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Abstract

Depression is a major public health issue globally and is challenging to diagnose and
treat in the early clinical stage due to the lack of understanding of the pathogenic
mechanism. Traditional diagnosis heavily relies on physicians’ experience and is sub-
ject to bias. With the advancement of smart devices and artificial intelligence, under-
standing how depression associates with daily behaviors can be beneficial for early-
stage diagnosis and reduce the likelihood of clinical mistakes as well as physician bias.
In this thesis, the author proposes an attention-based multimodality speech and text
representation for depression prediction using the Distress Analysis Interview Corpus-
Wizard of Oz (DAIC-WOZ) dataset.

First, the author conducted a review of studies from the past decade that utilized
speech, text, and facial expression analysis to detect depression. The review includes
information on the number of participants, techniques used to assess clinical outcomes,
speech-eliciting tasks, machine learning algorithms, metrics, and other important
discoveries for each study. A database has been created containing the query results
and an overview of how different features are used to detect depression.

Furthermore, the author’s model is trained to estimate the depression severity
of participants using acoustic and semantic features. For the audio modality, the
author uses the COVAREP features provided by the dataset and employs a Bi-LSTM
followed by a Time-distributed CNN. For the text modality, the author uses GloVe
to perform word embeddings and feeds the embeddings into the Bi-LSTM network.

The results show that both audio and text models perform well on the depression
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severity estimation task, with the best sequence level F} score of 0.9870 and patient-
level Fy score of 0.9074 for the audio model over five classes (healthy, mild, moderate,
moderately severe, and severe), as well as sequence level F; score of 0.9709 and
patient-level F} score of 0.9245 for the text model over five classes. Results are
similar for the multimodality fused model, with the highest F} score of 0.9580 on the
patient-level depression detection task over five classes.

In addition, the author presents a novel multimodal corpus comprising interviews
conducted with clinically depressed patients, gathered directly from a psychiatric hos-
pital. The dataset contains 113 interview recordings with 52 healthy and 61 depressed
patients, and each data sample is annotated by experienced physicians, generating
a binary label of depression versus healthy and a MADRS score. The author built
baseline models to detect and predict depression presence and level, and the decision-
making process of the model is investigated and illustrated.

In summary, the author conducts a review of studies utilizing speech, text, and fa-
cial expression analysis to detect depression and provides guidelines for collecting data
and training machine learning models to ensure reproducibility and generalizability
across different contexts. The author also proposes an attention-based multimodal-
ity representation, integrating speech and text modalities, for predicting depression.
Additionally, they present a novel multimodal corpus of clinical interviews focused on
depression. The author’s work contributes to the advancement of automated depres-
sion diagnosis and treatment, which is critical in addressing the global public health

issue of depression.
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Chapter 1

Introduction

In recent years, the combination of information technology and mental health re-
search has opened new avenues for understanding and addressing the challenges as-
sociated with mental health disorders. Among these disorders, depression stands
out as a pervasive and debilitating condition that affects millions worldwide. Our
study investigates into the integration of acoustic and semantic features extracted
from depression interviews, aiming to develop a deep learning model for assessing de-
pression levels. By leveraging deep learning models, we seek to explore the intricate
relationship between speech patterns, linguistic content, and the depressive symp-
toms. This thesis investigates the potential of multimodality approach, bridging the
gap between traditional diagnostic methods and cutting-edge technology, to enhance
our ability to identify and understand depression on a deeper level. Through the
fusion of acoustic and semantic features, our research endeavors to contribute valu-
able insights to the research of mental health assessment, with the ultimate goal of
facilitating self-assessment for depression risk and prompt users to seek appropriate

mental healthcare.



1.1 Application of Artificial Intelligence on Depres-
sion Screening

1.1.1 Automated Depression Diagnosis

Automated depression diagnosis presents a promising solution to overcome the barri-
ers hindering timely diagnoses and treatment for mental health issues. Mohr et al. re-
ported that stigma, lack of motivation, time or availability constraints, and cost as the
main obstacles faced by patients seeking help [1-3]. Recent research by Schuller et al.
has shown that high-speed networks and smartphones with high-performance compu-
tational units can support continuous monitoring of the psycho-emotional state over
a prolonged period [4, 5]. Various models have been developed to detect depression
and other psychological disorders by extracting features from interview videos, audio
recordings, neuroimaging data, social media posts, and transcribed audio recordings
[6-18]. Toolkits such as OpenFace can extract facial landmarks, action units, face
orientation, and eye gaze [19]. Other modalities, such as neuroimaging data, have
been used to predict the presence of Schizophrenia [20]. Lastly, features extracted
from social media and transcribed audio recordings have also been used to detect de-
pression and stress [21, 22]. These technological advancements highlight the growing
need for affordable screening techniques. Social media platforms offer an opportu-
nity to leverage automated systems for identifying potential patients. Automated
diagnostic tools enable individuals with depression who have not sought professional
help to remotely evaluate their mental states and receive online support from health-
care workers. These tools can also be designed to customize treatment based on an
individual’s specific symptoms, thus improving treatment efficacy [23, 24]. Further-
more, such systems can be employed for mental disorder screening in various settings,

including universities, the military, and basic healthcare facilities.



1.1.2 Benefits of Automated Depression Assessment

Artificial intelligence (AI) based depression detection systems have been extensively
studied, focusing on data collection, emotion induction, and prediction of depression
using multiple modalities. The potential of Al to revolutionize the diagnosis and
prognosis of mental health disorders is significant. By utilizing large and diverse
datasets, Al models can be trained to accurately screen for early-stage mental ill-
nesses, thereby providing a crucial tool for enhancing the overall mental health of the
population. The benefits of automated depression assessment tools are supporting
clinicians in making accurate diagnoses and providing effective treatment, identify-
ing at-risk individuals before they seek treatment, and tracking symptoms over time,
both during and after treatment. Automated depression assessment systems also aid
doctors in diagnosing depression and making related decisions. The Research Domain
Criteria, created by the National Institute of Mental Health, assists in distinguish-
ing diagnoses and symptoms [25]. Consequently, we can train models to predict
the probability of different mental disorders to assist clinicians in diagnosing and
early intervention if suicidal thoughts are detected. Lastly, automated depression
assessment models facilitate mental healthcare by enabling more frequent and real-
time symptom monitoring. Real-time monitoring ensures that individuals at risk for
depression are reminded to seek mental healthcare and allows for the detection of
important signs related to suicidal or self-harm thoughts. Online psychotherapy can
also be conducted based on real-time monitoring, enabling timely interventions and
tailored treatment plans. Furthermore, these models enable customized treatment
plans based on multimodality features (genetic, behavioural, neuroimaging) [26-28].
Previous articles have demonstrated that multimodality models usually outperform
unimodality models [29-32]. As a result, automated depression assessment models
improve the efficiency of the healthcare systems, lower costs, and make treatment

plans more customizable.



1.1.3 Challenges and Limitations of Automated Depression
Assessment

While there are numerous potential benefits to automated depression assessment, cer-
tain challenges need to be addressed to fully realize its advantages. Previous studies
have relied on small and non-representative datasets. These datasets are valuable
for researchers as they provide ample training data and insights for those without
the resources to collect and label their datasets. They also serve as a benchmark
for performance evaluation, allowing researchers to compare their models with oth-
ers. Previous datasets have investigated music-induced [33], video-induced [29, 34]
and mixed emotion induction methods [35]. However, there are still challenges to
implementing and deploying depression detection systems in real-world applications.
For instance, existing datasets ignore the critical aspect that emotions are typically
context-based. Additionally, models can be biased and lack interpretability, which
limits their clinical applicability. For example, the model may tend to assign lower
depression likelihood in male subjects because fewer male subjects have depression in
the training set [36-40]. To address these issues, there is a need for interactive mul-
timodal datasets for the study of depression, collected through interviews conducted
in a clinical setting between patients and physicians. Moreover, a new architecture is

essential to improve the generalizability of previous models.

1.2 Understanding Depression: Prevalence, Impact,
and Diagnostic Challenges

1.2.1 Prevalence and Impact of Depression

The prevalence of mental health disorders, such as depression, and the associated
challenges in diagnosis and treatment have drawn increased attention in recent years.
The COVID-19 pandemic has further exacerbated the prevalence of depression and

anxiety among the general population. According to the World Health Organization



(WHO), clinical depression is predicted to become the second most debilitating disease
by 2030, ranking only behind cardiovascular diseases [41]. It is estimated that the
average cost of treating depression in 2010 is € 24, 000 per patient and the total cost
can be as high as € 92 billion in Europe [42]. In the United States, depression causes
an estimated loss of $44 billion, due to absence or low working efficiency [43]. Suicide
is one of the severe results of depression, and the WHO reports that the number of
people who passed away due to suicide is over 800, 000 every year [44]. The attempted
suicide is more frequent, possibly no less than 20 times that of those who died by
suicide [44]. Patients with depression are more apt to generate suicide thoughts [45,
46]. It is estimated that more than 50% of people who died by suicide meet clinical

criteria of depression [47, 48].

1.2.2 Challenges in Diagnosis and Treatment

Unfortunately, the symptoms of depression are not always apparent. Many individu-
als who do not have depression may exhibit sadness and hopelessness, while those who
do suffer from depression often hesitate to report their condition and seek treatment.
In 2017, the WHO reported that over 264 million people of all ages were affected by
depression, with 75% of individuals in low and mid-income countries unable to re-
ceive qualified psychotherapy [49]. Stigma resulted by depression leads to individuals
with depression hiding their symptoms. On the other hand, depression diagnosis is
challenging due to episodic symptoms and multiple co-occurring disorders, as demon-
strated by the low inter-rater reliability [50] and test-retest reliability scores [51] in
major depressive disorder diagnosis. A delayed or inaccurate diagnosis can have se-
vere consequences, including the potential for suicide. Moreover, traditional methods
for assessing and monitoring depression involve subjective, semi-structured interviews
between patients and healthcare professionals, which can be influenced by bias, cog-

nitive limitations, and social stigma. Additionally, economic conditions and living



constraints often prevent depressed individuals from accessing qualified psychological
treatment.

Therefore, the development of low-cost screening techniques that can be deployed in
communities and operated by non-specialists would be highly beneficial. Early-stage
detection of mental disorders is crucial for individuals, policymakers, and security
agencies due to the association of these disorders with adverse behaviors, including

mass shootings [52].

1.3 Summary

In conclusion, the prevalence of mental health disorders, particularly depression, calls
for innovative solutions to overcome the barriers to timely diagnosis and treatment.
Automated depression assessment is promising in addressing these challenges, bene-
fiting individuals, healthcare professionals, and the healthcare system. By leveraging
technology advancements and diverse datasets, Al-based models can play a pivotal
role in accurate screening, personalized treatment, and real-time monitoring of de-
pression. However, further research and development are necessary to address the
limitations and challenges associated with automated depression assessment systems.
In this thesis, we firstly reviewed recent research on using machine learning methods
using acoustic, semantic, and facial features. Reviews have been written on predict-
ing depression or suicidal risk using speech cues; however, our review stands out for
its use of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines for an extensive and rigorous evaluation of the latest research
findings. Other than the review, we proposed a multimodality automated depression
diagnosis system with prosodic and semantic features to predict the depression lev-
els. Unlike previous models, our proposed model does not have a strict limitation
of input duration. This mitigates the problem that the audio/text feature sequences

are required to be the same in length in previous articles. Moreover, we addressed



the challenges and limitations of existing depression interview dataset. For instance,
most previous depression interview datasets are non-clinical, labelled with self-report
depression rating scale, recorded in controlled conditions, and produced in English.
In comparing our dataset to others, our approach collects spontaneous responses from
participants in clinical setting. Our dataset can also be a valuable resource for inves-

tigating the impact of culture difference on automated depression detection models.

1.4 Contribution and Novelty of This Thesis

We initially reviewed the current research on Al for depression screening. This review
is unique in that it uses the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) guidelines for extensive and rigorous evaluation of the latest
research findings. By synthesizing and analyzing recently published data, this review
offers important insights into the current state of the field and identifies key areas for
future research.

Our first original research proposes an automated depression diagnosis system that
uses prosodic and semantic features to predict depression levels. We combine Bi-
LSTM and TD-CNN models to achieve this. This is the first time that a time-
distributed CNN has been used to extract temporal information from the output of
an LSTM encoder. Our model can predict depression levels for a patient-independent
audio or text feature sequence of any length, as long as the number of features meets
our specification. Our system provides a series of estimations of depression severity
based on the audio/text feature, which are merged through a major voting algorithm
to produce a patient-level depression severity prediction. Unlike previous articles,
our model does not require audio/text feature sequences of the same length. We
use the bidirectional LSTM model to learn long-term bidirectional dependencies in
audio and text feature sequences, and the time-distributed CNN architecture to learn

the spatial features of data. By combining the strengths of both models, our hybrid



LSTM and TD-CNN model performs well in learning the spatiotemporal sequence.
Our audio and text models achieved patient-independent F; scores of 0.9870 and
0.9709, respectively, on the test partition of the DAIC-WOZ dataset. The fused
multimodality model achieved the best F} score of 0.9580 on the same dataset.

Our second research focuses on investigating the effectiveness of semantic and
prosodic features in evaluating depression risk in other languages. To ensure a high-
quality dataset, we conducted interviews in Chinese between clinicians and outpa-
tients, and evaluated patients using the Montgomery-Asberg Depression Rating Scale
(MADRS) [53]. We extracted audio features, such as formant frequency F, and Nor-
malized Amplitude Quotient (NAQ), using the COVAREP toolbox, and transcribed
the interview recordings using an audio transcription application programming in-
terface (API) developed by iFlyTek [54]. Our dataset includes both the interview
recordings and their transcripts, making it the first multimodal clinical distress in-
terview corpus with over 100 subjects in Chinese. Our analysis shows that there is a
significant difference in audio duration and individual sentence word counts between
healthy and depressive patients, indicating that linguistic cues can be an effective
predictor of a subject’s mental state. We demonstrate that a subset of acoustic fea-
tures has strong discriminative ability in differentiating between healthy and mild
depression levels. To provide a benchmark for comparison, we present detailed ex-
perimental results and visual decision processes of depression assessment models. We
calculate the influence of each acoustic feature and list them in descending order,
providing new insights for physicians to focus on distinguishing depression severity

among patients.

1.5 Thesis Outline

This thesis is organized into five chapters. Chapter 1 provides an overview of the im-

portance of automated depression diagnosis and presents the research question and



objectives of this thesis. Additionally, this chapter highlights the contributions and
novelty of this work. Chapter 2 reviews the progress made in the field of automated
depression diagnosis, including the challenges and limitations of current approaches.
This chapter sets the stage for the subsequent chapters and provides context for the
research presented in this thesis. Chapter 3 focuses on depression detection and as-
sessment based on a public depression interview dataset. This chapter introduces
the dataset and presents our proposed multimodality fusion model for predicting the
presence and severity of depression. Chapter 4 presents the Chinese depression inter-
view corpus, the largest clinical depression interview dataset to date. We analyzed
this dataset and provide baseline results, which can serve as a benchmark for future
research. Finally, Chapter 5 summarizes the research presented in this thesis and dis-
cusses possible future work in the field of automated depression diagnosis. Through
this work, we hope to contribute to the development of more effective and accessible

methods for diagnosing depression.



Chapter 2

A Systematic Review on
Automated Clinical Depression
Diagnosis

In this chapter, we conducted a thorough review of studies from the past decade that
focused on using speech, text, and facial expression analysis to detect depression, as
defined by the Diagnostic and Statistical Manual (DSM-5). Following the PRISMA
guideline, we provide key details for each study, including participant numbers, clin-
ical assessment techniques, speech tasks, machine learning methods, metrics, and
other significant findings. Following the PRISMA guideline, we provide key details
for each study, including participant numbers, clinical assessment techniques, speech
tasks, machine learning methods, metrics, and other significant findings. We have
compiled this information into a database for easy reference, summarizing how dif-
ferent features are used to detect depression. Given the diversity in datasets, feature
extraction methods, and metrics in this field, we have outlined guidelines to ensure
reproducibility and generalizability when collecting data and training machine learn-
ing models across different situations. This chapter has been published as “A survey
on Automated Clinical Depression Diagnosis” in npj Mental Health Research Res 2,

20 (2023), doi: 10.1038/s44184-023-00040-z.
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2.1 Inclusion Criteria and Literature Search

The PRISMA guidelines were followed in this literature review, as shown in Figure
2.1. Our goal was to search for articles published in the last ten years that included
artificial intelligence methods for predicting the presence or severity of major depres-
sive disorder by analyzing acoustic, semantic and facial landmarks. Google Scholar
was used as the search engine for articles from 2012 to the present, queried between
July 20, 2022, and May 20, 2023, excluding case studies, studies that solely used per-
ceptual evaluation of speech, studies without a control group or clinical depression
rating scales, non-peer-reviewed preprint and theses, and articles published before
2022 and having fewer citations than years of publication (e.g. articles published in
2019 with three citations, or articles published in 2017 with five citations would be
included). We excluded certain articles that lacked comprehensive methodology or
detailed results. Additionally, we encountered cases where articles were published
in both journals and conference proceedings, covering similar topics, methods, and
results. Furthermore, some articles only focused on proposing methods for feature
extraction without incorporating the training of models for depression detection. The
search terms used to find relevant articles were: “allintitle:((”depression” OR "major
depressive disorder”) + (acoustic OR acoustical OR speech OR voice OR vocal OR
audio OR pitch OR prosody OR prosodic OR vowel) + (automated OR behavioural
OR measures OR diagnosis)).” Articles related to depression caused by Parkinson’s
Disease, autism, and substance overdose disorders were excluded. Replacement of the
acoustic feature with the semantic feature and facial landmarks in the command re-
sulted in the following search term with associated features: “allintitle:((”depression”
OR "major depressive disorder”) + (semantic OR text OR interview OR transcript
OR social media) + (automated OR behavioural OR measures OR diagnosis))” and
“allintitle:(("depression” OR "major depressive disorder”) + (facial expression OR

visual OR facial features OR facial landmarks OR facial muscles)+ (automated OR
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Figure 2.1: PRISMA flow diagram of study inclusion and exclusion criteria in this
review.
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Table 2.1: Summary of Literature Review Results

Modality Articles Median dataset size (range) Clinical assessment Predictive models
Acoustic 140 189 36 140
Semantic 99 1046 2 81

Facial landmarks 25 49 16 21

behavioural OR measures OR diagnosis)).”

