolic hydroxyl was liberated by demethylation, and

hydrogenation of the resulting alkene over Pd-C, gave the exact same product (5.2, Scheme 5) as Mehta *et al.* obtained in their synthesis of 1-*epi*-hamigeran B.

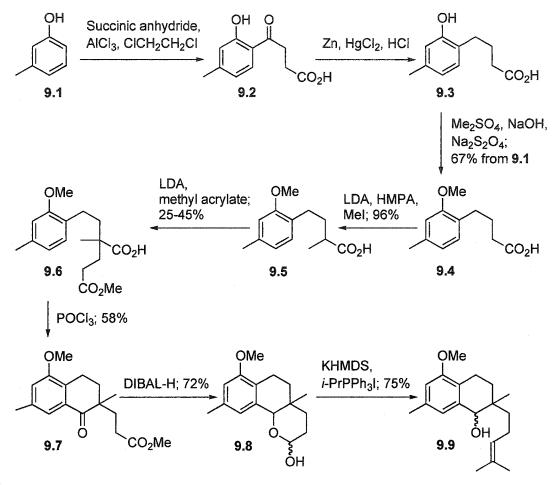


Scheme 7

The Trost group assumed that the undesired epi product was formed by an equilibration in the semihydrogenation intermediate, a process that was made possible because the final reductive elimination step is slow. Therefore, they used iridium as the catalyst since it was known to minimize such equilibrations.<sup>13</sup> As expected, hydrogenation with this 7.1 with catalyst now qave ketone the correct stereochemistry at all stereogenic centers. Oxidation of 7.1 with selenium dioxide and then selective bromination at the ortho position to the phenol completed the total synthesis.


It is noteworthy that the Trost group, because of its extensive experience with organometallic chemistry, was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

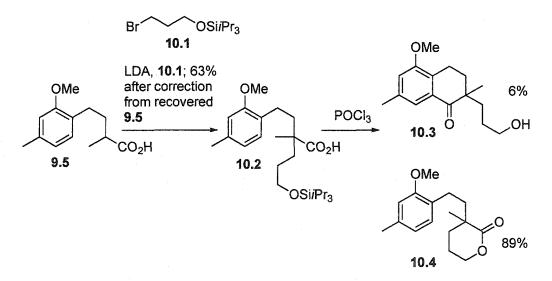

#### II Results and Discussion

## 2.1 Synthesis of $(\pm)-1-epi$ -Hamigeran B.

The most obvious synthetic difficulty presented by hamigeran B is the stereochemistry at C(1), because the bulky isopropyl substituent extends into the more hindered face of the structure. This orientation probably disqualifies methods that rely on stereochemical equilibration at C(1).



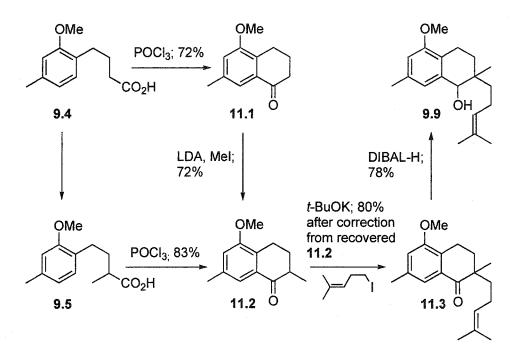
Our first approach to hamigeran B was based on the idea of using radical cyclization. As summarized in Scheme 8, we expected that the benzylic radical 8.1 would cyclize via a 5-exo-trigonal pathway, with the isopropyl group occupying an equatorial conformation  $(8.1 \rightarrow 8.2)$ . Such a ring closure would lead to the tricyclic compound 8.3 with the required stereochemistry at C(1), and this compound could then serve as a key intermediate and be transformed eventually into hamigeran B (3).




Scheme 9

To generate an appropriate radical precursor, we started our synthesis with *m*-cresol (9.1). As shown in Scheme 9, the *m*-cresol was first converted into keto acid 9.2 by Friedel-Crafts acylation with succinic anhydride.<sup>14</sup> Clemmensen reduction<sup>15</sup> of 9.2 gave the phenolic acid 9.3, and *O*-methylation, using Me<sub>2</sub>SO<sub>4</sub> in aqueous NaOH in the presence of a catalytic amount of Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>,<sup>14</sup> then afforded acid 9.4 in 67% overall yield from 9.1. Compound 9.4 was easily methylated<sup>16</sup> by treatment with LDA and MeI in the presence of HMPA to give acid 9.5 in 96% yield. A second alkylation  $\alpha$  to the carboxyl group (LDA, methyl acrylate, 25-45%) afforded the dialkylated compound 9.6 with the

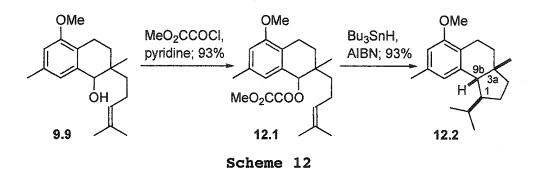
required side chains. This compound was made to cyclize by treatment with POCl<sub>3</sub> in ClCH<sub>2</sub>CH<sub>2</sub>Cl at reflux, to produce the tetralone **9.7** in 58% yield. DIBAL-H reduction of **9.7** gave us the expected lactols **9.8**. These lactols were inseparable, and were treated with  $Ph_3P^+CH(CH_3)_2I^-$  and excess KHMDS to furnish benzylic alcohols **9.9** in 75% yield.<sup>17</sup>


Some reactions shown in Scheme 9 gave low yields, especially for the conversion of compound **9.5** into **9.6**; therefore, we made some modifications to this route. Our first attempt in this regard was the alkylation of acid **9.5**. The acid was treated with 2 equiv of LDA and the bromo compound **10.1** was then added to the resulting dianion as electrophile, to give dialkylated acid **10.2** in 63% yield (Scheme 10). However, when compound **10.2** was subjected to cyclization with POCl<sub>3</sub>, only a 6% yield of the desired tetralone (**10.3**) was obtained, but lactone **10.4** was isolated in 89% yield.

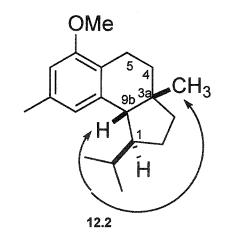




Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


In another series of experiments, we treated acid 9.4 with POCl<sub>3</sub> in Cl<sub>2</sub>CHCHCl<sub>2</sub>, and obtained tetralone 11.1 in 72% yield (Scheme 11). Methylation  $\alpha$  to this ketone under standard conditions (LDA, -78 °C, MeI, 72%) gave compound 11.2. Alternatively, tetralone 11.2 was also made from acid 9.5 by treatment with POCl<sub>3</sub> (83% yield). Obviously, the route 9.4  $\rightarrow$  9.5  $\rightarrow$  11.2 provided a higher overall yield over these 2 steps.

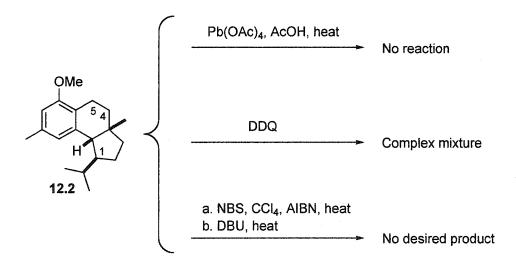



Scheme 11

The required second side chain was then installed by treating **11.2** with t-BuOK<sup>18</sup> and 2-methyl-5-iodo-2-pentene<sup>19</sup> in PhMe at reflux. It is worth mentioning here that we also tried this reaction with other bases, such as LDA and LHMDS. Unfortunately, they gave none of the desired product at all. The dialkylated tetralone **11.3** was reduced with DIBAL-H to afford alcohol **9.9** in 78% yield as a single isomer. The stereochemistry of this alcohol was not

determined, but we assume that the hydride was delivered from the face of the (smaller) methyl group.



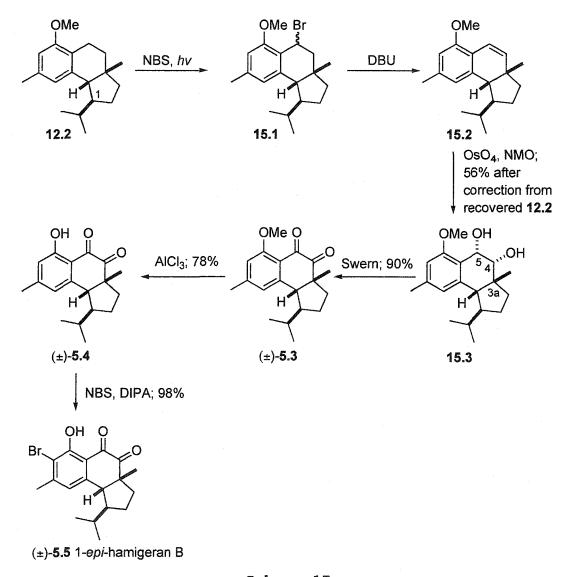

At this point the stage has been set to generate a radical at the benzylic position of alcohol 9.9, our hope being that this radical would cyclize to provide the desired stereochemistry. Accordingly, alcohol 9.9 was converted into radical precursor  $12.1^{20}$  by treatment of MeO<sub>2</sub>CCOCl in the presence of pyridine (Scheme 12). Slow addition of a benzene solution of Bu<sub>3</sub>SnH and AIBN to a refluxing solution of compound 12.1 in the same solvent, produced in high yield what was eventually characterized as the tricyclic compound 12.2.



Scheme 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To examine if the stereochemical outcome of the radical cyclization followed our expectation, we performed extensive NMR studies on 12.2. From T-ROESY measurements we could establish that the proton at C(9b) and the C(3a) angular methyl substituent are *cis* to each other based on the fact that strong T-ROESY cross-peaks can be observed between these two substituents (Scheme 13). Unfortunately, we were unable to determine the relative stereochemistry at C(1) by these studies because of the complexity of the spectrum; however, we proved that compound 12.2 has the undesired stereochemistry at C(1) at a later stage by single crystal X-ray analysis of a derivative [Scheme 15, compound ( $\pm$ )-5.3].





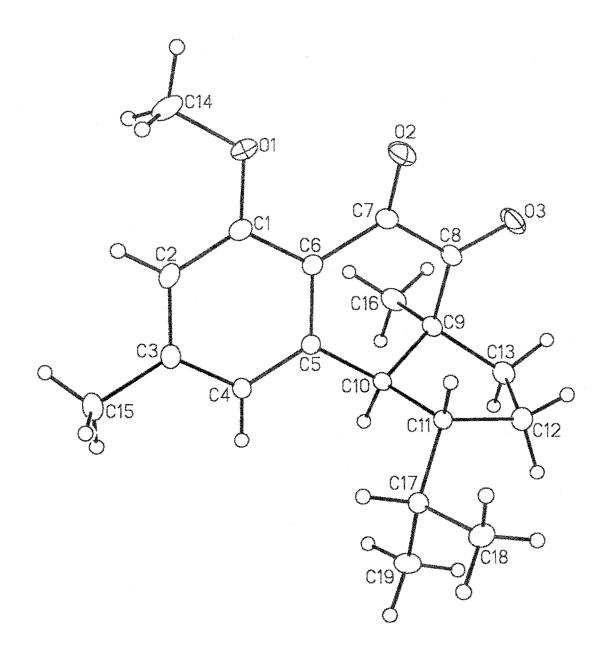

Although we did not know the stereochemistry at C(1) at this stage, we decided to continue with the sequence and to generate the carbonyl functionalities at C(4) and C(5) first. However, attempts to generate a C(4)-C(5) double bond were unsuccessful when we heated 12.2 with  $Pb(OAc)_4^{21}$  in AcOH or with DDQ (Scheme 14). Heating 12.2 with 1 equiv of NBS and a catalytic amount of AIBN in CCl<sub>4</sub>, followed by

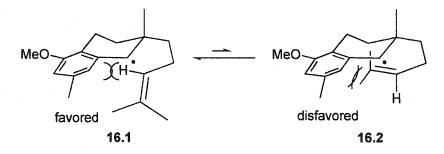
heating with DBU,<sup>22</sup> also gave no trace of the desired product.

Finally, benzylic bromination of 12.2 was achieved by irradiation in the presence of NBS<sup>23</sup> (Scheme 15), but the presumed products (15.1) were too unstable to allow purification; accordingly, the crude material was treated directly with DBU, so as to form alkene 15.2, which was obtained mixed with unchanged 12.2.



Scheme 15



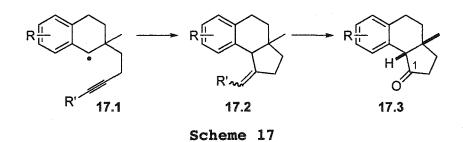


Figure 1 Crystal structure of (±)-5.3

The crude mixture was subjected to dihydroxylation, under standard conditions (catalytic  $OsO_4$ , stoichiometric NMO),<sup>24</sup> and at this stage, pure diol **15.3** could be isolated from the unreacted **12.2** (56% overall yield, after correction for recovered **12.2**). The stereochemical assignment to the hydroxyls in **15.3** was made on the basis of NOE measurements (cross-peaks between the proton at C(5) and the C(3a) methyl substituent). Swern oxidation of this diol led to the crystalline diketone  $(\pm)-5.3$ , whose structure was assigned by single crystal X-ray analysis (Figure 1).

Surprisingly, treatment of  $(\pm)-5.3$  with BBr<sub>3</sub> failed to give the corresponding demethylation product  $(\pm)-5.4$ . However, this step could be done by treating diketone  $(\pm)-5.3$  with AlCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> at reflux  $(77\%).^{25}$  Finally, bromination at 0 °C with NBS in the presence of catalytic *i*-Pr<sub>2</sub>NH, conditions known<sup>26</sup> to favor ortho bromination, gave us racemic 1-*epi*-hamigeran B [ $(\pm)-5.5$ ] in high yield.

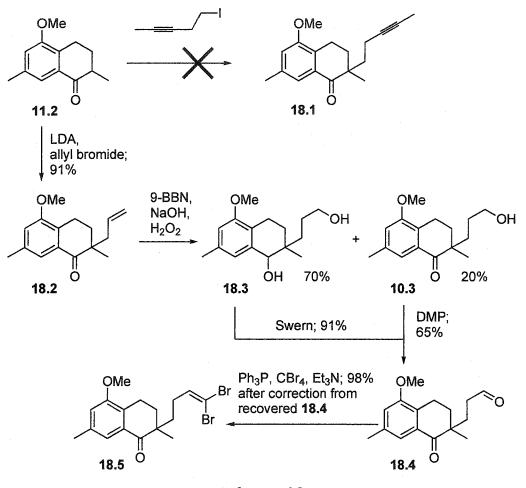
The unexpected outcome of this approach — which led to the 1-epi series — prompted us to modify our synthetic plan, and those studies are summarized in the following section.

2.2 Synthesis of  $(\pm)$ -Hamigeran B.



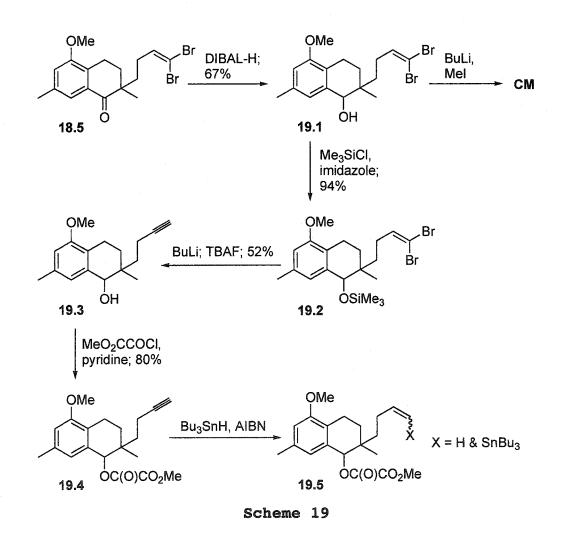

Scheme 16

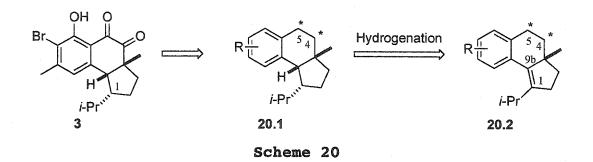
Our previous studies showed that with the isopropyl substituent installed, the 5-exo-trigonal radical cyclization did not give us the desired stereochemistry at C(1). This undesired result is probably due to the fact that steric interaction between the large isopropyl moiety


and the tetralone ring system (Scheme 16) makes transition state 16.1, in which the large substituent is *exo*, more favored than the *endo* conformation 16.2. Consequently, the more thermodynamically favored product 12.2 is produced (Scheme 12).

avoid this steric То interaction, a slight modification was examined, as shown in Scheme 17. We planned to do the radical cyclization onto a triple bond  $(17.1 \rightarrow 17.2)$ , and the resulting tricyclic product would then be subjected to ozonolysis  $(17.2 \rightarrow 17.3)$ . The resulting ketone 17.3 might provide opportunities for introducing the isopropyl group with the correct stereochemistry by a sequence involving Grignard addition, dehydration and hydrogenation. Although this part of our plans are similar to the reported method of the Nicolaou group, it should be remembered that at this stage no synthesis had been described in the literature, and, in the event, this route was not used.



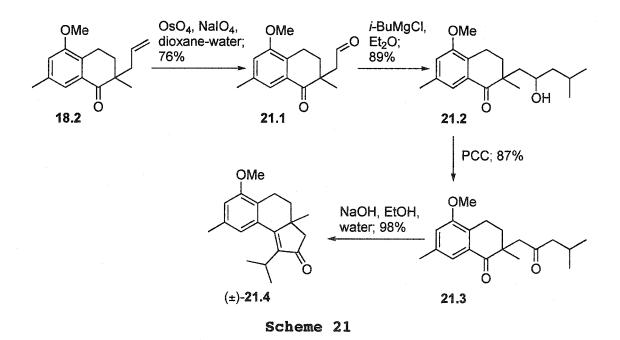

Direct alkylation of **11.2** with LDA and 5-iodopent-2yne led only to complex mixtures (Scheme 18). However, alkylation with LDA and allyl bromide gave us **18.2** in high yield (91%).


Hydroboration of **18.2** (Scheme 18) afforded two products, the diol **18.3** (70%) and the ketone alcohol **10.3** (20%). Both **18.3** and **10.3** could be converted to dicarbonyl compound 18.4 in high yield by oxidation. Treatment of 18.4 with  $Ph_3P$  and  $CBr_4$  in the presence of  $Et_3N$ , gave dibromide 18.5 in 98% yield.



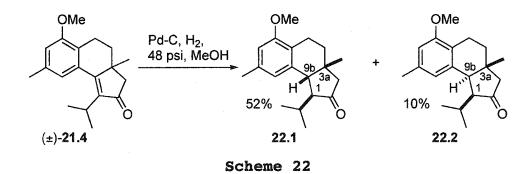
Scheme 18

Reduction of 18.5 with DIBAL-H furnished alcohol 19.1 in 67% yield (Scheme 19). Unfortunately, treatment of this alcohol with 2 equiv BuLi, followed by MeI, did not give us the desired acetylene, and only a complicated mixture was obtained. Therefore, we decided to protect the free hydroxyl before the base treatment. Accordingly, the benzylic alcohol was protected as its silyl ether (Me<sub>3</sub>SiCl, imidazole, 94%) to give 19.2. Treatment of this compound with 2 equiv of BuLi, followed by desilylation with Bu<sub>4</sub>NF, afforded acetylene **19.3** in 52% yield over two steps. Compound **19.3** was then converted into the radical precursor **19.4** under standard conditions (MeO<sub>2</sub>CCOC1, pyridine, 80%). However, treating **19.4** with Bu<sub>3</sub>SnH and AIBN (slow addition) in PhMe at reflux did not give us any cyclized products; instead, only products (**19.5**) from the hydrostannylation of the triple bond were obtained. We did not investigate whether replacing the acetylenic hydrogen by a methyl group would have retarded the hydrostannylation sufficiently to allow generation of the desired benzylic radical.






76


The difficulty we had encountered in establishing the stereochemistry at C(1) by radical cyclization approaches caused us to abandon radical-based methods, and we decided to pursue a new and more efficient route to our target.

As shown in Scheme 20, we realized that hamigeran B (3) might be easily made from intermediates such as 20.1 with all three correct stereo centers. We felt that if we could make tricyclic compound 20.2, which bears a double bond between C(1) and C(9b), and if we could selectively reduce this double bond from the same face as the C(3a) angular methyl substituent, then we would obtain 20.1, and eventually, our target.



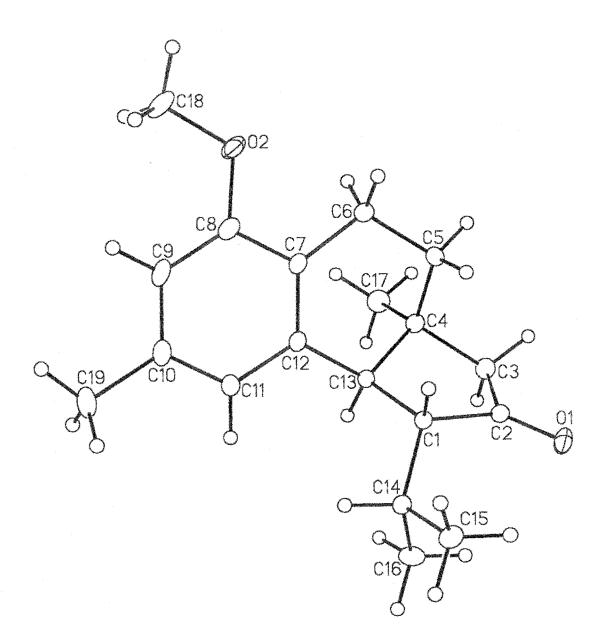
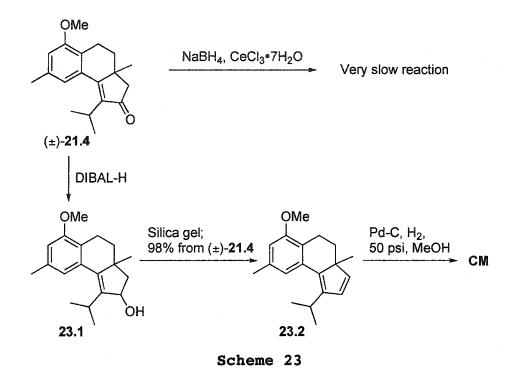
To this end, we started with compound 18.2, one of our previous intermediates (Scheme 18). The allyl side chain of 18.2 was cleaved (Scheme 21) by the Lemieux-Johnson method<sup>27</sup> (OsO<sub>4</sub>, NaIO<sub>4</sub>, 76%) to afford ketone aldehyde 21.1. The aldehyde carbonyl of this compound was selectively converted to a mixture of alcohols (21.2) in 89% yield by treatment with 1 equiv *i*-BuMgCl. Oxidation of this mixture, using PCC, then gave diketone 21.3 in high yield. When this diketone was boiled in aqueous ethanolic sodium hydroxide, the key intermediate enone ( $\pm$ )-21.4 was generated in excellent yield (98%).

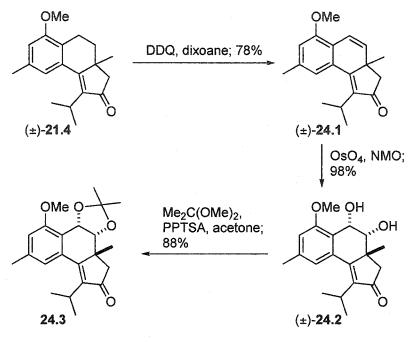
With enone  $(\pm)-21.4$  in hand, our efforts were now directed to the task of hydrogenating the carbon-carbon double bond from the same face as the angular methyl group at C(3a).



Hydrogenation of ketone  $(\pm)-21.4$  over Pd-C (MeOH, H<sub>2</sub>, 48 psi, 24 h), gave a mixture from which we could isolate ketone 22.1 as the major product in 52% yield (Scheme 22). This substance is crystalline, and single crystal X-ray analysis (Figure 2) established the structure shown in Scheme 22. The other product we isolated from the hydrogenation was ketone 22.2 (10%). The stereochemistry of this compound was tentatively assigned by extensive NMR

measurements [no cross-peaks between H(9b) and the C(3a) methyl substituent].

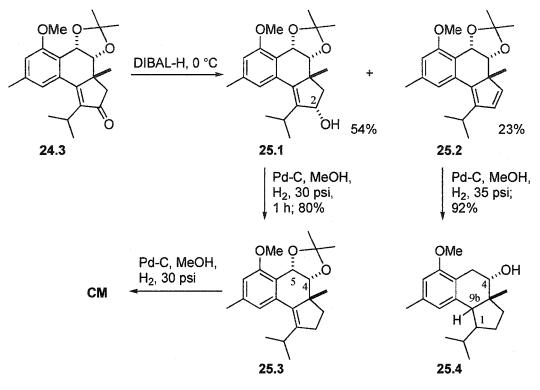


Figure 2 Crystal structure of 22.1

As a working hypothesis, we assumed that the desired C(1) stereochemistry had indeed been generated, but that the desired product had undergone epimerization at C(1),

mediated by the ketone. Consequently, we sought to block this pathway by reducing the ketone carbonyl group.



Reduction of (±)-21.4 with NaBH<sub>4</sub>-CeCl<sub>3</sub>.7H<sub>2</sub>O was extremely slow, but the ketone did react rapidly with DIBAL-H (Scheme 23). However, the resulting alcohol 23.1 is very acid sensitive, and flash chromatography over silica gel gave the corresponding elimination product, Hydrogenation of this diene (Pd-C, H<sub>2</sub>, 50 psi, diene 23.2. MeOH) did saturate both double bonds, but produced an inseparable mixture of stereoisomers, with the ratio of the components varying from experiment to experiment. We attributed this stereochemical outcome to a lack of facial To enhance such selectivity during the selectivity. hydrogenation, we decided to introduce bulky substituents into ketone (±)-21.4 at C(4) and C(5) so as to block the  $\alpha$ face of this molecule.



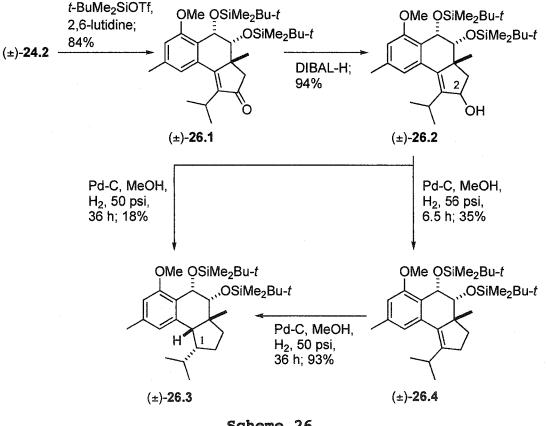

Scheme 24

Accordingly, ketone  $(\pm)-21.4$  was dehydrogenated with DDQ in dioxane at reflux, to afford compound  $(\pm)-24.1$  (78%, Scheme 24). The double bond at C(4) and C(5) was then dihydroxylated under standard conditions (catalytic OsO<sub>4</sub>, stoichiometric NMO), and gave the expected diol  $[(\pm)-24.2]$  in excellent yield. At this point, NOE measurements showed that the hydroxyl groups were *anti* to the adjacent angular methyl group, and this assignment was later confirmed by X-ray analysis of a more advanced intermediate.

Treatment of diol  $(\pm)-24.2$  with 2,2-dimethoxypropane and pyridinium *p*-toluenesulfonate afforded the desired ketal 24.3 in 88% yield. We hoped that this ketal structure would provide sufficient bulk to block the  $\alpha$  face of the molecule and direct hydrogenation to the opposite face.

In preparation for our planned hydrogenation studies, the carbonyl group of ketone 24.3 was reduced with DIBAL-H (Scheme 25). A 2.3:1 mixture of allylic alcohol 25.1 [tentative stereochemistry shown at C(2), assignment based on NOE measurements] and diene 25.2 was obtained.




Scheme 25

Hydrogenation of allylic alcohol 25.1 at 30 psi for 1 h, gave compound 25.3 (ca 80%), resulting from hydrogenolysis of the allylic hydroxyl. However, when the reaction time was longer, only a mixture of substances lacking the benzylic oxygen originally at C(5) was formed. Hydrogenation of diene 25.2 for 36 h, under similar conditions (Pd-C, MeOH, H<sub>2</sub>, 35 psi), gave alcohol 25.4 [stereochemistry at C(1) and C(9b) was not established] in 92% yield.

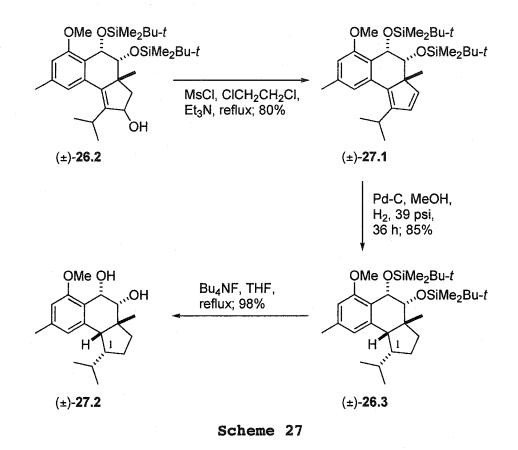
We also tried hydrogenation of diene 25.2 with other catalysts. Only the C(4)-C(5) double bond of 25.2 could be reduced with  $Rh-Al_2O_3$  (H<sub>2</sub>, 700 psi, 50 °C, MeOH, 19 h), Wilkinson's catalyst (H<sub>2</sub>, 400 psi, 50 °C, MeOH, 48 h), or

Raney 2800 nickel (2800 psi, 60 °C, MeOH, 67 h). In other attempts to reduce alkene 25.3, we found that the tetrasubstituted double bond of this compound was inert to BH3 (at room temperature) or to 9-BBN, even in THF at reflux.

From the above experiments, we concluded that only a Pd-C catalyst could successfully mediate the hydrogenation of the tetra-substituted double bond between C(1) and C(9b); but this catalyst also caused hydrogenolysis of the C(5) oxygen function of 25.2. These observations forced us to make another modification to our hydrogenation route, so as to avoid hydrogenolysis.



Scheme 26


We decided to protect the hydroxyl groups of  $(\pm)-24.2$ as t-butyldimethylsilyl ethers, which we hoped would have sufficient bulk to suppress coordination of the benzylic

oxygen to the catalyst. Later, from the literature we learnt that hydrogenolysis is facilitated by the development of a partial positive charge on the benzylic carbon<sup>28</sup> and siloxy groups have a lowered ability to stabilize an adjacent positive charge.<sup>29</sup> Diol ( $\pm$ )-24.2 was treated with excess t-BuMe<sub>2</sub>SiOSO<sub>2</sub>CF<sub>3</sub> in the presence of 2,6lutidine to afford ketone ( $\pm$ )-26.1 in 84% yield (Scheme 26). As before, this ketone was then reduced with DIBAL-H to give alcohol ( $\pm$ )-26.2 (94%) as the only product, whose stereochemistry at C(2) was not established.

From our previous hydrogenation experiments, we realized that a prolonged time is required to saturate the tetrasubstituted C(1)-C(9b) double bond. The hydrogenation of alcohol  $(\pm)$ -26.2 was first done for 36 h (Pd-C, H<sub>2</sub>, 50 Unfortunately, from the reaction mixture we were psi). only able to isolate 18% of a single compound with the expected polarity on TLC plates for the desired product. The spectral data [<sup>1</sup>H, <sup>13</sup>C NMR and MS (electrospray)] showed that this compound is indeed the product of saturation of the double bond of  $(\pm)-26.2$ . From NOE measurements, we could also observe the key cross-peaks between protons at C(1), C(9b) and the C(3a) methyl group. Based on these measurements, we determined that we had the desired product  $[(\pm)-26.3]$  from hydrogenation of  $(\pm)-26.2$ ; our structure assignment to  $(\pm)-26.3$  was also later proved by single crystal X-ray analysis on the product of desilylation  $[(\pm)-$ 27.2, Figure 3].

Although we could isolate the desired product, the yield was unacceptably low. On the assumption that a longer reaction time might lead to side reactions and reduce the amount of the desired product, we intentionally stopped the hydrogenation at 6.5 h; this time alkene (±)-

**26.4** was isolated from the reaction mixture in 35% yield. We then hydrogenated this alkene (Pd-C, H<sub>2</sub>, 50 psi, MeOH, 36 h), and this time we obtained the desired product  $[(\pm)-26.3]$  in excellent yield (93%).



These observations suggested that the hydroxyl group at C(2) of alcohol  $(\pm)-26.2$  had a deleterious effect on the course of the hydrogenation. Although we did not know the reason for this effect, we decided to remove the hydroxyl group before the hydrogenation step.

Accordingly, alcohol  $(\pm)-26.2$  was dehydrated (Scheme 27) by mesylation conducted first at room temperature, and then at reflux in 1,2-dichloroethane, to give diene  $(\pm)-$ **27.1.** As expected, this diene could be hydrogenated as before (Pd-C, MeOH and H<sub>2</sub>, 39 psi, 36 h) to afford  $(\pm)-26.3$ 

in high (85%) yield. Removal of the two silyl protecting groups failed with  $Bu_4NF$  at room temperature (the starting material was recovered), probably due to steric factors. However, the desilylation was successful with  $Bu_4NF$  in THF at reflux for 20 h, to give diol (±)-27.2 (98%). This diol is a crystalline solid and so we were able to get an X-ray analysis (Figure 3), and confirm that we had the desired stereochemistry.

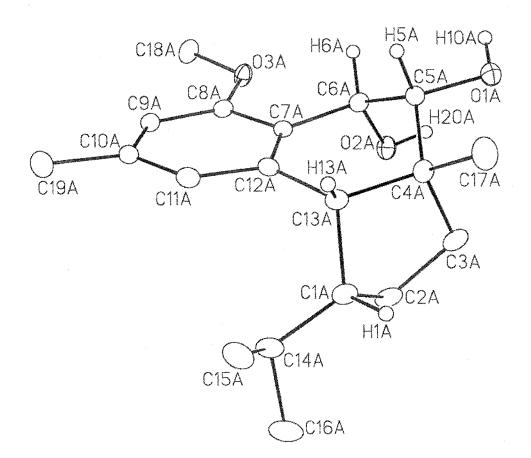
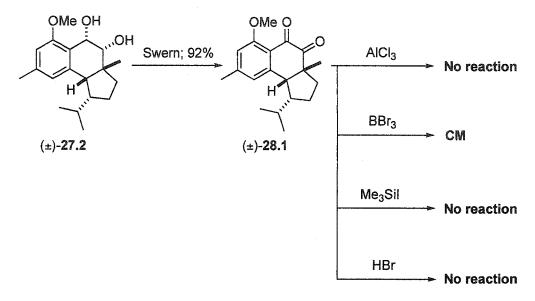
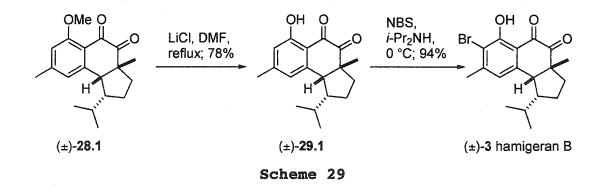
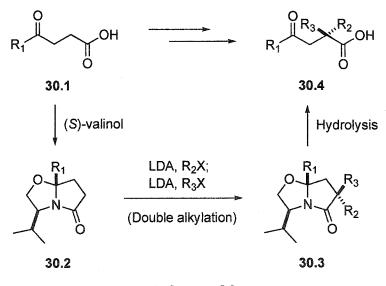





Figure 3 Crystal structure of (±)-27.2



Scheme 28

As shown in Scheme 28, Swern oxidation of  $(\pm)-27.2$  took the route as far as diketone  $(\pm)-28.1$  (92%). Now the stage had been set to remove of the *O*-methyl group. To our surprise, this step was troublesome. We first tried BBr<sub>3</sub>, as Nicolaou used this method successfully (his work now having been published),<sup>5</sup> but only a complicated mixture was obtained. Upon treatment with other Lewis acids, such as AlCl<sub>3</sub> and Me<sub>3</sub>SiI, even in CH<sub>2</sub>Cl<sub>2</sub> at reflux, no trace of the desired product was detected. Similarly, treatment with HBr also led to no reaction.

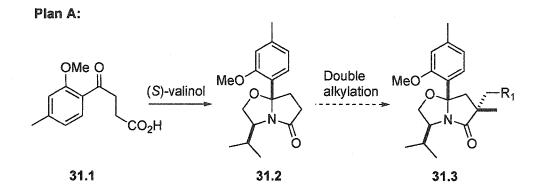


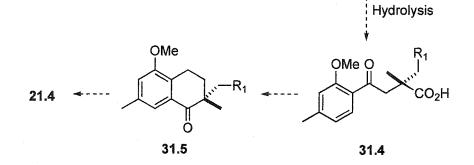

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fortunately, we soon found that the demethylation of  $(\pm)-28.1$  could be done smoothly by treatment with LiCl<sup>30</sup> in DMF at reflux for 20 h to afford phenol  $(\pm)-29.1$  (Scheme 29). Finally, selective bromination at the *ortho* position to the phenolic hydroxyl,<sup>26</sup> by treatment with NBS in the presence of a catalytic amount of  $i-Pr_2NH$ , gave us  $(\pm)-hamigeran$  B  $[(\pm)-3, 94\%]$ . The <sup>1</sup>H and <sup>13</sup>C NMR, FTIR, and mass spectral characteristics of our synthetic material  $[(\pm)-3]$  matched those reported for the natural product.<sup>2</sup>

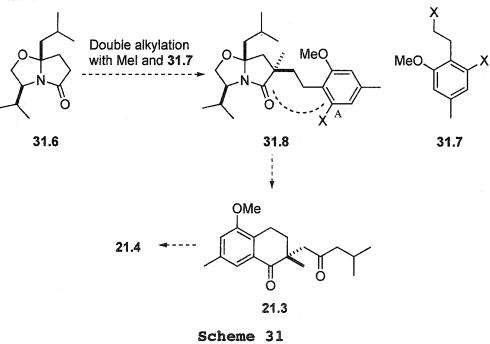
# 2.3 Synthesis of Natural (-)-Hamigeran B.

With racemic hamigeran B in hand, our next mission was to find a way to make optically pure material. Examination of our synthesis showed immediately that the above route could be applied if we could make the key intermediate 21.4 (Scheme 21) in enantiomerically pure form, because all other stereogenic centers in the target were determined by the stereochemistry at C(3a).

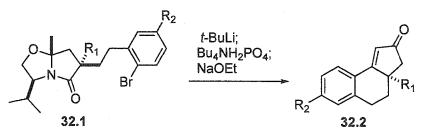




Scheme 30

To build up a system with an asymmetric quaternary carbon, we decided to use Meyers' method<sup>31</sup> based on lactam 30.2 (Scheme 30), because this lactam can be easily made optically pure from commercial (S)-valinol  $(30.1 \rightarrow 30.2)$ . This lactam favors endo alkylation  $(30.2 \rightarrow 30.3)$ ; both enantiomers of the hydrolysis product 30.4 are accessible by switching the order of addition of the alkylating reagents and, most importantly, in most cases, diastereomers from the alkylation are separable by simple flash chromatography.

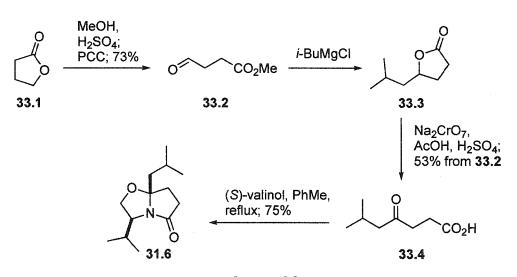

order to apply Meyers' methodology in In our synthesis, we could start from keto acid 31.1. This was in fact easily made from acid 9.2. Acid 31.1 was converted into lactam 31.2 by condensation with (S)-valinol (Scheme 31, plan A). We hoped that this lactam could be dialkylated, first with MeI, and then with a side chain bearing some functional groups which would be manipulated later on, to give 31.3. Hydrolysis of this dialkylated lactam should afford keto acid 31.4, and this acid would be converted into tetralone 31.5. The tetralone represents an advanced intermediate leading to optically pure ketone 21.4.

Alternatively, we could make lactam **31.6** (Scheme 31, plan B). This lactam would be dialkylated with MeI and the aromatic piece **31.7** to furnish **31.8**. At this stage, if we could generate a carbanion at position A on the aromatic ring, then the anion should attack the lactam carbonyl and, after hydrolysis, optically pure **21.3** should be formed. This would be condensed to the required ketone **21.4** as before (Scheme 21). Obviously, plan B looks more attractive to us because it is shorter.



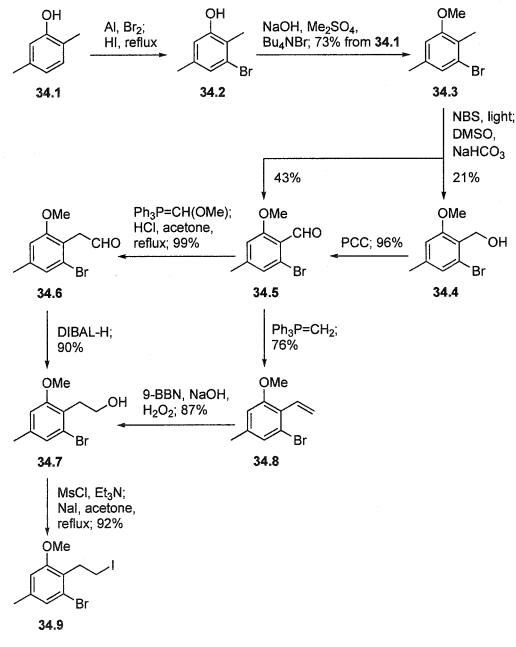





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Scheme 32

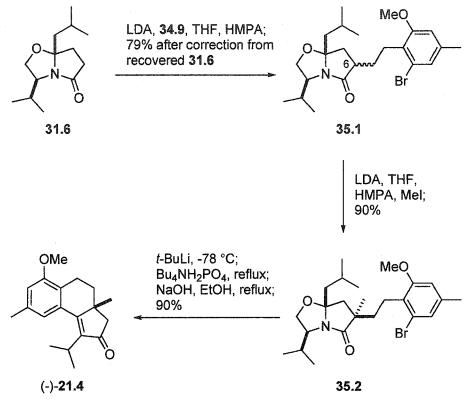
When we searched the literature, it turned out that we are not the first to conceive of this approach. In their 1993 paper,<sup>32</sup> Snyder and Meyers described such a one-pot sequence: upon treatment with *t*-BuLi at -78 °C, refluxing with  $Bu_4NH_2PO_4$  buffer, and then refluxing with aqueous ethanolic NaOH, dialkylated lactam **32.1** could be converted into optically pure enone **32.2** in high yield (Scheme 32).



Scheme 33

In our case, the required lactam (31.6) could be made as shown in Scheme 33:  $\gamma$ -butyrolactone 33.1 was converted into the ester aldehyde 33.2 by methanolysis and oxidation with PCC (73%).<sup>33</sup> Reaction of the aldehyde carbonyl group with 1 equiv of *i*-BuMgCl gave lactone 33.3 directly, and oxidation of this lactone under acidic conditions<sup>34</sup> afforded the keto acid 33.4 in 53% overall yield from lactone 33.2. Finally, condensation of acid 33.4 with freshly-made (S)-valinol<sup>35</sup> in PhMe at reflux,<sup>36</sup> with a Dean-Stark apparatus, gave us lactam 31.6 in 75% yield. In this series only the final lactam was obtained pure, all the precursors were used crude.




Scheme 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To make the required aromatic piece, we started from 2,5-dimethylphenol (34.1). It was treated with Al and  $Br_2$ ,<sup>37</sup> the ortho and para bromines were then removed by heating with  $HI^{38}$  to give 34.2 (Scheme 34). The phenolic hydroxyl was protected as its methyl ether under standard conditions ( $34.2 \rightarrow 34.3$ ,  $Me_2SO_4$ ,  $Bu_4NBr$ , NaOH, 73%). Then the more hindered methyl group of 34.3 was selectively brominated<sup>39</sup> (NBS, light) and oxidized<sup>40</sup> (DMSO and NaHCO<sub>3</sub>), to give a mixture of alcohol 34.4 (21%) and aldehyde 34.5 (43%). Alcohol 34.4 could be converted into aldehyde 34.5 by simple PCC oxidation (96%).

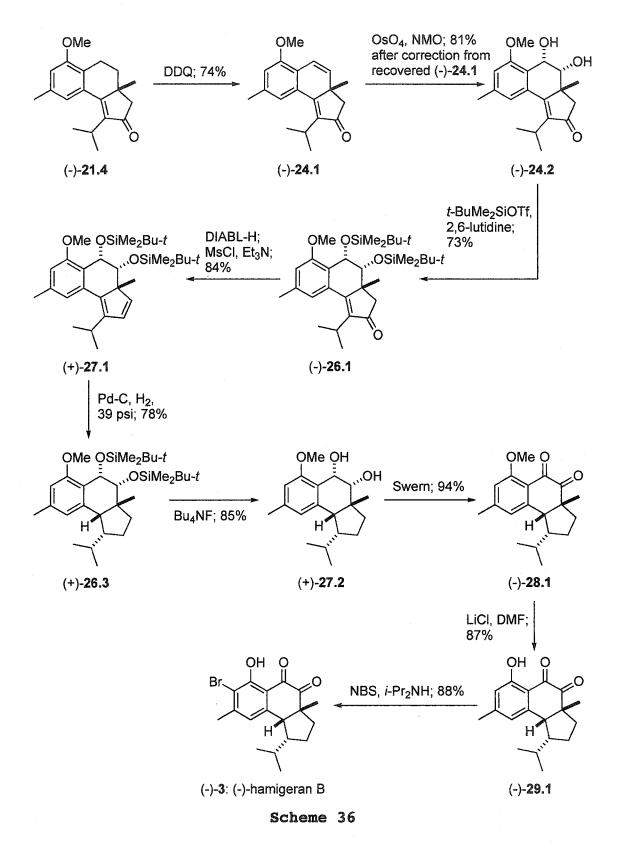
Wittig homologation of aldehyde 34.5 with  $Ph_3P=CH_2(OMe)$ , followed by hydrolysis with hydrochloric acid in acetone, afforded aldehyde 34.6 in high yield. DIBAL-H reduction of this aldehyde gave alcohol 34.7 (90%), and the alcohol was converted into the desired iodide 34.9 by first mesylation and then treatment with NaI in acetone at reflux (92% overall). The intermediate alcohol 34.7 could also be prepared by Wittig olefination of aldehyde 34.5 ( $34.5 \rightarrow$ 34.8, 76%) and subsequent hydroboration of 34.8 (9-BBN, NaOH,  $H_2O_2$ , 87%).

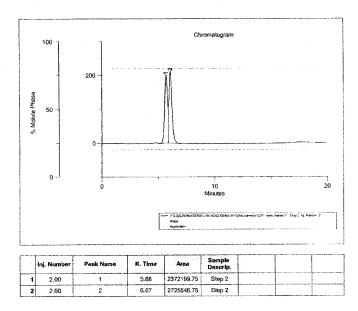
Although the reaction was slow, the two subunits lactam **31.6** and iodide **34.9** - were successfully joined (Scheme 35) by deprotonation of the former (1.4 equiv LDA, THF, -78 °C) and addition of HMPA and then the iodide **34.9**. The mixture was left at room temperature for 36 h, and the monoalkylated product **35.1** could then be isolated by flash chromatography in 79% yield [corrected for recovered lactam **31.6** (30%)].



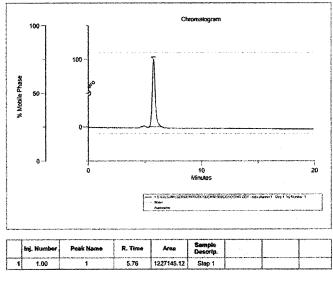
Scheme 35

As expected, **35.1** was obtained as a mixture of C(6) epimers. We did not bother to separate them at this stage because we still needed to install a methyl group at this center. Treatment of **35.1** with LDA at -78 °C, and addition of HMPA and MeI, then gave an 18:1 mixture of the desired dialkylated lactam **35.2** (*endo* alkylation product, 90%) and its C(6) epimer (*exo* alkylation product). These two diastereomers could be separated easily by flash chromatography, so that **35.2** was obtained pure (90% yield).


With the dialkylated lactam **35.2** in hand, we now applied to this material the Meyers' benzindenone methodology:<sup>32</sup> treatment of **35.2** with *t*-BuLi at -78 °C, followed first by refluxing with an aqueous solution of  $Bu_4NH_2PO_4$  (1.0 M) for 24 h, and then with ethanolic aqueous NaOH, brought about a cascade of reactions, ultimately


affording compound (-)-21.4 in 90% overall yield. Because lactam 35.2, obtained from optically pure (S)-valinol, was itself a single compound, we assume that (-)-21.4 is also optically pure. This assumption was confirmed later by HPLC analysis of an advanced intermediate [(+)-27.2, Scheme 36] on a chiral column.

From this point, completion of the synthesis of (-)-hamigeran B [(-)-3] followed the method used earlier with racemic compounds, as shown in Scheme 36.


Enone (-)-21.4 was desaturated with DDQ as before (74%), then subjected to vicinal dihydroxylation  $(OsO_4, NMO, 81\%)$ , and silylated  $[(-)-21.4 \rightarrow (-)-24.1 \rightarrow (-)-24.2 \rightarrow (-)-26.1]$ . Again, DIBAL-H reduction of ketone (-)-26.1, followed by dehydration via the derived mesylate, gave the expected diene (+)-27.1. The critical hydrogenation required a longer time than in the racemic series (possibly, the catalyst was less active), but still successfully saturated both double bonds and took the route to (+)-26.3.

The silicon protecting groups were then removed in the usual way (Bu<sub>4</sub>NF, THF, at reflux, 85%), the resulting diol (+)-27.2 was examined by HPLC on a chiral OD column (Figure 4). Although baseline separation of the corresponding racemic material [diol  $(\pm)-27.2$ , Scheme 27] was not possible, the trace for our optically active material showed no sign of a shoulder, and we judged the compound to be optically pure. This judgment was also based on the fact that our material was derived from optically pure lactam 31.6.





HPLC of (±)-27.2



HPLC of (+)-27.2

## Figure 4

Swern oxidation of diol (+)-27.2 led to diketone (-)-28.1 (94%), which was then demethylated with LiCl to afford phenol (-)-29.1 in 87% yield. Finally, regioselective

96

**HPLC conditions:** 

(0.46x5 cm);

hexane

nm)

Column: Chiralcel OD

Eluent: 4:1 i-PrOH -

Flow rate: 1.0 mL/min Detector: PDA (190-320

Integrate @ 213 nm

bromination of the phenol (NBS,  $i-Pr_2NH$ , 88%) then afforded (-)-hamigeran B [(-)-3].

Our synthetic material had  $[\alpha]_D - 176^\circ$  (c 0.142, CH<sub>2</sub>Cl<sub>2</sub>), which has the same sign and a slightly higher value than the reported specific rotation of this natural product  $[\alpha]_D - 151.5^\circ$  (c 0.15, CH<sub>2</sub>Cl<sub>2</sub>)].<sup>2</sup> Therefore, our synthesis, the earlier synthesis by the Nicolaou group, and the recent synthesis by the Trost group, all confirm the absolute configuration of hamigeran B, which had originally been assigned by analogy to that determined for hamigeran A (1).

## 2.4 Conclusion.

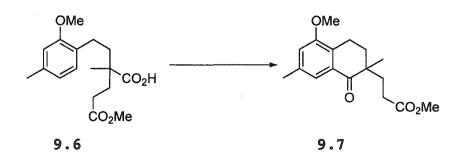
Our radical cyclization approach to hamigeran B (3) gave the wrong stereochemistry at C(1), and led to 1-epihamigeran (5.5). However, we then successfully developed the hydrogenation route to make the natural product in both racemic and optically pure forms.

Our route to hamigeran B provided the second method for making this compound. This route should also work to generate some other members of the hamigeran family, such as 4-bromo-hamigeran B (4) and hamigeran A (1), by slight modification of the steps, but we did not try these possibilities.


Compare to Nicolaou's synthesis (24 steps, 1.7% overall yield) and Trost's synthesis (15 steps, 10% overall yield), our synthetic route — both racemic and optically pure material — involves very simple reactions and high overall yields were obtained (20 steps, 7.4% overall yield for the synthesis of (±)-hamigeran B; 16 steps, 9.2% overall yield for the synthesis of (-)-hamigeran B). This feature should make the route amenable to scale-up. Steric factors were utilized to enforce facial selectivity and to protect a benzylic carbon-oxygen bond against hydrogenolysis. Although several examples are known in which a benzylic silyl ether survives hydrogenation of di-, tri-, and tetrasubstituted double bonds, the reports describe such experiments without commenting on the possible role of the silicon protecting group.

