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Abstract

The fifth-generation (5G) mobile network is growing rapidly and is set to revolutionize

the way we communicate, work and live. It offers faster speeds, lower latency,

and greater capacity than previous generations of mobile networks. Three main

use cases have been defined for fifth-generation (5G) including Enhanced Mobile

Broadband (eMBB), ultra reliable & low latency (uRLLC), and massive machine-type

communications (mMTC).

One way to achieve high data rate, low latency, and also massive connectivity is

by using multiple-input multiple-output (MIMO) systems. MIMO systems are able

to accommodate a high volume of data traffic through multiplexing and also reduce

the error rate by diversity. Although, MIMO systems can increase the data rate and

improve the performance at the same time, the current explosion in data traffic makes

existing detection and estimation algorithms in the physical layer less effective.

Recently, data-driven methods such as deep learning (DL) have been proposed

in various types of problems. In communication system design, in the absence of

an accurate mathematical model or when finding the analytical solutions is overly

complicated, DL methods can be employed. This thesis focuses on data-driven methods

on physical layer problems in MIMO communications. We study the application of DL

for detection and estimation problems where the optimal algorithms are costly and

existing sub-optimal methods are built on inaccurate mathematical models.

In the first part of this thesis, we study the problem of channel estimation (CE)

in highly dynamic systems. We propose the use of deep neural network (DNN) for

k-step channel prediction for Space-time block code (STBC)s, and show that DL-based
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decision-directed (DD)-CE can remove the need for Doppler spread estimation in fast

time-varying flat fading channels.

Another problem investigated in this thesis is link adaptation for MIMO

communication systems. We develop a DL-based link adaptation algorithm for highly

dynamic communication links, where adaptive transmission parameters are decided for

l > 1 forward time steps without a priori knowledge on channel statistics. Compared

to conventional solutions, our approach reduces the feedback requirements from the

receiver to the transmitter by a factor of l which significantly reduces the complexity.

This achievement comes at no additional cost on the data rate and/or bit error rate.

The next part of this thesis studies the detection problems in MIMO communication

systems. We propose a data-driven-based sphere decoding algorithm, where we model

the probability density function (PDF) of the radiuses and use them to select the

best radius based on its statistical properties. The performance achieved by the

proposed algorithm is very close to the optimal maximum likelihood decoding (MLD),

while the computational complexity, compared to existing sphere decoding variants,

is significantly reduced. It is shown that the number of lattice points inside the

decoding hypersphere is drastically smaller in the proposed algorithm compared to

conventional sphere decoding methods. We also study the application of DL in the

radius selection and we show that the proposed data-driven-based method has less

computational complexity than the DL-based method.

The last problem studied in this thesis is activity detection (AD) in massive

Internet of Things (IoT) networks in grant-free non-orthogonal multiple access (NOMA)

systems. Some studies propose compressive sensing (CS)-based method for AD where

the high level of message sparsity is needed. In order to remove this need and exploit

the statistical properties of the channels we propose a convolutional neural network

(CNN)-based method to detect active IoT devices. Our proposed CNN-based method

can achieve higher performance compared to the existing non-Bayesian greedy-based

methods, while they need to know the activity rate of IoT devices, and our method

works for unknown and even time-varying activity rates.
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Chapter 1

Introduction and Background

The wireless data explosion is expected to accelerate over the next decade by

increased popularity of smartphones, continual use of wireless video streaming services,

autonomous vehicles, and the rise of the Internet-of-Things (IoT) [4, 5]. In order to

address this high volume of data traffic demand, currently, the fifth-generation (5G)

wireless communications is being developed and deployed.

The utilization of millimeter wave (mmWave) in multiple-input multiple-output

(MIMO) communication systems is one of the candidate technologies for 5G wireless

communication systems to achieve ultra reliable & low latency (uRLLC) and enhanced

mobile-broadband communications which are two of the use cases of the 5G networks

[5–8]. In designing a MIMO wireless communication system, there are two main

challenges, namely channel modeling and channel estimation (CE) [9, 10]. These

constraints become more significant in highly dynamic environments, where the channel

impulse response varies quickly, and thus, the channel statistics remain constant only

for a very short period of time. Consequently, the high channel variations limits the

channel modeling and reduces the performance of existing channel estimators [10].

Furthermore, an accurate channel estimation can help the data transmission to choose

the best link based on the estimated channels.

The problem of signal detection modeled as maximum likelihood decoding (MLD)

in spatial multiplexing MIMO systems with complex Gaussian noise has been widely

1



studied in the literature. In MIMO wireless communications, the linear transformation

of constellation vectors by the channel matrix results in a structure called lattice. For

communications on the additive white Gaussian noise (AWGN) channel, finding the

closest lattice point results in the exact MLD which leads to an integer least square

(LS) problem [11–15]. Thus, efficient search methods to find the closest lattice point

to the observation vector are essential for near maximum likelihood (ML) decoding

schemes [16,17].

Another use case of 5G wireless communications is to provide massive connectivity

thought massive machine-type communications (mMTC) for machines and objects

resulting in the Internet of Things (IoT) [18]. As the demand for the IoT is expected

to grow drastically in the near future, developing algorithms that can improve the

performance of such systems is highly essential. Moreover, it can eventually help the

widespread use of numerous applications in health care systems, education, businesses

and governmental services [19–21].

Recently, grant-free non-orthogonal multiple access (NOMA) has been introduced

to make a flexible transmission mechanism for IoT systems to save time and bandwidth

by removing the need for the exchange of control signaling between the base station

(BS) and devices. Hence, devices can transmit data randomly at any time slot without

any request-grant procedure. However, in many IoT applications, a few devices become

active for a short period of time to communicate with the BS while others are inactive

[22]. Consequently, in IoT networks with a large number of devices each with a small

probability of activity, multiuser detection (MUD) methods heavily rely on activity

detection (AD) prior to detection and decoding [21,23–26].

In this chapter, we discuss these challenges in modern wireless communications

design, review existing methods, and discuss the drawbacks of these methods in terms

of both performance and complexity. Finally, we introduce data-driven methods as

an alternative approach for modern communication systems and present our proposed

solutions for each of the discussed challenges.
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1.1 DD-CE in MIMO Communications for Highly

Dynamic Environments

In highly dynamic channels, as the channel statistics remain constant only for a short

period of time, CE becomes less tractable [9]. Consequently, existing methods based on

statistical models become less effective as their performance drops considerably [10].

Hence, new approaches that can precisely track the channels in the communication

environment are crucial.

Wireless communication systems usually rely on some form of diversity at the

transmit side and/or the receiver side. Space-time block code (STBC) transmission

is one of the most common technologies for diversity [6] to improve the reliability

of transmission. The accuracy of CE is even more crucial for STBC transmission

than spatial multiplexing where more channels must be estimated for each block

transmission. The associated decoding process is also considerably affected by the

CE accuracy.

In MIMO systems, CE schemes have been mostly based on pilot-assisted

approaches, under the assumption of a quasi-static block fading model where the

channel is constant for a block of coherence time and changes independently to a

new realization for the next block. These assumptions are not applicable to dynamic

environments with fast time-varying channels. Currently, decision-directed (DD)-CE

methods have been suggested in time-varying channels and they have been widely

used in vehicular communication systems based on IEEE 802.11p technology [27].

In DD-CE, first a block of training symbols is sent to estimate the channel state

information (CSI). Then, data transmissions are conducted, where the subsequent CSI

corresponding to the data symbols are predicted by treating the detected symbols

as training data and re-estimating the channel iteratively [28, 29]. The core part of

DD-CE is channel prediction. Existing channel predictors are highly dependent on the

estimation of the Doppler rate of the channel. However, in highly dynamic vehicular

environments, Doppler rate estimation is challenging [10].

The optimal Wiener filter, finite length Wiener filter, and weighted recursive LS
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estimation, such as Kalman filter (KF), are the most popular predictors for DD-CE

[30, 31], but they all rely on exact Doppler rate estimation. Inaccurate Doppler rate

estimation results in significant error propagation in sub-optimal channel predictors

like KF, especially at high Doppler rates and for large packets. In addition, the above

mentioned channel predictors are very sensitive to modeling errors [9]. However, finding

an explicit mathematical model to describe the channel propagation characteristics in

highly dynamic environments is a challenging task and thus modeling errors are often

inevitable.

In this thesis, we study the problem of CE for STBC transmission. One of

the well-known STBC transmission techniques has been introduced by Alamouti for

systems with two transmit antennas in [6]. By generalizing Alamouti’s idea, Tarokh

et al. proposed STBC for other numbers of transmit/receive antennas [32]. The

problem of CE when STBC is used for transmission has been investigated in many

studies [33–35]. In the current studies, when STBC is used in a time-varying channel,

two approaches have been employed. One is to consider a coherent channel for block

transmission and the other one is to model the channel with a rough approximation such

as the first order autoregressive model. In [6,35], the authors assume that the channel

is coherent for each block transmission and using this assumption, they proposed

a coherent detection algorithm. However, in a fast time-varying channel where the

channel statistics change rapidly, the aforementioned assumptions lead to performance

degradation in signal detection. A KF-based CE method was used in [33, 34, 36] and

it was assumed that for one block, the fading channel changes based on the first

order Gauss-Markov process. Then based on the estimated channels for each block, a

detection algorithm was introduced. Furthermore, the proposed detection algorithms

are only valid for Alamouti’s scheme, meaning that for block size longer than 2 STBC

block transmission the assumptions are not applicable [33–35].

Motivated by the limitations of existing channel predictors and the strength of deep

neural network (DNN) in learning and prediction, a deep learning (DL)-based DD-CE

for MIMO STBC is proposed in this thesis, where the MIMO channel coefficients are

predicted by two trained DNNs. While existing channel predictors require the exact
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value of Doppler spread and an accurate mathematical model for Doppler spectrum, our

proposed algorithm does not require Doppler spread estimation and provides a more

reliable packet transmission in highly dynamic vehicular environments. Moreover, we

derive the ML STBC decoding for any STBC design in fast time-varying channels,

where channels vary during each STBC transmission. In the proposed scheme, first

we predict the corresponding channels for each block transmission and then perform

signal detection with the channel prediction.

The main contributions of this part of the thesis (presented in Chapter 2) are as

follows:

• We propose a DL-based k-step channel predictor;

• A new DD-CE algorithm based on the proposed predictor is proposed

for MIMO-STBC systems. The proposed algorithm exhibits the following

advantages:

– It removes the need for Doppler spread estimation;

– It exhibits lower error propagation compared to existing algorithm;

– It can be applied to MIMO fading channels without concrete mathematical

models;

– It has a lower computational complexity compared to existing DD-CE

algorithms;

– It is applicable to even large packets;

• The joint ML decoding algorithm for general STBCs in time-varying fading

channels is derived;

• The proposed scheme outperforms existing algorithms;

• We derive the optimal DD-CE for general STBCs using Wiener predictor.
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1.2 Link Adaptation for Systems with Highly Dynamic

Channels

Reliable communication over time-varying channels is one of the most important

requirements of the emerging communication systems to support short-packet

transmissions in Internet of Vehicles (IoV), autonomous vehicles, intelligent

transportation systems (ITS), Vehicle-to-Vehicle (V2V) communication, and IoT

[37–39]. In such systems, data are transmitted in a very short time to support

low-latency transmission [40]. For instance, to handle the real-time transmission of

speed, location and direction among the vehicles in V2V, short-packet of length 100

bits is employed [38].

One of the main characteristics of IoV communications is the time-varying channel.

An efficient approach to achieve reliable and high data rate communications in

time-varying channels is link adaptation, where an appropriate transmission mode

is selected based on the link quality. When a deep fading channel occurs, the

short-term signal-to-noise ratio (SNR) can be highly degraded; hence, using a low-order

modulation and a low code rate are favourable. Conversely, higher-order modulation

and higher code rates are more efficient in the presence of better quality channel

conditions.

Two widely employed link adaptation techniques are closed-loop and open-loop.

Closed-loop link adaptation is based on the knowledge of the CSI at the transmitter,

either through explicit feedback from the receiver using specific control channel or

through channel sounding and calculation between the transmitter and the receiver. On

the other hand, open-loop link adaptation does not require the CSI at the transmitter.

Thus, there is no explicit feedback from the receiver to the transmitter; instead, it is

based on implicit feedback by observing acknowledgement (ACK) packets. The ACK

packet informs the transmitter whether its choice of the transmission parameters can

be supported by the channel.

There are several studies in the literature on closed-loop link adaptation, which can

provide higher reliability in [41–43]. A widely employed closed-loop link adaptation
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is the rule-based method, where the modulation and the coding scheme (MCS) are

selected based on the channel condition defined in advance as a SNR table. The

rule-based method can be developed based on the short-term SNR and the average

SNR. In the rule-based method based on the short-term SNR, a packet is divided into

short-intervals, and link adaption occurs for each short interval. Using short-term SNR

or the predicted short-term SNR of the subsequent time interval, the receiver chooses

the MCS for the next interval. One way to improve the accuracy of this method, is

to have more frequent feedback transmissions from the receiver to the transmitter.

However it causes a delay in data transmission since the transmitter must wait for

feedback from the receiver at each time interval to update its MCS [38].

On the other hand, the rule-based method based on the average SNR relies on

channel sounding. In this scheme, the receiver uses the average SNR corresponding

to the training symbols sent by the transmitter prior to packet transmission to select

the most appropriate MCS for the upcoming packet. This decision is sent to the

transmitter over a feedback link for each packet. Once the transmission mode is

chosen, the transmitter starts to send the information payload based on the selected

transmission parameters for the whole packet [1, 44–47]. Although it can accurately

choose the optimal links, it requires a large number of feedback transmissions from the

receiver to the transmitter which takes too much bandwidth.

Considering the limitations of the existing link adaptation methods and the strong

potentials of using DNN for learning and prediction, a rule-based link adaptation

algorithm based on DL is proposed in this thesis. The proposed method targets at

achieving a desirable trade-off between the number of feedback transmissions and

reliability. The main contributions of this part of the thesis (presented in Chapter

3) are as follows:

• Compared to existing link adaptation methods that perform one-step adaptive

decision, our proposed DL-based solution performs l-step adaptive decision.

• Our solution needs to use the feedback link every l-steps reducing the cost of

feedback by a factor of l.
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• We show that this is achieved without sacrificing the throughput or the bit error

rate of the system.

1.3 Signal Decoding in MIMO Communications with

Sphere Decoding

The integer LS problem is much more challenging compared to the conventional LS

problem, where the unknown vector is easily obtained through pseudo inverse. For

integer LS problems, because of the discrete search space the problem is NP hard in

both the worst-case sense and the average sense [15].

Many studies have shown that the structure of the lattice can severely affect the

computational complexity of search algorithms used to find the closest lattice point.

Basically, the more simple the structure of lattice points is, the faster the closest point

can be found. There have been many studies on this fundamental problem of finding

the closest lattice point, e.g., [11,12,16,17]. An efficient method is to represent a lattice

by a trellis and to adopt a trellis decoding algorithms, such as the Viterbi algorithm

[48–50]. However, the trellises are only applicable for lattices with mutually orthogonal

vectors, and otherwise a high decoding computational complexity is inevitable [51].

Moreover, various sub-optimal solutions, such as zero-forcing (ZF) receiver, minimum

mean square error (MMSE) receiver, nulling and cancelling (NC), and NC with optimal

ordering have been proposed [13–15, 52]. These solutions first solve the unconstrained

LS problem and then perform simple rounding to obtain a feasible lattice point. While

these solutions result in cubic-order complexity, their performance is significantly worse

than the optimal solution.

Sphere decoding is one of the most well-known solutions to find the closest lattice

point with near ML performance and feasible complexity [15]. The idea of sphere

decoding for MIMO detection was introduced in [53]. Sphere decoding suggests to

confine the search space of the original integer LS problem to a hypersphere and

implement a branch-and-bound search over a tree to achieve MLD performance. It

can reduce the number of lattice points to be trialled, thus it reduces the detection
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complexity. Naturally, choosing an appropriate radius for the decoding hypersphere is

crucial for sphere decoding. If the radius is too small, there may not be any lattice

point inside the hypersphere. On the other hand, an overly large radius may result in

too many lattice points in the hypersphere, hence increasing the decoding complexity.

For example, the choice of radius based on the Babai estimate guarantees the existence

of at least one lattice point inside the hypersphere [54]; however, it may lead to a large

number of points within the hypersphere.

Many variations of sphere decoding with reduced computational complexity have

been proposed [3, 55–63]. Schnorr-Euchner variant is a relatively efficient version of

sphere decoding achieving the exact ML error performance by employing an efficient

search tree. Complexity reduction in sphere decoding through lattice reduction,

geometric and probabilistic tree pruning, and K-based lattice selection methods have

been addressed in [3, 55–63]. On the other hand, a few studies have addressed the

problem of radius selection in sphere decoding [15, 54]. A method to determine the

radius of the decoding hypersphere was proposed in [15]. The proposed algorithm

chooses the radiuses based on the noise statistics; however, it ignores the effect of

the fading channel matrix. A modified version of radius selection based on Babai

estimate has been developed in [54]. The proposed method can solve the problem

of sphere decoding failure due to rounding error in floating-point computations. To

take the advantage of sphere decoding for high-dimensional MIMO systems with

high-order modulations and other applications, such as multi-user communications,

massive MIMO, and relay communications [64–66], a promising solution is to develop an

intelligent mechanism for radius selection to reduce computational complexity without

performance degradation.

The incremental search-based sphere decoding has been suggested to both guarantee

the existence of lattice point and also reduce this number. The sphere decoding

algorithms proposed in [2] and [67] provide sphere decoding with increasing radius

search (SD-IRS) which can achieve the ML decoding error performance. In these

methods, for each hypersphere with radius ri the probability of having no lattice point

is not zero. In the case that a hypersphere has no lattice point, the search radius is
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changed to ri+1 and this is repeated until the closest lattice point is found. This iterative

approach finds the ML solutions with significantly reduced complexity. However, there

is still large room for improving the complexity, by choosing ri’s efficiently.

In [15] and [2], considering the distribution of the additive noise, the authors

proposed a method for radius selection. However, this study only takes into account

the effect of noise and ignores the properties of the fading channel matrix. Inspired

by the Babai estimate, a new radius selection method was proposed in [54] which

prevents the sphere decoding failure problem caused by rounding error in floating-point

computations. A new algorithm was proposed in [67] using deep neural network to

determine a set of radiuses to be used sequentially in an incremental search. Unlike the

method in [15] and [2], the DL-based solution in [67] considers the effect of the fading

channel on the radius selection.

Motivated by these facts, we propose a highly efficient data-driven-based solution

for radius selection in sphere decoding, which concurrently considers the statistics of

fading channels and additive noises. Our objective is to find a set of decoding radiuses

that can reduce the number of lattice points inside the hypersphere in the average sense.

We also introduce a DL-based method, where the radius of the decoding hypersphere

is learned by a DNN prior to decoding. The DL-based solution uses the DNN to map a

sequence of the fading channel matrix elements and the received signals at its input layer

into a sequence of learned radiuses at its output layer. The DNN is trained in an off-line

procedure for the desired SNR once and is used for the entire communication phase.

The conducted simulations show the superiority of the proposed data-driven-based

method over the DL-based method.