Information extraction was performed by reading the title, abstract and conclu-
sion. The following information was synthesized from each article: mental disorders,
number of subjects, age range, optimal model, best metrics, type of validation and
predictive features. Due to the limited number of studies we were able to review and
include in this review, we only searched for keywords in the titles of articles rather
than in other sections. The screening process of the articles involved reading the title
and abstract. Only articles that were relevant to using machine learning to detect
depression and had ”"machine learning” or related terms in the title were included,
and the others were excluded. Our study may not have captured all relevant arti-
cles on this topic, and other studies not focused specifically on automated depression

diagnosis using machine learning methods may have been missed.

2.2 Results

264 studies were included in the review. Table 2.1 summarizes the search results.
Synthesized information can be found online https://bit.ly/3DBQtZk, https://bit.
ly/43Q6Yvy and https://bit.ly /441KaPv, which can be extended by adding new
studies on a blank row or fields on a blank column. Previous review and datasets-

only articles were included in this study but were not included in Table 2.1.
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Figure 2.2: Synthesis of acoustic feature analysis in major depressive disorder. Acous-
tic features are sorted, such as vocal fold source features (blue), vocal tract filter
features (red), spectral features (purple), and features related to prosody or melody
(black). Features that are significantly higher in a psychiatric group than healthy
controls or that correlate positively with the depression level receive a score of 1
(red), features that are lower or correlate negatively receive a score of -1 (blue), and
nonsignificant or contradicting findings receive a score of 0 (gray). Features not stud-
ied in any studies are blank.
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2.2.1 Predictive Acoustic Features in Major Depressive Dis-
order

The study of speech patterns has been a research topic in identifying indicators of
mental disorders since the 1920s. Emil Kraepelin, the founder of modern scientific
psychiatry, reported that the voices of depressed patients were lower in pitch, sound
intensity, and speech rate, and instead tend to be monotonous and hesitant, with
shuttering and whispering [55]. Unlike other behavioural features like EEG and
ECG, speech expresses real emotion and thought more directly, making it harder
for patients to hide symptoms. Moreover, acoustic features can be extracted across
different languages, which is important for languages without pre-trained natural lan-
guage processing models. In addition, speech recordings can be easily collected with
smartphones and laptop computers instead of complex and costly equipment. With
the advancements in speech recognition, especially its application for electronic medi-
cal records, speech recording will become more accessible for research purposes. With
the publicly available code provided by Low et al. [56], we created Figure 2.2, which
provides a synthesis of the acoustic features investigated using machine learning. The
table shows the acoustic features found to be statistically different between the group
with a mental disorder and the healthy control group or highly correlated with a
diagnostic rating scale. Each cell in Figure 2.2 represents the correlation between a
specific acoustic feature and depression. For example, an acoustic feature that corre-
lates positively with the disorder severity would be marked with a red dot, a negative
correlation with a blue dot, and a non-significant feature with a grey dot.

Table 2.2 provides an overview of the key findings from previous studies on au-
tomated depression detection using acoustic features. One common finding among
the studies is the relationship between acoustic volume and depression. Cummins
et al. [57-59] found that as the level of depression increases, the acoustic volume

significantly decreases, indicating a potential acoustic marker for depression.
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Another notable finding is the influence of gender (biological sex) on acoustic fea-
tures related to depression. Cummins, Morales and Vicsi et al [60-62] proposed gender
(biological sex)-dependent formant features that outperformed acoustic-only features
in depression detection. This suggests that gender-specific acoustic characteristics
may play a role in accurately detecting depression. Kiss et al. [63] highlighted the
importance of speech rate, articulation rate, pause lengths, and formant frequency
in detecting depression. They found that these acoustic features differed between
individuals with depression and the control group, suggesting potential utility in au-
tomated depression detection. Stasak et al. [64] proposed that depressed individuals
tend to use phonemes that require less effort and demonstrate decreased articulatory
precision. These findings indicate that analyzing articulatory characteristics could
provide valuable insights for depression detection.

It is important to note that these findings are based on previous studies and should
be interpreted within the context of their respective methodologies and limitations.
Further research is needed to validate and refine the use of these acoustic features for

automated depression detection.

2.2.2 Predictive Semantic Features in Major Depressive Dis-
order

Conventionally, depression is detected using clinical depression rating scales adminis-
tered by clinicians. However, these rating scales have limitations, as responses can be
influenced by factors such as the patient’s emotional state, relationship with the clin-
ician, and patient self-bias (e.g. participants may be more likely to exaggerate their
symptoms) [67]. With the advancement of machine learning applied to text data from
social media, new methods have emerged to address these limitations. Social media
such as Twitter, Facebook and Reddit provide a wealth of information about indi-
viduals’ feelings, thoughts and activities. Machine learning, especially text mining

and sentiment analysis techniques, have become more accurate and intelligent, aid-
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Table 2.2: Predictive Acoustic Features in Prior Research Publications

Study

Main Findings

[57]

Decreased acoustic volume

More concentrated MFCC
space

Gender (biological sex)-
dependent formant features

Fundamental frequency

Pronoun use and
negatively-valenced words

Tenser voice

Jitter and shimmer values
of vowels

First and second formant
frequencies

[66]

Seeking care for voice prob-
lem

[58]

Acoustic volume

Probabilistic acoustic vol-
ume slope

[59]

Lower voices

Variance in voice pitch

[63]

Articulation rate
Speech rate
Pause lengths

Formant frequency

Use phonemes that require
less effort

Articulatory precision
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Figure 2.3: Synthesis of semantic feature analysis in major depressive disorder. Fea-
tures that are significantly higher in a psychiatric group than healthy controls or that
correlate positively with the depression level receive a score of 1 (red), features that
are lower or correlate negatively receive a score of -1 (blue), and findings without re-
porting their changes receive a score of 0 (gray). Features not studied in any studies
are blank.

18



ing mental healthcare providers to detect depression [68-74]. This summary reviews
studies on automated depression detection using language cues. Previous studies
identified depression based on clinician diagnosis, patient self-reported mental status
and online forum memberships. Clinician diagnosis means that depression levels were
determined by a clinician based on interview transcripts or online posts. Among the
99 studies using language cues, only two identified depression based on the clinician
diagnosis [75, 76], while 77 studies used self-reported depression rating scales. The
remaining 20 studies did not report which criterion were used to determine depression

levels.
Social Media and Depression

Table 2.3 provides a summary of key findings from various studies examining the
relationship between social media usage and depression. These studies employ a range
of techniques and models to improve the detection and understanding of depression
based on social media data. Several studies highlight increased social media usage
among individuals with depression. Various advanced models, such as GRU models
with knowledge-aware dot-product attention [77] and DeepBoSE [78], demonstrate
improved performance in depression detection compared to conventional methods.
Additionally, semantic mapping of emoticons [79] and the application of semantic
role labeling [80] are proposed as techniques to enhance detection accuracy. These
findings highlight the potential of leveraging machine learning and natural language
processing techniques to gain insights into mental health conditions through social
media data.

Furthermore, the studies presented in the table emphasize the importance of con-
sidering multimodal data, user characteristics, and sentiment analysis for a compre-
hensive understanding of depression [81, 82]. They also propose the use of lexicon
features and emotional information capture to improve depression detection [83, 84].

The fusion of lexical features and the development of bipolar feature vectors demon-
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strate promising results in enhancing prediction effectiveness [85, 86]. Additionally,
the studies suggest the potential of analyzing social signals and user timelines to
capture semantic features for depression detection [87, 88].

By synthesizing these findings, we have gained a deeper understanding of the po-
tential of social media data in detecting and understanding depression. These insights
can inform the development of effective mental health interventions, improve clinical
practice, and contribute to the responsible and ethical usage of Al in this domain.
Overall, the findings contribute to our understanding of the complex relationship be-
tween social media use and depression, providing valuable insights for mental health

promotion and clinical practice.
Machine Learning Models for Depression Detection

Automated depression detection algorithms have been a subject of study by various
researchers. Table 2.4 provides a summary of these studies, highlighting machine
learning models and performance metrics employed. Salas et al. conducted a com-
prehensive review of previous studies that utilized language cues and found that word
embedding was the most commonly used linguistic feature extraction method, while
the support vector machine was the most prominent machine learning model [113].
[75, 76, 114, 115] focused on using machine learning methods to detect depressive
symptoms in social media data, highlighting their potential as complementary tools
in public mental health practice.

However, some weaknesses and variations in the literature have been raised. Mc-
Crae et al. conducted a review of studies examining the relationship between social
media use and depression symptoms, highlighting the need for comparative analysis
due to variations in methods, sample sizes, and results across studies [116]. They
also suggested that future research should incorporate longitudinal analysis, as most
studies were cross-sectional. Heffer et al. found no predictive association between so-

cial media use and depressive symptoms over time, challenging the assumption that
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Table 2.3: Exploring the Predictive Relationship Between Social Media Usage and

Depression

Study Main findings

[89-103] Social media usage increases among depressive individuals

[79] Semantic mapping of emoticons improves the performance.

[80] Future work needs to involve applying semantic role labelling to
obtain better results.

78] DeepBoSE outperforms conventional Bag-of-Features(BoF) repre-
sentations.

(83, 104] Proposed depression lexicons that distinguish depressive individuals.

[87] Analyzing users’ social signals could be considered for further anal-
ysis.

[105] Topic modeling features such as liked tweets can be useful.

[85] Fused the lexical features using a correlation-based metric to enhance
prediction effectiveness.

[84] Capture deep emotional information from the input embeddings with
a pre-trained TextCNN.

88] The model captures semantic features from user timelines for de-
pression detection.

(81, 106] User characteristics and sentiment analysis improved depression de-
tection performance.

[107-111] Depressed users exhibit reduced online activities, increased negative
sentiment, and self-focused pronoun usage.

[112] Depressed individuals are more likely to compare themselves to oth-

ers and dislike being tagged in self-perceived unflattering pictures.
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social media use leads to depressive symptoms [117]. These contrasting perspectives
call for further investigation and highlight the complexity of the relationship between
social media use and depression.

In conclusion, while automated depression detection algorithms show promise, the
field still faces challenges in terms of standardization, methodological variations, and
the need for longitudinal analysis. Future research should address these limitations,
conduct a comparative analysis, and explore the intricate mechanisms underlying
the relationship between social media use and depression. Additionally, ethical con-
siderations and the potential impact of using social media data for mental health
assessment should be carefully examined. Advancements in this field can contribute
to the development of effective and reliable tools for early detection and intervention

in depression.

2.2.3 Predictive Facial Features in Major Depressive Disor-
der

Table 2.5 provides a summary of previous studies on automated depression detection
using facial features. The studies examined various aspects of facial expressions and
their relationship to depression. Among the 18 studies that utilized facial landmark
features, 13 studies identified depression based on clinician diagnosis, while four stud-
ies used self-report depression rating scales. One study did not report the specific
criterion used to determine depression levels.

In [127-131], researchers proposed new architectures, analyzed facial expressions in
videos, and demonstrated the effectiveness of facial analysis for automated depression
diagnosis, achieving an F1 score of over 80%. Hunter et al. [132] evaluated the
eye-tracking patterns of individuals with non-clinical depressive symptomatology in
processing emotional expressions, revealing distinct differences compared to healthy
individuals.

In addition to the studies mentioned in the original paragraph, several more recent
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Table 2.4: Analyzing the Efficacy of Machine Learning Models in Detecting Depres-
sion through Social Media Data

Study Main findings

[75] Achieved 68% accuracy and 72% precision in identifying clinical de-
pressive symptoms using a semi-supervised statistical model.

[76] Proposed a new computational model and achieved a recall of 0.904,
precision of 0.909, and F1 score of 0.912.

[118-120] Demonstrated that a multi-kernel support vector machine is the
most appropriate approach to identifying depression in individuals
using social media.

[121] Latent semantic analysis shows a significant difference in writing
topics depending on users’ mental health.

[122] A word2vec pre-trained word embedding and random forest classifier
achieved their best performance with a 0.877 F} score.

[123] Fusion model can detect moderate depression or higher with 0.92
recall and 0.69 precision.

[124] Proposed a system to effectively detect depression using social media
content with an accuracy of 88% and F} score of 93%.

[104] Application accurately identifies indicators of depression in Facebook
users with 94% accuracy.

[72] Achieved 91% accuracy and F; score of 93% with a multi-layer per-
ceptron algorithm and combined features.

[125] Achieved an accuracy, recall, and precision of 91.7% using a combi-
nation of text-based features and machine learning techniques.

[126] Facebook behaviors can be used to predict depression levels with an

accuracy of 85% and F} score of 88.9%.
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Figure 2.4: Synthesis of visual feature analysis in major depressive disorder. Features
that are significantly higher in a psychiatric group than healthy controls or that
correlate positively with the depression level receive a score of 1 (red), features that
are lower or correlate negatively receive a score of -1 (blue), and findings without
reporting their changes receive a score of 0 (gray). Features not studied in any
studies are blank.
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studies provide valuable insights into automated depression detection using facial
features. Hamid et al. [133] designed a hybrid model that integrates electroen-
cephalogram (EEG) data and facial features, surpassing existing diagnosis systems.
Shangguan et al. [134] demonstrated that video stimuli and an aggregation method
can be effective for automatic depression detection.

Overall, the summarized studies highlight the significance of facial expressions
in automated depression detection. They showcase various approaches, including
deep learning models, multimodal techniques, and analysis of specific facial features.
These findings contribute to the understanding of how facial expressions can serve as

valuable indicators for detecting and diagnosing depression.

2.3 Discussions

In this part, we're not just reviewing, but also suggesting ways to make previous stud-
ies better. Most studies in this literature review adopted automated speech feature
extraction to assess major depressive disorder. This is probably due to the Audio/Vi-
sual Emotion Challenge Workshop (AVEC) competitions, which provide automated
extracted audio and video features to predict the severity of these conditions. Many
other studies then used the public datasets in competitions like Distress Analysis In-
terview Corpus Wizard of Oz (DAIC-WOZ). Of the 264 studies in this review, 39%
used DAIC-WOZ or AVEC datasets. Majority of the studies used some form of cross-
validation for evaluating the performance of the trained models. However, only some
studies used held-out test sets, which means that most models’ reported performance
may not generalize well. Without a held-out test set, performance may drop from the
development set to the test set, as has been observed in AVEC competitions [32, 139,
140]. In contrast, models that used held-out test sets generally performed better on

the test set [7].
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Table 2.5: Exploring the Predictive Relationship Between Facial Expressions and

Depression

Study Main Findings

[127-129] A deep residual regression model to evaluate depression levels using
enhancement techniques can reduce the influence of external factors
on the image, significantly improving prediction performance.

[130] Proposed Part-and-Relation Attention Network for depression recog-
nition, which outperforms state-of-the-art models with smaller pre-
diction errors and higher stability.

[133] Designed a model for depression detection using electroencephalo-
gram (EEG) and facial features. A hybrid model is proposed, out-
performing existing diagnosis systems.

[131, 135, 136] A multimodal model with high performance on the AVEC 2013,
AVEC 2014, and Emotion-Gait datasets. They concluded that the
visual model is accurate.

[134] An aggregation method which achieved comparable performance to
3D models with fewer parameters. The study suggests that video
stimuli can be used for automatic depression detection.

(132, 137, 138] Significant differences were observed in facial landmark features (e.g.

average right nose (speed), median left ear top (speed), and left
pupil-right pupil positions), and uniformed local binary pattern be-
tween healthy and depressive volunteers.

2.3.1 Optimizing Data Collection Strategies: Recommenda-
tions and Future Directions

The datasets used in automated depression detection studies vary greatly in size, par-

ticipants’ demographics, depression rating scales, the task used to elicit emotion, and

the interview environment. Therefore, the performance of a detection model can be

misleading if the dataset used for training is not representative of the studied popula-

tion. In this review, we discussed the data collection strategies used in these studies

to elicit emotions, record videos, and maintain participant privacy while avoiding

confounding factors such as clinician questions and patient responses.
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2.3.2 Identifying the Presence of Comorbidity

Many previous studies have not reported comorbidities [141] which presents addi-
tional challenges when developing automated depression detection models. However,
Scherer et al. discovered a strong association (Pearson’s r > 0.8) between scores
for depression on the PHQ-9 scale and scores for PTSD on the PTSD Checklist —
Civilian Version (PCL-C) in the DAIC-WOZ dataset [142]. Only a few articles stated
that they excluded individuals with comorbidities from their study, such as Pan et al.
[143]. To improve the data quality through consideration of comorbidities, researchers
should use multiple mental disorder rating scales when collecting data. Additionally,
researchers should develop and compare models trained with and without comorbidi-

ties to better understand the impact on the model performance.

2.3.3 Factors to Consider in Recruiting Control Groups

When selecting control groups for depression studies, it is important to ensure that
individuals in the control group do not match any diagnostic criteria for other patho-
logical conditions. For example, an individual may not be assessed as having depres-
sion based on their depression rating scale, but they may be assessed as suffering
from PTSD that affects their speech patterns. Age, biological sex, first language, co-
morbidities, brain injury, respiratory disorders, and drug abuse can also affect speech
and facial landmark patterns. In addition, variables such as education level, race,
medication, and biological sex [144-146] can also affect speech patterns. Hert et al.
have reported that antipsychotic therapies may lead to dyskinesia, an involuntary
movement of facial muscles that affects speech and facial landmarks [147]. There-
fore, individuals with a history of antidepressant medication should be excluded or
reported in depression detection studies. Other variables such as biological sex, age,
and education level can be adjusted via propensity score matching if they are statis-

tically different between the depressive and healthy control groups.
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2.3.4 Self-report Depression Rating Scales: Pros and Cons
in Depression Diagnosis
The traditional method for diagnosing depression is via a clinical evaluation by a
registered psychologist, which is considered the gold standard compared to self-report
depression rating scales. However, clinical diagnosis can be costly and subject to the
experience and expertise of the clinician, leading to lower inter-rater reliability [50].
Most studies included in this review relied on self-reporting depression rating scales
instead of clinical evaluation, such as AVEC [145, 146] and DAIC-WOZ [144]. When
using these self-rating scales, the task becomes predicting the self-report rating scale
rather than a clinical diagnosis, which may not align with a clinician’s evaluation. On
the other hand, using open-source datasets for research can improve reproducibility

and objectively compare model performance.