## III Experimental Section

## General Procedures.


The same general procedures were used as described in Chapter 1 of this thesis. In many <sup>1</sup>H NMR spectra, certain spin systems are described as AB even though the value of  $\Delta v/J$  is greater than 10. Strictly speaking, such spectra should be described as AM systems.

4-(Methoxycarbonyl)-2-[(2-methoxy-4-methylphenyl)ethyl]-2-methylbutanoic Acid (9.6).



*n*-BuLi (2.5 M in hexane, 3.50 mL, 8.75 mmol) was added over ca. 10 min to a stirred and cooled (-78 °C) solution of *i*-Pr<sub>2</sub>NH (1.30 mL, 9.18 mmol) in THF (20 mL). Stirring at -78 °C was continued for 30 min and then a solution of acid **9.5** (0.88 g, 3.95 mmol) in THF (5 mL) was added dropwise over ca. 15 min. After addition, stirring was continued at -78 °C for 1.5 h, and at room temperature (reaction flask transferred to water bath at room temperature) for 1.5 h, and at 50 °C (oil bath) for 2 h. The reaction mixture was then cooled to -78 °C and methyl acrylate (0.42 mL, 4.62 mmol) was added dropwise over ca. 5 min. The cooling bath was left in place but not recharged, and stirring was continued for 12 h. The reaction mixture was diluted with Et<sub>2</sub>O (30 mL), quenched by addition of hydrochloric acid (10%, 30 mL), and extracted with  $Et_2O$  (3 x 50 mL). The combined organic extracts were washed with hydrochloric acid (10%), water and brine, dried (MgSO4) and concentrated. Flash chromatography of the residue over silica gel (2 x 35 cm), using 1:4 EtOAc-hexane, containing 1% AcOH, gave acid **9.6** (0.55 g, 46%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3400-2400 (broad), 2951, 1738, 1699, 1614 cm<sup>-1</sup>: <sup>1</sup>H NMR  $(CDCl_3, 400 \text{ MHz}) \delta 1.23 \text{ (s, 3 H)}, 1.70-1.95 \text{ (m, 3 H)}, 2.01-$ 2.11 (m, 1 H), 2.31 (s, 3 H), 2.36-2.42 (m, 2 H), 2.46-2.62 (m, 2 H), 3.66 (s, 3 H), 3.78 (s, 3 H), 6.63 (s, 1 H), 6.67 (ddd, J = 0.7, 1.5, 8.1 Hz, 1 H), 6.98 (d, J = 7.5 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  21.2 (q), 21.4 (q), 24.9 (t), 29.5 (t), 32.9 (t), 38.8 (t), 45.1 (s), 51.6 (q), 55.1 (q), 111.2 (d), 120.9 (d), 127.0 (s), 129.4 (d), 137.0 (s), 157.1 (s), 173.8 (s), 182.2 (s); exact mass m/z calcd for C<sub>17</sub>H<sub>24</sub>O<sub>5</sub> 308.1624, found 308.1624.

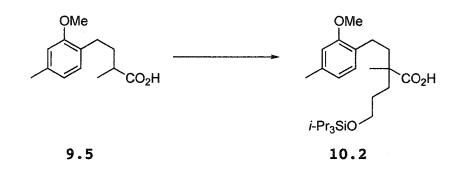
3-(5-Methoxy-2,7-dimethyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)propionic Acid Methyl Ester (9.7).



POCl<sub>3</sub> (0.50 mL, 5.40 mmol) was added over ca. 2 min to a stirred and heated (140 °C) solution of acid 9.6 (1.0 g, 3.24 mmol) in Cl<sub>2</sub>CHCHCl<sub>2</sub> (10 mL). The resulting mixture was heated at 140 °C for 5 h, cooled to room temperature, slowly

quenched by addition of saturated aqueous NaHCO3 (15 mL), and then extracted with  $Et_2O$  (3 x 20 mL). The combined organic extracts were washed with water and brine, dried  $(MqSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (2.5 x 25 cm), using 1:9 EtOAchexane, gave 9.7 (0.55 g, 58%) as a pale yellow oil: FTIR  $(CH_2Cl_2 \text{ cast})$  2935, 1738, 1681, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.16 (s, 3 H), 1.82-2.04 (m, 4 H), 2.17-2.41 (m, 2 H), 2.33 (s, 3 H), 2.72-2.92 (m, 2 H), 3.60 (s, 3 H), 3.80 (s, 3 H), 6.80 (d, J = 0.6 Hz, 1 H), 7.42 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  18.8 (t), 21.5 (q), 21.7 (q), 29.2 (t), 31.4 (t), 33.3 (t), 43.7 (s), 51.5 (q), 55.5 (q), 115.1 (d), 119.6 (d), 129.1 (s), 132.0 (s), 136.8 (s), 156.6 (s), 174.1 (s), 202.1 (s); exact mass m/z calcd for C<sub>17</sub>H<sub>22</sub>O<sub>4</sub> 290.1518, found 290.1508.

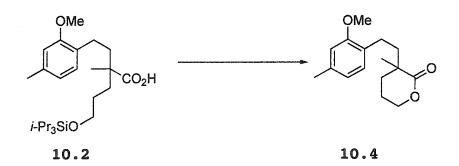
(3-Bromopropoxy)triisopropylsilane (10.1).




 $i-\Pr_2$ NEt (1.9 mL, 10.9 mmol) was added in one portion to a stirred and cooled (0 °C) solution of 3-bromopropan-1ol (0.99 g, 6.8 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL).  $i-\Pr_3$ SiOTf (2.0 mL, 7.2 mmol) was then added dropwise over ca. 5 min. The ice-bath was removed and the mixture was stirred for 4.5 h. The reaction mixture was quenched by addition of saturated aqueous NH<sub>4</sub>Cl (20 mL) and extracted with Et<sub>2</sub>O (3 x 30 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 25 cm), using 1:32 EtOAc-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

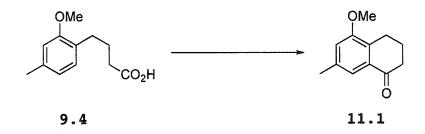
hexane, gave 10.1 (1.86 g, 93%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2943, 2892, 1463 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.98-1.10 (m, 21 H), 2.02-2.09 (m, 2 H), 3.54 (t, J = 6.5 Hz, 2 H), 3.82 (t, J = 5.7 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  12.0 (d), 18.1 (q), 30.8 (t), 35.9 (t), 60.8 (t); exact mass m/z calcd for C<sub>9</sub>H<sub>20</sub><sup>81</sup>BrOSi (M - C<sub>3</sub>H<sub>7</sub>) 253.0446, found 253.0442.


2-[2-(2-Methoxy-4-methylphenyl)ethyl]-2-methyl-5-(triisopropylsilanyloxy)pentanoic acid (10.2).



*n*-BuLi (2.5 M in hexane, 6.30 mL, 15.75 mmol) was added over ca. 10 min to a stirred and cooled (-78 °C) solution of  $i-Pr_2NH$  (2.30 mL, 16.41 mmol) in THF (20 mL). Stirring at -78 °C was continued for 30 min and a solution of acid 9.5 (1.59 g, 7.14 mmol) in THF (10 mL) was added dropwise over ca. 15 min. After addition, stirring was continued at -78 °C for 1.5 h, at room temperature for 1.5 h (mixture transferred to water bath at room temperature), and at 50 °C (oil bath) for 2 h. The reaction mixture was then cooled to -78 °C and a solution of bromide 10.1 (2.80 g, 9.50 mmol) in THF (5 mL) was added over ca. 5 min. The cooling bath was left in place but not recharged, and stirring was continued for 12 h. The reaction mixture was quenched by addition of hydrochloric acid (10%, 30 mL) and

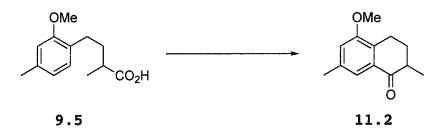
extracted with Et<sub>2</sub>O (3 x 50 mL). The combined organic extracts were washed with hydrochloric acid (10%), water and brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 35 cm), using 1:9 EtOAc-hexane, containing 1% AcOH, gave acid 10.2 [1.41 g, 63% corrected for recovered 9.5 (0.45 g)] as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 2942, 1698, 1614 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.95-1.10 (m, 21 H), 1.22 (s, 3 H), 1.43-1.64 (m, 3 H), 1.68-1.76 (m, 2 H), 1.86 (dt, J =4.7, 12.6 Hz, 1 H), 2.30 (s, 3 H), 2.48 (dt, J = 4.6, 12.7 Hz, 1 H), 2.58 (dt, J = 5.0, 12.7 Hz, 1 H), 3.60-3.70 (m, 2 H), 3.78 (s, 3 H), 6.62 (s, 1 H), 6.66 (td, J = 0.8, 7.5Hz, 1 H), 6.98 (d, J = 7.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  12.1 (d), 18.1 (q), 21.4 (q), 21.5 (q), 25.1 (t), 28.1 (t), 34.9 (t), 39.2 (t), 45.6 (t), 55.2 (q), 63.7 (s), 111.2 (d), 120.9 (d), 127.5 (s), 129.4 (d), 136.8 (s), 157.1 (s), 182.4 (s); exact mass (electrospray) m/z calcd for C<sub>25</sub>H<sub>44</sub>NaO<sub>4</sub>Si (M + Na) 459.2907, found 459.2907.


3-[2-(2-Methoxy-4-methylphenyl)ethyl]-3-methyltetrahydropyran-2-one (10.4).



POCl<sub>3</sub> (0.05 mL, 0.54 mmol) was added over ca. 2 min to a stirred and heated (130 °C) solution of **10.2** (0.10 g, 0.23 mmol) in  $Cl_2CHCHCl_2$  (1 mL). The mixture was heated at 135

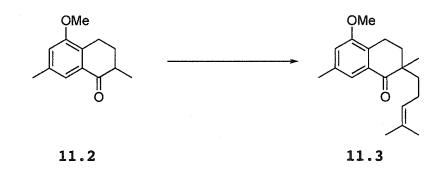
°C for 4 h, cooled to room temperature, slowly quenched by addition of saturated aqueous NaHCO3 (5 mL) and then extracted with  $Et_2O$  (3 x 10 mL). The combined organic extracts were washed with water and brine, dried (MqSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 25 cm), using 1:9 EtOAc-hexane, gave 10.4 (54 mg, 89%) as a pale yellow oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.33 (s, 3 H), 1.66-1.79 (m, 2 H), 1.87-2.05 (m, 4 H), 2.28 (s, 3 H), 2.50 (dt, J = 4.9, 12.8 Hz, 1 H), 2.62 (dt, J = 4.7, 12.8 Hz, 1 H), 3.80 (s, 3 H), 4.29-4.38 (m, 2 H), 6.63 (s, 1 H), 6.68 (d, J = 7.5 Hz, 1 H), 6.99 (d, J = 7.5Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  20.9 (t), 21.5 (q), 24.8 (t), 26.3 (g), 32.1 (t), 40.5 (t), 42.6 (t), 55.3 (g), 70.3 (s), 111.2 (d), 121.0 (d), 127.0 (s), 129.5 (d), 137.0 (s), 157.0 (s), 176.3 (s).


5-Methoxy-7-methyl-3,4-dihydro-2*H*-naphthalen-1-one (11.1).



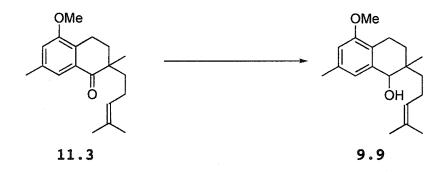
POCl<sub>3</sub> (0.17 mL, 1.80 mmol) was added over ca. 2 min to a stirred and heated (130 °C) solution of acid 9.4 (0.31 g, 1.50 mmol) in Cl<sub>2</sub>CHCHCl<sub>2</sub> (10 mL). The mixture was heated at 135 °C for 5 h, cooled to room temperature, slowly quenched by addition of saturated aqueous NaHCO<sub>3</sub> (10 mL), and extracted with Et<sub>2</sub>O (3 x 20 mL). The combined organic extracts were washed with water and brine, dried (MgSO<sub>4</sub>) and

concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:32 EtOAc-hexane, gave 11.1 (0.20 g, 72%) as a pale yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2998, 1759, 1684, 1611 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.06 (quin, J = 6.4 Hz, 2 H), 2.34 (s, 3 H), 2.58 (t, J = 6.9 Hz, 2 H), 2.82 (t, J = 6.1 Hz, 2 H), 3.80 (s, 3 H), 6.82 (s, 1 H), 7.44 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  21.4 (q), 22.5 (t), 22.6 (t), 38.9 (t), 55.6 (q), 115.5 (d), 118.8 (d), 130.7 (s), 133.3 (s), 136.6 (s), 156.7 (s), 198.8 (s); exact mass m/z calcd for C<sub>12</sub>H<sub>14</sub>O<sub>2</sub> 190.0994, found 190.0997.


5-Methoxy-2,7-dimethyl-3,4-dihydro-2*H*-naphthalen-1-one (11.2).

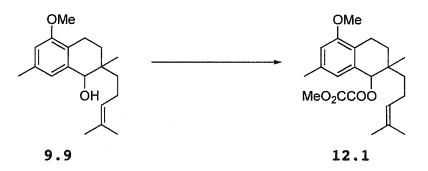


POCl<sub>3</sub> (0.95 mL, 10.1 mmol) was added over ca. 2 min to a stirred and heated (135 °C) solution of acid 9.5 (1.87 g, 8.4 mmol) in Cl<sub>2</sub>CHCHCl<sub>2</sub> (37 mL). The mixture was heated at 135 °C for 5 h, cooled to room temperature, slowly quenched by addition of saturated aqueous NaHCO<sub>3</sub> (50 mL), and extracted with Et<sub>2</sub>O (3 x 100 mL). The combined organic extracts were washed with water and brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 30 cm), using 1:32 EtOAc-hexane, gave ketone 11.2 (1.43 g, 83%) as a pale yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2931, 1684, 1611 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)


 $\delta$  1.20 (d, J = 6.7 Hz, 3 H), 1.72-1.82 (m, 1 H), 2.12-2.18 (m, 1 H), 2.35 (s, 3 H), 2.48-2.56 (m, 1 H), 2.63-2.72 (m, 1 H), 3.00 (td, J = 4.4, 17.6 Hz, 1 H), 3.80 (s, 3 H), 6.80 (d, J = 0.9 Hz, 1 H), 7.44 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  15.3 (q), 21.4 (q), 21.9 (t), 30.7 (t), 42.1 (d), 55.6 (q), 115.1 (d), 119.0 (d), 130.3 (s), 133.1 (s), 136.6 (s), 156.7 (s), 201.2 (s); exact mass m/z calcd for  $C_{13}H_{16}O_2$  204.1150, found 204.1154.

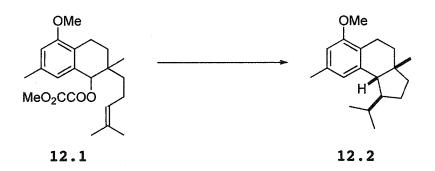
5-Methoxy-2,7-dimethyl-2-(4-methylpent-3-enyl)-3,4dihydro-2H-naphthalen-1-one (11.3).




t-BuOK (1.73 g, 14.67 mmol) was added in one portion to a stirred solution of ketone **11.2** (1.00 g, 4.89 mmol) and 5-iodo-2-methyl-2-pentene (3.08 g, 14.67 mmol) in PhMe (40 mL). The resulting mixture was heated at reflux (oil bath at 115 °C) for 48 h, cooled to room temperature, quenched by addition of hydrochloric acid (10%, 50 mL), and extracted with Et<sub>2</sub>O (3 x 50 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 30 cm), using 1:32 EtOAc-hexane, gave ketone **11.3** [0.73 g, 80% corrected for recovered **11.2** (0.35 g)] as a pale yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2961, 2928, 1740, 1681, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.15 (s, 3 H), 1.45-1.53 (m, 1 H), 1.54 (s, 3 H), 1.57-1.64 (m, 1 H), 1.61 (s, 3 H), 1.84-1.92 (m, 2 H), 1.94-2.00 (m, 1 H), 2.01-2.07 (m, 1 H), 2.33 (s, 3 H), 2.80 (t, J = 6.3 Hz, 2 H), 3.83 (s, 3 H), 5.01-5.06 (m, 1 H), 6.79 (d, J = 1.1 Hz, 1 H), 7.41 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  17.6 (q), 18.9 (t), 21.5 (q), 21.9 (q), 22.7 (t), 25.6 (q), 33.2 (t), 36.2 (t), 44.3 (s), 55.5 (q), 114.9 (d), 119.6 (d), 124.3 (d), 129.3 (s), 131.6 (s), 132.3 (s), 136.7 (s), 156.6 (s), 202.9 (s); exact mass m/z calcd for C<sub>19</sub>H<sub>26</sub>O<sub>2</sub> 286.1933, found 286.1936.

5-Methoxy-2,7-dimethyl-2-(4-methylpent-3-enyl)-1,2,3,4-tetrahydronaphthalen-1-ol (9.9).

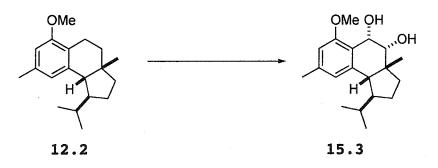



DIBAL-H (1.0 M, 5.0 mL, 5.0 mmol) was added dropwise to a stirred and cooled (0 °C) solution of ketone **11.3** (0.50 g, 1.75 mmol) in  $CH_2Cl_2$  (20 mL). Stirring was continued for 2 h at 0 °C, and  $Na_2SO_4.10H_2O$  (1.0 g) was added. The cooling bath was removed and stirring was continued for 30 min. The mixture was then filtered through a Celite pad (2.5 x 1 cm), using  $CH_2Cl_2$  (20 mL) as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (2 x 25 cm), using 1:99 EtOAc-hexane, gave alcohol **9.9** (0.39 g, 78%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3424, 2928, 1613, 1585 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.88 (s, 3 H), 1.26-1.34 (m, 1 H), 1.42-1.52 (m, 3 H), 1.62 (s, 3 H), 1.66 (s, 3 H), 1.76-1.83 (m, 1 H), 1.97-2.12 (m, 2 H), 2.31 (s, 3 H), 2.45-2.53 (m, 1 H), 2.65 (td, J = 5.6, 12.5 Hz, 1 H), 3.80 (s, 3 H), 4.22 (s, 1 H), 5.10-5.16 (m, 1 H), 6.53 (d, J = 0.6 Hz, 1 H), 6.79 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  17.7 (q), 20.0 (t), 21.2 (q), 21.6 (q), 22.1 (t), 25.8 (q), 29.0 (s), 35.9 (t), 36.3 (t), 55.3 (q), 75.8 (d), 109.8 (d), 121.7 (d), 121.9 (s), 125.1 (d), 131.1 (s), 136.4 (s), 139.0 (s), 156.8 (s); exact mass m/z calcd for C<sub>19H28</sub>O<sub>2</sub> 288.2089, found 288.2088.

Oxalic Acid 5-Methoxy-2,7-dimethyl-2-(4-methylpent-3enyl)-1,2,3,4-tetrahydronaphthalen-1-yl Methyl Ester (12.1).



Pyridine (50  $\mu$ L, 0.62 mmol), followed by MeO<sub>2</sub>CCOCl (60  $\mu$ L, 0.62 mmol), were added to a stirred solution of alcohol **9.9** (120 mg, 0.42 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8 mL). Stirring was continued for 3 h, water (5 mL) was added to quench the reaction and the mixture was extracted with Et<sub>2</sub>O (3 x 10 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:19 EtOAchexane, gave ester **12.1** (144 mg, 93%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2933, 1769, 1741, 1614, 1587 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.88 (s, 3 H), 1.29-1.36 (m, 1 H), 1.40-1.47 (m, 1 H), 1.56-1.63 (m, 1 H), 1.57 (s, 3 H), 1.65 (s, 3 H), 1.90-2.04 (m, 3 H), 2.27 (s, 3 H), 2.46-2.56 (m, 1 H), 2.78 (ddd, J = 3.0, 6.0, 18.3 Hz, 1 H), 3.79 (s, 3 H), 3.83 (s, 3 H), 5.03-5.08 (m, 1 H), 5.80 (d, J = 0.8 Hz, 1 H), 6.60 (d, J = 0.8 Hz, 1 H), 6.76 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  17.5 (q), 19.7 (t), 19.9 (q), 21.4 (q), 21.9 (t), 25.6 (q), 28.6 (s), 35.5 (t), 37.5 (t), 53.3 (q), 55.2 (q), 79.5 (d), 111.0 (d), 122.8 (d), 124.5 (d), 131.4 (s), 133.5 (s), 136.6 (s), 156.9 (s), 157.5 (s), 158.4 (s); exact mass m/z calcd for C<sub>22</sub>H<sub>30</sub>O<sub>5</sub> 374.2093, found 374.2091.

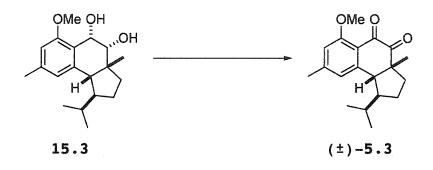

(1R\*, 3aR\*, 9bR\*)-1-Isopropyl-6-methoxy-3a, 8-dimethyl-2,3,3a,4,5,9b-hexahydro-1H-cyclopenta[a]naphthalene (12.2).



A solution of Bu<sub>3</sub>SnH (1.8 mL, 6.69 mmol) and AIBN (50 mg, 0.30 mmol) in PhH (20 mL) was injected over ca. 15 h to a stirred and refluxing (oil bath at 85 °C) solution of ester 12.1 (1.01 g, 2.70 mmol) in PhH (100 mL). Stirring was continued for 3 h at 85 °C after the addition. The mixture was cooled and the solvent was concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:49 EtOAc-hexane, gave compound 12.2 (0.65 g, 89%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2950, 1612, 1583 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.85 (d, J = 6.9 Hz, 3 H), 0.97

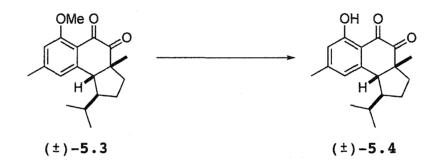
(d, J = 6.7 Hz, 3 H), 0.98 (s, 3 H), 1.29-1.36 (m, 1 H), 1.42-1.49 (m, 2 H), 1.57-1.66 (m, 2 H), 1.70-1.79 (m, 2 H), 1.93-2.01 (m, 1 H), 2.29 (d, J = 10.2 Hz, 1 H), 2.31 (s, 3 H), 2.58-2.66 (m, 2 H), 3.79 (s, 3 H), 6.60 (d, J = 0.8 Hz, 1 H), 6.76 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  15.3 (q), 19.8 (t), 21.6 (q), 21.9 (t), 22.8 (q), 26.3 (q), 27.1 (d), 32.0 (t), 39.3 (t), 40.3 (s), 51.7 (d), 54.0 (d), 55.2 (q), 108.1 (d), 121.6 (s), 122.5 (d), 135.0 (s), 141.3 (s), 156.8 (s); exact mass m/z calcd for C<sub>19</sub>H<sub>28</sub>O 272.2140, found 272.2136.

 $(1R^*, 3aS^*, 4S^*, 5R^*, 9bS^*) - 1 - Isopropyl - 6 - methoxy - 3a, 8 - dimethyl - 2, 3, 3a, 4, 5, 9b - hexahydro - 1H - cyclopenta[a] naphtha - lene - 4, 5 - diol (15.3) via intermediates (15.1) and (15.2).$ 




NBS (0.42 g, 2.35 mmol) was added to a stirred solution of 12.2 (0.61 g, 2.24 mmol) in CCl<sub>4</sub> (30 mL) and the stirred solution was irradiated (standard Pyrex apparatus) with UV light (Hanovia lamp type 30620) at 10 °C for 1 h (the flask was irradiated from the top while immersed in an ice-water bath). DBU (0.5 mL, 3.27 mmol) was then added and the mixture was stirred for 6 h. Water (20 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 30 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the

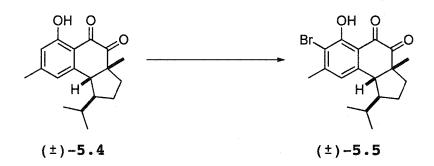
residue over silica gel (2 x 25 cm), using 1:19 EtOAchexane, gave a colorless oil, which was a mixture of the starting material and the desired olefin **15.2** (2.6:1 by <sup>1</sup>H NMR).


OsO<sub>4</sub> (4 mg) and NMO (0.37 g, 3.10 mmol) were added to a stirred solution of the above material in a mixture of water (2 mL), t-BuOH (3 mL), CCl<sub>4</sub> (10 mL), and acetone (20 mL) (the solvents were added in any order to the starting material.) Stirring was continued for 12 h. Water (20 mL) was added and the mixture was extracted with EtOAc (3 x 25 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:9 to 1:2 EtOAc-hexane, gave diol 15.3 [0.11 g, 56% corrected for recovered 12.2 (0.43 g)] as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3434, 2954, 1680, 1610, 1586 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.91 (d, J = 6.9 Hz, 3 H), 0.96 (d, J = 6.7 Hz, 3 H), 1.09 (s, 3 H), 1.39-1.49 (m, 2 H), 1.70-1.77 (m, 1 H), 1.91-1.98 (m, 1 H), 2.04-2.12 (m, 1 H), 2.18-2.26 (m, 1 H), 2.30 (s, 3 H), 2.47 (d, J = 9.5 Hz, 1 H), 2.75 (s, 1 H), 3.23 (s, 1 H), 3.59 (d, J = 4.1 Hz, 1 H), 3.82 (s, 3 H), 5.08 (d, J = 4.0 Hz, 1 H), 6.55 (s, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  15.8 (q), 21.9 (q), 23.0 (q), 24.8 (t), 27.8 (d), 28.0 (q), 35.4 (t), 44.3 (s), 52.4 (d), 55.5 (d), 56.0 (q), 66.8 (d), 75.9 (d), 108.8 (d), 120.5 (s), 122.3 (d), 138.4 (s), 141.7 (s), 157.8 (s); exact mass m/z calcd for C<sub>19</sub>H<sub>28</sub>O<sub>3</sub> 304.2039, found 304.2033.

(1R\*, 3aR\*, 9bR\*)-1-Isopropyl-6-methoxy-3a, 8-dimethyl-2,3,3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(±)-5.3].

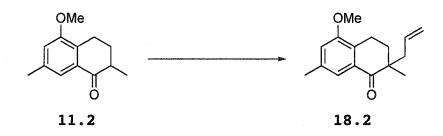


DMSO (0.20 mL, 2.80 mmol) in  $CH_2Cl_2$  (0.8 mL) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of  $(COCl)_2$  (0.20 mL, 2.24 mmol) in  $CH_2Cl_2$  (7 mL). Stirring was continued for 30 min, and diol 15.3 (125 mg, 0.41 mmol) in  $CH_2Cl_2$  (5 mL) was added dropwise over ca. 5 min, a further portion of  $CH_2Cl_2$  (1 mL) being used as a Stirring at -78 °C was continued for 1 h, and Et<sub>3</sub>N rinse. (0.70 mL, 5.02 mmol) was added dropwise over ca. 2 min. Stirring was continued for 1 h, the dry-ice bath was removed, and stirring was continued for 10 h. Saturated aqueous NH4Cl (10 mL) was added and the mixture was extracted with Et<sub>2</sub>O (3 x 20 mL). The combined organic extracts were washed with brine, dried (MqSO<sub>4</sub>) and Flash chromatography of the residue over concentrated. silica qel (1 x 20 cm), using 1:4 EtOAc-hexane, gave diketone (±)-5.3 (111 mg, 90%) as yellow crystals: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2957, 1723, 1678, 1605, 1566 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3, 500 \text{ MHz}) \delta 0.75 \text{ (d, } J = 6.9 \text{ Hz}, 3 \text{ H}), 0.89 \text{ (d, } J =$ 6.8 Hz, 3 H), 1.20 (s, 3 H), 1.43-1.52 (m, 2 H), 1.56-1.63 (m, 2 H), 1.65-1.72 (m, 1 H), 2.40 (s, 3 H), 2.52-2.62 (m, 1 H), 2.67 (d, J = 11.1 Hz, 1 H), 3.90 (s, 3 H), 6.62 (s, 1 H), 6.70 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  15.6 (q), 21.8 (q), 22.0 (t), 22.4 (q), 22.5 (q), 27.2 (d), 33.9 (t), 55.2 (d), 56.0 (q), 56.5 (s), 57.6 (d), 111.2 (d), 118.7 (s), 122.9 (d), 147.1 (s), 147.4 (s), 161.8 (s), 179.2 (s), 200.3 (s); exact mass *m/z* calcd for C<sub>19</sub>H<sub>24</sub>O<sub>3</sub> 300.1726, found 300.1726.


(1R\*, 3aR\*, 9bR\*)-6-Hydroxy-1-isopropy1-3a, 8-dimethyl-2,3-3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(±)-5.4].

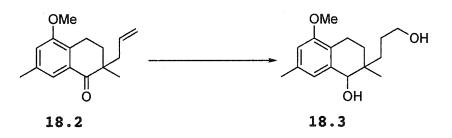


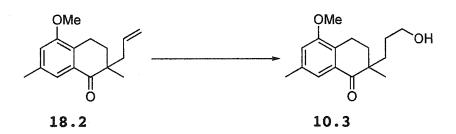
AlCl<sub>3</sub> (233 mg, 1.74 mmol) was added in one portion to a stirred solution of diketone (±)-5.3 (105 mg, 0.35 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL). The mixture was heated at reflux (oil bath at 40 °C) for 10 h and cooled to 0 °C. Hydrochloric acid (10%, 10 mL) was added slowly and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 3:7 EtOAc-hexane (containing 1%v/v MeOH), gave phenol (±)-5.4 (77.6 mg, 77%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3369, 2962, 1716, 1667, 1624, 1597 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.98 (d, J = 6.2 Hz, 3 H), 1.11 (d, J = 6.1 Hz, 3 H), 1.39 (s, 3 H), 1.52-1.66 (m, 3 H), 1.71-1.78 (m, 1 H), 2.23 (ddd, J = 3.5, 5.7, 15.3 Hz, 1 H), 2.33-2.42 (m, 1 H), 2.40


(s, 3 H), 3.45 (s, 1 H), 6.64 (s, 1 H), 6.76 (s, 1 H), 8.60 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  20.1 (q), 20.3 (t), 21.6 (q), 22.6 (q), 23.0 (q), 28.2 (d), 35.0 (t), 46.3 (d), 52.4 (d), 63.6 (s), 115.0 (d), 117.5 (d), 119.0 (s), 150.4 (s), 157.49 (s), 157.54 (s), 204.0 (s), 206.9 (s); exact mass m/z calcd for C<sub>18</sub>H<sub>22</sub>O<sub>3</sub> 286.1569, found 286.1567.

 $(1R^*, 3aR^*, 9bR^*) - 7 - Bromo - 6 - hydroxy - 1 - isopropyl - 3a, 8 - dimethyl - 2, 3, 3a, 9b - tetrahydro - 1H - cyclopenta[a] naphthalene - 4,5 - dione [(±) - 1 - epi - hamigeran B] [(±) - 5.5].$ 




NBS (3.0 mg, 0.017 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) was added dropwise over ca. 5 min to a stirred and cooled (0 °C) solution of phenol (±)-5.4 (4.0 mg, 0.014 mmol) and *i*-Pr<sub>2</sub>NH (ca 0.01 mL, 0.070 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL). The cold bath was removed after the addition, and stirring was continued for 3.5 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 30 cm), using 1:3 EtOAc-hexane (containing 1%v/v MeOH), gave (±)-1epi-hamigeran B  $[(\pm)-5.5]$  (5.0 mg, 98%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3326, 2962, 1717, 1669, 1616 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.98 (d, J = 6.1 Hz, 3 H), 1.10 (d, J = 6.1 Hz, 3 H), 1.39 (s, 3 H), 1.51-1.65 (m, 3 H), 1.72-1.79 (m, 1 H), 2.22 (ddd, J = 3.6, 5.7, 15.1 Hz, 1 H), 2.35-2.44 (m, 1 H), 2.51 (s, 3 H), 3.43 (s, 1 H), 6.90 (s, 1 H), 9.20 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  20.0 (q), 20.3 (t), 21.6 (q), 23.0 (q), 24.5 (q), 28.2 (d), 35.1 (t), 46.2 (d), 52.2 (d), 63.7 (s), 110.0 (s), 118.7 (d), 119.6 (s), 149.2 (s), 154.2 (s), 155.6 (s), 203.7 (s), 206.2 (s); exact mass m/z calcd for C<sub>18</sub>H<sub>21</sub><sup>79</sup>BrO<sub>3</sub> 364.0674, found 364.0676.


2-Allyl-5-methoxy-2,7-dimethyl-3,4-dihydro-2Hnaphthalen-1-one (18.2).

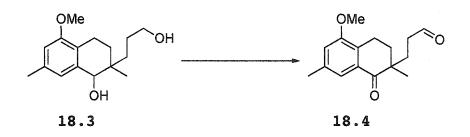


*n*-BuLi (2.5 M, 2.4 mL, 6.00 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of  $i-Pr_2NH$  (0.93 mL, 6.60 mmol) in THF (20 mL), and stirring at -78 °C was continued for 30 min. A solution of ketone 11.2 (1.09 g, 5.30 mmol) in THF (10 mL) was added dropwise over ca. 15 min, and stirring was continued at -78 °C for 1.5 h. Allyl bromide (0.93 mL, 10.50 mmol) was added dropwise over ca. 5 The cooling bath was left in place but not recharged, min. and stirring was continued for 12 h. The mixture was quenched by addition of saturated aqueous  $NH_4Cl$  (30 mL) and extracted with Et<sub>2</sub>O (3 x 50 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 30 cm), using 1:32 EtOAc-hexane, gave ketone 18.2 (1.18 g, 91%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3074, 2930, 1682, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ 1.15 (s, 3 H), 1.80-1.88 (m, 1 H), 1.97-2.03 (m, 1 H), 2.24 (tdd, J = 1.1, 7.5, 13.7 Hz, 1 H), 2.34 (s, 3 H), 2.40 (dd, J = 7.3, 13.8 Hz, 1 H), 2.74-2.88 (m, 2 H), 3.80 (s, 3 H), 5.00-5.07 (m, 2 H), 5.73-5.81 (m, 1 H), 6.80 (d, J = 1.0Hz, 1 H), 7.45 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  18.8 (t), 21.5 (q), 21.7 (q), 32.8 (t), 40.9 (t), 44.2 (s), 55.6 (q), 115.0 (d), 118.0 (t), 119.6 (d), 129.4 (s), 132.1 (s), 134.1 (d), 136.7 (s), 156.6 (s), 202.5 (s); exact mass m/zcalcd for C<sub>16</sub>H<sub>20</sub>O<sub>2</sub> 244.1463, found 244.1465.

2-(3-Hydroxypropyl)-5-methoxy-2,7-dimethyl-1,2,3,4tetrahydronaphthalen-1-ol (18.3) and 2-(3-Hydroxypropyl)-5methoxy-2,7-dimethyl-3,4-dihydro-2*H*-naphthalen-1-one (10.3).



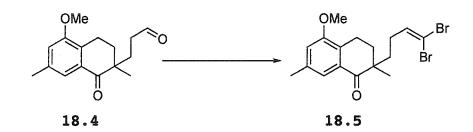



9-BBN (0.5 M in THF, 5.0 mL, 2.50 mmol) was added dropwise over ca. 10 min to a stirred and cooled (0 °C) solution of olefin 18.2 (0.20 g, 0.82 mmol) in THF (10 mL). The ice bath was removed and stirring was continued for 10 h. The mixture was cooled to 0 °C and quenched by successive slow addition of MeOH (1 mL), NaOH (2.0 N, 2 mL) and  $H_{2}O_{2}$  (30%, 1 mL). The ice bath was left in place but

not recharged, and stirring was continued for 2 h. The reaction mixture was then diluted with water (10 mL) and extracted with  $Et_2O$  (3 x 20 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1.5 x 25 cm), using 1:3 EtOAc-hexane, gave diol **18.3** (126 mg, 70%) and keto alcohol **10.3** (43 mg, 20%), both as colorless oils.

Diol 18.3 had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3346, 2934, 1613, 1585 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.80 (s, 3 H), 1.29-1.36 (m, 1 H), 1.42-1.48 (m, 1 H), 1.50-1.56 (m, 1 H), 1.58-1.73 (m, 4 H), 1.77-1.84 (m, 1 H), 2.31 (s, 3 H), 2.44-2.52 (m, 1 H), 2.66 (td, J = 5.4, 12.7 Hz, 1 H), 3.60-3.69 (m, 2 H), 3.79 (s, 3 H), 4.23 (s, 1 H), 6.56 (s, 1 H), 6.80 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  19.8 (t), 20.8 (q), 21.5 (q), 26.5 (t), 29.0 (t), 32.5 (t), 35.6 (t), 55.2 (q), 63.7 (s), 109.9 (d), 121.93 (s), 121.95 (d), 136.5 (s), 138.7 (s), 156.9 (s); exact mass (electrospray) m/zcalcd for C<sub>16</sub>H<sub>24</sub>NaO<sub>3</sub> (M + Na) 287.1623, found 287.1624.

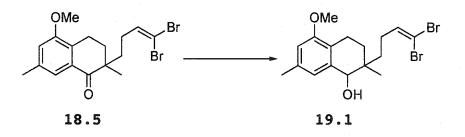
Keto alcohol 10.3 had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3430, 2935, 1680, 1608 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.15 (s, 3 H), 1.48-1.60 (m, 4 H), 1.68-1.75 (m, 1 H), 1.84-1.90 (m, 1 H), 1.99-2.05 (m, 1 H), 2.34 (s, 3 H), 2.75-2.88 (m, 2 H), 3.57 (t, J = 6.0 Hz, 2 H), 3.83 (s, 3 H), 6.80 (d, J = 1.0 Hz, 1 H), 7.44 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  18.9 (t), 21.5 (q), 22.1 (q), 27.4 (t), 32.5 (t), 33.1 (t), 44.0 (t), 55.6 (q), 63.1 (s), 115.1 (d), 119.6 (d), 129.3 (s), 132.1 (s), 136.8 (s), 156.6 (s), 203.0 (s); exact mass *m/z* calcd for C<sub>16</sub>H<sub>22</sub>O<sub>3</sub> 262.1569, found 262.1570.


3-(5-Methoxy-2,7-dimethyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)propionaldehyde (18.4).



Dry DMSO (0.85 mL, 12.00 mmol) in  $CH_2Cl_2$  (5 mL) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of (COCl)<sub>2</sub> (0.89 mL, 10.00 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 Stirring was continued for 30 min, and diol 18.3 mL). (0.70 g, 2.66 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added dropwise over ca. 5 min, a further portion of  $CH_2Cl_2$  (1 mL) being used as a rinse. Stirring at -78 °C was continued for 1 h, and Et<sub>3</sub>N (2.8 mL, 20.00 mmol) was added dropwise over ca. 2 min. Stirring was continued for 1 h, the dry-ice bath was removed and stirring was continued for 10 h. Saturated aqueous NH4Cl (40 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 50 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:9 EtOAc-hexane, gave keto aldehyde 18.4 (0.63 g, 91%) as a yellow oil: FTIR ( $CH_2Cl_2$ cast) 2933, 2854, 2723, 1723, 1679, 1608 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.18 (s, 3 H), 1.83-2.03 (m, 4 H), 2.34 (s, 3 H), 2.36-2.54 (m, 2 H), 2.76-2.92 (m, 2 H), 3.81 (s, 3 H), 6.81 (d, J = 1.1 Hz, 1 H), 7.42 (d, J = 0.7 Hz, 1 H), 9.74 (t, J = 1.5 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  18.8 (t), 21.5 (q), 22.0 (q), 28.6 (t), 33.4 (t), 39.1 (t), 43.6 (s), 55.6 (q), 115.2 (d), 119.5 (d), 129.1 (s), 131.9 (s),

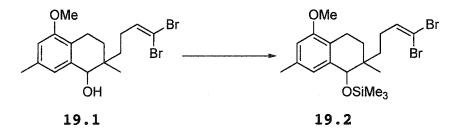
136.9 (s), 156.6 (s), 202.0 (d), 202.2 (s); exact mass m/z calcd for  $C_{16}H_{20}O_3$  260.1412, found 260.1415.


2-(4,4-Dibromobut-3-enyl)-5-methoxy-2,7-dimethyl-3,4dihydro-2*H*-naphthalen-1-one (18.5).



Ph<sub>3</sub>P (1.10 g, 4.82 mmol) was added to a stirred and cooled (-15 °C) solution of CBr<sub>4</sub> (1.40 g, 4.82 mmol) in  $CH_2Cl_2$  (40 mL). Stirring at -15 °C was continued for 30 min and the mixture was then cooled to -78 °C. A solution of keto aldehyde 18.4 (0.83 g, 3.21 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added dropwise over ca. 5 min, followed by  $Et_3N$  (0.71 mL, 5.10 mmol). The cooling bath was removed and stirring was continued for 30 h. Water (30 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 50 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 25 cm), using 1:9 EtOAc-hexane, gave ketone 18.5 [1.07 g, 98%, corrected for recovered 18.4 (0.15 g) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2932, 2854, 1681, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.18 (s, 3 H), 1.62 (ddd, J = 5.3, 11.8, 13.7 Hz, 1 H), 1.74 (ddd, J =5.3, 11.4, 13.7 Hz, 1 H), 1.86-1.92 (m, 1 H), 1.98-2.14 (m, 3 H), 2.35 (s, 3 H), 2.76-2.88 (m, 2 H), 3.80 (s, 3 H), 6.34 (t, J = 7.3 Hz, 1 H), 6.81 (d, J = 0.9 Hz, 1 H), 7.43(s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  18.8 (t), 21.5 (q),

21.8 (q), 28.1 (t), 33.0 (t), 34.2 (t), 44.0 (s), 55.6 (q), 89.0 (s), 115.1 (d), 119.6 (d), 129.1 (s), 132.1 (s), 136.9 (s), 138.3 (d), 156.6 (s), 202.2 (d); exact mass m/z calcd for  $C_{17H_{20}}^{81}Br_{2}O_{2}$  417.9789, found 417.9787.


2-(4,4-Dibromobut-3-enyl)-5-methoxy-2,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-ol (19.1).



DIBAL-H (1 M, 3.50 mL, 3.50 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of ketone 18.5 (1.04 g, 2.50 mmol) in  $CH_2Cl_2$  (30 mL). Stirring was continued for 2 h at -78 °C and Na<sub>2</sub>SO<sub>4</sub>.10H<sub>2</sub>O (1.0 g) was The cooling bath was removed, stirring was added. continued for 30 min, and the mixture was filtered through a Celite pad (1 x 1.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (20 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 25 cm), using 1:19 EtOAchexane, gave alcohol 19.1 (0.70 g, 67%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3396, 2931, 2857, 1613 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_{3}, 500 \text{ MHz}) \delta 0.85 (s, 3 \text{ H}), 1.39 (ddd, J = 5.3, 11.7)$ 13.7 Hz, 1 H), 1.43-1.50 (m, 2 H), 1.59 (ddd, J = 5.6, 11.7, 13.7 Hz, 1 H), 1.80 (ddd, J = 6.5, 9.2, 13.7 Hz, 1 H), 2.11-2.24 (m, 2 H), 2.32 (s, 3 H), 2.46-2.54 (m, 1 H), 2.66 (td, J = 5.6, 18.1 Hz, 1 H), 3.80 (s, 3 H), 4.21 (s, 1 H), 6.41 (t, J = 7.2 Hz, 1 H), 6.57 (s, 1 H), 6.80 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  19.8 (t), 20.8 (g), 21.5

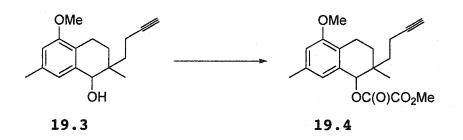
(q), 27.6 (t), 28.6 (t), 34.3 (t), 35.8 (s), 55.2 (q), 75.4 (d), 88.4 (s), 110.0 (d), 121.66 (d), 121.69 (s), 136.7 (s), 138.7 (s), 139.2 (d), 156.9 (s); exact mass m/z calcd for  $C_{17H_{22}}^{81}Br_{2}O_{2}$  419.9946, found 419.9944.

[2-(4,4-Dibromobut-3-enyl)-5-methoxy-2,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yloxy]trimethylsilane (19.2).



Me<sub>3</sub>SiCl (0.15 mL, 1.16 mmol) was added dropwise to a stirred and cooled (0 °C) solution of alcohol 19.1 (0.42 g, 1.02 mmol) and imidazole (84 mg, 1.22 mmol) in  $CH_2Cl_2$  (20 The ice bath was removed and stirring was continued mL). for 30 min. Saturated aqueous  $NH_4Cl$  (15 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 30 mL). The combined organic extracts were washed with brine, dried (MqSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:19 EtOAchexane, gave 19.2 (0.47 g, 94%) as a yellow oil: FTIR  $(CH_2Cl_2 \text{ cast})$  2954, 2858, 1614 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(C_6D_6$ , 400 MHz)  $\delta$ 0.13 (s, 9 H), 0.75 (s, 3 H), 1.22-1.34 (m, 2 H), 1.50 (ddd, J = 5.5, 11.9, 13.4 Hz, 1 H), 1.84-2.06 (m, 3 H),2.25 (s, 3 H), 2.71 (td, J = 7.5, 18.4 Hz, 1 H), 2.87 (td, J = 6.3, 18.4 Hz, 1 H), 3.37 (s, 3 H), 4.29 (s, 1 H), 6.05 (t, J = 7.2 Hz, 1 H), 6.41 (d, J = 0.8 Hz, 1 H), 6.86 (s, 1)H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  1.0 (q), 20.5 (t), 21.6 (q),

21.7 (q), 28.1 (t), 29.4 (t), 34.3 (t), 36.6 (s), 54.8 (q), 77.7 (d), 88.6 (s), 109.8 (d), 122.2 (s), 122.3 (d), 135.7 (s), 139.5 (s), 139.9 (d), 157.4 (s); exact mass m/z calcd for  $C_{20}H_{30}^{81}Br_2O_2Si$  492.0341, found 492.0343.


2-But-3-ynyl-5-methoxy-2,7-dimethyl-1,2,3,4tetrahydronaphthalen-1-ol (19.3).



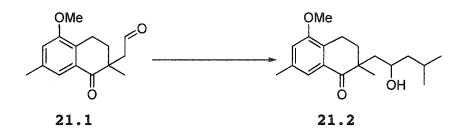
n-BuLi (2.5 M in hexane, 0.85 mL, 2.13 mmol) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of compound 19.2 (0.45 g, 0.92 mmol) in THF (20 mL). The cooling bath was left in place but not recharged, and stirring was continued for 10 h. Saturated aqueous NH<sub>4</sub>Cl (15 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 25 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated.  $Bu_4NF$  (1.0 M in THF, 1.0 mL, 1.00 mmol) was added to a stirred solution of the residue in THF (10 mL). Stirring was continued for 3 h and the solvent was concentrated. Flash chromatography of the residue over silica gel (2 x 20 cm), using 1:19 EtOAchexane, gave acetylene 19.3 (0.12 g, 53%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3575, 3258, 2919, 2106, 1611 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.85 (s, 3 H), 1.42–1.49 (m, 1 H), 1.54-1.63 (m, 2 H), 1.76-1.85 (m, 2 H), 1.94 (t, J = 2.7Hz, 1 H), 2.20-2.38 (m, 2 H), 2.31 (s, 3 H), 2.43-2.52 (m, 1 H), 2.64-2.73 (m, 1 H), 3.79 (s, 3 H), 4.22 (s, 1 H),

6.57 (s, 1 H), 6.79 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$ 13.0 (t), 19.8 (t), 20.5 (q), 21.5 (q), 28.6 (t), 35.8 (t), 35.9 (s), 55.2 (q), 68.0 (d), 75.0 (d), 85.4 (s), 110.0 (d), 121.7 (s), 121.9 (d), 136.6 (s), 138.6 (s), 156.9 (s); exact mass m/z calcd for C<sub>17</sub>H<sub>22</sub>O<sub>2</sub> 258.1620, found 258.1620.

Oxalic Acid 2-But-3-ynyl-5-methoxy-2,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl Methyl Ester (19.4).

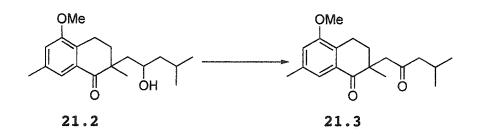


Pyridine (81  $\mu$ L, 1.00 mmol), followed by MeO<sub>2</sub>CCOC1 (86  $\mu$ L, 0.90 mmol) were added to a stirred solution of alcohol **19.3** (112 mg, 0.45 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL). Stirring was continued for 1.5 h and the solvent was then concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:19 EtOAc-hexane, gave ester 19.4 (123 mg, 80%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3290, 2953, 2118, 1769, 1742, 1614 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.85 (s, 3) H), 1.58-1.78 (m, 3 H), 1.92 (t, J = 2.7 Hz, 1 H), 1.89-1.98 (m, 1 H), 2.18-2.26 (m, 2 H), 2.28 (s, 3 H), 2.46-2.57 (m, 1 H), 2.78 (ddd, J = 3.5, 6.6, 18.5 Hz, 1 H), 3.78 (s, 1)3 H), 3.85 (s, 3 H), 5.78 (d, J = 0.7 Hz, 1 H), 6.61 (d, J= 0.7 Hz, 1 H), 6.74 (s, 1 H);  $^{13}$ C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$ 12.9 (t), 19.6 (t), 19.8 (q), 21.4 (q), 28.3 (t), 35.6 (t), 36.2 (s), 53.4 (q), 55.2 (q), 68.2 (d), 79.3 (d), 84.6 (s), 111.0 (d), 122.4 (s), 122.5 (d), 133.1 (s), 136.7 (s),


156.8 (s), 157.4 (s), 158.3 (s); exact mass m/z calcd for  $C_{20}H_{24}O_5$  344.1624, found 344.1624.

(5-Methoxy-2,7-dimethyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetaldehyde (21.1).

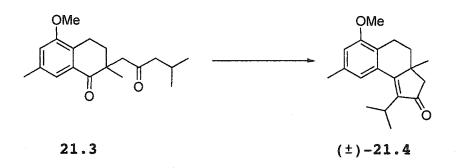



OsO4 (4 mg) was added to a solution of ketone 18.2 (78 mg, 0.32 mmol) in dioxane-water (3:1, 10 mL). The mixture was stirred for 30 min, and NaIO<sub>4</sub> (0.21 g, 1.00 mmol) was Stirring was continued for 3.5 h. Water (10 mL) added. was added and the mixture was extracted with  $Et_2O$  (3 x 20 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:19 EtOAchexane, gave aldehyde 21.1 (60 mg, 76%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2935, 2841, 2736, 1719, 1679, 1608 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.23 (s, 3 H), 1.92 (td, J = 4.7, 13.4 Hz, 1 H), 2.15-2.22 (m, 1 H), 2.35 (s, 3 H), 2.53 (dd, J = 2.5, 16.1 Hz, 1 H, 2.73-2.82 (m, 2 H), 2.94 (td, J =4.7, 18.2 Hz, 1 H), 3.85 (s, 3 H), 6.81 (s, 1 H), 7.43 (s, 1 H), 9.82 (t, J = 2.0 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  18.8 (t), 21.5 (q), 21.7 (q), 33.6 (t), 43.8 (t), 51.3 (s), 55.6 (q), 115.5 (d), 119.7 (d), 129.1 (s), 131.5 (s), 137.1 (s), 156.6 (s), 201.2 (s), 201.3 (d); exact mass m/zcalcd for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub> 246.1256, found 246.1256.

2-(2-Hydroxy-4-methylpentyl)-5-methoxy-2,7-dimethyl-3,4-dihydro-2*H*-naphthalen-1-one (21.2).

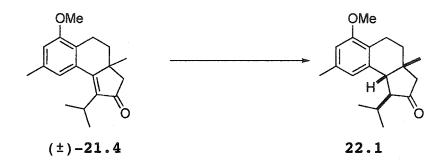


i-BuMgCl (2.0 M, 3.0 mL, 6.0 mmol) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of aldehyde 21.1 (1.36 g, 5.5 mmol) in Et<sub>2</sub>O (60 mL). The mixture was stirred at -78 °C for 1 h. The cooling bath was left in place but not recharged, and stirring was continued The mixture was quenched by addition of for 10 h. saturated aqueous  $NH_4Cl$  (50 mL), and extracted with  $Et_2O$  (3 The combined organic extracts were washed with x 60 mL). brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 25 cm), using 1:19 EtOAc-hexane, gave the intermediate alcohols 21.2 (1.49 g, 89%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3443, 2954, 1676, 1608 cm<sup>-1</sup>; exact mass m/z calcd for C<sub>19</sub>H<sub>28</sub>O<sub>3</sub> 304.2039, found 304.2035; both the  $^{1}$ H and  $^{13}$ C NMR spectra indicated the presence of two alcohols (ca 1:1).