Unlike the sphere decoding with increasing radius search (SD-IRS) algorithm, the

proposed algorithms restrict the number of sequential sphere decoding implementations

to a maximum predefined value. Moreover, since the decoding radiuses are selected

according to the channel statistics, the number of lattice points that lies inside

the hypersphere is small compared to conventional radius selection methods, which

significantly reduces the computational complexity. On the other hand, the probability

of failing to find a solution is close to zero. To the best of our knowledge, these are the
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first studies in the literature that propose a mechanism for radius selection dependent

on both the fading channel matrix and the noise statistics. The main contributions of

this part of the thesis (presented in Chapter 4) are as follows:

• We obtain the probability density function (PDF) for each of the q lowest squared

distances between the observation vector and the lattice points in the skewed

lattice generated by the channel matrix.

• It is shown that the q lowest squared distances in the closest lattice point problem

can be approximated by Gumbel distributions with different position and scale

parameters.

• Using these PDFs, we set the hypersphere radiuses based on likelihood ratio test.

1.4 Activity Detection for IoT Systems with Grant-Free

NOMA Transmission

As the demand for connectivity in IoT systems is growing rapidly, it is crucial to

improve the user access in wireless communications [68]. Hence, the NOMA has been

introduced [69]. To address the main challenges of IoT, including access collisions and

massive connectivity, NOMA allows devices to access the channel non-orthogonally by

either power-domain [70] or code-domain [71] multiplexing. Meanwhile, this massive

connectivity is highly affected by the conventional grant-based NOMA transmission

scheme, where the exchange of control signaling between the BS and IoT devices is

needed for channel access. The excessive signaling overhead causes spectral deficiency

and large transmission latency. Grant-free NOMA has been introduced to make a

flexible transmission mechanism for the devices and save time and bandwidth by

removing the need for the exchange of control signaling between the BS and devices.

Hence, devices can transmit data randomly at any time slot without any request-grant

procedure.

In IoT networks with a large number of nodes each with a low probability of activity,

MUD methods heavily rely on AD prior to detection and decoding [21, 23–26]. For
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uplink transmission in IoT systems with grant-free NOMA transmission scheme, where

the performance of MUD can be severely affected by the multi-access interference, the

reliable detection of both activity and transmitted signal is very challenging and can

be computationally expensive [23,25].

The problem of MUD in massive IoT networks can be highly complicated for

the cases that the active/inactive users are unknown. In many IoT applications,

a few devices become active for a short period of time to communicate with the

BS while others are inactive [22]. Consequently, prior to any signal detection, the

active devices must be identified. Hence, MUD algorithms equipped with accurate

activity detection performance can enhance the reliability of system and hence, help the

widespread of numerous IoT applications in health care systems, education, businesses

and governmental services [19–21].

There have been many studies in the literature on compressive sensing (CS) methods

for joint activity and data detection for NOMA transmission in IoT systems [25,26,72–

74]. Although CS methods can achieve a reliable MUD, they only work in networks with

sporadic traffic pattern, and are expensive in terms of computational complexity [25]. A

study in [75] suggests to use DL for activity and data detection, however they consider

a deterministic traffic pattern for the activity which is not valid in all environments.

The main contributions of this part of the thesis (presented in Chapter 5) are as follows:

• We first formulate the problem of IoT AD as a threshold comparing problem.

• We analyze the probability of error of this AD method.

• Observing that this probability of error is a convex function of the decision

threshold, we raise the question of finding the optimal threshold for minimizing

the AD error.

• We propose a convolutional neural network (CNN)-based AD algorithm for

grant-fee code-domain uplink NOMA.

• Unlike existing CS-based AD algorithms, our solution does not need to know the

exact number of active devices or even the activity rate of IoT devices.
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• Unlike existing CS-based AD algorithms, our solution does not need to know the

exact number of active devices or even the activity rate of IoT devices.

• In fact, in our system model we assume a time-varying and unknown activity rate

and a heterogeneous network.

• Simulation results verify the success of the proposed algorithm.

1.5 Deep Learning and Applications in Wireless

Communications

In this section we present the required background on DL and its potentials for CE and

signal detection in wireless physical layer. We also review some of the existing works

that use DL methods for CE and signal/activity detection.

DL is a subset of artificial intelligence and machine learning that uses multi-layered

nonlinear processing units for feature extraction and transformation. On the contrary

to conventional machine learning techniques, the performance of the DL techniques

significantly improve as the number of training data increases. Most of the modern DL

techniques have been developed based on artificial DNN.

A DNN is a fully connected feedforward neural network (NN) composed of several

hidden layers and the neurons between the input and output layers. It is distinguished

from the conventional NN by its depth, i.e., the number of hidden layers and the number

of neurons. A larger number of hidden layers and neurons enables a DNN to extract

more meaningful features and patterns from the data. From a mathematical point of

view, an NN is a “universal approximator”, because it can learn to approximate any

function z = Υ(x) mapping the input vector x ∈ Rm to the output vector z ∈ Rn

[76]. By employing a cascade of L nonlinear transformations on the input x, an NN

approximates z as

z ≈ T(L)
(
T(L−1)

(
· · · T1(x; θ1); θL−1

)
; θL

)
, (1.1)
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Figure 1.1: An example of DNN with three hidden layers.

where

T(ℓ)
(
x; θℓ

)
≜ Aℓ

(
Wℓx + bℓ

)
, ℓ = 1, · · · , L, (1.2)

where θℓ ≜
(
Wℓ bℓ

)
denotes the set of parameters, Wℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ represents

the weights and biases, and Aℓ is the activation function of the lth layer. The activation

function is applied at each neuron to produce non-linearity. The weights and biases are

usually learned through a training set with known desired outputs [76]. Fig. 1.1 shows a

typical DNN with three hidden layers. A formal description of universal approximation

theorem is provided below.

Theorem 1.1. (Universal Approximation Theorem [76]): Let φ(·) R → R be a

non-constant, bounded and continuous function. Then, given any ϵ > 0 and any

function f : Im → R, where Im is a compact subset of Rm, there exist an integer
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N , real constants vi, bi ∈ R, and real vectors wi ∈ Rm for i = 1, · · · , N , such that

|F (x) − f(x)| < ϵ, (1.3)

where

F (x) =
N∑

i=1
viφ

(
wT

i x + bi

)
. (1.4)

F (x) is an approximate realization of the function f . This result holds even if the

function has many outputs. A visual proof that NN can approximates any continues

function is provided in [77,78].

Currently, most existing algorithms in communications rely on precise mathematical

models. However, in practice, tractable mathematical models cannot reflect many

imperfections and non-linearities of the systems, and can only work as rough

approximations when these issues are non-negligible. DL can fix this drawback and

offer algorithms without mathematically tractable models [79]. Recently, DL has

been widely investigated in signal processing and communications problems, such as

decoding, estimation, and more [67,79–87]. In particular, DL-based CE methods have

been studied in literature such as the recent work in [80].

The problem of MIMO detection through DL has been investigated in [85, 88–90].

The authors in [88, 89] proposed the DetNet architecture for MIMO detection which

can achieve near MLD performance with lower computational complexity than the

conventional methods without any knowledge regarding the SNR value. The joint

design of encoder and decoder using DL autoencoder for MIMO systems was explored

in [85]. The authors showed that autoencoder demonstrates significant potential, and

its performance approaches the conventional methods. The problem of MIMO detection

in time-varying and spatially correlated fading channels was investigated in [90]. The

authors employed DL unfolding to improve the iterative MIMO detection algorithms.

1.6 Thesis Contributions

This thesis specifically addresses physical layer problems in MIMO communications

using data-driven methods. The focus is on the application of DL techniques for
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detection and estimation problems, where optimal algorithms may be computationally

expensive or sub-optimal methods are currently used based on inaccurate mathematical

models. The aim is to investigate the use of DL to overcome these limitations and

potentially improve the performance and efficiency of detection and estimation in

MIMO communications. Based on the conducted experiments, data-driven based

methods are capable of achieving near optimal performance with much lower complexity

compared to the existing methods.

In Chapter 2, we present our DL-based solution for DD-CE to predict the channel

for both spatial multiplexing and STBC transmission. The complexity of our algorithm

is also evaluated and its performance is investigated through several simulations. These

results have been published in [91] and [92].

The proposed link adaptation algorithm using DNN is the main focus of Chapter

3, where we use neural networks to choose the best modulation order and coding rate

based on the dynamics of the communication channels. The results presented in this

chapter have been published in [93].

In Chapter 4, we propose a DL approach to select the radius of sphere decoding. We

also propose a radius selection method for sphere decoding based on the PDF of radius

to decrease the number of lattice points inside the hyperspheres and further decrease

the complexity. We have published the results presented in this chapter in [67] and [94].

In Chapter 5, we present the details of our proposed DL-based activity detection

for MUD in massive IoT systems with code division multiple access (CDMA) NOMA

transmission. The presented results in this chapter have been published in [95].

The thesis is summarized in Chapter 6, where some of the potential future works

are also listed.

1.7 Notations

Throughout this report, (·)∗ represents the complex conjugate. The real and imaginary

parts of a complex number are denoted by ℜ{·} and ℑ{·}, respectively. Matrix

transpose and Hermitian operators are shown by (·)T and (·)H , respectively. Moreover,
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the inverse of matrix A is represented by A−1 and the symbol Iw denotes the identity

matrix of size w. The column vector of size z and all ones is denoted by 1z. The

operator diag(b) returns a square diagonal matrix with the elements of vector b on

the main diagonal. For matrices A, B, C and D, operator bdiag(A, B, C, D) returns a

block-diagonal matrix whose diagonal blocks are A, B, C and D. Furthermore, |·| shows

the absolute value, E{·} is the statistical expectation, â denotes an estimated value for

vector a, and the Frobenius norm of vector a is showed by ∥a∥. The constellation and

m-dimensional complex spaces are denoted by D and Cm, respectively. For the sake

of simplicity, the element-wise notation of Matlab is used, where A:,k1:k2 denotes the

matrix composed of columns k1, k1 + 1, · · · , k2 of matrix A, and the notation ak1:k2 is

the vector composed of the k1-th until k2-th entries of vector a. Kronecker product

is shown by ⊗. Finally, the circularly symmetric complex Gaussian distribution with

mean vector µ and covariance matrix Σ is denoted by CN (µ, Σ).

17



Chapter 2

Decision Directed Channel

Estimation Based on DNN

Predictor for MIMO

Communications in Highly

Dynamic Environments

DD-CE methods have been proposed as a solution for time-varying channels and

have been widely used in vehicular communication systems based on IEEE 802.11p

technology. In DD-CE, a block of training symbols is used to estimate the CSI, and

then data transmissions are conducted with subsequent CSI predicted by treating the

detected symbols as training data and re-estimating the channel iteratively. The core

part of the DD-CE is channel prediction, where the current channel state is estimated

based on previous estimates and detected symbols. Under jointly Gaussian noises and

fading channels, the Wiener-type predictor is optimal. In this chapter, we derive the

optimal one-step and nx-step channel prediction for spatial multiplexing and STBC

transmission, respectively. We show that the DD-CE developed based on the optimal
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Wiener-type predictor and Kalman filter requires a priori knowledge on the exact

Doppler rate and surfers huge computational complexity. Then a DL-based method

is proposed which can track the channel even with a rough estimation of the range of

Doppler rate.

2.1 System Model

We consider a MIMO system in a time-varying flat fading channel, where the

transmitter and receiver are equipped with nt and nr antennas. The space-time encoder

at the transmitter takes a block si ∈ DNs of Ns information symbols as input and maps

it into a STBC matrix C̄i as

C̄i ≜



c11 c12 · · · c1nx

c21 c22 · · · c2nx

...
...

...

cnt1 cnt2 · · · cntnx


, (2.1)

where D is an arbitrary constellation and cpq, p = 1, · · · , nt and q = 1, · · · , nx are

functions of the information vector si. The nx columns of C̄i are generated in nx

successive time intervals each of duration Ts, while each of the nt entries in a given

column is forwarded to one of the nt transmit antennas. At the m-th transmit antenna,

cmk is first pulse shaped and then transmitted during the k-th time interval. The

transmitted waveforms from nt transmit antennas are sent simultaneously.

If nx = 1 and Ns = nt, independent information symbols are transmitted over each

transmit antenna at each time interval. This transmission scheme is referred to as the

simplest case of spatial multiplexing without precoding and it maps a block si ∈ DNs

of Ns information symbols to the transmit antennas as C̄i = si.

Let us represent the time-varying fading channels between the n-th receive antenna

and all nt transmit antennas at the k-th time index (index k is assigned to a

continues-time index tk = kTs) by

h(n)
k =

[
hn1,k hn2,k . . . hnnt,k

]T

, (2.2)
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where hnm,k is the fading channel between the m-th transmit antenna and the n-th

receive antenna at the k-th time index. It is assumed that the fading channels are

independent for different transmit-receive antenna pairs and can be modeled as a

wide sense stationary process over the packet time with unknown Doppler rate ρ ∈

[ρmin, ρmax] due to the highly dynamic vehicular environments. The auto-correlation

function of the complex fading channel between the m-th transmit and the n-th receive

antenna over the packet time is modeled as

E{hnm,k1h∗
nm,k2} = R

(
ρ(k1 − k2)

)
, ρ ∈ [ρmin, ρmax], (2.3)

where R(·) denotes the Doppler spectrum model. Widely used ones include the Jakes,

Asymmetric Jakes, Gaussain, and flat model [96]. It should be noted that our proposed

algorithm does not require any priori knowledge about the Doppler spectrum model and

it is effective even without any explicit mathematical representation for the Doppler

spectrum.

We assume that nb blocks of STBCs are transmitted over a packet of length (nbnx+

np)Ts after the transmission of the pilot matrix P. Therefore, the overall STBC matrix

for the overall packet length is

C ≜
[
P C̄1 C̄2 . . . C̄nb

]
, (2.4)

where P is an nt × np orthogonal matrix.

At the receiver, the vector of the received baseband signals for the pilot matrix and

the nb transmitted STBCs in the packet at the n-th received antenna is expressed as

y(n)≜



y
(n)
1

y
(n)
2
...

y
(n)
L


= bdiag([CT

:,1, CT
:,2, · · · , CT

:,L])



h(n)
1

h(n)
2
...

h(n)
L


+



w
(n)
1

w
(n)
2
...

w
(n)
L


(2.5)

where n = 1, 2, · · · , nr and L ≜ nbnx +np. The additive noise vector at the n-th receive

antennas, i.e., w(n) ≜ [w(n)
1 , w

(n)
2 , · · · , w

(n)
L ]T can be either Gaussian or non-Gaussian.
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2.2 Decision Directed Channel Estimation for MIMO

Communications

The core part of the DD-CE is channel prediction, where the current channel state

is estimated based on the previous estimates and detected symbols. Under jointly

Gaussian dynamic parameters, i.e, noise and fading channel, the optimal channel

predictor is the Wiener-type predictor. In this section, we derive the optimal one-step

and nx-steps channel prediction for spatial multiplexing and STBC transmission,

respectively. We show that the DD-CE developed based on the optimal Wiener-type

predictor and Kalman filter requires a priori knowledge about the exact Doppler spread,

which is extremely difficult to track in highly dynamic environments. Moreover, these

estimators surfer from huge computational complexity.

2.2.1 DD-CE for Spatial Multiplexing Using Wiener Predictor

In this subsection, we obtain the DD-CE for spatial multiplexing transmission by using

one-step optimal Wiener predictor and Kalman filter.

2.2.1.1 DD-CE Based on Optimal Wiener Predictor

DD-CE for spatial multiplexing is developed on the basis of one-step channel prediction.

By employing the optimal one-step Wiener predictor, DD-CE for spatial multiplexing

is expressed as

ĥ(n)
k|k−1 = E

{
h(n)

k |y(n)
1:k−1, Ĉ:,1:k−1

}
, np + 1 ≤ k ≤ L (2.6)

where y(n), n = 1, 2, · · · , nr, is given in (2.5), and

Ĉ:,k =


Tsp
(
yk, Ĥk

)
np + 1 ≤ k ≤ L

P:,k 1 ≤ k ≤ np

. (2.7)

In (2.7), Tsp can be either the optimal ML detector or a suboptimal detector, such as

zero forcing (ZF) or MMSE detectors and the detection uses all the channel estimations
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and received signals at the k-th time index, which are

Ĥk ≜
[
ĥ(1)

k|k−1 ĥ(2)
k|k−1 · · · ĥ(nr)

k|k−1

]T
(2.8a)

yk ≜
[
y

(1)
k y

(2)
k · · · y

(nr)
k

]T
. (2.8b)

For fading channels with zero-mean circularly symmetric complex Gaussian

distribution (i.e., Rayleigh fading channel) and AWGN at the receiver, the optimal

one-step channel predictor in (2.6) for the n-th receive antenna is given as

ĥ(n)
k|k−1 = Σh(n)

k
,y(n)

1:k−1
Σ−1

y(n)
1:k−1

y(n)
1:k−1

= AH
k−1UH

k−1

(
Uk−1Rd

k−1UH
k−1 + σ2

wIk−1
)−1

y(n)
1:k−1, (2.9)

where

Σh(n)
k

,y(n)
1:k−1

≜E
{
h(n)

k y(n)H
1:k−1

}
, (2.10a)

Σy(n)
1:k

≜E
{
y(n)

1:ky(n)H
1:k

}
, (2.10b)

Uk−1≜
[
diag

(
Ĉ1,1:k−1

)
diag

(
Ĉ2,1:k−1

)
· · · diag

(
Ĉnt,1:k−1

)]
, (2.10c)

Ak−1 ≜ Int ⊗ r(1, k − 1), (2.10d)

Rd
k−1 ≜ Int ⊗ Rk−1 (2.10e)

r(u, v) ≜
[
R(ρv) R(ρ(v − 1)) · · · R(ρu)

]T
, (2.10f)

and

Rk−1≜



R(0) R(ρ) · · · R(ρ(k − 2))

R(ρ) R(0) · · · R(ρ(k − 3))
...

... · · ·
...

R(ρ(k − 2)) R(ρ(k − 3)) · · · R(0)


. (2.10g)

The MMSE of the optimal one-step channel predictor for spatial multiplexing

transmission at the k-th time index is given as

Σ(n)
k|k−1≜E

{
(ĥ(n)

k|k−1 −h(n)
k )(ĥ(n)

k|k−1 −h(n)
k )H∣∣y(n)

1:k−1

}
= Int −AH

k−1UH
k−1

(
Uk−1Rd

1:k−1UH
k−1 + σ2

wIk−1
)−1

Uk−1Ak−1. (2.11)
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As seen, the Weiner filter predictor in (2.9) requires a priori knowledge about the

channel statistics through matrixes Ak−1 and Rd
k−1. However, these statistics vary

with the Doppler spread of the fading channel ρ. Hence, Doppler spread estimation

prior to CE is required. Moreover, the optimal channel predictor suffers from high

computational complexity due to the matrix inversion in (2.9). The matrix inversion

for the latter symbols of the packet becomes more complex due to the higher matrix

size. Hence, in practice, a Weiner filter of order np is employed for one-step channel

prediction in spatial multiplexing transmission to reduce the complexity.