2.3.5 Eliciting Emotions in Depression Diagnosis

Choosing appropriate tasks for eliciting emotions is crucial, as specific features may be
linked to certain depression rating scales but not others. In Table 2.6, we summarize
the tasks used in previous articles and their advantages. Kane et al. proposed that
sustained vowels are optimal for estimating glottal source features because it can be
difficult to identify voiced sections in free speech [148]. Scherer et al. demonstrated
that the voices of participants with moderate to severe depression are tenser than
those of healthy participants [149]. Alghowinem et al. proposed that spontaneous
speech leads to better results for most features than reading speech and that the first
few seconds of speech perform better than the entire recording [150]. Another inter-
esting approach to emotion elicitation is to use virtual agents for interviews, which can
reduce data collection costs and can be less stressful for participants when discussing
their symptoms. Multiple articles have reported successes in developing virtual inter-

viewers [151-153], and the widely used AVEC challenges have also adopted virtual
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interviewers.

2.3.6 Diarization of Speech Segments in Interview Record-
ings: Methods and Considerations

It is common practice to separate the speech segments of the participants from in-
terview recordings to train depression prediction models. This process is commonly
referred to as diarization. The participant’s speech can be extracted using a micro-
phone next to each speaker. If participants have headsets with lapel microphones
during the interview, their voiced sections can be easily extracted, which may make
some participants uncomfortable. Desk microphones can also be used, but they can
introduce confounds because they are not targeted and make it difficult to separate
participants’ speech in the data processing. We suggest using two desk microphones
next to each speaker with a sound barrier between them. It is important to record
all metadata after the interview in a separate spreadsheet, such as participant ID,

group, task, and other demographic information.

2.3.7 Ensuring Privacy in Interview Recordings

Clinicians should obtain verbal or written consent from the participants before inter-
viewing. Participants must be informed that their interview recordings and demo-
graphic information may be distributed, pre-processed, and used for training machine
learning models for academic research purposes. Even if participants grant permis-
sion for their data to be further processed, researchers must minimize the risk of
data leakage because the interview audio (or video) recordings may contain sensitive
information. To address this, researchers can share only the automated extracted
speech and facial features rather than the raw interview recordings. If hackers were
to gain access to the interview data, it would be impossible to reconstruct the origi-
nal interview recordings using only the automated extracted features. Additionally,

researchers can train the depression prediction model in real-time or use bone conduc-
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tion microphones, which only record acoustic features without speech content [154],
but this limits researchers to training semantic models. Edge computing can also
be a solution to improve privacy by allowing computation to be performed on the
participants’ devices, with only the trained models being returned to the researchers,

not the data.

2.3.8 Data Preprocessing and Automated Feature Extraction

Automatic speech recognition (ASR) can transcribe speech into transcripts for train-
ing semantic-based depression prediction models. ASR can also filter unvoiced sec-
tions and noise in the interview audio (or video) recordings. In most in-person in-
terviews, two speakers are present, and the clinicians’ segments can be discarded if
the ASR system includes automatic diarization. To prevent overfitting, techniques
like dimensionality reduction or feature selection should be applied to the training
and test sets during preprocessing. This will help ensure that the model is not overly
influenced by the specific characteristics of the training data and can be generalized
to new data.

The most commonly used automated feature extraction tools in the studies we
reviewed were openSMILE, COVAREP, pyAudioAnalysis, and openEAR. To ensure
the deep learning models converge, it is recommended to standardize or normalize
features as they may be in different scales. Before training the model, we recom-
mend performing exploratory data analysis or visualization to better understand how
these features characterize mental disorders. This can help inform the selection and

preprocessing of features, as well as the design of the model.

2.3.9 Evaluate Models with Small Datasets: Bootstrapping
and K-fold Cross-validation

To avoid overfitting the model on the test set, we typically evaluate the trained model

on the held-out test set only once. However, when training a model for predicting de-
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Table 2.6: A Comparative Study of Different Speech-eliciting Tasks

Task and examples

Advantages

Constrained

Repeating "PATAKA” [64, 155]

Sustained vowel [156]

Counting [157]

Reading

e The "Nordwind” passage [30, 158]

e Rainbow passage [156]

e Emotion-evoking movie clips [159]

Capture speech sequencing;
A proxy for lung capacity

Measure muscle weakness
and aspects of move control

Counting from 1 to 10 al-
lows mroe control over acous-
tic patterns

Paragraph frequently used in
the gathering of depression-
related speech

Includes all the sounds used
in English and reflects nor-
mal speech patterns

Greater ability to regulate
emotions that are provoked

Free speech

Monologue

e Describing, memory recalling [160]

Dialogue

e Semi-structured interviews [144]

e Phone conversations [161]

More spontaneous than read-
ing speech

Frequently used in medical
facilities

Only the interviewee is
recorded; no need to identify
the speaker
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pression using a small dataset (e.g. around 100 data points), which is commonly seen
in the medical field, a 20% held-out test set or K-fold cross-validation can decrease
the number of samples available for training. In addition, a small test set is unlikely
to represent the entire population accurately. As a result, we suggest using repeated
bootstrapping to evaluate the depression prediction model, which provides a distribu-
tion of performance metrics with mean and standard deviation. However, given the
computational complexity of deep learning models, the bootstrapping method may
not be feasible. When working with a small dataset, K-fold cross-validation can be
a viable alternative to bootstrapping, as deep learning models tend to need a large

number of data points which reduces the need for bootstrapping.

2.3.10 Evaluating the Performance of Depression Prediction:
Best Practices and Considerations

Performing better than chance does not indicate the model learned from the training
data, and the resulting metrics must be generalizable and statistically significant for
clinical use. Aloshban et al. demonstrated that their accuracy is always better than
chance to a statistically significant extent [162]. However, to further prove generaliz-
ability, we suggest performing a permutation test in future works, where models are
trained on permutated labels to evaluate the model’s performance based on mistaken
labels, which is often better than chance. A statistical test can then determine if
the difference between the permuted and non-permuted scores is statistically signifi-
cant. On the other hand, clinical datasets can be imbalanced, with a greater number
of healthy cases compared to the population of individuals with depression. In this
case, using the accuracy of the classification model as the sole metric to evaluate its
performance may not be objective since it will be biased towards predicting every
sample as negative. To evaluate model performance more objectively, metrics such as
the F score, precision, recall, and area under the curve (AUC) should be considered.

These metrics account for class imbalance and provide a more balanced view of model
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performance. Saito et al. have shown that the precision-recall curve is more useful
than the receiver operating characteristic curve when evaluating binary classifiers on
imbalanced datasets [163]. In addition to the precision-recall curve, metrics such
as root mean square error (RMSE), mean square error (MSE), and the coefficient
of determination (r?) are commonly used to evaluate the performance of regression
models for predicting depression scores. In the AVEC competition, the performance
of baseline models was evaluated using the concordance correlation coefficient (CCC),
which takes into account changes in scale and includes measures of both precision and
accuracy [164]. Tt is generally helpful for other researchers to see a range of metrics
when evaluating the performance of a model, as this allows for more objective com-
parison. A model’s performance must be generalizable and statistically significant to

be truly useful in a clinical setting.

2.3.11 Explainable Depression Detection Model

Recent evidence suggests that individuals may lack trust in black box models and that
these models may cause harm in high-stakes decision-making processes [165-167]. As
a result, researchers are exploring ways to explain the decision-making processes of al-
gorithms better [168-170] through publications and software packages implement ex-
plainable machine learning models [170, 171]. By providing explanations of a model’s
feature contributions, clinicians can gain a better understanding of depression and
improve the model itself. Once high-impact features have been identified, we can
retrain the model using only these features to evaluate their performance. In some of
the reviewed articles, we observed that while the studies presented excellent feature
engineering for distinguishing between groups, they lacked quantitative analysis to
support their findings. We suggest linking changes in the automated extraction of
features to mental disorder symptoms to provide a more comprehensive view of the

model’s performance.
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2.3.12 Ensuring Reproducibility in Automated Depression
Detection

Reproducibility is a critical issue in machine learning, particularly when artificial in-
telligence is applied to healthcare [172, 173]. One obstacle to reproducing previous
studies is that clinical datasets are not always available for redistribution. As we
mentioned in Section 2.3.7, automated extracted features can be shared without vio-
lating privacy concerns. However, sharing the code used for training and evaluating
the model is also important. Even when the code and data are publicly available,
other researchers may still have difficulty reproducing the results due to differences
in the software environment. To address these issues, we suggest that researchers
use containers, such as Docker, which include the data, code, and environment in one
package that can be easily redistributed. This will make it easier for other researchers
to reproduce the results, ultimately accelerating the advancement of automated de-

pression detection.

2.4 Future Work

2.4.1 Ethical Considerations in Automated Depression De-
tection

Automated depression detection can benefit society by reducing the workload of the
healthcare system, preventing suicidal or self-harm behaviours, and enabling law en-
forcement authorities to track abnormal behaviours. However, the use of automated
depression detection also raises some ethical concerns. For example, insurance compa-
nies and employers may use the results to evaluate candidates without their knowledge
or consent and reject them if a mental disorder is present or likely to develop in the
future. Additionally, it can be difficult for individuals to fully understand the im-
plications of consent forms, which can further complicate the ethical considerations

surrounding automated depression detection [174]. To ensure that automated depres-
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sion detection is used ethically in clinical settings, researchers should provide clear
and understandable explanations of how the collected data will be used. Participants
should also have the right to revoke permission to use their data at any time. Like
other developing technologies, these systems may be vulnerable to abuse and have
unexpected side effects. As researchers, engineers, and clinicians, it is our responsi-
bility to educate the public and policymakers about the potential benefits and harms
of automated depression detection to both prevent abuse and further advance these

techniques, which have the potential to help many people.

2.4.2 Leveraging Machine Learning for Advancing Psychia-
try
With this chapter, we aim to demonstrate the potential for psychiatry to benefit from
advances in machine learning. Many individuals have difficulty accessing qualified
mental healthcare or may be hesitant to seek psychotherapy due to stigmatization
[175]. Automated depression detection models can provide an accessible and efficient
method for early screening, which can help individuals determining that they may
need professional healthcare. Additionally, psychiatric visits often include interviews
that can be recorded in video or audio format, which provides a wealth of data that
can be used to associate mental health assessments with acoustic, semantic, and
facial features. By following the guidelines outlined in this section for collecting and
analyzing this data, we hope to enable new collaborations between clinicians and

machine learning engineers to advance our understanding of mental health disorders.

2.5 Conclusion

We reviewed 264 studies that measure acoustic, semantic and facial landmark features
to distinguish between individuals with and without mental health disorders using

either null hypothesis testing or predictive machine learning models. Our synthesis in-
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cludes significant and non-significant features across audio, text and facial modalities,
as well as those correlated with the severity of depression. We also provide guide-
lines on collecting data, preventing confounding factors, protecting privacy, selecting
speech-eliciting tasks, and improving machine learning model generalizability and re-
producibility. We also found a few studies have been conducted on post-traumatic
stress disorder, bipolar disorder and postpartum depression, thanks to open-access
research datasets provided by the AVEC and DAIC. Based on their proven effective-
ness, we encourage the collection of open datasets, particularly distributing datasets
through competitions. These are highly productive in advancing research in various
fields. While productivity is important, reproducibility is also critical. Since the
studies in this review involve building computational models, the associated data and
code should be shared, ideally through containers. This allows others to test the
claims made by these studies and contribute to the development of these models in a
collaborative manner. Moreover, conducting more research on multiple datasets may
help enhance the models’ generalizability and reconcile conflicting results regarding
crucial and predictive features. This approach could lead to more robust and reliable
conclusions about the nature of these disorders and their diagnosis and treatment.
Using multimodality features to train machine learning models holds promise for en-
hancing mental health evaluations and treatment. This approach aligns with the
principles of preventive and personalized diagnosis and treatment and could lead to

better outcomes for individuals with mental health conditions.
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Chapter 3

Prediction of Depression Severity
Based on the Prosodic and

Semantic Features with
Bidirectional LSTM and Time
Distributed CNN

We aim to address some limitations and gaps identified in previous studies. Based
on the insights gained from the literature review, we introduce a novel multimodality
automated depression diagnosis system that leverages prosodic and semantic features.
One advantage of our proposed model is its flexibility regarding input duration. Unlike
previous approaches that required input sequences to be of the same length, our
model can handle audio/text feature sequences of varying lengths. By bridging the
gap between existing research and our proposed methodology, we aim to contribute

to the advancement of automated depression diagnosis systems.

3.1 Introduction

Mental health disorder, such as depression, is considered one of the major challenges
facing global society. During the COVID-19 pandemic, the prevalence of depression
and anxiety is exacerbated in the general population [176-179]. By 2030, depression

will be the second major cause of disability worldwide and thus it can impose a heavy
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healthcare burden globally [180]. However, often the symptoms of depression are
not displayed directly. Many individuals often express their sadness and hopeless-
ness but without depression, whereas patients are usually reluctant to report their
conditions and receive treatment [181]. For instance, many people with depression
ignore or refuse to admit their emotional instability and physical health conditions.
The reason is that depression is a stigmatized disease, resulting in the depressive
population hiding or camouflaging their symptoms. Traditionally, a semi-structured
clinical interview based on Diagnostic Statistical Manual (DSM) criteria is the stan-
dard protocol for depression diagnosis [182] with self-test questionnaires such as the
Patient Health Questionnaire Depression Scale (PHQ) [183], Beck’s Depression Inven-
tory (BDI) [184] and Montgomery-Asberg Depression Rating Scale (MADRS) [185].
The PHQ-8 is an assessment form created to examine the existence of core depression
symptoms, such as fatigue and anxiety. The PHQ-8 scale shows high sensitivity and
specificity for diagnosing depression and other mental disorders among patients with
different languages and cultures[186]. These methods play a key role in diagnosing
depression, but the results are subject to physicians’ experience. Previous articles
argued that these clinical criteria, such as DSM and BDI, are not reliable enough
[187]. Diagnosis of depression is not the same as other medical conditions since gold
standards for mental disorders do not exist currently, which raises the likelihood of
misdiagnosis and finally leads to unexpected results [115, 188, 189]. However, most
depressed people do not have access to qualified psychological treatment due to eco-
nomic conditions (low-/mid-income population) or living constraints (in rural regions)
[190]. Therefore, it will be beneficial to develop a low-cost screening technique that
can be deployed in communities and operated by people without special training.
Early-stage mental disorder screening is also crucial for policymakers and security
agencies because someone with a mental health disorder could behave adversely to

other innocent people, such as massive shootings which are attributed to mental
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health disorders [52]. In the cyber world, we live now, it is very common to share
personal information, and concerns through the Internet, especially after the rise of
social media. This raises an opportunity since the contents on social media increase
the likelihood of detecting potential depression patients from a large population.

In this chapter, we propose a multimodality automated depression diagnosis system
with prosodic and semantic features to predict depression levels with the combination
of Bi-LSTM and TD-CNN models. To the best of our knowledge, it is the first time
that time-distributed CNN is adopted to further extract the temporal information
from the output of the LSTM encoder. Additionally, our proposed model does not
have a strict limitation of input duration, regardless of the number of frames, as long
as the number of features meets our specification, our model can always provide a
patient-independent depression prediction. The prediction is based on a specific text
or audio feature sequence. Given a specific participant with an audio/text feature
sequence of arbitrary length, our model provides a series of estimations of depres-
sion severity based on the audio/text feature. The set of predictions can be merged
through a major voting algorithm so that the final output of our model is a patient-
level depression severity prediction. This mitigates the problem that the audio/text
feature sequences are required to be the same in length in previous articles. LSTM
performs well in learning temporal information because of its recurrent structure. The
bidirectional LSTM model is used to learn long-term bidirectional dependencies in the
audio and text feature sequences because it has been proven to perform better than
a unidirectional LSTM model. The convolutional neural network (CNN) is a popu-
lar network architecture for learning the spatial features of data. A time-distributed
CNN architecture is obtained by having multiple CNN layers for Bi-LSTM output
features at each timestep. Given the complementary advantage of CNN and LSTM,
the hybrid model of LSTM and TD-CNN works well in learning the spatiotemporal

sequence. The best patient-independent F} score of the audio and text model is 0.9870
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and 0.9709, respectively, on the test partition of the DAIC-WOZ dataset. The fused
multimodality model achieved the best I} score of 0.9580 on the test partition of the
DAIC-WOZ dataset. This chapter has been published as ”Prediction of Depression
Severity Based on the Prosodic and Semantic Features With Bidirectional LSTM and
Time Distributed CNN,” in IEEE Transactions on Affective Computing, vol. 14, no.

3, pp. 2251-2265, 1 July-Sept. 2023, doi: 10.1109/TAFFC.2022.3154332.
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Figure 3.1: Block diagram of our proposed multimodality depression level prediction
algorithm given a specific example. Audio features are fed into the network through
the input layer. After batch normalization, the input data is fed into the Bi-LSTM and
time-distributed CNN block. In this proposed design, we have five time-distributed
CNN blocks followed by a single-layer Bi-LSTM. The detailed architecture of each
block is illustrated and explained in the remainder of this chapter.