5-Methoxy-2,7-dimethyl-2-(4-methyl-2-oxopentyl)-3,4dihydro-2*H*-naphthalen-1-one (21.3).

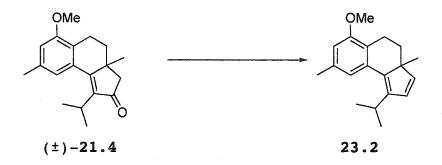


PCC (1.9 g, 8.6 mmol) was added in one portion to a stirred solution of the above alcohols in  $CH_2Cl_2$  (60 mL). The mixture was stirred at room temperature for 3.5 h and then filtered through a Celite pad  $(2.5 \times 3 \text{ cm})$ . Evaporation of the solvent and flash chromatography of the residue over silica gel (2.5 x 30 cm), using 1:9 EtOAchexane, gave diketone 21.3 (1.32 g, 79% over two steps) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2957, 1712, 1681, 1609 cm<sup>-</sup> <sup>1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.96 (d, J = 6.6 Hz, 6 H), 1.22 (s, 3 H), 1.84 (ddd, J = 3.7, 5.2, 13.4 Hz, 1 H), 2.12(septet, J = 6.6 Hz, 1 H), 2.28 (dd, J = 3.0, 6.9 Hz, 2 H),2.37 (s, 3 H), 2.40-2.48 (m, 1 H), 2.68-2.78 (m, 1 H), 2.81 (AB q, J = 17.3 Hz,  $\Delta v_{AB} = 217.4$  Hz, 2 H), 2.97 (td, J =4.5, 17.9 Hz, 1 H), 3.85 (s, 3 H), 6.84 (d, J = 1.2 Hz, 1 H), 7.50 (d, J = 0.4 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$ 18.8 (t), 21.6 (g), 22.2 (g), 22.7 (g), 24.8 (d), 32.5 (t), 43.5 (t), 51.3 (s), 52.7 (t), 55.7 (q), 115.2 (d), 119.7 (d), 129.1 (s), 131.9 (s), 136.7 (s), 156.5 (s), 201.5 (s), 208.5 (s); exact mass m/z calcd for C<sub>19</sub>H<sub>26</sub>O<sub>3</sub> 302.1882, found 302.1881.


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-Isopropyl-6-methoxy-3a,8-dimethyl-3,3a,4,5-tetrahydrocyclopenta[a]naphthalene-2-one [(±)-21.4].

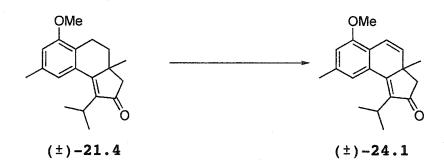



NaOH (50%, 5 mL) was added to a stirred solution of diketone 21.3 (0.28 g, 0.93 mmol) in EtOH (15 mL). The mixture was heated at reflux (oil bath at 80 °C) for 36 h, cooled to room temperature, neutralized with hydrochloric acid (3%, 20 mL), and extracted with  $Et_2O$  (3 x 30 mL). The combined organic extracts were washed with brine, dried  $(MqSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (1.5 x 25 cm), using 1:9 EtOAchexane, gave enone (±)-21.4 (0.26 g, 98%) as yellow plates: mp 105-106 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2956, 1693, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.06 (s, 3 H), 1.19 (d, J = 6.9 Hz, 3 H), 1.37 (d, J = 7.0 Hz, 3 H), 1.66-1.74 (m, 1 H), 2.07 (ddd, J = 1.0, 6.9, 13.2 Hz, 1 H), 2.26 (AB q, J = 18.5 Hz, $\Delta v_{AB} = 60.8 \text{ Hz}, 2 \text{ H}), 2.37 \text{ (s, 3 H)}, 2.61-2.71 \text{ (m, 1 H)},$ 2.86 (dd, J = 7.0, 18.8 Hz, 1 H), 3.12 (septet, J = 7.0 Hz, 1 H), 3.83 (s, 3 H), 6.70 (s, 1 H), 6.86 (s, 1 H);  ${}^{13}C$  NMR  $(CDCl_3, 125.7 \text{ MHz}) \delta 19.8 \text{ (q)}, 20.6 \text{ (q)}, 20.8 \text{ (t)}, 21.7 \text{ (q)},$ 23.0 (q), 25.7 (d), 36.0 (t), 38.7 (t), 51.1 (s), 55.3 (q), 111.8 (d), 120.9 (d), 123.5 (s), 131.5 (s), 136.0 (s), 140.6 (s), 157.2 (s), 170.1 (s), 208.2 (s); exact mass m/zcalcd for C19H24O2 284.1776, found 284.1774.

(1R\*,3aS\*,9bR\*)-1-Isopropyl-6-methoxy-3a,8-dimethyl-1,3,3a,4,5,9b-hexahydrocyclopenta[a]naphthalene-2-one (22.1).



Pd-C (10%, 10 mg) was added to a solution of enone  $(\pm)$ -21.4 (17.8 mg, 0.06 mmol) in MeOH (1 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (48 psi) for 9 h. The mixture was filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (5 mL) as a rinse and the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using hexane, gave ketone 22.1 (9.3 mg, 52%) as white crystals: mp 98-99 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2956, 1735, 1612 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.0 (d, J = 6.9 Hz, 3 H), 1.09 (s, 3 H), 1.16 (d, J = 7.0 Hz, 3 H), 1.50-1.62 (m, 2 H), 2.06-2.24 (m, 4 H), 2.32 (s, 3 H), 2.46-2.55 (m, 1 H), 2.76 (d, J = 10.6 Hz, 1 H),2.78-2.85 (m, 1 H), 3.80 (s, 3 H), 6.52 (s, 1 H), 6.55 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  16.8 (q), 19.8 (t), 21.6 (q), 21.8 (q), 23.6 (q), 27.8 (d), 30.0 (t), 34.8 (s), 48.9 (d), 55.2 (q), 55.9 (t), 61.1 (d), 108.8 (d), 120.1 (s), 122.5 (d), 135.7 (s), 138.0 (s), 157.3 (s), 219.5 (s); exact mass m/z calcd for  $C_{19}H_{26}O_2$  286.1933, found 286.1934.


1-Isopropyl-6-methoxy-3a,8-dimethyl-4,5-dihydro-3aHcyclopenta[a]naphthalene (23.2).



DIBAL-H (1 M, 0.4 mL, 0.4 mmol) was added dropwise to a stirred and cooled (0 °C) solution of enone  $(\pm)-21.4$  (76 mg, 0.27 mmol) in  $CH_2Cl_2$  (5 mL). After the addition, the ice-bath was removed and stirring was continued for 5 h. The mixture was cooled to 0 °C, Na<sub>2</sub>SO<sub>4</sub>.10H<sub>2</sub>O (0.5 g) was added, and stirring was continued for 30 min. The mixture was filtered through a Celite pad (1 x 1.5 cm), using  $CH_2Cl_2$ The solvent was concentrated and the residue as a rinse. was dissolved in  $CDCl_3$  (2 mL) and stirred for 3 h [this step was carried out because in a previous experiment conversion of the initial alcohol to the diene was observed after leaving an NMR sample overnight in CDCl<sub>3</sub>]. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 20 cm), using 1:9 EtOAc-hexane, gave diene 23.2 (71 mg, 98%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3057, 2959, 1696, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.97 (s, 3 H), 1.04 (d, J = 6.8 Hz, 3 H), 1.28 (d, J = 6.9 Hz, 3H), 1.22-1.30 (m, 1 H), 2.12 (ddd, J = 0.8, 6.5, 11.9 Hz, 1 H), 2.36 (s, 3 H), 2.58-2.67 (m, 1 H), 2.86 (dd, J = 6.7, 18.2 Hz, 1 H), 3.20 (septet, J = 6.8 Hz, 1 H), 3.80 (s, 3 H), 6.37 (d, J = 5.3 Hz, 1 H), 6.46 (d, J = 5.3 Hz, 1 H), 6.55 (s, 1 H), 6.83 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$ 

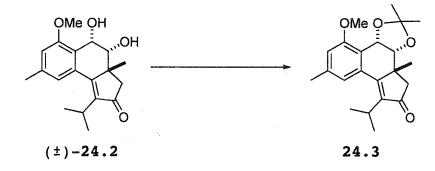
17.3 (q), 21.1 (t), 21.8 (q), 22.0 (q), 22.9 (q), 26.2 (d), 31.7 (t), 52.3 (s), 55.2 (q), 108.7 (d), 119.3 (d), 121.6 (s), 129.1 (d), 133.7 (s), 135.5 (s), 142.8 (s), 143.1 (s), 145.5 (d), 157.2 (s); exact mass m/z calcd for  $C_{19H_{24}O}$ 268.1827, found 268.1830.


1-Isopropyl-6-methoxy-3a, 8-dimethyl-3, 3a-dihydrocyclo-penta[a]naphthalen-2-one [(±)-24.1].



DDQ (1.20 g, 5.30 mmol) was added in one portion to a stirred solution of ketone  $(\pm)-21.4$  (1.01 g, 3.60 mmol) in 1,4-dioxane (60 mL) and the mixture was heated at reflux for 8.5 h (Ar atmosphere), cooled to room temperature, and filtered through a short pad of silica gel (5 x 3.5 cm), using Et<sub>2</sub>O (100 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 30 cm), using 1:9 EtOAc-hexane, gave enone (±)-24.1 (0.78 g, 78%) as a yellow oil: FTIR (CHCl<sub>3</sub> cast) 2958, 1696, 1603  $cm^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.17 (d, J = 6.8 Hz, 3 H), 1.18 (s, 3 H), 1.36 (d, J = 7.1 Hz, 3 H), 2.40 (s, 3 H), 2.44 (AB q, J = 17.6 Hz,  $\Delta v_{AB} = 109.1$  Hz, 2 H), 3.02 (septet, J = 7.0 Hz, 1 H), 3.80 (s, 3 H), 6.05 (d, J = 9.6)Hz, 1 H), 6.72 (d, J = 9.5 Hz, 1 H), 6.73 (s, 1 H), 6.85(s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  19.8 (q), 20.7 (q), 22.0 (g), 25.5 (g), 27.3 (d), 42.3 (t), 48.4 (s), 55.6 (g),

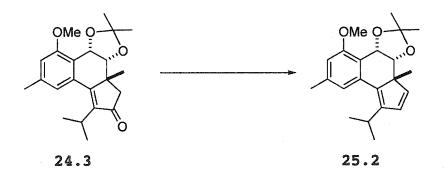
113.1 (d), 119.2 (d), 119.8 (s), 120.6 (d), 129.8 (s), 136.7 (d), 138.0 (s), 141.8 (s), 154.9 (s), 170.0 (s), 207.3 (s); exact mass m/z calcd for  $C_{19H_{22}O_2}$  282.1620, found 282.1616.


(3aR\*,4R\*,5S\*)-4,5-Dihydroxy-1-isopropyl-6-methoxy-3a,8-dimethyl-3,3a,4,5-tetrahydrocyclopenta[a]naphthalene-2-one [(±)-24.2].



OsO<sub>4</sub> (50 mg, 0.20 mmol) and NMO (1.93 g, 16.00 mmol) were added to a stirred solution of olefin  $(\pm)-24.1$  (1.50 g, 5.30 mmol) in a mixture of  $CCl_4$  (30 mL), water (6 mL), t-BuOH (25 mL), and acetone (40 mL) (the solvents were added in any order to the starting material) and stirring was continued for 12 h. The mixture was diluted with water (40 mL) and extracted with  $CH_2Cl_2$  (3 x 50 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 30 cm), using 1:4 t-BuOMe-CH<sub>2</sub>Cl<sub>2</sub>, gave diol  $(\pm)$ -24.2 (1.66 g, 98%) as a colorless oil: FTIR (CHCl<sub>3</sub> cast) 3525, 2961, 1691, 1608 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ 1.04 (s, 3 H), 1.23 (d, J = 6.8 Hz, 3 H), 1.37 (d, J = 7.1Hz, 3 H), 2.40 (s, 3 H), 2.47 (AB q, J = 18.1 Hz,  $\Delta v_{AB} =$ 401.6 Hz, 2 H), 3.05 (s, 1 H), 3.16 (septet, J = 7.0 Hz, 1 H), 3.93 (s, 3 H), 4.04 (d, J = 4.4 Hz, 1 H), 4.36 (s, 1


H), 5.03 (d, J = 4.4 Hz, 1 H), 6.79 (s, 1 H), 6.94 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  20.0 (q), 20.5 (q), 21.9 (q), 22.1 (q), 26.1 (d), 46.1 (t), 46.4 (s), 55.6 (q), 66.5 (d), 73.1 (d), 112.7 (d), 121.4 (d), 121.6 (s), 131.5 (s), 138.8 (s), 144.6 (s), 158.6 (s), 163.9 (s), 208.1 (s); exact mass m/z calcd for C<sub>19H24</sub>O<sub>4</sub> 316.1675, found 316.1676.

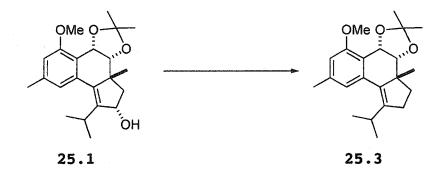

(3aR\*,3bR\*,10bS\*)-6-Isopropyl-10-methoxy-2,2,3btrimethyl-3a,3b,4,10b-tetrahydrocyclopenta[3,4]naphtho[1,2d][1,3]dioxol-5-one (24.3).



Pyridinium *p*-toluenesulfonate (0.1 g, 0.39 mmol) was added to a stirred solution of diol (±)-24.2 (1.30 g, 4.11 mmol) in acetone (30 mL) and 2,2-dimethoxypropane (30 mL), and the mixture was stirred at room temperature for 4 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 X 25 mL), using 1:4 EtOAchexane, gave ketal 24.3 (1.29 g, 88%) as a white solid: mp 185-187 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2961, 1697, 1607 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  0.66 (s, 3 H), 1.14 (s, 3 H), 1.28 (s, 3 H), 1.45 (d, *J* = 6.9 Hz, 3 H), 1.58 (d, *J* = 7.0 Hz, 3 H), 2.10 (s, 3 H), 2.46 (AB q, *J* = 18.2 Hz,  $\Delta v_{AB}$  = 398.6 Hz, 2 H), 3.30 (septet, *J* = 7.0 Hz, 1 H), 3.33 (s, 3 H), 4.04 (d, *J* = 6.5 Hz, 1 H), 5.56 (d, *J* = 6.5 Hz, 1 H), 6.42 (s, 1 H), 6.90 (s, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  20.8 (q), 20.9 (q), 21.8 (q), 23.2 (q), 25.8 (q), 26.8 (q), 27.5 (d), 45.2 (t), 46.0 (s), 55.3 (q), 70.2 (d), 79.7 (d), 108.5 (s), 112.9 (d), 120.4 (d), 121.8 (s), 133.0 (s), 139.3 (s), 144.8 (s), 159.0 (s), 163.7 (s), 205.9 (s); exact mass m/z calcd for C<sub>22H28</sub>O<sub>4</sub> 356.1988, found 356.1983.

(3aR\*,3bR\*,5S\*,10bS\*)-6-Isopropyl-10-methoxy-2,2,3btrimethyl-3a,4,5,10b-tetrahydro-3bH-cyclopenta[3,4]naphtho-[1,2-d][1,3]dioxol-5-ol (25.1) and (3aR\*,3bR\*,10bS\*)-6-Isopropyl-10-methoxy-2,2,3b-trimethyl-3b,10b-dihydro-3aHcyclopenta[3,4]naphtho[1,2-d][1,3]dioxole (25.2).

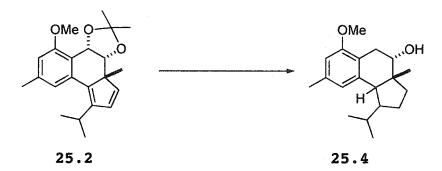





DIBAL-H (1 M, 8.0 mL, 8.00 mmol) was added dropwise to a stirred and cooled (0 °C) solution of ketone 24.3 (1.20 g, 3.37 mmol) in  $CH_2Cl_2$  (50 mL). After the addition, the icebath was removed and stirring was continued for 8 h. The mixture was cooled to 0 °C,  $Na_2SO_4.10H_2O$  (2.0 g) was added, and stirring was continued for 30 min. The mixture was filtered through a Celite pad (1 x 1.5 cm), using  $CH_2Cl_2$  (30 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 25 cm), using 1:9 EtOAc-hexane, gave alcohol **25.1** (0.65 g, 54%) as a white solid and diene **25.2** (0.26 g, 23%) as white crystals.

Alcohol **25.1** had: mp 172-174 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3500, 2959, 1608 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  0.74 (s, 3 H), 1.24 (s, 3 H), 1.25 (s, 3 H), 1.34 (d, J = 6.9 Hz, 3 H), 1.38 (d, J = 7.0 Hz, 3 H), 1.84 (dd, J = 7.3, 14.4 Hz, 1 H), 2.14 (s, 3 H), 2.16 (d, J = 14.4 Hz, 1 H), 3.34 (s, 3 H), 3.38 (d, J = 11.9 Hz, 1 H), 3.40 (septet, J = 7.0 Hz, 1 H), 4.07 (d, J = 6.9 Hz, 1 H), 4.95 (dd, J = 7.2, 11.9 Hz, 1 H), 5.66 (d, J = 6.9 Hz, 1 H), 6.36 (d, J = 0.6 Hz, 1 H), 6.92 (s, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  21.8 (q), 21.9 (q), 23.9 (q), 24.4 (q), 25.0 (q), 26.8 (q), 27.4 (d), 45.0 (t), 52.6 (s), 55.2 (q), 71.5 (d), 75.9 (d), 80.3 (d), 108.3 (s), 110.7 (d), 120.2 (d), 121.0 (s), 135.8 (s), 135.9 (s), 139.0 (s), 146.9 (s), 158.9 (s); exact mass m/zcalcd for C<sub>22</sub>H<sub>30</sub>O<sub>4</sub> 358.2144, found 358.2150.

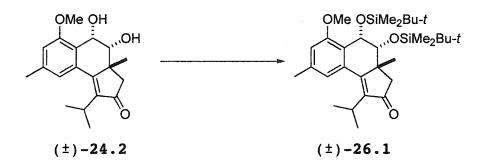
Diene **25.2** had: mp 124-125 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3048, 2960, 1698, 1607 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz)  $\delta$  0.87 (s, 3 H), 1.12 (d, J = 6.7 Hz, 3 H), 1.13 (s, 3 H), 1.26 (d, J = 6.9 Hz, 3 H), 1.38 (s, 3 H), 2.20 (s, 3 H), 3.44 (s, 3 H), 3.47 (septet, J = 7.0 Hz, 1 H), 4.53 (d, J = 6.3Hz, 1 H), 5.72 (d, J = 6.2 Hz, 1 H), 6.42 (d, J = 5.4 Hz, 1 H), 6.44 (s, 1 H), 6.53 (d, J = 5.4 Hz, 1 H), 7.04 (s, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  19.0 (q), 22.0 (q), 22.4 (q), 22.7 (q), 26.6 (q), 26.9 (q), 27.8 (d), 55.3 (q), 58.8 (s), 71.6 (d), 78.4 (d), 109.0 (s), 110.3 (d), 119.5 (d), 121.9 (s), 130.6 (d), 133.9 (s), 138.7 (s), 139.5 (s), 142.4 (d), 146.1 (s), 159.4 (s); exact mass m/z calcd for  $C_{22H_{28}O_3}$  340.2039, found 340.2039.


(3aR\*,3bR\*,10bS\*)-6-Isopropyl-10-methoxy-2,2,3btrimethyl-3a,4,,5,10b-tetrahydro-3bH-cyclopenta[3,4]naphtho[1,2-d][1,3]dioxole (25.3).



Pd-C (10%, 5 mg) was added to a solution of alcohol 25.1 (10.0 mg, 0.03 mmol) in MeOH (1 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (33 psi) for 1 h. The mixture was filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (5 mL) as a rinse, and the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using hexane, gave olefin 25.3 (7.6 mg, 80%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2958, 1608 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.83 (s, 3 H), 0.95 (d, J = 6.8 Hz, 3 H), 1.16 (s, 3 H), 1.17 (d, J =6.8 Hz, 3 H), 1.39 (s, 3 H), 1.50-1.58 (m, 1 H), 2.22-2.30 (m, 1 H), 2.34 (s, 3 H), 2.40-2.54 (m, 2 H), 3.32 (septet, J = 7.0 Hz, 1 H), 3.84 (s, 3 H), 4.25 (d, J = 6.4 Hz, 1 H),5.44 (d, J = 6.4 Hz, 1 H), 6.59 (s, 1 H), 6.67 (s, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  21.4 (q), 21.7 (q), 21.9 (q), 24.3 (q), 25.7 (q), 27.26 (q), 27.33 (d), 30.2 (t), 32.0 (t),

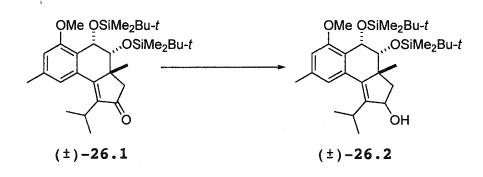
53.2 (s), 55.8 (q), 71.4 (d), 82.8 (d), 108.1 (s), 110.0 (d), 120.2 (d), 120.4 (s), 132.0 (s), 135.5 (s), 138.5 (s), 145.0 (s), 158.4 (s); exact mass m/z calcd for  $C_{22}H_{30}O_{3}$  342.2195, found 342.2203.


(3aR\*,4S\*)-1-Isopropyl-6-methoxy-3a,8-dimethyl-2,3-3a,4,5,9b-hexahydro-1*H*-cyclopenta[*a*]naphthalen-4-ol (25.4).



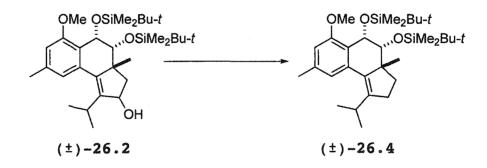
Pd-C (10%, 5 mg) was added to a solution of diene 25.2 (11.0 mg, 0.03 mmol) in MeOH (1 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (35 psi) for 36 h. The mixture was filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (5 mL) as a rinse, and the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:9 EtOAchexane, gave alcohol 25.4 (8.6 mg, 92%) as a colorless oil: FTIR (Neat) 3414, 2952, 1611 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 0.61 (d, J = 6.6 Hz, 3 H), 0.92-1.10 (m, 3 H), 1.08 (d, J =6.3 Hz, 3 H), 1.24 (s, 3 H), 1.45-1.52 (m, 1 H), 1.60-1.70 (m, 1 H), 1.74-1.83 (m, 1 H), 2.20-2.28 (m, 1 H), 2.24 (s, 3 H), 2.53 (dd, J = 11.4, 15.5 Hz, 1 H), 2.98 (d, J = 6.9Hz, 1 H), 3.22 (dd, J = 4.4, 15.6 Hz, 1 H), 3.40 (s, 3 H), 3.39-3.44 (m, 1 H), 6.37 (s, 1 H), 6.70 (s, 1 H);  ${}^{13}C$  NMR  $(C_6D_6, 100.6 \text{ MHz}) \delta 21.5 (q), 21.8 (q), 24.2 (q), 26.8 (q),$ 29.2 (t), 29.98 (d), 30.03 (t), 32.4 (t), 46.1 (s), 53.8

(d), 54.5 (d), 54.9 (q), 75.6 (d), 108.6 (d), 123.3 (d), 123.4 (s), 134.9 (s), 138.7 (s), 157.0 (s); exact mass (electrospray) m/z calcd for  $C_{19H_{29}O_2}$  (M + H) 289.2168, found 289.2168.


(3aR\*,4R\*,5S\*)-4,5-Bis(tert-butyldimethylsilanyloxy)-1-isopropyl-6-methoxy-3a,8-dimethyl-3,3a,4,5tetrahydrocyclopenta[a]naphthalen-2-one [(±)-26.1].



2,6-Lutidine (1.2 mL, 10.20 mmol), followed by t-BuMe<sub>2</sub>SiOSO<sub>2</sub>CF<sub>3</sub> (1.5 mL, 6.40 mmol), were added by rapid injection to a stirred and cooled (0 °C) solution of diol  $(\pm)-24.2$  (0.63 g, 2.00 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL). The icebath was removed and stirring was continued for 4.5 h. Saturated aqueous NH<sub>4</sub>Cl (30 mL) was added and the mixture was extracted with  $CH_2Cl_2$  (3 x 40 mL). The combined organic extracts were washed with brine, dried (MqSO<sub>4</sub>) and Flash chromatography of the residue over concentrated. silica gel (2.5 x 25 cm), using 1:19 EtOAc-hexane, gave ketone  $(\pm)-26.1$  (0.91 g, 84%) as a colorless oil: FTIR (CHCl<sub>3</sub> cast) 2956, 1698, 1631, 1608 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  -0.24 (s, 3 H), -0.04 (s, 3 H), 0.13 (s, 3 H), 0.26 (s, 3 H), 0.89 (s, 9 H), 0.99 (s, 9 H), 1.10 (s, 3 H), 1.48 (d, J = 6.9 Hz, 3 H), 1.57 (d, J = 7.1 Hz, 3 H), 2.13 (s, 3)H), 3.15 (septet, J = 7.0 Hz, 1 H), 2.91 (AB q, J = 6.5 Hz,


 $\Delta v_{AB} = 413.5 \text{ Hz}, 2 \text{ H}$ , 3.30 (s, 3 H), 3.53 (d, J = 2.7 Hz, 1H), 5.40 (d, J = 2.7 Hz, 1 H), 6.40 (s, 1 H), 6.90 (s, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  -5.3 (q), -4.8 (q), -4.5 (q), -3.8 (q), 18.28 (s), 18.35 (s), 20.0 (q), 21.8 (q), 21.9 (q), 25.8 (q), 26.1 (q), 26.2 (q), 32.0 (d), 44.3 (t), 50.3 (s), 55.0 (q), 67.7 (d), 77.6 (d), 111.8 (d), 120.5 (d), 124.7 (s), 134.6 (s), 139.4 (s), 140.9 (s), 156.0 (s), 169.3 (s), 206.8 (s); exact mass m/z calcd for C<sub>31</sub>H<sub>52</sub>O<sub>4</sub>Si<sub>2</sub> 544.3404, found 544.3400.

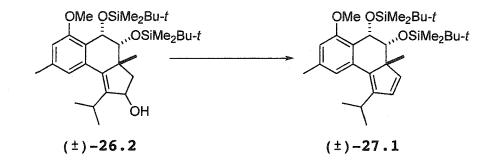
(2R\*, 3aS\*, 4S\*, 5R\*)-4, 5-Bis-(tert-butyldimethylsilanyloxy)-1-isopropyl-6-methoxy-3a, 8-dimethyl-3, 3a, 4, 5tetrahydro-2H-cyclopenta[a]naphthalen-2-ol [(±)-26.2].



DIBAL-H (1 M, 4.0 mL, 4.0 mmol) was added dropwise to a stirred and cooled (0 °C) solution of enone ( $\pm$ )-26.1 (0.88 g, 1.6 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL). After the addition, the ice-bath was removed, and stirring was continued for 10 h. The mixture was cooled to 0 °C, Na<sub>2</sub>SO<sub>4</sub>.10H<sub>2</sub>O (1.5 g) was added, and stirring was continued for 30 min. The mixture was filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (50 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (2.5 x 25 cm), using 1:19 EtOAc-hexane, gave alcohol ( $\pm$ )-26.2 (0.83 g, 94%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3604, 2955, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  -0.14 (s, 3 H), 0.04 (s, 3 H), 0.20 (s, 3 H), 0.34 (s, 3 H), 0.98 (s, 1 H), 1.00 (s, 3 H), 1.02 (s, 9 H), 1.07 (s, 9 H), 1.36 (d, *J* = 7.1 Hz, 3 H), 1.40 (d, *J* = 7.0 Hz, 3 H), 2.14 (s, 3 H), 2.23 (dd, *J* = 6.0, 11.7 Hz, 1 H), 2.55 (dd, *J* = 8.5, 11.7 Hz, 1 H), 3.35 (s, 3 H), 3.45 (d, *J* = 2.9 Hz, 1 H), 3.48 (septet, *J* = 7.0 Hz, 1 H), 5.10-5.18 (m, 1 H), 5.40 (d, *J* = 2.9 Hz, 1 H), 6.38 (s, 1 H), 6.95 (s, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  -5.2 (q), -4.7 (q), -4.3 (q), -3.6 (q), 18.50 (s), 18.52 (s), 20.5 (q), 21.9 (q), 23.1 (q), 26.3 (q), 26.4 (q), 26.6 (q), 28.7 (d), 46.7 (t), 48.1 (s), 54.9 (q), 68.2 (d), 78.2 (d), 80.0 (d), 110.0 (d), 120.9 (d), 125.1 (s), 136.5 (s), 138.7 (s), 141.4 (s), 142.8 (s), 156.2 (s); exact mass *m*/*z* calcd for C<sub>31</sub>H<sub>52</sub>O<sub>3</sub>Si<sub>2</sub> (M - H<sub>2</sub>O) 528.3455, found 528.3440.

 $(3aR^*, 4R^*, 5S^*) - 4, 5$ -Bis(tert-butyldimethylsilanyloxy) -1-isopropyl-6-methoxy-3,8a-dimethyl-3,3a,4,5-tetrahydro-2*H*cyclopenta[a]naphthalene [(±)-26.4].

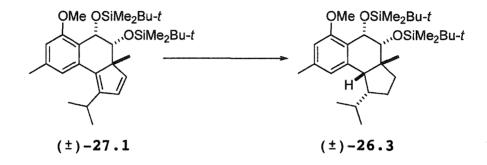



Pd-C (10%, 10 mg) was added to a solution of alcohol  $(\pm)-26.2$  (44 mg, 0.08 mmol) in MeOH (1:1, 1.5 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (56 psi) for 6.5 h. The mixture was then filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (10 mL) as a rinse. Evaporation of the filtrate and flash

139

chromatography of the residue over silica gel (1 x 25 cm), using hexane, gave crude olefin  $(\pm)-26.4$  (15 mg, ca. 35%). For characterization the compound was desilylated as follows:

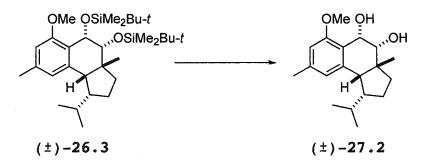
Bu<sub>4</sub>NF (1.0 M, 0.3 mL, 0.3 mmol) was added to a stirred solution of crude (±)-26.4 (30 mg, 0.06 mmol) in THF (5 mL), and the mixture was heated at reflux for 24 h, cooled to room temperature, and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:4 EtOAc-hexane, gave the expected diol (16 mg, 95%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3542, 2959, 1645, 1608  $cm^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.93 (s, 3 H), 1.03 (d, J = 6.7 Hz, 3 H), 1.18 (d, J = 6.9 Hz, 3 H), 1.52 (septet, J =4.3 Hz, 1 H), 2.16-2.32 (m, 1 H), 2.35 (s, 3 H), 2.48-2.56 (m, 2 H), 2.80 (d, J = 2.8 Hz, 1 H), 3.26 (septet, J = 6.8)Hz, 1 H), 3.82 (dd, J = 3.2, 4.4 Hz, 1 H), 3.88 (s, 3 H), 4.36 (d, J = 2.4 Hz, 1 H), 5.00 (dd, J = 2.0, 4.4 Hz, 1 H), 6.60 (s, 1 H), 6.90 (s, 1 H);  $^{13}\text{C}$  NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$ 21.3 (q), 21.7 (q), 21.9 (q), 22.2 (q), 27.6 (d), 29.8 (t), 31.5 (t), 53.8 (s), 55.4 (q), 67.9 (d), 74.7 (d), 109.8 (d), 120.6 (s), 120.8 (d), 130.8 (s), 133.7 (s), 138.0 (s), 146.4 (s), 158.7 (s); exact mass m/z calcd for  $C_{19H_{26}O_3}$ 302.1882, found 302.1883.


 $(3aR^*, 4R^*, 5S^*) - 4, 5-Bis-(tert-butyldimethylsilanyloxy) - 1-isopropyl-6-methoxy-3a, 8-dimethyl-4, 5-dihydro-3aH-cyclopenta[a]naphthalene [(±)-27.1].$ 



Et<sub>3</sub>N (0.8 mL, 5.74 mmol) and then MsCl (0.2 mL, 2.57 mmol) were added to a stirred and cooled (0 °C) solution of alcohol (±)-26.2 (0.50 g, 0.92 mmol) in ClCH<sub>2</sub>CH<sub>2</sub>Cl (40 mL). The ice bath was removed, the mixture was stirred for 30 min, then heated at reflux for 4 h, and cooled to room Saturated aqueous NH<sub>4</sub>Cl (30 mL) was added and temperature. the mixture was extracted with  $Et_2O$  (3 x 40 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 20 cm), using hexane, gave diene (±)-27.1 (0.39 g, 80%) as a white solid: mp 114-115 °C; FTIR (CDCl<sub>3</sub> cast) 2957, 1607 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.53 (s, 3 H), -0.02 (s, 3 H), 0.09 (s, 3 H), 0.10 (s, 3 H), 0.66 (s, 9 H), 0.95 (s, 9 H), 0.98 (d, J = 6.8Hz, 3 H), 1.06 (s, 3 H), 1.16 (d, J = 7.0 Hz, 3 H), 2.38(s, 3 H), 2.84 (septet, J = 6.8 Hz, 1 H), 3.65 (d, J = 2.9Hz, 1 H), 3.80 (s, 3 H), 5.02 (d, J = 3.0 Hz, 1 H), 6.22(d, J = 5.4 Hz, 1 H), 6.53 (d, J = 5.3 Hz, 1 H), 6.51 (s, 1 H)H), 6.68 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.6 (q), -4.9 (q), -4.6 (q), -3.7 (q), 18.1 (s), 18.3 (s), 21.0 (q), 21.9 (q), 24.3 (q), 25.8 (q), 25.9 (q), 26.1 (q), 28.8 (d),

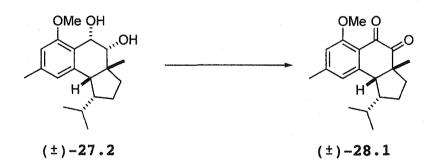
55.1 (q), 57.0 (s), 67.0 (d), 77.8 (d), 109.2 (d), 119.4 (d), 125.2 (s), 126.8 (d), 136.1 (s), 138.4 (s), 143.3 (s), 144.1 (d), 145.4 (s), 155.8 (s); exact mass m/z calcd for  $C_{31H_{52}O_3Si_2}$  528.3455, found 528.3441.


(1R\*, 3aR\*, 4R\*, 5S\*, 9bR\*)-4, 5-Bis-(tert-butyldimethylsilanyloxy)-1-isopropyl-6-methoxy-3a, 8-dimethyl-2,3,3a,4,5,9b-hexahydro-1H-cyclopenta[a]naphthalene [(±)-26.3].



Pd-C (10%, 15 mg) was added to a solution of diene  $(\pm)$ -27.1 (148 mg, 0.28 mmol) in MeOH-hexane (1:1, 10 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (39 psi) for 36 h. The mixture was then filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (1 x 25 cm), using hexane, gave compound  $(\pm)-26.3$  (126 mg, 85%) mp 93-95 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2952, as a white solid: 1612 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.14 (s, 3 H), 0.00 (s, 3 H), 0.09 (s, 3 H), 0.21 (s, 3 H), 0.46 (d, J = 6.5)Hz, 3 H), 0.83 (s, 9 H), 0.94 (s, 9 H), 1.02 (d, J = 6.4Hz, 3 H), 1.14 (s, 3 H), 1.23-1.31 (m, 1 H), 1.36-1.42 (m, 1 H), 1.58-1.76 (m, 2 H), 1.88-1.97 (m, 1 H), 2.30 (s, 3 H), 2.75 (dd, J = 7.3, 12.7 Hz, 1 H), 2.94 (d, J = 8.0 Hz,

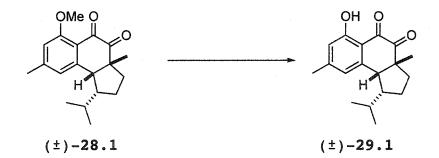
1 H), 3.35 (d, J = 3.2 Hz, 1 H), 3.77 (s, 3 H), 4.98 (d, J = 3.1 Hz, 1 H), 6.48 (s, 1 H), 6.62 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.2 (q), -4.9 (q), -4.8 (q), -3.0 (q), 18.5 (s), 18.7 (s), 20.4 (q), 21.8 (q), 24.4 (q), 26.1 (q), 26.26 (q), 26.31 (q), 27.9 (t), 33.0 (d), 34.1 (t), 44.0 (s), 52.9 (d), 54.4 (d), 54.8 (q), 66.7 (d), 77.5 (d), 107.9 (d), 123.2 (d), 125.0 (s), 137.3 (s), 139.0 (s), 156.5 (s); exact mass m/z calcd for  $C_{31}H_{56}O_{3}Si_{2}$  532.3768, found 532.3770.


 $(1R^*, 3aR^*, 4R^*, 5S^*, 9bR^*) - 1 - 1$  sopropy 1 - 6-methoxy -3a, 8dimethy 1 - 2, 3, 3a, 4, 5, 9b-hexahydro -1H-cyclopenta [a] naphthalene -4, 5-diol  $[(\pm) - 27, 2]$ .



Bu<sub>4</sub>NF (1.0 M, 5.0 mL, 5.0 mmol) was added to a stirred solution of compound ( $\pm$ )-26.3 (0.44 g, 0.84 mmol) in THF (30 mL). The mixture was heated at reflux for 24 h, and then cooled to room temperature. Saturated aqueous NH<sub>4</sub>Cl (20 mL) was added and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 30 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:3 EtOAc-hexane, gave diol ( $\pm$ )-27.2 (0.24 g, 98%) as white crystals: mp 145-147 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3446, 2952, 1610 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.67 (d, J = 6.6 Hz, 3 H), 1.07 (d, J

= 6.3 Hz, 3 H), 1.04-1.11 (m, 1 H), 1.16-1.24 (m, 1 H), 1.26 (s, 3 H), 1.48-1.56 (m, 2 H), 1.60-1.66 (m, 1 H), 1.85-1.93 (m, 1 H), 2.30 (s, 3 H), 2.36-2.42 (m, 1 H), 2.55 (s, 1 H), 2.97 (d, J = 7.0 Hz, 1 H), 3.49 (d, J = 4.4 Hz, 1 H), 3.83 (s, 3 H), 5.00 (d, J = 4.5 Hz, 1 H), 6.52 (s, 1 H), 6.65 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  21.5 (q), 21.9 (q), 24.0 (q), 26.5 (q), 28.0 (t), 31.1 (d), 32.8 (t), 44.2 (s), 52.6 (d), 53.6 (d), 55.4 (q), 65.6 (d), 74.7 (d), 108.3 (d), 122.9 (d), 123.2 (s), 137.7 (s), 137.9 (s), 157.9 (s); exact mass m/z calcd for C<sub>19</sub>H<sub>28</sub>O<sub>3</sub> 304.2039, found 304.2041.

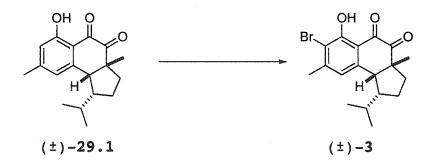

(1R\*, 3aR\*, 9bR\*)-1-Isopropyl-6-methoxy-3a, 8-dimethyl-2,3-3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(±)-28.1].



DMSO (0.23 mL, 3.24 mmol) in  $CH_2Cl_2$  (0.8 mL) was added dropwise over ca. 5 min to a stirred and cooled (-78 °C) solution of (COCl)<sub>2</sub> (0.25 mL, 2.81 mmol) in  $CH_2Cl_2$  (12 mL). Stirring was continued for 30 min, and diol (±)-27.2 (200 mg, 0.66 mmol) in  $CH_2Cl_2$  (5 mL) was added dropwise over ca. 5 min, a further portion of  $CH_2Cl_2$  (1 mL) being used as a rinse. Stirring at -78 °C was continued for 1 h, and Et<sub>3</sub>N (0.9 mL, 6.57 mmol) was added dropwise over ca. 2 min. Stirring was continued for 1 h, the dry-ice bath was

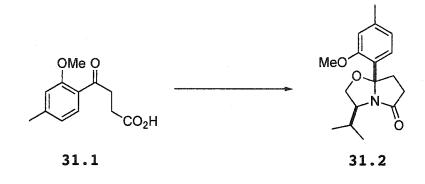
removed and stirring was continued for 4 h. Saturated aqueous NH4Cl (20 mL) was added and the mixture was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine, dried (MqSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:3 EtOAc-hexane, gave diketone (±)-28.1 (182 mg, 92%) as a yellow oil: FTIR(CH<sub>2</sub>Cl<sub>2</sub> cast) 2958, 1721, 1678, 1605 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.42 (d, J = 6.4 Hz, 3 H), 0.55 (d, J = 6.6 Hz, 3 H), 1.14-1.20 (m, 1 H), 1.25 (s, 3 H), 1.47-1.58 (m, 2 H), 1.73-1.81 (m, 1 H), 2.18-2.25 (m, 1 H), 2.38 (s, 3 H), 2.45-2.50 (m, 1 H), 3.32 (d, J = 9.5 Hz, 1 H), 3.90 (s, 3 H), 6.68 (s, 1 H), 6.75 (d, J = 0.6 Hz, 1 H); <sup>13</sup>C NMR  $(CDCl_3, 100.6 \text{ MHz}) \delta 20.3 \text{ (q)}, 22.4 \text{ (q)}, 23.1 \text{ (q)}, 24.2 \text{ (q)},$ 28.0 (t), 28.5 (d), 35.4 (t), 51.9 (d), 55.1 (s), 55.97 (q), 56.04 (d), 110.9 (d), 120.6 (s), 124.3 (d), 145.9 (s), 147.1 (s), 161.4 (s), 180.8 (s), 201.7 (s); exact mass m/zcalcd for C<sub>19</sub>H<sub>24</sub>O<sub>3</sub> 300.1726, found 300.1726.

(1R\*, 3aR\*, 9bR\*)-6-Hydroxy-1-isopropy1-3a, 8-dimethy1-2,3-3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(±)-29.1].



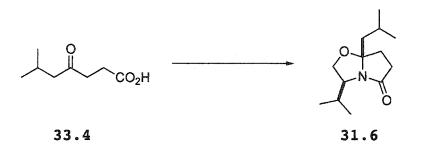

LiCl (dried under oil pump vacuum at 100 °C for 24 h, 76 mg, 1.80 mmol) was added to a stirred solution of

145


diketone (±)-28.1 (180 mg, 0.60 mmol) in dry DMF (10 mL). The mixture was then heated at reflux for 20 h, cooled, diluted with water (15 mL) and extracted with  $CH_2Cl_2$  (3 x 25 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:9 EtOAc-hexane containing 1%v/v MeOH, gave phenol (±)-29.1 (134 mg, 78%) as yellow crystals: mp 106-108 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2958, 1725, 1633, 1566 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.41 (d, J = 6.5 Hz, 3 H, 0.53 (d, J = 6.6 Hz, 3 H, 1.14-1.22 (m, 1)H), 1.28 (s, 3 H), 1.48-1.56 (m, 1 H), 1.62-1.71 (m, 1 H), 1.74-1.83 (m, 1 H), 2.22-2.30 (m, 1 H), 2.36 (s, 3 H), 2.61 (ddd, J = 5.5, 7.7, 13.1 Hz, 1 H), 3.38 (d, J = 9.1 Hz, 1H), 6.67 (t, J = 0.7 Hz, 1 H), 6.73 (s, 1 H), 11.9 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.8 (q), 22.5 (q), 23.1 (q), 24.4 (q), 26.9 (t), 28.1 (d), 33.8 (t), 51.4 (d), 56.5 (q), 56.8 (s), 116.2 (d), 116.7 (s), 123.3 (d), 144.1 (s), 150.7 (s), 164.6 (s), 184.3 (s), 200.0 (s); exact mass m/zcalcd for  $C_{18}H_{22}O_3$  286.1569, found 286.1567.

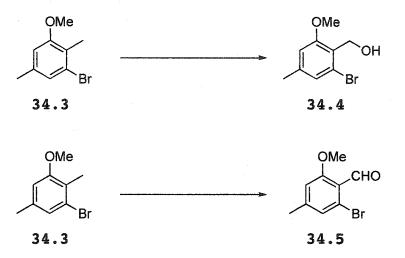
(1R\*,3aR\*,9bR\*)-7-Bromo-6-hydroxy-1-isopropyl-3a,8dimethyl-2,3,3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(±)-Hamigeran B] [(±)-3].




A solution of NBS (65 mg, 0.36 mmol) in  $CH_2Cl_2$  (5 mL) was added dropwise over ca. 10 min to a stirred and cooled (0 °C) solution of phenol  $(\pm)-29.1$  (94 mg, 0.33 mmol) and dry  $i - Pr_2NH$  (ca 0.03 mL, 0.21 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL). The cold bath was removed after the addition, and stirring was continued for 3 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1.5 x 30 cm), using 1:19 t-BuOMe-hexane containing 1%v/v MeOH, gave  $(\pm)$ -hamigeran B  $[(\pm)-3]$  (114 mg, 94%) as a yellow solid: mp 157-159 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2956, 1724, 1633, 1609 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.44 (d, J = 6.5 Hz, 3 H), 0.53 (d, J = 6.6 Hz, 3 H), 1.15-1.23 (m, 1 H), 1.28 (s, 3 H),1.49-1.59 (m, 1 H), 1.63-1.72 (m, 1 H), 1.75-1.85 (m, 1 H), 2.25-2.33 (m, 1 H), 2.50 (s, 3 H), 2.62 (ddd, J = 5.5, 7.7, 13.1 Hz, 1 H), 3.38 (d, J = 9.2 Hz, 1 H), 6.82 (s, 1 H), 12.61 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.7 (q), 23.3 (q), 24.3 (q), 24.4 (q), 26.7 (t), 28.1 (d), 33.8 (t), 51.3 (d), 56.2 (q), 56.9 (s), 111.5 (s), 117.2 (s), 124.2 (d), 142.7 (s), 150.2 (s), 160.8 (s), 184.4 (s), 199.0 (s); exact mass m/z calcd for  $C_{18}H_{21}^{79}BrO_3$  364.0674, found 364.0679.

(3*S*,7*aS*)-3-Isopropyl-7*a*-(2-methoxy-4-methylphenyl)tetrahydropyrrolo[2,1-b]oxazol-5(6*H*)-one (31.2).




(S)-Valinol was prepared by the literature method,<sup>35</sup> and had  $[\alpha]_{p}^{25} = +17.4^{\circ}$  (c 10, EtOH) [Lit.  $[\alpha]_{p}^{25} = +17^{\circ}$  (c 10, EtOH)]. Acid 31.1 (115 mg, 0.52 mmol) was added to a stirred solution of (S)-valinol (52.5 mg, 0.51 mmol) in PhMe (5 mL) and the solution was heated at reflux for 15 h, and then cooled to room temperature. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 20 cm), using 1:3 EtOAc-hexane, gave lactam 31.2 (126 mg, 86%) as a yellow oil: FTIR ( $CH_2Cl_2$  cast) 2957, 1709, 1612, 1465 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.65 (d, J = 6.5 Hz, 3 H, 0.91 (d, J = 6.5 Hz, 3 H), 0.98-1.08 (m, 1)H), 2.34 (s , 3 H), 2.32-2.38 (m, 2 H), 2.48-2.56 (m, 1 H), 2.80-2.91 (m, 1 H), 3.60-3.68 (m, 2 H), 3.82 (s, 3 H), 4.20-4.28 (m, 1 H), 6.69-6.73 (m, 2 H), 7.27 (d, J = 8.2Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  18.7 (q), 20.4 (q), 21.4 (q), 32.9 (d), 33.3 (t), 33.6 (t), 55.4 (q), 61.4 (d), 71.6 (t), 101.2 (s), 112.4 (d), 120.4 (d), 126.3 (d), 126.7 (s), 139.8 (s), 157.0 (s), 179.8 (s); exact mass m/z calcd for C<sub>17</sub>H<sub>23</sub>NO<sub>3</sub> 289.1678, found 289.1677.

(3*S*,7*aS*)-7*a*-Isobutyl-3-isopropyltetrahydropyrrolo[2,1*b*]oxazol-5-one (31.6).



Acid 33.4 (4.2 g, 26.5 mmol) was added to a stirred solution of (S)-valinol (2.7 g, 26.5 mmol) in PhMe (150 mL) and the solution was heated at reflux for 15 h, using a Dean-Stark trap. The mixture was cooled to room temperature and then concentrated. Flash chromatography of the residue over silica qel (5 x 30 cm), using 1:19 t-BuOMe-CH<sub>2</sub>Cl<sub>2</sub>, gave lactam **31.6** (4.5 g, 75%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2957, 2871, 1715 cm<sup>-1</sup>;  $[\alpha]_{\rm p}$  = +80.5° (*c* 1.22, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.83 (d, J = 6.7 Hz, 3 H), 0.94 (d, J = 6.7 Hz, 3 H), 0.97 (d, J = 6.7 Hz, 3 H), 1.02 (d, J = 6.7 Hz, 3 H), 1.52 (dd, J = 5.6, 14.2 Hz, 1 H), 1.56-1.63 (m, 1 H), 1.65 (dd, J = 7.0, 14.3 Hz, 1 H), 1.77 (septet, J = 6.6 Hz, 1 H), 2.03 (td, J = 9.9, 13.5 Hz, 1 H), 2.23-2.30 (m, 1 H), 2.44 (ddd, J = 2.7, 10.4, 17.2Hz, 1 H), 2.66 (td, J = 9.8, 17.2 Hz, 1 H), 3.54 (td, J =7.3, 11.6 Hz, 1 H), 3.72 (dd, J = 8.8, 6.9 Hz, 1 H), 4.15  $(dd, J = 7.7, 8.7 Hz, 1 H); {}^{13}C NMR (CDCl_3, 125.7 MHz) \delta$ 18.9 (q), 20.8 (q), 23.7 (q), 24.2 (q), 24.8 (d), 31.2 (t), 33.0 (t), 34.1 (d), 61.7 (d), 71.0 (t), 102.3 (s), 179.3 (s); exact mass m/z calcd for  $C_{13}H_{23}O_2$  225.1729, found 225.1721.

(2-Bromo-6-methoxy-4-methylphenyl)methanol (34.4). 2-Bromo-6-methoxy-4-methylbenzaldehyde (34.5).

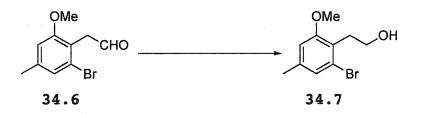


3-Bromo-2,5-dimethylanisole (34.3) was made by the procedure of Gore *et al.*,<sup>37</sup> we worked on the same scale [2,5-dimethylphenol (40.0 g, 0.33 mol), Al (4.0 g, 0.15 mol), Br<sub>2</sub> (100 mL, 1.87 mol),  $CH_2Cl_2$  (200 mL)]. The resulting phenol was selectively debrominated with HI and then methylated to afford 34.3 (50.8 g, 73% over 3 steps) as a yellow oil.

NBS (19.4 g, 108 mmol) was added to a stirred and cooled (0 °C) solution of **34.3** (23.0 g, 107 mmol) in CCl<sub>4</sub> (350 mL). The resulting solution was irradiated (standard Pyrex apparatus) with UV light (Hanovia lamp type 30620) at 0 °C for 4 h and then filtered through a Celite pad (5 x 3 cm). After evaporation of the solvent, the residue was dissolved in dry DMSO (300 mL), NaHCO<sub>3</sub> (54.0 g, 643 mmol) was added, and the mixture was heated at 110 °C for 15 h, and cooled to room temperature. Ice water (400 mL) was added to quench the reaction, and the mixture was then extracted with Et<sub>2</sub>O (3 x 400 mL). The combined organic extracts were washed with brine (400 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and

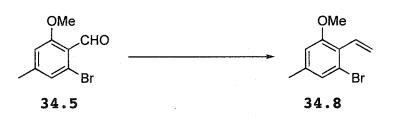
concentrated. Flash chromatography of the residue over silica gel (5 x 40 cm), using 1:19 to 1:3 EtOAc-hexane, gave alcohol **34.4** (5.1 g, 21%) as a yellow oil and aldehyde **34.5** (10.5 g, 43%) as a yellow solid.