For the reduced complexity one-step prediction using the Weiner filter of order

np, y(n)
1:k−1 and Ĉn,1:k−1, n = 1, 2, · · · , nt, in (2.6) and (2.9) are respectively replaced

with y(n)
k−np:k−1 and Ĉn,k−np:k−1. The correlation matrix Rk−1 and r(1, k − 1) are

replaced with Rnp and r(k − np, k − 1), respectively. Moreover, Uk−1 is modified as

Uk−1 =
[
diag

(
Ĉ1,k−np:k−1

)
diag

(
Ĉ2,k−np:k−1

)
· · · diag

(
Ĉnt,k−np:k−1

)]
.

2.2.1.2 DD-CE Based on Kalman Filter

For the MIMO fading channels where the dynamics of the fading process can be modeled

by a state-space Gauss-Markov process as

h(n)
k+1 = R(ρ)h(n)

k + v(n)
k , n = 1, 2, · · · , nr, (2.12)

the optimal one-step predictor is a Kalman filter. In this case, DD-CE for spatial

multiplexing transmission can be achieved through an infinite impulse response (IIR)

filter as

ĥ(n)
k|k−1 =E

{
h(n)

k |y(n)
1:k−1, Ĉ:,1:k−1

}
(2.13)

=
(
R(ρ)Int − Kk−1ĈH

:,1:k−1
)
ĥ(n)

k−1|k−2 + Kk−1y(n)
1:k−1, np + 1 ≤ k ≤ L

where Ĉ:,k is given in (2.7), the Kalman filter gain Kk−1 at the (k − 1)-th time index

is given as

Kk−1 = R(ρ)Σ(n)
k−1|k−2Ĉ:,1:k−1

(
ĈH

:,1:k−1Σ(n)
k−1|k−2Ĉ:,1:k−1 + σ2

wIk−1
)−1

, (2.14)
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and Σ(n)
k|k−1 is recursively obtained as

Σ(n)
k|k−1 =R2(ρ)

(
Σ(n)

k−1|k−2−

Σ(n)
k−1|k−2Ĉ:,1:k−1

(
ĈH

:,1:k−1Σ(n)
k−1|k−2Ĉ:,1:k−1 + σ2

wIk−1
)−1

ĈH
:,1:k−1Σ(n)

k−1|k−2

)
.

(2.15)

The initial channel estimation, i.e., ĥ(n)
np|np−1, and its corresponding covariance matrix

Σ̂(n)
np|np−1 are obtained by using (2.9) and (2.11) for the np pilot symbols in P.

By fixing the number of observations to np time index for one-step channel

prediction, a simplified DD-CE based on Kalman filter is obtained. In this case, y(n)
1:k−1

and Ĉn,1:k−1, n = 1, 2, · · · , nt, in (2.13), (2.14), and (2.15) are replaced with y(n)
k−npn,k−1

and Ĉn,k−np:k−1. Also, Ik−1 is changed to Inp .

2.2.2 DD-CE for STBC

In this section, we obtain the DD-CE for STBC transmission by using nx-step optimal

Wiener predictor.

2.2.2.1 DD-CE based on Optimal Wiener Predictor

DD-CE for STBC transmission is more challenging compared to the spatial

multiplexing since information symbols are jointly detected based on the nx

observations corresponding to the transmitted STBC. Hence, the optimal one-step

channel prediction using the optimal Wiener predictor cannot be employed. For an

STBC code with nx time interval, nx-step channel predictor is required. Let us define

g(n)
k ≜

[(
h(n)

k

)T (h(n)
k+1

)T · · ·
(
h(n)

k+nx−1
)T ]T

, (2.16)

where k = np + 1 + αnx and α = 0, 1, · · · , (nb − 1).

DD-CE for STBC transmission using the optimal nx-step Wiener predictor for the

n-th receive antenna is expressed as

ĝ(n)
k|k−1 = E

{
g(n)

k |y(n)
1:k−1, Ĉ:,1:k−1

}
, k = np + 1 + αnx, (2.17)
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Ĉ:,k:k+nx−1 =


Tstbc

(
Yk, Ĝk

)
k = np + 1 + αnx

P:,k 1 ≤ k ≤ np,

(2.18)

where Tstbc is either the optimal ML detector or a suboptimal detector, and

Yk ≜
[
yk yk+1 · · · yk+nx−1

]
(2.19a)

Ĝk ≜
[
ĝ(1)

k|k−1 ĝ(2)
k|k−1 · · · ĝ(nr)

k|k−1

]
(2.19b)

with yk as the received signal vector at the k-th time index, defined in 2.8b.

For Rayleigh fading channel and AWGN at the receiver, one can write (2.17) as

ĝ(n)
k|k−1 = Σg(n)

k
,y(n)

1:k−1
Σ−1

y(n)
1:k−1

y(n)
1:k−1 (2.20)

= QH
k−1FH

k−1

(
Fk−1Rd

k−1FH
k−1 + σ2

wI
)−1

y(n)
1:k−1,

where

Σg(n)
k

,y(n)
1:k−1

≜E
{
g(n)

k y(n)H
1:k−1

}
, (2.21a)

Fk−1≜Inx ⊗ Uk−1, (2.21b)

Qk−1 = bdiag
(
diag

(
1nt ⊗ r(1, k − 1)

)
, diag

(
1nt ⊗ r(2, k)

)
, · · · ,

diag
(
1nt ⊗ r(nx, k + nx − 2)

))
, (2.21c)

with r(u, v) as in (2.10f).

The MMSE of the optimal nx-step channel predictor for STBC transmission at the

k-th time index is given as

Σ(n)
k|k−1 ≜E

{
(ĝ(n)

k|k−1 −g(n)
k )(ĝ(n)

k|k−1 −g(n)
k )H∣∣y(n)

1:k−1

}
= Int − QH

k−1FH
k−1

(
Fk−1Rd

1:k−1FH
k−1 + σ2

wIk−1
)−1

Uk−1Ak−1 (2.22)

Similar to spatial multiplexing transmission, a Weiner filter of order np can be used

for nx-step channel prediction in STBC transmission to reduce the computational

complexity.
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2.3 Deep Learning for Channel Estimation

The main idea behind the proposed DL-based DD-CE is to employ a trained DNN as

channel predictor to remove the need for channel statistics estimation, such as the exact

Doppler spread, ρ, which is a challenging task especially in highly dynamic vehicular

environments. Considering the substantial capability of DL in learning nonlinear

functions, a single DNN can make a channel prediction for a wide range of Doppler rates

for highly dynamic vehicular channels. The proposed DL-based predictor is efficient

in many vehicular channels even those without an explicit mathematical model, where

the optimal Weiner filter and KF channel predictors are not applicable.

The proposed DL-based DD-CE algorithm is composed of an estimation step and a

decoding step at each time index. The estimation step consists of two stages: prediction

and update. The prediction stage predicts the channel forward from measurement time.

For spatial multiplexing one-step channel prediction and for STBC nx-step channel

prediction is required prior to decoding. The update stage uses the decoded STBC and

the latest measurement to modify the channel prediction through a relaxed (R)-MMSE

algorithm. In our DD-CE algorithm, the prediction stage of channel estimation is

implemented through a DNN. In the decoding step that follows the update step, joint

ML decoding of the information symbols is performed. In the following subsections, first

we present the design of the DNN k-step predictor and then we propose our algorithm.

2.3.1 Channel Prediction Using DL

In the DL-based channel prediction, we estimate future channel coefficients using past

estimates. This is different from Bayesian tracking solutions, such as Wiener filter and

KF, where predictions are made based on previous observations. Channel prediction

based on all previous estimates (similar to the optimal Wiener filter) is highly costly in

terms of computational complexity, especially for the latter symbols. Moreover, such

a design requires a time-varying DNN with increasing input layer size as the DD-CE

algorithm runs from one time index to the next. To avoid these challenges and simplify

the DNN, only the np previously estimated channel coefficients are involved in the
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one-step channel prediction for spatial multiplexing and the nx-step channel prediction

for STBCs.

Since channel prediction in our algorithm is based on np previously estimated

channel coefficients, we can train the DNN for true channel realizations in the training

phase. In practice, for fading channels without concrete mathematical model, the true

values of MIMO channels can be obtained through the transmission of pilot symbols

with value one.

For the prediction stage, two different DNNs are trained to independently predict

the real and imaginary parts of the MIMO fading channels.

Let us consider the j-th, j = 1, 2, · · · , Nt, training sample vector

h̃[j] ≜ x[j] + iz[j] = ℜ
{
h̃[j]

}
+ iℑ

{
h̃[j]

}
, (2.23)

h̃[j] ≜
[
h̄1[j] h̄2[j] · · · h̄nx+np [j]

]
, (2.24)

h̄k[j] ≜
[(

h(1)
k [j]

)T (h(2)
k [j]

)T · · ·
(
h(nr)

k [j]
)T ] , (2.25)

where h(n)
k [j] =

[
hn1,k[j] hn2,k[j] . . . hnnt,k[j]

]T

is the complex-valued fading

channel coefficients between the n-th receive antenna and all nt transmit antennas

at the k-th time index of the j-th training sample. The Nt training sample vectors

are independently generated, and the Doppler spread, ρ, associated with each training

vector is uniformly distributed in [ρmin, ρmax]. The first u ≜ ntnrnp entries of each

training vector, i.e., h̃1:u[j] are used as the input of the DNNs. Our target is to train

the DNN to produce the desired output vector i.e., h̃u+1:v[j], v ≜ ntnr(nx + np), which

is equivalent to nx-step channel prediction.

During the training phase, the DNNs learn two nonlinear transformations, Ψr :

Ru → Rv and ΨI : Ru → Rv, which map the input vector x1:u[j] to xu+1:v[j] and the

input vector z1:u[j] to zu+1:v[j] as

xu+1:v[j] = Ψr(x1:u[j]; Θ1), (2.26a)

zu+1:v[j] = ΨI(z1:u[j]; Θ2), (2.26b)

where Θ1 and Θ2 are the sets of the DNN parameters. These parameters are obtained
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Table 2.1: List of DNN layers and outputs

Name Output Dimensions
Sequence Input nt × nr × np

Dense + CReLU (1st) 128
Dense + CReLU (2nd) 128
Regression Output nt × nr × nx

Table 2.2: List of DNN functions

Name Function
CReLU f(a) = au(a) + (a − 1)u(a − 1)
RMSE l(u, û) = ||u − û||22

by minimizing the following LS loss function in the off-line training phase.

Loss(Θi) = 1
Nt

Nt∑
j=1

∥∥∥xu+1:v[j] − Ψ(x1:u[j]; Θi)
∥∥∥2

, i = 1, 2. (2.27)

As seen, channel prediction is formulated as a regression task to estimate the parameter

vector Θi, i = 1, 2, given the training data set
(
x1:u[j], x̃u+1:v[j]

)
and

(
z1:u[j], z̃u+1:v[j]

)
,

j = 1, 2, · · · , Nt.

Designing a DNN with an appropriate layered structure yields an accurate predictor

functions in (2.26). This is crucial for precise channel prediction when the exact value of

Doppler rate is unknown. In particular, the number of hidden layers and the number

of neurons in each layer affect the range of Doppler rate that can be supported by

the DNN. Our simulation experiments based on existing guidelines for neural network

architecture selection show that a DNN with the layered structure in Tables 2.1 and 2.2

results in accurate channel prediction for Almauti and Tarokh STBCs in [6] and [32]

for the range of Doppler rate [ρmin, ρmax], where 0.001 ≤ ρmax − ρmin ≤ 0.1, ρmin ≥ 0

and ρmax ≤ 0.1.

2.3.2 DL-Based DD-CE Algorithm

Let us stack the channel coefficients of the fading channels over the transmission packet

as an ntnr(nbnx + np) × 1 dimensional vector

h̃ ≜
[
h̄1 h̄2 · · · h̄nxnb+np

]T

, (2.28)
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where

h̄k ≜
[(

h(1)
k

)T (h(2)
k

)T · · ·
(
h(nr)

k

)T ] , (2.29)

and

h(n)
k =

[
hn1,k hn2,k . . . hnnt,k

]T

. (2.30)

Using the proposed DL-based nx-step channel predictor, we can design a DD-CE

without the knowledge of the exact Doppler rate value. For each STBC, the

corresponding nxntnr channel coefficients are predicted based on the previously

predicted and updated npntnr channel coefficients.

By employing the learned predictor functions Ψr and Ψi, the channel prediction for

the k-th STBC in the packet is expressed as

x̂p
ntnr((k−1)nx+np)+1:ntnr(knx+np) = Ψr

(
x̂u

ntnr(k−1)nx+1:ntnr((k−1)nx+np); Θ
)
, (2.31)

ẑp
ntnr((k−1)nx+np)+1:ntnr(knx+np) = Ψi

(
ẑu

ntnr(k−1)nx+1:ntnr((k−1)nx+np); Θ
)
, (2.32)

ĥp
ntnr((k−1)nx+np)+1:ntnr(knx+np) = x̂p

ntnr((k−1)nx+np)+1:ntnr(knx+np)

+ iẑp
ntnr((k−1)nx+np)+1:ntnr(knx+np), (2.33)

where x̂u
. and ẑu

. are the real and imaginary parts of the channel coefficients after the

R-MMSE modification based on the decocted STBC and the latest measurement in the

update step which will be explained in the following.

After the channel prediction stage, the predicted channel coefficients in (2.33) are

used for decoding. Decoding can be implemented through optimal or suboptimal

algorithms.

We consider a decoding algorithm Tstbc (details on the decoding is provided in the

next subsection) and write the decoded k-th STBC as

Ĉ:,np+(k−1)nx+1:np+knx = Tstbc
(
ĥp

ntnr((k−1)nx+np)+1:ntnr(knx+np), ỹk

)
, (2.34)

where C is given in (2.4), and ỹk is the observation vector associated with the k-th
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STBC given as

ỹk =



ynp+(k−1)nx+1

ynp+(k−1)nx+2
...

ynp+knx


. (2.35)

In the update stage of the estimation step, the input of the DNNs for the next prediction

are updated using R-MMSE algorithm. The R-MMSE algorithm exploits the decoded

STBC Ĉ:,np+(k−1)nx+1:np+knx in (2.34) and previously decoded STBCs or preambles

Ĉ:,(k−1)nx+1:np+(k−1)nx to update the input of the DNNs.

Let us write the observation vector associated with the STBCs or preambles

Ĉ:,knx+1:np+knx as

ỹu
k = Eu

kΥu
k + wu

k, (2.36)

where

ỹu
k ≜



yknx+1

yknx+2
...

yknx+np


, (2.37)

Eu
k ≜ bdiag

(
E(k, 1) E(k, 2) · · · E(k, np)

)
, (2.38)

E(k, m) ≜ Intnr ⊗ ĈT
:,knx+m, (2.39)

Υu
k ≜ ĥu

kntnrnx+1:ntnr(knx+np), (2.40)

wu
k ≜

[
w(k, 1) w(k, 2) w(k, np)

]T

, and (2.41)

w(k, m) ≜
[
w

(1)
knx+m w

(2)
knx+m, · · · w

(nr)
knx+m

]
. (2.42)

The R-MMSE replaces the true value of the Doppler spread in the covariance matrix

used in the MMSE estimator with the average Doppler spreads as

ρ̄ = ρmax + ρmin
2 . (2.43)

30



Hence, the doppler rate ρ in the covariance matrix Rntnp−1 in (2.10g) is replaced with

ρ̄ and then Ω ≜ Inr ⊗ Rntnp−1 is used to obtain the updated channel coefficients as

ĥu
kntnrnx+1:ntnr(knx+np) = Ω

(
Eu

k

)H(Eu
kΩ
(
Eu

k

)H + σ2
wI
)−1ỹu

k. (2.44)

2.3.3 Maximum Likelihood Decoding Algorithm for STBC Design

Let us write the received vector associated with the k-th STBC in the packet as

ỹk = Ep
kΥp

k + wp
k (2.45)

where

Υp
k ≜ ĥp

ntnr((k−1)nx+np)+1:ntnr(knx+np), (2.46)

Ep
k ≜ bdiag

(
X(k, 1) X(k, 2) · · · X(k, nx)

)
, and (2.47)

X(k, m) ≜ Intnr ⊗ ĈT
:,(k−1)nx+m. (2.48)

By using (2.45), the ML decoding of the information symols in the k-th STBC is

obtained as

ŝk = arg max
s1,··· ,sN ∈D

f(ỹk|sk, Υp
k). (2.49)

For AWGN noise, one can easily write

ŝk = arg max
s1,··· ,sN ∈D

eỹH
k Γ−1ỹk

|πΓ|
, (2.50)

where

Γ = E{ỹkỹH
k } = Ep

kΥkΥH
k

(
Ep

k

)H + σ2
wInrnx .

and after some mathematical manipulations, it results in

ŝk = arg max
s1,··· ,sN ∈D

(ỹk)HΓ−1(ỹk) + ln |Γ|. (2.51)

There is no further simplification for the detection problem in (2.51); hence, it should

be solved through exhaustive search or dynamic programming.
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Algorithm 1 DL-based DD-CE with ML Decoding Algorithm for STBC Design
Input: ỹ1, · · · , ỹnb , Ψr and Ψi
Output: ĥ1, ĥ2, · · · , ĥnb

1: for i := 1 to nb do
2: Prediction step:

Use the real and imaginary parts of previous np channels to feed Ψr and Ψi,
respectively to obtain the channels of the i-th STBC block as (2.31) and (2.32).

3: Decoding step:
Use the derived ML Decoding Algorithm in (2.51) and predicted channels to detect
the i-th transmitted STBC block Ĉ:,np+(i−1)nx+1:np+inx .

4: Updating step:
By employing the detected STBC block, update the predicted channels by R-MMSE
as follows in (2.44) to obtain ĥu

intnrnx+1:ntnr(inx+np) as the input of the DNN for the
next prediction.

5: end

2.3.3.1 Alamouti Decoding

For Alamouti STBC, the decoding in (2.51) can be formulated as an LS optimization

problem.

Let us write the received vector associated with the k-th STBC as

y̆k = Bksk + wk (2.52)

where y̆k ≜
[
yT

np+2k−1 yH
np+2k

]T

,

Bk ≜

 v(k, 1) v(k, 3)

v(k, 5)∗ −v(k, 7)∗

 , (2.53)

and v(k, m) ≜ ĥ4(2(k−1)+np)+m:4(2(k−1)+np)+m+1. One can easily show that the

ML decoding based on the observation model in (2.52) leads to the following LS

optimization.

ŝt = arg min
s1,s2∈D

∥∥∥y̆k − Bksk

∥∥∥2
. (2.54)

The procedure of our DL-based algorithm is briefly presented in Algorithm 1.
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Table 2.3: Complexity Comparison between different channel predictors in DD-CE.