3.2 Methods and Procedure

In this section, we briefly introduce the preliminary material we used for developing
the audio model, text model, and multimodality model. We also discuss the dataset

and framework for training and evaluating our proposed model.
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3.2.1 Distress Analysis Interview Corpus-Wizard of Oz (DAIC-
WOZ)

We adopted the Distress Analysis Interview Corpus-Wizard-of-oz (DAIC-WOZ) dataset
for training and testing. The corpus consists of 189 recorded clinical interviews and
transcripts as well as facial features from 189 subjects. The audio recordings were
taken of semi-structured interviews between the participants and a virtual interviewer
called Ellie, an animated role controlled by a human interviewer. The average audio
duration of 189 subjects is 974 seconds. Subjects were solicited from the Greater Los
Angeles Metropolitan region from two different populations. One was from civilians;
the other was from veterans of the U.S armed forces. Subjects were characterized as
depression, Post-Traumatic Stress Disorder (PTSD), and anxiety based on the self-
report questionnaire during the data collection [144]. Only the interview recordings
of the depression group were released for academic purposes. The gender (biologi-
cal sex) distribution over all five groups as well as the dataset partition is shown in
Table 3.2. In the training set, there are 44 female subjects (27 without significant de-
pression symptoms, 17 with depression symptoms) and 63 male subjects (49 without
significant depression symptoms, 14 with depression symptoms). In the validation
set, there are 19 female subjects (12 without significant depression symptoms, 7 with
depression symptoms) and 16 male subjects (11 without significant depression symp-
toms, 5 with depression symptoms). In the test set, there are 24 female subjects
(17 without significant depression symptoms, 7 with depression symptoms) and 23
male subjects (16 without significant depression symptoms, 7 with depression symp-
toms). All interviews were transcribed verbatim into English. The interviews lasted
from 5 to 20 minutes involving three phases: it started with neutral questions, which
aimed to ensure subjects being able to calm down; the interview then proceeded into
a targeted phase, and the questions asked by the interviewer were more related to

the symptoms of depression and PTSD. Finally, the interview terminated with the
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annealing phase, which assisted the participants to get rid of the distressed state.
The PHQ-8, ranging from 0 to 24, determines the severity of the mental disorder.
Subjects were divided into five groups: healthy (PHQ-8<5), mild (5<PHQ-8<10),
moderate (10<PHQ-8<15), moderately severe (15<PHQ-8 <20), and severe (PHQ-8
>20) [191]. Table 3.1 shows a sample transcript in the DAIC-WOZ dataset, which
contains four fields: beginning and end timestamp of the utterance, the speaker ID,
and sentence content. In the remaining part of this chapter, the training, validation
and test set are split by the instruction from the DAIC-WOZ dataset independently,
which ensures all the subjects only appear in one of the above partitions.

Table 3.1: The Showcase of a Participant’s Transcript

Start time Stop time Speaker Utterance

87.322 89.592 Ellie So how are
you doing
today?

89.71 91.93 Participant I'm not bad
I'm a little

tired but okay.

92.945 93.585 Ellie That’s good.

94.257 95.577 Ellie Where are you
from origi-
nally?

95.78 97.14 Participant Uh from Saint
Louis, Mis-
souri.

3.2.2 Audio Features and Models

In this section, the audio features are extracted by COVAREP [192], which can be
divided into three categories: glottal flow features (NAQ, QOQ, H1-H2, PSP, MDQ,

Peak slope, Rd), voice quality features (Fp, VUV), and spectral features (MCEP,
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Table 3.2: Gender (biological sex) Distribution Over All Groups and Dataset Parti-
tions

Dataset profile for depression level classification

Female Male Female Male Female Male

#Healthy 7 9 2 3 3 2
#Mild 12 25 7 6 9 11
#Moderate 10 20 5 2 7 3
#Moderately severe 10 5 2 2 1 4
#Severe 5 4 3 3 4 3

Dataset profile for depression detection

#Subjects w/o significant symptom (PHQ-8<10) 27 49 12 11 17 16
#Subjects w/ significant symptom (PHQ-8>10) 17 14 7 5 7 7

HMPDM, HMPDD). Normalized Amplitude Quotient (NAQ) quantifies the time-
based feature of the speaker by amplitude-domain measurements calculated from the
glottal flow and its first derivative [193, 194], Quasi Open Quotient (QOQ), which is
a correlate of the open quotient (OQ) which involves the derivation of the quasi-open
phase based on the amplitude of the glottal phase [195, 196], the amplitude differ-
ence of the first two harmonics of the differentiated glottal source spectrum (H1H2)
[193], Parabolic Spectral Parameter (PSP), which is based on the quantification of the
spectral decay of the speaker [197], and Maxima Dispersion Quotient (MDQ), which
is designed to quantify the maxima dispersion as a result of phonation type moves
towards a breathier phonation [198, 199]. Spectral features consist of Mel-Cepstral
Coefficients (MCEPO0-24), which is a representation of the short-term power spectrum
of a sound [32], harmonic model and phase distortion mean (HMPDMO0-24) and de-
viation (HMPDDO0-12). Thus, there are 74 audio features in total. Each subject is
represented in the COVAREP features, X; € RT*¥ where T denotes the time dimen-
sion, which is proportional to the duration of the audio. Each 10 milliseconds frame of

audio was transformed into an audio feature vector. F' denotes the number of features
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COVAREP extracted for each frame. Among the 74 audio features, the entry “VUV”
indicates whether the audio features are extracted from the audible or silent part of
the original interview recording. Only those audio features where "VUV” is 1 can be
the input to the following models. Among all the 189 subjects in the dataset, audio
features are in an average of 35850 frames (rows) and a standard deviation of 15791
frames (rows). For each subject, we concatenated a constant number of audio feature
frames into a set of successively retrieved audio feature sequences, which were used
to represent this subject. The shape of the input tensor is thus (#samples, #frames,
73). The field "VUV” is always 1 in the input tensor so it is dropped, which results
in the final input tensor shape as 73.

Audio models with different configurations for depression assessments are intro-
duced as follows. The input to these models is the previously mentioned audio fea-
ture sequences, the output of these models is the prediction of the depression severity
given an audio feature sequence. The first audio model is a simple one that consists
of the LSTM and fully connected layers. The LSTM served as a feature extractor
and the following fully connected layers made the prediction based on the output of
the LSTM. Then, we introduce our proposed model that consisted of the Bi-LSTM

and TD-CNN and they were evaluated for the prediction of depression severity.

Traditional LSTM-based Model

Our first audio model comprises of single-layer Long-Short Term Memory (LSTM)
network and fully connected layers. LSTM network was obtained using an LSTM
layer containing 73 hidden units, connected to a fully connected layer. To avoid
overfitting, the dropout was applied to the recurrent input signal on the LSTM units
and between fully-connected layers with the dropout rate of 0.2. The time step is
equal to the constant "#frames” and there were 73 features in each timestep. In this
model, only the hidden state at the last time step was fed into the following fully

connected layers, with 128 and 64 hidden units. The output of the fully connected
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layer was then fed into a batch normalization layer and flattened into a 1D tensor. The
flattened tensor was fed into a fully connected layer with 5 hidden units, where the
SoftMax activation function transformed the unnormalized output of each neuron into
the probabilities of five severities. An Adam optimizer was adopted for the training,
the initial learning rate was set to be 0.001, £,=0.9, 5,=0.999 and the epsilon was
10~7. A callback function monitored the validation loss and terminated the training if
the validation loss did not decrease after five epochs. A loss function of cross-entropy

was applied.
Hybrid of Bi-LSTM and TD-CNN Model

Bidirectional LSTM is a variant of LSTM which consists of a forward layer on the orig-
inal input sequence, and a backward layer on the reversed sequence. The Bi-LSTM
outperforms the traditional LSTM because the forward and backward networks com-
bine both forward and backward context information of the input sequence. Previous
articles proposed to represent the input sequence by the last hidden state of the LSTM
[32, 200]. However, depression assessment is a complicated task, which heavily re-
lies on the relationship between the audio features at different time steps, thus it is
insufficient to use the last hidden state for classification, otherwise, it leads to the
loss of temporal information. To solve this issue, we utilized the TD-CNN (shown
in Figure 3.2) to learn potential temporal and spatial information in the output of
the Bi-LSTM. In general, simple CNN only supports the 2D or 3D spatial tensors as
the input. However, the output shape of the LSTM is (#samples, #frames, #LSTM
neurons) given a unidirectional LSTM, and (#samples, #frames, 2*#LSTM neurons)
given a bidirectional LSTM. The TD-CNN convolves the LSTM output vector along
its 3rd axis and the shape of the convolution result is (#samples, #frames, #output
features, #kernels). Therefore, we expand the shape of the LSTM output vector by
inserting one new axis so that it can be processed by TD-CNN. The TD-CNN accepts

a tensor with shape (#samples, #frames, 2*#LSTM neurons, 1) as the input, which
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denotes a time series of LSTM hidden states. Our proposed TD-CNN block con-
sisted of three layers, first, time-distributed convolution layer, then time-distributed
pooling layer to downsample the feature maps; and finally batch normalization layer.
There were five TD-CNN blocks in total in our proposed design, the output of the
last TD-CNN block contained "#frame” samples, each sample is represented by 256
feature maps. Therefore, the last thing before the feature maps were fed into the
following network was to downsample the output by the global average pooling layer,
it slides along the time dimension of the feature vector and computes the mean value
of each feature, which ensures that the relationship between each time step was taken
into consideration. The output of the global average pooling layer was then fed into
the following two linear layers. At last, the Softmax activation functions transformed
neuron output into the probability of five severities. An Adam optimizer with a

similar configuration in Section 3.2.2 was adopted for the training.

3.2.3 Text Features and Models

The input layer of the text model took tokenized transcripts of each subject. Among
all the 189 subjects in the dataset, text transcripts are in an average of 80 rows and a
standard deviation of 14 rows. The interviews were in colloquial speech, thus the first
step was to rephrase these colloquial descriptions to written languages, otherwise,
colloquial terms all became out-of-vocabulary words, which were represented by the
token [UNK], and greatly diminished model performance.

Semantic information is highly essential in depression diagnosis because psycholo-
gists also formulate diagnosis by text produced by the patients during the interview.
To acquire the text features, we firstly removed stop words in the patients’ responses
with Natural Language Toolkit (NLTK) and substituted some words and phrases such

»on

as "what’s”, "e-mail” with "what is” and "email”, this eliminates different expressions

of the same word [201].
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Next, we lemmatized the remaining words in the sentences, the WordNet lemma-
tizer removes the inflectional endings and returns the base form of a word. Then the
remaining texts were tokenized into word lists and were used to build a vocabulary
with 7373 words. Each word in the vocabulary was assigned an index, the word list
was then represented by these indices. After we acquired the word list, the main
issue was that each word list was different in length, which made it more difficult to
batch process text data if they were different in length. Therefore, the sliding window
technique was applied to generate sequences in the same length, which was the same
length as the sliding window. Each window consists of a constant number of words
while 20% words at the end were overlapping between two neighbouring time win-
dows, which assigned higher weights to the words at the edge of the window so that
the edge details were enhanced. The sliding window not only generated all training
pairs but also performed data augmentation as well as directed the focus on a specific
part of the sentence. Next, word sequences were encoded with the pre-trained 100D
GloVe word embedding vector [202]. The word embeddings were concatenated into
a sentence embedding. For some short sentences, the size of the sliding window was
greater than the length of the sentence, those short sentences were zero-padded to
be the same length as the window. Therefore, the shape of the final input vector
is (window size, 100). However, sentences shorter than 20% of window size were

discarded.

Bi-LSTM Text Model

Our proposed text model consists of a single-layer Bi-LSTM network and fully con-
nected layers. The text feature sequences mentioned above comprise the index of
words in the vocabulary. Text feature sequences were preprocessed to map each word
to word embedding space with a non-trainable embedding layer before being fed into
the model, and the shape of the embedding layer is (vocabulary size + 1, 100). Next,

a batch normalization layer and then the Bi-LSTM layer further captured the se-
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mantic information underlying the input word sequences. To avoid overfitting, the
dropout was applied to the recurrent input signal on the LSTM units and between
fully-connected layers with the dropout rate of 0.2, and the shape of the Bi-LSTM
output was (batch size, 200) at each time step. We adopted the attention mechanism
to allow the model to adaptively select those depression-sensitive hidden states. The
attention vector was then fed into two linear layers with 256 and 128 hidden units,
respectively. Finally, the last linear layer with 5 hidden units determined the proba-
bility of the five severities. An Adam optimizer with a similar configuration in 3.2.2
was adopted for the training. The cross-entropy loss calculated the distance between

the output and the ground-truth label.

3.2.4 Fused Text-Audio Joint Model

Our final fused multimodality model was comprised of two sub-networks: text model
and audio model, and followed by a shared late fusion neural network as Figure 3.1
shows. The late fusion neural network concatenated the outputs of the text and audio
model to integrate text and audio features. For any subject, we extracted a high-
level representation that included both semantic and prosodic features through the
previous recurrent neural network and convolutional neural network. This high-level
representation could be used in the following assessment of mental disorders. The
output of our proposed model was a scoring matrix that denoted the likelihood of
the depression severity. As the timesteps of the audio and text model were different,
the late fusion network had to deal with input of different sizes. To solve this issue,
we first attempted to adopt a max-pooling method to downsample the output from
audio and text models so that they were in the same shape. Moreover, an attention
mechanism was exploited, which provided us insights into the ratio of the contribution
of each modality towards the final prediction.

Regarding fusion, we designed a set of models to integrate different modalities.
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Firstly, we fused the text models with different window sizes with the audio model
with constant configuration. Our text model could be divided into two categories,
one is the unidirectional LSTM text model, the other is the bidirectional LSTM. Our
proposed audio and text model was previously described in Section 3.2.2 and Section
3.2.3, respectively. The only difference was that the output size of the audio and text
model was 32 instead of 5 since they acted as feature extractors rather than classifiers.
Global max pooling was adopted to align the extracted audio and text features. In
order to integrate text and audio modalities, the output of the text and audio model
was concatenated into a tensor and passed through a fully connected layer with 5
units. Secondly, the other fused model was set up using a similar configuration to the
first one. The difference was that the attention mechanism played its role in aligning
the features from different modalities. The third one was all the same as the previous
two models, except it was created with an attention mechanism not only during the

feature alignment but also in the fusion of the high-level representations.

3.3 Results and Discussion

In this section, the results of those models described in Section 3.2 are presented
and discussed. We next assessed the effect of the hyperparameters for the proposed
models. For the audio model, we compared the effect of architecture and timestep
and investigated the potential long-term dependency of the audio features in severe
patients. For the text model, we conducted experiments to investigate the effect of
the hyperparameters such as the size of the window in preprocessing, the removal of
stop words. Regarding the audio-text fused model, we mainly focused on the impact
of fusion methods on the model performance. All the experiments were conducted on
one RTX 2080Ti 11GB GPU. The size of multimodality models was limited mainly
by the amount of memory available on our GPU and the amount of time for training

we can tolerate. Our single-modality model usually took between 3 to 5 hours to
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train, but the training of our proposed multimodality model always took around 20
hours. The results of our experiment provided an insight that our models could be
improved by faster GPUs and larger datasets. The detailed results are discussed in

the following parts.

3.3.1 The Statistics of Audio and Text Features

The pause time between responses is also longer than usual in the depressive pop-
ulation [55]. To verify whether the DAIC-WOZ dataset follows a similar pattern,
we calculated the statistics of the raw interview recordings and the transcripts. The
subjects were divided into two groups by PHQ-8 scale, the subjects were considered
as normal or mild (control group) if their PHQ-8 is less or equal to 10, otherwise,
they are considered as moderate or severe (experiment group). This threshold is given
by a previous study on the efficacy of PHQ-8 on the diagnosis of major depressive
disorder. It was reported that given the cutoff score of 10, the PHQ-8 exhibited a
sensitivity of 58.3%, specificity of 83.1% [203]. The two-sided T-test was applied to
test if there was a significant difference in the audio duration between the control and
experiment groups. Additionally, Cohen’s d was calculated to quantify the effect size
of the observed differences between the groups. Cohen’s d is a standard score that
measures the the difference between the mean value of groups. Cohen’s d is given by
Equation 3.1. The statistics of the two groups are listed in Table 3.3. The histograms
of the audio duration and sentence length of the control and experiment groups are
illustrated in Figure 3.3. The response duration of the control and experiment groups
is on an average of 951.37 + 266.60 and 997.87 4+ 290.19 seconds, respectively. The
two-tailed p-value is 0.09 and Cohen’s d is 0.17. The sentence length of the control
and experiment groups is on average 8.78 £ 8.94 and 7.37 + 7.29 in the number of
words, respectively. The two-sided T-test was applied to test if there was a significant

difference between the sentence length in the control and experiment groups. The
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two-tailed p-value is 3.23 x 10~'* with Cohen’s d at 0.16. The above results indicate
no significant difference in the audio duration of the control and experiment groups.
However, there is a slight difference in sentence lengths, with Cohen’s d at 0.16. More
responses in the experiment group consisted of less than five words. As the audio du-
rations between the control and experiment groups have identical average values, we
can conclude that there are more pauses in the conversations of the experiment group.
This result is identical to other researchers’ conclusions. Therefore, our dataset and

criterion for depression are reasonable.

d : Cohen’s d (effect size)

p T — Ty s : pooled standard deviation
. \/(21 ) 2t (1) 52 where 1,9 are the means of two groups
ny +ng — 2 ni, ng are the sizes of two groups

s1, So are the variances of two groups
(3.1)

Table 3.3: T-Test Result of the Control and Experiment Group

Audio duration Sentence length
Control Experiment Control  Experiment
Mean 951.37+266.60 997.87+£290.19 8.78+8.94  7.37£7.29
p-value 0.09 3.23 x 10714
Cohen’s d 0.17 0.16

3.3.2 Results of the Audio Modality

As for the audio models, evaluation metrics accuracy, recall, precision, and F} score
used to evaluate models with different configurations are shown in Tables 3.4 and

3.5. The test set for evaluation is balanced by oversampling the minority class. Ran-
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(a) Kernel Density Estimate of Interview Duration (b) Kernel Density Estimate of Sentence Length
for Mild and Severe Depression
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Figure 3.3: Kernel density estimations of the audio duration and sentence length of
control and experiment groups. (left) The audio duration of the control and experi-
ment groups. (right) The sentence length of the control and experiment groups.