Alcohol 34.4 had: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.29 (s, 4 H), 3.82 (s, 3 H), 4.81 (s, 2 H), 6.63 (s, 1 H), 6.98 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  21.3 (q), 55.8 (q), 60.1 (t), 110.9 (d), 124.8 (s), 125.4 (d), 125.6 (s), 140.3 (s), 158.5 (s).


Alcohol 34.4 can be converted into aldehyde 34.5 by PCC oxidation: PCC (6.0 g, 27.3 mmol) was added to a solution of alcohol 34.4 (5.1 g, 22.2 mmol) in  $CH_2Cl_2$  (100 mL). The mixture was stirred at room temperature for 8 h and filtered through a Celite pad (3 x 5 cm). Evaporation of the solvent and flash chromatography of the residue over silica gel (3.5 x 30 cm), using 1:4 EtOAc-hexane, gave aldehyde 34.5 (4.9 g, 96%).

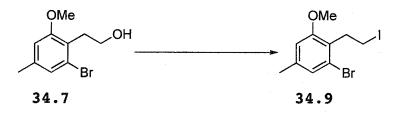
## 2-Bromo-6-methoxy-4-(methylphenyl)acetaldehyde (34.6).




 $(Me_3Si)_2NK$  (0.5 M, 26.0 mL, 13.0 mmol) was added dropwise to a stirred and cooled (0 °C) solution of  $Ph_3P^+CH_2(OMe)Cl^-$  (5.3 g, 15.0 mmol) in PhMe (80 mL). The ice bath was removed and stirring was continued for 1 h. Aldehyde **34.5** (2.29 g, 10.0 mmol) in PhMe (20 mL) was added dropwise, and the mixture was stirred at room temperature for 2 h. Saturated aqueous NH<sub>4</sub>Cl (10 mL) was added, and the mixture was extracted with  $Et_2O$  (3 x 20 mL). The combined organic extracts were washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated. Dilute hydrochloric acid (3 N, 50 mL) and acetone (100 mL) were added to the residue, and the mixture was heated at reflux for 3.5 h, cooled to room temperature, and then extracted with  $Et_2O$  (3 x 100 mL). The combined organic extracts were washed with brine, dried  $(MqSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (3 x 30 cm), using 1:19 EtOAc-hexane, gave aldehyde 34.6 (4.6 g, 99%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3003, 2961, 2842, 2735, 1714, 1605 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3, 400 \text{ MHz}) \delta 2.30 (s, 3 \text{ H}), 3.78 (s, 3 \text{ H}), 3.83 (d, J)$ = 1.6 Hz, 2 H), 6.62 (s, 1 H), 7.03 (d, J = 0.7 Hz, 1 H),9.62 (t, J = 1.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  21.3 (q), 44.3 (t), 55.8 (q), 110.5 (d), 118.9 (s), 125.3 (d), 125.7 (s), 139.8 (s), 158.3 (s), 199.1 (s); exact mass m/zcalcd for  $C_{10}H_{11}^{79}BrO_2$  241.9942, found 241.9938.

## 2-(2-Bromo-6-methoxy-4-methylphenyl)ethanol (34.7).




DIBAL-H (1.0 M, 25.0 mL, 25.0 mmol) was added dropwise over ca. 5 min to a stirred and cooled (0 °C) solution of aldehyde **34.6** (4.8 g, 19.7 mmol) in  $CH_2Cl_2$  (100 mL). The ice bath was removed and stirring was continued for 30 min. The mixture was cooled to 0 °C,  $Na_2SO_4.10H_2O$  (5 g) was added, and stirring was continued for 1 h. The mixture was filtered through a Celite pad (5 x 3 cm), using  $CH_2Cl_2$  (100 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (3 x 30 cm), using 1:4 EtOAc-hexane, gave alcohol **34.7** (4.3 g, 90%) as a colorless oil: FTIR ( $CH_2Cl_2$  cast) 3299, 2940, 1603 cm<sup>-1</sup>; <sup>1</sup>H NMR ( $CDCl_3$ , 400 MHz)  $\delta$  1.68 (s, 1 H), 2.28 (s, 3 H), 3.08 (t, J = 6.8 Hz, 2 H), 3.76 (t, J = 6.8 Hz, 2 H), 3.78 (s, 3 H), 6.60 (s, 1 H), 6.99 (s, 1 H); <sup>13</sup>C NMR ( $CDCl_3$ , 100.6 MHz)  $\delta$  21.1 (q), 32.9 (t), 55.8 (q), 61.9 (t), 110.6 (d), 123.8 (s), 125.4 (d), 125.5 (s), 138.5 (s), 158.2 (s); exact mass m/z calcd for  $C_{10}H_{13}^{81}BrO_2$  246.0078, found 246.0076.

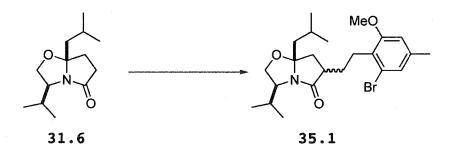
1-Bromo-3-methoxy-5-methyl-2-vinylbenzene (34.8).



 $(Me_3Si)_2NK$  (0.5 M, 76.0 mL, 38.0 mmol) was added dropwise to a stirred and cooled (0 °C) solution of  $Ph_3P^+CH_3Br^-$  (15.5 g, 42.5 mmol) in PhMe (40 mL). The ice bath was removed and stirring was continued for 1 h. The solution was cooled to 0 °C and a solution of aldehyde **34.5** (7.3 g, 31.9 mmol) in PhMe (20 mL) was added dropwise over ca. 5 min. The ice bath was removed and stirring was continued for 10 h. The mixture was quenched by addition of saturated aqueous NH<sub>4</sub>Cl (50 mL) and extracted with Et<sub>2</sub>O. The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (5 x 30 cm), using 1:19 EtOAchexane, gave olefin **34.8** (5.5 g, 76%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2935, 1620, 1599 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.29 (s, 3 H), 3.81 (s, 3 H), 5.50 (dd, J = 2.1, 11.8 Hz, 1 H), 5.91 (dd, J = 2.1 Hz, 17.7 Hz, 1 H), 6.64 (s, 1 H), 6.78 (dd, J = 7.9, 13.8 Hz, 1 H), 7.04 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  21.2 (q), 55.7 (q), 111.1 (d), 120.4 (t), 123.5 (s), 124.6 (s), 125.8 (d), 131.9 (d), 138.9 (s), 158.3 (s); exact mass m/z calcd for C<sub>10</sub>H<sub>11</sub><sup>81</sup>BrO 227.9973, found 227.9972.

1-Bromo-2-(2-iodoethyl)-3-methoxy-5-methylbenzene (34.9).



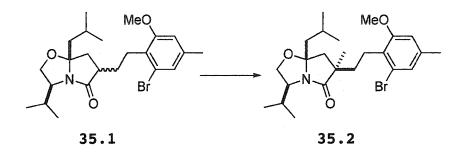

Et<sub>3</sub>N (3.8 mL, 27.3 mmol), followed by MsCl (1.6 mL, 20.9 mmol) were added dropwise to a stirred and cooled (0 °C) solution of alcohol **34.7** (4.47 g, 18.2 mmol) in  $CH_2Cl_2$  (50 mL). The cold bath was removed and stirring was continued for 2 h. The reaction mixture was quenched by addition of saturated aqueous  $NH_4Cl$  (50 mL) and extracted with Et<sub>2</sub>O (3 x 60 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated.

Dry NaI (11.0 g, 73.4 mmol) was added in one portion to a solution of the above residue in acetone (80 mL). The resulting mixture was heated at reflux for 24 h and cooled. The mixture was diluted with water (60 mL) and extracted with  $Et_{20}$  (3 x 80 mL). The combined organic extracts were

154

washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (3.5 x 30 cm), using 1:19 EtOAc-hexane, gave **34.9** (5.9 g, 92%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2920, 1604 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz)  $\delta$  1.86 (s, 3 H), 3.08 (s, 3 H), 3.14-3.18 (m, 2 H), 3.43 (t, J = 8.4 Hz, 2 H), 6.12 (s, 1 H), 6.85 (d, J = 0.6 Hz, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 125.7 MHz)  $\delta$  1.7 (t), 21.0 (q), 34.8 (t), 55.2 (q), 110.8 (d), 125.3 (s), 125.8 (d), 126.8 (s), 139.1 (s), 158.2 (s); exact mass m/z calcd for C<sub>10</sub>H<sub>12</sub><sup>79</sup>BrIO 353.9116, found 353.9120.

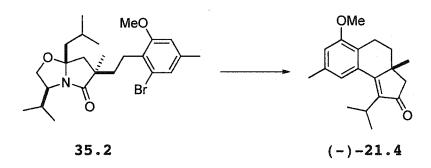
(3*S*,7a*R*)-6-[2-(2-Bromo-6-methoxy-4methylphenyl)ethyl]-7*a*-isobutyl-3-isopropyltetrahydropyrrolo[2,1-*b*]oxazol-5-one (35.1).




*n*-BuLi (2.5 M, 6.50 mL, 16.25 mmol) was added dropwise over ca. 5 min to a stirred and cooled (-78 °C) solution of *i*-Pr<sub>2</sub>NH (2.40 mL, 17.12 mmol) in THF (80 mL). Stirring was continued for 30 min at -78 °C, and a solution of lactam **31.6** (2.43 g, 10.80 mmol) in THF (20 mL) was added dropwise over ca. 15 min. Stirring at -78 °C was continued for 1 h, and HMPA (2.20 mL, 12.64 mmol) was added dropwise, followed by iodide **34.9** (6.27 g, 17.64 mmol). The resulting mixture was stirred at -78 °C for 1 h, the cold bath was removed, and then stirring was continued for 36 h. The mixture was quenched by addition of saturated aqueous  $NH_4Cl$  (80 mL), and extracted with  $Et_2O$  (3 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 35 cm), using 1:9 EtOAc-hexane, gave the monoalkylated lactam **35.1** as a mixture of two diastereoisomers [2.7 g, 79% yield, corrected for recovered **31.6** (730 mg, 30% recovery)].

We did not separate the isomers at this stage; however, a pure sample of the major isomer was obtained from one of the flash chromatography fractions, and it had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2956, 1711, 1604 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.84 (d, J = 6.6 Hz, 3 H), 0.97 (d, J = 6.7 Hz, 3 H), 0.99 (d, J = 6.7 Hz, 3 H), 1.01 (d, J = 6.7 Hz, 3 H), 1.40-1.84 (m, 6 H), 2.08-2.18 (m, 1 H), 2.26 (s, 3 H), 2.60 (dd, J = 8.6, 12.8 Hz, 1 H), 2.72-2.84 (m, 3 H), 3.52-3.58 (m, 1)H), 3.72-3.80 (m, 1 H), 3.76 (s, 3 H), 4.18 (dd, J = 8.7, 9.6 Hz, 1 H), 6.56 (s, 1 H), 6.94 (t, J = 0.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.0 (q), 20.8 (q), 21.1 (q), 23.9 (q), 24.2 (q), 24.9 (d), 27.3 (t), 29.9 (t), 34.2 (d), 39.6 (t), 44.2 (d), 45.0 (t), 55.6 (q), 61.1 (d), 71.0 (t), 99.9 (s), 110.4 (d), 125.06 (s), 125.09 (d), 126.9 (s), 137.9 (s), 158.0 (s), 179.7 (s); exact mass m/z calcd for C<sub>23</sub>H<sub>34</sub><sup>81</sup>BrNO<sub>3</sub> 453.1702, found 453.1696.

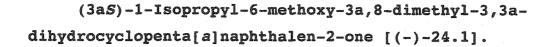
156

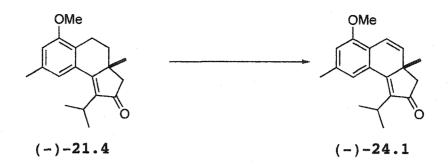

(3*S*, 6*R*, 7a*R*)-6-[2-(2-Bromo-6-methoxy-4-methylphenyl)ethyl]-7*a*-isobutyl-3-isopropyl-6-methyltetrahydropyrrolo[2,1-*b*]oxazol-5-one] (35.2).



n-BuLi (2.5 M, 3.50 mL, 8.75 mmol) was added dropwise over ca. 5 min to a stirred and cooled (-78 °C) solution of i-Pr<sub>2</sub>NH (1.30 mL, 9.27 mmol) in THF (40 mL), and stirring at -78 °C was continued for 30 min. A solution of lactam 35.1 (2.25 g, 5.00 mmol) in THF (10 mL) was added dropwise over ca. 15 min, and stirring at -78 °C was continued for 1.5 h. HMPA (1.20 mL, 6.90 mmol) was added dropwise over ca. 5 min, followed by MeI (1.20 mL, 19.00 mmol), which was also added over ca. 5 min. Stirring at -78 °C was continued for 1 h, the cooling bath was removed and stirring was The mixture was quenched by addition continued for 12 h. of saturated aqueous NH4Cl (50 mL) and extracted with Et20 (3 x 80 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 35 cm), using 1:19 t-BuOMe-hexane, gave the dialkylated lactam 35.2 (2.1 g, 90%) together with the exo isomer (0.1 g, 5%). Lactam **35.2** had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2956, 1711, 1604 cm<sup>-1</sup>;  $[\alpha]_{\rm D} = +18.6^{\circ}$  (c 0.500, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 0.85 (d, J = 6.6 Hz, 3 H), 0.97 (d, J = 6.6 Hz, 3 H), 0.98(d, J = 6.6 Hz, 3 H), 1.03 (d, J = 6.6 Hz, 3 H), 1.24 (s, 3 H)

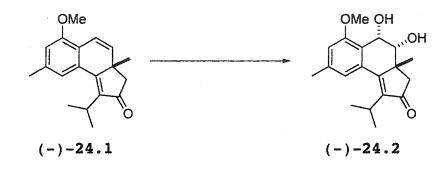
H), 1.51-1.90 (m, 6 H), 2.20 (AB q, J = 13.9 Hz,  $\Delta v_{AB} = 223.6$  Hz, 2 H), 2.23 (s, 3 H), 2.70-2.83 (m, 2 H), 3.53-3.67 (m, 2 H), 3.76 (s, 3 H), 4.18 (t, J = 7.9 Hz, 1 H), 6.56 (s, 1 H), 6.95 (t, J = 0.7 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.0 (q), 20.9 (q), 21.1 (q), 23.4 (q), 23.6 (q), 24.2 (q), 24.9 (d), 25.0 (t), 34.5 (d), 38.1 (t), 43.6 (t), 45.2 (t), 47.4 (s), 55.7 (q), 62.1 (d), 70.3 (t), 99.1 (s), 110.4 (d), 124.8 (s), 125.0 (d), 126.9 (s), 137.9 (s), 157.8 (s), 184.3 (s); exact mass m/z calcd for C<sub>24</sub>H<sub>36</sub><sup>81</sup>BrNO<sub>3</sub> 467.1858, found 467.1861.


(3aR)-1-Isopropyl-6-methoxy-3a,8-dimethyl-3,3a,4,5tetrahydrocyclopenta[a]naphthalene-2-one [(-)-21.4].




t-BuLi (1.7 M, 7.0 mL, 11.9 mmol) was added dropwise over ca. 15 min to a stirred and cooled (-78 °C) solution of lactam **35.2** (2.1 g, 4.5 mmol) in THF (30 mL). Stirring at -78 °C was continued for 1.75 h, and the mixture was then quenched by addition of aqueous n-Bu<sub>4</sub>NH<sub>2</sub>PO<sub>4</sub> (1.0 M, 50 mL, 50 mmol). The organic solvent (THF) was concentrated at room temperature [rotary evaporator] and the aqueous residue was heated at reflux for 24 h. The mixture was cooled to room temperature and extracted with Et<sub>2</sub>O (3 x 80 mL). The combined organic extracts were washed with brine, dried (MqSO<sub>4</sub>) and concentrated.

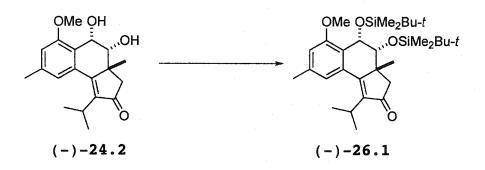
158


Aqueous NaOH (5 N, 15 mL) was added to a solution of the above residue in EtOH (20 mL). This mixture was heated at reflux (oil bath at 100 °C) for 24 h, cooled to room temperature and then extracted with  $Et_2O$  (3 x 40 mL). The combined organic extracts were washed with brine, dried  $(MqSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:9 EtOAchexane, gave enone (-)-21.4 (1.15 g, 90%) as a yellow oil: FTIR (CHCl<sub>3</sub> cast) 2957, 1693, 1610 cm<sup>-1</sup>;  $[\alpha]_{\rm p} = -345.1^{\circ}$  (C 0.304, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.06 (s, 3 H), 1.19 (d, J = 6.9 Hz, 3 H), 1.37 (d, J = 7.0 Hz, 3 H), 1.66-1.74(m, 1 H), 2.07 (ddd, J = 1.0, 6.9, 13.2 Hz, 1 H), 2.26 (AB)q, J = 18.5 Hz,  $\Delta v_{AB} = 48.9$  Hz, 2 H), 2.37 (s, 3 H), 2.61-2.71 (m, 1 H), 2.86 (dd, J = 7.0, 18.8 Hz, 1 H), 3.12 (septet, J = 7.0 Hz, 1 H), 3.83 (s, 3 H), 6.70 (s, 1 H),6.86 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.8 (q), 20.6 (q), 20.8 (t), 21.7 (q), 23.0 (q), 25.7 (d), 36.0 (t), 38.7 (t), 51.1 (s), 55.3 (q), 111.8 (d), 120.9 (d), 123.5 (s), 131.5 (s), 136.0 (s), 140.6 (s), 157.2 (s), 170.1 (s), 208.2 (s); exact mass m/z calcd for  $C_{19}H_{24}O_2$  284.1776, found 284.1774.



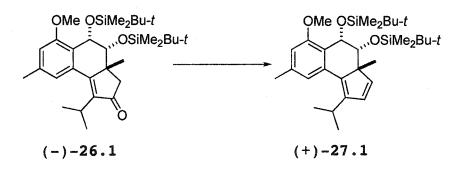


DDQ (1.36 g, 6.0 mmol) was added in one portion to a stirred solution of enone (-)-21.4 (1.15 g, 4.0 mmol) in 1,4-dioxane (60 mL) and the mixture was heated at reflux for 10 h (Ar atmosphere). The mixture was cooled to room temperature and filtered through a pad of silica gel (5 x 3.5 cm), using  $Et_2O$  (100 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 30 cm), using 1:9 EtOAc-hexane, gave ketone (-)-**24.1** (0.83 g, 74%) as a yellow oil: FTIR (CHCl<sub>3</sub> cast) 2958, 1696, 1603 cm<sup>-1</sup>;  $[\alpha]_{D} = -786.9^{\circ}$  (c 0.352, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(CDCl_3, 400 \text{ MHz}) \delta 1.17 (d, J = 6.8 \text{ Hz}, 3 \text{ H}), 1.18 (s, 3 \text{ H}),$ 1.36 (d, J = 7.1 Hz, 3 H), 2.40 (s, 3 H), 2.44 (AB q, J =17.6 Hz,  $\Delta v_{AB} = 108.8$  Hz, 2 H), 3.02 (septet, J = 7.0 Hz, 1 H), 3.80 (s, 3 H), 6.05 (d, J = 9.6 Hz, 1 H), 6.72 (d, J =9.5 Hz, 1 H), 6.73 (s, 1 H), 6.85 (s, 1 H);  $^{13}C$  NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  19.8 (q), 20.7 (q), 22.0 (q), 25.5 (q), 27.3 (d), 42.3 (t), 48.4 (s), 55.6 (g), 113.1 (d), 119.2 (d), 119.8 (s), 120.6 (d), 129.8 (s), 136.7 (d), 138.0 (s), 141.8 (s), 154.9 (s), 170.0 (s), 207.3 (s); exact mass m/zcalcd for  $C_{19}H_{22}O_2$  282.1620, found 282.1615.


(3aR,4R,5S)-4,5-Dihydroxy-1-isopropyl-6-methoxy-3a,8dimethyl-3,3a,4,5-tetrahydrocyclopenta[a]naphthalene-2-one [(-)-24.2].



 $OsO_4$  (50 mg, 0.2 mmol) and NMO (0.83 g, 6.9 mmol) were added to a stirred solution of olefin (-)-24.1 (0.65 g, 2.3 mmol) in a mixture of  $CCl_4$  (20 mL), water (5 mL), t-BuOH (20 mL), and acetone (30 mL) (the solvents were added in any order to the starting material), and stirring was continued Water (30 mL) was added and the mixture was for 12 h. extracted with  $CH_2Cl_2$  (3 x 50 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1.5 x 25 cm), using 1:4 t-BuOMe-CH<sub>2</sub>Cl<sub>2</sub>, gave diol (-)-24.2 [0.45 g, 81% corrected for recovered (-)-24.1 (0.15 g, 23%)] as a colorless oil: FTIR (CHCl<sub>3</sub> cast) 3525, 2961, 1691, 1608 cm<sup>-1</sup>;  $[\alpha]_D = -245.4^\circ$  (c 0.324, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.04 (s, 3 H), 1.23 (d, J = 6.8 Hz, 3 H), 1.37 (d, J = 7.1 Hz, 3 H), 2.40 (s, 3 H), 2.47 (AB q, J = 18.1 Hz,  $\Delta v_{AB}$  = 321.9 Hz, 2 H), 3.05 (s, 1 H), 3.16 (septet, J = 7.0 Hz, 1 H), 3.93 (s, 3 H), 4.04 (d, J = 4.4Hz, 1 H), 4.36 (s, 1 H), 5.03 (d, J = 4.4 Hz, 1 H), 6.79 (s, 1 H), 6.94 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  20.0 (q), 20.5 (q), 21.9 (q), 22.1 (q), 26.1 (d), 46.1 (t), 46.4 (s), 55.6 (q), 66.5 (d), 73.1 (d), 112.7 (d), 121.4 (d),


121.6 (s), 131.5 (s), 138.8 (s), 144.6 (s), 158.6 (s), 163.9 (s), 208.1 (s); exact mass m/z calcd for  $C_{19H_{24}O_{4}}$ 316.1674, found 316.1670.

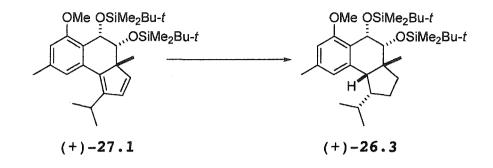
(3aR,4R,5S)-4,5-Bis-(tert-butyldimethylsilanyloxy)-1isopropyl-6-methoxy-3a,8-dimethyl-3,3a,4,5-tetrahydrocyclopenta[a]naphthalene-2-one [(-)-26.1].



2,6-Lutidine (1.0 mL, 8.50 mmol), followed by t-BuMe<sub>2</sub>SiOSO<sub>2</sub>CF<sub>3</sub> (1.3 mL, 5.55 mmol), was added by rapid injection to a stirred and cooled (0 °C) solution of diol (-)-24.2 (0.43 g, 1.36 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL). The icebath was removed and stirring was continued for 4.5 h. Saturated aqueous  $NH_4Cl$  (30 mL) was added and the mixture was extracted with  $CH_2Cl_2$  (3 x 40 mL). The combined organic extracts were washed with brine, dried  $(MqSO_4)$ and concentrated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using 1:19 EtOAc-hexane, gave ketone (-)-26.1 (0.54 g, 73%) as a colorless oil: FTIR (CHCl<sub>3</sub> cast) 2956, 1698, 1631, 1608 cm<sup>-1</sup>;  $[\alpha]_{D} = -169.7^{\circ}$  (c 0.254, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  -0.48 (s, 3 H), -0.03 (s, 6 H), 0.10 (s, 3 H), 0.70 (s, 9 H), 0.92 (s, 9 H), 1.08 (s, 3 H), 1.12 (d, J = 7.0 Hz, 3 H), 1.28 (d, J = 7.1Hz, 3 H), 2.40 (s, 3 H), 2.61 (AB q, J = 16.8 Hz,  $\Delta v_{AB} =$ 392.6 Hz, 2 H), 2.84 (septet, J = 7.0 Hz, 1 H), 3.43 (d, J = 2.7 Hz, 1 H), 3.82 (s, 3 H), 5.12 (d, J = 2.6 Hz, 1 H), 6.68 (s, 1 H), 6.75 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.7 (q), -5.0 (q), -4.9 (q), -3.9 (q), 17.9 (s), 18.1 (s), 19.5 (q), 21.4 (q), 21.9 (q), 24.8 (q), 25.81 (q), 25.83 (q), 31.8 (d), 44.2 (t), 50.1 (s), 55.3 (q), 67.0 (d), 76.9 (d), 111.7 (d), 120.0 (d), 124.2 (s), 133.7 (s), 139.1 (s), 140.1 (s), 155.5 (s), 171.1 (s), 209.2 (s); exact mass m/zcalcd for C<sub>31H52</sub>O<sub>4</sub>Si<sub>2</sub> 544.3404, found 544.3400.

(3aR,4R,5S)-4,5-Bis-(tert-butyldimethylsilanyloxy)-1isopropyl-6-methoxy-3a,8-dimethyl-4,5-dihydro-3aH-cyclopenta[a]naphthalene [(+)-27.1].

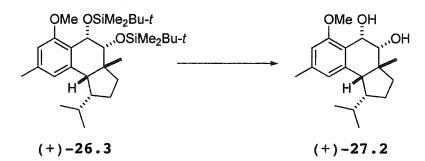



DIBAL-H (1.0 M, 2.0 mL, 2.00 mmol) was added dropwise to a stirred and cooled (0 °C) solution of ketone (-)-26.1 (0.47 g, 0.87 mmol) in  $CH_2Cl_2$  (15 mL). After the addition, the ice-bath was removed and stirring was continued for 10 h. The mixture was cooled to 0 °C, Na<sub>2</sub>SO<sub>4</sub>.10H<sub>2</sub>O (0.5 g) was added slowly, and stirring was continued for 30 min. The resulting mixture was filtered through a Celite pad (1 x 2.5 cm), using  $CH_2Cl_2$  (20 mL) as a rinse. The solvent was concentrated and the residue [crude (-)-26.2] was dissolved in  $ClCH_2CH_2Cl$  (40 mL).

 $Et_{3}N$  (0.8 mL, 5.74 mmol), followed by MsCl (0.2 mL, 2.57 mmol), were added to the above stirred solution.

163

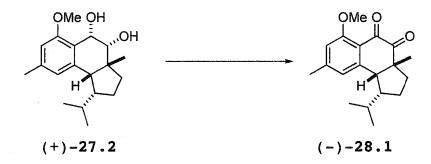
Stirring was continued for 30 min at room temperature, for 4 h at reflux (oil bath at 85 °C), and the mixture was cooled to room temperature. Saturated aqueous  $NH_4Cl$  (30 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 40 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using hexane, gave diene (+)-27.1 (0.39 g, 84%) as a colorless oil: FTIR (CHCl<sub>3</sub> cast) 2958, 1607 cm<sup>-1</sup>;  $[\alpha]_{\rm D} = +2.76^{\circ}$  (*c* 0.290, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  -0.53 (s, 3 H), -0.02 (s, 3 H), 0.09 (s, 3 H), 0.10 (s, 3 H), 0.66 (s, 9 H), 0.95 (s, 9 H), 0.98 (d, J = 6.8 Hz, 3 H), 1.06 (s, 3 H), 1.16 (d, J = 7.0Hz, 3 H), 2.38 (s, 3 H), 2.84 (septet, J = 6.8 Hz, 1 H), 3.65 (d, J = 2.9 Hz, 1 H), 3.80 (s, 3 H), 5.02 (d, J = 3.0Hz, 1 H), 6.22 (d, J = 5.4 Hz, 1 H), 6.53 (d, J = 5.3 Hz, 1 H), 6.51 (s, 1 H), 6.68 (s, 1 H);  $^{13}C$  NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.6 (q), -4.9 (q), -4.6 (q), -3.7 (q), 18.1 (s), 18.3 (s), 21.0 (q), 21.9 (q), 24.3 (q), 25.8 (q), 25.9 (q), 26.1 (q), 28.8 (d), 55.1 (q), 57.0 (s), 67.0 (d), 77.8 (d), 109.2 (d), 119.4 (d), 125.2 (s), 126.8 (d), 136.1 (s), 138.4 (s), 143.3 (s), 144.1 (d), 145.4 (s), 155.8 (s); exact mass m/z calcd for  $C_{31}H_{52}O_3Si_2$  528.3455, found 528.3445.


(1R, 3aR, 4R, 5S, 9bR) -4, 5-Bis-(tert-butyldimethylsilanyloxy)-1-isopropyl-6-methoxy-3a, 8-dimethyl-2, 3-3a, 4, 5, 9bhexahydro-1H-cyclopenta[a]naphthalene [(+)-26.3].



Pd-C (10%, 20 mg) was added to a solution of diene (+)-27.1 (300 mg, 0.57 mmol) in MeOH-hexane (1:1, 20 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (39 psi) for 40 h. The mixture was then filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (50 mL) as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (1.5 x 20 cm), using hexane, gave compound (+)-26.3 [217 mg, 78%, corrected for recovered (+)-27.1 (24 mg, 8%] as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2952, 1612  $cm^{-1}$ ;  $[\alpha]_{D} = +37.7^{\circ}$  (*c* 0.170,  $CH_{2}Cl_{2}$ ); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  -0.14 (s, 3 H), 0.00 (s, 3 H), 0.09 (s, 3 H), 0.21 (s, 3 H), 0.46 (d, J = 6.5 Hz, 3 H), 0.83 (s, 9 H), 0.94(s, 9 H), 1.02 (d, J = 6.4 Hz, 3 H), 1.14 (s, 3 H), 1.23-1.31 (m, 1 H), 1.36-1.42 (m, 1 H), 1.58-1.76 (m, 2 H), 1.88-1.97 (m, 1 H), 2.30 (s, 3 H), 2.75 (dd, J = 7.3, 12.7Hz, 1 H), 2.94 (d, J = 8.0 Hz, 1 H), 3.35 (d, J = 3.2 Hz, 1 H), 3.77 (s, 3 H), 4.98 (d, J = 3.1 Hz, 1 H), 6.48 (s, 1H), 6.62 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.2 (g), -4.9 (q), -4.8 (q), -3.0 (q), 18.5 (s), 18.7 (s), 20.4 (q),21.8 (g), 24.4 (g), 26.1 (g), 26.26 (g), 26.31 (g), 27.9

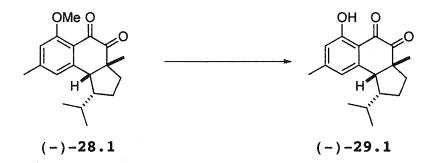
(t), 33.0 (d), 34.1 (t), 44.0 (s), 52.9 (d), 54.4 (d), 54.8 (q), 66.7 (d), 77.5 (d), 107.9 (d), 123.2 (d), 125.0 (s), 137.3 (s), 139.0 (s), 156.5 (s); exact mass m/z calcd for  $C_{27H_47O_3Si_2}$  (M -  $C_{4H_9}$ ) 475.3064, found 475.3063.


(1R, 3aR, 4R, 5S, 9bR) - 1 - Isopropyl - 6 - methoxy - 3a, 8 - dimethyl - 2, 3 - 3a, 4, 5, 9b - hexahydro - 1H - cyclopenta[a] - naphthalene - 4, 5 - diol [(+) - 27.2].



Bu<sub>4</sub>NF (1.0 M, 3.0 mL, 3.0 mmol) was added to a stirred solution of compound (+)-26.3 (0.20 g, 0.37 mmol) in THF The mixture was heated at reflux for 19 h, and (20 mL). then cooled to room temperature. Saturated aqueous NH4Cl (15 mL) was added and the mixture was then extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel  $(1 \times 20 \text{ cm})$ , using 1:3 EtOAc-hexane, gave diol (+)-27.2 (98 mg, 85%) as white crystals: mp 145-147 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3446, 2952, 1610 cm<sup>-1</sup>;  $[\alpha]_{\rm D}$  = +82.0° (c 0.161, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR  $(CDCl_3, 500 \text{ MHz}) \delta 0.67 \text{ (d, } J = 6.6 \text{ Hz}, 3 \text{ H}), 1.07 \text{ (d, } J =$ 6.3 Hz, 3 H), 1.04-1.11 (m, 1 H), 1.16-1.24 (m, 1 H), 1.26 (s, 3 H), 1.48-1.56 (m, 2 H), 1.60-1.66 (m, 1 H), 1.85-1.93 (m, 1 H), 2.30 (s, 3 H), 2.36-2.42 (m, 1 H), 2.55 (s, 1 H), 2.97 (d, J = 7.0 Hz, 1 H), 3.49 (d, J = 4.4 Hz, 1 H), 3.83

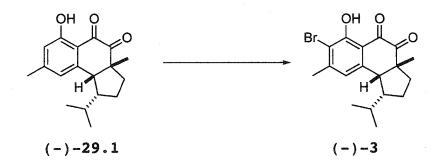
(s, 3 H), 5.00 (d, J = 4.5 Hz, 1 H), 6.52 (s, 1 H), 6.65 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  21.5 (q), 21.9 (q), 24.0 (q), 26.5 (q), 28.0 (t), 31.1 (d), 32.8 (t), 44.2 (s), 52.6 (d), 53.6 (d), 55.4 (q), 65.6 (d), 74.7 (d), 108.3 (d), 122.9 (d), 123.2 (s), 137.7 (s), 137.9 (s), 157.9 (s); exact mass m/z calcd for C<sub>19</sub>H<sub>28</sub>O<sub>3</sub> 304.2039, found 304.2032.


(1R, 3aR, 9bR)-1-Isopropyl-6-methoxy-3a, 8-dimethyl-2,3,3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(-)-28.1].



DMSO (0.15 mL, 2.11 mmol) in  $CH_2Cl_2$  (0.8 mL) was added dropwise over ca. 5 min to a stirred and cooled (-78 °C) solution of (COCl)<sub>2</sub> (0.15 mL, 1.68 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL). Stirring was continued for 30 min, and diol (+)-27.2 (81 mg, 0.27 mmol) in  $CH_2Cl_2$  (5 mL) was added dropwise over ca. 5 min. Stirring at -78 °C was continued for 1 h, and Et<sub>3</sub>N (0.7 mL, 5.00 mmol) was added dropwise over ca. 2 min. Stirring was continued for 1 h, the dry-ice bath was removed, and stirring was continued for 4 h. Saturated aqueous NH4Cl (15 mL) was added and the mixture was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:3 EtOAc-hexane, gave

diketone (-)-28.1 (75 mg, 94%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2958, 1721, 1678, 1605 cm<sup>-1</sup>; [ $\alpha$ ]<sub>D</sub> = -187.1° (*c* 0.124, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.42 (d, *J* = 6.4 Hz, 3 H), 0.55 (d, *J* = 6.6 Hz, 3 H), 1.14-1.20 (m, 1 H), 1.25 (s, 3 H), 1.47-1.58 (m, 2 H), 1.73-1.81 (m, 1 H), 2.18-2.25 (m, 1 H), 2.38 (s, 3 H), 2.45-2.50 (m, 1 H), 3.32 (d, *J* = 9.5 Hz, 1 H), 3.90 (s, 3 H), 6.68 (s, 1 H), 6.75 (d, *J* = 0.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  20.3 (q), 22.4 (q), 23.1 (q), 24.2 (q), 28.0 (t), 28.5 (d), 35.4 (t), 51.9 (d), 55.1 (s), 55.97 (q), 56.04 (d), 110.9 (d), 120.6 (s), 124.3 (d), 145.9 (s), 147.1 (s), 161.4 (s), 180.8 (s), 201.7 (s); exact mass *m/z* calcd for C<sub>19</sub>H<sub>24</sub>O<sub>3</sub> 300.1726, found 300.1722.


(1R, 3aR, 9bR)-6-Hydroxy-1-isopropyl-3a, 8-dimethyl-2,3,3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(-)-29.1].



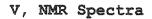
LiCl (dried under oil pump vacuum at 100 °C for 24 h, 29 mg, 0.68 mmol) was added to a stirred solution of diketone (-)-28.1 (45 mg, 0.15 mmol) in DMF (10 mL). The mixture was heated at reflux for 20 h, cooled, diluted with water (15 mL) and extracted with  $CH_2Cl_2$  (3 x 20 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the

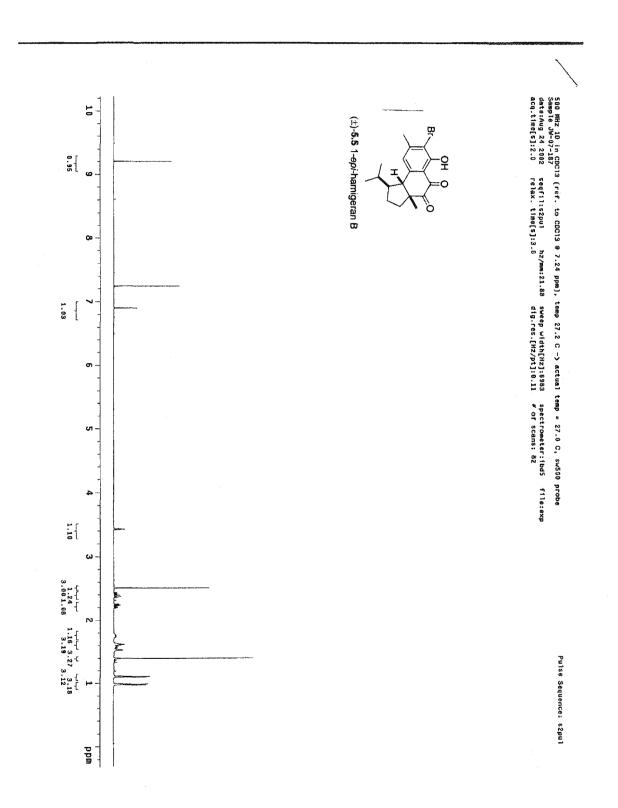
residue over silica gel (1 x 20 cm), using 1:9 EtOAc-hexane containing 1%v/v MeOH, gave phenol (-)-29.1 (37 mg, 87%) as yellow crystals: mp 108-109 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2958, 1725, 1633, 1566 cm<sup>-1</sup>; [ $\alpha$ ]<sub>p</sub> = -203.1° (c 0.128, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.41 (d, J = 6.5 Hz, 3 H), 0.53 (d, J= 6.6 Hz, 3 H), 1.14-1.22 (m, 1 H), 1.28 (s, 3 H), 1.48-1.56 (m, 1 H), 1.62-1.71 (m, 1 H), 1.74-1.83 (m, 1 H), 2.22-2.30 (m, 1 H), 2.36 (s, 3 H), 2.61 (ddd, J = 5.5, 7.7, 13.1 Hz, 1 H), 3.38 (d, J = 9.1 Hz, 1 H), 6.67 (t, J = 0.7 Hz, 1 H), 6.73 (s, 1 H), 11.9 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.8 (q), 22.5 (q), 23.1 (q), 24.4 (q), 26.9 (t), 28.1 (d), 33.8 (t), 51.4 (d), 56.5 (q), 56.8 (s), 116.2 (d), 116.7 (s), 123.3 (d), 144.1 (s), 150.7 (s), 164.6 (s), 184.3 (s), 200.0 (s); exact mass m/z calcd for C<sub>18</sub>H<sub>22</sub>O<sub>3</sub> 286.1569, found 286.1567.

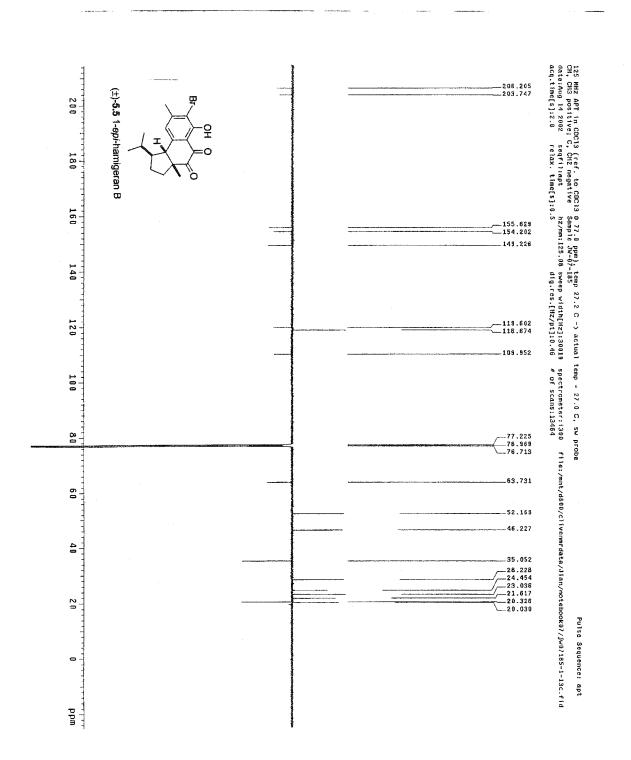
(1R, 3aR, 9bR)-7-Bromo-6-hydroxy-1-isopropy1-3a,8dimethy1-2,3,3a,9b-tetrahydro-1H-cyclopenta[a]naphthalene-4,5-dione [(-)-Hamigeran B] [(-)-3].

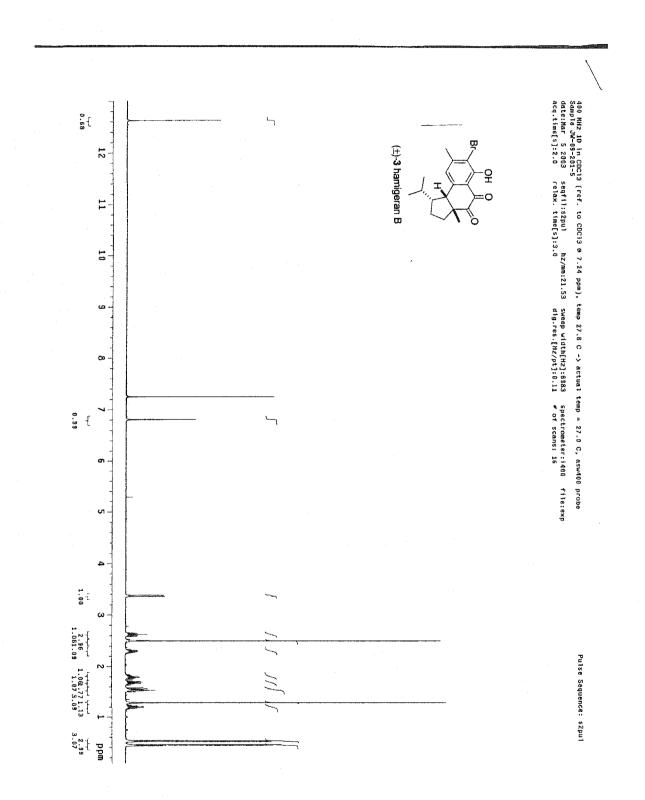


A solution of NBS (2.5 mg, 0.015 mmol) in  $CH_2Cl_2$  (1 mL) was added dropwise over ca. 10 min to a stirred and cooled (0 °C) solution of phenol (-)-29.1 (4 mg, 0.014 mmol) and dry *i*-Pr<sub>2</sub>NH (ca 0.01 mL, 0.07 mmol) in  $CH_2Cl_2$  (2 mL). The cold bath was removed after the addition, and stirring was

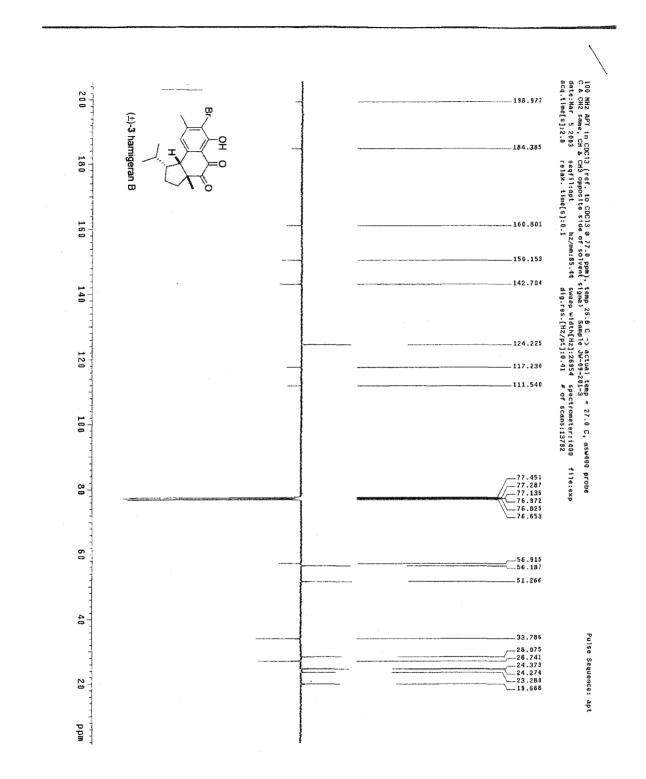

continued for 3 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 20 cm), using 1:19 t-BuOMe-hexane, containing 1%v/v MeOH, gave (-)hamigeran B [(-)-3] (4.5 mg, 88%) as a yellow solid: mp 165-167 °C; FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2956, 1724, 1633, 1609 cm<sup>-1</sup>;  $[\alpha]_{\rm D} = -176.4^{\circ}$  (c 0.142, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 0.44 (d, J = 6.5 Hz, 3 H), 0.53 (d, J = 6.6 Hz, 3 H), 1.15-1.23 (m, 1 H), 1.28 (s, 3 H), 1.49-1.59 (m, 1 H), 1.63-1.72 (m, 1 H), 1.75-1.85 (m, 1 H), 2.25-2.33 (m, 1 H), 2.50 (s, 3 H), 2.62 (ddd, J = 5.5, 7.7, 13.1 Hz, 1 H), 3.38 (d, J =9.2 Hz, 1 H), 6.82 (s, 1 H), 12.61 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  19.7 (q), 23.3 (q), 24.3 (q), 24.4 (q), 26.7 (t), 28.1 (d), 33.8 (t), 51.3 (d), 56.2 (q), 56.9 (s), 111.5 (s), 117.2 (s), 124.2 (d), 142.7 (s), 150.2 (s), 160.8 (s), 184.4 (s), 199.0 (s); exact mass m/z calcd for C<sub>18</sub>H<sub>21</sub><sup>79</sup>BrO<sub>3</sub> 364.0674, found 364.0679.


## IV References and Notes

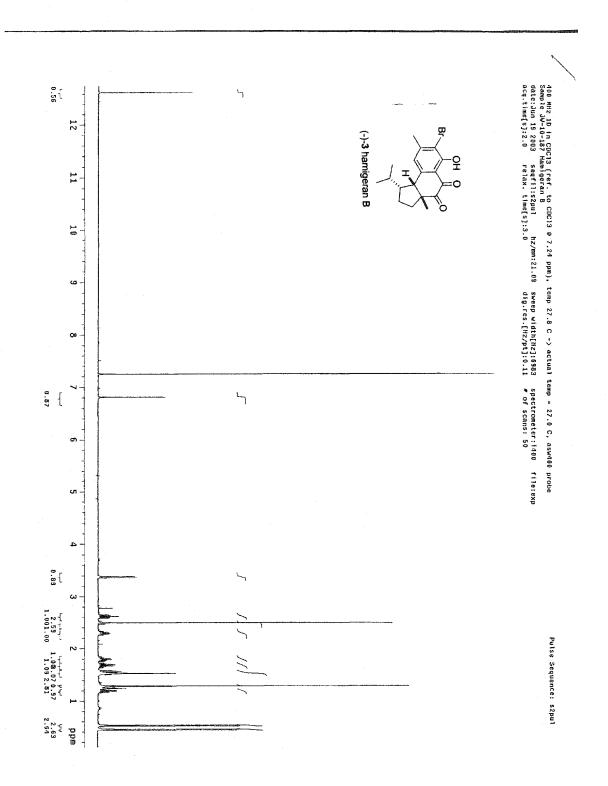

| 1  | Faulkner, D. J. Nat. Prod. Rep. 2000, 17, 1-6.                 |
|----|----------------------------------------------------------------|
| 2  | Wellington, K. D.; Cambie, R. C.; Rutledge, P. S.;             |
|    | Bergquist, P. R. <i>J. Nat. Prod.</i> <b>2000</b> , 63, 79-85. |
| 3  | Cambie, R. C.; Rickard, C. E. F.; Rutledge, P. S.;             |
|    | Wellington, K. D. Acta Crystallogr. 2001, C57, 958-            |
|    | 960.                                                           |
| 4  | Nicolaou, K. C.; Gray, D. L. F.; Tae, J. Angew. Chem.          |
|    | Int. Ed. 2001, 40, 3675-3678.                                  |
| 5  | Nicolaou, K. C.; Gray, D. L. F.; Tae, J. Angew. Chem.          |
|    | Int. Ed. 2001, 40, 3679-3683.                                  |
| 6  | Nicolaou, K. C.; Gray, D. L. F.; Tae, J. J. Am. Chem.          |
|    | Soc. 2004, 126, 613-627.                                       |
| 7  | Clive, D. L. J.; Wang, J. Angew. Chem. Int. Ed. 2003,          |
|    | 42, 3406-3409.                                                 |
| 8  | Mehta, G.; Shinde, H. M. Tetrahedron Lett. 2003, 44,           |
|    | 7049-7053.                                                     |
| 9  | Trost, B. M.; Pissot-Soldermann, C.; Chen, I.;                 |
|    | Schroeder, G. M. J. Am. Chem. Soc. 2004, 126, 4480-            |
|    | 4481.                                                          |
| 10 | Lange, G. L.; Neidert, E. E.; Orrom, W. J.; Wallace,           |
|    | D. J. Can. J. Chem. <b>1978</b> , 56, 1628-1633.               |
| 11 | Mehta, G.; Krishnamurthy, N.; Karra, S. R. J. Am.              |
|    | Chem. Soc. 1991, 113, 5765-5775.                               |
| 12 | Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc.               |
|    | <b>1999,</b> <i>121,</i> 6759-6760.                            |
| 13 | (a) Nishimura, S.; Mochizuki, F.; Kobayakawa, S.               |
|    | Bull. Chem. Soc. Jpn. 1970, 43, 1919. (b) Nishimura,           |
|    | S.; Sakamoto, H.; Ozawa, T. Chem. Lett. 1973, 855.             |
|    | (c) Siegel, S.; Smith, G. V. J. Am. Chem. Soc. 1960,           |
|    | 82, 6082-6087.                                                 |

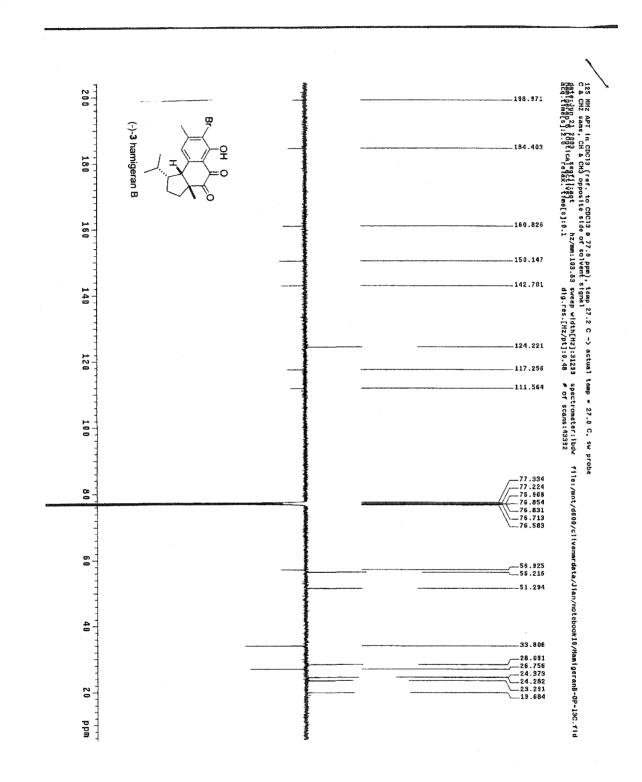

- 14 Cooke, R. G.; Dowd, H. Aust. J. Chem. 1953, 6, 53-57.
- 15 Martin, E. L. J. Am. Chem. Soc. 1936, 58, 1438-1442.
- 16 Cf. Ruzicka, L.; Hösli, H.; Hofmann, K. Helv. Chim. Acta 1936, 19, 370-377.
- 17 Cf. Snowden, R. G.; Sonnay, P.; Ohloff, G. Helv. Chim. Acta 1981, 64, 25-32.
- 18 Cf. Yatabe, T.; Kayakiri, H.; Kawai, Y.; Oku, T.; Tanaka, H. Chem. Pharm. Bull. 1998, 46, 1556-1565.
- 19 Biernacki, W.; Gdula, A. Synthesis 1979, 37-38.
- 20 Cf. Dolan, S. C.; MacMillan, J. J. Chem. Soc., Chem. Commun. 1985, 1588-1589.
- 21 Cf. Johnson, W. S.; Kemp, A. D.; Pappo, R.; Ackerman, J.; Johns, W. F. J. Am. Chem. Soc. 1956, 78, 6312-6321.
- 22 Macro, M.; Hammock, B. D.; Kurth, M. J. J. Org. Chem. 1993, 58, 7548-7556.
- 23 Cf. Meyers, A. I.; Higashiyama, K. J. Org. Chem. 1987, 52, 4592-4597.
- 24 Cf. Hauser, F. M.; Prasanna, S. Synthesis 1980, 621-623.
- 25 Owton, W. M.; Brunavs, M.; Miles, M. V.; Dobson, D. R.; Steggles, D. J. J. Chem. Soc., Perkin Trans. 1 1995, 931-934.
- 26 (a) Fujisaki, S.; Eguchi, H.; Omura, A.; Okamoto, A.;
  Nishida, A. Bull. Chem. Soc. Jpn. 1993, 66, 15761579. (b) Krohn, K.; Bernard, S.; Flörke, U.; Hayat,
  N. J. Org. Chem. 2000, 65, 3218-3222.
- 27 Cf. Mori, Y.; Kohchi, Y.; Suzuki, M. J. Org. Chem. 1991, 56, 631-637.