Name Number of Flops
Wiener of order np nrnx(γ + 3γ3 + 5γ2 + 4(np − 1)nt + 6nt(np − 1)3 + 4nt(np − 1)2 − 2nt(np − 1)),

γ ≜ (np − 1)2(6nt − 2) + (np − 1)
DD-CC np(3np + 2npnt − 2nrnt + 4npn2

t + 6n2
pnt + 3n2

p + 6npnrnt + 1)
DD-AR1 np(3np + 2npnt − 2nrnt + 4npn2

t + 6n2
pnt + 3n2

p + 6npnrnx + nrntnt + 1)
DL-DD np(3np + 2npnt − 2nrnt + 4npn2

t + 6n2
pnt + 3n2

p + 6npnrnp + 1) + 512(ntnr(nx + np) + 128)

2.4 Complexity Analysis

In this section we compare the computational complexity of our proposed DL-based

algorithm with MMSE DD-CE, first-order autoregression AR(1) DD-CE.

Table (2.3) compares the number of floating-point operation (real addition,

substration, and multiplication) in the proposed DL-based nx-step channel predictor

with the Winer, CC, and AR(1) predictors. As seen, the proposed channel predictor

exhibits a lower computational complexity compared to the optimal Winer predictor

of order np. Moreover, compared to the DD-AR1 [34] and DD-AR1 [35] predictors, the

proposed algorithm shows a higher computational complexity at the expense of lower

bit error rate (BER) and propagation error.

2.5 Simulation Results

In this section we provide some performance measures to compare our proposed

DL-based DD-CE for MIMO communication systems with the DD-CE method which

model channel based on first order autoregressive model in [34] and the MMSE DD-CE

provided in [35] where channel is assumed to be coherent for each of STBC block

transmission. We denote our method by DL-DD and the methods in [34] and [35] by

DD-AR1 and DD-CC, respectively.

Simulation Setup: Unless otherwise mentioned, we consider 4-QAM constellation

in MIMO time-varying fading channel and run our simulations for both Rayleigh and

Rician fading channels. We model the fading channels by Jake’s Doppler spectrum,
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where the autocorrelation function of the channel is given as

E{hnm,k1h∗
nm,k2} = K

K + 1e(−j2πfDcos(α0))+ σ2
h

K + 1J0(2πρ(k1−k2)) ρ ∈ [ρmin ρmax],

(2.55)

with K being K-factor, fD being the Doppler shift of the line-of-sight (LOS) component

of fading, α0 is the initial phase of the LOS component of fading, σ2
h being the average

non-line-of-sight (NLOS) power of hnm, and ρ being the Doppler rate. Without loss

of generality, we assume that the only available knowledge in the receiver side is the

range of Doppler rate and not the exact value which is accessible by current channel

estimators. The range of Doppler rate is set such that 0.001 ≤ ρmax − ρmin ≤ 0.1.

We provide performance measures for three different STBCs including Alamouti

STBC [6] which gives a rate one by nt = 2 transmit antennas as

CT
Al =

 s1 s2

−s∗
2 s∗

1

 , (2.56)

Tarokh et. al’s STBC [32] which achieves code rate 3/4 with nt = 3 transmit antennas

given by

CT
Ta =



s1 s2
s3√

2

−s∗
2 s∗

1
s3√

2
s∗

3√
2

s∗
3√
2

−s1−s∗
1+s2−s∗

2
2

s∗
3√
2

−s∗
3√
2

s2+s∗
2+s1−s∗

1
2


. (2.57)

and the following STBC code with code rate 3/4 with nt = 3, nr = 2, and nx = 4 as

CT
3/4 =



s1 s2 s3

−s∗
2 s∗

1 0

s∗
3 0 s∗

1

0 −s∗
3 s∗

2


. (2.58)

The additive noise is modeled as circularly symmetric zero-mean complex-valued

Gaussian random variable with variance σ2
w, i.e. wk ∼ CN (0, σ2

w). The SNR in dB

is defined as γ = 10 log(σ2
s /σ2

w), where σ2
s is the average transmitted power. Unless

otherwise mentioned, the length of the transmitted packet is L = 100 and the length

of the pilot is np = 10 and also σ2
h = 1.
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Figure 2.1: Loss function of the trained network with the parameters in Table 2.4

Table 2.4: Training Parameters for the DNNs

Parameter Value
Number of batches 104

Size of batches 10
Number of epoches 2000
Number of iterations 2 × 107

We use a training set of size 105 to learn the two predictor functions in (2.26).

The details about the training phase parameters are included in Table 2.4. Adam

optimizer [97] with learning rate of 10−3 was used for loss function minimization. Fig.

(2.1) compares the training loss and validation loss during the training phase at 20 dB

SNR. As seen, the gap between the training and validation loss diminishes when the

DNN is trained for more iterations.

For a range of different SNRs and Doppler rates, we run 105 Monte Carlo iterations

to reach to a fair comparison between existing channel estimator algorithms in terms of

BER. At each simulation setup we assume that the exact Doppler rate is known when

DD-AR1 and DD-CC algorithms are employed while only the range of Doppler rate is

known for the DL-DD algorithm.

35



Figure 2.2: Comparison between the performance of DL-DD, DD-AR1 and DD-CC
algorithms in terms of BER for different SNRs and ranges of Doppler rates, where
Alamouti’s STBC (2.56) in a Rayleigh channel is used, np = 10, and L = 100.

Simulation Results: The performance of the DL-DD, DD-AR1 and DD-CC

algorithms have been studied, and they have employed in different ranges of Doppler

rates. Fig. 2.2, Fig. 2.3 and Fig. 2.4 shows the performance comparison between

these algorithms for Alamouti’s STBC, Tarokh et. al.’s STBC and STBC in (2.58),

respectively for a Rayleigh channel. It is obvious from these figures that our proposed

algorithm dramatically outperforms the DD-AR1 and DD-CC algorithms at any SNRs

and Doppler ranges in both cases even without the knowledge of the Doppler rate.

As expected, increasing the SNR results in lower BER and this reduction in BER is

more considerable in our algorithm. We repeat this simulation for a Rician channel

with Alamouti’s STBC and provide the results in Fig. 2.5. As seen, again our DL-DD

algorithm outperforms the DD-AR1 and DD-CC algorithms.

One of the parameters of a Rician channel that can affect the performance is the

K-factor. We study the effect of the K-factor on the achieved BER by our DL-DD

36



Figure 2.3: Comparison between the performance of DL-DD, DD-AR1 and DD-CC
algorithms in terms of BER for different SNRs and range of Doppler rates, where
Tarokh et. al.’s STBC (2.57) in a Rayleigh channel is used, np = 10, and L = 100.

algorithm for Alamouti’s STBC and the simulation results are shown in Fig. 2.6. It is

obvious from the figure that the performance of our DL-DD algorithm is considerably

better those of DD-CC and DD-AR1 algorithms, and as the value of the K-factor

increases we obtain better BER with all the algorithms.

In order to study the effect of moving object’s speed on the performance of the

channel predictors, we define three distinct Doppler rate ranges based on the speed

of moving objects and provide a comparison in the following. We have the following

equation for the relation between Doppler rate ρ and moving object’s speed v as

ρ = vfcTc
C

, (2.59)

where fc is the carrier frequency which is typically in the order of 10 GHz in 5G [8],

Tc is the sampling time, and C is the speed of light, i.e. 3 × 108 m/s. We consider

three Doppler rate ranges for pedestrians, cars and high speed trains as in Table 2.5.

Fig. 2.7 shows the performance comparison between DL-DD, DD-AR1 and DD-CC for
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Table 2.5: List of Doppler rate ranges for different type of moving objects

Name Speed (m/s) Doppler Rate Range
Pedestrians v ∈ [0, 1] m/s ρ ∈ [0, 0.001]
Cars v ∈ [1, 60] m/s ρ ∈ [0.001, 0, 03]
High Speed Trains v ∈ [60, 200] m/s ρ ∈ [0, 03, 0.1]

Alamouti’s STBC and the Doppler rate ranges in Table 2.5. As seen, our proposed

DL-DD algorithm outperforms DD-AR1 and DD-CC in terms of BER.

We study the effect of packet length on BER and show the BER versus r = np/L

for ρ ∈ [0 0.05] and ρ ∈ [0.05 0.1] at 15 dB for Alamouti’s STBC in Fig. 2.8. It is

assumed that the channel is in Rayleigh distribution and np = 10 and the number

of STBC transmission block, nb, varies. As seen, the proposed DL-DD algorithm

improves transmission reliability for long packets compared to the DD-AR1 and DD-CC

algorithms. The reason is that the channel prediction error in the DL-DD algorithm

is much lower that the one in the other algorithms. The lower prediction error in the

DL-DD algorithm leads to lower propagation error.

The effect of the modulation format on the performance of the proposed DL-based

DD-CE algorithm for Alamouti’s STBC in Rayleigh fading channel is shown in Fig.

2.9. As seen, our proposed algorithm outperforms the other algorithms in terms of

BER. Also, as modulation order increases, the BER increases.

Channel tracking capability of our proposed DL-based algorithm in Rayleigh fading

channel for Alamouti’s STBC is presented in Fig. 2.10. As seen, the amplitude and

phase of the predicted channels by the proposed DL-DD algorithm is very close to the

true channel for a packet transmission of length L = 100.

2.6 Conclusion

The MIMO communication systems enable us to achieve a higher data rate even in

highly dynamic environments. However, this requires an improved CE algorithm to be

functional even in fast fading channels. In this work we study DD-CE algorithm and
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Figure 2.4: Comparison between the performance of DL-DD, DD-AR1 and DD-CC
algorithms in terms of BER for different SNRs and range of Doppler rates, where the
STBC in (2.58) in a Rayleigh channel is used, np = 10, and L = 100.

develop a new DL-based DD-CE algorithm to track fading channels and detect data for

longer packets even in rapid vehicular environments. We also derive the ML decoding

formula for STBC transmission. Our algorithm benefits from a simple receiver design

which does not rely on the accurate statistical model of the fading channel and only

the range of Doppler rate is sufficient. This capability removes the need for Doppler

spread estimation, which is considerably challenging for highly dynamic vehicular

environments. We compare our algorithm with DD-AR1 and DD-CC algorithms

through several performance measures and it outperforms existing algorithms while

the DD-AR1 and DD-CC know the exact value of Doppler rate.
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Figure 2.5: Comparison between the performance of DL-DD, DD-AR1 and DD-CC
algorithms in terms of BER for different SNRs and range of Doppler rates, where
Alamouti’s STBC (2.56) in a Racian channel with K = 2 is used, np = 10, and
L = 100.
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Figure 2.6: Comparison between the performance of DL-DD, DD-AR1 and DD-CC
algorithms in terms of BER in three Rician channels with different K-factors for
different SNRs, where Alamouti’s STBC (2.56) is used, np = 10, and L = 100.
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Figure 2.7: Comparison between the performance of DL-DD, DD-AR1 and DD-CC
algorithms in terms of BER for different SNRs and three types of moving objects,
where Alamouti’s STBC (2.56) in a Rayleigh channel is used, np = 10, and L = 100.
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Figure 2.8: The effect of the packet length on the BER of the proposed DL-DD,
DD-AR1 and DD-CC algorithms for different Doppler rate ranges at 15 dB SNR in a
Rayleigh channel.
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Figure 2.9: Comparison between the performance of DL-DD, DD-AR1 and DD-CC
algorithms in terms of BER for different SNRs and three types of moving objects,
where Alamouti’s STBC (2.56) in a Rayleigh channel is used, np = 10, and L = 100.
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Figure 2.10: Amplitude and phase tracking of the proposed DD-CC for Alamouti’s
STBC (2.56) in a Rayleigh fading channel.
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Chapter 3

Deep Adaptive Transmission for

Internet of Vehicles (IoV)

To support reliable transmission of data at high rate in time-varying fading channels,

adaptive transmission is required, where transmitter and receiver adjust their

transmission and reception mode to the dynamics of the channel. The receiver, based

on its channel estimation and prediction, decides the optimal link adaptation and feeds

this back to the transmitter. In this work, we develop a DL-based link adaptation

algorithm for highly dynamic communication links, where the transmission parameters

are decided adaptively.

3.1 System Model

We consider a single-input single-output (SISO) vehicular communication system in

time-varying flat fading channel. It is assumed that a packet of length L symbols

carries the information in a burst-mode transmission. The symbols in the packet are

divided into pilot symbols of length Lp (at the beginning of the packet) and data

symbols of length Ls, where L = Lp + Ls. The transmitted packet in a vector form

is sL = [s1 s2 . . . sL]T, where sk is the k-th (1 ≤ k ≤ L) transmitted symbols in

the packet, which is chosen from an arbitrary constellation D. It is assumed that
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the fading channel can be modeled as a wide sense stationary process over the packet

time with unknown Doppler rate ρ ∈ [ρmin, ρmax] due to the highly dynamic vehicular

environments. The autocorrelation function of the complex fading channel over the

packet time is modeled as

E{hnh∗
m} = C

(
ρ(n − m)

)
ρ ∈ [ρmin, ρmax], (3.1)

where hk ∈ C is the complex fading channel between the transmit antenna and the

receive antenna at the k-th time instant, and C(·) denotes the Doppler spectrum model.

Widely used ones include the Jakes, Asymmetric Jakes, Gaussain, and flat model [96].

It should be mentioned that the proposed DL based link adaptation does not require

any prior knowledge about the Doppler spectrum model and it enables communications

over vehicular channels without any concrete mathematical representation for Doppler

spectrum. Finally, by denoting wk as the additive noise at the k-th time instant, which

can be either Gaussian or non-Gaussian, the discrete baseband received signal at the

receiver at the k-th time instant, yk, is modeled as

yk = skhk + wk, k = 1, · · · , L. (3.2)

3.2 Link Adaptation with MMSE Predictor

Rule-based link adaptation methods based on short-term SNR using channel prediction

leads to higher throughput and link reliability at the expense of higher computational

complexity. The core part of these methods is to obtain the channel condition during

short intervals with a channel predictor. The optimal predictor is the MMSE predictor,

which has been extensively employed for link adaptation. In the following subsections,

we first briefly present the MMSE channel prediction and then go through the details

of the existing rule-based link adaptation methods based on short-term SNR using the

MMSE predictor.
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3.2.1 Channel Prediction with MMSE

Given the observations before the k-th time instant yk−1 ≜ [y1, y2, · · · , yk−1]T and

previously detected vector of symbols ŝk−1 ≜ [ŝ1, ŝ2, · · · , ŝk−1]T , including all pilots

and the already detected data symbols, the optimal one-step MMSE channel estimation

at the k-th time-instant is ĥk|k−1 = E
{
hk|yk−1, ŝk−1

}
For a fading channel with

circularly complex Gaussian distribution (i.e., Rayleigh fading channel) and AWGN

at the receiver, the optimal MMSE predictor is given as

ĥk|k−1 = Σhk,yk−1Σ−1
yk−1yk−1, (3.3)

with the following MMSE

Σk|k−1 = Σhk
− Σhk,yk−1Σ−1

yk−1ΣH
hk,yk−1 , (3.4)

where Σhk
≜ E{|hk|2}, Σhk,yk−1 ≜ E{hkyH

k−1}, and Σyk−1 ≜ E{yk−1yH
k−1}. Using

(3.1), we can rewrite Σhk
= C(0), and

Σhk,yk−1 = E{hk(Ŝk−1hk−1 + wk−1)H} = E{hkhH
k−1ŜH

k−1}

=
[
ŝ1C

(
ρ(k − 1)

)
. . . ŝk−1C(ρ)

]
, (3.5)

Σyk−1 = E{Ŝk−1hk−1hH
k−1ŜH

k−1} + σ2
wI, (3.6)

where Ŝk−1 = diag(̂sk−1) and wk−1 ≜ [w1, w2, · · · , wk−1]T . The optimal one-step

channel predictor in (3.3) is the well-known Weiner filter. As seen, the Weiner filter

channel predictor requires a prior knowledge about the channel statistics through Σyk−1

and Σhk,yk−1 . However, these statistics vary with the maximum Doppler spread of

the fading channel. Hence, Doppler spread estimation prior to channel estimation is

required. Moreover, this method suffers from high computational complexity due to

the matrix inversion in (3.3). The matrix inversion for latter symbols becomes more

complex due to the higher dimension of Σ−1
yk−1 . Hence, in practice, a Weiner filter with

a fixed number of coefficients is employed for one-step channel prediction to reduce

the complexity. In other words, instead of using all previous observations, pilots, and

detected symbols, only a fixed number of them are employed. This fixed value is usually

selected as the number of pilot symbols at the beginning of the packet, i.e., Lp.
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Table 3.1: The SNR constraints for different MCS levels based on LTE standards

MCS level Modulation type Code rate SNR range (dB)
1 4-QAM 1/2 < 6
2 4-QAM 3/4 6 - 8.5
3 16-QAM 1/2 8.5 - 11.5
4 16-QAM 3/4 11.5 - 15
5 64-QAM 2/3 15 - 18.5
6 64-QAM 3/4 18.5 - 21

3.2.2 Link Adaptation with MMSE One-Step Channel Predictor

Using the MMSE one-step channel predictor, the rule-based link adaptation based on

short-term SNR achieves the highest reliability (for a constant and known Doppler

rate). Using the MMSE one-step channel predictor, the received instantaneous SNR,

γi, i = Lp + 1, Lp + 2, · · · , L, for each time instant is

γi = 10 log
|ĥi|i−1|2σ2

s
σ2

w
, (3.7)

where ĥi|i−1 is the one-step predicted channel using the optimal MMSE predictor, σ2
s is

the average transmit power, and σ2
w is the variance of the additive noise. Based on the

short-term SNR in (3.7), the MCS for the next time instant is selected from a stylised

profile, such as the one in Table 3.1, and send to the transmitter through a feedback

link [98].

Although the rule-based method with instantaneous SNR in (3.7) achieves the

highest reliability, it requires L − Lp feedback transmissions which is costly. Moreover,

rule-based link adaptation based on the MMSE channel predictor requires to know

the exact value of Doppler rate. Similarly, rule-based link adaptation based on

l-step channel prediction using MMSE algorithm can be employed to reduce feedback

transmission at the expense of more complex channel prediction [92].

3.3 Deep Learning-Based Link Adaptation

In this section, we propose a new rule-based link adaptation algorithm based on l-step

channel prediction using DNN when the exact value Doppler rate is unknown at the
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Table 3.2: List of DNN layers and outputs

Name Output Dimensions
Sequence Input Lp
Dense + CReLU (1st) 128
Dense + CReLU (2nd) 128
Regression Output l

receiver. Our goal is to reduce the number of feedback transmission without devastating

throughput and reliability.

3.3.1 l-Step Forward Channel Prediction with DNN

In order to choose the best MCS, we first need to estimate l subsequent channel

coefficients from past estimates by using two trained DNNs at the receiver. Then,

considering the predicted channel condition, for every l time instant, the MCS are

chosen based on the SNR stylised profile and sent to the transmitter through a feedback

link. Using all previous estimates for channel prediction (similar to the optimal

Wiener filter) is a costly procedure in terms of computational complexity and requires

a dynamic DNN design with growing input layer size. Thus, we only use the Lp

previous estimated channel coefficients for l-step channel predication to simplify the

DNN structure.