Table 3.4: Results of the Baseline Audio Models

Random Forest [204] [205]

Mean St. dev Mean Mean
Accuracy 0.3192 0.0085 0.7500 0.8273
Precision  0.3206 0.0064 0.7200 0.7930
Recall 0.3184 0.0040 0.7500 1.0000
F1 Score  0.3168 0.0076 0.7300 0.8850
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(a) ROC of 16-timestep model (b) ROC of 32-timestep model (c) ROC of 64-timestep model
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Figure 3.4: The ROC of three different model configurations. (left) The Bi-LSTM
followed by TD-CNN given the time step = 16. Micro-Average AUC: 0.99. The
AUC of “Severe” is smaller than any other class, this indicates the detection of severe
depression is more challenging than other depression levels. (middle) The Bi-LSTM
followed by TD-CNN given the timestep = 32. Micro-Average AUC is 0.94. The
micro-average AUC is smaller compared with that when the timestep = 16. The
longer sequence does not mean a better result because the noise introduced by the
longer sequence can mislead the model. (right) The Bi-LSTM followed by TD-CNN
given the timestep = 64. Micro-Average AUC is 0.91, which is in line with our
expectation that a longer input sequence makes it more challenging to predict the
severity.

dom forest was used as the baseline in evaluating the audio modality sequence-level
prediction. Audio feature sequences for training and evaluating are non-stationarity
series, which are difficult to model and forecast. They were pre-processed by dif-
ferencing to be made stationary. Differencing is the change from one audio feature
sampling time to the next. The random forest model we used in this manuscript is
an ensemble approach that fits a set of decision trees on different sub-sample of the
dataset, and averaging the output of each decision tree to improve the prediction ac-
curacy, as well as prevent the model from overfitting. In our article, 100 decision trees
were trained on various sub-sample of the training set to construct the random forest
model. Another baseline method, Madhavi et al. proposed a CNN consisting of 2 con-
volutional layers and two successive linear layers to extract high-level features from
the frequency spectrogram of interview recordings. The output of CNN is fed into

the following neural networks to predict an individual’s depression level. They also
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evaluated their models on the DAIC-WQOZ dataset. Moreover, Yang et al. proposed
a similar but more complex model, they also adopted the combination of convolution
neural networks and deep neural networks (i.e. multi-layer perceptron model). Each
subject was labelled by their depression-related symptoms, such as prior depression
diagnosis, sleep disorder, present or not. Their proposed CNN consists of three convo-
lution layers and the intermediate output of CNN is fed into the deep neural network
to predict the presence of depression symptoms. These symptom labels are fed into
another deep neural network for predicting depression severity. Their results on the
DAIC-WQOZ dataset are summarized in our comparative studies. For the LSTM with
the fully connected layers model, it outperformed the baseline machine learning model
(i.e. decision tree) by 24% in terms of accuracy. In contrast, the Bi-LSTM with the
fully connected layers model outperformed by 54% in terms of accuracy. For our pro-
posed Bi-LSTM combined with the TD-CNN model, we achieved 16% improvements
over the best baseline model in terms of accuracy. From Tables 3.4 and 3.5, it can
be concluded that the LSTM performed better on the depression level classification
compared with the baseline machine learning models, such as the naive Bayes model.
Moreover, we observed that the network followed by the LSTM layer is critical for
good performance. If the other configurations were fixed, Bi-LSTM with TD-CNN
outperformed other methods because the TD-CNN learned more temporal and spatial
information than others by capturing the correlation within all hidden states of the
LSTM. We also investigated the influence of the value of the time step and concluded
that our model performed best when the timestep was 16. Figure 3.4(a) shows the
receiver operating characteristic (ROC) curve when timestep=16. The micro-average
AUC for our proposed model is 0.99, and the AUC for “severe” is smaller than any
other, which indicates it is more challenging for the model to distinguish severe de-
pression from the other levels correctly. This is likely attributed to the absence of

severely ill patients in our dataset. Figure 3.4(b) is the ROC when the time step is
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32. The micro-average AUC for this model is 0.94. The performance of the model
with 32-timesteps was worse than that of the model with 16-timesteps. This is likely
due to the negative correlation between the signal-noise ratio of the input sequence
and the length of the sequence. A longer input sequence contains more information
to assess the emotional state, but as the sequence length grows, the increasing noise
cannot be ignored and the bias of the model rises due to the noise. Another factor is
the limitation of the memorization capability of LSTM. The longer the input sequence
is, the more difficult it is for LSTM to memorize earlier information when processing
the end of the sequence because the depth of the LSTM network is proportional to
the timestep. Given a long sequence, the information cannot smoothly flow through
the network, which results in diminished performance. The confusion matrix of the
32-time step model is illustrated in Figure 3.5(b), which shows the performance of
the model on the test partition of the DAIC-WOQOZ dataset. Comparing the models
with different time steps, Figure 3.5(a) shows the confusion matrix of the model with
16 timesteps, while Figure 3.5(c) shows the confusion matrices of the model with 64
timesteps. Different timestep means the different sizes of the test set. To eliminate
the influence of the size of the test set, we normalized the confusion matrix along
each row. In terms of the normalized confusion matrix, the model with 16 timesteps
performed the best, but from the entries on the second row of Figure 3.5(c), the
model with 64 timesteps was less likely to classify the mild patients incorrectly. The
contribution of the model with a longer time step in the depression prediction should
be further investigated to find the cut-off value of the time step that optimizes the
trade-off between the computation cost (larger time step means more computation)

and the misdiagnosed rate.
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(a) Confusion matrix of 16-timestep model (b) Confusion matrix of 32-timestep model

LN 0.00 0.20 0.04 0.03

§g\\b—OOS (V'Y 0.22 0.07 0.02 0.09 /0.53 0.20 0.08 0.10
- o&@ 0.00 0.00 ¥R 0.00 0.00 0.00 0.00 pHeeR 0.00 0.00
2 X
= 6@’@@1
ob?}%eﬁ 0.00 0.00 0.00 geAc<kN 0.01 0.00 0.00 0.00 Moy 0.00
@
Q/@ -0.00 0.00 0.00 0.00 e} 0.00 0.00 0.00 0.00 EHe
o‘(\e \&‘\b & &e}* & o;\e s\b 5 ‘8}* &
S & Lo N S
= S5 Ny
W W

Predicted Label

(c) Confusion matrix of 64-timestep model

WY 0.00 0.13 0.12 0.00

WWEN 0.06 0.15 0.00

0.00 @Mele} 0.00 0.00

0.00 EMeleaNoReIR 0.00

0.00 0.09 0.42 0.49

Figure 3.5: (a) Confusion matrix of 16-timestep model on DAIC-WOZ (b) Confusion
matrix of 32-timestep model on DAIC-WOZ (c¢) Confusion matrix of 64-timestep

model on DAIC-WOZ

Table 3.5: A Comparative Study of Different Proposed Audio Models

Models Experimental Settings

Accuracy F1

LSTM + FC
Bi-LSTM + FC
LSTM + TD-CNN

TS=16, HU=73, LHU=(128,64,5), Adam
TS=16, HU=T3, LHU=(128,64,5), Adam

TS=16, HU=73, #TCNNB=5,
KS=(3,3,3,3,9), Adam

Bi-LSTM 4 TD-CNN
KS=(3,3,3,3,9), Adam

#KRNL=(64,64,64,128,256),

TS=16, HU=73, #TCNNB=5, #KRNL=(64,64,64,128,256),

0.5674 £ 0.0034
0.8717 £ 0.0013
0.8698 £ 0.0897

0.5650 + 0.0042
0.8818 £0.0013
0.8609 £ 0.0988

0.9871 + 0.0009 0.9870 + 0.0009

#TCNNB: Number of TD-CNN blocks ~ #KRNL: Number of conv kernels in each TD-CNN block
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3.3.3 Results of the Text Modality
The Effect of Stop Words and Bidirectional Layer

In this experiment, we used NLTK to remove the stop words in English transcripts.
Apart from the stop words, the other factor is the choice between LSTM and Bi-LSTM
models. Compared with the unidirectional LSTM model, the bidirectional model
converges faster, and the validation accuracy is higher. The following experiment
demonstrates several advantages of the Bi-LSTM model over the traditional LSTM
model on the depression level classification task. Four models were trained with the
different configurations presented in Table 3.6. The test set for evaluation is balanced

by oversampling the minority class.

Table 3.6: A Comparative Study of the Proposed Text Models

Models Experimental Settings Accuracy F1 Micro-average AUC

LSTM + FC TS=64, HU=100, LHU=(256,128,5), Adam,  0.9091 0.9094 0.9738
Stopwords

LSTM + FC TS=64, HU=100, LHU=(256,128,5), Adam,  0.9792  0.9754 0.9897
No stopwords

Bi-LSTM + FC TS=64, HU=100, LHU=(256,128,5), Adam,  0.9617  0.9610 0.9908
Stopwords

Bi-LSTM + FC TS=64, HU=100, LHU=(256,128,5), 0.9685 0.9709 0.9925

Adam, No stopwords

TS: Timestep; HU: #Hidden units in LSTM; LHU: #Hidden units in linear layers

From Table 3.6, we concluded that if the type of the LSTM was fixed (i.e., the
two text models both consist of LSTM or Bi-LSTM network), the performance of
the model without stop words was better. If the stop words were kept, the Bi-
LSTM model still outperformed the traditional one. This result was in line with our
expectation that Bi-LSTM was better in text classification because it learned more

contextual information with the combination of the forward and backward networks.
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The Effect of Window Size

Window size is another factor that influences the performance of the model. Intu-
itively, the longer the window, the more information it contains about the mental
state of the subjects, which means our model can assess their emotions more accu-
rately. However, if the window is too long, while making an inference, the impact
of the noise cannot be ignored, which leads to significant performance degradation.
Moreover, the memorization capability of LSTM is limited, which means the longer
the sequence is, the more challenging for the LSTM to memorize and extract use-
ful information. To demonstrate the relationship between the performance and the
window size, we conducted experiments by changing the window size. As shown in
Table 3.7, when the window size started to increase, the metrics increased firstly but
began to decrease after the window size is greater than 64. This was in line with
our expectation, the classifier gained a lot of information due to a larger window but
started to degrade as the result of the noise in the large window and the reduced
performance of LSTM. We concluded that the window size should be appropriately
set to train the model with the best performance, in our experiment, the best window
size is 64.

Table 3.7: A Comparative Study of the Text Model with Different Window Size

Window Size Accuracy Precision Recall F1 Score

16 0.8254 0.8318 0.8340  0.8141
32 0.8256 0.8371 0.8465  0.8260
64 0.8778 0.8779 0.8782 0.8705
128 0.8409 0.8599 0.8430  0.8304
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Table 3.8: A Comparative Study of Our Proposed Patient-Level Methods and the
State of the Art

Model Experimental Settings Accuracy F1 Sensitivity Specificity
WIN=16, Stride=64 0.8604 0.8579 0.9844 0.8182
UniLSTM as encoder ~ WIN=32, Stride=64 0.9209 0.9188 0.9647 0.9777
WIN=64, Stride=64 0.8674 0.8682 0.9705 0.9888
WIN=16, Stride=64 0.9488 0.9500 0.9735 0.9444
BiLSTM as encoder WIN=32, Stride=64 0.9186 0.9191 0.9852 0.9700
WIN=64, Stride=64 0.8535 0.8546 0.9647 0.8778
WIN=16, Stride=64, attention 0.8419 0.8427 0.9735 0.8222
BiLSTM as encoder WIN=32, Stride=64, attention 0.9581 0.9580 0.9824 1.0000
WIN=64, Stride=64, attention 0.9093 0.9086 0.9706 0.9889
WIN=16, Stride=64, attention (aligning&fusion) 0.8977 0.8973 0.9559 0.9889
UniLSTM as encoder WIN=32, Stride=64, attention (aligning&fusion) 0.9326 0.9315 0.9735 0.9889
WIN=64, Stride=64, attention (aligning&fusion) 0.8581 0.8615 0.9412 0.8889
WIN=16, Stride=64, attention (aligning&fusion) 0.8491 0.8439 0.9353 0.9000
BiLSTM as encoder WIN=32, Stride=64, attention (aligning&fusion) 0.9047 0.9103 0.9941 0.9000
WIN=64, Stride=64, attention (aligning&fusion) 0.6279 0.6560 0.7500 1.0000
WIN=16 * BLSTM: 0.7929 ULSTM:0.8096 * *
WIN=32 * BLSTM: 0.7964 ULSTM:0.7619 * *
Unimodality text model
WIN=64 * BLSTM: 0.9245 ULSTM:0.9058 * *
WIN=128 * BLSTM: 0.8266 ULSTM:0.7148 * *
BLSTM + FC * 0.8819 * *
ULSTM + FC * 0.7604 * *
Unimodality audio model
BLSTM + TCNN * 0.9074 * *
ULSTM + TCNN * 0.8443 * *
[206] End to end convolutional neural network 0.7464 0.7750 0.74 0.8
[200] Combination of LSTM and CNN * 0.77 0.83 *
[207] Hierarchical context-aware graph attention model * 0.92 0.92 *
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3.3.4 Results of the Fused Model

In this experiment, the audio and text models were jointly optimized so that we
could verify whether our methods were still effective under multimodality configura-
tion. We proposed three varieties of fusion models and merged these segment-wise
predictions through major voting to obtain the patient-level prediction. The config-
uration details of those fused models were described in Section 3.2.4. The metrics of
each fusion model on the test partition were covered in Table 3.8. When experiment-
ing with models made up of unidirectional LSTM, without an attention mechanism,
the model with a window size of 32 performed better than others when classifying for
a multi-class outcome in terms of the accuracy on the test set (accuracy = 0.9209).
Theoretically, the models with Bi-LSTM should be better than a uni-LSTM one,
however, with all other configurations fixed, except the Bi-LSTM model with a win-
dow size of 16, other Bi-LSTM models did not show significant improvement over
the uni-LSTM one. Nevertheless, once the attention mechanism was introduced, the
performance was boosted and the Fj increased compared to the model without an
attention mechanism, except the Bi-LSTM model with an attention mechanism and
window size of 16. As we reported in the methodology section, the attention mech-
anism could be introduced during the multimodal feature aligning phase as well as
the multimodality fusion phase. The attention mechanism during the fusion process
weighed each modality and made it possible for the model to determine the contribu-
tion of each modality. From Table 3.8, we concluded that the highest sensitivity of
0.9941 was achieved by the model comprised of Bi-LSTM and two attention layers,
with a window size of 32. Given that we expected to train an early-stage depression
screening tool, we preferred higher sensitivity so that we would not miss those po-
tential depression patients. The model with two attention layers led to results that
outperformed the state of the art, Niu et al., by 8% in terms of sensitivity. In compar-

ison with Alhanai et al., who adopted a similar method made up of CNN and LSTM,
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our proposed method was better by 17% in terms of sensitivity. This is not conclu-
sive since the dataset for evaluation in their article was slightly different from ours.
By conducting a student t-test between the F) of the best patient-level audio model
with the result of p-value = 0.0099 (<0.01), cohen’s d = 2.1258, as well as patient-
level text model with the result of p-value = 0.0246, (<0.05), cohen’s d = 1.7452,
we could conclude that multimodality models statistically significant outperformed

single modality models.

3.4 Conclusion

In this chapter, a multimodality approach for automated depression detection was pre-
sented. Firstly, we performed the statistical test to investigate the difference between
the audio and text features of severe and healthy subjects. We proved the pattern
of severe depression patients was different from that of the healthy. Therefore, the
audio feature sequence carried information that could be used to predict depression
severity. Secondly, models that considered audio and text features individually were
trained and evaluated at the patient-independent level. These unimodality models
then acted as feature extractors and output features were combined by an audio-text
fused model. For the audio modality, at the patient-independent level, the model com-
prised of single-layer Bi-LSTM and five stacked TD-CNN blocks achieved the best
sequence level F; score of 0.9870 and patient-level F; score of 0.9074 with the test
set. This result indicates that the Bi-LSTM provides a more reliable representation,
from which the automated depression detection model could benefit. Additionally,
we evaluated the patient-independent audio models with different timesteps with the
Area Under Curve (AUC) metric. We concluded that the 16-timestep model per-
formed best and the micro-average AUC was higher than any other model. However,
the 64-timestep model showed its strength in detecting the audio feature sequence

from the mild patient, which met our expectation that the model should be able to
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distinguish mild patients so that clinical interference can be conducted in the early
stage. Overall, the 16-timestep model outperformed the 32-timestep and 64-timestep
models, which could be attributed to the relatively low signal-noise ratio of the shorter
input sequences and the memorization limit of the LSTM. The new understanding
assisted in our model selection and hyper-parameter configuration when we deployed
this method in clinical settings. These findings provided the following insight for
future research, our proposed unimodality model was patient-independent, and the
prediction was based on a period of audio/text features. Therefore, compared with
other models, our proposed model did not have limitations to the length of the inter-
view audio or transcript, which made it possible for people to monitor their mental
state in daily use.