- 28 For studies on the mechanism of hydrogenolysis, see: Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 64, 4172-4173.
- 29 Colvin, E. Silicon in Organic Synthesis, Butterworth's, London, **1981**, p 12.
- 30 Bernard, A. M.; Ghiani, M. R.; Piras, P. P.; Rivoldini, A. Synthesis 1987, 287-288.
- 31 Meyers, A. I.; Lefker, B. A.; Wanner, K. T.; Aitken, R. A. J. Org. Chem. 1986, 51, 1936-1938.
- 32 Snyder, L.; Meyers, A. I. J. Org. Chem. 1993, 58, 7507-7515.
- 33 Solladie, G.; Almario, A. Tetrahedron Asym. 1995, 6, 559-576.
- 34 Cf. McGhie, J. F.; Ross, W. A.; Evans, D.; Tomlin, J.
   E. J. Chem. Soc. 1962, 350-355.
- 35 McKennon, M.; Meyers, A. I. J. Org. Chem. **1993**, 58, 3568-3571.
- 36 Burgess, L.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656-1662.
- 37 Gore, M. P.; Gould, S. J.; Weller, D. D. J. Org. Chem. 1992, 57, 2774-2783.
- 38 Britlain, J. M.; de la Mare, P. B. D.; Newman, P. A. J. Chem. Soc., Perkin Trans. 1 1984, 32-41.
- 39 Leed, A.; Boettger, S. D.; Ganem, B. J. Org. Chem. 1980, 45, 1098-1106.
- 40 (a) Helms, A.; Heiler, D.; McLendon, G. J. Am. Chem. Soc. 1992, 114, 6227-6238. (b) Epstein, W. W.;
  Sweat, F. W. Chem. Rev. 1967, 67, 247-260. (c) Mizutani, T.; Wada, K.; Kitagawa, S. J. Org. Chem. 2000, 65, 6097-6106.






Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

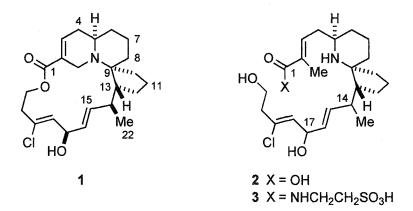


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


## Chapter Three

Studies on the Total Synthesis of Halichlorine and Pinnaic Acid

#### I Introduction

### 1.1 General

In their search for biologically active substances from marine organisms, Uemura *et al.*<sup>1</sup> isolated from the marine sponge *Halichondria okadai* Kadata a compound which they called halichlorine (1, Scheme 1). This compound was found to be a specific inhibitor of the induction of VCAM-1 (vascular cell adhesion molecule-1) with an IC<sub>50</sub> of 7  $\mu$ g/mL.



Scheme 1

VCAM-1 is a member of the immunoglobulin gene superfamily.<sup>2</sup> It is expressed on the surface of endothelium cells to monitor and regulate leukocyte recruitment into inflamed sites *in vivo*. Because leukocyte infiltration is involved in various allergic inflammatory disorders, as well as pathogenic processes, such as asthma and arteriosclerosis, VCAM-1 has emerged as a potential target for drug discovery. In principle, compounds that inhibit the expression of VCAM-1 could be useful in regulating leukocyte trafficking.

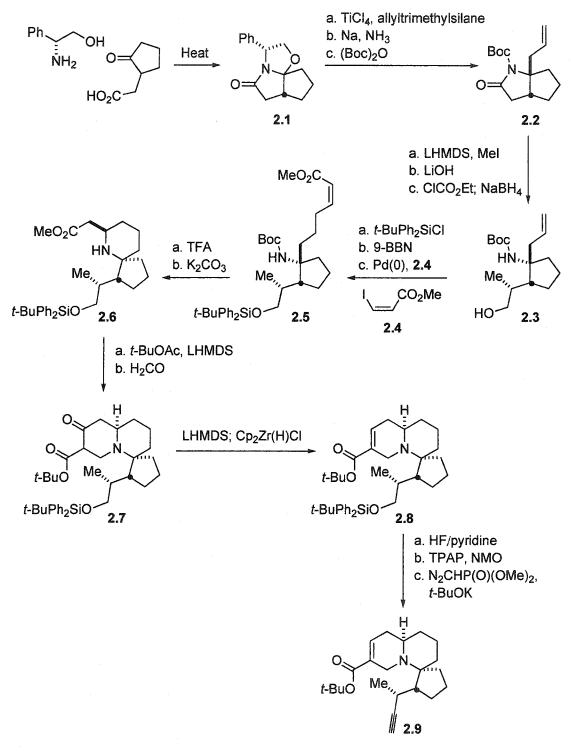
Interestingly, two structurally homologous compounds,

pinnaic acid (2) and tauropinnaic acid (3), were also isolated by Uemura and coworkers from a completely different marine organism, the Okinawan bivalve *Pinna muricata* at the same time.<sup>3</sup> The stereochemistry of 2 is known (see later), and one might assume that 3 has the same stereochemistry. Both pinnaic acid (2) and tauropinnaic acid (3) are specific inhibitors of cytosolic 85-kDa phospholipase A<sub>2</sub> (CPLA<sub>2</sub>), an important member of the phospholipase A<sub>2</sub> (PLA<sub>2</sub>) family, with IC<sub>50</sub> values of 0.2 mM and 0.09 mM, respectively.

These kinds of inhibitors are considered to be potential drugs for the treatment of inflammation and other disease states, since  $PLA_2$  is linked to the initial step in the cascade of enzymatic reactions that lead to the generation of inflammatory intermediates.<sup>4</sup> For example, a cytosolic 85-kDa phospholipase  $A_2$  exhibits specificity for the release of arachidonic acid (this acid can mediate the biosynthesis of eicosanoids, prostaglandins, leukotrienes and thromboxanes) from membrane phospholipids.<sup>5</sup>

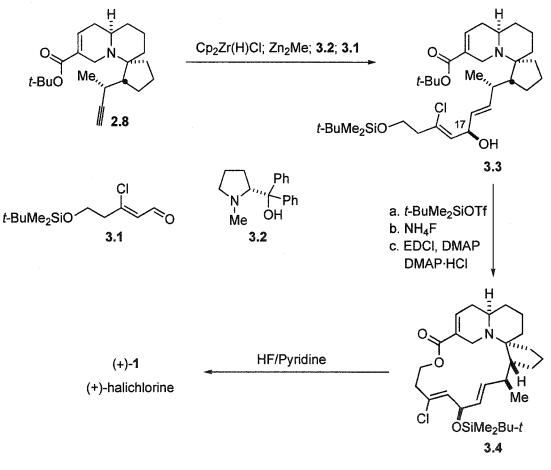
Halichlorine contains a quinolizidine nucleus with a spiro five-membered ring attached at C(9). Appended to the five-membered ring is a divinyl carbinol side chain that is enclosed in a 15-membered macrolactone. Carbons C(9), C(13) and C(14) are contiguous stereogenic centers. Pinnaic acid has the same carbon skeleton as halichlorine the tetrahydropyridine ring except for and the macrolactone. The relative stereochemistry of these compounds was originally established by NMR methods, except for the configuration at C(17) of pinnaic acid (2). These studies also tentatively suggested that the C(14) methyl groups of halichlorine and pinnaic acid are epimeric to Later, the absolute stereochemistry of each other.

halichlorine was determined by degradation studies.<sup>6</sup> Due to a lack of sufficient material for degradation studies, the absolute stereochemistry of pinnaic acid was not confirmed. However, the stereochemistry of natural pinnaic acid was later assigned by the Danishefsky group<sup>7</sup> during the course of their total synthesis — the configurations at C(14) and C(17) are the same as in halichlorine.


Due to their interesting biological profile and unusual structural features, these compounds have attracted considerable interest among organic chemists. A number of publications related to synthetic studies on these compounds have appeared since 1999, and these studies are summarized in the following sections.

## 1.2 Total synthesis of halichlorine and pinnaic acid the by the Danishefsky group.

The first total synthesis of (+)-halichlorine was reported by Danishefsky *et al.* in 1999.<sup>8</sup> Their synthesis began with a Lewis acid catalyzed allylation of the known Meyers lactam 2.1 so as to install the quaternary center with stereo control  $(2.1 \rightarrow 2.2, \text{ Scheme 2})$ . After reductive cleavage (Na, NH<sub>3</sub>) of the chiral auxiliary and protection of the amide nitrogen, the lactam was alkylated with MeI. The cup-like structure of 2.2 caused alkylation to take place only from the convex face, and so the methyl group was introduced with the required stereochemistry.


The lactam was then hydrolyzed and the released carboxyl group was reduced, to afford alcohol 2.3. After protection of 2.3, the allyl group was homologated by using hydroborative Suzuki coupling with (Z)-iodoacrylate (2.4)to give 2.5. Next, the amino protecting group was removed under acidic conditions and, after basification, the free

amine underwent *in situ* stereoselective Michael addition to the alkenoate, forming the fused piperidine ring system **2.6.** 

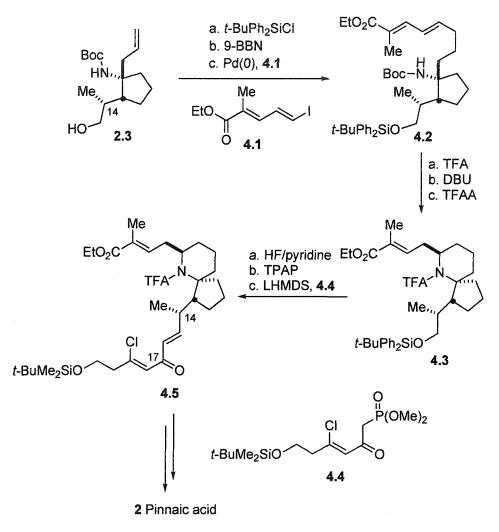




The required tetrahydropyridine ring was then formed by a two-carbon chain extension of 2.6, using a cross Claisen condensation (t-BuOCOMe, LHMDS), followed by ring closure via a Mannich reaction with formaldehyde  $(2.6 \rightarrow$ The remaining  $\beta$ -carbonyl group was removed by 2.7). treatment with LHMDS and Cp2Zr(H)Cl to give 2.8. The silvl ether was cleaved and the resulting alcohol was oxidized and then homologated by one carbon to afford acetylene 2.9. tricyclic compound contains This four of five the stereogenic centers present in halichlorine.



Scheme 3


Now the stage had been set to build up the side chain and to attempt a macrolactonization (Scheme 3). Acetylene

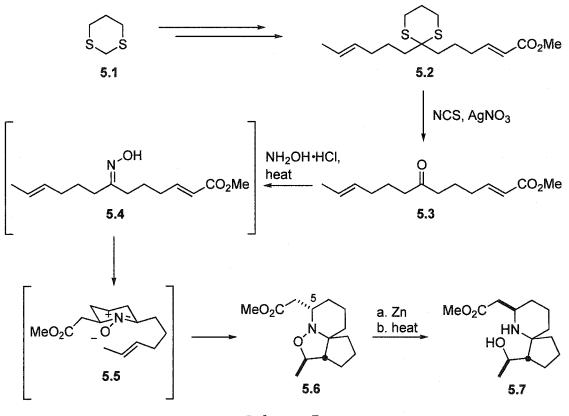
2.8 was converted into an organozinc species, which, in the presence of the external chiral amino alcohol 3.2, added stereoselectively to aldehyde 3.1 to give a 4:1 mixture of the allylic alcohol **3.3** and its C(17)S isomer. Treatment of compound 3.3 with tert-butyldimethylsilyl triflate (TBSOTf) generated the corresponding silvl ester of the carboxylic acid while protecting the C(17) alcohol. The protecting groups on the carboxyl and primary alcohol selectively cleaved, functions were and the macrolactonization was then carried out by using Keck's conditions  $(3.3 \rightarrow 3.4)$ . Finally, deprotection of the C(17) alcohol completed the total synthesis of (+)-halichlorine (1).

Starting from compound 2.3, the Danishefsky group also completed the total synthesis of pinnaic acid.<sup>7,9</sup> As shown Scheme 4, protection of alcohol 2.3 as its tin butyldiphenylsilyl ether, and homologation of the allyl group by using hydroborative Suzuki coupling with vinyl iodide 4.1 gave 4.2. Next, the amino protecting group was removed under acidic conditions and, after basification, amine underwent in situ stereoselective the free intramolecular vinylogous Michael type addition (1,6addition) to afford the fused piperidine ring system 4.3 with the desired stereochemistry at the newly-created asymmetric center.

The terminal silyl ether was cleaved as usual, and the resulting alcohol was then oxidized and homologated with the known phosphonate 4.4 to furnish 4.5. Reduction of the C(17) carbonyl gave access to both C(17) stereoisomers. Cleavage of the silyl ether, trifluoroacetyl and ethyl ester functions produced two pinnaic acids that only differed at C(17). The Danishefsky group also managed to

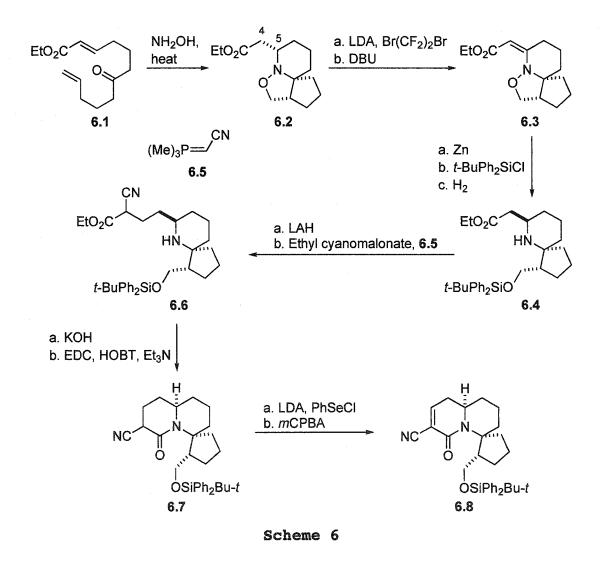
use the C(14) epimer of 2.3 as starting material; they applied the same reaction sequences and were able to obtain another two pinnaic acids.




Scheme 4

The NMR spectra of these four synthetic pinnaic acids were then compared to the spectrum obtained from the natural product; as expected, the data for only one synthetic sample completely matched the data for the natural compound. After degradation studies of certain synthetic intermediates, it was then possible to assign the stereochemistry of natural pinnaic acid as 14*S*,17*R* (i.e.

the same as for halichlorine).

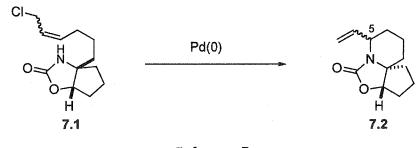

# 1.3 Synthesis of the azaspirocyclic core structure by the Zhao group.

Zhao *et al.* reported their approach to the azaspiro core structure of halichlorine and pinnaic acid in two different papers at the same time.<sup>10,11</sup> The content of both papers is almost the same.



Scheme 5

Their synthesis was based on sequential Michael addition and intramolecular [3 + 2] nitrone cycloaddition (Scheme 5). Enolate 5.2 was synthesized by dialkylation of 1,3-dithiane (5.1). The dithiane was then oxidatively cleaved by *N*-chlorosuccinimide (NCS) and AgNO<sub>3</sub> to give ketone 5.3. Heating this ketone with hydroxylamine hydrochloride and AcONa generated a transient oxime 5.4, which underwent Michael addition of the nitrogen to the unsaturated ester unit to form nitrone 5.5. This nitrone underwent cycloaddition *in situ* to afford the tricyclic compound 5.6, which has all the required stereochemistry except that at C(5). This center was epimerized after reductive cleavage of the N-O bond, via a retro-Michael addition, followed by an intramolecular Michael addition, to give the thermodynamically favored isomer 5.7; this represents the core structure of both halichlorine and the pinnaic acids.



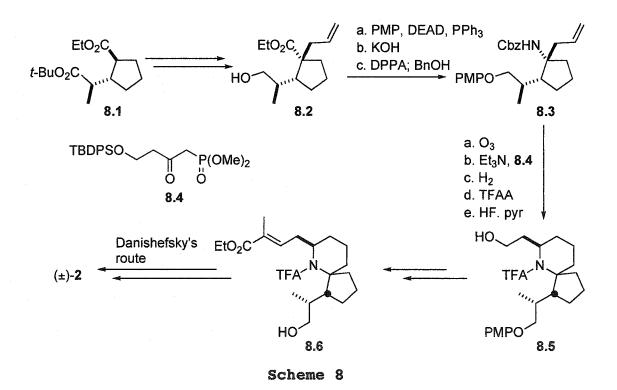

1.4 Synthesis of the tricyclic halichlorine core by the Shishido group.

In work similar to Zhao's approach, Shishido reported<sup>12</sup> a route to the halichlorine core utilizing the same strategy of tandem Michael addition and nitrone [3 + 2] cycloaddition.

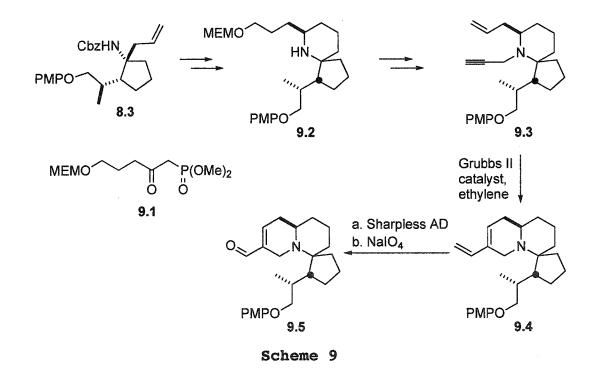
As shown in Scheme 6, the stereochemistry at C(5) was initially the undesired stereochemistry and epimerization was required. This change was carried out by first creating the C(4)-C(5) double bond ( $6.2 \rightarrow 6.3$ ), followed by reductive opening of the N-O bond, protection of the free hydroxyl functionality and then hydrogenation from the underface so as to set the required stereochemistry ( $6.3 \rightarrow$ 6.4). Introduction of the C(4)-C(5) double bond was done by bromination and subsequent dehydrobromination of 6.2.

Ester 6.4 was reduced and then homologated with ethyl cyanomalonate to afford 6.6. The last ring was generated by an intramolecular acylation to give amide 6.7. Desaturation of 6.7 by the standard selenoxide elimination method produced the tricyclic lactam 6.8 as the core of halichlorine.




Scheme 7

Later on, the same laboratory also reported<sup>13</sup> another approach to the bicyclic core, based on a Pd-mediated cyclization (Scheme 7). However, treatment of allyl

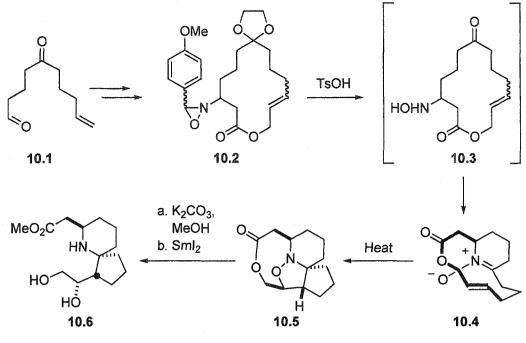

chloride 7.1 with a Pd(0) catalyst gave only a mixture of C(5) epimers (7.2), and the authors are still looking for a way to improve the diastereoselectivity. Compound 7.2 was not elaborated much further.

1.5 Synthesis of pinnaic acid and the tricyclic core of halichlorine by the Arimoto group.

Targeted upon the original stereochemical assignment, Arimoto *et al.* reported an asymmetric synthesis of the spirocyclic core of pinnaic acid (2).<sup>14</sup> After Danishefsky revised the originally-assigned stereochemistry of  $2,^7$  the Arimoto group modified their original route so as to complete a formal synthesis<sup>15</sup> of the natural product.



The known racemic diester 8.1 could be easily converted into alcohol 8.2 by selective removal of the tbutyl group, stereoselective allylation and reduction of the carboxyl group (Scheme 8). The primary alcohol was then protected as its p-methoxyphenyl ether. After hydrolysis of the ethyl ester, the resulting carboxyl was subjected to Curtius rearrangement, followed by addition of benzyl alcohol to give the desired Cbz-protected amine (8.2 The terminal alkene of 8.3 was cleaved by  $\rightarrow$  8.3). ozonolysis and homologated with phosphonate 8.4. At this stage, catalytic hydrogenation brought about a cascade of reactions and built up the spirobicyclic skeleton. N-Protection of the resulting cyclic amine with (CF<sub>3</sub>CO)<sub>2</sub>O, followed by deprotection of the terminal silyl ether originally present in 8.4, afforded compound 8.5. The alcohol was oxidized to the corresponding aldehyde. Finally, homologation of this aldehyde and deprotection of the *p*-methoxyphenyl ether afforded alcohol 8.6, the appropriate enantiomer of which had served as a key intermediate in Danishefsky's total synthesis.




192

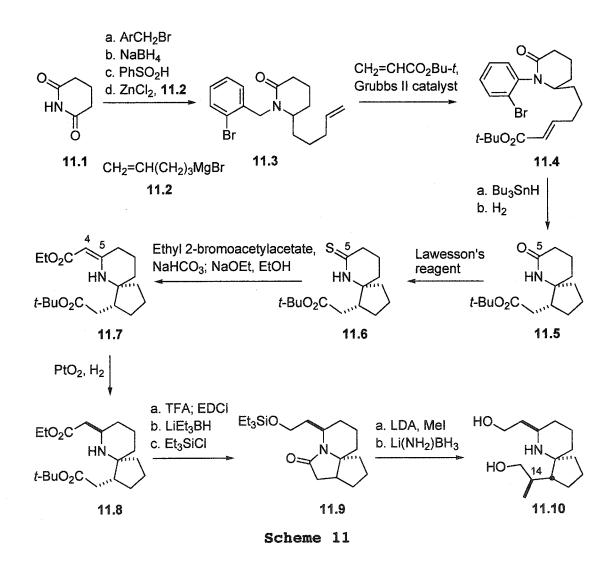
Starting from alkene 8.3, the Arimoto group also managed to make the tricyclic core structure of halichlorine.<sup>16</sup> As shown in Scheme 9, applying the same reaction sequence on 8.3 as they had used in the formal synthesis of pinnaic acid, except that phosphonate 9.1 was employed, they were able to obtain amine 9.2. At this point a propargyl group was attached to the nitrogen atom, and deprotection of the MEM ether gave an alcohol which was then converted into a terminal alkene  $(9.2 \rightarrow 9.3)$ . Ene-yne 9.3 was heated at reflux in PhMe with Grubbs II catalyst to furnish diene 9.4. The terminal double bond was then selectively cleaved by dihydroxylation with the Sharpless AD-mix- $\beta$ , and then oxidative cleavage with NaIO<sub>4</sub>. This sequence gave racemic aldehyde 9.5 as the tricyclic core of halichlorine.

## 1.6 Synthesis of the spirocyclic core by the White group.

A synthesis of the spirocyclic core of halichlorine and the pinnaic acids was reported by White et al.<sup>17</sup> This work is based on a transannular nitrone cycloaddition. The nitrone precursor 10.2 (Scheme 10) could easily be made from 5-oxo-9-decenal (10.1) in about 10 steps. Treatment with p-toluenesulfonic acid resulted of 10.2 in simultaneous hydrolysis of the ketal and the oxaziridine to give transiently keto hydroxylamine 10.3. The latter underwent intramolecular condensation to produce nitrone 10.4. Thermolysis of 10.4 caused transannular nitroneolefin [3 + 2] cycloaddition to yield tetracyclic compound Finally, base-catalyzed methanolysis, followed by 10.5. reductive cleavage of the residual isoxazolidine with SmI2 gave the racemic azaspirocyclic core (10.6).

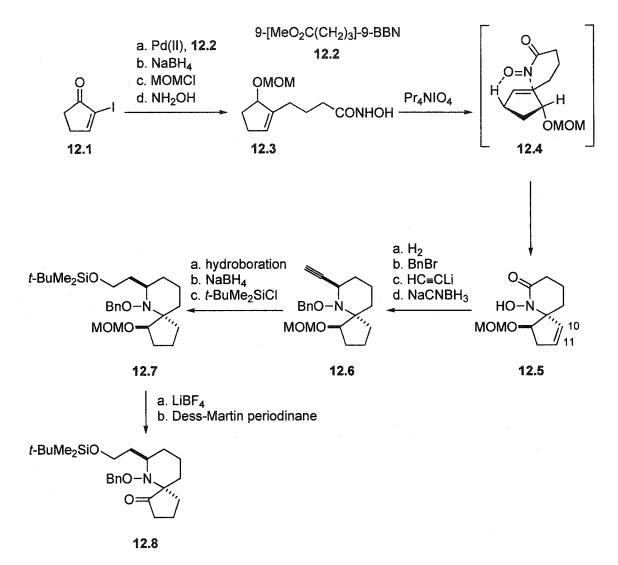


Scheme 10


# 1.7 Synthesis of the azaspirocyclic nucleus by the Ihara group.

Ihara et al.<sup>18</sup> described a novel approach toward the azaspirocyclic framework of halichlorine and pinnaic acids by utilizing a cascade radical translocation and addition process.

Their synthesis started with glutarimide 11.1 (Scheme 11). Alkylation with 2-bromobenzyl bromide, followed by reduction of one of the amide carbonyls and treatment with benzenesulfinic acid, gave a sulfone which was converted into 11.3 by Grignard reaction in the presence of ZnCl<sub>2</sub>. Cross metathesis with t-butyl acrylate afforded the radical precursor 11.4. This compound then underwent cascade radical translocation and cyclization, and finally, debenzylation by hydrogenolysis produced amide 11.5.


To generate the side chain at C(5), **11.5** was first converted into the corresponding thiolactam **11.6**, and then

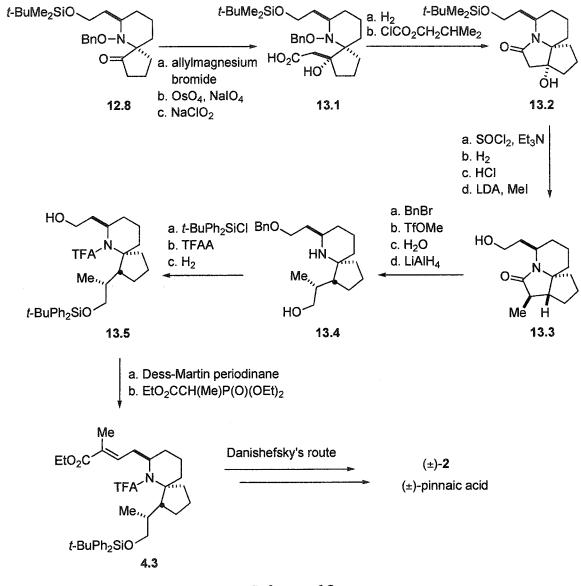
coupled with ethyl 2-bromoacetoacetate and deacetylated to give 11.7. Hydrogenation of the C(4)-C(5) double bond furnished ester 11.8. Selective hydrolysis of the t-butyl ester and formation of the five-membered lactam, followed by reduction of the ethyl ester and protection of the resulting alcohol, afforded tricyclic lactam 11.9. The C(14) methyl could be introduced stereoselectively from the convex face of 11.9. Treatment of the resulting lactam with  $Li(NH_2)BH_3$  led to reductive lactam opening to give 11.10, which serves as an advanced intermediate in the synthesis of halichlorine and pinnaic acids.



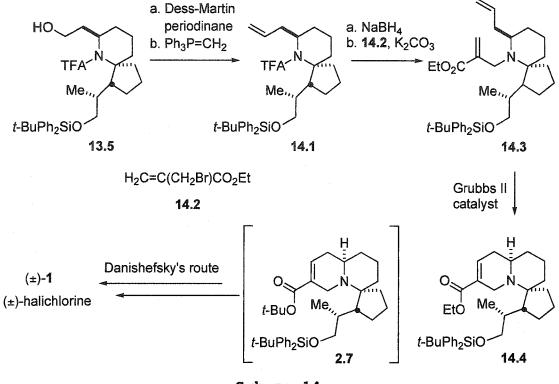
1.8 Formal synthesis of halichlorine and pinnaic acid by the Kibayashi group.

In early 2004, Kibayashi *et al.*<sup>19</sup> finished the formal synthesis of both pinnaic acid and halichlorine.




Scheme 12

Their synthesis of the azaspirocyclic core structure of halichlorine and pinnaic acid is based on an intramolecular acylnitroso ene reaction.<sup>20</sup> As shown in Scheme 12, in order to make the precursor of the acylnitroso compound – the hydroxamic acid **12.3** – the

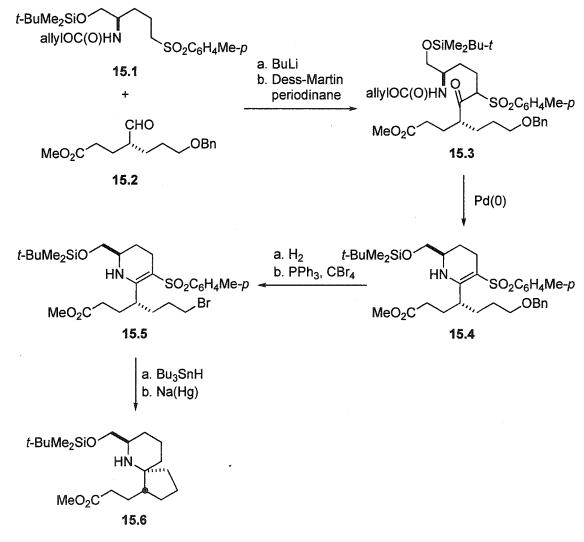

iodoenone 12.1, made from 2-cyclopentene-1-one, was first subjected to the Suzuki-Miyaura coupling with the alkylborane unit 12.2, followed by reduction of the enone, MOM protection of the resulting hydroxyl and treatment with hydroxylamine  $(12.1 \rightarrow 12.3)$ . Upon oxidation, an intramolecular ene reaction of the in situ-generated acylnitroso compound 12.4 proceeded smoothly to yield spirocyclic lactam 12.5. After saturation of the C(10)-C(11) double bond and benzylation of the N-hydroxyl group, the C(5) carbon chain was installed. This was done by treatment with lithium acetylide, followed by reduction with NaCNBH<sub>3</sub>, to give **12.6**. Hydroboration of the terminal acetylene, followed by NaBH4 reduction of the resulting aldehyde and subsequent silylation afforded compound 12.7. The MOM ether of 12.7 was cleaved, and oxidation of the resulting alcohol gave the key intermediate 12.8.

Addition of allylmagnesium bromide to ketone 12.8 (Scheme 13), gave a single adduct. Oxidative cleavage of the double bond and further oxidation with NaClO2 afforded acid 13.1. Cleavage of the N-O bond, followed by lactam formation, gave tricyclic lactam 13.2. Dehydration with SOCl<sub>2</sub> and subsequent hydrogenation selectively delivered hydrogen from the  $\beta$  face of the lactam. Deprotection of the terminal silyl ether and alkylation, then installed the C(14) methyl - also from the convex face - to give 13.3. The free hydroxyl was protected and the lactam ring was opened with methyl triflate, followed by hydrolysis and reduction, to furnish amine 13.4. This alcohol was converted into amide 13.5 by sequential TBDPS protection, N-trifluoroacetylation and debenzylation. Dess-Martin oxidation of 13.5 and homologation of the resulting aldehyde provided the Danishefsky intermediate 4.3.

Because compound 4.3 had been converted into pinnaic acid (2) before, the present work constitutes a formal synthesis of racemic 2.



Scheme 13




Scheme 14

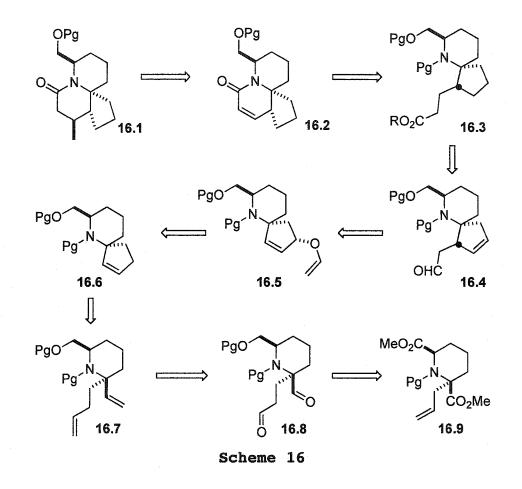
The advanced intermediate 13.5 was also elaborated in another way so as to complete a formal synthesis of Alcohol 13.5 was converted into olefin 14.1 halichlorine. by Dess-Martin oxidation and homologation  $(13.5 \rightarrow 14.1,$ Scheme 14). Treatment of 14.1 with NaBH4, followed by reaction with bromide 14.2 under basic conditions then afforded diene 14.3. Ring closing metathesis of this compound, mediated by Grubbs II catalyst, furnished 14.4. compound is the ethyl ester This analogue of theDanishefsky key intermediate 2.7 in the first total synthesis of halichlorine (1). Consequently, production of 14.4 could be considered as a formal synthesis of racemic 1. Kibayashi et al. did so consider it, although, strictly speaking, the corresponding t-butyl ester should have been made.

## 2.1 Previous studies in this laboratory.

In this laboratory, an approach to the azaspirocyclic core of halichlorine and pinnaic acid was accomplished by a former member of the group.<sup>21</sup>



Scheme 15

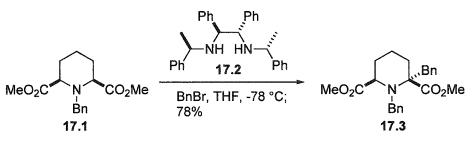

As shown in Scheme 15, the two subunits, **15.1** (made from p-glutamic acid in 10 steps) and aldehyde **15.2** (made

from  $\delta$ -valerolactone in 8 steps), were connected by deprotonation of 15.1, followed by slow addition of 15.2. The resulting diastereoisomeric alcohols were oxidized to give ketone sulfone 15.3. The allyloxycarbonyl group was removed with a Pd(0) catalyst to afford the desired sulfonyl enamine 15.4. Hydrogenolysis of the O-benzyl protecting group and replacement of the liberated hydroxyl by a bromine furnished radical precursor 15.5. Treatment standard conditions for radical cyclization, under converted this bromide by way of a 5-exo-cyclization to the desired spirobicyclic sulfone. Finally, desulfonylation with Na(Hg) gave the 6-azaspiro[4,5]decane 15.6, representing the core of halichlorine and pinnaic acid.

However, a number of serious difficulties were later encountered while trying to extend this route further. Consequently, the above synthesis was abandoned and a new and more efficient route to the azaspirocyclic core was developed. Because my current work was derived from this approach, a part of those earlier studies will also be discussed in the next section.

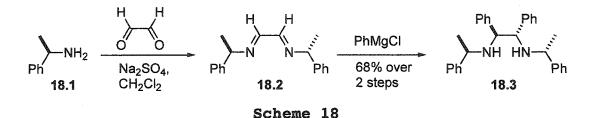
2.2 Synthesis of the spirocyclic core by ring closing metathesis and installation of the C(13) carbon chain by Claisen rearrangement.

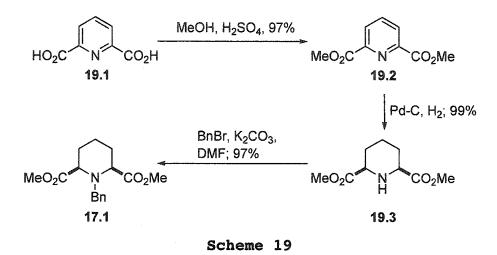
Our initial target was the tricyclic lactam 16.1 (Scheme 16), which has the same stereochemistry at all four stereogenic centers as halichlorine (1) and pinnaic acid (2). Our retrosynthetic analysis showed that 16.1 might be derived by stereospecific methylcuprate addition to the unsaturated precursor 16.2. This, in turn, should be obtainable by lactam formation from the spiro compound 16.3. Saturation of the double bond of 16.4 and homologation of the aldehyde functionality would give rise to 16.3. The structure of 16.4 immediately suggested that it could be made by Claisen rearrangement of vinyl ether 16.5.



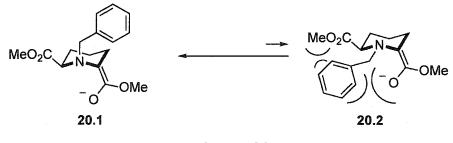

Allylic oxidation of 16.6 and vinyl ether formation would serve to generate 16.5. We expected that compound 16.6 could be obtained by ring closing metathesis of a diene such as 16.7. This diene would be available by homologation of dialdehyde 16.8. To make this dialdehyde, we needed the piperidine diester 16.9.

To generate diester 16.9, which bears an asymmetric quaternary center, we decided to follow the Simpkins's communication,<sup>22</sup> in which the chiral amide 17.2 was used to


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


enantioselectively deprotonate  $\alpha$  to one of the ester groups of 17.1. The resulting enolate was allowed to react with the electrophile BnBr, which approaches from the  $\alpha$  face of the piperidine ring to give the alkylated product 17.3 in >98% ee (Scheme 17). A number of related examples were reported in this communication; for some of the products the ee was actually measured, but not for all of them, although it was implied that all examples gave a high ee.



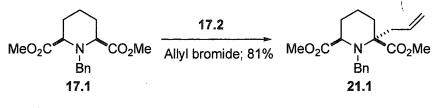

Scheme 17

The chiral diamine 17.2 was prepared from commercially available  $(R)-(+)-\alpha$ -methylphenylamine (18.1) (Scheme 18). Condensation of 2 equiv of 18.1 with one equiv of glyoxal, using Na<sub>2</sub>SO<sub>4</sub> as dehydrating agent, gave bisimine 18.2 in nearly quantitative yield.<sup>23</sup> Addition of PhMgCl to 18.2 afforded crystalline diamine 18.3 (68% over 2 steps).<sup>24</sup> Our synthetic material had  $[\alpha]_{\rm D}$  +192°, which was quite close to the reported literature value,  $[\alpha]_{\rm D}$  +205°. The diamine could also be reused after each alkylation reaction by recrystallization.





2,6-Pyridinedicarboxylic acid (19.1) was esterified by treatment with refluxing MeOH in the presence of catalytic  $H_2SO_4$  (Scheme 19).<sup>25</sup> After basic workup, diester 19.2 was obtained in 97% yield. The pyridine ring was saturated by hydrogenation (50 psi, Pd-C, 99%) to give the *cis*-diester 19.3 exclusively.<sup>26</sup> This amine was then benzylated with BnBr and  $K_2CO_3$  in DMF<sup>27</sup> to give diester 17.1 in high yield.




Scheme 20

The basis of the enantioselectivity in the reaction of diester 17.1 with chiral amide 17.2 has not been proposed, but a reason for the diastereoselectivity in the alkylation has been suggested.<sup>22</sup> Enolate 20.1 was thought to be the major conformation in the reaction, rather than 20.2. The benzyl group is likely to be disposed on the top face of

the piperidine ring to alleviate A<sup>1,3</sup>-strain; hence the top face is shielded from the incoming electrophile.

Following the procedure published by Simpkins,<sup>22</sup> we alkylated diester 17.1 by using the chiral dilithium amide base 17.2 and allyl bromide (1.4 equiv) to give 21.1 in about 60% yield along with 5-10% of a diastereomer that could not be separated by flash chromatography. However, we soon found that if we increased the amount of electrophile to 3 equiv, the reaction was much cleaner, and the desired product could be isolated in 80% yield.



Scheme 21

In their communication, Simpkins assumed that the allylation of diester 17.1 would give 21.1 in 98% ee, based on the fact that a few other alkylations with chiral amide 17.2 all gave 98% ee (chiral HPLC measurement).<sup>22</sup> However, in our hands, while trying to obtain an X-ray crystal structure analysis of compound 26.2 (see later, Scheme 26), we found that our synthetic material did not have the desired high optical purity, and the crystal analyzed was, in fact, of racemic material.

This unexpected result forced us to reevaluate the entire route and a chiral HPLC analysis<sup>28</sup> showed that our compound **21.1** had an ee of about 69%.<sup>29</sup> To try to establish why the alkylation failed to afford the reported ee, we did a few tests on Simpkins' method, as shown in Table 1: First, we repeated the benzylation on the same scale as

Simpkins et al. (entry 1). Our product had  $[\alpha]_p$  +32°, which is close to the reported value  $(\lceil \alpha \rceil_{p} + 27^{\circ})^{22}$ Then, we did small scale alkylation, using allyl bromide а as electrophile, and the product **21.1** had  $[\alpha]_p$  +40° (Simpkins reported  $+38^{\circ}$ ).<sup>30</sup> However, when we did large scale reactions, even with a pre-cooled solution of starting diester (entry 3 and 4), the  $[\alpha]_{p}$  value dropped to +26°. these From results, we concluded that the diastereoselectivity of this reaction is lower in large scale reactions.

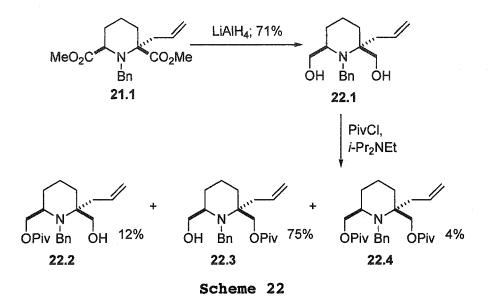
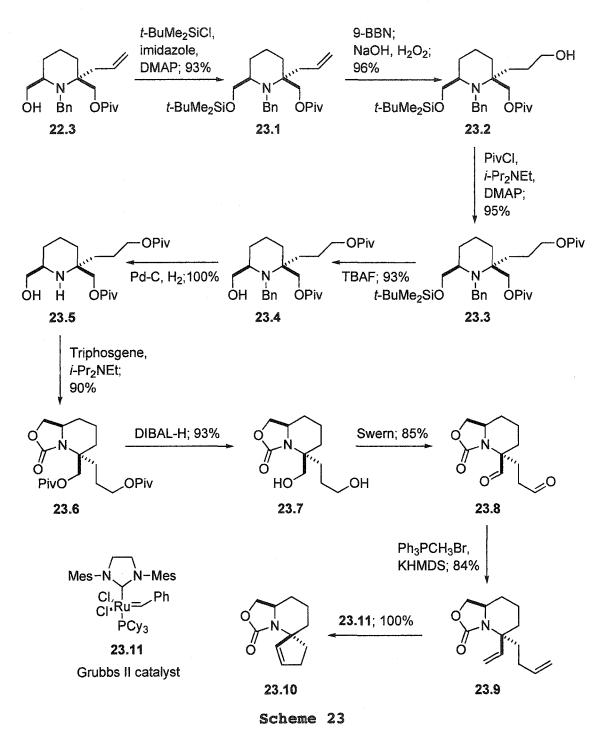
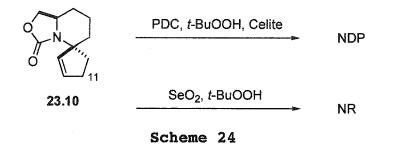

| Entry | Electrophile  | Scale of 17.1 (THF) | [α] <sub>D</sub> found | $[\alpha]_{D}$ reported |
|-------|---------------|---------------------|------------------------|-------------------------|
| 1     | BnBr          | 100 mg (4 mL)       | +32                    | +27                     |
| 2     | Allyl bromide | 110 mg (4 mL)       | +40                    | +38                     |
| 3     | Allyl bromide | 5.5 g (20 mL)       | +26                    |                         |
| 4     | Allyl bromide | 5.0 g (50 mL)       | +26                    |                         |

Table 1

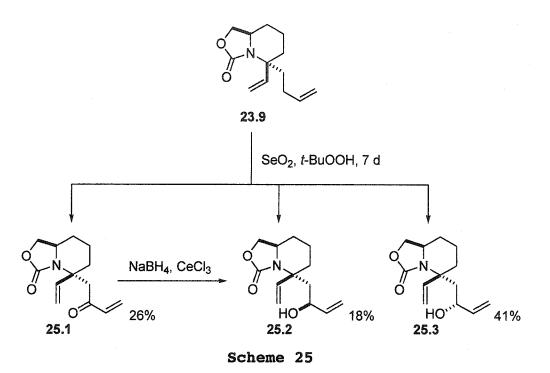

Reaction conditions: entry 1 and 2, addition time of **17.1** ca 5 min entry 3 and 4, addition time of **17.1** ca 90 min entry 4, **17.1** solution was precooled to -78 °C

Although we could only obtain 21.1 with 69% ee, we decided to accept this result for the time being. Diester 21.1 was exhaustively reduced with LiAlH<sub>4</sub> to give the pure diol 22.1 in 71% yield (Scheme 22). At this stage, the diastereomer resulting from the previous step was separated. The diol could be selectively acylated with t-BuCOCl at -10 °C to give 22.3 in 75% yield, along with 12% of the regioisomer (22.2) and 4% of doubly esterified product (22.4). We could not increase the yield of 22.3 either by changing the addition rate of t-BuCOCl or by

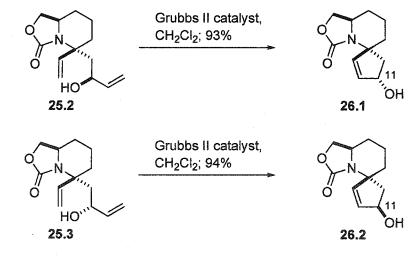

further lowering the reaction temperature. The structure of **22.3** was assigned by extensive NMR studies.<sup>31</sup>



With the goal of reaching a spirocyclic compound such as 16.6, we protected the free hydroxyl of 22.3 as it silyl ether (t-BuMe<sub>2</sub>SiCl, imidazole, DMAP, 93%) (22.3  $\rightarrow$  23.1, Scheme 23). $^{32}$ Hydroboration of the terminal double bond 9-BBN proceeded smoothly to intermediate with an alkylborane, which was oxidized in situ with NaOH and H<sub>2</sub>O<sub>2</sub> to afford alcohol 23.2 in 96% yield. The alcohol was acylated with t-BuCOCl in the presence of i-Pr<sub>2</sub>NEt and DMAP (95%) to give 23.3, and the silvl ether was then cleaved by TBAF (93%) to produce alcohol 23.4. Hydrogenolysis of the N-benzyl group, using Pd-C and H<sub>2</sub>, gave the desired amino alcohol 23.5 in quantitative yield. This compound was acylated with triphosgene to produce carbamate 23.6, in which both alcohol and nitrogen functionalities are protected.




The pivaloyl groups of 23.6 were removed reductively by treatment with excess DIBAL-H so as to release diol 23.7 (93%). Swern oxidation of the diol gave the expected dialdehyde 23.8 in 85% yield, after chromatographic purification. Wittig olefination of this dialdehyde, by treatment with an excess of Ph<sub>3</sub>PH=CH<sub>2</sub>, furnished diene 23.9 (84%). Finally, ring closing metathesis of 23.9, using the second generation Grubbs catalyst (23.11, Scheme 23), afforded spirocyclic compound 23.10 quantitatively.




With compound 23.10 in hand, we tried to oxidize the allylic position at C(11), so that we would be able to make a compound such as 16.5 for the planned Claisen rearrangement. We first followed the procedure published by Chandrasekaran *et al.*<sup>33</sup> - treatment of 23.10 with 1:1 PDC-*t*-BuOOH in the presence of Celite (Scheme 24). Unfortunately, this did not give any trace of the desired product, and no starting material could be recovered from the reaction mixture. In addition,  $SeO_2$ -*t*-BuOOH oxidation<sup>34</sup> produced no reaction at all even after a reaction time of 5 days.

Disappointed by the above result, we turned our attention to the diene before the ring closing metathesis. Treatment of diene 23.9 with catalytic SeO<sub>2</sub> in the presence of excess t-BuOOH,<sup>34</sup> using CH<sub>2</sub>Cl<sub>2</sub> as solvent at room temperature for 7 days, afforded a separable mixture of three compounds (Scheme 25). Changes of the solvent or an increase in temperature only led to a complex mixture.



Ketone 25.1, isolated from the mixture in 26% yield (Scheme 25) could be reduced to the diastereomeric alcohols 25.2 and 25.3 in high yield by treatment with NaBH<sub>4</sub> and CeCl<sub>3</sub> in MeOH.<sup>35</sup> The identities of these two alcohols were established first by extensive NMR studies, and then by single crystal X-ray analysis of 25.3 (Figure 1).



Scheme 26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

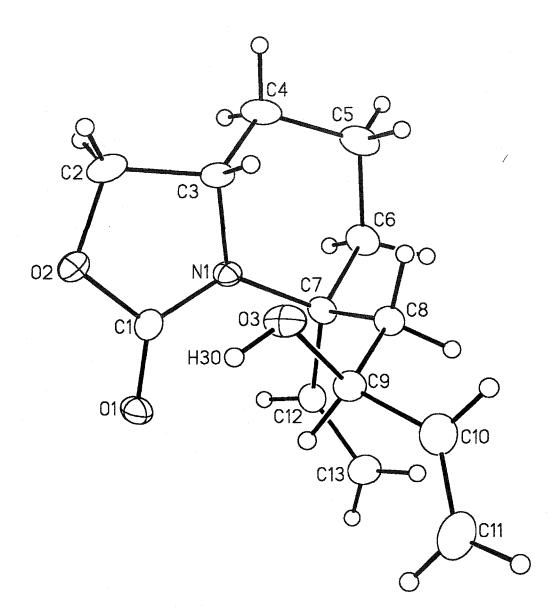
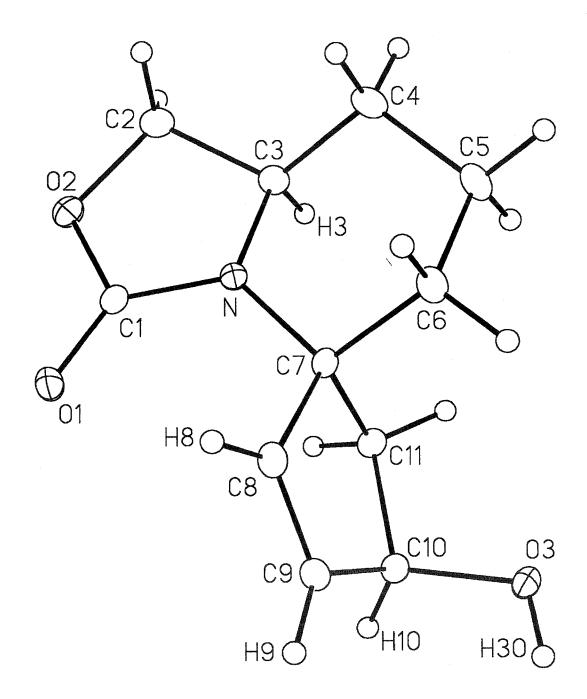
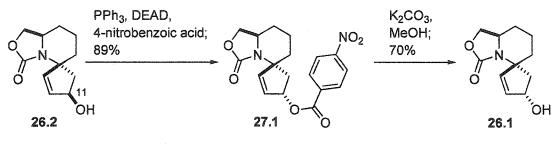
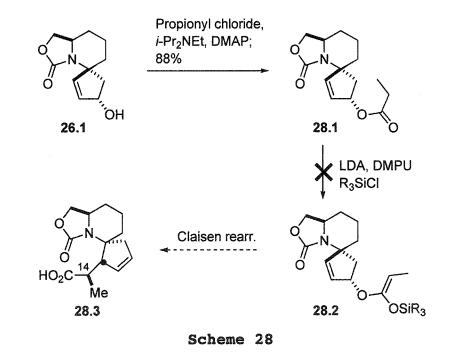



Figure 1 Crystal structure of 25.3

Both 25.2 and 25.3 underwent ring closing metathesis smoothly with the second generation Grubbs catalyst to give spiro compounds 26.1 and 26.2 in excellent yields (Scheme 26). Here again, the identities of the two C(11) isomeric alcohols were established by single crystal X-ray analysis

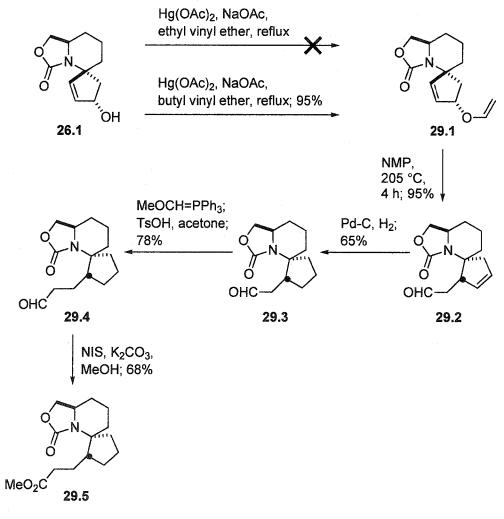
of 26.2 (Figure 2). It is worth mentioning here that our sample of 26.2 was found to be racemic, and so this is the point at which we found the problem discussed above of the optical purity of the Simpkins alkylation product. We decided to deal with this problem at a later stage.