For the training stage, two different DNNs are trained to independently predict

the real and imaginary parts of the fading channel. Let us consider the j-th, j =

1, 2, · · · , Nt, training input vector as

h(j)
t = [h(j)

1 , h
(j)
2 , · · · , h

(j)
Lp

]T . (3.8)

In the training stage, the Nt × 1 training sample vectors are independently generated

for Lp + l time instants, and the value of the maximum Doppler spread, ρ, associated

with each training vector is uniformly distributed in [ρmin, ρmax]. The first Lp entries

are used as the input of the DNNs as in (3.8). Our target is to train the DNNs to

produce the desired output vector

h(j) = [h(j)
Lp+1, h

(j)
Lp+2, · · · , h

(j)
Lp+l]

T , (3.9)
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which is equivalent to l-step channel prediction. During the training phase, the DNNs

learn two nonlinear transformations, Ψr : RLp → Rl and Ψi : RLp → Rl, which predict

ℜ{h(j)} and ℑ{h(j)} based on the input vectors ℜ{h(j)
t } and ℑ{h(j)

t }, respectively as

ℜ{ĥ(j)} = Ψr
(
ℜ{h(j)

t }; Θr
)
, (3.10a)

ℑ{ĥ(j)} = Ψi
(
ℑ{h(j)

t }; Θi
)
, (3.10b)

where Θr and Θi are the sets of the DNNs parameters. These parameters are obtained

by minimizing the following LS loss function in the off-line training phase.

Loss(Θr) = 1
Nt

Nt∑
j=1

∥∥∥ℜ{h(j)} − Ψr(ℜ{h(j)
t }; Θr)

∥∥∥2
, (3.11)

Loss(Θi) = 1
Nt

Nt∑
j=1

∥∥∥ℑ{h(j)} − Ψi(ℑ{h(j)
t }; Θi)

∥∥∥2
. (3.12)

As seen, channel prediction is formulated as a regression task to estimate

parameter vector Θr and Θi, given the training data sets
(
ℜ{h(j)

t }, ℜ{h(j)}
)

and(
ℑ{h(j)

t }, ℑ{h(j)}
)
, j = 1, 2, · · · , Nt.

Designing a DNN with an appropriate layered structure yields an accurate predictor

functions in (3.10). This is crucial for precise channel prediction when the exact value of

Doppler rate is unknown. In particular, the number of hidden layers and the number

of neurons in each layer affect the range of Doppler rate that can be supported by

the DNN. Our simulation experiments based on existing guidelines for neural network

architecture selection show that a DNN with the layered structure in Tables 3.2 results

in an accurate link adaptation for the range of Doppler rate [ρmin, ρmax], where ρmin ≥ 0

and ρmax ≤ 0.1. In our designed DNNs, a clipped ReLU (CReLU) with the clipping

ceiling equal to one is used to prevent network saturation [99].

3.3.2 MCS Selection with Neural Networks

In order to choose the best MCS for the time interval between k + 1 to k + l, we use

the previous Lp estimated channel coefficients to predict the channel coefficients for

the next l time instants. For simplicity of presentation, we consider Ls = Nf l. This

means that for a packet of length L = Lp +Ls, we implement Nf channel prediction and
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Figure 3.1: Block diagram of our proposed DL-based algorithm.

link adaptation. The input vector of the trained DNNs for the m-th, m = 1, 2, · · · Nf ,

channel prediction is represented as

h(p)
m ≜

[
ĥ

(p)
(m−1)l+1, ĥ

(p)
(m−1)l+2, · · · , ĥ

(p)
(m−1)l+Lp

]T
, (3.13)

where ĥ
(p)
(m−1)l+i is the predicted channel coefficient at time instant (m − 1)l + i and

h(p)
1 is the vector of pilot at the beginning of the packet. Then, using the trained

DNNs, the real and imaginary parts of the next l channel coefficients, i.e. ĥ(p)
m ≜

[ĥ(p)
(m−1)l+Lp+1, ĥ

(p)
(m)l+Lp+2, · · · , ĥ

(p)
ml+Lp

]T , are predicted as

ℜ{ĥ(p)
m } = Ψr(ℜ{h(p)

m }; Θr), (3.14)

ℑ{ĥ(p)
m } = Ψi(ℑ{h(p)

m }; Θi). (3.15)

In order to find the best MCS based on the predicted l channel coefficients, we

consider the short-term SNR for the m-th link adaptation, γm, as the decision metric,

as follows

γm = 10 log
(

σ2
s

lσ2
w

l∑
i=1

∣∣∣ĥ(p)
(m−1)l+Lp+i

∣∣∣2), (3.16)

where σ2
s is the average transmitted power and σ2

w is the noise power. Using (3.16),

the receiver selects the MCS based on a SNR stylised profile for m = 1, 2, · · · , Nf . The

number of feedback transmissions for each packet of length L in our algorithm is Nf

which is l times lower than the rule-based method with one-step MMSE predictor. Fig.

3.1 shows the block diagram of the proposed link adaptation algorithm.

When channel variations are faster, a lower value for l is desirable and when channel

is more static, l can be increased. The choice of l directly affects the feedback cost.

Hence, for a given channel dynamics, it is desirable to use the largest l that guarantees
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Figure 3.2: Performance comparison of the proposed DL-based link adaptation (l = 10)
and rule-based link adaptation algorithms with MMSE predictor [1] for ρ ∈ [0.05, 0.1],
Lp = 10 and L = 100.

the target reliability and throughput. While l-step (l ≥ 2) MMSE channel prediction

[92] can be employed to develop high throughput rule-based link adaptation, it results

in a higher computational complexity compared to our DL-based algorithm.

3.4 Simulation Results

In this section, we provide simulation results to compare the performance of the

proposed DL-based link adaptation method with the rule-based method using the

MMSE one-step channel prediction [1, 44,45].

We consider a time-varying Rayleigh fading channel model based on Jake’s Doppler

spectrum with the following autocorrelation function E{hnh∗
m} = σ2

hJ0(2πρ(n − m)),

ρ ∈ [ρmin, ρmax], where σ2
h is the average power of hk, and ρ is the Doppler rate. It

is assumed that the exact value of the Doppler rate is unknown and ρmin ≥ 0 and

ρmax ≤ 0.1 and Doppler rate changes for each packet. Considering the typical carrier
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Figure 3.3: Throughput comparison of the proposed DL-based with l = 10 and
rule-based link adaptation algorithms with MMSE predictor [1] for ρ ∈ [0.05, 0.1],
Lp = 10 and L = 100.

frequency in the order of 10 GHz in 5G [37], and the sampling time and speed of

light, the assumed Doppler rate range reflects the vehicles with the speed range of

[0, 200] m/s. The additive white noise is modeled as circularly symmetric zero-mean

complex-valued Gaussian random variable with variance σ2
w, i.e. wk ∼ CN (0, σ2

w). The

average SNR in dB is defined as γ = 10 log(σ2
s /σ2

w). Unless otherwise mentioned, the

length of the transmitted packet is L = 100 and the length of the pilot is LP = 10 and

also σ2
h = 1. The DNN is trained with 105 independent training vectors. For MCS

selection, we use the short-term SNR stylised profile in Table 3.1.

Fig. 3.2 shows the BER of the proposed DL-based algorithm for l = 10 and the

rule-based link adaptation method using one-step MMSE channel predictor. As seen,

both algorithms propose a nearly similar reliability; however, our algorithm does not

need to know the exact value of Doppler rate. In the next two figures, we show the

advantage of the DL-based scheme in improving data rate and reducing the number of

feedback transmissions with the same BER.
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Figure 3.4: The number of feedback transmissions for the DL-based with l = 10 and
rule-based link adaptation algorithms with MMSE predictor [1] for ρ ∈ [0.05, 0.1] and
Lp = 10.

The data rate is compared in Fig. 3.3, where the throughput in terms of Mbps is

shown versus the average SNR for both the DL-based and the rule-based algorithm

using one-step MMSE predictor. It should be noted that this evaluation is prior to

channel coding and any single symbol error in the received packet is considered. As

seen, our algorithm outperforms the rule-based algorithm in terms of throughput for

almost equal BER (see Fig. 3.2). Note that the feedback cost in our solution is l = 10

times lower than the MMSE rule-based. The number of feedback transmission from

the receiver to the transmitter in our algorithm is shown in Fig. 3.4, where the number

of feedback transmissions versus packet length is depicted.

In order to observe the strength of our designed DNN in channel prediction, we

provide Fig. 3.5 to compare the amplitude and phase of the predicted channel by DNN

with the true channel. As seen, even for large value of l = 10, the DNN can accurately

predict the channel coefficients.
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3.5 Conclusion

In this work, a new link adaptation algorithm by employing DL-based channel

prediction was proposed. Our proposed algorithm is capable to choose the best MCS for

a longer period of data transmission. This capability significantly reduces the amount

of feedback transmissions from the receiver to the transmitter. Moreover, the proposed

DL-based algorithm achieves almost similar reliability and higher throughput compared

to the rule-based link adaptation method using MMSE one-step channel predictor as

the optimal link adaptation method in terms of reliability.
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Figure 3.5: Amplitude and phase tracking by the DNN channel predictor.
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Chapter 4

Data-Driven Based Radius

Selection for Sphere Decoding

In this chapter we present our attempts on minimizing the cost of sphere decoding by

proposing two different approaches for radius selection. In the first work, we propose

to use DNN to choose the optimal radiuses for the sphere decoding algorithm by

considering both channel and noise statistics. In the second work, we introduce a

statistical mechanism to select the radius and achieve an optimum performance with

reduced complexity compared to the DL-based method.

4.1 DL-Based Sphere Decoding

In this section we present the proposed sphere decoding algorithm based on DL

to address the computational complexity and performance trade-off in wireless

communication systems. The DL-based algorithm learns the radius of the decoding

hypersphere using a DNN prior to decoding. The intelligent radius selection based on

the DNN leads to fewer lattice points inside the hypersphere, reducing computational

complexity further, while also minimizing the probability of failing to find a solution.

Notably, this work is the first to propose a mechanism for radius selection that depends

on both the fading channel matrix and the noise statistics, as per the literature review.
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4.1.1 System Model

We consider a spatial multiplexing MIMO system with m transmit and n receive

antennas. The vector of received basedband symbols, y ∈ Cn×1, in block-fading

channels is modeled as

y = Hs + w, (4.1)

where s = [s1, s2, · · · , sm]T ⊂ CZm denotes the vector of transmitted complex symbols

drawn from an arbitrary constellation D, H ∈ Cn×m is the channel matrix, and w ∈

Cn×1 is the zero-mean AWGN with covariance matrix Σw = σ2
wI. The channel from

transmit antenna j to receive antenna i is denoted by hij .

The vector s spans the “rectangular” m-dimensional complex integer lattice Dm ⊂

CZm, and the n-dimensional vector Hs spans a “skewed” lattice for any given

lattice-generating matrix H. With the assumption that H is perfectly estimated at

the receiver, MLD of the vector s in (4.1) given the observation vector y, leads to the

following integer LS problem:

min
s∈Dm⊂CZm

∥∥y − Hs
∥∥2

. (4.2)

As seen, the integer LS problem in (4.2) is equivalent to finding the closest point in the

skewed lattice Hs to the vector y in the Euclidean sense. For large values of m and

high-order modulation, exhaustive search is computationally unaffordable.

Sphere decoding can speed up the process of finding the optimal solution by

searching only the points of the skewed lattice that lie within a hypersphere of radius

d centered at the vector y. This can be mathematically expressed as

min
s∈Dm⊂CZm

∥y−Hs∥2≤d2

∥∥y − Hs
∥∥2

. (4.3)

It is obvious that the closest lattice point inside the hypersphere is also the closest

point for the whole lattice. The main problem in sphere decoding is how to choose d

to avoid a large number of lattice points inside the hypersphere and at the same time

guarantee the existence of a lattice point inside the hypersphere for any vector y.
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To achieve MLD error performance, SD-IRS is required since for any hypersphere

with radius ri, there is always a non-zero probability that this hypersphere does not

contain any lattice point. When no lattice point is available, the search radius needs

to be increased from ri to ri+1, and the search is conducted again. This procedure

continues until the optimal solution is obtained. While SD-IRS substantially improve on

the complexity of MLD from an implementation standpoint, the average and worst-case

complexity can still be huge when there are no lattice points in the hypersphere with

radius ri, but many in the hypersphere with radius ri+1. Hence, the choice of ri’s is

critical.

4.1.2 DL-based Sphere Decoding

The main idea behind our proposed DL-based sphere decoding algorithm is to

implement SD-IRS for a small number of intelligently learned radiuses. That is, ri’s are

learned and chosen intelligently by a DNN. DL-based sphere decoding makes it possible

to choose the decoding radiuses based on the noise statistics and the structure of H.

This significantly increases the probability of successful MLD with searching over only

a small number of lattice points.

In the proposed DL-based sphere decoding, the Euclidean distance of the q closest

lattice points to vector y in the skewed lattice space is reconstructed via a DNN (as

the DNN output) prior to sequential sphere decoding implementations. Then, these q

learned Euclidean distances are used as radiuses of the hyperspheres in sphere decoding

implementations. The value of q is chosen small due to computational complexity

consideration. Ideally, if the distances are produced with no error, q = 1 is sufficient

for the optimal decoding with the lowest complexity, since the radius is the distance

of y to the optimal MLD solution. This radius for sphere decoding guarantees the

existence of a point inside the hypersphere and actually only the optimal point is inside

the hypersphere. However, since a DNN is an approximator, there is the possibility

that no points lies within the hypersphere with the learned radius. Thus, instead of

learning the closest distance only, q closest Euclidean distances are learnt by the DNN

to increase the probability of finding the optimal lattice point. Since for any finite
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value of q, still there is the possibility that no lattice point lies within the hypersphere

with the largest learned radius, a suboptimal detector, such as MMSE with rounding

or NC with optimal ordering is employed in order to avoid failure in decoding.

Let us define the Euclidean distance between y and the ith lattice point in the

skewed lattice, i.e., Hsi, as

ri ≜
∥∥y − Hsi

∥∥, i = 1, 2, · · · , |D|m, (4.4)

where |D| is the cardinality of the constellation D. Further, by ordering ri as follows,

ri1 < ri2 < · · · < riq < riq+1 < · · · < ri|D|m , (4.5)

the desired q × 1 radius vector r is given as

r ≜ [ri1 ri2 · · · riq ]T . (4.6)

In the proposed DL-based sphere decoding algorithm, the DNN, Φ(x; θ), reconstructs

the radius vector r at its output layer as

r̂ = Φ(x; θ), (4.7)

where

x ≜
[
ȳ ỹ h̄11 h̃11 · · · h̄nm h̃nm

]T
, (4.8)

ȳ = ℜ{yT }, ỹ = ℑ{yT }, huv ≜ h̄uv + ih̃uv, and θ ≜ [θ1, θ2, · · · , θK ]T . The vector x

represents the input vector of the DNN, and θ is the vector of all parameters of the

DNN.

The proposed DL-based sphere decoding is composed of an off-line training phase,

where the parameters of the DNN is obtained by employing training examples, and

a decoding phase where the transmit vector is decoded through sphere decoding or a

suboptimal detector. In the following subsection, these two phases are explained in

details.
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Algorithm 2 DL-based sphere decoding algorithm
Input: y, H, Φ(·, θ), q
Output: ŝ

1: Stack y and H as in (4.8) to obtain x;
2: Obtain the q radiuses through the trained DNN as r̂ = Φ(x, θ) = [r̂i1 r̂i2 · · · r̂iq ]T ;
3: c = 1;
4: Implement sphere decoding for radius r̂ic ;
5: if Dsp(y, r̂ic) ̸= null
6: ŝ = Dsp(y, r̂ic);
7: else

if c < q
8: c = c + 1 and go to 4;
9: else

10: ŝ = Dsb(y);
11: end
12: end

Table 4.1: Layout of the employed DNN.

Layer Output Dimension Parameters
Input 220 0
Dense + CRelu 128 28,288
Dense q 129 × q

4.1.2.1 Training Phase

A three layers DNN with one hidden layer is considered for a 10×10 spatial multiplexing

MIMO system using 16-QAM and 64-QAM in the training phase,1 where the numbers

of neurons in each layers are 220, 128, and q, respectively. Clipped rectified linear unit

with the following mathematical operation is used as the activation function in the

hidden layers:

f(u) =


0, u < 0.

u, 0 ≤ u < 1

1, u ≥ 1

. (4.9)

Table 4.1 summarizes the architecture of the employed DNN for the 10 × 10 spatial

multiplexing MIMO system in this work.

It should be mentioned that an SNR dependent DNN, in which the structure of
1Based on the MIMO configuration and modulation type, different DNN architecture can be selected.
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the DNN is designed to be adaptive to the SNR value, can also be employed to further

reduce the computational complexity. For the sake of simplicity, a fixed DNN is used

for all SNR values in this work. However, the network is independently trained for each

SNR value.

In the training phase, the designed DNN is trained with independent input vectors,

given as

x(i) ≜
[
ȳ(i) ỹ(i) h̄

(i)
11 h̃

(i)
11 · · · h̄(i)

nm h̃(i)
nm

]T
(4.10)

for i = 1, 2, · · · , N to obtain the parameter vector θ of the DNN by minimizing the

following mean square error (MSE) loss function [85]:

Loss(θ) ≜ 1
N

N∑
i=1

∥∥∥r(i) − Φ(x(i); θ)
∥∥∥2

, (4.11)

where r(i) is the desired radius vector when x(i) is used as input vector. To achieve

faster convergence and decrease computational complexity, an approximation of the

MSE loss function in (4.11) is computed for random mini-batches of training examples

at each iteration t as

ft(θ) ≜ 1
M

M∑
i=1

∥∥∥r(M(t−1)+i) − Φ(x(M(t−1)+i);θ)
∥∥∥2

, (4.12)

where M is the mini-batch size, and B = N/M is the number of batches. The training

data is randomly shuffled before every epoch.2 By choosing M to be considerably

small compared to N , the complexity of the gradient computation for one epoch, i.e.,

∇θft(θt−1), t = 1, 2, · · · , B, remarkably decreases when compared to ∇θLoss(θ), while

the variance of the parameter update still decreases.

During the training phase, for each SNR value, elements of the transmitted vector

s(i), elements of the fading channel matrix H(i), and elements of the noise vector

w(i), i = 1, · · · , N , are independently and uniformly drawn from D, fh(h), and

CN
(
0, σ2

w
)
, respectively, where fh(h) denotes the distribution of the fading channel.

Then, the real and imaginary parts of the observation vectors during training, i.e.,

y(i) = H(i)s(i) + w(i), along with H(i) are stacked as in (4.10) and fed to the DNN
2Each epoch is one forward pass and one backward pass of all the training examples.
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to minimize the MSE loss function in (4.12). For each input training vector x(i), the

corresponding desired radius vector r(i) is obtained by employing SD-IRS with a set of

heuristic radiuses. Finally, the parameter vector of the DNN is updated according to

the input-output vector pairs (x(i), r(i)) by employing the adaptive moment estimation

stochastic optimization algorithm, which is also referred to as Adam algorithm [97].

Since the DNN in our algorithm is used as a function approximator, the DNN

does not need to see all possible codewords in the training phase. The DNN only

approximates the region in which the optimal solution exists. Hence, the number of

training samples, and thus, the computational complexity of the training can be linearly

scaled up by the cardinality of constellation.