Moreover, for the text modality, the model consisting of Bi-LSTM and three fully
connected layers achieved the best sequence level I} score of 0.9709 and patient-level
Fy score of 0.9245 on the test set. We conducted experiments to investigate the
influence of the text model hyper-parameters, such as window size and stop words.
We found the best window size is 64. In our experiment, we investigated the effect
of stop words, the result indicated the text model performs better if the stop words
were removed in advance. Currently, our patient-level prediction was carried out by
a major voting algorithm, which yielded a patient-level depression prediction model
with satisfying performance. Our proposed multimodal method achieved the highest
F of 0.9580 on the patient-level depression detection task, which showed a significant
improvement over the previous state-of-the-art. In the future, a study on how to
represent the audio/text features during the whole interview should be carried out
so that the model could make patient-level predictions based on a digest of text and

audio features.
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Chapter 4

Analysis for Automated Clinical
Depression Diagnosis in a Chinese
Corpus

4.1 Introduction

Although significant progress has been made in automating depression diagnosis, pre-
vious studies have primarily used non-clinical datasets. These datasets are valuable
for researchers as they provide ample training data and insights for those without
the resources to collect and label their datasets. They also serve as a benchmark
for performance evaluation, allowing researchers to compare their models with oth-
ers. Previous datasets have investigated music-induced [34], video-induced [29, 34]
and mixed emotion induction methods [35]. However, there are still challenges to
implementing and deploying depression detection systems in real-world applications.
For instance, existing datasets ignore the critical aspect that emotions are typically
context-based. To address these issues, there is a need for interactive multimodal
datasets for the study of depression, collected through interviews conducted in a
clinical setting between patients and physicians.

In this scenario, patients emotions rely on verbal and non-verbal communication
with physicians. The primary objective of this study is to investigate the effectiveness

of semantic and prosodic features in evaluating depression risk. To ensure the col-
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lection of a high-quality dataset, the data collection process must be controlled and
standardized. Therefore, we conducted interviews in Chinese between clinicians and
outpatients, and the patients were evaluated using the Montgomery-Asberg Depres-
sion Rating Scale (MADRS) [185]. The audio features, such as formant frequency
Fy and Normalized Amplitude Quotient (NAQ), were then extracted using the CO-
VAREP toolbox, and the interview recordings were transcribed verbatim using an
audio transcription application programming interface (API) developed by iFlyTek
for subsequent analysis [54]. Research assistants majoring in psychology corrected
errors in the transcripts, such as words with the same pronunciation but different
meanings. The dataset included both the interview recordings and their transcripts.
This study introduces a new corpus comprising interviews conducted with clinically
depressed patients, gathered from a psychiatric hospital, containing 113 recordings
with 52 healthy and 61 depressive patients. This dataset is a valuable resource for
automated depression detection research and is expected to advance the field of psy-
chology. Baseline models for detecting and predicting depression presence and level
were built, and descriptive statistics of audio and text features were calculated. The
decision-making process of the model is also investigated and illustrated. To the best
of our knowledge, this is the first study to compile a corpus of clinical interviews
focused on depression in Chinese, and to subsequently train machine learning models
to identify depression patients.

In this chapter, we address the challenges and limitations of existing datasets by
introducing the Wenzhou Kangning dataset, an audio-text dataset of clinically an-
notated depression severity. Our analysis shows a significant difference in the audio
duration, and individual sentence word counts between healthy and depressive pa-
tients, indicating that linguistic cues can be an effective predictor of a subject’s mental
state. We also demonstrate that a subset of acoustic features has strong discrimina-

tive ability in intra-class classifications, such as differentiating between healthy and
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mild depression levels. To provide a benchmark for comparison, we present detailed
experimental results and visual decision processes of depression assessment models.
The influence of each acoustic feature is calculated and listed in descending order,
providing new insights for physicians to focus on distinguishing depression severity

among patients.

4.2 Related Work

Most existing automated depression detection approaches utilize supervised learning
methods, trained using numerous recordings labelled on different depression scales.
Therefore, the generalizability of the resulting model heavily relies on the various
elements that constitute the dataset. This section will discuss two key elements:

data collection methods and depression assessment instruments.

4.2.1 Data Collection Methods

Data collection methods play a crucial role in impacting model performance. Re-
searchers must consider an appropriate context in which subjects’ responses are ob-
served. So far, two main types of contexts have been used in collecting depression
datasets: social network - an open platform for individuals to share their thoughts,
such as scraping social networks to construct depression-related corpus [208, 209];
spontaneous behaviour - interviewees naturally interact with interviewers or ma-
chines, for example, chatting with a chatbot [144, 210]. It is important to note that
the choice of data collection method can affect the quality and generalizability of the
dataset, and researchers should carefully consider which method is most appropriate

for their study.
Social Network Platform

Datasets for research on affective computing have been well-studied from different

perspectives. Herein, we will examine a series of datasets and corresponding data
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collection strategies. Numerous corpora suitable for diagnosing depression have been
collected in low-noise environments and with limited topics. However, these condi-
tions are not representative of the real world, and models trained on such datasets
may not perform well when applied to recordings made in uncontrolled settings. On
the flip side, many researchers have had to perform feature extraction from scratch
and design application-specific machine learning strategies due to data scarcity.
Collecting data from online forums can also significantly reduce the difficulty of
obtaining sufficient data from healthy individuals. The healthy control group can
be sampled from other online communities unrelated to depression [73, 115, 211].
With their vast inflow of user-generated content, social media platforms effectively
capture depressive behavioural cues relevant to an individual’s emotional state or
mental disorder. However, it is important to note that user-generated content from
online forums can be misleading for machine learning models. For example, patients
who avoid clinic attendance due to fear of mental disorder-related stigma may also

avoid discussing depression online.
Interview Under Controlled Conditions

Many researchers are turning to recruiting volunteers and recording their responses
during interviews or free discussions as a method of data collection due to the limita-
tions of social media. The widespread use of smartphones has enabled the emergence
of this new strategy to efficiently recruit a diverse sample of participants and col-
lect large amounts of data. Examples of datasets that have adopted this approach
include the SEMAINE dataset [212], which includes audio and video recordings of
150 participants and the Affectiva-MIT Facial expression dataset (AM-FED) [213],
which consists of labelled spontaneous facial recordings collected over the internet,
including 242 video recordings and labels of the presence of 10 symmetrical and 4
asymmetrical action units (AU), head movements, smiles, feature tracker confidence,

as well as biological sex and facial landmarks.
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Another issue with the clinical interview data collection strategy is the high cost
involved. Gratch et al. proposed an automated interview platform that utilizes an an-
imated virtual interviewer to make patients feel as comfortable as possible [144]. This
virtual interviewer can be fully automated or controlled by an operator, which signif-
icantly reduces labour costs for data collection. Still, the stringent semi-structured
interview process for each patient may be problematic. Suppose the patient is un-
willing to answer a question. In that case, the virtual interviewer can only proceed
to the next question, resulting in patients providing only a few words or nonverbal
responses, which may not contain enough information to assess their emotional state

accurately.

4.2.2 Depression Assessment Instrument

Table 4.1: A Comparative Study of Our Proposed Dataset and Datasets Employed
by the Reviewed Studies for Depression Detection

Population/
Dataset Collection protocol Language Label Criteria Rescarch purposes Video resolution Modality Controlled condition
Healthy v.s depressive

[214) 770 Social media English  Self-report - Detection - Text NA
[200] 753 Social media English  Self-report Detection - Text NA
[215) 49 Interpersonal & Virtual agent  English  Clinical assessment  DSM-IV, HAMD>15  Detection 640x480 Visual & Audio Yes
[150] 130 (70/60) Interpersonal & Virtual agent English  Clinical assessment — DSM-IV, HAMD>15  Detection 800x600 - Yes
[144) 189 (132/57) Interpersonal & Virtual agent English ~ Self-report PHQ-8>10 Detection & Severity - Visual & Audio & Text Yes
[216] 58 Virtual agent English  Self-report - Severity - Visual & Audio Yes
[124) 887 Social media English  Self-report Detection - Text NA
[217] 8 (4/4) Interpersonal English - - Detection - - Yes
[218] 30 (15/15) Interpersonal English Clinical assessment - Detection - - Yes
[219] 26 (13/13) Interpersonal & Virtual agent Chinese  Clinical assessment HAMD>15 Detection 640x430 - Yes
B9 7(0/7) Interpersonal English Clinica ment  HAMD>15 Recovery - - No
[220) 78 (26/52) Interpersonal Chinese Clinical assessment  HAMD>17 or PHQ-9>9 Detection & Severity - Visual & Audio & Text No
Ours 113 (52/61) Interpersonal Chinese Clinical assessment - Detection & Severity - Audio & text No

4.2.3 The Existing Corpora

We reviewed previous articles that reported on dyadic interview recordings that were
annotated based on clinician and outpatient interactions. We found that about half of
these datasets were labelled with a self-reported depression rating scale, recorded in
controlled conditions, and produced in English. The controlled condition refers to the

standardized task and procedures that we use during the interviews. Specifically, in
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previous studies, researchers asked the interviewees to perform tasks such as reading a
fixed paragraph, sustained vowels, and memory recalling, which allows them to control
for variability in responses and simplify the problem. In terms of the differences
between our dataset and others, we believe that our approach allows us to collect more
natural responses from participants. While previous studies have used structured
interviews, our interviews allow for more flexibility in the conversation, as participants
can choose to continue or change the topic as they see fit. This approach can yield
more spontaneous and authentic responses from the participants, which is important
for accurately diagnosing depression. The prevalence of one language in these datasets
limits their usability for cross-cultural studies of depression. Table 4.1 compares

existing data from social networks and clinical interviews.

4.3 Methods and Procedure

4.3.1 Data Collection

The main goal of this study is to collect high-quality responses from subjects partici-
pating in clinical depression interviews. Previous research has found that spontaneous
speech is more effective than reading speech in depression classification [221, 222]. In
addition, the study aims to examine the subjects’ emotional responses to physicians’
questions. Therefore, the data collection protocol, related experiments, and data
preprocessing procedures have been designed to detect and evaluate depression and

depression levels.
Participants

113 participants were recruited for a psychology study, with informed consent and a
range of ages from 15 to 65, who were native Mandarin speakers with at least primary
education. To ensure that our findings are applicable to a broader population, we

took care to select a representative sample of individuals with depression. We also
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took into account the recommendations from clinicians and excluded individuals with
a history of antidepressant medication or mental disorders from our study. Partici-
pants who were diagnosed with depression had no other mental or medical conditions.
Verbal consent and signed forms were obtained, allowing data processing and distri-
bution with removed patient identification. The study was conducted in Wenzhou,
China, with in-person interviews taking place in a confidential private room that was
pre-arranged for the purpose of protecting patients’ privacy. Although the interviews
were conducted in a private room, we did not use noise-cancelling equipment or im-
pose any restrictions on the topics discussed during the interviews. Our goal was to
capture a range of natural variations that might occur in real-world settings, thus en-
suring the authenticity and generalizability of our dataset, which is important because
noise levels in public spaces are more reflective of real-world exposure to noise pollu-
tion. If the model is trained on noise-cancelling data, its performance may not be as
good in real-world settings where noise cancellation is not available. We ensured the
standardization of our data collection process in several ways. Firstly, we employed
experienced physicians to conduct all the interviews. We also utilized the MADRS
questionnaire, a reliable and well-established tool with high inter-rater consistency
and reliability. By using such questionnaires and qualified clinicians, we could ensure
that the data collection process was standardized. Apart from using a reliable ques-
tionnaire and experienced physicians, we have established standardized protocols for
conducting interviews, recording data, and managing data quality. Before starting
the full-scale data collection, we conducted pilot testing, like randomly picking some
outpatients to conduct depression interview to ensure the data collection process is
feasible, reliable and standardized. In addition, we developed a data management
plan that outlines procedures for storing, protecting and sharing data to ensure that
data quality and privacy are maintained throughout the data collection process. Clin-

icians were not aware of the condition of the examined subject in advance. Interviews
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were conducted in Mandarin, lasting 5-10 minutes, and based on the MADRS ques-
tionnaire [185]; clinicians had the flexibility to adjust the order of questions within
the MADRS questionnaire, and they also allowed patients to discuss other related
topics. Our approach allowed us to gather more comprehensive and individualized
data on each participant. Audios were recorded in real-time at a 48 kHz sampling
rate, 128 kbps bitrate, and mono-channel MP3 format. The study was approved by
the ethics committee of Wenzhou Kangning Hospital (No. AF/SQ-02/01.0).

Procedure

After obtaining verbal consent and a signed form for recording, the clinician ad-
ministered the MADRS questionnaire in Chinese to the participant. The MADRS,
consisting of 10 items rated on a 6-point scale, evaluates core depression symptoms,
with a maximum possible score of 60 points. Scores between 7-19 indicate mild de-
pression, 20-34 indicate moderate depression, and scores above 34 indicate severe
depression [185]. The questionnaire focused on the ten critical symptoms in Table
4.2.

Table 4.2: The Questionnaire Used During Interview

Symptom

Question

Apparent sadness
Reported sadness

Inner tension

Reduced sleep

Reduced appetite
Concentration difficulties
Lassitude

Inability to feel
Pessimistic thoughts

Suicidal thoughts

Not Applicable

How is everything going?

Have you ever been feeling nervous and scared for no reason?
How do you sleep recently?

How do you eat recently?

Can you stay focused?

Do you feel like you don’t want to do anything?

Do you feel that everything has nothing to do with you?

Do you feel inferior or self-blaming?

Have you ever thought of self-harm or suicide?

During the experiment, participants were asked questions by a clinician about

their mental health. The questions may not have been in the exact order of the
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MADRS questionnaire, and the clinician may have asked additional questions for
more information based on their judgement and experience, as long as the question
was still relevant to the previous topic, and the participant was willing to discuss it.
The clinician was also allowed to adapt the initial questions to put the participant at
ease. At the end of the interview, the clinician helped the participant relax from any
distress they may have experienced. Experienced physicians conducted the interviews
to minimize any further impact on the participants’ mental health. Our goal was to

elicit verbal and non-verbal cues of depression from the participants.
Dataset Statistics

In our study, we interviewed 113 participants, 52 of whom were healthy, and 61
were patients. The interview audios are an average of 364.40 seconds in length (st.
dev = 257.66 seconds). For the control group, the audios have an average of 164.53
seconds in length (st. dev = 101.88 seconds), and the average sentence word count
is 6.14 (st. dev = 6.44). For the experimental group, the audios have an average
of 535.70 seconds in length (st. dev = 224.78 seconds), and the average sentence
word count is 6.41 (st. dev = 5.89). Patient demographics are illustrated in Table
4.3. Before further analysis, building a balanced dataset by random sampling is im-
portant. For binary depression detection, the positive and negative samples should
be approximately equal. For the multiclass depression level prediction, the distribu-
tion of severity levels should be balanced. In our dataset, 52 and 61 participants
were in the control and experiment groups. Figure 4.1(a) shows the distribution of
the depression levels in our dataset. Figure 4.1(b) and Figure 4.1(d) illustrate the
distribution of the audio duration in healthy and depressive groups. The average
audio duration for the depressive population was significantly longer than that of the
healthy (p < 0.01, cohen’s d = 1.94). The distribution of the utterance length was
given in Figure 4.1(c) and Figure 4.1(e); as opposed to the distribution of audio du-

ration, the number of words in a sentence for the control and experiment groups was
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not significantly different (p > 0.05, cohen’s d = 0.06). To identify patterns between
the healthy and depressive groups, we generated word clouds and showed frequently
used words in a larger font in Figure 4.1(f) and Figure 4.1(g). The word cloud of the
depressive reveals that depressive individuals are more likely to use negative words
such as ’difficult to fall asleep,” 'being in a bad mood,” and 'not good’ during the
interview.

Table 4.3: Summary of Dataset Characteristic

Demographic characteristics Subjects categorized as depressed Subject categorized as healthy

Biological sex

Female 46 33
Male 16 18
Age Mean: 27.29 Std: 9.45 Mean: 32.70 Std: 6.45
<=20 17 1
21-25 12 6
26-30 12 14
31-35 12 14
>35 9 16

Marital status

Single 25 6
Marries 36 45
Divorced 1 0

Academic qualification

Primary school 2 3
Secondary school 31 9
Diploma/ Degree 28 23
Master 1 16

Working status

Full time 29 38
Part time 2 1
Unemployed,/ Student 31 12
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Figure 4.1: The proposed dataset contains 113 individuals, (a) 51 of whom are healthy
and 62 of whom are patients with depression. Of the patients with depression, 9 have
mild depression, 34 have moderate depression, and 19 have severe depression. (b) The
distribution of audio duration between the healthy and depressive. (c¢) The distribu-
tion of utterance length between the healthy and depressive. (d) The distribution of
audio duration across four depression levels. (e) The distribution of utterance length
across four depression levels. (f), (g) The word cloud of the healthy (above) and the
depressive (below). (h), (i) The word cloud in English. More negative words, such as
“difficult to fall asleep”, “bad mood”, etc., are in the word cloud below.

4.3.2 Data Processing

In this section, we describe the preprocessing procedure for interview recordings,
using prosodic and acoustic features, frequency-based features and pre-trained word

embeddings.
Audio Transcription

The iFlyTek Audio transcribes API was used to transcribe audio recordings, which
were then reviewed by research assistants majoring in psychiatry. Before starting the
automatic transcription, raw audio files larger than 10 MB were divided into smaller
data blocks as required by the transcription algorithm. The transcript blocks were
merged sequentially using each block’s unique ID to create the final transcript. The
raw transcription results were in JavaScript Object Notation (JSON) format, con-
taining various fields such as the timestamp of a sentence, sentence content, speaker

identification, and sentence tokenization. The speaker identification helped to isolate
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the patients’ responses in the raw audio. The timestamp of a sentence, indicating
each sentence’s start and end points, was used to extract the patient’s audio clips
and vocal features in later experiments. The tokenization result was used as input for
the frequency vectorizer. These JSON objects were parsed using the Python internal

JSON package and converted into comma-separated values (CSV) files.
Transcripts Preprocessing

Our proposed dataset includes 113 transcripts in comma-separated value files, with

” N

five fields per transcript: "bg,” "ed,” "speaker,” "value,” and "words list.” The "bg”
and "ed” indicate the start and end of one sentence captured by the transcription
algorithm. The "value” field is the sentence recognized and transcribed by the al-
gorithm, and the "word list” field is the sentence tokenization. The "value” and
"speaker” fields may contain errors due to environmental noise or a lack of pause be-
tween the psychiatrist and patient. After research assistants verified the transcription
against the audio recordings, the sentences in the transcripts were tokenized using
Jieba, a Chinese tokenization library. The transcripts were then divided into healthy

and depressive groups based on the physicians’ diagnosis after removing stop words

such as 7if” and "too.”
Audio Feature Extraction

We used the collaborative voice analysis repository (COVAREP) toolkit to capture
the frame-level acoustic features [54]. COVAREP is an open-source feature extraction
toolkit commonly used in depression classification studies. We segment the raw inter-
view audio recordings using the Cooperative Voice Analysis Repository (COVAREP)
toolkit, which allows us to extract audio features at a rate of 100Hz. To realize this,
we divide the raw recording into blocks, with each block lasting 10 milliseconds, which
is a common practice in speech processing [223-226]. We then read in each interview

recording from the input directory and extract various features for each block in the
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recording. Specifically, we extract features such as F0, voiced/unvoiced (VUV) de-
cision, normalized amplitude quotient (NAQ), quasi-open quotient (QOQ), HI1-H2,
peak-slope (PSP), modulation depth quotient (MDQ), relative amplitude quotient
(Rd), creaky voice detection, Mel-Cepstral coefficients (MCEPs), Harmonic Model
+ Phase Distortion (HMPD) features. By using a 10-millisecond block size and a
sampling rate of 100Hz, we believe that we are able to capture the relevant acoustic
information at a reasonable computational cost. Detailed descriptions of each audio
feature can be found in Table 4.4.