Figure 2 Crystal structure of 26.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



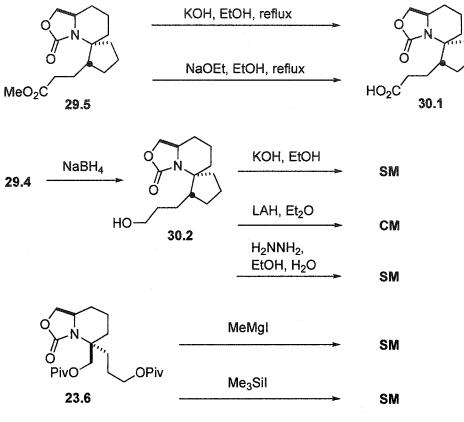

Scheme 27

To obtain the required stereochemistry at C(13) after rearrangement, we needed the 11*S* alcohol **26.1**. Accordingly, the 11*R* alcohol **26.2** was inverted by a modified Mitsunobu protocol<sup>36</sup> (Ph<sub>3</sub>P, DEAD, 4-nitrobenzoic acid, benzene, 89%) to afford ester **27.1** (Scheme 27). Hydrolysis of this ester with  $K_2CO_3$  in MeOH gave alcohol **26.1** in 70% yield.



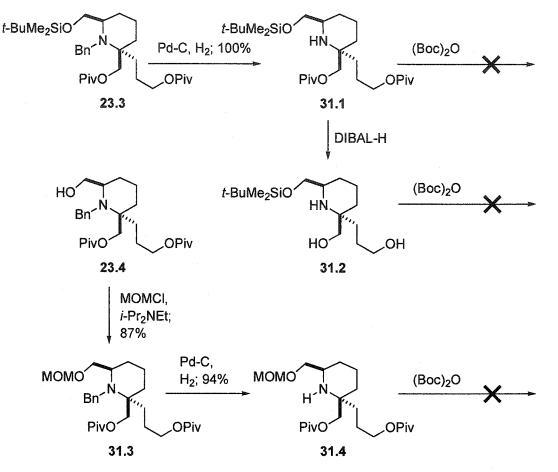
With 26.1 in hand, the stage had been set for the crucial rearrangement to build the C(13) carbon chain. Guided by the studies Ireland *et al.*<sup>37</sup> on this subject, we

first tried the Claisen rearrangement of the (Z)-silyl enol ether 28.2 (Scheme 28), in the hope that the rearrangement would occur via a chair-like transition state, and give product 28.3 with desired stereochemistry at both C(13) and Accordingly, propionate 28.1 was prepared (88% C(14). yield) by acylation of the allylic alcohol with EtCOCl. However, we could not make the planned silvl enol ether by treating the derived enolate with either Me<sub>3</sub>SiCl or t-BuMe<sub>2</sub>SiCl. We assumed that steric hindrance within the enolate is somehow responsible.



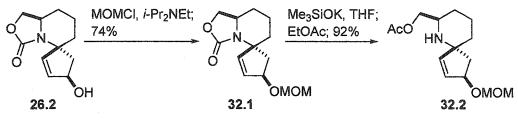

Scheme 29

Therefore, we decided to make the vinyl ether from alcohol **26.1**. Treatment of **26.1** with Hg(OAc)<sub>2</sub> and AcONa in ethyl vinyl ether at reflux<sup>38</sup> resulted no reaction at all (Scheme 29). However, when we did this reaction in butyl vinyl ether (bp ca. 20 °C higher), vinyl ether **29.1** could be obtained in 95% yield after a reflux period of 3 days.


When we heated 29.1 in *N*-methylpiperidinone at reflux, the rearrangement occurred smoothly and the desired aldehyde 29.2 could be isolated in 95% yield after 4 h. The double bond was saturated by hydrogenation (65%) and the resulting aldehyde (29.3) was then homologated (KHMDS,  $Ph_3PCH_2OCH_3$ ). Aldehyde 29.4 could be obtained in 78% yield after hydrolysis of the intermediate enol ethers. Oxidation of aldehyde 29.4 with *N*-iodosuccinimide (NIS) and  $K_2CO_3$  in MeOH<sup>39</sup> gave ester 29.5 directly in 75% yield.

Our plan was to open the carbamate ring in the expectation that the resulting free amine would form a 6membered lactam with the C(13) carbon chain. To our surprise, we met huge difficulties in attempts to open the 5-membered carbamate ring. As shown in Scheme 30, treatment of 29.5 with various bases in EtOH at reflux led Alcohol 30.2 was obtained from only to acid 30.1. reduction of aldehyde 29.4, but its carbamate ring also failed to open under various conditions: refluxing 30.2 with KOH or hydrazine in aqueous EtOH gave no reaction. LiAlH<sub>4</sub> reduction of 30.2 afforded a complex mixture. Treatment of an earlier intermediate, compound 23.6, with either MeMgI or Me<sub>3</sub>SiI also led to complete recovery of the starting material.



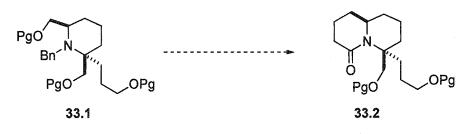

Scheme 30

We considered that if we used a different protecting group at an earlier stage we could avoid the difficulty of opening the carbamate. Accordingly, compound 23.3 was debenzylated by hydrogenolysis in quantitative yield to give amine 31.1 (Scheme 31). We failed to introduce a Boc group on the nitrogen, even in ClCH<sub>2</sub>CH<sub>2</sub>Cl at reflux, probably due to steric hindrance of the nitrogen. To minimize the steric effect, we reduced both pivaloyl esters with DIBAL-H to release diol 31.2, but even with this diol, we still could not put a Boc group on nitrogen. Later we thought that protection of alcohol 23.4 as its MOM ether  $(23.4 \rightarrow 31.3, 87\%)$ , instead of the large TBS group, might However, after hydrogenolysis lower the steric effect.  $(31.3 \rightarrow 31.4, 94\%)$ , amine 31.4 still resisted our attempts to block the nitrogen with a Boc group.



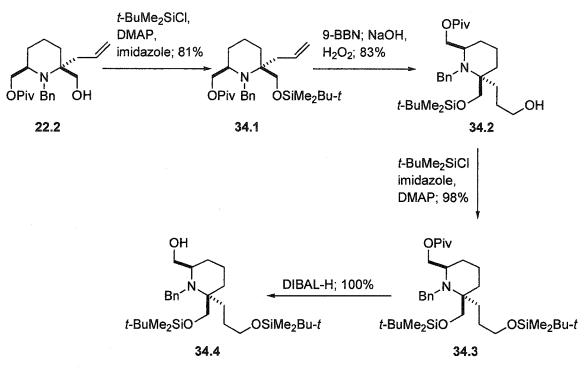
Scheme 31

Early this year (2004), an article published by Procopiou et al.<sup>40</sup> caught our attention. In this article, a convenient and efficient way to open 1,3-oxazolidin-2-ones using potassium trimethylsilanolate by in THF was described. To test if this method could be applied to our case, we made the MOM protected compound 32.1 from alcohol **26.2** (*i*-Pr<sub>2</sub>NEt, MOMCl, 74%) (Scheme 32). Treatment of 32.1 with 2 equiv of Me<sub>3</sub>SiOK in THF at reflux for 4 h, and then partitioning between EtOAc and water, gave the free amine 32.2 in excellent yield (92%).




Scheme 32

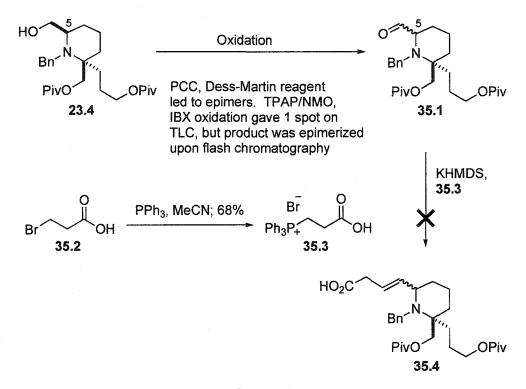
Although we had a positive result from this test, we did not apply this method to compound **29.5**, because by this time we had already turned our attention to a modification of our synthetic route, as discussed in the following sections.


2.3 Studies related to construction of the left-hand 6membered ring.

To avoid the difficulty of opening the 5-membered carbamate ring, we planned to aim for a bicyclic amide such as **33.2** (Scheme 33), in the hope that this approach would shorten our synthesis because the left-hand 6-membered amide ring of **33.2** was also part of the structure of halichlorine (in modified form).

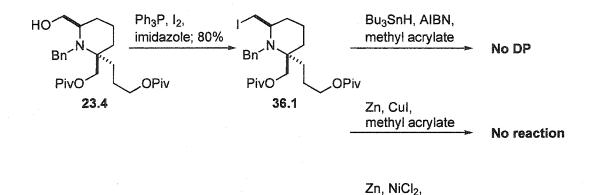


Scheme 33


To obtain more starting material, we first converted the minor regioisomer 22.2 from the acylation of diol 22.1 into its TBS-protected silyl ether (Scheme 34). The silylation went well, but was extremely slow (48 h) and gave 34.1 in 81% yield. We suspected that the sterically hindered nature of the hydroxyl group retards ether formation with the large TBS group. It turned out that this assessment of the steric factors was very important in our later studies (see later sections).



Scheme 34

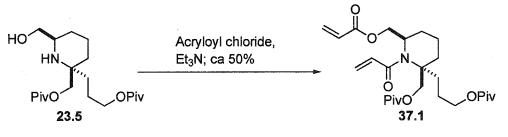

Hydroboration of 34.1 afforded the expected alcohol in 83% yield (Scheme 34). The free hydroxyl of 34.2 was then protected as its silyl ether to afford 34.3 (98%), and DIBAL-H reduction released a hydroxyl, and gave alcohol 34.4 quantitatively. This alcohol served as an alternative to alcohol 23.4 in some of our studies.

To build the C(5) carbon chain, we first started with alcohol 23.4. This alcohol was oxidized, under various conditions (Scheme 35): PCC and Dess-Martin periodinane oxidations gave the C(5) epimer of 35.1 directly (two spots were observed on TLC plates); IBX and TPAP/NMO oxidations did give a single product spot on TLC; however, upon flash chromatographic purification, again a pair of C(5) epimers was obtained. We also tried to use the crude aldehyde directly in the next step without purification so as to avoid epimerization. Unfortunately, reaction of aldehyde **35.1** with Wittig reagent **35.3** (made from the bromoacid **35.2** by known procedures<sup>41</sup>) failed to give any of the desired product.



## Scheme 35

Because the stereogenic center at C(5) in **35.1** is so sensitive, we converted the free hydroxyl of **23.4** to an iodide, as in **36.1** (Ph<sub>3</sub>P, imidazole, I<sub>2</sub>, 80%) (Scheme 36), and we planned to extend the C(5) carbon chain of **35.6** by radical coupling with methyl acrylate. However, the intermolecular coupling between the two components was unsuccessful either by the standard radical method (Bu<sub>3</sub>SnH,

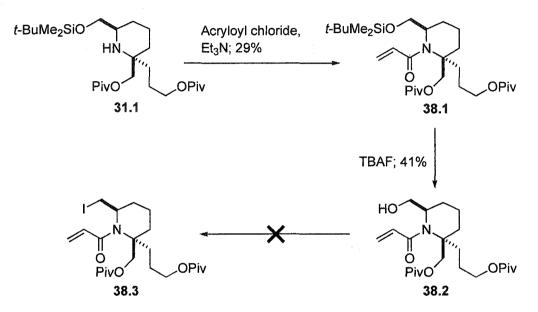



Scheme 36

methyl acrylate

No DP

We hoped that an intramolecular extension of the C(5) chain would be more successful. Accordingly, we treated alcohol 23.5 with 1 equiv of acryloyl chloride and excess  $Et_3N$ , hoping that the *N*-acylated product would predominate. However, we found that there was no selectivity between the hydroxyl and amine, and only the diacylated compound 37.1 (ca. 50%) could be obtained along with recovered starting material (Scheme 37).



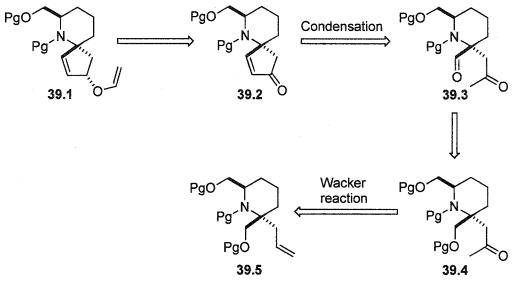

Scheme 37

The lack of selectivity in the acylation forced us start with silylated amine **31.1** (Scheme 38). The amine nitrogen was acylated with acryloyl chloride to give amide **38.1** in 29% yield. The silyl protecting group was then

AIBN) or by organometallic methods  $(Zn/CuI \text{ and } Zn/NiCl_2^{42})$ .

removed by TBAF to give 38.2 (41%). Unfortunately, we could not make iodide 38.3 from alcohol 38.2. If we had been able to generate 38.3, we would have tried an intramolecular radical or organometallic process to join the iodine-bearing carbon to the terminus of the double bond.



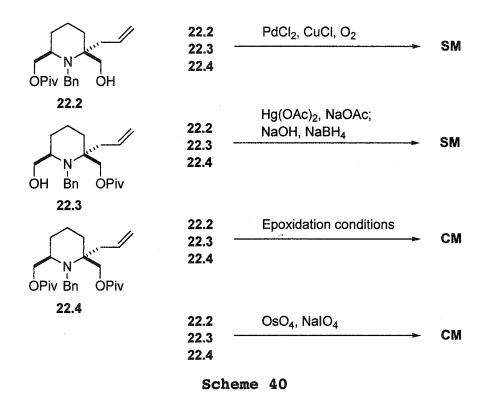

Scheme 38

The main lesson that we learnt from the above studies is that formation of the left-hand 6-membered ring of halichlorine was more challenging than expected at this stage, and so we decided to go back and build the azaspirocyclic core of halichlorine and pinnaic acid, but using a shorter and more efficient approach.

2.4 Studies to optimize the route towards the azaspirocylic core of halichlorine and pinnaic acid.

To shorten our previous approach towards the azaspiro core of halichlorine and pinnaic acid, we developed the retrosynthetic analysis shown in Scheme 39. The

rearrangement precursor of type 39.1 would be made by stereoselective reduction of ketone 39.2. This  $\alpha$ , $\beta$ unsaturated cyclopentene would, in turn, be obtained from condensation of the aldehyde and ketone functionalities in 39.3. We expected that ketone aldehyde 39.3 could be prepared from a compound of type 39.4 and, obviously, a Wacker reaction on compound 39.5 would lead to such a ketone.

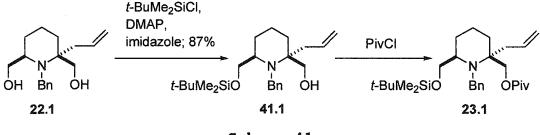



Scheme 39

If this plan were to work, the route would be much shorter than our previous approaches because a number of protection and de-protection steps are avoided. Examination of compounds we had already made in this project, suggested that alcohols 22.2 and 22.3, and diester 22.4 (these three compounds are products obtained from the acylation of diol 22.1, Scheme 22) are suitable starting materials to explore the new plan.

The results of these trials were very disappointing. Wacker oxidation of the terminal double bond of each of the three compounds, under standard conditions (PdCl<sub>2</sub>, CuCl and

 $O_2$  in DMF)<sup>43</sup> gave only recovered starting materials in (Scheme 40). Raising the reaction temperature to 55 °C and using a prolonged reaction time did not help. We assumed that the nitrogen is sufficiently basic to coordinate with the catalyst and thus reduce its reactivity. With this in mind, we repeated the above reactions with an excess of catalyst PdCl<sub>2</sub> (2 equiv), but we still did not obtain any trace of the desired products.

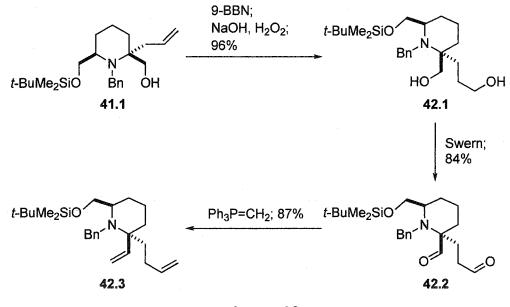



Furthermore, to our surprise, the three compounds also failed to undergo oxymercuration.<sup>44</sup> Treatment of the compounds with Hg(OAc)<sub>2</sub>, even in THF at reflux for a couple of days, followed by base and NaBH<sub>4</sub> workup, led to almost quantitative recovery of the starting materials.

Epoxidation on the compounds, using mCPBA or VO(acac)<sub>2</sub>-TBHP<sup>45</sup> furnished complex mixtures. Attempts to oxidatively cleave the terminal double bond under Lemieux-Johnson

conditions<sup>46</sup> (OsO<sub>4</sub>, NaIO<sub>4</sub>) also failed. One possible reason for these results is that the nitrogen was also oxidized under our conditions to give the *N*-oxide. We did not try reductive workup, such as adding  $Ph_3P$  to the reaction mixture.

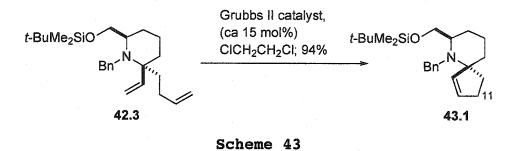
All the difficulties we encountered in the above studies forced us to abandon the synthetic plan in Scheme 39 and we now sought alternative ways to shorten our route. At this point, the observations we had made in the silylation of alcohol 22.2 (Scheme 34) were reconsidered: the silylation of the free hydroxyl in compound 22.2 required 48 hours to complete, but the silylation of alcohol 22.3 only took less than half an hour. Although we were not sure of the mechanistic reason, a steric effect certainly played a role here; and, more important, we thought that we might be able to use the rate difference of silylation of the two hydroxyls to selectively silylate the left-hand hydroxyl of diol 22.1.






Indeed, slow addition (ca. 30 min) of a  $CH_2Cl_2$  solution of TBSCl (1.05 equiv) to a stirred and cooled (0 °C) mixture of diol **22.1**, imidazole and catalytic DMAP, gave monosilylated compound **41.1** in 53% yield (Scheme 41). The identity of alcohol **41.1** was established by acylation with  $Me_3CCOCl$  – the <sup>1</sup>H and <sup>13</sup>C NMR spectra of the acylated

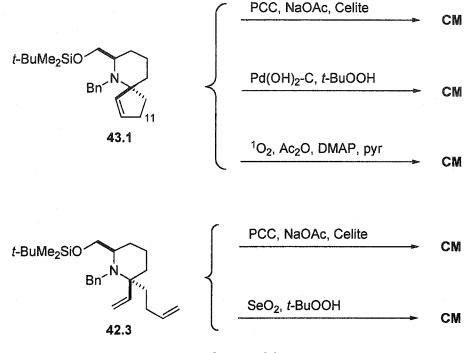
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


product are identical to the spectra of compound 23.1. Although the yield was not good at the beginning, we soon found that the yield could be improved dramatically (to ca. 75-80%) by quick addition of TBSC1 at room temperature. The final optimized conditions for this selective silylation are: quick addition of 0.85 equiv of TBSC1 to a  $CH_2Cl_2$  solution of diol 22.1, imidazole (1.8 equiv) and catalytic DMAP at room temperature. After 10 min, another portion of TBSC1 (0.35 equiv) is added to the mixture. The reaction is complete in 30-60 min and the desired product can be isolated in 85-90% yield.



Scheme 42

With alcohol 41.1 in hand, we started our new approach to make the spiro ring. As shown in Scheme 42, hydroboration of the terminal double bond of 41.1 with more than 2 equiv of 9-BBN was successful, even without protecting the free hydroxyl. The intermediate alkylborane was then oxidized *in situ* with NaOH and  $H_2O_2$  to afford diol 42.1 in 96% yield. Swern oxidation of both hydroxyls went


smoothly to give dialdehyde **42.2** in high yield (83%). Double Wittig olefination of this dialdehyde, with KHMDS and excess Ph<sub>3</sub>PCH<sub>3</sub>Br, afforded diene **42.3** (87%).

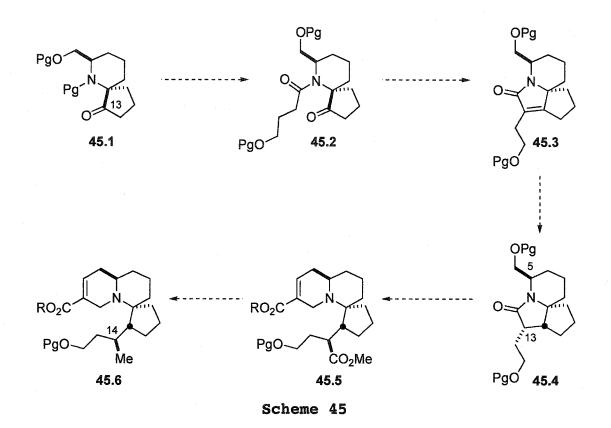


Now the stage was set for the ring closing metathesis to generate the spiro ring. From the information we collected from our previous studies, 47 we realized that the benzylated amine nitrogen itself was quite basic. It might coordinate with the catalyst and reduce its reactivity. Therefore, we used the more powerful second generation Grubbs catalyst for the ring closure and found that with 5 mol% catalyst loading, the ring closing metathesis of diene 42.3 was extremely slow at room temperature and did not go to a completion. However, increasing the catalyst loading to ca. 15 mol%, and heating the reaction mixture at 50 °C, using  $ClCH_2CH_2Cl$  as solvent, gave a clean reaction and the desired spirocyclic product 43.1 could be isolated in 93% yield (Scheme 43).

In this synthesis, we used only 10 steps to build up the spirobicyclic core of halichlorine and pinnaic acid from cheap and readily available 2,6-pyridinedicarboxylic acid (19.1). The next task was to do the allylic oxidation on the double bond of compound 43.1 and install the required functionalities at C(11) for the subsequent rearrangement. Unfortunately, again we were disappointed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

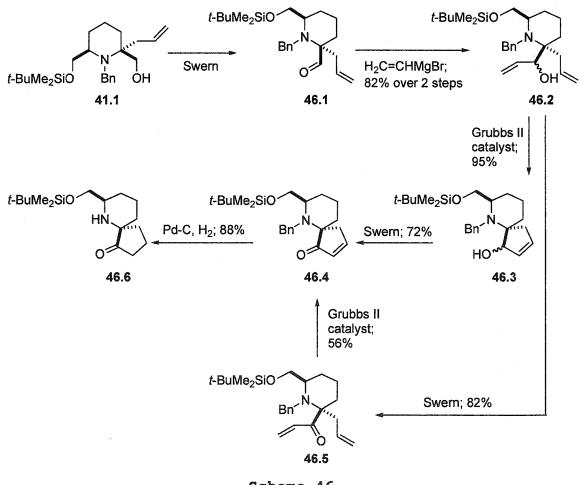



Scheme 44

A number of allylic oxidation conditions were tried on compound 43.1 (Scheme 44): PCC oxidation, in the presence of AcONa and Celite, led to a complex mixture instead of the desired allylic oxidation product. Palladium(II)mediated oxidations  $[(Pd(OH)_2, t-BuOOH, K_2CO_3)]^{48}$  did not produce any of the desired product. The photooxygenation method reported by Mihelich et al.49 also gave no trace of the desired product. We also did a few experiments on the compound before ring closing metathesis. PCC oxidation of diene 42.3 again led to a complex mixture. Selenium dioxide and  $t-BuOOH^{34}$  oxidation, which worked on compound 23.9 in our very first synthesis, also produced a complex mixture, at either room temperature or in dioxane at reflux.

Although the above approach did not lead to an overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

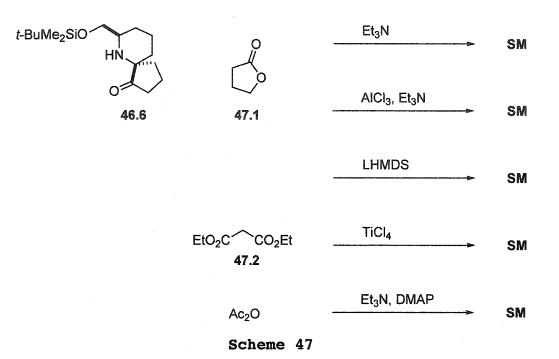

with our first route, these studies showed us a new way to efficiently build the azaspiro core, and we were able to quickly make a spirobicyclic compound that corresponds to an advanced intermediate in Kibayashi's formal synthesis of halichlorine (1) and pinnaic acid (2).<sup>19,20</sup>



2.5 Overlap with Kibayashi's formal synthesis of halichlorine and pinnaic acid.

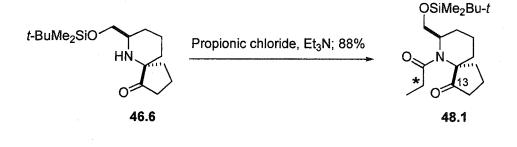
Because we could not do the allylic oxidation on either compound 43.1 or diene 42.3, we decided to abandon the original rearrangement route and develop a new plan to install the C(13) carbon chain. As shown in Scheme 45, this time we planned to make the spirocyclic compound 45.1 bearing a functional group at C(13). Removal of the nitrogen protecting group, followed by acylation with a suitable four-carbon unit would give amide 45.2.

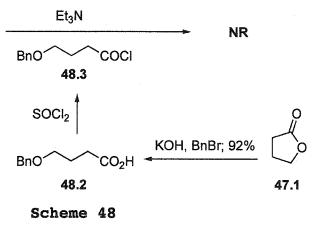
Intramolecular condensation of the amide side chain with the spiro ketone should afford tricyclic compound 45.3. Hydrogenation of the double bond would be expected to deliver hydrogen on the convex face of the molecule, and thus generate the correct stereochemistry at C(13), as shown in 45.4. Extension of the C(5) carbon chain, opening of the 5-membered amide ring and building up the left-hand 6-membered ring would bring us to a compound of type 45.5. Finally, reduction of the C(14) ester group to a methyl group would set the required stereochemistry at C(14). Α compound type 45.6 represents the core structure of halichlorine (1) with the correct stereochemistry at all four stereogenic centers.




Scheme 46

To explore this new plan, we started with alcohol 41.1. Either Swern or TPAP/NMO oxidation only gave about 60% of the desired aldehyde 46.1 after flash chromatographic purification (Scheme 46). On the assumption that 46.1 was unstable under the workup conditions, we decided to carry the crude aldehyde directly to next step without purification. Accordingly, the reaction mixture from the Swern oxidation was filtered through a short silica gel pad, concentrated and then treated with an excess of vinylmagnesium bromide to give alcohols 46.2 in 82% yield over two steps. Treatment of 46.2 with Grubbs II catalyst (ca. 5 mol% catalyst loading) in CH<sub>2</sub>Cl<sub>2</sub> at reflux afforded spirobicyclic alcohol 46.3 in excellent yield (95%). Swern oxidation of this alcohol then produced ketone 46.4 (72%).

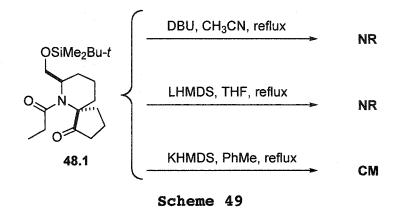

Alternatively, ketone 46.4 could also be obtained by first oxidation of alcohol 46.2 (46.2  $\rightarrow$  46.5, Swern oxidation, 82%), followed by ring closing metathesis. However, ring closing metathesis of ketone 46.4 was extremely slow, even with more than 20 mol% catalyst loading and a higher reaction temperature, while the same reaction for alcohol 46.2 proceeded smoothly. A possible reason is that in compound 46.2, the amine nitrogen could form an intramolecular hydrogen bond with the free hydroxyl, and thus reduce its ability to coordinate with the catalyst; hence the reaction could be carried out with a lower catalyst loading.


Hydrogenation of ketone 46.4 under standard conditions [(Pd-C, H<sub>2</sub> (35 psi))], served to saturate the double bond and also debenzylated the nitrogen, to gave amine 46.6 in high yield. This ketone amine is the key intermediate in our further studies.



From amine 46.6, we made a few attempts to attach a carbon chain to the nitrogen. However, treatment of 46.6 with  $\gamma$ -butyrolactone 47.1, using Et<sub>3</sub>N as base, led to complete recovery of the starting material (Scheme 47). Adding both substrates (1:1) to a mixture of AlCl<sub>3</sub> and Et<sub>3</sub>N - this was claimed as an efficient method to activate the  $lactone^{50}$  – also gave no reaction. Deprotonation of lactone 47.1 with LHMDS, followed by adding a limited amount of 46.6 (less than 0.5 equiv) again led to no reaction. In the last sequence, we hoped that the enolate would attack the ketone functionality on 46.6, and the amine would then intramolecularly open the lactone ring to give us a tricyclic compound like 45.3 in one pot. Based on the same idea, we also tried the reaction between 46.6 and diethyl malonate (47.2), mediated by TiCl<sub>4</sub>.<sup>51</sup> Unfortunately, again no reaction was observed. The lack of reactivity of this hindered secondary amine was also demonstrated by the following experiment: attempted acylation of the amine with Ac<sub>2</sub>O also failed to give any product!

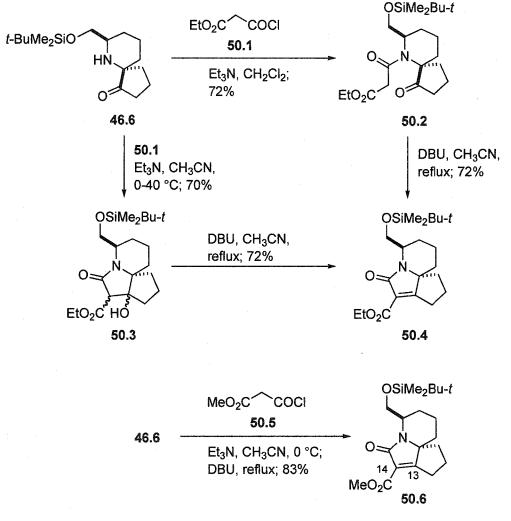
Later we found that treatment of amine 46.6 with more reactive species, such as EtCOCl in the presence of Et<sub>3</sub>N as base, successfully gave the *N*-acylated product 48.1 in 88% yield (Scheme 48). Based on this observation, we made the corresponding four-carbon acid chloride 48.3 (made from  $\gamma$ butyrolactone 47.1 by known procedures<sup>52</sup>) and tried the same acylation. However, treatment of amine 46.6 with freshlyprepared acid chloride 48.3 resulted no reaction. We attributed this result to steric effects.






We considered preparing an acid chloride corresponding to 48.3, but with a different protecting group on the terminal oxygen, but we first wanted to find out if the  $\alpha$ carbon of the amide carbonyl (cf. 48.1, starred atom) could close intramolecularly onto the C(13) ketone. Accordingly,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

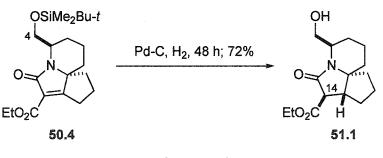

amide **48.1** was treated with excess DBU in acetonitrile at reflux for 2 days, but no reaction occurred (Scheme 49). Repetition of this reaction with a stronger base, such as LHMDS in THF at reflux still produced no reaction and, when we treated **48.1** with KHMDS in PhMe at reflux for one week, only a complex mixture was obtained.



The failure of the intramolecular condensation with amide 48.1 prompted us to increase the acidity of the proton near the amide carbonyl - the future C(14) in the structure of halichlorine. To this end, treatment of amine 46.6 with freshly distilled ethyl 3-chloro-3-oxomalonate (50.1) and  $Et_3N$  in  $CH_2Cl_2$  at 0 °C gave the desired amide 50.2 in 72% yield (Scheme 50). In addition, if we used Acetonitrile as solvent in the reaction, and heated the mixture at 40 °C for 4 h after the addition of the acid chloride, we could isolate the tricyclic alcohol 50.3 in ca. 70% yield along with the elimination product 50.4 (ca. The relative stereochemistry of 50.3 was not 298). Both amide 50.2 and alcohol 50.3 could be established. converted to compound 50.4 by treatment with DBU in Acetonitrile at reflux (72%).

Based on these observations, a one-pot protocol to

convert amine 46.6 to tricyclic ester 50.6 was developed: amine 46.6 was first treated with methyl 3-chloro-3oxomalonate (from Aldrich) and  $Et_3N$  at 0 °C for 2 h, followed by addition of excess DBU and then the mixture was heated at reflux for 10 h to give 50.6 directly in excellent yield (83%).



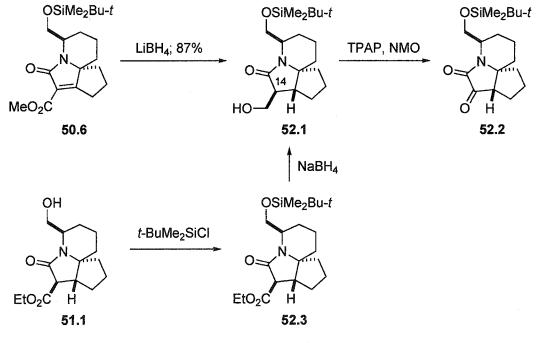



Now we moved on to the task of saturating the double bond between C(13) and C(14). From the shape of either 50.4 or 50.6, we assumed that hydrogen would be delivered from the convex face of the structure and generate the

desired stereochemistry at both C(13) and C(14).

To our surprise, the C(4) silyl ether was extremely sensitive catalytic hydrogenation conditions. to Hydrogenation of 50.6, using 10% Pd-C catalyst and  $H_2$  (40 psi) for 1 h led to a complete deprotection of the C(4) silyl ether. Repeating this reaction with lower  $H_2$ pressures (as low as 15 psi), gave the same result. In addition, with short reaction times (2-12 h), we could see two product spots on TLC plates. However, when the reaction time was 48 hours, only one spot was seen on the TLC plate and we could isolate compound 51.1 in 72% yield The identity of 51.1 was established by (Scheme 51). extensive NMR studies, and is also based on the assumption that the C(14) stereogenic center in 51.1 is extremely sensitive, so that it underwent epimerization completely on prolonged reaction to give the most thermodynamically favored product shown in Scheme 51. Such an epimerization process also explains why we have two spots on the TLC plates after a short reaction time. All these assumptions were proven by our later work to overlap with Kibayashi's formal synthesis.



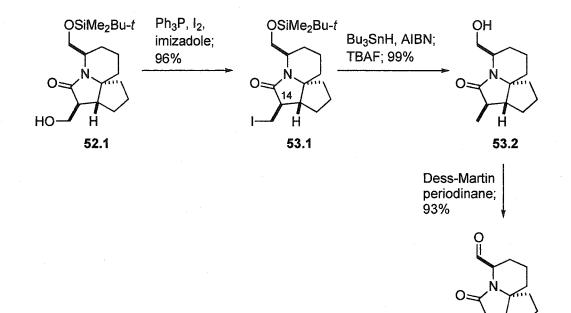

Scheme 51

To reduce the sensitivity at C(14), we decided to reduce the ester group before the hydrogenation. Treatment of ester **50.6** with LiBH<sub>4</sub> in MeOH-THF gave cleanly one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

product in 87% yield (Scheme 52). This product proved to be alcohol 52.1 because conversion of alcohol 51.1 to its TBS ether (51.1  $\rightarrow$  52.3) and reduction of the C(14) ester group with DIBAL-H gave the same compound.

At this point, we still wanted to oxidize the C(14) arm of alcohol 52.1, homologate with a proper carbon chain and epimerize the C(14) stereogenic center to the  $\alpha$  face, and follow our plan in Scheme 45. However, TPAP/NMO oxidation of alcohol 52.1 only led to the cleaved compound 52.2.



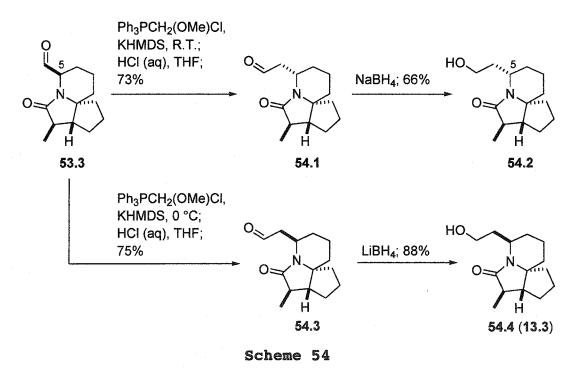

Scheme 52

We realized that from alcohol 52.1, we could merge with Kibayashi's formal synthesis of halichlorine and pinnaic acid in a few steps. Doing this should be a valuable synthetic route because it only took 13 steps to reach alcohol 52.1 and the yields are good. With this in mind, we converted alcohol 52.1 to the corresponding iodide 53.1 in excellent yield (96%) (Scheme 53). Treatment of

237

this iodide with excess  $Bu_3SnH$  and catalytic AIBN in PhH at reflux for 4 h, served as a radical reduction to release the C(14) methyl group. The crude product was then treated with excess TBAF for 10 h, diluted with  $Et_2O$  and filtered through a Celite pad to deprotect the silyl ether as well as to remove the alkyltin residues<sup>53</sup> from the product. After purification, alcohol **53.2** could be obtained in 99% yield. Dess-Martin oxidation of this alcohol afforded aldehyde **53.3** (93%).




Scheme 53

Very interesting results were obtained during the homologation of aldehyde **53.3**. First, we treated **53.3** with excess Ph<sub>3</sub>PCH<sub>2</sub>(OMe)Cl and KHMDS (Scheme 54) at room temperature. The resulting vinyl ether was hydrolyzed with 1M hydrochloric acid-THF to give aldehyde **54.1** in 73% yield. Reduction of the aldehyde with NaBH<sub>4</sub> afforded alcohol **54.2** (66%). However, the <sup>1</sup>H and <sup>13</sup>C NMR spectra of

238

53.3

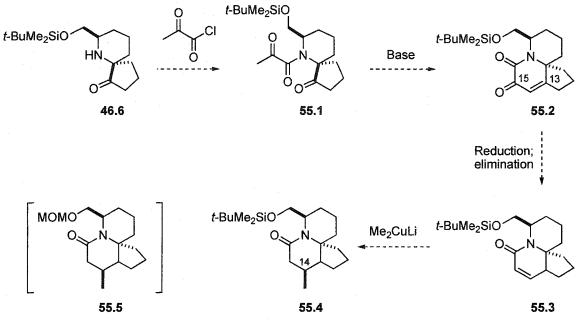
our synthetic material (54.2) did not match the reported values for Kibayashi's compound 13.3.20 The obvious difference in the <sup>1</sup>H NMR spectrum is the chemical shift of the C(5) hydrogen, and so we assumed that 53.3 underwent epimerization at C(5). This result made us reconsider the conditions of the homologation of aldehyde 53.3. Indeed, on repeating the homologation with exactly same conditions except that we added the aldehyde 53.3 to a cooled (0 °C) solution of the ylide, gave a different aldehyde (54.3) in 75% yield as the only product. Reduction of this aldehyde with LiBH<sub>4</sub> gave alcohol 54.4 in 88% yield. Alcohol 54.4 completely matched Kibayashi's report (compound 13.3, Scheme 13). These studies showed that C(5) stereogenic center is very sensitive to base.



At this point, our synthesis overlaps with Kibayashi's formal synthesis of halichlorine and pinnaic acid. Further studies are not necessary on this approach. We used only

239

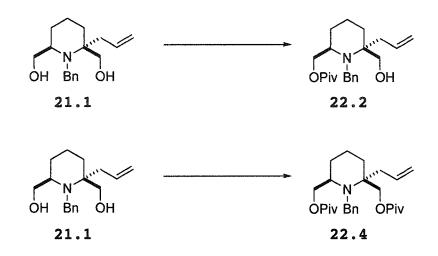
18 steps to obtain alcohol 54.4; this is somewhat shorter (4 steps) than his reported route, and the overall yield is higher (0.6%).


## 2.6 Conclusion.

My approaches to the synthesis of halichlorine and pinnaic acid utilized Simpkins's methodology to generate the C(9) quaternary center at the beginning of the synthesis. However, we found that this methodology is probably only suitable for small scale reactions, in which a high ee% can be obtained. Applying this methodology on a large scale only led to products with an ee of 69%. More work needs to be done to solve this problem.

In our synthetic studies, we used ring closing metathesis to build the spiro five-membered ring. The second generation Grubbs catalyst served as a powerful olefin metathesis catalyst, even in the presence of a basic nitrogen (compound 42.3).

A Claisen rearrangement was used to install the C(13) side chain with the correct stereochemistry  $(29.1 \rightarrow 29.2);$ and in later studies, we used nitrogen as an internal bridge to introduce the C(13) carbon chain (46.6  $\rightarrow$  50.6). In the latter case, the route was taken to a point where it overlaps with Kibayashi's formal synthesis of halichlorine and pinnaic acid. However, further studies are in progress to elaborate one of our advanced intermediates in an independent way, so that the whole synthetic scheme is different from other routes being studied elsewhere. In particular, as shown in Scheme 55: from amine 46.6, we plan to make amide 55.1. This amide arm will be used to react with the C(13) carbonyl to produce tricyclic compound Enone reduction, followed by elimination of the 55.2.


resulting C(15) hydroxyl, will give unsaturated amide 55.3. Introduction of the required C(14) methyl group will be done in the correct stereochemical sense by using Me<sub>2</sub>CuLi, to give amide 55.4. At this point, overlap with the other route reported in this laboratory (compound 55.5),<sup>29</sup> should be straightforward, and the present route represents a shorter synthesis of 55.5.



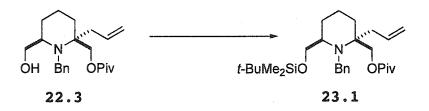
Scheme 55

241

[(2R,6R)-6-Allyl-1-benzyl-6-(hydroxymethyl)piperidin-2-yl]methyl Pivaloate (22.2) and [(2R,6R)-2-Allyl-1-benzyl-6-[(pivaloyloxy)methyl]piperidin-2-yl]methyl Pivaloate (22.4).



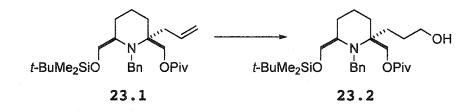
Me<sub>3</sub>CCOCl (1.6 mL, 12.9 mmol) was added dropwise over ca. 45 min to a stirred and cooled (-20 °C) solution of diol **21.1** (3.33 g, 12.1 mmol), DMAP (30 mg) and *i*-Pr<sub>2</sub>NEt (4.3 mL, 24.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL). After addition, the ice-bath was removed and stirring was continued for 5 h. The mixture was quenched by addition of saturated aqueous NH<sub>4</sub>Cl (100 mL), diluted with CH<sub>2</sub>Cl<sub>2</sub> (100 mL), washed with water and brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (4 x 25 cm), using 1:4 EtOAc-hexane, gave **22.3**<sup>31</sup> (3.25 g, 75%), **22.2** (0.50 g, 12%) and **22.4** (0.19 g, 4%), all as colorless oils.


Alcohol **22.2** had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3525, 3063, 2936, 1727, 1636; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.14 (s, 9 H), 1.34– 1.66 (m, 4 H), 1.71–1.86 (m, 2 H), 2.21–2.32 (m, 2 H), 2.59

242

(dd, J = 7.7, 13.8 Hz, 1 H), 2.97 (octet, J = 3.4 Hz, 1 H), 3.30 (d, J = 11.5 Hz, 1 H), 3.50-3.76 (m, 3 H), 4.14 (dd, J = 3.8, 11.2 Hz, 1 H), 4.20 (d, J = 17.2 Hz, 1 H), 5.04-5.16 (m, 2 H), 5.68-5.84 (m, 1 H), 7.19 (t, J = 7.2 Hz, 1 H), 7.30 (t, J = 7.6 Hz, 2 H), 7.38 (d, J = 7.3 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  18.5 (t), 27.1 (q), 29.6 (t), 29.9 (t), 32.7 (t), 38.6 (s), 51.4 (t), 57.5 (d), 61.3 (s), 67.0 (t), 67.3 (t), 117.8 (t), 126.4 (d), 126.6 (d), 128.6 (d), 134.1 (d), 142.1 (s), 178.1 (s); exact mass m/z calcd for  $C_{22H_33NO_3}$  359.2460, found 359.2463.

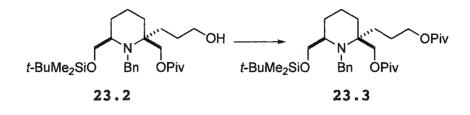
Compound 22.4 had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2973, 1730 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.09 (s, 9 H), 1.14 (s, 9 H), 1.38-1.74 (m, 6 H), 2.37-2.55 (m, 2 H), 2.92 (septet, J =3.6 Hz, 1 H), 3.68 (dd, J = 7.6, 11.1 Hz, 1 H), 3.98 (s, 2 H), 4.00 (AB q, J = 17.0 Hz,  $\Delta v_{AB} =$  145.5 Hz, 2 H), 4.14 (dd, J = 3.5, 11.1 Hz, 1 H), 5.02-5.10 (m, 2 H), 5.64-5.84 (m, 1 H), 7.14 (t, J = 7.3 Hz, 1 H), 7.23 (t, J = 7.4 Hz, 2 H), 7.35 (d, J = 7.4 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$ 17.9 (t), 27.09 (q), 27.11 (q), 28.8 (t), 31.0 (t), 34.7 (t), 38.6 (s), 38.8 (s), 51.6 (t), 56.4 (d), 58.9 (s), 65.5 (t), 69.7 (t), 117.9 (t), 126.2 (d), 126.7 (d), 128.1 (d), 134.1 (d), 142.1 (s), 178.1 (s); exact mass m/z calcd for C<sub>27</sub>H<sub>41</sub>NO4 443.3036, found 443.3031.


[(2R,6R)-2-Allyl-1-benzyl-6-[(tert-butyldimethylsilyloxy)methyl]piperidin-2-yl]methyl Pivaloate (23.1).



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

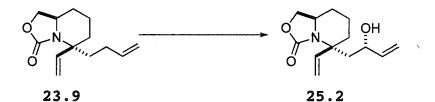
 $t-BuMe_2SiCl$  (2.10 g, 13.51 mmol) was added in one portion to a stirred and cooled (0 °C) solution of alcohol 22.3 (3.71 g, 10.35 mmol), imidazole (1.30 g, 19.10 mmol) and DMAP (30 mg) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL). Stirring was continued at 0 °C for 30 min. The ice bath was removed and stirring was continued at room temperature for 3 h and then the reaction mixture was quenched by addition of saturated aqueous NH<sub>4</sub>Cl (30 mL) and extracted with  $Et_2O$  (3 x 50 mL). The combined organic extracts were washed with water and brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (3.5 x 25 cm), using 1:19 EtOAc-hexane, gave 23.1 (4.58 g, 93%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3063, 2955, 1731, 1638 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.12 (s, 3 H), -0.10 (s, 3 H), 0.78 (s, 9 H), 1.17 (s, 9 H), 1.37-1.66 (m, 5 H), 1.76-1.83 (m, 1 H), 2.43 (dd, J = 7.2, 14.2 Hz, 1 H), 2.53 (dd, J = 7.6, 14.2 Hz, 1 H), 2.81 (septet, J = 4.0 Hz, 1 H), 3.19 (dd, J= 8.1, 9.8 Hz, 1 H), 3.58 (dd, J = 3.7, 9.8 Hz, 1 H), 3.97(s, 2 H), 3.98 (AB q,  $J = 16.9 Hz, \Delta v_{AB} = 158.4 Hz, 2 H),$ 5.04-5.10 (m, 2 H), 5.77-5.86 (m, 1 H), 7.15 (t, J = 7.3Hz, 1 H), 7.25 (t, J = 7.8 Hz, 2 H), 7.35 (d, J = 7.2 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.5 (s), 18.0 (t), 18.2 (s), 25.9 (q), 27.2 (q), 28.5 (t), 31.2 (t), 35.1 (t), 38.8 (s), 51.7 (t), 58.8 (s), 59.1 (d), 65.0 (t), 69.9 (t), 117.6 (t), 126.0 (d), 126.8 (d), 128.0 (d), 134.5 (d), 142.7 (s), 178.2 (s); exact mass m/z calcd for C<sub>28</sub>H<sub>47</sub>NO<sub>3</sub>Si 473.3325, found 473.3329.


[(2R,6R)-1-Benzyl-6-[(tert-butyldimethylsilyloxy)methyl]-2-(3-hydroxypropyl)piperidin-2-yl]methyl Pivaloate
(23.2).

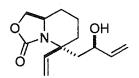


9-BBN (0.5 M, 46.0 mL, 23.0 mmol) was added dropwise to a stirred and cooled (0 °C) solution of 23.1 (7.31 g, 15.45 mmol) in THF (60 mL). After addition, the ice-bath was removed and stirring was continued for 10 h. The mixture was cooled to 0 °C, and slowly quenched by addition of MeOH (20 mL), and then aqueous NaOH (2N, 50 mL) and  $H_2O_2$ (30%, 12 mL) were added. The ice-bath was left in place but not recharged and stirring was continued for 2 h. The mixture was extracted with  $CH_2Cl_2$  (3 x 60 mL) and the combined organic extracts were washed with brine, dried  $(MqSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (5 x 30 cm), using 1:9 to 1:4 EtOAc-hexane, gave alcohol 23.2 (7.29 g, 96%) as а colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3397, 3062, 2955, 1730 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.12 (s, 3 H), -0.09 (s, 3 H), 0.79 (s, 9 H), 1.16 (s, 9 H), 1.44 (s, 2 H), 1.52-1.83 (m, 9 H), 2.87 (septet, J = 4.1 Hz, 1 H), 3.25 (t, J = 9.4Hz, 1 H), 3.57-3.65 (m, 3 H), 3.95 (AB q, J = 16.9 Hz,  $\Delta v_{AB}$ = 126.7 Hz, 2 H), 3.97 (AB q, J = 11.5 Hz,  $\Delta v_{AB} = 38.3$  Hz, 2 H), 7.15 (t, J = 7.2 Hz, 1 H), 7.26 (t, J = 7.6 Hz, 2 H), 7.35 (d, J = 7.4 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.5 (q), 18.1 (t), 18.2 (s), 25.9 (q), 27.0 (t), 27.2 (q), 27.6 (t), 30.5 (t), 38.8 (s), 50.9 (t), 58.5 (d), 58.6 (t), 63.5

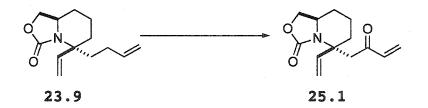
(t), 64.7 (t), 69.9 (t), 126.1 (d), 126.8 (d), 128.0 (d), 142.6 (s), 178.2 (s); exact mass (electrospray) m/z calcd for C<sub>28H50</sub>NO<sub>4</sub>Si (M + H), 492.3504, found 492.3506.