4.1.2.2 Decoding Procedure

In the decoding phase, first, the received vector y and fading channel matrix H

are fed to the trained DNN in the form of (4.8) to produce the radius vector

r̂ ≜ [r̂i1 r̂i2 · · · r̂iq ]T ; then, the transmitted signal vector is decoded by Algorithm 2,

where sphere decoding is conducted recursively with the learned radiuses by the DNN,

followed by a suboptimal detection if the sphere decoding fails to find the solution.

Sphere decoding implementation with decoding radius r̂ic fails to find a solution when

C(y, r̂ic) ≜
{

s ∈ Dm
∣∣∥∥y − Hs

∥∥2 ≤ r̂2
ic

}
= ∅, (4.17)

that is, there is no lattice point inside the hypersphere with radius r̂ic . To help the

presentation, define

Dsp(y, r̂ic) ≜


min

s∈Dm⊂CZm

∥y−Hs∥2≤r̂2
ic

∥∥y − Hs
∥∥2

, if C(y, r̂ic) ̸= ∅

null, if C(y, r̂ic) = ∅.

(4.18)

On the other hand, if no point is found by the q rounds of sphere decoding, the MMSE

detector is employed as the sub-optimal detector, in which the solution is obtained as

Dsb(y) =
⌊
(HHH + γ̄−1I)−1HHy

⌉
, (4.19)
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where γ̄ is the average SNR. Simulation result show that due to the intelligent

production of the radiuses via a DNN, the probability of decoding through suboptimal

detector is very close to zero.

4.1.2.3 Intuition behind DL-based Sphere Decoding

Since the complexity of sphere decoding algorithm is data dependent (depends on y

and H), data dependent hypersphere radius selection can lead to lower computational

complexity [15, 100]. The proposed DL-based sphere decoding algorithm selects the

hypersphere radiuses dependent on y and H to reduce computational complexity.

The NN in the proposed DL-based sphere decoding behaves as a function

approximator. In the mathematical theory of artificial neural networks, the universal

approximation theorem states [101] that a feed-forward network with a single

hidden layer containing a finite number of neurons can provide an arbitrarily close

approximation to a continuous function f(x), on compact subsets of Rn, under mild

assumptions on the activation function.

Based on this theorem, the employed NN in our algorithm approximates the

function r = g(y, H),R2n(m+1) → Rq, where g(y, H)≜[g1(x, H) g2(x, H) · · · gq(x, H)]T

and gi(x, H) is the distance of the i closest lattice points to vector y, i.e.,

gi(y, H) =
∥∥y − Hŝi

∥∥2
, i = 1, 2, · · · , q, (4.20)

where g1(y, H) ≤ g2(y, H) ≤ · · · ≤ gq(y, H) and

ŝi = min
s∈Dm⊂CZm

s̸∈{ŝ1,··· ,ŝi−1}

∥∥y − Hs
∥∥2

. (4.21)

The reason that non-linear function g is learned is to gradually and in a controlled

manner increase the hypersphere radius to avoid too many lattices inside the search

hyperspheres. The learned NN makes data dependent radius selection, and thus,

reduces the number of lattice points that fall in the hyperspheres. It is worth noting

that the complexity of sphere decoding is proportional to the number of lattice points

that lies inside the hypersphere [15].
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4.1.3 Expected Complexity of the DL-based Sphere Decoding

In this section, the expected complexity of the proposed DL-based sphere decoding

algorithm in the decoding phase is analytically derived. Since the DNN is trained once

and is used for the entire decoding phase, the expected complexity of the training phase

is not considered.

Lemma 1. The expected complexity of the proposed DL-based sphere decoding algorithm

is obtained as

CDL(m, σ2) =
q∑

c=1

m∑
k=1

∞∑
v=0

Fsp(k)Ψ2k(v)γ
( r̂2

ic

σ2
w + v

, n − m + k
)(

γ
( r̂2

ic

σ2
w

, n
)

− γ
( r̂2

ic−1

σ2
w

, n
))

+
(

1 − γ
( r̂2

iq

σ2
w

, n
))

Fsb + Fdn, (4.22)

where r̂i0 = 0, γ(·, ·) is the lower incomplete gamma function, Ψ2k(v) is the number of

ways that v can be represented as the sum of 2k squared integers,

Fsb = m3 + 5m2

2 + nm2 + 3mn − m

2 , (4.23)

Fdn =
L−1∑
i=0

2ni+1ni, (4.24)

and Fsp(k) is the number of elementary operations including complex additions,

subtractions, and multiplications per visited point in complex dimension k in sphere

decoding.

Proof. The expected complexity of sphere decoding implementation for radius d is given

as [2]

C(m, σ2
w, d) =

m∑
k=1

Fsp(k)
∞∑

v=0
γ
( d2

σ2
w + v

, n − m + k
)
Ψ2k(v). (4.25)

By employing (4.25) and following the same procedure as in [2], the expected

complexity of the SD-IRS algorithm for r1 < r2 < · · · < rq is obtained as

C(m, σ2
w, r1, · · · , rq) =

q∑
c=1

(pc − pc−1)
m∑

k=1
Fsp(k)

( ∞∑
v=0

γ
( r2

c

σ2
w + v

, n − m + k
)
Ψ2k(v)

)
,

(4.26)
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where p0 = 0, and pc, 0 < c ≤ q, is the probability of finding at least a lattice point

inside the hypersphere with radius rc, which is obtained by replacing rc with r̂ic in

(4.28).

The probability that a solution is not found during the sphere decoding

implementation for the hyperspheres with radiuses r1, r2, · · · , rq equals (1−pq). Hence,

the proposed DL-based sphere decoding algorithm obtains the solution through a

suboptimal detector with probability (1 − pq). This leads to (1 − pq)Fsb additional

average complexity given a suboptimal detector with Fsb elementary operations. For

the MMSE detector in (4.19), the number of elementary operations to calculate

(HHH + γ̄−1I) is nm2 + m(n − m
2 ) + m

2 , the matrix inversion in (4.19) requires

m3 + m2 + m elementary operations, the calculation of HHy requires m(2n − 1)

elementary operations, and finding the product of (HHH + γ̄−1I)−1 and HHy requires

2m2 − m elementary operations [102]. Thus, the total elementary operations in the

MMSE detection is given as in (4.23).

Moreover, there are Fdn elementary operations due to the DNN computations. The

number of multiplication and addition in the ℓth layer of a DNN with nℓ neurons is

2nℓnℓ−1, where nℓ−1 is the number of neurons in the (ℓ − 1)th layer. Hence, for a

L-layer DNN with n0, · · · nL neurons in each layer, Fdn is given as in (4.24).

By employing (4.26) and including (1 − pq)Fsb and Fdn, the expected complexity of

the proposed DL-based sphere decoding algorithm given the learned radiuses r̂i1 , · · · , r̂iq

is obtained as

CDL(m, σ2
w, r̂i1 , · · · , r̂iq ) =

q∑
c=1

(p̂ic − p̂ic−1)
m∑

k=1
Fsp(k)

×
∞∑

v=0
γ
( r̂2

ic

σ2
w + v

, n − m + k
)
Ψ2k(v) + (1 − p̂iq )Fsb + Fdn,

(4.27)

where p̂ic is given in (4.28). Finally, since r̂i1 , · · · , r̂iq and thus p̂i1 , · · · , p̂iq are random

variables, one can write the expected complexity of the DL-based sphere decoding as

in (4.22).

As seen from the proof, Fsb and Fdn represents the number of elementary operations
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employed by the MMSE suboptimal detector in (4.19) and DNN, respectively. Also,

the term γ(r̂2
ic/σ2

w, n) in (4.22) is the probability of finding at least a lattice point inside

the hypersphere with the learned radius r̂ic , which is written as

p̂ic ≜ γ
( r̂2

ic

σ2
w

, n
)

=
∫ r̂2

ic
σ2

w

0

tn−1

Γ(n) exp(−t)dt, (4.28)

where p̂i0 = 0.

By replacing the statistical expectation with sample mean based on Monte Carlo

sampling, one can write the expected complexity of the DL-based algorithm as

CDL(m, σ2) = lim
U→∞

1
U

U∑
u=1

q∑
c=1

m∑
k=1

∞∑
v=0

Fsp(k)Ψ2k(v)

× γ
( r̂2

ic,u

σ2
w + v

, n − m + k
)(

γ
( r̂2

ic,u

σ2
w

, n
)

− γ
( r̂2

ic−1,u

σ2
w

, n
))

+
(
m3 + 5m2

2 + nm2 + 3mn − m

2
)(

1 − 1
U

U∑
u=1

γ
( r̂2

iq ,u

σ2
w

, n
))

+ Fdn,

(4.29)

where the subscript u represents the index of sample in importance sampling.

For M2-QAM constellation, Fsp(k) = 8k + 20 + 4M , and Ψ2k(v) for 4-QAM,

16-QAM, and 64-QAM is respectively given as [2]

Ψ2k(v) =


(2k

v

)
, if 0 ≤ v ≤ 2k

0 otherwise,

, (4.30)

Ψ2k(v) =


2k∑

j=0
1

22k

(2k
j

)
Ω2k,j(v), if v ∈ Ξ

0 otherwise,

, and (4.31)

Ψ2k(v) =


∑

ξ0,ξ1,ξ2,ξ3

1
42k Ω2k,ξ0,ξ1,ξ2,ξ3(v), if v ∈ Q

0, otherwise
(4.32)

where Ω2k,j(v) is the coefficient of λv in the polynomial

(1 + λ + λ4 + λ9)j(1 + 2λ + λ4)2k−j , (4.33)
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the set Ξ contains the coefficients of the polynomial in (4.33) for k = 1, · · · , m and

j = 0, · · · , 2k, Ω2k,ξ0,ξ1,xi2,xi3(v) is the coefficient of λv in the polynomial(
2k

ξ0, ξ1, ξ2, ξ3

)( 7∑
e0=0

λe2
0

)ξ0(
λ +

6∑
e1=0

λe2
1

)ξ1

(4.34)

×
(

λ + λ4 +
5∑

e2=0
λe2

2

)ξ2(
− 1 − λ16 +

4∑
e3=0

2λe2
3

)ξ3

,

where ξ0 + ξ1 + ξ2 + ξ3 = 2k,
( 2k

ξ0,ξ1,ξ2,ξ3

)
= (2k)!/(ξ0!ξ1!ξ2!ξ3!), and the set Q contains the

coefficients of the polynomial in (4.34) for k = 1, · · · , m.

4.1.3.1 Asymptotic Complexity Analysis

As the SNR approaches +∞, the AWGN noise can be ignored. In this case, the

expected complexity of the proposed DL-based sphere decoding algorithm in (4.22) is

simplified as

CDL(m, 0) =
(
m3 + 5m2

2 + nm2 + 3mn − m

2
)

+
L−1∑
i=0

2ni+1ni. (4.35)

Since the number of neurons in the hidden layer is linearly scaled up the size of the

input layer 2(m(n+1)), the complexity order of the proposed algorithm for large MIMO

systems (n ≥ m >> 1) is O(m2n2).

4.1.4 Simulation Results

In this section, we evaluate the performance of the proposed DL-based sphere decoding

algorithm through several simulation experiments.

4.1.4.1 Simulation Setup

We consider a 10 × 10 spatial multiplexing MIMO system in Rayleigh block-fading

channel where 16-QAM and 64−QAM are employed. These configurations result in

skewed lattices with 420 and 430 lattice points, respectively. The elements of the fading

channel matrix are modeled as independent and identically distributed (IID) zero-mean

circularly symmetric complex Gaussian random variables with unit variance. The
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Table 4.2: Training phase parameters.

Parameter 16-QAM 64-QAM
Number of batches 90 90
Size of batches 200 200
Number of epoches 20 23
Number of iterations 1800 2070

additive white noise is modeled as a circularly symmetric complex-valued Gaussian

random variable with zero-mean and variance σ2
w for each receive antennas. Without

loss of generality, the average SNR in dB is defined as γ ≜ 10 log
(

mσ2
s/σ2

w

)
, where σ2

s

is the average signal power, and m is the number of transmit antennas. The NN is

implemented using Deep learning Toolbox of MATLAB 2019a. The learning rate of

the Adam optimization algorithm is set to 0.001, and the parameters of the employed

NN in the training phase are given in Table 4.2:

Unless otherwise mentioned, q = 3 is considered, and MMSE is employed as the

suboptimal detector. The performance of the proposed DL-based sphere decoding

algorithm in terms of BER and computational complexity is obtained from 106 Monte

Carlo trials for each SNR value.

The performance comparison of the DL-based sphere decoding algorithm with

SD-IRS algorithm in [2] and its Schnorr-Euchner (SE) variate with SE-SD-IRS in [3]

are performed with the same sets of fading channel matrixes, transmit vectors, and

noise vectors. For fair comparison, it is considered that SE-SD-IRS uses q radiuses,

and then switches to MMSE decoding after q times radius increasing. The decoding

hypersphere radiuses for SD-IRS and SE-SD-IRS are obtained for pc(i) = 1 − 0.01i at

the ith sphere decoding implementation as suggested in [2].

4.1.4.2 Results

Fig. 4.1 shows the underlaying empirical PDF of the radiuses learnt by the designed

NN at γ = 24 dB for 64-QAM. As expected, the radiuses vary based on the inputs of

the NN. This implies that the radiuses are intelligently adjusted to the channel state

information and received signals.
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(a) EPDF of r̂1

(b) EPDF of r̂2

(c) EPDF of r̂3

Figure 4.1: The empirical PDF of the radiuses learnt by the designed NN at γ = 24
dB for 64-QAM.
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Fig. 4.2 illustrates the BER of the proposed DL-based sphere decoding algorithm

and its SE variate versus the average SNR. As seen, the proposed DL-based algorithm

exhibits BER performance close to that in SD-IRS (MLD) over a wide range of SNRs.

This behaviour shows that sequential sphere decoding implementation with the learned

radiuses reaches the optimal solution.

Fig. 4.3 illustrates the average decoding time of the proposed DL-based sphere

decoding algorithm and its SE variate versus BER. As seen, the average decoding

time in DL-based algorithm is significantly lower than that in SD-IRS [2] when BER >

73×10−5 for 64-QAM, and when BER > 10−3 for 16-QAM. Also, as seen, the SE variate

of the proposed DL-based algorithm outperforms SE-SD-IRS [3] when BER > 18×10−4

for 64-QAM, and when BER > 16 × 10−4 for 16-QAM. The reason for this reduction

in complexity is that the number of lattice points inside the decoding hypersphere, and

thus the size of the search tree decreases in the average sense when the radiuses of the

hyperspheres are intelligently learnt by a DNN. On the other hand, the SD-IRS [2] and

SE-SD-IRS [3] exhibit a lower computational complexity compared to the proposed

DL-based algorithm and its SE variate at very low BER regions (high SNRs). The

reason is that at high SNR values, it is unlikely for the lattice to collapse in one

or more dimension, an event that significantly increases the number of points in the

hypersphere for the scheme in [2] and [3]. One possible way to improve the proposed

method is to consider SNR-based DNN, especially at high SNR values.

Fig. 4.4 shows the maximum decoding time in the proposed DL-based algorithm

and its SE variate versus BER to that in the SD-IRS algorithm [2] and SE-SD-IRS [3].

As seen, the DL-based sphere decoding algorithms outperform the algorithm in [2]

and [3] for some regions, i.e., BER > 2 × 10−3 for DL-SD and BER > 17 × 10−4 for

DL-SE-SD when using 64-QAM. These regions for 16-QAM are BER > 15 × 10−4

and BER > 4 × 10−3, respectively. This shows that the size of the search tree in the

DL-based sphere decoding is much smaller than the one in the algorithm in [2] and [3]

in the worst-case sense.

While at lower BERs (higher SNRs) SD-IRS and SE-SD-IRS offer a lower

complexity compared to our proposed solutions, one should note that the presented
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Figure 4.2: Performance comparison of the proposed DL-based sphere decoding
algorithm and its SE variate (q = 3), the SD-IRS [2], and SE-SD-IRS in [3].
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Figure 4.3: Average decoding time versus BER. The corresponding SNR of markers (left
to right) for 64-QAM and 16-QAM are {28, 26, 24, 22, 20} dB and {22, 20, 18, 16, 14}
dB, respectively.

74



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

10
2

10
3

(a)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
2

(b)

Figure 4.4: Maximum decoding time versus BER. The corresponding SNR of
markers (left to right) for 64-QAM and 16-QAM are {28, 26, 24, 22, 20} dB and
{22, 20, 18, 16, 14} dB, respectively.
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Figure 4.5: Performance of the proposed DL-based sphere decoding algorithm for
16-QAM and q = 3 in the presence of spatial correlation mismatch in the training
and decoding phases.

figures represents BER in the absence of channel coding. In practice, when lower

BERs are needed, channel coding is used. Hence, for the practical range of moderate

BER before channel coding, our proposed solution offers a better complexity.

Fig. 4.5 shows the BER of the proposed DL-based algorithm for 16-QAM and

q = 3 in the presence of distribution mismatch. It is assumed that the DNN is trained

for independent fading channel; however, it is evaluated in the presence of correlated

fading channel. As seen, the proposed algorithm is robust to spatial correlation fading

for ρ = 0.1 and ρ = 0.2, where ρ is the complex correlation coefficient of neighboring

transmit and receive antennas.

Fig. 4.6 shows the BER of the proposed DL-based algorithm for 16-QAM and q = 3

in the presence of channel estimation error. It is assumed that the real and imaginary

parts of the estimated fading channel ĥij are randomly drawn from uniform distribution

76



14 16 18 20 22
10-5

10-4

10-3

10-2

10-1

100

Figure 4.6: Performance of the proposed DL-based sphere decoding algorithm for
16-QAM and q = 3 in the presence of channel estimation error.

as

ℜ{ĥij} ∈ U
(
(1 − α)ℜ{hij}, (1 + α)ℜ{hij}

)
(4.36)

ℑ{ĥij} ∈ U
(
(1 − α)ℑ{hij}, (1 + α)ℑ{hij}

)
, (4.37)

where hij is the true value of channel, and α is a parameter used to control channel

estimation error. The effect of channel estimation error on the BER for three values

of α ∈ {0.05, 0.1, 0.2} is shown in Fig. 4.6. As expected, the performance of sphere

decoding (DL and IRS) depends on the accuracy of channel estimation. Thus, a lower

α results in a lower performance degradation. In addition, as seen, the performance

of the proposed DL-based algorithm is robust to the channel estimation error when

α < 0.1.

In Fig. 4.7, the average number of lattice points (in the logarithmic scale)

falling inside the decoding hypersphere in the DL-based sphere decoding algorithm

is compared with the one in the SD-IRS algorithm in [2]. As seen, the average number
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Figure 4.7: The average number of lattice points (in the logarithmic scale) falling inside
the search hypersphere in the DL-based sphere decoding algorithm and the SD-IRS
algorithm in [2].
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of lattice points in the DL-based algorithms is below 0.545 (in the non logarithmic

scale, bellow 3.51), while this is much higher in the SD-IRS algorithm.

Based on the presented results, the proposed DL-based method can achieve

near-optimal performance with less computational complexity compared to the existing

methods. One of the concerns regarding the DL-based method is the space and

time complexity of the DNN during training and inference. In order to mitigate this

complxity, we propose a data-driven-based solution to model the PDFs of the radiuses

that can be investigated to choose the best radiuses. In the next section we introduce

this method and compare it with the DL-based method.