Table 4.4: COVAREP Spectral and Cepstral Feature Set

Voicing based Group
FO Spectral
VUV -

PSP Spectral
Glottal source-based Group
Normalized amplitude quotient(NAQ) Spectral
Q0Q Spectral
H1, H2 Spectral
Parabolic Spectral Parameter (PSP) Spectral
Spectral envelope-based Group
Mel-cepstral coefficients (MCEPy-MCE Pas) Cepstral

Harmonic model and phase distortion mean (H M PDMy-HM P D Ma;) Cepstral
Harmonic model and phase distortion deviation (HMPDDo-HMPDD,3) Cepstral

Wavelet-based Group
Maxima Dispersion Quotient (MDQ) Spectral
Peak slope Spectral

4.3.3 Baseline Audio Models

We used COVAREP to extract audio features from each participant at a rate of
10 milliseconds. The interviews lasted between 5 to 10 minutes, resulting in vari-
able numbers of frames extracted from the recordings. This caused difficulties in

batch processing. To overcome this issue, we employed a histogram-based processing
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technique known as the "Neighborhood top-N elements method” to transform the
variable-length audio feature frames into fixed-length ones.

To make the audio feature frames fixed-length, we computed the histogram of each
audio feature to obtain its global distribution during the interview. The top-N most
frequent elements in the histogram represent the audio feature, and we used the left-
endpoints of these elements. To compute the histogram, we needed to determine the
number of bins for each audio feature. If the number of bins was too small, most of
the entries were grouped into the same bin. Conversely, if the number of bins was
too high, only a few entries would be in each bin. We avoided these situations as they
may not accurately describe the statistical characteristics of the audio features. To
determine the number of bins, we used the Freedman-Diaconis rule, which calculates
the bin width to minimize the difference between the area under the empirical data
distribution and the theoretical data distribution [227]. The hyperparameter N for
each audio feature was determined in advance using nested cross-validation. Specifi-
cally, we tested values of N in the range [5, 10, 15, 20, 25, 30, 35] and recorded the
value that resulted in the best cross-validation score on the training partition of the

original dataset.

4.3.4 Baseline Text Models

To identify depression, we categorized transcripts into two groups - healthy and de-
pressive - as assessed by psychiatrists. We also classified transcripts into four groups
based on their MADRS scores to determine the level of depression. All transcripts
were encoded in "GBK” for easy analysis, and commas separated all fields. In the
text-based experiments, we used uni-gram, bi-gram, Term Frequency-Inverse Docu-
ment Frequency (TF-IDF), and pre-trained word embeddings to represent transcripts.

Uni-gram refers to a single word or token that appears in a document. It is the

simplest and most commonly used form of text representation in Natural Language
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Processing (NLP). Uni-gram count is the frequency of a particular word or token
within a single document. Bi-gram, on the other hand, refers to two consecutive
words or tokens that appear in a document. Bi-gram count is the frequency of two
consecutive words that appear together in a document. Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) is a statistical measure that evaluates the importance of
a word or token in a document. It takes into account the frequency of a word within
a single document (term frequency) and across all documents in a corpus (inverse
document frequency). It is used to determine the relative importance of words or
tokens in a document and is widely used for information retrieval and text mining.

The count vectorizer builds a vocabulary by scanning all transcripts and trans-
forming each document into a matrix of token counts. The count vectorizer builds a
vocabulary by scanning all transcripts and transforming each document into a matrix
of token counts. Let x = (x1,29,...,2,),z € R®**" be a vector of token frequencies,
where each column vector x; represents token frequencies of subject .S;, where s is the
number of subjects, n is the size of the vocabulary.

After generating frequency-based text features, we trained multinomial Bayes clas-
sifiers to identify depression and predict its severity for each subject. We selected the
multinomial classifier because of its ability to classify numerical features and used it
to calculate the probability of depression presence and level based on each subject’s

feature vector., i.e.

The probability of any given example can be assigned a class C;, which is given by:

Therefore, the Bayes classifier finds the maximum a posterior probability (MAP)

given any example x, i.e.
h*(x) =argmax P (X =x; | C =¢;) P(C = ¢) (4.3)
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However, x; is a high-dimensional feature vector, resulting in difficulties directly com-
puting the term P(X = z; | C = ¢;). An approximation is adopted to reduce the
computation cost, such as using the assumption that features are conditionally inde-

pendent given the class C}, i.e.

The set of conditional probabilities in Equation 4.4 can prove unreliable when a word
is missing from the training set; regardless of its label, a zero product of conditional
probability is the result. Avoiding zero-conditional probabilities is accomplished by
adopting a smoothed conditional probability instead of directly computing the con-
ditional probability p (x|y, ¢;), which is given by:

P(z,y,c;) +a-P(z)
P(y,Ci)‘f'Of

P(x]y )= (4.5)

4.4 Results and Discussion

4.4.1 Baseline Results

We established baseline models and performance metrics to detect depression and
classify its severity on our proposed dataset. We conducted two series of experiments,
one using frequency-based text features and the other using a set of audio features.
Due to the limited size of our dataset, we employed nested cross-validation over the
training set to ensure objective performance evaluation. In related works (see Table
4.1), most clinical datasets comprise 100 to 200 data points, due to the high cost of

data collection.
Experimental Setting

This study focused on detecting depression and predicting the severity of depression.
To achieve this, the dataset was split into independent training and test sets. The
training set consisted of 41 healthy individuals and 49 individuals with depression,

while the test set had 10 healthy individuals and 13 individuals with depression.
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To assess the performance of the models in a more challenging scenario, the dataset
was further divided into training and test sets based on depression severity, with 41
healthy individuals, 7 with mild depression, 27 with moderate depression, and 15 with
severe depression in the training set, while the test set had 10 healthy individuals, 2
with mild depression, 7 with moderate depression, and 4 with severe depression.

To maintain balance among minority classes, we oversampled the minority classes
in the training set. For each experiment, we fine-tuned the models by conducting a
grid search with nested cross-validation to determine the optimal hyper-parameters
and then reported the results on the test set. Apart from the baseline experiments,
we also assessed the effectiveness of pretrained deep learning models [228] on the
proposed dataset. For the deep learning-based experiments, we labelled each frame
of audio and text features by the subjects’ diagnostic results. The dataset was then
split into training, validation, and test sets with an 8:1:1 ratio, similar to the method

in [228].
Binary Classification Text Model (Depression vs. Healthy)

We trained and evaluated multinomial Bayes models using nested cross-validation
on the training set collected for this study. During the hyperparameter fine-tuning

phase, we optimized the classifier parameters to achieve the highest Fj score.
Multi-classification Text Model

To investigate whether the severity of depression is related to our extracted text fea-
tures, we used a multinomial Bayes model for depression severity classification. Since
our dataset was limited in size, we conducted nested cross-validation to train the
model and evaluate its performance. As mentioned in the second to last paragraph
in Section 4.4.1, the training set had 41 healthy individuals, 7 with mild depression,
27 with moderate depression, and 15 with severe depression, while the test set had 10

healthy individuals, 2 with mild depression, 7 with moderate depression, and 4 with
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Table 4.5: Cross Validation and Testing Result of the Text Depression Detection
Model

Text modality (Binary classification, nested cross-validation, testing)

Model State Precision Recall F1 score Accuracy Cohen Kappa

0.73£0.09 080 0.82+0.06 0.89

Healthy 0.94 £0.07 1
.87  0.96 £0.07 0.884+0.05 0.93 0.82+0.03 0.91 0.70+0.02 0.82

=)
\»—“

Uni-gram  Depressive  0.81 £ 0.05

avg. 0.87 +£0.06 0.92 0.86+0.05 0.91 0.85+0.03 0.91
Healthy 0.96 £ 0.09 1 0.56 £0.02 0.70 0.71+0.03 0.82

Bi-gram Depressive 0.734+0.04 0.81 0984004 1 0834006 090 0794002 087 056+006 0.73
avg. 0.83+£0.09 089 0.794+0.06 0.87 0.78+0.09 0.86
Healthy 1 1 0.59+0.12 0.70 0.74+0.11 0.82

TF-IDF  Depressive 0.74+0.08 0.81 1 1 0.854+0.06 0.90 0.8140.05 087 0.614+0.05 0.73
avg. 0.86 £0.07 0.89 0.814+0.03 0.87 0.80+0.06 0.86
Healthy - 1 - 0.96 - 0.98

[228] Depressive - 0.95 - 1 - 0.97 - 0.97 - 0.86
avg. - 0.98 - 0.97 - 0.97

& Underline indicates results on the test set.

severe depression. By merging the "none” and "mild” classes and the "moderate”
and "severe” classes, we were able to create a more balanced training set with 48 in-
dividuals in the none&mild class and 42 in the moderate&severe class. This balanced
dataset allowed us to train our machine learning model more effectively and produce
more accurate results. We chose to use the F) score as our evaluation metric because
it is more sensitive to data distribution. In healthcare datasets, there are often more
patients than healthy individuals, making it important to choose an evaluation metric
that is appropriate for imbalanced datasets. The F} score takes into account both
precision and recall, making it a suitable metric for evaluating the performance of
our machine learning model on imbalanced data. To optimize the multinomial Bayes
classifier, we varied the parameter o in the range of 10¥ where k was set to 0, 1, 2,
or 3. The best value for a was determined to be 100 through nested cross-validation.
The best micro average Fj score was (.58 in the cross-validation, and the same score

was obtained on the test set. Details of other metrics can be found in Table 4.6.
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Table 4.6: Cross Validation and Testing Result of the Text Depression Level Predic-
tion Model

Text modality (depression level prediction, nested cross-validation, testing)

Model State Precision Recall F1 score Accuracy Cohen kappa

None & Mild 0.91+0.04 0.73 0.76+0.08 0.80 0.83+0.07 0.76

Uni-gram  Moderate & Severe 0.4340.06 0.50 0.744+0.08 0.86 0.54+0.08 0.63 058+£0.06 0.61 0.36£0.02 0.38
avg. 0.57+£0.07 047 0.58+0.06 0.61 0.55+0.09 0.52
None & Mild 0.89 £ 0.08 1 0.80 £0.05 0.80 0.85+0.04 0.89

Bi-gram  Moderate & Severe 0.46 +0.05 0.47 0.8140.07 1 0.594+0.03 0.64 0.62+0.04 0.65 0.41+0.02 0.47
avg. 0.59+0.03 0.58 0.62+0.05 0.65 0.58+0.04 0.58
None & Mild 0.79+0.05 0.80 0.90+0.03 0.80 0.84+0.04 0.80

TF-IDF  Moderate & Severe 0.514+0.04 0.38 081+0.05 0.71 063+0.05 050 0.66+£0.05 0.57 04440.03 0.32
avg. 0.514+0.02 046 0.66+0.04 0.57 0.57+0.02 0.50
None & Mild - 1 - 0.96 - 0.98

(228 Moderate & Severe - 0.64 - 1 - 0.78 - 0.85 - 0.87

=}
~
N
,
I
0
[
\
=}
[
S

avg. -

@ Underline indicates results on the test set.
Binary Classification Audio Model (Depression vs. Healthy)

XGBoost is an open-source research project that implements a tree-based gradient-
boosting algorithm. The XGBoost model has many attractive properties: firstly,
it is an ensemble learning method, which decreases the bias of the model; it is a
tree-based model with high interpretability, determining the feature’s importance in
making an inference. These models offer a good trade-off between computation cost
and accuracy. Tree-based boosting algorithm methods solve many machine learning
problems efficiently and accurately, making it a good candidate for providing baseline
results within our dataset.

To train our XGBoost classifiers, we created a separate model for each audio fea-
ture. However, we excluded certain features, including HMPDM, to HMPDM3, since
they remained constant throughout the interview. To make our final decision, we
applied a majority voting algorithm to the output of each classifier. To optimize our
models, we fine-tuned the parameters by maximizing the Fj score, which we deemed

equally important for precision and recall. For each XGBoost classifier, we tuned
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several parameters, including the learning rate, max depth of the tree, and number
of estimators. To identify the optimal hyperparameters, we conducted a grid search
on the training set, selecting models with high precision and recall. In the nested
cross-validation, we achieved a best micro average Fi score of 0.81, which improved
to 0.87 on the test set. Further details on the other metrics can be found in Table
4.7.

Table 4.7: Cross Validation and Testing Result of the Audio Depression Detection
Model

Audio modality (Binary-classification, nested cross-validation, testing)

Model State Precision Recall F1 score Accuracy Cohen Kappa

Healthy 0.83+0.04 089 0.73+0.05 0.80 0.78+0.02 0.84

XGBoost Depressive 0.804+0.04 086 0.88+0.04 0.92 0834+0.05 089 0.81+0.04 0.87 0.62+0.06 0.73
avg. 0.81+0.07 0.87 0.81+0.05 0.87 0.81+0.04 0.87
Healthy 0.75+0.04 078 0.66+0.03 070 0.70+0.05 0.74

Decision Tree Depressive 0.74+0.03 0.79 0.82+0.04 0.85 0.78+0.05 0.81 0.74+£005 0.78 0.484+0.02 0.55
avg. 0.74+0.03 078 0.74+0.02 0.78 0.74+0.04 0.78
Healthy - 0.78 - 0.96 - 0.98

[228] Depressive - 0.95 - 1 - 0.97 - 0.97 - 0.95
avg. - 0.98 - 0.97 - 0.97

a Underline indicates results on the test set.

Multi-classification Audio Model

In our investigation of the relationship between depression severity and audio features,
we trained depression severity prediction models using the top-N elements method.
This method transformed variable-length audio features into fixed-length vectors,
which we then used in our analysis. We trained and evaluated a set of models on the
training and validation set, testing different parameters to optimize performance. We
selected the model with the highest I score for our analysis. This model achieved an
F score of 0.52 in cross-validation and 0.55 on the test set. Results of the fine-tuned

baseline models can be found in Table 4.8.
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Table 4.8: Cross Validation and Testing Result of the Audio Depression Level Pre-
diction Model

Audio modality (depression level prediction, nested cross-validation, testing)

Model State Precision Recall F1 score Accuracy Cohen Kappa
None & Mild 0.72+0.03 0.62 1 1 0.84 £0.05 0.77
XGBoost Moderate & Severe 0.4240.02 0.71 0.524+0.03 0.71 0.47+0.02 0.71 0.61+0.02 0.65 0.35+0.02 0.43
avg. 0.45+0.02 0.49 0.61+0.03 0.65 0.52+0.04 0.55
None & Mild 0.72+0.03 0.62 1 1 0.84 £0.04 0.77
Decision
Moderate & Severe 0.484+0.02 0.57 0.59+0.03 0.57 0.53+0.01 0.57 0.63+£0.04 0.61 039+£001 0.35
Tree
avg. 047+£0.02 045 063+£0.04 0.61 0.54+0.03 0.51
None & Mild - 1 - 0.95 - 0.97
[228] Moderate & Severe - 0.60 - 1 - 0.75 - 0.81 - 0.95
avg. - 0.88 - 0.81 - 0.76

@ Underline indicates results on the test set.
Multimodality Baseline Models

To enhance the ability to assess depression, we employed late fusion to combine the
outputs of the acoustic and semantic models. Our multimodality baseline models
produced an output through a linear combination of the acoustic and semantic model
outputs. In Table 4.5 and Table 4.7, the depression detection accuracy of the acoustic-
only and semantic-only models were 0.82 and 0.81, respectively. For depression-level
classification, the accuracy of the semantic-only and acoustic-only models were 0.62
and 0.61, respectively, as shown in Table 4.6 and Table 4.8. During cross-validation
and on the test set, our multimodality depression detection model (accuracy=0.86,
see Table 4.9) and multimodality depression-level classification model (accuracy=0.63,
see Table 4.10) produced fewer errors than the acoustic-only and semantic-only mod-

els.

4.4.2 Discussion on Audio Features Statistics

Our dataset analyzed recordings from 113 clinically supervised participants, resulting
in two different comparisons: inter-condition and intra-condition comparisons. Inter-

condition comparison evaluates the differences in audio features between healthy and
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Table 4.9: Cross Validation and Testing Result of the Multimodality Depression
Detection Model

Fused model (Binary classification, nested cross-validation, testing)

Model State Precision Recall F1 score Accuracy Cohen Kappa

Healthy 0.94 £0.02 1 0.73+£0.04 080 0.8240.03 0.89

Uni-gram + XGBoost Depressive  0.814+0.02  0.87  0.96 £ 0.03 1 0.88+0.03 0.93 0.86+0.04 0.91 0.72+0.04 0.78
avg. 0.87+0.02 0.92 0.86+0.03 0.91 0.85+0.01 0.91
Healthy  0.96 & 0.02 1 0.56+0.03 0.70 0.714+0.02 0.82

Bi-gram + XGBoost  Depressive 0.73+£0.02 081 0984001 1 0834004 090 0.79+£0.02 087 068+0.06 0.72
avg. 0.83+0.03 0.89 0.794+0.02 087 0.78+0.04 0.86
Healthy 1 1 0.59+0.02 0.70 0.744+0.02 0.82

TF-IDF + XGBoost  Depressive 0.74 +0.03  0.81 1 1 085+0.04 090 0.814+0.04 087 0.65+0.04 0.69
avg. 0.86+0.03 0.89 0.81+£0.05 087 0.80+0.02 0.86

a Underline indicates results on the test set.