3-[(2R,6R)-1-Benzyl-6-[(tert-butyldimethylsilyloxy)methyl]-2-[(pivaloyloxy)methyl]piperidin-2-yl]propyl Pivaloate (23.3).




i-Pr<sub>2</sub>NEt (6.0 mL, 34.4 mmol), followed by Me<sub>3</sub>CCOCl (3.3 mL, 26.5 mmol) was added dropwise over ca. 5 min to a stirred and cooled (0 °C) solution of alcohol 23.2 (7.26 g, 14.8 mmol) and DMAP (20 mg) in  $CH_2Cl_2$  (50 mL). The ice bath was removed and stirring was continued for 10 h. The reaction mixture was quenched by addition of saturated aqueous NH<sub>4</sub>Cl (50 mL) and extracted with  $Et_2O$  (3 x 50 mL). The combined organic extracts were washed with water and brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (5 x 30 cm), using 1:19 EtOAc-hexane, gave 23.3 (8.07 g, 95%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3062, 2957, 1732 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.12 (s, 3 H), -0.10 (s, 3 H), 0.79 (s, 9 H), 1.17 (s, 9 H), 1.18 (s, 9 H), 1.42-1.83 (m, 10 H), 2.87 (septet, J = 3.8 Hz, 1 H), 3.27 (dd, J = 8.2, 9.8 Hz, 1 H), 3.60 $(dd, J = 3.8, 9.9 Hz, 1 H), 3.94 (AB q, J = 17.1 Hz, \Delta v_{AB} =$ 103.4 Hz, 2 H), 3.96 (AB q, J = 11.5 Hz,  $\Delta v_{AB} = 28.4$  Hz, 2 H), 4.03 (d, J = 2.1 Hz, 2 H), 7.16 (t, J = 7.3 Hz, 1 H), 7.26 (t, J = 7.8 Hz, 2 H), 7.34 (d, J = 7.4 Hz, 2 H); <sup>13</sup>C

NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.5 (q), 18.0 (t), 18.2 (s), 23.1 (t), 25.9 (q), 27.16 (q), 27.20 (q), 27.5 (t), 27.7 (t), 30.4 (t), 38.7 (s), 38.8 (s), 50.8 (t), 58.2 (d), 58.3 (s), 64.3 (t), 64.8 (t), 69.8 (t), 126.2 (d), 126.8 (d), 128.1 (d), 142.3 (s), 178.2 (s), 178.5 (s); exact mass (electrospray) *m/z* calcd for C<sub>33H58</sub>NO<sub>5</sub>Si (M + H), 576.4079, found 576.4080.


(5R,8aR)-Tetrahydro-5-[(S)-2-hydroxybut-3-enyl]-5vinyl-1H-oxazolo[3,4-a]pyridine-3(5H)-one (25.2), (5R,8aR)-Tetrahydro-5-[(R)-2-hydroxybut-3-enyl]-5-vinyl-1Hoxazolo[3,4-a]pyridine-3(5H)-one (25.3) and (5R,8aR)-Tetrahydro-5-(2-oxobut-3-enyl)-5-vinyl-1H-oxazolo[3,4a]pyridine-3(5H)-one (25.1).



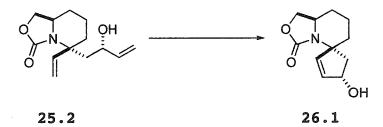
23.9







t-BuOOH (5M, 5.2 mL. 26.0 mmol) was added dropwise over ca. 5 min to a stirred and cooled (0 °C) suspension of

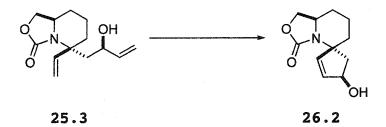

SeO<sub>2</sub> (0.730 g, 6.58 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL). The ice bath was removed and stirring was continued for 30 min. A solution of diene 23.9 (2.430 g, 11.00 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added dropwise over ca. 5 min and stirring was continued for 7 days at room temperature. Evaporation of the solvent and flash chromatography of the residue over silica gel (3 x 30 cm), using 1:9 to 1:3 t-BuOMe-CH<sub>2</sub>Cl<sub>2</sub>, gave alcohol 25.2 (yellow oil, 0.377 g, 18%), alcohol 25.3 (white solid, 0.837 g, 41%) and ketone 25.1 (yellow oil, 0.530 g, 26%). The yields are calculated after correction from recovered 23.9 (0.528 g, 2.39 mmol).

Alcohol 25.2 had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3444, 3086, 2943, 1728, 1642 cm<sup>-1</sup>;  $[\alpha]_D = -6.44^\circ$  (c 1.60, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.22–1.33 (m, 1 H), 1.46–1.66 (m, 3 H), 1.74–1.82 (m, 1 H), 1.88–2.06 (m, 3 H), 3.30 (s, 1 H), 3.65–3.74 (m, 1 H), 3.80 (dd, J = 8.0, 10.7 Hz, 1 H), 4.08– 4.14 (m, 1 H), 4.43 (dd, J = 7.4, 7.9 Hz, 1 H), 5.08 (td, J =1.4, 10.4 Hz, 1 H), 5.19–5.32 (m, 3 H), 5.88 (ddd, J =5.6, 10.5, 17.2 Hz, 1 H), 6.28 (ddd, J = 0.7, 11.1, 17.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.1 (t), 29.0 (t), 38.0 (t), 38.5 (t), 53.2 (d), 58.6 (s), 68.6 (t), 68.8 (d), 113.3 (t), 114.5 (t), 140.2 (d), 141.8 (d), 158.1 (s); exact mass m/z calcd for C<sub>13</sub>H<sub>19</sub>NO<sub>3</sub> 237.1365, found 237.1361.

Alcohol 25.3 had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3359, 3074, 2938, 1717, 1640 cm<sup>-1</sup>;  $[\alpha]_D = +1.33^{\circ}$  (c 0.30, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.22 (dq, J = 4.2, 11.0 Hz, 1 H), 1.41 (dtd, J = 1.3, 2.9, 12.8 Hz, 1 H), 1.49-1.75 (m, 4 H), 1.83-1.88 (m, 1 H), 1.97 (s, 1 H), 2.17 (ddd, J = 1.4, 9.2, 15.4 Hz, 1 H), 3.69 (dd, J = 8.0, 10.6 Hz, 1 H), 3.93-4.00 (m, 1 H), 4.33 (t, J = 7.9 Hz, 1 H), 4.67-4.72 (m, 1 H), 4.96 (d, J = 17.8 Hz, 1 H), 5.01 (td, J = 1.4, 10.4 Hz, 1 H), 5.15 (d, J = 11.2 Hz, 1 H), 5.19 (td, J = 1.5, 17.1 Hz, 1 H), 5.85 (ddd, J = 6.0, 11.2, 17.2 Hz, 1 H), 6.39 (ddd, J = 1.3, 11.1, 17.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$ 19.4 (t), 29.4 (t), 37.3 (t), 38.2 (t), 52.7 (d), 59.2 (s), 68.5 (t), 69.4 (d), 111.2 (t), 113.4 (t), 141.7 (d), 142.5 (d), 158.0 (s); exact mass m/z calcd for  $C_{13}H_{19}NO_3$  237.1365, found 237.1366.

Ketone **25.1** had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3089, 2944, 1747, 1687, 1611 cm<sup>-1</sup>;  $[\alpha]_D = -3.26^{\circ}$  (c 1.90, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.33-1.44 (m, 1 H), 1.54-1.82 (m, 3 H), 1.87-1.94 (m, 1 H), 2.10-2.18 (m, 1 H), 3.13 (AB q, J =15.0 Hz,  $\Delta v_{AB} = 145.1$  Hz, 2 H), 3.76 (dd, J = 8.2, 9.9 Hz, 1 H), 4.01-4.10 (m, 1 H), 4.38 (t, J = 8.0 Hz, 1 H), 5.15 (d, J = 17.5 Hz, 1 H), 5.19 (d, J = 10.9 Hz, 1 H), 5.77 (dd, J =1.1, 10.5 Hz, 1 H), 6.17-6.40 (m, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  17.5 (t), 27.9 (t), 32.3 (t), 42.9 (t), 52.6 (d), 58.4 (s), 68.6 (t), 113.6 (t), 128.6 (t), 137.2 (d), 139.8 (d), 156.4 (s), 198.1 (s); exact mass m/z calcd for C<sub>13H17</sub>NO<sub>3</sub> 235.1208, found 235.1203.

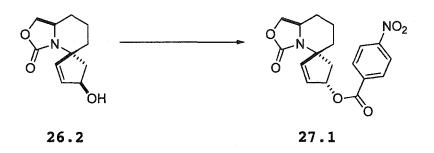
(5'R,8'aR)-Tetrahydrospiro[(S)-4-hydroxycyclopent-2ene-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (26.1).




Grubbs II catalyst (23.11) (5 mg) was added to a stirred solution of 25.2 (100 mg, 0.42 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The resulting mixture was stirred for 3 h and the

249

solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using EtOAc, gave 26.1 (82 mg, 93%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3401, 2936, 1742, 1478 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.24-1.43 (m, 2 H), 1.48-1.69 (m, 2 H), 1.78-1.96 (m, 3 H), 2.31 (dd, J = 7.0, 14.2 Hz, 1 H), 2.86 (s, 1 H), 3.62-3.71 (m, 1 H), 3.75 (dd, J = 7.9, 10.6 Hz, 1 H), 4.34 (t, J = 7.5 Hz, 1 H), 4.68 (td, J = 2.3, 6.9 Hz, 1 H), 5.92 (d, 5.5 Hz, 1 H), 5.99 (dd, J = 2.3, 5.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  20.3 (t), 28.6 (t), 37.2 (t), 44.2 (t), 55.0 (d), 66.0 (s), 68.0 (t), 133.7 (d), 137.9 (d), 157.5 (s); exact mass m/z calcd for C<sub>11H15</sub>NO<sub>3</sub> 209.1052, found 209.1051.

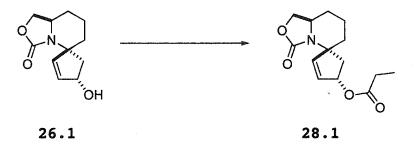

5'R,8'aR)-Tetrahydrospiro[(R)-4-hydroxycyclopent-2ene-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (26.2).



Grubbs II catalyst (23.11) (15 mg) was added to a stirred solution of 25.3 (0.689 g, 2.91 mmol) in  $CH_2Cl_2$  (40 mL). The resulting mixture was stirred for 3 h and the solvent was concentrated. Flash chromatography of the residue over silica gel (1.5 x 25 cm), using EtOAc, gave 26.2 (0.570 g, 94%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 3401, 2936, 1742, 1478 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.24-1.38 (m, 1 H), 1.56-1.72 (m, 4 H), 1.84-1.92 (m, 2 H), 2.03 (dd, J = 1.8, 13.8 Hz, 1 H), 2.12-2.18 (m, 1 H), 3.61-3.70 (m, 1 H), 3.78 (dd, J = 8.2, 9.0 Hz, 1 H), 4.33 (dd, J =

7.6, 8.2 Hz, 1 H), 4.97-5.01 (m, 1 H), 5.90 (dd, J = 2.3, 5.6 Hz, 1 H), 6.24 (d, J = 5.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  20.6 (t), 29.5 (t), 38.0 (t), 42.8 (t), 54.6 (d), 67.7 (s), 67.8 (t), 131.5 (d), 140.1 (d), 155.9 (s); exact mass m/z calcd for C<sub>11</sub>H<sub>15</sub>NO<sub>3</sub> 209.1052, found 209.1050.

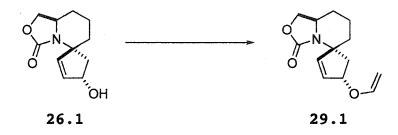
(5'R,8'aR)-Tetrahydrospiro[(S)-4-(4-nitrobenzoyloxy)cyclopent-2-ene-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (27.1).




DEAD (0.42 mL, 2.53 mmol) was added dropwise to a stirred and cooled (0 °C) solution of Ph<sub>3</sub>P (0.710 g, 2.73 mmol), 4-nitrobenzoic acid (0.350 g, 2.10 mmol) and alcohol 26.2 (0.190 g, 0.909 mmol) in PhH (20 mL). The cold bath was removed and the mixture was stirred for 10 h. EtOAc (50 mL) was added and the mixture was washed with saturated aqueous NaHCO3, water and brine, dried (MgSO4) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:4 EtOAc-hexane, gave 27.1 (0.290 g, 89%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3110, 2940, 1752, 1720, 1607 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.24-1.40 (m, 2 H), 1.58-1.70 (m, 2 H), 1.88-1.98 (m, 3 H), 2.86 (dd, J = 7.3, 13.3 Hz, 1 H), 3.58-3.68 (m, 1 H), 3.80 (dt, 1)J = 0.7, 9.2 Hz, 1 H), 4.36 (t, J = 8.0 Hz, 1 H), 5.84-5.89(m, 1 H), 5.96 (ddd, J = 0.9, 1.9, 7.6 Hz, 1 H), 6.44 (td,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

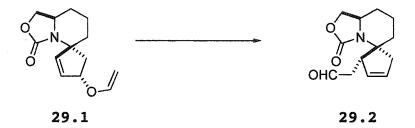
 $J = 0.9, 5.7 \text{ Hz}, 1 \text{ H}, 8.16-8.26 \text{ (m, 4 H}; {}^{13}\text{C NMR} \text{ (CDCl}_3, 100.6 \text{ MHz}) \delta 20.8 \text{ (t)}, 29.3 \text{ (t)}, .36.2 \text{ (t)}, 40.2 \text{ (t)}, 54.3 \text{ (d)}, 65.9 \text{ (s)}, 68.0 \text{ (t)}, 78.7 \text{ (d)}, 123.4 \text{ (d)}, 127.2 \text{ (d)}, 130.8 \text{ (d)}, 135.4 \text{ (s)}, 141.8 \text{ (d)}, 150.5 \text{ (s)}, 156.1 \text{ (s)}, 164.6 \text{ (s)}; \text{ exact mass } m/z \text{ calcd for } C_{18}\text{H}_{18}\text{N}_2\text{O}_6 \text{ 358.1165}, found 358.1154.$ 


(5'R,8'aR)-Tetrahydrospiro[(S)-4-propionyloxy)cyclopent-2-ene-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (28.1).



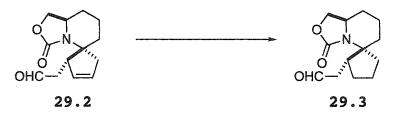
EtCOCl (15  $\mu$ L, 0.17 mmol) was added dropwise over ca. 1 min to a stirred and cooled (0 °C) solution of alcohol 26.1 (9.0 mg, 0.04 mmol), *i*-Pr<sub>2</sub>NEt (40 µL, 0.22 mmol) and DMAP (3 mg) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL). The ice bath was removed and stirring was continued for 3 h. The reaction mixture was then quenched by addition of saturated aqueous NH<sub>4</sub>Cl (3 mL) and extracted with  $Et_2O$  (3 x 5 mL). The combined organic extracts were washed with brine, dried  $(MqSO_4)$ and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:1 EtOAc-hexane, gave 28.1 (10.0 mg, 88%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 2939, 1752, 1444 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.15 (t, J = 7.6 Hz, 3 H), 1.25-1.36 (m, 2 H), 1.49-1.68 (m, 2 H), 1.74 (ddd, J = 1.2, 5.8, 17.6 Hz, 1 H), 1.84-1.94 (m, 2 H), 2.30(dq, J = 1.0, 7.6 Hz, 2 H), 2.76 (dd, J = 7.3, 13.1 Hz, 1)

H), 3.57-3.65 (m, 1 H), 3.78 (dd, J = 8.3, 9.2 Hz, 1 H), 4.34 (dd, J = 7.7, 8.2 Hz, 1 H), 5.55-5.61 (m, 1 H), 5.84(dd, J = 1.9, 5.7 Hz, 1 H), 6.34 (dd, J = 1.5, 5.7 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  9.0 (q), 20.8 (t), 27.6 (t), 29.4 (t), 36.0 (t), 40.3 (t), 54.3 (d), 65.8 (s), 67.9 (t), 76.9 (d), 127.9 (d), 140.6 (d), 156.0 (s), 174.5 (s); exact mass m/z calcd for  $C_{14}H_{19}NO_4$  265.1314, found 265.1348.


(5'R,8'aR)-Tetrahydrospiro[(S)-4-vinyloxy]cyclopent-2ene-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (29.1).

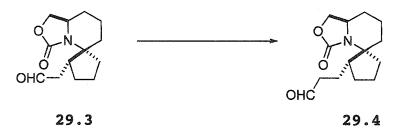


 $Hg(OAc)_2$  (48.0 mg, 0.15 mmol) and AcONa (25.0 mg, 0.31 mmol) were added in one portion to a stirred solution of **26.1** (24.2 mg, 0.12 mmol) in butyl vinyl ether (3 mL). The resulting mixture was heated at reflux for 3 days and cooled to room temperature.  $K_2CO_3$  (30 mg) was added and the mixture was filtered through a Celite pad (1.5 x 1 cm). Evaporation of the solvent and flash chromatography of the residue over silica qel (1 x 15 cm), using 1:1 EtOAchexane, gave 29.1 (25.9 mg, 95%) as a colorless oil: FTIR  $(CH_2Cl_2 \text{ cast})$  2936, 1752, 1617 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(C_6D_6, 500 \text{ MHz}) \delta$ 0.51-0.62 (m, 1 H), 0.67-0.72 (m, 1 H), 0.84-0.94 (m, 2 H), 1.07-1.22 (m, 2 H), 1.73 (ddd, J = 1.7, 5.8, 17.2 Hz, 1 H), 2.15 (dd, J = 7.2, 13.0 Hz, 1 H), 2.58-2.66 (m, 1 H), 3.06 (t, J = 8.2 Hz, 1 H), 3.52 (t, J = 7.8 Hz, 1 H), 4.07 (dd, )J = 1.6, 6.7 Hz, 1 H), 4.36 (dd, J = 1.6, 14.3 Hz, 1 H),


4.61-4.66 (m, 1 H), 5.77 (dd, J = 1.8, 5.7 Hz, 1 H), 6.40 (dd, J = 1.5, 5.8 Hz, 1 H), 6.49 (ddd, J = 0.4, 6.7, 20.4 Hz, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 125.7 MHz)  $\delta$  21.1 (t), 29.1 (t), 36.1 (t), 40.5 (t), 53.7 (d), 65.8 (s), 67.4 (t), 80.9 (d), 88.5 (t), 128.3 (d), 141.0 (d), 150.5 (d), 155.6 (s); exact mass m/z calcd for C<sub>13</sub>H<sub>17</sub>NO<sub>3</sub> 235.1208, found 235.1209.

(5'R,8'aR)-Tetrahydrospiro[(R)-2-(2-oxoethyl)cyclopent-3-ene-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (29.2).

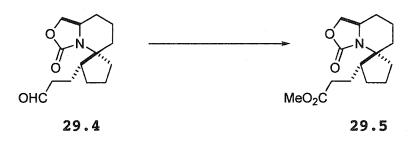



A solution of 29.1 (72.4 mg, 0.31 mmol) in NMP (0.8 mL) was heated at reflux (205 °C) for 4 h, and then cooled to room temperature. Flash chromatography of the mixture over silica gel (the whole mixture was applied directly to the top of the column) (1 x 20 cm), by using 1:3 EtOAchexane, gave aldehyde 29.2 (68.8 mg, 95%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 2940, 2810, 2720, 1743, 1719 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.42-1.51 (m, 1 H), 1.61-1.71 (m, 2 H), 1.73-1.84 (m, 3 H), 2.40 (td, J = 2.8, 16.4 Hz, 1 H), 2.70-2.81 (m, 2 H), 2.99 (ddd, J = 1.0, 4.1, 21.2 Hz, 1 H), 3.26-3.32 (m, 1 H), 3.72-3.80 (m, 2 H), 4.24-4.29 (m, 1 H), 5.62-5.66 (m, 1 H), 5.80-5.84 (m, 1 H), 9.80 (t, J = 1.2Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  19.0 (t), 27.3 (t), 34.0 (t), 40.7 (t), 44.5 (t), 48.0 (d), 55.0 (d), 65.4 (s), 67.7 (t), 126.6 (d), 134.3 (d), 157.1 (s), 202.0 (d); exact mass m/z calcd for  $C_{13}H_{17}NO_3$  235.1208, found 235.1208.

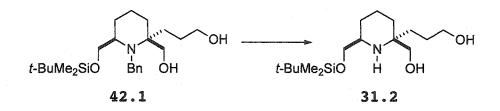
(5'R,8'aR)-Tetrahydrospiro[(S)-2-(2-oxoethyl)cyclopentane-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (29.3).



Pd-C (10%, 10 mg) was added to a solution of 29.2 (95.0 mg, 0.40 mmol) in 1:2 EtOH-hexane (5 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (30 psi) for 3.5 h. The mixture was then filtered through a Celite pad (1 x 1.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (20 Evaporation of the solvent and flash mL) as a rinse. chromatography of the residue over silica gel (1 x 20 cm), using 2:3 EtOAc-hexane, gave 29.3 (61.5 mg, 65%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2941, 2719, 1745, 1720  $cm^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.23-1.38 (m, 1 H), 1.46-1.62 (m, 4 H), 1.72-1.96 (m, 7 H), 2.43-2.51 (m, 1 H), 2.69-2.87 (m, 2 H), 3.58-3.64 (m, 1 H), 3.77 (t, J = 8.3Hz, 1 H), 4.26 (dd, J = 6.8, 8.0 Hz, 1 H), 9.79 (t, J = 1.3Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  20.7 (t), 22.6 (t), 28.5 (t), 30.7 (t), 34.7 (t), 36.0 (t), 44.0 (d), 44.5 (t), 55.9 (d), 65.7 (s), 67.9 (t), 157.1 (s), 202.6 (d); exact mass m/z calcd for  $C_{13}H_{19}NO_3$  237.1365, found 237.1361.


(5'R,8'aR)-Tetrahydrospiro[(S)-2-(3-oxopropyl)cyclopentane-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (29.4).




KHMDS (0.5 M in PhMe, 0.4 mL, 0.2 mmol) was added dropwise to a stirred and cooled (0 °C) solution of  $Ph_3PCH_2(OCH_3)Cl$  (85 mg, 0.22 mmol) in PhMe (2 mL). The ice bath was removed and stirring was continued for 30 min. The mixture was cooled to 0 °C and aldehyde 29.3 (16 mg, 0.067 mmol) in PhMe (1 mL) was added dropwise over ca. 2 The mixture was stirred at room temperature for 10 h. min. Saturated aqueous NH<sub>4</sub>Cl (5 mL) was added, and the mixture was extracted with  $Et_2O$  (3 x 5 mL). The combined organic extracts were washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated. Dilute hydrochloric acid (3 N, 3 mL) and acetone (3 mL) were added to the residue, and the mixture was heated at reflux for 3.5 h, cooled, and extracted with  $Et_2O$  (3 x 10 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:4 EtOAc-hexane, gave aldehyde 29.4 (13 mg, 78%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 2942, 2868, 1747, 1721  $cm^{-1}$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.23-1.64 (m, 5 H), 1.70-1.99 (m, 10 H), 2.36-2.56 (m, 2 H), 3.58-3.66 (m, 1 H), 3.77 (t, J = 8.0 Hz, 1 H), 4.24 (dd, J = 6.7, 7.9 Hz, 1 H), 9.77 (t, J = 1.8 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  20.5 (t), 21.3 (t), 28.4 (t), 29.4 (t), 43.6 (t), 55.9 (d), 65.7

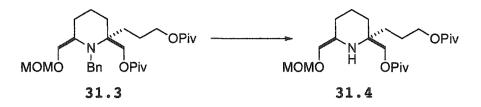
(s), 67.7 (t), 157.0 (s), 203.1 (d); exact mass m/z calcd for  $C_{14}H_{21}NO_3$  251.1522, found 251.1525.

(5'R,8'aR)-Tetrahydrospiro[(S)-2-[(2-methoxycarbonyl)ethyl)]cyclopentane-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (29.5).



NIS (150 mg, 0.63 mmol) and  $K_2CO_3$  (88 mg, 0.63 mmol) were added, each in one portion, to a stirred solution of aldehyde **29.4** (40 mg, 0.16 mmol) in MeOH (5 mL). The mixture was stirred for 10 h with protection from light and then the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:4 EtOAchexane, gave ester **29.5** (31 mg, 68%) as a colorless oil: FTIR (CDCl<sub>3</sub> cast) 2947, 1746 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 1.23-1.66 (m, 6 H), 1.71-1.87 (m, 7 H), 1.88-2.00 (m, 2 H), 2.26-2.35 (m, 2 H), 2.37-2.46 (m, 1 H), 3.57-3.64 (m, 1 H), 3.64 (s, 3 H), 3.75 (t, J = 8.2 Hz, 1 H), 4.24 (dd, J =6.8, 7.9 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  20.6 (t), 24.1 (t), 28.4 (t), 29.6 (t), 51.4 (q), 56.0 (d), 65.7 (s), 67.7 (t), 157.1 (s), 174.3 (s); exact mass m/z calcd for C<sub>15</sub>H<sub>23</sub>NO<sub>4</sub> 281.1627, found 281.1629. 3-[(2R,6R)-6-[(tert-Butyldimethylsilyloxy)methyl]-2-(hydroxymethyl)piperidin-2-yl]propan-1-ol (31.2).

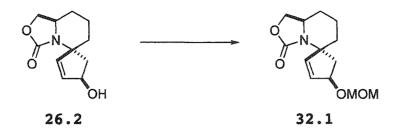



Pd-C (10%, 20 mg) was added to a solution of diol 42.1 (0.600 g, 1.47 mmol) in 2:1 EtOAc-MeOH (15 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (30 psi) for 2 h. The mixture was filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (100 mL) as a rinse, and the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using EtOAc, gave amine 31.2 (0.465 g, 100%) as a colorless FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3316, 2929, 1471 cm<sup>-1</sup>; <sup>1</sup>H NMR oil: (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.05 (s, 6 H), 0.89 (s, 9 H), 0.98-1.09 (m, 1 H), 1.35-1.42 (m, 1 H), 1.46-1.81 (m, 8 H), 2.84-2.94 (m, 4 H), 3.38 (AB q, J = 10.4 Hz,  $\Delta v_{AB} = 58.2 Hz$ , 2 H), 3.43 (dd, J = 6.8, 9.6 Hz, 1 H), 3.59 (dd, J = 4.0, 9.8 Hz, 1 H), 3.59-3.68 (m, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.41 (q), -5.36 (q), 18.2 (s), 19.6 (t), 25.9 (q), 26.8 (t), 27.7 (t), 29.5 (t), 30.5 (t), 51.6 (d), 54.8 (t), 63.1 (s), 67.5 (t), 68.3 (t); exact mass m/z calcd for C<sub>16</sub>H<sub>35</sub>NO<sub>3</sub>Si 317.2386, found 317.2377.

3-[(2R,6R)-1-Benzyl-6-[(methoxymethoxy)methyl]-2-[(pivaloyloxy)methyl]piperidin-2-yl]propyl Pivaloate (31.3).

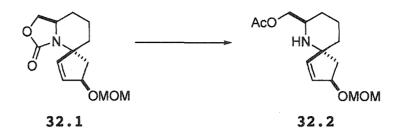


MOMCl (0.14 mL, 1.65 mmol) was added dropwise over ca. 2 min to a stirred and cooled (0 °C) solution of 23.4 (0.320 g, 0.69 mmol) and i-Pr<sub>2</sub>NEt (0.36 mL, 2.06 mmol) in CH<sub>2</sub>Cl<sub>2</sub> The ice bath was left in place but not recharged (10 mL). and stirring was continued for 10 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1.5 x 20 cm), using 1:9 EtOAc-hexane, gave 31.3 (0.303 g, 87%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2957, 1728, 1493 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.18 (s, 18 H), 1.52-1.85 (m, 10 H), 2.97 (s, 1 H), 3.21 (s, 3 H), 3.33 (t, J =8.1 Hz, 1 H), 3.56 (dd, J = 3.3, 9.6 Hz, 1 H), 3.88-4.08 (m, 6 H), 4.37 (s, 2 H), 7.17 (t, J = 7.1 Hz, 1 H), 7.23-7.30 (m, 2 H), 7.35 (d, J = 7.5 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  17.7 (t), 22.9 (t), 27.1 (q), 27.2 (q), 28.1 (t), 28.3 (t), 30.4 (t), 38.7 (s), 38.8 (s), 50.6 (t), 55.1 (d), 55.4 (q), 58.2 (s), 64.7 (t), 68.2 (t), 69.5 (t), 96.4 (t), 126.3 (d), 126.9 (d), 128.1 (d), 141.9 (s), 178.5 (s), 178.8 (s); exact mass m/z calcd for  $C_{29}H_{47}NO_6$  (M - CH<sub>3</sub>O) 474.3220, found 474.3208.


3-[(2R,6R)-6-[(Methoxymethoxy)methyl]-2-[(pivaloyloxy)methyl]piperidin-2-yl]propyl Pivaloate (31.4).

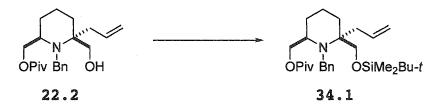


Pd-C (10%, 10 mg) was added to a solution of 31.3 (0.296 g, 0.59 mmol) in EtOAc (10 mL) in a Parr bottle. The resulting mixture was hydrogenated (30 psi) for 2 h and then filtered through a Celite pad (1 x 2.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (10 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (1.5 x 20 cm), using 2:3 EtOAc-hexane, gave 31.4 (0.230 g, 95%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2935, 2872, 1729 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.02–1.08 (m, 1 H), 1.18 (s, 9 H), 1.20 (s, 9 H), 1.26-1.35 (m, 1 H), 1.48-1.58 (m, 5 H), 1.62-1.69 (m, 3 H), 1.86 (s, 1 H), 2.90-2.98 (m, 1 H), 3.29 (t, J = 8.3 Hz, 1 H), 3.33 (s, 3 H), 3.47 (dd, J = 3.5, 9.2)Hz, 1 H), 3.85 (AB q, J = 10.8 Hz,  $\Delta v_{AB} = 80.6$  Hz, 2 H), 4.04 (t, J = 6.4 Hz, 2 H), 4.60 (s, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  19.5 (t), 23.1 (t), 27.2 (q), 28.4 (t), 31.2 (t), 38.7 (s), 38.9 (s), 49.3 (d), 53.6 (t), 55.2 (g), 64.6 (t), 71.1 (t), 72.7 (t), 96.6 (t), 178.0 (s), 178.4 (s); exact mass m/z calcd for C<sub>21</sub>H<sub>38</sub>NO<sub>6</sub> 400.2699, found 400.2690.


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(5'R,8'aR)-Tetrahydrospiro[(R)-4-methoxymethoxy]cyclopent-2-ene-1,5'(1'H)oxazolo[3,4-a]pyridine]-3'-one (32.1).




i-Pr2NEt (0.05 mL, 0.277 mmol), followed by MOMCl (0.011 mL, 0.135 mmol) was added dropwise to a stirred and cooled (0 °C) solution of alcohol 26.2 (9.4 mg, 0.045 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL). The ice bath was removed and stirring was continued for 2 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 15 cm), using 1:1 EtOAc-hexane, gave 32.1 (8.4 mg, 74%) as a colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.28-1.37 (m, 1 H), 1.58-1.68 (m, 3 H), 1.85-1.92 (m, 2 H), 2.08-2.17 (m, 2 H), 3.38 (s, 3 H), 3.63-3.70 (m, 1 H), 3.79 (t, J = 8.8 Hz, 1 H), 4.35 (t, J = 8.1 Hz, 1 H), 4.67 (s, 2 H), 4.78 (td, J= 2.3, 6.7 Hz, 1 H), 5.95 (dd, J = 2.4, 5.7 Hz, 1 H), 6.28 $(dd, J = 0.4, 5.7 \text{ Hz}, 1 \text{ H}); {}^{13}\text{C} \text{ NMR} (CDCl_3, 125.7 \text{ MHz}) \delta$ 20.7 (t), 29.5 (t), 37.2 (t), 40.4 (t), 54.6 (q), 55.3 (d), 67.5 (s), 67.9 (t), 81.5 (d), 96.1 (t), 129.9 (d), 140.5 (d), 156.0 (s).

(3R,5R,7R)-[6-Aza-3-(methoxymethoxy)spiro[4,5]dec-1en-7-yl]methyl Acetate (32.2).



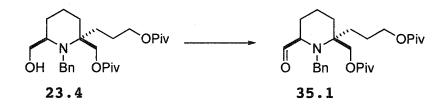
Me<sub>3</sub>SiOK (20 mg, 0.156 mmol) was added to a stirred solution of 32.1 (8.4 mg, 0.033 mmol) in THF (3 mL). The resulting mixture was heated at reflux (65 °C) for 10 h (TLC showed complete consumption of starting material) and cooled. EtOAc (5 mL), followed by water (5 mL) was added and the mixture was extracted with EtOAc  $(4 \times 5 \text{ mL})$ . The combined organic extracts were washed with brine, dried  $(Na_2SO_4)$  and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using MeOH, gave 32.2 (8.2 mg, 92%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2930, 1743, 1445 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  1.03-1.18 (m, 1 H), 1.46-1.65 (m, 5 H), 1.74-1.82 (m, 1 H), 1.92-1.99 (m, 1 H), 2.06 (s, 3 H), 2.11-2.19 (m, 1 H), 2.90-2.99 (m, 1 H), 3.40 (s, 3 H), 3.75-3.84 (m, 1 H), 4.03-4.12 (m, 1 H), 4.68  $(s, 2 H), 4.75-4.83 (m, 1 H), 5.80-5.95 (m, 2 H); {}^{13}C NMR$  $(CDCl_3, 100.6 \text{ MHz}) \delta 20.9 (q), 21.3 (t), 27.9 (t), 36.5 (t),$ 41.4 (t), 51.4 (q), 55.2 (d), 66.9 (s), 69.0 (t), 81.9 (d), 95.9 (t), 131.5 (d), 143.6 (d), 170.8 (s); exact mass m/zcalcd for  $C_{14}H_{23}NO_4$  269.1627, found 269.1624.

[(2R,6R)-6-Allyl-1-benzyl-6-[(tert-butyldimethylsilyloxy)methyl]piperidin-2-yl]methyl Pivaloate (34.1).



t-BuMe<sub>2</sub>SiCl (0.43 g, 2.77 mmol) was added in one portion to a stirred and cooled (0 °C) solution of alcohol 22.2 (0.76 g, 2.12 mmol), imidazole (0.26 g, 3.82 mmol) and DMAP (10 mg) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL). Stirring was continued at 0 °C for 30 min, and at room temperature for 48 h. The reaction mixture was then quenched by addition of saturated aqueous  $NH_4Cl$  (20 mL) and extracted with  $Et_2O$  (3 x 30 mL). The combined organic extracts were washed with water and brine, dried  $(MqSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (2.5 x 25 cm), using 1:19 EtOAc-hexane, gave 34.1 (0.82 g, 82%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3063, 2955, 1732, 1637 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3, 500 \text{ MHz}) \delta -0.14 \text{ (s, 3 H)}, -0.04 \text{ (s, 3 H)}, 0.83 \text{ (s,}$ 9 H), 1.12 (s, 9 H), 1.25-1.44 (m, 3 H), 1.53-1.72 (m, 3 H), 2.43-2.56 (m, 2 H), 2.92 (septet, J = 4.1 Hz, 1 H), 3.50 (AB q, J = 10.3 Hz,  $\Delta v_{AB} = 47.9$  Hz, 2 H), 3.70 (dd, J =7.7, 11.0 Hz, 1 H), 4.10 (AB q, J = 16.9 Hz,  $\Delta v_{AB} = 299.5$ Hz, 2 H), 4.14 (dd, J = 3.6, 11.0 Hz, 1 H), 5.02-5.11 (m, 2 H), 5.80-5.90 (m, 1 H), 7.14 (t, J = 7.3 Hz, 1 H), 7.25 (t,  $J = 7.8 \text{ Hz}, 2 \text{ H}, 7.37 \text{ (d}, J = 7.3 \text{ Hz}, 2 \text{ H}); {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_{3},$ 125.7 MHz)  $\delta$  -5.92 (q), -5.90 (q), 18.06 (s), 18.12 (t), 25.8 (q), 27.1 (q), 29.0 (t), 31.3 (t), 34.2 (s), 51.7 (t), 56.3 (d), 59.8 (s), 65.7 (t), 69.6 (t), 116.9 (t), 125.89 (d), 126.9 (d), 128.0 (d), 135.5 (d), 143.2 (s), 178.2 (s);

exact mass (electrospray) m/z calcd for  $C_{28}H_{48}NO_3Si$  (M + H) 474.3398, found 474.3395.


[(2R,6R)-1-Benzyl-6-[(tert-butyldimethylsilyloxy)methyl]-6-(3-hydroxypropyl)piperidin-2-yl]methyl Pivaloate
(34.2).



9-BBN (0.5 M in THF, 5.0 mL, 2.5 mmol) was added dropwise to a stirred and cooled (0 °C) solution of 34.1 (0.798 g, 1.68 mmol) in THF (20 mL). After addition, the ice-bath was removed and stirring was continued for 10 h. The mixture was cooled to 0 °C, slowly quenched by addition of MeOH (2 mL), and then aqueous NaOH (2N, 10 mL) and  $H_2O_2$ (30%, 3 mL) were added. The ice-bath was left in place but not recharged and stirring was continued for 2 h. The mixture was extracted with  $CH_2Cl_2$  (3 x 30 mL) and the combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:19 to 1:4 EtOAc-hexane, gave alcohol 34.2 (0.684 g, 83%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3382, 2954, 1729 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  -0.16 (s, 3 H), -0.05 (s, 3 H), 0.82 (s, 9 H), 1.12 (s, 9 H), 1.37-1.45 (m, 3 H), 1.52-1.68 (m, 6 H), 1.72-1.78 (m, 2 H), 2.98 (septet, J = 4.1 Hz, 1 H), 3.50 (AB q, J = 10.3 Hz,  $\Delta v_{AB} = 27.0$  Hz, 2 H), 3.64 (s, 2 H), 3.72 (dd, J = 7.7, 11.0 Hz, 1 H), 4.05 (AB q, J = 17.1Hz,  $\Delta v_{AB} = 215.3$  Hz, 2 H), 4.13 (dd, J = 3.9, 11.0 Hz, 1 H),

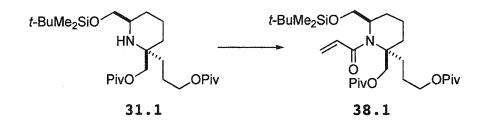
7.14 (t, J = 7.3 Hz, 1 H), 7.25 (t, J = 7.7 Hz, 2 H), 7.37 (d, J = 7.2 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.9 (q), 18.1 (s), 18.4 (t), 25.3 (t), 25.8 (q), 27.1 (q), 27.3 (t), 28.4 (t), 30.5 (t), 38.6 (s), 51.1 (t), 55.9 (d), 59.7 (s), 63.8 (t), 65.8 (t), 69.8 (t), 125.9 (d), 126.8 (d), 128.0 (d), 143.2 (s), 178.3 (s); exact mass m/z calcd for  $C_{27}H_{46}NO_4Si$  (M - CH<sub>3</sub>) 476.3196, found 476.3197.

3-[(2R,6R)-1-Benzyl-2-[(pivaloyloxy)methyl]-6-formylpiperidin-2-yl]propyl Pivaloate (35.1).



TPAP (14.0 mg, 0.039 mmol) was added to a stirred solution of alcohol 23.4 (37.6 mg, 0.081 mmol) and NMO (19.7 mg, 0.163 mmol) in  $CH_2Cl_2$  (4 mL). Stirring was continued for 5 min and TLC analysis showed that the reaction was completed at this stage. Aldehyde 35.1 was found to epimerize on silica gel and on grade III Al<sub>2</sub>O<sub>3</sub>, and so it was used crude. A small sample was obtained for characterization by rapid flash chromatography over silica gel, using 1:4 EtOAc-hexane as eluent. Pure aldehyde 35.1 (yellow oil) had: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz)  $\delta$  1.07-1.28 (m, 5 H), 1.15 (s, 9 H), 1.17 (s, 9 H), 1.36-1.49 (m, 4 H), 1.58-1.64 (m, 1 H), 3.04-3.08 (m, 1 H), 3.86 (AB q, J = 15.6 Hz,  $\Delta v_{AB} = 233.3 \text{ Hz}, 2 \text{ H}$ , 3.95 (dt, J = 1.6, 6.2 Hz, 2 H), 4.11 (d, J = 1.9 Hz, 2 H), 7.07 (t, J = 7.3 Hz, 1 H), 7.17 (t, J)= 7.4 Hz, 2 H), 7.26 (d, J = 7.7 Hz, 2 H), 9.18 (d, J = 1.9)Hz, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 125.7 MHz)  $\delta$  17.8 (t), 23.3 (t),

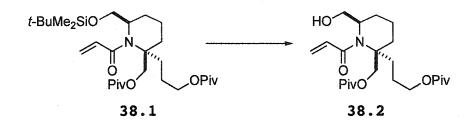
24.7 (t), 27.36 (q), 27.39 (q), 28.3 (t), 30.4 (t), 38.8 (s), 38.9 (s), 52.5 (t), 58.1 (s), 64.7 (t), 66.3 (d), 69.0 (t), 127.3 (d), 128.4 (d), 128.7 (d), 140.4 (s), 177.3 (s), 177.7 (s), 202.4 (d); exact mass m/z calcd for  $C_{27H_{41}NO_5}$  459.2984, found 459.2978.


3-[(2R,6R)-1-Benzyl-6-(iodomethyl)-2-[(pivaloyloxy)methyl]piperidin-2-yl]propyl Pivaloate (36.1).

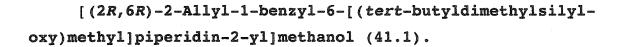


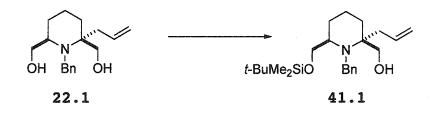
 $I_2$  (0.40 g, 1.57 mmol) was added in one portion to a stirred and cooled (0 °C) solution of 23.4 (0.59 g, 1.27 mmol), Ph<sub>3</sub>P (0.43 g, 1.66 mmol) and imidazole (0.13 g, 1.89 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL). Stirring was continued for 3 h, and the mixture was then diluted with  $Et_2O$  (50 mL) and washed with aqueous  $Na_2S_2O_3$  (10%), water and brine. The organic extract was dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using 1:19 EtOAc-hexane, gave 36.1 (0.59 g, 81%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3025, 2968, 1727 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz)  $\delta$  1.13 (s, 9 H), 1.14 (s, 9 H), 1.18-1.28 (m, 3 H), 1.38-1.62 (m, 7 H), 2.78 (t, J = 9.8 Hz, 1 H), 3.05-3.12 (m, 1 H), 3.23-3.28 (m, 1 H), 3.63 (AB q, J =15.8 Hz,  $\Delta v_{AB} = 30.4$  Hz, 2 H), 3.88-3.96 (m, 4 H), 7.07 (t,  $J = 7.2 \text{ Hz}, 1 \text{ H}), 7.16-7.25 (m, 4 \text{ H}); {}^{13}\text{C} \text{ NMR} (C_6 D_6, 125.7)$ MHz)  $\delta$  8.2 (t), 16.8 (t), 23.0 (t), 27.3 (g), 27.4 (g), 28.2 (t), 30.5 (t), 30.6 (t), 38.9 (s), 50.5 (t), 58.1 (d), 58.5

(t), 64.7 (t), 69.0 (t), 127.2 (d), 127.8 (d), 128.7 (d), 140.7 (s), 177.4 (s), 177.6 (s); exact mass m/z calcd for  $C_{26H_{39}INO_4}$  (M - CH<sub>3</sub>) 556.1924, found 556.1953.


3-[(2R,6R)-1-Acryloyl-6-[(tert-butyldimethylsilyloxy)methyl]-2-[(pivaloyloxy)methyl]piperidin-2-yl]propyl Pivaloate (38.1).



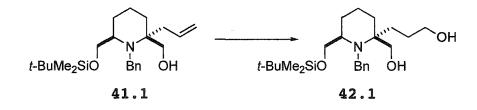

Acryloyl chloride (0.06 mL, 0.74 mmol) was added dropwise over ca. 2 min to a stirred and cooled (0 °C) solution of amine 31.1 (115 mg, 0.24 mmol), Et<sub>3</sub>N (0.17 mL, 1.22 mmol) and DMAP (5 mg) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL). Stirring was continued for 10 h, the reaction mixture was quenched by addition of saturated aqueous  $NH_4Cl$  (10 mL) and then extracted with  $Et_2O$  (3 x 20 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:9 EtOAc-hexane, gave amide **38.1** (38 mg, 29%) as a yellow oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 0.05 (s, 6 H), 0.88 (s, 9 H), 1.18 (s, 18 H), 1.41-1.70 (m, 7 H), 1.71-1.79 (m, 1 H), 1.90 (dt, J = 4.0, 13.0 Hz, 1H), 1.99-2.07 (m, 1 H), 2.37 (dt, J = 5.0, 13.0 Hz, 1 H), 3.55 (dd, J = 5.4, 9.8 Hz, 1 H), 3.65 (t, J = 9.5 Hz, 1 H), 3.95-4.08 (m, 3 H), 4.39 (AB q, J = 10.5 Hz,  $\Delta v_{AB} = 179.1$ Hz, 2 H), 5.61 (dd, J = 1.9, 10.5 Hz, 1 H), 6.18 (dd, J =1.9, 6.7 Hz, 1 H), 6.61 (dd, J = 10.4, 16.7 Hz, 1 H); <sup>13</sup>C


NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.5 (q), -5.4 (q), 13.8 (t), 18.2 (s), 22.4 (t), 23.4 (t), 25.8 (q), 27.2 (q), 29.1 (t), 31.9 (t), 38.7 (s), 38.8 (s), 55.0 (d), 59.4 (s), 64.5 (t), 65.4 (t), 65.8 (t), 126.8 (t), 130.7 (d), 168.8 (s), 178.0 (s), 178.4 (s).

3-[(2R,6R)-1-Acryloyl-6-(hydroxymethyl)-2-[(pivaloyloxy)methyl]piperidin-2-yl]propyl Pivaloate (38.2).

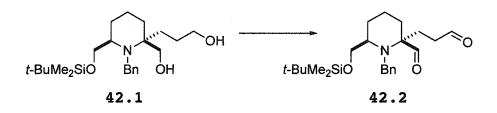


TBAF (1.0 M in THF, 0.3 mL, 0.30 mmol) was added to a stirred solution of amide 38.1 (37 mg, 0.07 mmol) in THF (5 mL). Stirring was continued for 10 h and the solvent was concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:3 EtOAc-hexane, gave alcohol 38.2 (12 mg, 41%) as a yellow oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 1.187 (s, 9 H), 1.189 (s, 9 H), 1.46-1.85 (m, 7 H), 1.92-1.99 (m, 2 H), 2.03 (dd, J = 4.0, 12.8 Hz, 1 H), 2.30 (dt, J = 4.9, 13.0 Hz, 1 H), 3.66-3.76 (m, 2 H), 4.04 (t, J = 6.4 Hz, 2 H), 4.07-4.12 (m, 1 H), 4.43 (AB q, J =10.8 Hz,  $\Delta v_{AB} = 252.3$  Hz, 2 H), 5.61 (dd, J = 1.9, 10.5 Hz, 1 H), 6.18 (dd, J = 1.9, 6.8 Hz, 1 H), 6.69 (dd, J = 10.6, 16.8 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  13.7 (t), 22.6 (t), 23.6 (t), 27.2 (q), 28.5 (t), 31.8 (t), 38.8 (s), 54.7 (d), 59.6 (s), 64.4 (t), 65.5 (t), 66.3 (t), 126.9 (t), 131.1 (d), 169.2 (s), 178.2 (s), 178.5 (s).



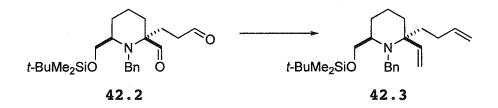



t-BuMe<sub>2</sub>SiCl (0.221 g, 1.42 mmol) was added in one portion to a stirred solution of diol 22.1 (0.489 g, 1.78 mmol), imidazole (0.200 g, 2.94 mmol) and DMAP (10 mg) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL). Stirring was continued at room temperature for 10 min and the solution became cloudy. Another portion of t-BuMe<sub>2</sub>SiCl (0.097 g, 0.62 mmol) was added and stirring was continued for 30 min. The reaction mixture was quenched by addition of saturated aqueous NH4Cl (20 mL), washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:9 EtOAc-hexane, gave 41.1 (0.602 g, 87%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3458, 3063, 3024, 2928, 1637 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.12 (s, 3 H), -0.10 (s, 3 H), 0.80 (s, 9 H), 1.30-1.40 (m, 1 H), 1.54-1.70 (m, 3 H), 1.73-1.82 (m, 1 H), 1.91-1.98 (m, 1 H), 2.27 (dd, J =7.4, 13.6 Hz, 1 H), 2.46 (d, J = 5.0 Hz, 1 H), 2.61 (dd, J= 7.6, 13.7 Hz, 1 H), 2.79-2.87 (m, 1 H), 3.22 (dd, J =7.2, 10.1 Hz, 1 H), 3.49-3.58 (m, 2 H), 3.90 (AB q, J =16.9 Hz,  $\Delta v_{AB} = 252.3$  Hz, 2 H), 5.04-5.13 (m, 2 H), 5.71-5.81 (m, 1 H), 7.19 (t, J = 7.3 Hz, 1 H), 7.30 (t, J = 7.4Hz, 2 H), 7.36 (d, J = 7.3 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.6 (q). -5.5 (q), 18.2 (s), 18.5 (t), 25.9 (q),


29.1 (t), 30.0 (t), 33.3 (t), 51.6 (t), 60.1 (d), 61.2 (s), 66.9 (t), 67.4 (t), 117.7 (s), 126.4 (d), 126.6 (d), 128.4 (d), 134.4 (d), 142.7 (s); exact mass m/z calcd for  $C_{22}H_{36}NOSi$  (M - OCH<sub>3</sub>) 358.2566, found 358.2566.

3-[(2R,6R)-1-Benzyl-6-[(tert-butyldimethylsilyloxy)methyl]-2-(hydroxymethyl)piperidin-2-yl]propan-1-ol (42.1).

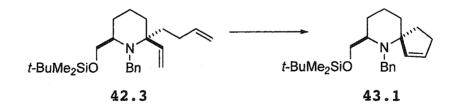



9-BBN (0.5 M in THF, 8.0 mL, 4.0 mmol) was added dropwise to a stirred and cooled (0 °C) solution of 41.1 (0.600 g, 1.54 mmol) in THF (20 mL). After addition, the ice-bath was removed and stirring was continued for 10 h. The mixture was cooled to 0 °C, slowly quenched by addition of MeOH (2 mL), and then aqueous NaOH (2N, 5 mL) and  $H_2O_2$ (30%, 2 mL) were added. The ice-bath was left in place but not recharged and stirring was continued for 2 h. The mixture was extracted with  $CH_2Cl_2$  (3 x 30 mL) and the combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 1:4 EtOAc-hexane to EtOAc, gave diol 42.1 (0.601 g, 96%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3355, 3083, 2951, 1603 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3, 400 \text{ MHz}) \delta -0.13 (s, 3 \text{ H}), -0.12 (s, 3 \text{ H}), 0.80 (s, 3 \text{ H}), 0.80$ 9 H), 1.27-1.93 (m, 11 H), 2.66 (s, 1 H), 2.86 (s, 1 H), 3.22 (dd, J = 7.4, 9.6 Hz, 1 H), 3.39 (AB q, J = 11.2 Hz, $\Delta v_{AB} = 64.0 \text{ Hz}, 2 \text{ H}), 3.52 (dd, J = 4.4, 10.1 \text{ Hz}, 1 \text{ H}),$ 3.59-3,69 (m, 3 H), 4.14 (d, J = 16.9 Hz, 1 H), 7.18 (t, J = 7.3 Hz, 1 H), 7.28 (t, J = 7.4 Hz, 2 H), 7.36 (d, J = 7.5 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.60 (q). -5.56 (q), 18.2 (s), 18.6 (t), 24.7 (t), 25.9 (q), 27.3 (t), 28.5 (t), 29.6 (t), 33.3 (t), 51.3 (t), 59.7 (d), 60.8 (s), 63.3 (t), 67.0 (t), 67.2 (t), 126.4 (d), 126.6 (d), 128.4 (d), 142.7 (s); exact mass m/z calcd for C<sub>23</sub>H<sub>40</sub>NO<sub>3</sub>Si (M - H) 406.2777, found 406.2785.

(2R,6R)-1-Benzyl-6-[(tert-butyldimethylsilyloxy)methyl]-2-(2-formylethyl)piperidine-2-carbaldehyde (42.2).