4.2 Statistical Radius Selection for Sphere Decoding

In this section, we propose another method to select the hypersphere radiuses based on

the statistics of the skewed lattice in order to reduce the complexity of sphere decoding

variants. This method relies on the estimated PDFs of the squared distance between

the observation vector y and the q closest lattice points. Using the PDFs, we can select

the hypersphere radiuses more effectively in order to reduce the complexity of sphere

decoding in the average scence.

Using QR decomposition of H, i.e., H = QR, we can write sphere decoding

minimization problem in (4.3) as

min
s′∈Dm

∥QHy−Rs′∥2≤d2

∥QHy − Rs′∥2. (4.38)

By substituting y in (4.1) into (4.38), it can further be expressed as

min
s′∈Dm

∥R(s−s′)+w′∥2≤d2

∥R(s − s′) + w′∥2, (4.39)

where w′ ≜ QHw is the AWGN with Σw′ = σ2
wI.

Let us define q + 1 random variables X1, X2, . . . Xq+1 given s = c as follows

Xi|c ≜ ∥R(c − ŝi) + w′∥2, i = 1, 2, . . . , q + 1, (4.40)
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where

ŝi = min
s∈Dm⊂CZm

s̸∈{ŝ1,··· ,ŝi−1}

∥R(c − s) + w′∥2. (4.41)

It is thus obvious from (4.40) and (4.41) that X1|c ≤ X2|c ≤ · · · ≤ Xq+1|c. The Xi|c

is the i-th lowest distance given s = c. In order to find the best radius to start the

sphere decoding algorithm we need to compare the probabilities of Xi|cs choose the

distance that is more probable to occur. To obtain the distribution of the random

variable Xi|c, we rely on the extreme value theorem given as Theorem 4.1. Extreme

value distributions are used to represent the maximum or minimum of a number of

samples of various distributions [103].

Theorem 4.1. The limiting distribution of the minimum of a large number of

unbounded independent identically distributed random variables is Gumbel distribution

G(µ, β) with location parameter µ and scale parameter β > 0. The PDF of the Gumbel

distribution is given by:

f(x; µ, β) = 1
β

exp
(

µ − x

β
− exp

(µ − x

β

))
. (4.42)

By using Theorem 4.1, in the consideration of the circularly symmetric complex

Gaussian noise and the channel coefficient random variables, we approximate the

distribution of Xi|c, i = 1, 2, . . . , q + 1, in (4.40) with Gumbel distribution as follows3

Xi|c ∼ G(µi, βi), (4.43)

where the PDF of G(µ, β) is given in (4.42). The parameters of the Gumbel distribution,

i.e., µi and βi will be discussed in detail in Section 4.2.1. By using (4.42) and (4.43),

the unconditional PDF of Xi can be expressed as

fXi(xi; µi, βi) ≈
M∑

m=1
p(cm)fXi|cm

(xi|cm) (4.44)

= 1
M

M∑
m=1

fXi|cm
(xi|cm)

= 1
βi

exp
(

µi − xi

βi
− exp

(µi − xi

βi

))
,

3The validity of this approximation is shown in the simulation section.
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Figure 4.8: The PDF of d2
1 and d2

2.

where fXi|cm
(xi|cm) is the PDF of Xi given c = cm.

Since the complexity of sphere decoding depends on the number of lattice

points inside the hypersphere, the best strategy is to gradually and in a controlled

manner increase the hypersphere radius to avoid too many lattices inside the search

hyperspheres. Hence, in order to minimize the computational complexity based

on likelihood inference, we can select the radius of the i-th hypersphere i.e., di,

i = 1, 2 . . . , q + 1, as

fXi(d2
i ; µi, βi) ≥ fXi+1(d2

i , µi+1, βi+1). (4.45)

This is shown in Fig. 4.8 for the case of i = 1. The intersection of the two PDFs is

denoted as r2
1 which is the estimated value for d2

1. By substituting (4.44) into (4.45),

we have

βi+1
βi

exp
(

µi − d2
i

βi
− µi+1 − d2

i

βi+1
− exp

(µi − d2
i

βi

)
+ exp

(µi+1 − d2
i

βi+1

))
≥ 1, (4.46)

resulting in

(βi − βi+1)d2
i

βiβi+1
− exp

(µi − d2
i

βi

)
+ exp

(µi+1 − d2
i

βi+1

)
≥ τ, (4.47)
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where τ = ln
(

βi
βi+1

)
− βi+1µi−βiµi+1

βiβi+1
. By solving (4.47) for equality, we obtain the

estimated value of d2
i , denoted as r2

i , as r2
i = d̂2

i ≜ g(βi, βi+1, µi, µi+1), where g is a

nonlinear function. Given q + 1 , we calculate q hypersphere radiuses, and use them

for SD-IRS implementation.

4.2.1 Parameter Estimation for Gumbel Distribution

4.2.2 ML and MoM Estimation

In order to estimate the parameters of the Gumbel distribution used for radius selection,

we need to gather N observation samples x ≜ [x1, x2, . . . , xN ]T to perform the ML

estimation of µ and β.4 Each sample xi is obtained by using (4.40) and (4.41). Then,

the Gumbel parameters are estimated as [103]

β̂ = 1
N

N∑
k=1

xk −

∑N
i=1 xi exp

(−xi

β̂

)
∑N

n=1 exp
(−xn

β̂

) , (4.48a)

µ̂ = −β̂ ln
(

1
N

N∑
k=1

xk exp
(−xk

β̂

))
. (4.48b)

An alternative estimation method is the method of moments (MoM). The mean

and variance of random variable X ∼ G(µ, β) [103] are given as follows

M1 ≜ E{X} = µ + βω, (4.49a)

σ2 ≜ E{(X − M1)2} = π2

6 β2, (4.49b)

where ω = 0.57721 is the Euler-Mascheroni constant. By using sample mean estimate,

we can write

M̂1 = 1
N

N∑
i=1

xi = µ + βω, (4.50a)

σ̂2 = 1
N

N∑
i=1

(xi − M̂1)2 = π2

6 β2. (4.50b)

4Parameter estimation is performed once and is used for the entire communication phase.
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By solving (4.50) for β > 0, we obtain

β̂ =
√

6
π

σ̂, (4.51a)

µ̂ = M̂1 − β̂ω = M̂1 −
√

6
π

σ̂ω. (4.51b)

4.2.3 LS Interpolation of Distribution Parameters

In the previous section, we showed how the location and scale parameters of the Gumbel

distribution, used to model the distribution of d2
i , i = 1, 2, . . . , q, can be estimated for

a given SNR by using the priori knowledge on the distributions of noises and channel

fading coefficients. Let us denote the estimated position and scale parameters (either

by ML or MoM) of the Gumbel distribution at SNR γl by µ̂i,l and β̂i,l, respectively.

We consider K values of γ to obtain K tuples of the SNR and distribution parameters

for the i-th hypersphere radius as follows

(γ1, µ̂i,1, β̂i,1), (γ2, µ̂i,2, β̂i,2), . . . , (γK , µ̂i,K , β̂i,K). (4.52)

Our goal is to obtain the estimated parameters of the Gumbel distribution of the i-th

hypersphere radius for an arbitrary SNR γ, i.e., µ̂i(γ) and β̂i(γ) using (4.53) and (4.54).

For this, we interpolate the parameters of the Gumbel distribution at SNR γ.

Using LS curve fitting method, we can approximate µ̂i(γ) and β̂i(γ) by polynomials

of order L,5 where K ≥ L, as

µ̂i(γ) =
L∑

l=1
ci,lγ

l−1 (4.53)

and

β̂i(γ) =
L∑

l=1
vi,lγ

l−1 (4.54)

5For the simplicity of the presentation, we consider the same polynomial order for µ̂i(γ) and β̂i(γ).
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where

ci = min
x∈RL

∥Φx − âi∥2, (4.55)

vi = min
r∈RL

∥Φr − b̂i∥2, (4.56)

Φ ≜



1 γ1 γ2
1 · · · γL−1

1

1 γ2 γ2
2 · · · γL−1

2

1 γ3 γ2
3 · · · γL−1

3
...

...
... · · ·

...

1 γK γ2
K · · · γL−1

K


, (4.57)

and

ci ≜ [ci,1 ci,2 . . . ci,L]T , (4.58a)

vi ≜ [vi,1 vi,2 . . . vi,L]T , (4.58b)

âi ≜ [µ̂i,1 µ̂i,2 . . . µ̂i,K ]T , (4.58c)

b̂i ≜ [β̂i,1 β̂i,2 . . . β̂i,K ]T . (4.58d)

It is well known that (4.55) and (4.56) yield

ci = (ΦT Φ)−1ΦT âi, (4.59)

and

vi = (ΦT Φ)−1ΦT b̂i. (4.60)

Finally, by substituting the elements of ci and vi into (4.53) and (4.54), µ̂i(γ) and

β̂i(γ), i = 1, 2, . . . , q, are obtained.

4.2.4 Simulation and Results

In this section, we evaluate the performance of our proposed radius selection for sphere

decoding through several experiments and compare it with the conventional methods.

Simulation Setup: We consider a 5 × 5 spatial multiplexing MIMO communication

system using 16-QAM modulation in Rayleigh block fading channel. The elements of

the fading channel matrix are modeled by i.i.d zero-mean circularly symmetric complex
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Gaussian random variables with unit variance. Without loss of generality, for systems

with m transmit antennas, the average SNR in dB is defined as γ = 10 log(mσ2
s

σ2
w

), where

σ2
s = 10 is the average signal power.

In the following simulations, we assume q = 4 resulting in three radiuses for the

incremental search in sphere decoding which means that we are required to calculate

d2
1, d2

2, and d2
3. Moreover, MMSE is employed as the suboptimal detector when there

is no point inside the three generated hyperspheres by the obtained radiuses. We

use 105 Monte Carlo trials for each SNR value to obtain the performance of the

proposed method in terms of BER and computational complexity. We compare our

result with existing SD-IRS algorithm with three radiuses. For Gumbel distribution

parameter estimation, we generate the observation samples using the distribution of

the noise vector fw(w), the distribution of the channel matrix fH(H), and the uniform

distribution of the constellation vector.

Results: First, we study the empirical histograms of the squared radiuses d2
1, d2

2,

and d2
3 achieved by N = 106 samples for each. These histograms and the estimated

PDFs are illustrated in Fig. 4.9 for the SNR γ = 23 dB. We also show the corresponding

estimated Gumbel PDFs obtained by the ML estimation in (4.48a) and (4.48b), i.e.,

G(µ̂ML
1 , β̂ML

1 ), G(µ̂ML
2 , β̂ML

2 ), and G(µ̂ML
3 , β̂ML

3 ). As seen, the estimated Gumbel PDFs

accurately match the empirical histograms. The intersections of the estimated Gumbel

PDFs are represented in Fig. 4.9 by r2
1 = 2.2 and r2

2 = 7.2. These values are used for

sphere decoding with increasing radius search.

We also compare the normalized statistical first-, second-, and third-order moments

of the estimated Gumbel PDF for d2
1 with their normalized sample mean calculated

from the empirical data in Fig. 4.10. For Gumbel distribution G(µ, β), the statistical

first- and second-order moments are given in (4.49), and the third-order moment is

expressed as

M3 = µ3 + 3 µ2γ β + µβ2π2

2 + 3 µγ2β2 + 2 β3ζ (3) + β3π2γ

2 + γ3β3, (4.61)

where ζ(.) is the Riemann zeta function. The sample mean estimate of the first-,

second-, and third-order moments are obtained by using (4.50) and M̂3 = 1
N

∑N
i=1 x3

i .
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Figure 4.9: The theoretical and empirical PDFs of d2
i , i = 1, 2, 3, at γ = 23 dB.

As seen, the statistical moments of the empirical data match the sample mean

estimate of the moments. These results support the validity of the proposed Gumbel

approximation for the distribution of the squared radiuses.

In Fig. 4.11, we illustrate the determined µ̂i(γ) and β̂i(γ) as presented in (4.53) and

(4.54) for i = 1, 2 achieved by LS curve fitting using the ML estimate of the Gumbel

distribution parameters for K = 13, L = 5 and γm = 9 + 2m. As seen, the Gumbel

parameters are accurately interpolated by LS curve fitting method for an arbitrary

γ ∈ {12, 14, . . . , 34}. The obtained polynomials of order L = 5 are as follows:

µ̂1(γ) = −14.48 + 7.996γ − 0.8938γ2 + 0.04178γ3 − 0.0008976γ4 + 7.336 × 10−6γ5

β̂1(γ) = 16.25 − 2.001γ + 0.1168γ2 − 0.004173γ3 + 8.612 × 10−5γ4 − 7.527 × 10−7γ5

µ̂2(γ) = 22.65 − 0.6018γ − 0.128γ2 + 0.01066γ3 − 0.0002967γ4 + 2.844 × 10−6γ5

β̂2(γ) = 37.32 − 6.929γ + 0.5409γ2 − 0.02087γ3 + 0.0003973γ4 − 2.986 × 10−6γ5.

(4.62)

The performance comparison is shown in Fig. 4.12 in terms of BER versus SNR,

where we compare our proposed S-SD-IRS method with the SD-IRS in [2], and

DL-SD-IRS in [67] for ϵ = 0.01. As seen, our method S-SD-IRS has the same BER
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Figure 4.10: The sample mean estimate of the moments and their corresponding
statistical moments of the Gumbel distribution approximation for d2

1.

performance as others over a wide range of SNRs. This indicates that sphere decoding

variants using statistical radius selection can achieve near MLD performance.

Fig. 4.13 shows the average decoding time for the proposed S-SD-IRS, SD-IRS [2],

and DL-SD-IRS [67]. As seen, the average decoding time in our S-SD-IRS algorithm is

significantly lower than the other two algorithms. We also compare the average number

of lattice points inside the hyperspheres for different values of SNR in Fig. 4.14. As

expected, our proposed method results in hyperspheres with minimal number of lattice

points compared to other algorithms.

4.3 Conclusion

A low-complexity solution for integer LS problems based on the capabilities of DL

and sphere decoding algorithm was proposed in this work. The proposed solution

leads to efficient implementation of sphere decoding for a small set of intelligently

learned radiuses. The BER performance of the DL-based sphere decoding algorithm is

very close to that in MLD for high-dimensional integer LS problems with significantly
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Figure 4.11: The interpolated parameters of the Gumbel distributions, i.e., µ̂i(γ) and
β̂i(γ) used to approximate the distribution of d2

i , i = 1, 2.

lower computational complexity. The expected complexity of the proposed algorithm

based on the elementary operations was derived, and its effectiveness in term of BER

and computational complexity for high-dimensional MIMO communication systems,

using higher-order modulations, was shown through simulation. While the integer

LS problem in this work was formulated for MIMO communication systems, it is a

promising solution for other situations when integer LS problems are encountered,

such as multi-user communications, relay communications, global positioning system,

and more.

Using the statistical properties of the communication channel and the additive

noise, we propose another new approach for the sphere decoding problem with reduced

complexity. Our solution suggests to use the statistical properties of the channel matrix

and additive noises to estimate the PDFs of the q + 1 minimum squared distances in

the lattice. As discussed in the work, the q intersections of the estimated PDFs are

selected as the radiuses for the sphere decoding algorithm which eventually reduce the

number of lattice points inside the hyperspheres. The performance of our proposed

method in terms of BER is very close to ML decoding for the problem of lattice point
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Figure 4.12: Performance comparison in terms of BER versus SNR.

search with significantly lower computational complexity.
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Figure 4.13: The average decoding time versus SNR.

Figure 4.14: The average number of points inside the hyperspheres in the logarithmic
scale versus SNR.
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Chapter 5

Activity Detection for Grant-Free

NOMA in Massive IoT Networks

Recently, grant-free NOMA has been introduced as a flexible transmission mechanism

for devices in IoT networks, aiming to save time and bandwidth by eliminating the

need for control signaling exchange between the BS and devices. With grant-free

NOMA, devices can randomly transmit data at any time slot without the need for

a request-grant procedure. Based on the application, IoT devices may remain inactive

for extended periods of time and only become active during data transmission to the

BS. Hence, accurately identifying the active devices is crucial for reliable data detection.

5.1 System Model

We consider a CDMA uplink transmission, where K IoT devices communicate with

a single IoT BS equipped with M receive antennas. This commonly used model [20,

69,75], also considers a frame structure for uplink transmission composed of a channel

estimation phase followed by CDMA slotted ALOHA data transmissions as shown in

Fig. 5.1. Each frame contains Nf short packets of length Tt = NsTs, where Ns is

the number of symbols per IoT packet and Ts is the symbol duration. It is assumed

that the channel is fixed during each frame, but it varies from one frame to another.
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Figure 5.1: CDMA slotted ALOHA transmission frame

The CSI is acquired at the BS during the channel estimation phase. As it is common

in mMTC, we assume that the IoT devices are only active on occasion and transmit

short data packets during each frame. The activity rate of the IoT devices is denoted

by Pa ∈ [0, Pmax], which is assumed to be unknown and time-varying from one packet

transmission to another. Let bk,i ∈ A be the i-th transmitted symbol of the k-th device

which is chosen from a finite alphabet A, when the k-th device is active; otherwise,

bk,i = 0. Consequently, bk,i can take values from an augmented alphabet Ā = A ∪ {0}.

We also denote the set of all devices and the set of active devices by St = {1, 2, . . . , K}

and Sa, respectively, where Sa ⊂ St.1

A unique spreading code is dedicated to each IoT device which is simultaneously

used for the spreading purpose and device identification. This removes the need

for control signaling associated with IoT device identification. Control signals are

inefficient for short packet mMTC. The spreading sequence for the k-th IoT device is

denoted by ck = [c1,k c2,k · · · cNc,k]T where ci,k ∈ {−1, +1} and Nc is the spreading

factor. To support a large number of devices, non-orthogonal spreading sequences are

employed; resulting in NOMA transmission.

For a single frame, the complex channel coefficient between the k-th IoT device and

the m-th receive antenna at the BS is denoted as gm,k. The active IoT device k, k ∈ Sa

1For the simplicity of notation, we remove the index of frame and packet.
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transmits Ns symbols denoted by bk = [bk,1, · · · , bk,Ns ]T during a packet. The received

baseband signal over Rayleigh flat fading channel in a single slot of the slotted ALOHA

frame at the m-th receive antenna of the BS is expressed as

Ym =
K∑

k=1
gm,kckbT

k + Wm, (5.1)

where Wm ∈ CNc×Ns with wi,j ∼ CN (0, σ2
w) and E[wi,jw∗

u,v] = σ2
wδ[i − u]δ[j − v]

is the AWGN matrix at the m-th receive antenna. The equivalent channel matrix

between all IoT devices and the m-th receive antenna can be expressed as Φm =

[gm,1c1, · · · , gm,KcK ] ∈ CNc×K . Thus, the received packet at the m-th (m =

1, 2, · · · , M) receive antenna is given by

Ym = ΦmB + Wm, (5.2)

where B = [b1, · · · , bK ]T ∈ DK×Ns .