Table 4.10: Cross Validation and Testing Result of the Multimodality Depression
Level Prediction Model

Fused model (depression level prediction, nested cross-validation, testing)

Model State Precision Recall F1 score Accuracy Cohen Kappa
None & Mild 0.834+0.04 091 0.85+0.06 1 0.84+0.03 0.95
Unigram + XGBoost Moderate & Severe 0.47+£0.02 0.56 0.6740.04 071 0.55+0.03 0.63 0.63+0.05 0.70 0.43+0.05 0.53
avg. 0.59+£0.02 0.62 0.63+0.04 0.70 0.60+0.01 0.65

None & Mild 0.85£0.03 1 0.85£0.02 0.80 0.85%0.04

00
=]

Unigram + Decision _
0.624+0.03 0.57 041£0.02 0.35

Moderate & Severe  0.45 4 0.04
avg. 0.58 £0.01

=3
s
o

0.704+0.03 071 0.55£0.04 0.5
0.624+0.03 057 0.59£0.03 0.55

o
39

Tree

Al

=
>

.5

2 Underline indicates results on the test set.
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depressive groups, such as whether participants from the control (healthy) and ex-
perimental (depressive) groups differ in vocal fundamental frequency Fy processed
by the top-N elements method. Intra-condition comparisons evaluate the variabil-
ity of patients’ audio features relative to their severity of depression. This second
comparison is crucial because it offers a new way to understand if an individual’s
depression severity changes by focusing on specific audio features. In this section,
we focused on comparing the distribution of three specific features, namely Vocal
fundamental frequency (Fp), Mel-Cepstrum Coefficient 0 (MCEPy), and Harmonic
model and phase distortion mean 17 (HMPDM;7). We conducted statistical tests to
determine if there were significant differences in the distributions of these features
between the depressed and non-depressed groups, as well as between different levels
of depression. Regarding the other 71 features, we found that their distributions were
not significantly different between the two groups, and therefore we did not include
them in our comparison. However, we want to emphasize that these features may
still be useful for future research and could potentially provide further insights into

the relationship between speech and depression.
Vocal Fundamental Frequency (Fp)

Fundamental frequency Fj is one of the significant acoustic variables correlating to
the pitch; Fy is determined by the vibration frequency of the vocal fold and is used
to describe the periodicity of the speech. Our analysis found that the inter-condition
effect is present for female participants for fundamental frequency Fy. The median
Fp of the healthy control group is lower compared to participants from the depression
group, as shown in Figure 4.2. This is in line with the conclusion reached by Mundt
et al. that the healthy control group has a lower F{ than the depressive experiment
group [229]. The variances of Fjy between the two groups were compared using a Welch
t-test, and the variance of F{ of the healthy group was found to be significantly greater

than that of the depressive (p<0.01). However, the Fj was not a significant audio
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feature in male participants.

Female, FO, HLTY vs. MDD Female, FO, HLTY vs. M
p = 8.81e-04, Cohen's d = 0.89 p = 2.79e-03, Cohen'sd = 0.91
3001 . 3001 N
2501 ! 2501 '
o 200 o 200 E
L L
150 ¢ 150/
1001 100 :
HLTY MDD HLTY M
Status Status
Female, FO, HLTY vs., MT Female, FO, HLTY vs. SE
p = 5.20e-03, Cohen'sd = 0.71 p = 7.83e-03, Cohen'sd = 0.72
3001 . 3001 .
250 ! ' 250 '
o 200 o 200 6
L L
150 150 .
100 : 1001 '
HLTY MT HLTY SE
Status Status

Figure 4.2: The audio feature Fj of female subjects between healthy and depressive,
healthy and mild, healthy and moderate, healthy and severe. (HLTY: Healthy, MDD:
Major Depressive Disorder, M: Mild depression, M'T: Moderate depression, SE: Severe
depression)

Mel-Cepstrum Coefficient (MCEP)

The Mel-Cepstrum coefficient (MCEP) is included in our model as it has been effec-
tively used to characterize speech content [230-232]. In our research, we conducted a

Welch t-test to determine if MCEP audio features differ significantly with depression
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presence and severity. For the binary classification task (depressive vs. healthy), we
identified some MCEP values significantly different between the healthy and depres-
sive groups. The box plots in Figures 4.3 and 4.4 confirm that MCEP, can be used
in both male and female groups as a criterion to distinguish potentially depressed pa-
tients. However, some high-order MCEPs (such as MCEPg, MCEP;3 and MCEP;53)
had overlapping values between the healthy and depressive subjects. MCEP, was also
a reliable indicator of depression severity classification; it was significantly different
in the healthy, mild, moderate and severe depression groups, as shown in Figures 4.3
and 4.4. Therefore, MCEP, may be a gender (biological sex)-independent factor in

distinguishing depression presence and severity.
Harmonic Model and Phase Distortion Mean (HMPDM)

Several reports have shown that HMPDMSs can be used to predict depression presence
and severities [17, 233-235]. In our research, we conducted a Welch t-test to test if the
HMPDM values in the healthy and depressive groups are significantly different; the
significance levels are set at the 1% for HMPDM audio features. For the binary classi-
fication (depressive vs. healthy), the higher-order HMPDMSs, such as the HMPDM, 7,
were found to be significantly different between the healthy and depressive subjects
(see Figure 4.5), playing a key role in depression presence prediction. Additionally,
the variance of HMPDM,; increased in participants suffering from depression, while
the median of the HMPDM;; for a healthy subject was higher in healthy subjects. In
depression severity classification, the HMPDM;; of female participants was a reliable
indicator when predicting depression levels, such as healthy vs. moderate, healthy vs.
severe, mild vs. moderate and moderate vs. severe. For instance, Figure 4.6 shows
that the healthy group has a higher median of the HMPDM;;. Further investigation
is needed to fully understand the role of each audio feature in depression presence

detection and level classification.
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Figure 4.3: The MCEP of male and female subjects in healthy vs. depressive, healthy
vs. mild (HLTY: Healthy, MDD: Major Depressive Disorder, M: Mild)
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Male, MCEP_O, HLTY vs. MT Female, MCEP_O, HLTY vs. MT
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Figure 4.4: The MCEP, of male and female subjects in healthy vs. moderate, and
healthy vs. severe. (HLTY: Healthy, MDD: Major Depressive Disorder, MT: Moder-
ate, SE: Severe)
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Figure 4.5: The HMPDMj7 in healthy vs. depressive. (HLTY: Healthy, MDD: Major
Depressive Disorder)

4.4.3 Impact of Audio Features During Inference

Recent studies have made significant progress in using machine learning models in
combination with mental healthcare to assist in depression diagnosis [236-239]. How-
ever, providing doctors with a clear and natural explanation of the criteria used in
a prediction can be challenging. For example, a numeric probability of depression is
helpful, but it may not provide enough information for a doctor to understand how
the prediction was made. To provide a more clinically meaningful explanation, using
audio features such as fundamental frequency (Fp), MCEP, and HMPDM can be more
informative. Generally, explaining how a prediction was made limits the model we
can use, but we chose to adopt the SHapley Additive exPlanations (SHAP) proposed
by Lundberg et al. [240]. This approach allows us to understand the contribution
of each audio feature to the prediction by comparing the output of the model when
a feature is included or excluded. However, it is important to note that the feature
contribution does not demonstrate causality and does not represent a final diagnosis

of depression. It enables doctors to make more informed diagnoses by understanding

91



Female, HMPDM_17, HLTY vs. MT Female, HMPDM_17, HLTY vs. SE
p = 1.03e-03, Cohen'sd = 1.01 p = 1.75e-03, Cohen's d = 1.45

31 3 ,
2 21
N1 5L
= ] = 1
5 O 5 °
S -1 S -1
I I
-2 -2
—3‘ —3' _o_
HLTY MT HLTY SE
Status Status
Female, HMPDM 17, M vs. MT Female, HMPDM 17, M vs. SE
3, p = 1.23e-02, Cohen'sd = 0.88 p = 7.82e-03, Cohen'sd = 1.24
’| — .
HI HI
= ] S 1
)] 0 ¢ )] 0
o o
= -1 S -1
I I
-2 -2
—3' —3' _0_
M MT M SE
Status Status

Figure 4.6: The HMPDM;j; of the female subjects in healthy vs. moderate, healthy
vs. severe, mild vs. moderate and mild vs. severe. (HLTY: Healthy, M: Mild, MT:
Moderate, SE: Severe)
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which audio features contribute more to the generated depression prediction.

To demonstrate the reliability of the predictions made by the model and gain
further insight into factors that affect depression diagnosis, we present the graphi-
cal contribution of audio features to the prediction process. Our model outputs the
depression probability and its explanations, which shows a series of features that in-
creased (red) and decreased (blue) the depression risk. Based on the diagnosis of
doctors, we divided the dataset into two categories; one being healthy and the other
being depressive. The audio features were extracted and processed using the method
described in Section 4.3.3. The original dataset was split into training (80%) and
test (20%) sets. We trained an XGBoost binary classification model with the optimal
parameters obtained in Section 4.4.1. The output of the binary classifier provided
the depression probability of the participant. An explanation of our model represents
the contributions of interpretable groups of audio features. These contributions ex-
plain how the model makes a prediction, making it possible for psychiatrists to reach
a final diagnosis. In section 4.4.2, we only investigated the difference between each
preprocessed audio feature (processed by the neighbourhood top-N elements method)
in the healthy and depressive groups. Without a meaningful explanation, the out-
put probability of the model may be hard to explain; by presenting the depression
probability as a cumulative process, the reason for the prediction made by the model
becomes clear.

The increase in the depression probability of test examples shown in Figures 4.7-
4.10 is driven by audio features. The probability explanation bar in Figures 4.7-4.10
has red features that push the probability higher (to the right) and blue features that
push the probability lower (to the left). The magnitude of their contribution sorts
audio features, and the features with the higher contributions are labelled. Through
this representation, we can conclude that most audio features have a small impact,

and a few primarily drive the probability of depression features. Instead of feeding the
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model with important features, we allow the model to select the features it believes
to be effective, meaning that the model may select unpredictable features that are
unforeseen as effective for depression prediction. For some of these features with
high contributions, it is beneficial to investigate further how they relate to depression
risk. High contribution features can be used to alert psychiatrists to notice some
implicit signals with depression quickly, and they are likely to be a proxy that conveys

potential negative mental states or emotions.

fix) =4.037

0.265 = MCEP_23

0.371 = MCEP_6
0.166 = MCEP_14 +0.63

3.004 = HMPDM_9

0.062 = HMPDD_0O

0.348 = MCEP_5 . +0.35
—0.459 = MDQ . +0.33
0.601 = MCEP_7 ' +0.28

60 other features +1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
E[f(X)] =0.397

Figure 4.7: The contribution of audio features when making inferences about depres-
sive individual S001.
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Figure 4.8: The contribution of audio features when making inferences about depres-
sive individual S056.
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4.5 Conclusions

Open datasets are valuable for both research and the industrial community. Collect-
ing and annotating clinical interviews with psychiatrists diagnoses is labour-intensive
and requires expertise in psychology. Labelled depression interview datasets of au-
thentic patients collected in clinical settings are still limited in number. We have
collected and analyzed a depression interview dataset labelled by clinicians, with
spontaneous responses from 113 outpatients. This dataset provides a valuable and
abundant resource for other researchers working on automated depression diagnosis,
affective computing, and other related fields. It is especially useful for researchers who
have difficulty accessing qualified psychiatrists to diagnose and label their interview
recordings. Furthermore, this dataset can serve as a public benchmark for researchers
who need to evaluate their models.

We trained baseline models for depression presence and level classification on the
dataset. The models achieved micro-average Fj scores of 0.85 and 0.81 for binary
classification and 0.58 and 0.52 for depression level prediction using nested cross-
validation. All models are evaluated by the nested cross-validation method and tested
on the independent test set; these results demonstrate that automated depression
diagnosis based on interviews in Chinese is feasible, while there is still some room for
improvement. Finally, we conducted the statistical analysis in two different methods.
Subjects were divided into groups based on depression severity, and intragroup feature
analyses were completed. We confirmed acoustic features such as formant frequency
Fy, MCEP, and high-order HMPDM significantly impact the ability to distinguish
between depressed and non-depressed individuals.

Moreover, a novel visualization method is used to illustrate the high-impact audio
features in depression detection, which further illuminated the black-box nature of our
proposed models and provided a remarkable indicator for physicians to pay attention

to. We anticipate the release of this dataset will motivate more researchers to focus
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on automated depression diagnosis based on Chinese. We hope our dataset can also
become a benchmark for other researchers to compare the performance of their models
against others’ and supplement other datasets collected under controlled lab settings.
We hope other researchers can have greater insight into AI for mental healthcare with

our dataset.
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Chapter 5

Conclusions, Recommendations, &
Future Work

5.1 Conclusions

In Chapter 2, we reviewed 264 studies measuring acoustic, semantic, and facial land-
mark features to distinguish individuals with mental health disorders. Our synthesis
includes significant and non-significant features across modalities, as well as guidelines
for data collection and machine learning model improvement. Open-access datasets
and competitions have enabled research on PTSD, bipolar disorder, and postpartum
depression, but overfitting remains a concern. We encourage the collection of open
datasets and code sharing for reproducibility. Conducting more research on multiple
datasets may enhance model generalizability and lead to more reliable conclusions
about mental health disorders. Using multimodality features for machine learning
holds promise for enhancing mental health evaluations and treatment.

In Chapter 3, we presented a multimodality approach for automated depression
diagnosis, using both audio and text features. Our results showed that the audio
feature sequence carried information that could be used to predict depression severity,
while the text features provided valuable information for depression diagnosis. Our
patient-independent audio model achieved a sequence level Fj score of 0.9870 and

patient-level I} score of 0.9074, while the patient-independent text model achieved a
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sequence level F} score of 0.9709 and patient-level Fj score of 0.9245. Our experiments
also revealed the best hyper-parameters for both the audio and text models. The
findings provided insights for future research and assisted in model selection and
hyperparameter configuration when deploying this method in clinical settings. The
patient-level prediction model, obtained by a major voting algorithm, demonstrated
satisfying performance. Our multimodality approach has the potential to provide an
efficient and reliable tool for depression diagnosis and monitoring.

In Chapter 4, our work has demonstrated the value of open datasets in advancing
research in depression diagnosis and affective computing. By collecting and analyzing
a depression interview dataset labelled by clinicians, we have provided a valuable and
abundant resource for other researchers working in related fields. Our baseline models
achieved promising results for automated depression diagnosis based on interviews in
Chinese, highlighting the feasibility of this approach. Through statistical analysis, we
have confirmed the significance of specific acoustic features in depression detection
and introduced a novel visualization method to aid physicians in identifying these
features. We believe that the release of our dataset will inspire further research and
facilitate the development of more accurate and accessible depression diagnosis tools.
We hope our work contributes to a greater understanding of the potential of Al in

mental healthcare and provides a benchmark for future studies in this area.

5.2 Future Work

There are still some problems should be solved, including:

For the multimodality depression detection model:

« Investigating the representation of audio/text features during the whole inter-
view: This could help to improve the patient-level prediction by allowing the
model to make predictions based on a digest of audio/text features, which could

be more practical and efficient in clinical settings.
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o Applying the proposed method to other mental health disorders: While the
proposed multimodality approach was specifically designed for automated de-
pression detection, it has the potential to be applied to other mental health
disorders as well. It would be valuable to explore how the method performs
on other disorders, such as anxiety or PTSD, and to assess whether any mod-
ifications are necessary to adapt it to these conditions. For instance, in the
case of anxiety disorders, adjustments to the model’s feature extraction meth-
ods may be needed to better capture anxiety-related features, such as changes
in pitch, intensity, speech rate, voice quality, prosody, and silences or pauses.
Similarly, for PTSD, consideration may need to be given to including a wider
range of emotional and psychological states, as well as language features related
to traumatic experiences. For instance, we should take lexical choice, narrative
structure, emotional words, temporal references, and social interaction patterns
into account. By incorporating these language features into the analysis, we can
develop more comprehensive models for detecting PTSD and understanding the
experiences of individuals affected by trauma. Therefore, we plan to further in-
vestigate approaches specialized to these different disorders and optimize our

method based on experimental results.
For the depression interview corpus:

o Expanding the scope of labelled clinical interview datasets: While the authors
have contirbuted by collecting and analyzing a depression interview dataset
labelled by clinicians, there remains an insufficient quantity of such datasets
available for research purposes. In the future, we aim to expand the avail-
ability of labelled depression interview datasets by collecting data from diverse
populations, various demographics, cultural backgrounds, and clinical profiles.
Additionally, we will aggregate data from multiple sources, including health-

care facilities, research institutions, and online platforms, to create larger and
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more representative datasets for training and validating automated depression
diagnosis models. By addressing these issues, we can enhance the robustness
and generalizability of automated depression diagnosis models, ultimately im-

proving effectiveness in clinical practice.

« Visualizing high-impact features: We used a novel visualization method to illus-
trate the high-impact audio features in depression detection. Future researchers
can explore other visualization techniques to gain deeper insights into the fea-
tures that impact depression diagnosis and to provide physicians with more

useful indicators to pay attention to.

For the transformer-based model, our focus will remain on refining and broadening
the domain-specific language model. We plan to further train the model using exten-
sive mental health-related datasets covering a broader spectrum of topics, including
autism and post-traumatic stress disorder (PTSD). This expanded training will en-
able the language model to be effectively utilized for the diagnosis of various mental

disorders beyond its current scope.
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