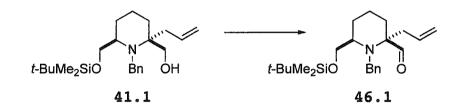


DMSO (3.0 mL, 42.27 mmol) in  $CH_2Cl_2$  (7.0 mL) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of (COCl)<sub>2</sub> (3.5 mL, 39.32 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (60 mL). Stirring was continued for 30 min, and diol 42.1 (4.81 g, 11.83 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added dropwise over ca. 10 min, a further portion of  $CH_2Cl_2$  (5 mL) being used as a Stirring at -78 °C was continued for 1 h, and Et<sub>3</sub>N rinse. (10.0 mL, 71.75 mmol) was added dropwise over ca. 5 min. Stirring was continued for 1 h, the dry-ice bath was removed, and stirring was continued for 10 h. Saturated aqueous NH4Cl (80 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and Flash chromatography of the residue over concentrated. silica gel (5 x 25 cm), using 1:9 EtOAc-hexane, gave aldehyde 42.2 (3.98 g, 84%) as a yellow oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3062, 2951, 2856, 2714, 1727 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.13 (s, 3 H), -0.12 (s, 3 H), 0.79 (s, 9 H), 1.38-1.54 (m, 3 H), 1.67-1.86 (m, 3 H), 1.98-2.13 (m, 2 H), 2.38-2.47 (m, 1 H), 2.67-2.76 (m, 1 H), 2.87 (septet, J =4.0 Hz, 1 H), 3.10 (dd, J = 7.8, 10.1 Hz, 1 H), 3.54 (dd, J= 4.5, 10.1 Hz, 1 H), 3.85 (s, s, 2 H), 7.19 (t, J = 7.3 Hz, 1 H), 7.28 (t, J = 7.4 Hz, 2 H), 7.36 (d, J = 7.2 Hz, 2 H), 9.49 (d, J = 0.7 Hz, 1 H), 9.76 (t, J = 1.0 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.61 (q), -5.60 (q), 17.9 (t), 18.2 (s), 20.2 (t), 25.9 (q), 27.6 (t), 27.9 (t), 38.9 (t), 53.5 (s), 58.1 (d), 65.2 (t), 67.8 (t), 126.7 (d), 126.8 (d), 128.2 (d), 141.6 (s), 201.3 (d), 204.5 (d); exact mass m/z calcd for C<sub>23H37</sub>NO<sub>3</sub>Si 403.2543, found 403.2541.


(2R,6R)-1-Benzyl-6-[(tert-butyldimethylsilyloxy)methyl]-2-(but-3-enyl)-2-vinylpiperidine (42.3).

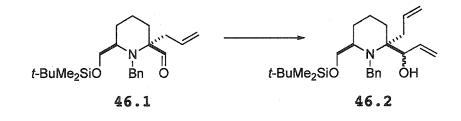


KHMDS (0.5 M in PhMe, 47.0 mL, 23.50 mmol) was added dropwise to a cooled (0 °C) and stirred solution of  $Ph_3PCH_3Br$  (9.36 g, 25.69 mmol) in PhMe (70 mL). The ice bath was removed and stirring was continued for 1 h. The reddish mixture was cooled to 0 °C and aldehyde **42.2** (3.98 g, 9.88 mmol) in PhMe (20 mL) was added dropwise over ca. 10 min. The cold bath was removed and stirring was continued for 10 h. Saturated aqueous  $NH_4Cl$  (100 mL) was added, and the mixture was extracted with  $Et_2O$  (3 x 150 mL). The combined organic extracts were washed with brine, dried


 $(MqSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (5 x 25 cm), using 1:19 EtOAchexane, gave diene 42.3 (3.44 g, 87%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3080, 2950, 1640 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  -0.11 (s, 3 H), -0.10 (s, 3 H), 0.80 (s, 9 H), 1.38-1.48 (m, 1 H), 1.55-1.87 (m, 7 H), 2.02-2.22 (m, 2 H), 2.96 (septet, J = 4.0 Hz, 1 H), 3.15 (dd, J = 8.4, 9.7 Hz, 1 H),3.60 (dd, J = 4.3, 9.9 Hz, 1 H), 3.79 (AB q, J = 16.5 Hz,  $\Delta v_{AB} = 97.6 \text{ Hz}, 2 \text{ H}, 4.93-5.08 \text{ (m, 4 H)}, 5.80-5.93 \text{ (m, 2)}$ H), 7.17 (t, J = 7.3 Hz, 1 H), 7.27 (t, J = 7.4 Hz, 2 H), 7.37 (d, J = 7.5 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.53 (q), -5.50 (q), 18.2 (s), 19.1 (t), 25.9 (q), 26.1 (t), 28.4 (t), 31.3 (t), 32.5 (t), 50.6 (s), 58.0 (d), 61.4 (t), 65.6 (t), 112.9 (t), 114.0 (t), 125.9 (d), 126.9 (d), 127.9 (d), 139.3 (t), 143.9 (s), 145.3 (d); exact mass m/zcalcd for C<sub>25</sub>H<sub>41</sub>NOSi (M - H) 398.2879, found 398.2876.

tert-Butyldimethyl[[(5R,7R)-[6-aza-6-benzylspiro[4,5]dec-1-en-7-yl]methyl]oxy]silane (43.1).

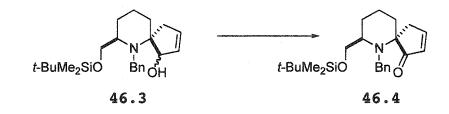



Grubbs II catalyst (23.11) (3 mg, 5 mol%) was added to a solution of diene 42.3 (9.2 mg, 0.023 mmol) in  $ClCH_2CH_2Cl$  (1 mL) and the mixture was heated at 70 °C for 4 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 15 cm), using 1:19 EtOAchexane, gave 43.1 (8.0 mg, 94%) as a colorless oil: FTIR (CH\_2Cl\_2 cast) 3083, 2954, 1604 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl\_3, 400 MHz) δ -0.14 (s, 6 H), 0.78 (s, 9 H), 1.15-1.26 (m, 1 H), 1.44-1.73 (m, 4 H), 1.84 (t, J = 6.4 Hz, 2 H), 1.90-1.96 (m, 1 H), 2.34-2.42 (m, 2 H), 2.48-2.58 (m, 1 H), 2.86 (dd, J =8.2, 9.9 Hz, 1 H), 3.52 (dd, J = 4.0, 10.0 Hz, 1 H), 3.65 (AB q, J = 16.4 Hz,  $\Delta v_{AB} = 232.5$  Hz, 2 H), 5.50-5.53 (m, 1 H), 5.62-5.66 (m, 1 H), 7.13 (t, J = 7.3 Hz, 1 H), 7.24 (t, J = 7.8 Hz, 2 H), 7.33 (d, J = 7.5 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz) δ -5.543 (q), -5.535 (q), 18.2 (s), 20.8 (t), 25.9 (q), 26.2 (t), 30.5 (t), 31.7 (t), 37.3 (t), 53.3 (s), 62.2 (d), 67.3 (t), 74.1 (t), 125.7 (d), 126.8 (d), 127.8 (d), 130.2 (d), 139.9 (d), 144.3 (s); exact mass m/z calcd for C<sub>23</sub>H<sub>37</sub>NOSi 371.2644, found 371.2638.

## (2R,6R)-2-Allyl-1-benzyl-6-[(*tert*-butyldimethylsilyloxy)methyl]piperidine-2-carbaldehyde (46.1).



DMSO (0.30 mL, 4.22 mmol) in  $CH_2Cl_2$  (0.70 mL) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of (COCl)<sub>2</sub> (0.30 mL, 3.37 mmol) in  $CH_2Cl_2$  (10 mL). Stirring was continued for 30 min, and alcohol **41.1** (0.907 g, 2.33 mmol) in  $CH_2Cl_2$  (10 mL) was added dropwise over ca. 10 min, a further portion of  $CH_2Cl_2$  (4 mL) being used as a rinse. Stirring at -78 °C was continued for 1 h, and Et<sub>3</sub>N (0.80 mL, 5.74 mmol) was added dropwise over ca. 5 min. Stirring was continued for 1 h, the dry-ice bath was removed, and stirring was continued for 10 h. The mixture was filtered through a short column of silica gel (2.5 x 5 cm), using 1:4 EtOAc-hexane (100 mL) as a rinse. Evaporation of the solvent gave the crude aldehyde 46.1 as a yellow oil. The aldehyde was unstable to flash chromatography, and so it was used in the next step without further purification. However, a small amount of pure 46.1 was obtained by flash chromatography (silica gel, 1:19 EtOAc-hexane) and had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3063, 2952, 2856, 2804, 2708, 1730, 1638 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  -0.12 (s, 3 H), -0.11 (s, 3 H), 0.80 (s, 9 H), 1.35-1.45 (m, 1 H), 1.52-1.60 (m, 2 H), 1.64-1.78 (m, 2 H), 1.83-1.91 (m, 1 H), 2.47 (dd, J = 8.5, 14.1 Hz, 1 H), 2.59 (dd, J = 6.1, 14.1 Hz, 1 H), 2.86 (septet, J = 4.0 Hz, 1 H), 3.09 (dd, J= 8.0, 10.0 Hz, 1 H), 3.56 (dd, J = 4.4, 10.1 Hz, 1 H),3.87 (s, 2 H), 5.06-5.14 (m, 2 H), 5.84-5.92 (m, 1 H), 7.20 (t, J = 7.3 Hz, 1 H), 7.28 (t, J = 7.4 Hz, 2 H), 7.37 (d, J)= 7.7 Hz, 2 H), 9.51 (s, 1 H);  $^{13}C$  NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$ -5.6 (q), 17.6 (t), 18.2 (s), 25.9 (q), 27.9 (t), 28.7 (t), 33.4 (t), 53.9 (t), 58.3 (d), 65.5 (t), 68.5 (s), 117.7 (t), 126.6 (d), 126.8 (d), 128.2 (d), 133.9 (d), 141.9 (s), 204.5 (d); exact mass (electrospray) m/z calcd for C<sub>23</sub>H<sub>38</sub>NO<sub>2</sub>Si (M + H) 388.2672, found 388.2673.


1-[(2R,6R)-2-Allyl-1-benzyl-6-[(tert-butyldimethylsilyloxy)methyl]piperidin-2-yl]prop-2-en-1-ol (46.2).



Vinylmagnesium bromide (1.0 M in THF, 3.0 mL, 3.0 mmol) was added dropwise over ca. 5 min to a stirred and

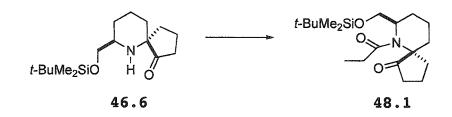
cooled (-20 °C) solution of aldehyde 46.1 (crude from previous step, assumed to be 2.33 mmol) in THF (40 mL). Stirring was continued for 30 min and saturated aqueous NH<sub>4</sub>Cl (30 mL) was then added. The reaction mixture was extracted with  $CH_2Cl_2$  (3 x 30 mL) and the combined organic extracts were washed with brine, dried  $(MqSO_4)$ and Flash chromatography of the residue over concentrated. silica gel (2.5 x 20 cm), using 1:9 EtOAc-hexane, gave alcohol 46.2 (0.789 g, 81.5% over 2 steps) as a yellow oil: FTIR (CDCl<sub>3</sub> cast) 3369, 3072, 2951, 1635 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  -0.11 (s, 3 H), -0.09 (s, 3 H), 0.81 (s, 9 H), 1.41-1.84 (m, 6 H), 2.42 (dd, J = 7.1, 14.7 Hz, 1 H), 2.66 (dd, J = 7.4, 14.7 Hz, 1 H), 2.85 (quintet, J = 6.1Hz, 1 H), 3.36 (dd, J = 7.9, 10.1 Hz, 1 H), 3.49 (s, 1 H),3.60 (dd, J = 5.7, 10.1 Hz, 1 H), 4.10 (AB q, J = 16.3 Hz,  $\Delta v_{AB} = 207.4 \text{ Hz}, 2 \text{ H}, 4.15 (d, J = 5.1 \text{ Hz}, 1 \text{ H}), 5.04-5.15$ (m, 3 H), 5.28 (td, J = 1.8, 17.1 Hz, 1 H), 5.86-5.98 (m, 1)H), 6.01-6.10 (m, 1 H), 7.16-7.21 (m, 1 H), 7.26-7.36 (m, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.6 (q), -5.5 (q), 17.3 (t), 18.2 (s), 25.6 (t), 25.9 (q), 30.7 (t), 35.4 (t), 53.7 (t), 58.4 (d), 62.9 (s), 66.7 (t), 77.5 (d), 115.2 (t), 117.6 (t), 126.3 (d), 127.2 (d), 128.2 (d), 135.0 (d), 138.2 (d), 142.0 (s); exact mass (electrospray) m/z calcd for  $C_{25H_{42}NO_2Si}$  (M + H) 403.2906, found 403.2903.

(5R,7R)-[6-Aza-6-benzyl-7-[(tert-butyldimethylsilyloxy)methyl]spiro[4,5]dec-2-en-1-one (46.4).



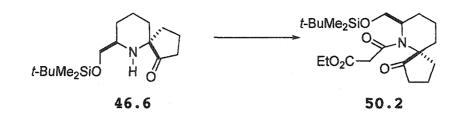
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DMSO (1.8 mL, 25.50 mmol) in  $CH_2Cl_2$  (3.2 mL) was added dropwise over ca. 10 min to a stirred and cooled (-78 °C) solution of (COCl)<sub>2</sub> (1.9 mL, 21.34 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL). Stirring was continued for 30 min, and alcohol 46.3 (4.20 g, 10.85 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was added dropwise over ca. 10 min, a further portion of  $CH_2Cl_2$  (5 mL) being used as a rinse. Stirring at -78 °C was continued for 1 h, and Et<sub>3</sub>N (5.0 mL, 35.90 mmol) was added dropwise over ca. 5 min. Stirring was continued for 1 h, the dry-ice bath was removed, and stirring was continued for 10 h. Saturated aqueous NH4Cl (80 mL) was added and the mixture was extracted with  $Et_2O$  (3 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and Flash chromatography of the residue over concentrated. silica gel (3 x 25 cm), using 1:9 EtOAc-hexane, gave aldehyde 46.4 (3.01 g, 72%) as a colorless oil: FTIR  $(CH_2Cl_2 \text{ cast})$  3054, 2955, 1699, 1584 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  -0.16, (s, 6 H), 0.76 (s, 9 H), 1.23-1.55 (m, 3 H), 1.75-1.85 (m, 2 H), 1.99-2.07 (m, 1 H), 2.49-2.57 (m, 1 H), 2.60-2.67 (m, 1 H), 2.79 (dd, J = 8.7, 9.3 Hz, 1 H), 2.84-2.93 (m, 1 H), 3.37 (AB q, J = 16.0 Hz,  $\Delta v_{AB} = 57.7$  Hz, 2 H), 3.52 (dd, J = 4.0, 7.0 Hz, 1 H), 6.19 (td, J = 2.1, 6.0 Hz, 1 H), 7.14 (t, J = 7.6 Hz, 1 H), 7.25 (t, J = 7.8Hz, 2 H), 7.44 (d, J = 8.0 Hz, 2 H), 7.69-7.74 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.6 (q), 18.2 (s), 20.9 (t), 25.9 (q), 29.9 (t), 34.9 (t), 35.5 (t), 56.2 (t), 63.4 (d), 66.9 (t), 69.3 (s), 126.4 (d), 127.3 (d), 127.9 (d), 133.5 (d), 141.8 (s), 162.5 (d), 210.7 (s); exact mass (electrospray) m/z calcd for C<sub>23</sub>H<sub>36</sub>NO<sub>2</sub>Si (M + H) 386.2510, found 386.2510.


(5R,7R)-[6-Aza-7-[(tert-butyldimethylsilyloxy)methyl]spiro[4,5]decan-1-one (46.6).

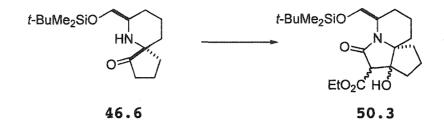


Pd-C (10%, 0.80 g) was added to a solution of 46.4 (3.00 g, 7.79 mmol) in EtOAc (30 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (46 psi) for 9.5 h. The mixture was then filtered through a Celite pad (1 x 2.5 cm), using EtOAc (150 mL) as rinse. Evaporation of the solvent а and flash chromatography of the residue over silica gel (2.5 x 30 cm), using 1:4 to 1:1 EtOAc-hexane, gave amine 46.6 (1.98 g, 86%) as a colorless oil: FTIR ( $CH_2Cl_2$  cast) 3302, 2930, 1743, 1583 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.037 (s, 3 H), 0.042 (s, 3 H), 0.89 (s, 9 H), 1.16-1.27 (m, 2 H), 1.45-1.51 (m, 1 H), 1.58-1.88 (m, 6 H), 1.95-2.04 (m, 1 H), 2.23-2.40 (m, 3 H), 2.63-2.70 (m, 1 H), 3.49-3.57 (m, 2 H);  $^{13}\text{C}$  NMR (CDCl\_3, 100.6 MHz)  $\delta$  -5.42 (q), -5.38 (q), 18.2 (t), 18.3 (s), 20.6 (t), 25.9 (q), 28.5 (t), 30.2 (t), 33.3 (t), 36.0 (t), 53.3 (d), 64.4 (s), 67.4 (t), 220.0 (s); exact mass (electrospray) m/z calcd for  $C_{16}H_{32}NO_2Si$  (M + H) 298.2197, found 298.2199.


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

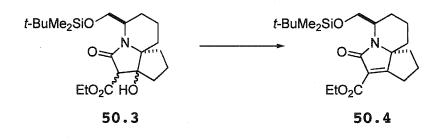
[(5R,7R)-[6-Aza-7-[(tert-butyldimethylsilyloxymethyl]-1-oxospiro[4,5]decan-6-yl]propan-1-one (48.1).




 $Et_3N$  (0.20 mL, 1.43 mmol), followed by EtCOCl (0.10 mL, 1.15 mmol) was added dropwise over ca. 2 min to a stirred and cooled (0 °C) solution of 46.6 (0.133 g, 0.45 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The ice bath was removed and stirring was continued for 10 h. The reaction mixture was diluted with  $Et_2O$  (30 mL), washed with saturated aqueous NaHCO<sub>3</sub> (20 mL), saturated aqueous NH<sub>4</sub>Cl (20 mL), water and brine. The organic extract was dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:2 EtOAc-hexane, gave 48.1 (0.140 g, 88%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2954, 1743, 1640 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.09 (s, 3 H), 0.10 (s, 3 H), 0.91 (s, 9 H), 1.10 (t, J = 7.4 Hz, 3 H), 1.45-1.76 (m, 6 H),1.99-2.25 (m, 5 H), 2.36 (dq, J = 2.2, 7.3 Hz, 2 H), 2.79-2.91 (m, 1 H), 3.66-3.77 (m, 2 H), 3.79-3.85 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.5 (q), -5.4 (q), 9.1 (q), 12.5 (t), 18.1 (s), 18.6 (t), 21.0 (t), 25.7 (t), 25.8 (q), 26.2 (t), 32.5 (t), 34.6 (t), 54.1 (d), 64.0 (s), 65.2 (t), 172.9 (s), 215.3 (s); exact mass m/z calcd for C<sub>19</sub>H<sub>35</sub>NO<sub>3</sub>Si 353.2386, found 353.2379.

Ethyl [(5R,7R)-[6-Aza-7-[(tert-butyldimethylsilyloxy)methyl]-1-oxospiro[4,5]decan-6-yl]-3-oxopropanoate (50.2).

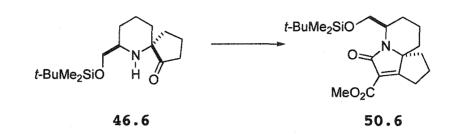



Et<sub>3</sub>N (0.10 mL, 0.72 mmol), followed by ethyl 3-chloro-3-oxopropionate (freshly made, 0.05 mL, 0.40 mmol) was added dropwise over ca. 2 min to a stirred and cooled (0 °C) solution of 46.6 (25.0 mg, 0.08 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL). The ice bath was removed and stirring was continued for 3.5 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 15 cm), using 1:4 to 1:1 EtOAc-hexane, gave 50.2 (25.0 mg, 72%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2955, 1743, 1643 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.10 (s, 3 H), 0.11 (s, 3 H), 0.90 (s, 9 H), 1.26 (t, J = 7.1 Hz, 3 H), 1.54-1.75 (m, 5 H), 1.79-1.87 (m, 1 H), 1.94-2.01 (m, 1 H), 2.02-2.07 (m, 1 H), 2.08-2.19 (m, 2 H), 2.27-2.35 (m, 1 H), 2.82 (td, J = 10.5, 18.8 Hz, 1 H), 3.29(d, J = 15.8 Hz, 1 H), 3.69-3.74 (m, 1 H), 3.77-3.87 (m, 3)H), 4.13-4.22 (m, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.6 (g), -5.4 (g), 12.4 (t), 14.1 (g), 18.2 (s), 18.5 (t), 21.5 (t), 25.2 (t), 25.9 (q), 32.0 (t), 34.6 (t), 41.0 (t), 55.0 (d), 61.3 (t), 64.4 (s), 66.3 (t), 165.8 (s), 167.9 (s), 214.7 (s); exact mass m/z calcd for C<sub>21</sub>H<sub>37</sub>NO<sub>5</sub>Si 411.2441, found 411.2440.

Ethyl (4R,10aR)-Decahydro-4-[(tert-butyldimethylsilyloxy)methyl]-7a-hydroxy-6-oxocyclopenta[i]indolizine-7carboxylate (50.3).



Et<sub>3</sub>N (0.10 mL, 0.72 mmol), followed by ethyl 3-chloro-3-oxo-propionate (freshly made, 0.09 mL, 0.70 mmol) was added dropwise over ca. 2 min to a stirred and cooled (0 °C) solution of 46.6 (84.8 mg, 0.28 mmol) in Acetonitrile (6 The ice bath was removed and stirring was continued mL). for 4 h. Another portion of Et<sub>3</sub>N (0.10 mL, 0.72 mmol) was added and the reaction mixture was heated at 45 °C for 10 h. Saturated aqueous NH4Cl (10 mL) was added and the mixture was extracted with  $CH_2Cl_2$  (3 x 15 mL). The combined organic extracts were washed with brine, dried (MqSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:9 t-BuOMe-CH<sub>2</sub>Cl<sub>2</sub>, gave two separable alcohols 50.3 (96.0 mg, 71%) as colorless oils. One of the alcohols had: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3424, 2954, 1741, 1669 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.06 (s, 6 H), 0.89 (s, 9 H), 1.33 (t, J = 7.1 Hz, 3 H), 1.25-1.37 (m, 2 H), 1.54-1.84 (m, 5 H), 1.87-2.05 (m, 5 H), 3.14-3.21 (m, 1 H), 3.47 (s, 1 H), 3.60 (s, 1 H), 4.11 (t, J = 9.8 Hz, 1 H), 4.25 (dq, J = 1.9, 7.3 Hz, 2 H), 4.38 (dd, J = 4.0, 10.3 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.3 (q), 14.1 (t), 18.3 (s), 21.5 (t), 22.2 (t), 25.9 (q), 28.7 (t), 31.2 (t), 34.3 (t), 41.9 (t), 57.9 (d), 59.0 (d), 62.1 (s), 63.6 (t), 74.1 (t), 81.9 (s), 166.0 (s), 169.8 (s); exact mass (electrospray) m/z calcd for  $C_{21}H_{37}NNaO_5Si$  (M + Na) 434.2333, found 434.2335.

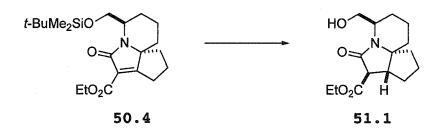

Ethyl (4R,10aS)-4-[(tert-Butyldimethylsilyloxy)methyl]-1,2,3,4,6,8,9,10-octahydro-6-oxocyclopenta-[i]indolizine-7-carboxylate (50.4).



DBU (0.10 mL, 0.67 mmol) was added dropwise to a stirred solution of alcohol 50.3 (0.117 g, 0.285 mmol) in Acetonitrile (5 mL). The mixture was heated at reflux (85 °C) for 5 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 20 cm), using 1:9 t-BuOMe-CH<sub>2</sub>Cl<sub>2</sub>, gave **50.4** (81.2 mg, 72%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2926, 1738, 1699 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  0.06 (s, 3 H), 0.07 (s, 3 H), 0.89 (s, 9 H), 1.07-1.18 (m, 2 H), 1.27-1.35 (m, 1 H), 1.34 (dt, J = 0.6, 7.1 Hz, 3 H, 1.58-1.67 (m, 1 H), 1.87-1.93 (m, 1 H)H), 1.96-2.01 (m, 1 H), 2.08-2.21 (m, 4 H), 2.71-2.80 (m,. 1 H), 2.94-3.03 (m, 1 H), 3.17 (tt, J = 3.1, 11.3 Hz, 1 H), 4.25-4.39 (m, 3 H), 4.51 (dd, J = 3.5, 10.3 Hz, 1 H);  ${}^{13}C$ NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  -5.31 (q), -5.30 (q), 14.3 (q), 18.3 (s), 21.4 (t), 24.0 (t), 24.7 (t), 26.0 (q), 29.5 (t), 29.6 (t), 33.7 (t), 59.0 (d), 60.6 (t), 63.6 (t), 70.5 (s), 120.2 (s), 162.8 (s), 166.7 (s), 184.3 (s); exact mass electrospray m/z calcd for  $C_{21}H_{35}NNaO_4Si$  (M + Na) 416.2228,

found 416.2227.

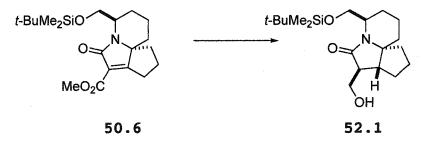
Methyl (4R,10aS)-4-[(tert-Butyldimethylsilyloxy)methyl]-1,2,3,4,6,8,9,10-octahydro-6-oxocyclopenta-[i]indolizine-7-carboxylate (50.6).




Et<sub>3</sub>N (1.20 mL, 8.50 mmol), followed by methyl 3-chloro-3-oxopropionate (0.77 mL, 6.97 mmol) was added dropwise over ca. 10 min to a stirred and cooled (0 °C) solution of **46.6** (1.40 g, 4.71 mmol) in Acetonitrile (50 mL). The ice bath was removed and stirring was continued for 4 h. Saturated aqueous NH<sub>4</sub>Cl (30 mL) was added to quench the reaction and the mixture was extracted with  $CH_2Cl_2$  (3 x 50 mL). The combined organic extracts were washed with water and brine, dried (MgSO<sub>4</sub>) and concentrated to give the crude amide.

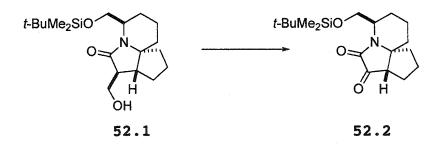
DBU (1.10 mL, 7.35 mmol) was added in one portion to a stirred solution of the above crude material in Acetonitrile (20 mL). The resulting mixture was heated at reflux (85 °C) for 10 h, and then cooled. Saturated aqueous NH<sub>4</sub>Cl (20 mL) was added and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 30 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (2.5 x 25 cm), using 1:9 t-BuOMe-CH<sub>2</sub>Cl<sub>2</sub>, gave **50.6** (1.48 g, 83%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2951, 1749, 1711, 1696

cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.06 (s, 3 H), 0.07 (s, 3 H), 0.90 (s, 9 H), 1.05–1.21 (m, 2 H), 1.26–1.37 (m, 1 H), 1.63 (tq, J = 3.4, 13.3 Hz, 1 H), 1.86–1.94 (m, 1 H), 2.00 (td, J = 3.0, 13.3 Hz, 1 H), 2.08–2.22 (m, 4 H), 2.71–2.82 (m, 1 H), 2.95–3.05 (m, 1 H), 3.15–3.23 (m, 1 H), 3.84 (s, 3 H), 4.36 (t, J = 10.2 Hz, 1 H), 4.50 (dd, J = 3.6, 10.4 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  –5.4 (q), –5.3 (q), 18.3 (s), 21.3 (t), 23.9 (t), 24.7 (t), 26.0 (q), 29.5 (t), 29.6 (t), 33.6 (t), 51.7 (q), 59.0 (d), 63.6 (t), 70.6 (s), 120.0 (s), 163.3 (s), 166.6 (s), 185.0 (s); exact mass (electrospray) m/z calcd for C<sub>20</sub>H<sub>33</sub>NNaO<sub>4</sub>Si (M + Na) 402.2071, found 402.2071.


Ethyl (4R,7R,7aR,10aS)-Decahydro-4-(hydroxymethyl)-6oxocyclopenta[i]indolizine-7-carboxylate (51.1).



Pd-C (10%, 10 mg) was added to a solution of **50.4** (32.9 mg, 0.08 mmol) in EtOAc (2 mL) contained in a Parr bottle, and the mixture was hydrogenated using a Parr shaker (50 psi) for 48 h. The mixture was then filtered through a Celite pad (1 x 1.5 cm), using CH<sub>2</sub>Cl<sub>2</sub> (10 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 15 cm), using EtOAc, gave alcohol **51.1** (16.1 mg, 72%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3381, 2939, 1734, 1664 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.31 (t, J = 7.1 Hz, 3 H), 1.43-1.55 (m, 2 H),


1.56-1.69 (m, 6 H), 1.76 (dd, J = 3.9, 13.2 Hz, 1 H), 1.79-1.91 (m, 2 H), 1.95-2.03 (m, 1 H), 2.54 (td, J = 4.5, 8.3 Hz, 1 H), 3.19 (dd, J = 0.9, 4.5 Hz, 1 H), 3.23-3.29 (m, 1 H), 3.83 (dd, J = 2.3, 12.6 Hz, 1 H), 3.94 (dd, J = 7.3, 12.7 Hz, 1 H), 4.23 (q, J = 7.1 Hz, 2 H), 4.66 (s, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  14.1 (q), 21.6 (t), 24.8 (t), 27.9 (t), 33.3 (t), 35.3 (t), 37.1 (t), 47.0 (d), 56.9 (d), 58.8 (d), 61.7 (s), 63.1 (t), 73.1 (t), 168.6 (s), 170.7 (s); exact mass m/z calcd for C<sub>15H23</sub>NO<sub>4</sub> 281.1627, found 281.1630.

(4R,7S,7aR,10aS)-4-[(tert-Butyldimethylsilyloxy)methyl]octahydro-7-(hydroxymethyl)cyclopenta[i]indolizin-6(7H)-one (52.1).



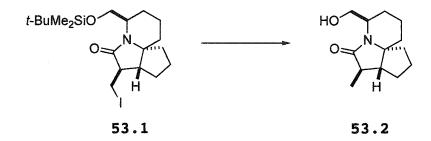
LiBH<sub>4</sub> (2.0 M in THF, 0.33 mL, 0.66 mmol) was added dropwise to a stirred and cooled (0 °C) solution of **50.6** (100.0 mg, 0.26 mmol) in THF (8 mL) and MeOH (5 mL). The ice bath was left in place but not recharged and stirring was continued for 18 h. The mixture was quenched by addition of saturated aqueous NH<sub>4</sub>Cl (10 mL) and extracted with  $CH_2Cl_2$  (3 x 15 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:2 EtOAc-hexane, gave alcohol **52.1** (81.5 mg, 87%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3391, 2938, 1652 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  0.08 (s, 6 H), 0.90 (s, 9 H), 1.24 (qd, J = 12.0, 4.0 Hz, 1 H), 1.44–1.75 (m, 7 H), 1.78–1.95 (m, 4 H), 2.02–2.09 (m, 1 H), 2.26–2.33 (m, 1 H), 3.14–3.23 (m, 1 H), 3.42 (s, 1 H), 3.68 (dd, J = 8.6, 10.5 Hz, 1 H), 3.76–3.84 (m, 1 H), 4.16 (t, J = 10.0 Hz, 1 H), 4.43 (dd, J = 4.0, 10.3 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  -5.31 (q), -5.30 (q), 18.3 (s), 21.8 (t), 25.1 (t), 25.9 (q), 29.1 (t), 33.0 (t), 35.2 (t), 38.8 (t), 46.5 (d), 50.5 (d), 57.9 (d), 63.5 (t), 64.3 (t), 71.9 (s), 175.0 (s); exact mass (electrospray) m/z calcd for C<sub>19</sub>H<sub>35</sub>NNaO<sub>3</sub>Si (M + Na) 376.2278, found 376.2279.

(4R,7aR,10aS)-4-[(tert-Butyldimethylsilyloxy)methyl]octahydrocyclopenta[i]indolizin-6,7-dione (52.2).



NMO (20.0 mg, 0.165 mmol), followed by TPAP (1.5 mg, 0.004 mmol) was added in one portion to a stirred solution of alcohol **52.1** (28.0 mg, 0.080 mmol) in  $CH_2Cl_2$  (5 mL). Stirring was continued for 6 h at room temperature. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 15 cm), using 1:4 to 2:3 EtOAc-hexane, gave **52.2** (21.5 mg, 80%) as a colorless oil: FTIR ( $CH_2Cl_2$  cast) 2956, 1767, 1709 cm<sup>-1</sup>; <sup>1</sup>H NMR ( $C_6D_6$ , 400 MHz)  $\delta$  0.14 (s, 3 H), 0.15 (s, 3 H), 0.75-0.91 (m, 2 H), 0.94-1.18 (m, 5 H), 1.00 (s, 9 H), 1.27-1.42 (m, 3 H), 1.51-1.59 (m, 1 H), 1.83 (dd, J = 3.6, 10.2 Hz, 1 H), 1.92-

1.99 (m, 1 H), 3.20-3.30 (m, 1 H), 4.44 (dd, J = 9.0, 10.3 Hz, 1 H), 4.84 (dd, J = 4.4, 10.3 Hz, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  -5.23 (q), -5.17 (q), 18.5 (s), 21.4 (t), 25.1 (t), 26.1 (q), 28.9 (t), 29.2 (t), 34.1 (t), 37.6 (t), 53.6 (d), 58.0 (d), 63.6 (t), 67.1 (s), 158.5 (s), 201.7 (s); exact mass (electrospray) m/z calcd for C<sub>18</sub>H<sub>31</sub>NNaO<sub>3</sub>Si (M + Na) 360.1965, found 360.1963.


(4R,7R,7aR,10aS)-4-[(tert-Butyldimethylsilyloxy)methyl]octahydro-7-(iodomethyl)cyclopenta[i]indolizin-6(7H)-one (53.1).



 $I_2$  (0.291 g, 1.14 mmol) was added in one portion to a stirred and cooled (0 °C) solution of alcohol **52.1** (0.290 g, 0.82 mmol), Ph<sub>3</sub>P (0.326 g, 1.23 mmol) and imidazole (0.112 g, 1.64 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL). The ice bath was removed and stirring was continued for 3 h. The reaction mixture was then filtered through a short pad of silica gel (2.5 x 3 cm), using 1:1 EtOAc-hexane (50 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 20 cm), using 1:19 to 1:4 EtOAc-hexane, gave **53.1** (0.364 g, 96%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2953, 2884, 1686 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  0.09 (s, 6 H), 0.98 (s, 9 H), 1.00-1.08 (m, 2 H), 1.13-1.26 (m, 5 H), 1.35-1.54 (m, 4 H), 1.75-1.82 (m, 1 H), 1.97-2.05 (m, 2 H), 3.10-3.22 (m, 3 H), 4.39 (dd, J = 9.1,

10.3 Hz, 1 H), 4.85 (dd, J = 4.3, 10.3 Hz, 1 H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100.6 MHz)  $\delta$  -5.2 (q), -5.1 (q), 10.1 (t), 18.5 (s), 22.0 (t), 25.2 (t), 26.2 (q), 29.4 (t), 33.2 (t), 35.3 (t), 38.6 (t), 50.4 (d), 51.6 (d), 58.1 (d), 64.1 (t), 70.0 (s), 170.9 (s); exact mass (electrospray) m/z calcd for C<sub>19</sub>H<sub>35</sub>INO<sub>2</sub>Si (M + H) 464.1476, found 464.1479.

(4R,7R,7aR,10aS)-Octahydro-4-(hydroxymethyl)-7-methylcyclopenta[i]indolizin-6(7H)-one (53.2).

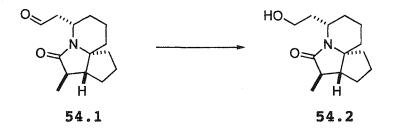



Bu<sub>3</sub>SnH (0.43 mL, 1.55 mmol) and AIBN (10 mg) were added in one portion to a stirred and refluxing (oil bath at 85 °C) solution of iodide 53.1 (0.359 g, 0.78 mmol) in PhH (20 Stirring was continued for 4 h at 85 °C and the mL). mixture was then cooled to room temperature. The solvent was concentrated, and the residue was dissolved in THF (5 TBAF (1.0 M in THF, 3.0 mL, 3.00 mmol) was added with mL). stirring in one portion to the above solution. Stirring was continued for 10 h and the solvent was concentrated. The residue was diluted with  $Et_2O$  (50 mL) and then filtered through a Celite pad (2.5 x 1 cm), using  $Et_2O$  (50 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 25 cm), using 1:1 EtOAc-hexane, gave alcohol 53.2 (172 mg, 99%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3350, 2935, 1655 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.27 (d, J = 7.4 Hz, 3 H), 1.42-1.74

(m, 9 H), 1.78-1.92 (m, 4 H), 2.15-2.23 (m, 1 H), 3.18-3.26 (m, 1 H), 3.85-3.92 (m, 2 H), 5.14 (t, J = 7.6 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  18.7 (q), 21.6 (t), 24.8 (t), 28.3 (t), 32.6 (t), 35.1 (t), 38.8 (t), 44.6 (d), 51.9 (d), 58.3 (d), 63.4 (t), 72.9 (s), 176.5 (s); exact mass m/z calcd for  $C_{13}H_{21}NO_2$  223.1572, found 223.1571.

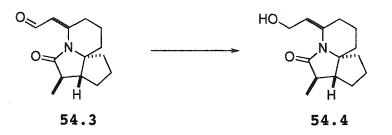
(4R,7R,7aR,10aS)-Decahydro-7-methyl-6-oxocyclopenta-[i]indolizin-4-carbaldehyde (53.3).




Dess-Martin periodinane (0.270 g, 0.62 mmol) was added in one portion to a stirred solution of alcohol **53.2** (0.104 g, 0.45 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL). Stirring was continued for 1 h and the mixture was filtered through a Celite pad (2 x 1 cm), using CH<sub>2</sub>Cl<sub>2</sub> (20 mL) as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 20 cm), using 1:4 to 4:1 EtOAc-hexane, gave aldehyde **53.3** (92 mg, 93%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2936, 1726, 1678 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.24 (d, J = 7.4 Hz, 3 H), 1.44-1.92 (m, 12 H), 1.97-2.02 (m, 1 H), 2.14-2.20 (m, 1 H), 3.49-3.55 (m, 1 H), 9.86 (d, J =2.8 Hz, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  18.0 (q), 20.7 (t), 24.8 (t), 24.9 (t), 32.0 (t), 34.7 (t), 37.9 (t), 42.8 (d), 53.1 (d), 60.9 (d), 69.3 (s), 176.4 (s), 195.6 (d); exact mass m/z calcd for C<sub>13</sub>H<sub>19</sub>NO<sub>2</sub> 221.1415, found 221.1410. 2-[(4S,7R,7aR,10aS)-Decahydro-7-methyl-6-oxocyclopenta[i]indolizin-4-yl]acetaldehyde (54.1).



KHMDS (0.5 M in PhMe, 1.6 mL, 0.80 mmol) was added dropwise to a stirred solution of Ph<sub>3</sub>PCH<sub>2</sub>(OCH<sub>3</sub>)Cl (0.344 g, 0.90 mmol) in PhMe (5 mL). Stirring was continued for 60 min, and aldehyde 53.3 (50 mg, 0.23 mmol) in PhMe (5 mL) was added dropwise over ca. 2 min. Stirring at room temperature was continued for 10 h and the reaction mixture was guenched by addition of MeOH (3 mL), and filtered through a short pad of silica gel (2 x 3 cm), using EtOAc (30 mL) as a rinse. The solvent was concentrated and the residue was diluted with hydrochloric acid (1 N, 3 mL) and THF (6 mL). The resulting mixture was stirred at room temperature for 4 h and then extracted with  $CH_2Cl_2$  (3 x 10 mL). The combined organic extracts were washed with brine, dried  $(MgSO_4)$  and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:2 acetonehexane, gave aldehyde 54.1 (39 mg, 73%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 2935, 2868, 1725, 1679, 1639 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(CDCl_3, 400 \text{ MHz}) \delta 1.21 (d, J = 7.3 \text{ Hz}, 3 \text{ H}), 1.22-1.33 (m, J)$ 1 H), 1.40-1.49 (m, 1 H), 1.60-1.88 (m, 10 H), 1.89-1.98 (m, 1 H), 2.10-2.18 (m, 1 H), 2.54-2.74 (m, 2 H), 4.90-4.98  $(m, 1 H), 9.71 (dd, J = 1.8, 3.4 Hz, 1 H); {}^{13}C NMR (CDCl_3, J)$ 100.6 MHz)  $\delta$  17.2 (t), 17.3 (g), 25.5 (t), 28.3 (t), 30.8 (t), 37.7 (t), 38.1 (t), 42.9 (d), 43.6 (d), 47.3 (t), 54.0


(d), 68.3 (s), 176.0 (s), 201.0 (d); exact mass (electrospray) m/z calcd for  $C_{14H_{21}NNaO_2}$  (M + Na) 258.1465, found 258.1466.

(4S,7R,7aR,10aS)-Octahydro-4-(2-hydroxyethyl)-7methylcyclopenta[i]indolizin-6(7H)-one (54.2).



 $NaBH_4$  (30 mg, 0.75 mmol) was added in one portion to a stirred and cooled (0 °C) solution of aldehyde 54.1 (39 mg, 0.17 mmol) in MeOH (6 mL). The ice bath was left in place but not recharged and stirring was continued for 4 h. The mixture was quenched by addition of saturated aqueous NH4Cl (5 mL) and extracted with  $CH_2Cl_2$  (3 x 10 mL). The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>) and concentrated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:2 acetone-hexane, gave alcohol 54.2 (26 mg, 66%) as a colorless oil: FTIR ( $CH_2Cl_2$ cast) 3400, 2937, 1677, 1653 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ 1.23 (d, J = 7.2 Hz, 3 H), 1.31-1.37 (m, 1 H), 1.50-1.82 (m, 12 H), 1.87-1.93 (m, 2 H), 2.24 (quintet, J = 7.2 Hz, 1)H), 3.37 (tt, J = 3.2, 12.1 Hz, 1 H), 3.60-3.67 (m, 1 H), 4.20 (dd, J = 3.8, 10.9 Hz, 1 H), 4.38-4.45 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125.7 MHz)  $\delta$  17.3 (q), 17.5 (t), 25.3 (t), 28.8 (t), 30.3 (t), 35.4 (t), 37.3 (t), 38.3 (t), 43.7 (d), 44.7 (d), 54.2 (d), 58.7 (t), 69.0 (s), 177.6 (s); exact mass (electrospray) m/z calcd for  $C_{14}H_{23}NNaO_2$  (M + Na) 260.1621, found 260.1624.

(4R,7R,7aR,10aS)-Octahydro-4-(2-hydroxyethyl)-7methylcyclopenta[i]indolizin-6(7H)-one (54.4).



LiBH<sub>4</sub> (2.0 M in THF, 0.1 mL, 0.20 mmol) was added dropwise over ca. 1 min to a stirred and cooled (0 °C) solution of aldehyde 54.3 (10 mg, 0.043 mmol) in THF (2 mL) and MeOH (1 mL). The ice bath was left in place but not recharged and stirring was continued for 4 h. The mixture was quenched by addition of saturated aqueous NH<sub>4</sub>Cl (5 mL) and extracted with  $CH_2Cl_2$  (3 x 10 mL). The combined organic extracts were washed with brine, dried  $(MqSO_4)$ and concentrated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:3 acetone-hexane, gave alcohol 54.4 (9 mg, 88%) as a colorless oil: FTIR (CH<sub>2</sub>Cl<sub>2</sub> cast) 3409, 2931, 1660 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.25 (d, J = 7.5 Hz, 3 H), 1.42-1.54 (m, 3 H), 1.58-1.73 (m, 6)H), 1.75-1.83 (m, 3 H), 1.88-1.98 (m, 3 H), 2.14-2.22 (m, 1 H), 2.72-2.81 (m, 1 H), 3.35-3.44 (m, 1 H), 3.69-3.80 (m, 2 H);  ${}^{13}C$  NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  18.5 (q), 21.7 (t), 25.1 (t), 31.7 (t), 32.5 (t), 35.1 (t), 35.6 (t), 38.1 (t), 44.7 (d), 51.7 (d), 53.3 (d), 60.8 (t), 72.0 (s), 177.0 (s); exact mass (electrospray) m/z calcd for  $C_{14}H_{23}NNaO_2$  (M + Na) 260.1621, found 260.1623.

## IV References and Notes

- 1 Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Tetrahedron Lett. 1996, 37, 3867-3870.
- 2 (a) Springer, T. A. Cell 1994, 76, 301-314. (b) Carlos, T. M.; Harlan, J. M. Blood 1994, 84, 2068-2101.
- 3 Chou, T.; Kuramoto, M.; Otani, Y.; Shikano, M.; Yazawa, K.; Uemura, D. Tetrahedron Lett. 1996, 37, 3871-3874.
- 4 ven den Bosch, H. *Biochim. Biophys. Acta* **1980**, 604, 191-246.
- 5 Kim, D. K.; Kudo, I.; Fujimori, Y.; Mizushima, H.; Masuda, M.; Kikuchi, R.; Ikizawa, K.; Inoue, K. J. Biochem. 1990, 108, 903-906.
- 6 Arimoto, H.; Hayakawa, I.; Kuramoto, M.; Uemura, D. Tetrahedron Lett. 1998, 39, 861-862.
- 7 Carson, M. W.; Kim, G.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4453-4456.
- 8 (a) Trauner, D.; Danishefsky, S. J. Tetrahedron Lett.
  1999, 40, 6513-6516. (b) Trauner, D.; Schwarz, J.
  B.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1999, 38, 3542-3545. (c) Trauner, D.; Churchill, D. G.; Danishefsky, S. J. Helv. Chim. Acta 2000, 83, 2344-2351.
- 9 Carson, M. W.; Kim, G.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4450-4452.
- 10 Lee, S.; Zhao, Z. Org. Lett. 1999, 1, 681-683.
- 11 Lee, S.; Zhao, Z. Tetrahedron Lett. **1999**, 40, 7921-7924.

- 12 Shindo, M.; Fukuda, Y. I.; Shishido, K. Tetrahedron Lett. 2000, 41, 929-932.
- 13 Yokota, W.; Shindo, M.; Shishido, K. Heterocycles 2001, 54, 875-885.
- 14 Arimoto, H.; Asano, S.; Uemura, D. Tetrahedron Lett. 1999, 40, 3583-3586.
- 15 Hayakawa, I.; Arimoto, H.; Uemura, D. *Heterocycles* 2003, 59, 441-444.
- 16 Hayakawa, I.; Arimoto, H.; Uemura, D. Chem. Commun. 2004, 1222-1223.
- White, J. D.; Blakemore, P. R.; Korf, E. A.; Yokochi,
   A. F. T. Org. Lett. 2001, 3, 413-415.
- 18 Takasu, K.; Ohsato, H.; Ihara, M. Org. Lett. 2003, 5, 3017-3020.
- 19 Matsumura, Y.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2004, 6, 965-968.
- 20 Matsumura, Y.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2003, 5, 3249-3252.
- 21 Clive, D. L. J.; Yeh, V. S. C. Tetrahedron Lett. 1999, 40, 8503-8507.
- 22 Goldspink, N. J.; Simpkins, N. S.; Beckmann, M. Synlett 1999, 1292-1294.
- 23 Dieck, H. T.; Dietrich, J. Chem. Ber. **1984**, 117, 694-701.
- 24 Bambridge, K.; Begley, M. J.; Simpkins, N. S. Tetrahedron Lett. **1994**, 35, 3391-3394.
- 25 Chrystal, E. J. T.; Couper, L.; Robins, D. J. Tetrahedron 1995, 51, 10241-10252.
- 26 Chênevert, R.; Dickman, M. J. Org. Chem. **1996**, 61, 3332-3341.
- 27 Swarbrick, M. E.; Gosselin, F.; Lubell, W. D. J. Org. Chem. 1999, 64, 1993-2002.

- 28 HPLC conditions: ChiralPak AS column (10 μm, 4.6 x 250 mm); sample injection (10 μL, 1 mg/mL of 10% EtOH/hexane); 5% EtOH/hexane as eluent; flow speed at 1.0 mL/min; PDA detector (190-320 nm); integrated @ 205 nm.
- 29 Yu, M.; Clive, D. L. J.; Yeh, V. S. C.; Kang, S.; Wang, J. Tetrahedron Lett. 2004, 45, 2879-2881.
- 30 Personal communication from Professor N. S. Simpkins.
- 31 These studies were done by Vince Yeh.
- 32 Some reaction conditions shown in Scheme 23 (from compound 23.4 to 23.10) were developed by Vince Yeh during his studies.
- 33 Chidambaram, N.; Chandrasekaran, S. J. Org. Chem. 1987, 52, 5048-5050.
- 34 Umbreit, M. A.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526-5528.
- 35 Cf. Evans, P. A.; Holmes, A. B.; McGeary, R. P.; Nadin, A.; Russell, K. J. Chem. Soc., Perkin Trans. 1 1996, 123-138.
- 36 Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017-3020.
- 37 (a) Ireland, R. E.; Wipf, P.; Armstrong, J. D. J. Org. Chem. 1991, 56, 650-657. (b) Ireland, R. E.; Wipf, P.; Xiang, J. J. Org. Chem. 1991, 56, 3572-3582.
- 38 Clive, D. L. J.; Magnuson, S. R.; Manning, H. W.; Mayhew, D. L. J. Org. Chem. 1996, 61, 2095-2108.
- 39 McDonald, C.; Holcomb, H.; Kennedy, K.; Kirkpatrick, E.; Leathers, T.; Vanemon, P. J. Org. Chem. 1989, 54, 1213-1215.
- 40 Coe, D. M.; Perciaccante, R.; Procopiou, P. A. Org. Biomol. Chem. 2003, 1, 1106-1111.

- 41 Wakita, H.; Yoshiwara, H.; Nishiyama, H.; Nagase, H. Heterocycles 2000, 53, 1085-1110.
- 42 Manchand, P. S.; Yinikouros, G. P.; Belica, P. S.; Mandan, P. J. Org. Chem. 1995, 60, 6574-6581.
- 43 Ikede, M.; Matsubayashi, K.; Imoto, T.; Kitao, K.; Ishibashi, H.; Sato, T. Heterocycles 1994, 38, 1237-1240.
- 44 Clarke, T. C.; Wendling, L. A.; Bergman, R. G. J. Am. Chem. Soc. 1977, 99, 2740-2750.
- 45 Garbaccio, R. M.; Stachel, S. J.; Baeschlin, D. K.; Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 10903-10908.
- 46 Pappo, R.; Allen, D. S.; Lemieux, R. U.; Johnson, W. S. J. Org. Chem. 1956, 21, 478-479.
- 47 Cf. Ph. D. Thesis, Yeh, V. S. C., University of Alberta, 2001: an N-benzylated diene failed to undergo ring closing metathesis with the first generation Grubbs catalyst. However, the second generation catalyst was not tried.
- 48 (a) Yu, J.; Corey, E. J. Org. Lett. 2002, 4, 27272730. (b) Yu, J.; Corey, E. J. J. Am. Chem. Soc.
  2003, 125, 3232-3233.
- 49 Mihelich, E.; Eickhoff, D. J. *J. Org. Chem.* **1983**, *48*, 4135-4137.
- 50 Biggs, D. C. H.; Lesimple, P. Synthesis 1992, 277-278.
- 51 Brown, R. F. C.; Coulston, K. J.; Eastwood, F. W.; Gatehouse, B. M.; Guddatt, L. W. Aust. J. Chem. 1984, 37, 2509-2524.
- 52 (a) Lermer, L.; Neeland, E. G.; Ounsworth, J. P.; Sims, R. J.; Tischler, S. A.; Weiler, L. Can. J. Chem. 1992, 70, 1427-1445. (b) Eberlein, T. H.;

West, F. G.; Tester, R. W. J. Org. Chem. **1992**, 57, 3479-3482.

53 Jacobus, J.; Leibner, J. E. *J. Org. Chem.* **1979**, *44*, 449-450.