Let the total set of all IoT devices be decomposed into a finite number of disjoint

groups G1, G2, · · · , GS . Within group Gj , the power of every IoT device is given by Pj .

The powers of the devices are equal within each group, but differ from group to group.

The fraction of devices in group Gj is therefore |Gj |/K. It is assumed that Pj is known

at the BS. This configuration captures heterogeneous IoT networks, where groups of

IoT devices capture different phenomenon in a given geographical area. A single group

of IoT devices with equal power transmission, resulting in a homogeneous network, is

also studied in this work.

5.2 Problem Formulation

In this section, we present the problem of IoT device AD in the cases of known CSI

at the receiver and in the presence of sparse or non-sparse transmission. In order to

detect the active devices, it is assumed that the BS is equipped with a match filter and

the precoding matrix and CSI Φm is available. Before AD, the observation matrix at

the m-th receive antenna ym is passed through the decorrelator to obtain

Ym = ΦH
mYm ∈ CK×Ns . (5.3)
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In the following, we investigate the details of the AD problem based on the Gaussian

detection to show how a threshold can be computed to distinguish active IoT devices

from inactive ones. The output of the decorrelator receiver for the m-th receive antenna

is expressed as

Ym = ΦH
mΦmB + ΦH

mWm,

=



∑K
k=1 g∗

m,1gm,kcT
1 ckbT

k + g∗
m,1cT

1 Wm∑K
k=1 g∗

m,2gm,kcT
2 ckbT

k + g∗
m,2cT

2 Wm

...∑K
k=1 g∗

m,Kgm,kcT
KckbT

k + g∗
m,KcT

KWm


. (5.4)

Consequently, the received signal from the k-th user at the m-th receive antenna is

rm
k = ||gm,kck||22bT

k +
K∑

i=1(i ̸=k)
g∗

m,kgm,icT
k cibT

i + g∗
m,kcT

k Wm, (5.5)

where the second and third terms are multi user interference and additive noise,

respectively. Since an IoT device is either active or inactive for the entire packet

transmission, we determine the activity status of a device based on each received symbol

and then use the results in [104] for spectrum sensing and combine the obtained results

from all Ns symbols. The device AD in the case of single symbol transmission is studied

in [25], and we follow that to determine the status of each device based on each received

symbol and then combine the results. The j-th received symbol from device k at receive

antenna m, denoted as rm
k,j , is

rm
k,j = ||gm,kck||22bk,j +

K∑
i=1(i ̸=k)

g∗
m,kgm,icT

k cibi,j + g∗
m,kcT

k wj , (5.6)

where the first term is the main signal, the second term is multi user interference from

other devices, and the third term is the additive noise. For the sake of simplicity we

assume that BPSK modulation is used, i.e., the transmitted symbols are drawn from

A = {−1, +1} and p(bk,j = +1) = p(bk,j = −1) = 1/2. The variance of the multi user
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Figure 5.2: Model structure of the proposed CNN-AD algorithm

interference plus noise in rm
k,j can be calculated as

σ2
k,j = var

{ K∑
i=1(i ̸=k)

g∗
m,kgm,icT

k cibi,j + g∗
m,kcT

k wj

}

=
K∑

i=1(i ̸=k)
|g∗

m,kgm,icT
k ci|2Pa + ||g∗

m,kcT
k ||22. (5.7)

Now we can approximate rm
k,j by a Gaussian distribution as N (||gm,kck||22, σ2

k,j) [104].

In order to identify the activity of device k, our goal is to propose an algorithm to define

threshold τ and set device k as active if |rm
k,j | > τ . Then the probability of error, Pe,

is computed as

P k,j
e = Pap(|rm

k,j | < τ |bk,j ̸= 0) + 2(1 − Pa)p(|rm
k,j | > τ |bk,j = 0), (5.8)

where we have p(rm
k,j |bk,j ̸= 0) ∼ N (||gm,kck||22, σ2

k,j) and p(rm
k,j |bk,j = 0) ∼ N (0, σ2

k,j).

We can calculate (5.8) as

P k,j
e = 2(1 − Pa)Q

( τ

σk,j

)
+ PaQ

( ||gm,kck||22 − τ

σk,j

)
, (5.9)

where Q(x) = (1/
√

2π)
∫∞

x exp(−t2/2)dt denotes the Gaussian tail function. The

probability of error in (5.9) is a convex function of τ and hence, a fine tuned neural

network is capable of solving this problem and detect the active devices by finding the

optimum τ . In the following section, we define our DL-based algorithm to find the

optimum τ and minimize the probability of error.

5.3 Deep Learning for Device Identification

Device AD is the first step toward effective MUD in a grant-free uplink multiple access.

The recent studies on AD suggest to use CS methods to identify the set of active
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devices [72, 73]. However, these methods fail in the practical scenarios, where the

activity rate is time-varying and/or unknown. Moreover, these methods are mainly

effective for low device activity rate scenarios, i.e., when sparsity level is high [72]. In

this section, we propose our AD algorithms called CNN-AD by employing a CNN for

heterogeneous IoT networks. By employing a suitably designed CNN, the underlying

pattern in device activity can be easily learnt.

5.3.1 CNN-AD Algorithm

Fig. 2 illustrates the structure of the proposed CNN-AD algorithm. As seen, it is

composed of there blocks: 1) preprocessing, 2) CNN processing, and 3) hypothesis

testing.

In the preprocessing step after sequence matched filtering, we first sort the

observation matrix from all M receive antennas in a 3D Tensor as

R =



[
PȲ1

]
[
PȲ2

]
...[

PȲM

]


, (5.10)

where PYm ∈ CK×Ns , Ym = ΦH
mYm ∈ CK×Ns for m = 1, 2, · · · , M , and P ≜

diag(p1, · · · , pK), pk ∈ {1/P1, · · · , 1/PS} for k = 1, 2, · · · , K.

In the CNN processing block, the 3D Tensor R is used as the input of a suitably

designed CNN. The CNN models benefit from the convolutional layers performing

convolution operations between matrices instead of the multiplication. Thus, it leads

to dimension reduction for feature extraction and provides a new input to the next

network layers which includes only the useful features of the original high-dimensional

input. The IoT device AD can be formulated as a binary classification or regression

problem. Formulating device AD as a classification problem is straightforward, but it

requires the accurate design of the CNN’s structure and parameters.

In the hypothesis testing block, the K outputs of the CNN’s Sigmoid layer is

compared with a predefined threshold to determine the activity status of the IoT devices
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in the network. If the k-th node of the Sigmoid layer exceeds the threshold, the k-th

IoT device is identified as active.

5.3.2 Training Phase

In order to train the designed CNN, we define the activity vector a as

a = [a1 a2 · · · aK ]T , (5.11)

where ak is 1 when the k-th IoT device is active and 0 otherwise. We train our

model with N independent training samples (R(j),a(j)), where j = 1, 2, · · · , N and a(j)

and R(j) are the activity vector and observation matrix of the j-th training sample,

respectively. Our objective is to train the designed CNN to generate the desired output

vector a(j) for input matrix R(j). The model tries to learns non-linear transformation

Ψ such that

â(j) = Ψ(R(j); Θ), (5.12)

where Θ is the set of parameters learned during the training by minimizing the loss

function. The output of the model, i.e. â, determines the activity probabilities of the

IoT devices. Here since there are two classes (active or inactive) for each IoT device,

the loss function is chosen as the binary cross-entropy. For each training sample j, the

binary cross-entropy loss function compares the probability that the IoT devices are

active (â(j)) with the true activity vector a(j) as

Loss(Θ) = 1
N

N∑
j=1

−
(
a(j) log(â(j)) + (1 − a(j)) log(1 − â(j))

)
, (5.13)

where log(·) performs an element-wise log operation on â(j), and the vector

multiplication is also element-wise.

5.4 Simulation Results

In this section, we evaluate the performance of the proposed CNN-AD algorithm

through various simulation experiments and compare it with some of the existing

methods.
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Figure 5.3: Achieved BER of OMP, AMP, and CNN-AD without knowing the number
of active devices.

Simulation Setup: We consider an IoT network with K devices where K > Nc

and pseudo-random codes are used as the spreading sequences for IoT devices. The

probability of activity Pa is considered to be unknown and time-varying from one packet

to another in the range of Pa ∈ [0, Pmax], where Pmax = 0.1. The BPSK modulation is

used for uplink transmission. Without loss of generality, the channel coefficient between

IoT devices and the BS is modeled as independent zero-mean complex Gaussian random

variables with variance σ2
k,m = 1, for k ∈ St and m ∈ {1, · · · , M}. The additive white

noise is modeled as zero-mean complex Gaussian random variables with variance σ2
w,

and the SNR in dB is defined as γ ≜ 10 log(σ2
s /σ2

w), where σ2
s = PaPt is the average

transmit power with Pt = ∑K
k=1 pk as the total transmission power. Unless otherwise

mentioned, we consider spreading sequences with spreading factor Nc = 32.

In order to train CNN-AD, we generate 105 independent samples and use 80% for

training and the rest for validation and test. Adam optimizer [97] with learning rate

of 10−3 is used to minimize cross-entropy loss function in (5.13).

Simulation Results: We assess CNN-AD through various simulations and compare

it with the existing CS-based methods including orthogonal matching pursuit (OMP)
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Figure 5.4: Impact of Pa on the performance of different methods as the priory AD for
MMSE in terms of achieved BER.

[105] and approximate message passing (AMP) [106].

The impact of SNR on the activity error rate (AER) achieved by different AD

algorithms in both homogeneous and heterogeneous IoT networks with uniform and

non-uniform power allocation is shown in Fig. 5.3. The AER of different methods

are compared for a wide range of SNRs in an IoT system with total K = 40 IoT

devices and a single BS with M = 100 receive antennas. As expected, the AER of

all AD algorithms decreases with increasing SNR. However, CNN-AD achieves the

best performance since unlike the non-Bayesian greedy algorithms OMP and AMP,

our method relies on the statistical distributions of device activities and channels and

exploit them in the training process.

Fig. 5.4 illustrates the effect of activity rate on the BER for MMSE-MUD with

different AD algorithms at γ = 10 dB. As seen, as the activity rate increases, the

number of active devices increases accordingly and thus it becomes difficult to detect

all the active devices. This results in a higher BER. We use Pmax = 0.1 to train

CNN-AD. Thus, the MMSE-MUD with CNN-AD shows performance degradation

when the activity rate is larger than Pmax = 0.1. However, it still outperforms the

MMSE-MUD with OMP and AMP AD algorithms. It should be mentioned that the
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Table 5.1: Performance analysis different algorithms for two typical IoT devices for
Pmax = 0.1 at γ = 10 dB.

IoT Device Model Precision Recall F1-score
OMP 28% 32% 30%

Device A AMP 31% 35% 33%
CNN-AD 73% 92% 81%

OMP 33% 32% 32%
Device B AMP 38% 35% 36%

CNN-AD 100% 83% 91%

performance can be improved when CNN-AD is trained for a larger value of Pmax.

We further investigate the AD algorithms in terms of other metrics for two typical

IoT devices for Pmax = 0.1 at γ = 10 dB SNR, presented in Table 5.1. In this table we

compare the precision, recall, and F1-score, defined in [107], achieved by CNN-AD with

OMP and AMP AD algorithms. As seen, all metrics are improved by using CNN-AD.

5.5 Conclusions

In this work, we consider the problem of AD in IoT networks in grant-free NOMA

systems. Based on the application, IoT devices can be inactive for a long period of time

and only active in the time of transmission to the BS. Hence, identifying the active

devices is required for an accurate data detection. Some studies propose CS-based

method for AD. However, high level of message sparsity is necessary for those methods.

In order to remove this need and exploit the statistical properties of the channels we

propose a CNN-based method called CNN-AD to detect active IoT devices.
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Chapter 6

Summary and Future Work

In this chapter, we first summarize the contributions in the thesis, and then, we describe

a few possible research directions for future work.

6.1 Summary of Contributions

Data-driven methods such as DL can provide significant performance improvement in

signal processing and communications problems [79–85, 88–90, 108–110]. Specifically,

DL techniques have been employed to improve many design components of

communication systems, such as decoding, modulation, estimation and more [80–82].

These improvements are related to the intrinsic property of a DNN, which is a universal

function approximator with superior logarithmic learning ability and convenient

optimization capability [76, 77, 101]. Besides, existing signal processing algorithms

in communications, while work well for systems with tractable mathematical models,

can become inefficient for complicated and large-scale systems with large amount of

imperfections and high nonlinearities. Such scenarios can be dealt with DL, which

can characterize imperfections and nonlinearities via well-structured approximations

[88,89,108].

In this thesis we proposed and analyzed new data-driven based solutions for physical

layer communication problems. More specifically, we study the signal detection and

channel estimation problems and use data-driven methods to improve the results or
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reduce the complexity of the existing algorithms.

In Chapter 2, we consider the use of DNN to develop a DD-CE algorithm for

MIMO-space-time block coded systems in highly dynamic vehicular environments.

We propose the use of DNN for k-step channel prediction for STBCs, and show

that DL-based DD-CE can remove the need for Doppler spread estimation in fast

time-varying flat fading channels, where the Doppler spread varies from one packet to

another. Doppler spread estimation in this kind of vehicular channels is remarkably

challenging and requires a large number of pilots and preambles, leading to low power

and spectral efficiency. We train two DNNs which learn the real and imaginary parts

of the MIMO fading channels over a wide range of Doppler spreads. We demonstrate

that by these DNNs, DD-CE can be realized with only rough priori knowledge about

the Doppler spread range. For the proposed DD-CE algorithm, we also analytically

derive the ML decoding algorithm for the STBC transmission. Our simulation results

show that the proposed DL-based DD-CE algorithm exhibits lower propagation error

compared to existing DD-CE algorithms while the they require perfect knowledge of

the Doppler rate.

In Chapter 3, we study the problem of link adaptation in MIMO communications.

To support reliable transmission of data at high rate in time-varying fading channels,

adaptive transmission is required, where transmitter and receiver adjust their

transmission and reception mode to the dynamics of the channel. The receiver, based on

its channel estimation and prediction, decides the optimal link adaptation and feeds this

back to the transmitter. In this work, we develop a DL-based link adaptation algorithm

for highly dynamic communication links, where adaptive transmission parameters are

decided for l > 1 forward time steps without a priori knowledge on channel statistics.

Compared to conventional solutions, our approach reduces the feedback requirements

from the receiver to the transmitter by a factor of l which significantly reduces the

complexity. This achievement comes at no additional cost on the data rate and/or bit

error rate.

In Chapter 4, we seek the application of data-driven methods and propose two

different approaches to find the optimal radiuses for sphere decoding algorithm. First,
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a DL-based sphere decoding algorithm is proposed, where the radius of the decoding

hypersphere is learned by a DNN. The performance achieved by the proposed algorithm

is very close to the optimal MLD over a wide range of SNRs, while the computational

complexity, compared to existing sphere decoding variants, is significantly reduced.

This improvement is attributed to DNN’s ability of intelligently learning the radius of

the hypersphere used in decoding. The expected complexity of the proposed DL-based

algorithm is analytically derived and compared with existing ones. It is shown that

the number of lattice points inside the decoding hypersphere drastically reduces in the

DL-based algorithm in both the average and worst-case senses. The effectiveness of the

proposed algorithm is shown through simulation for high-dimensional MIMO systems,

using high-order modulations.

In the second approach, a statistical-based sphere decoding algorithm with

increasing radius search called S-SD-IRS is proposed, where the radiuses of the decoding

hyperspheres are determined based on the statistical properties of the communication

channel and additive noise. We show that the PDFs of the q lowest squared distances

in the closest lattice point problem can be approximated by Gumbel distributions

with different parameters. Based on the obtained PDFs and by considering the

characteristics of the fading channels and additive noise, we choose the radiuses

for sphere decoding more efficiently than the conventional methods that ignore the

characteristics of system. The performance achieved by the proposed algorithm is

very close to the optimal MLD over a wide range of SNRs, while the computational

complexity, compared to existing sphere decoding variants, is significantly reduced. It

is shown that the average number of lattice points inside the decoding hyperspheres

drastically reduces in the proposed S-SD-IRS algorithm.

In Chapter 5, we investigate the problem of activity identification in massive

IoT systems. Recently, grant-free transmission paradigm has been introduced for

massive IoT networks to save both time and bandwidth and transmit the message

with low latency. In order to accurately decode the message of each device at the

BS, first, the active devices at each transmission frame must be identified. In this

work, first we investigate the problem of activity detection as a threshold comparing
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problem. We show the convexity of the activity detection method through analyzing

its probability of error which makes it possible to find the optimal threshold for

minimizing the activity detection error. Consequently, to achieve an optimum solution,

we propose a DL-based method called CNN-AD. To be practical, we consider unknown

and time-varying activity rate for the IoT devices. Our simulations verify that our

proposed CNN-AD method can achieve higher performance compared to the existing

non-Bayesian greedy-based methods. It is noteworthy that existing methods need to

know the activity rate of the IoT devices, while our method works for unknown and

even time-varying activity rates.

6.2 Future Work

6.2.1 RL-Based End-to-End Model Optimization

The ultimate goal of data-driven approaches is to provide a fully automated system

that can self-organize its parameters. To achieve this goal there have been some

efforts like the works in [109] and [110]. However, they still need too much work

in terms of generalization. The reinforcement learning (RL) models can be used to

optimize the model parameters based on the feedback from users. One general RL-based

framework that can model any type of communication model can be used to optimize

the underlying parameters based on both the received feedback from the users and also

the changing dynamics of the communication environment.

6.2.2 DL-Based Hybrid Beamforming for Massive MIMO OFDM

Massive MIMO systems with orthogonal frequency division multiplexing (OFDM) and

mmWave band (30-300 GHz) is the common transmission paradigm for 5G wireless

communication systems. In this thesis we considered traditional sub-6 GHz band (< 6

GHz) and the problem of inter-symbol interference (ISI) was not investigated. There

are some challenges in the design of such systems like the beamforming method, the

mitigation of inter carrier interference due to the large frequency band and the Doppler

spread which shifts the sub-carriers, and the synchronization between sub-carriers.
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Among these challenges, beamforming can highly impact the user quality of service

thought changing the data rate. In order to address the challenges of beamforming

in massive MIMO, hybrid beamforming has been introduced by combining digital and

analog beamformer. However, choosing the best way to group the links and their

phases are still too complicated and the lack of an accurate mathematical models make

data-driven methods such as DL a good alternative solution that can be explored

more [111–114].

6.2.3 Channel Estimation for Intelligent Reflecting Surfaces

A new way to achieve high spectrum and energy efficiency in future wireless networks

is intelligent reflecting surface (IRS). It can leverage from massive low-cost passive

elements that are able to reflect the signals with adjustable phase shifts. Although

these systems have a huge impact on the overall spectrum efficiency and the achieved

data rate, they require a costly channel estimation and phase optimization. The phase

optimization to improve the network sum rate requires a prior CSI from all the available

links of IRS elements. However, the addition of IRS elements makes the channel

estimation a costly task as many channels between the users and the IRS elements,

and also between the IRS elements and BS must be estimated in addition to the direct

channels between the users and BS. This is feasible by sending too many training

symbols which consume valuable bandwidth [115–120].

Data-driven solutions are one of the candidates to reduce the estimation cost

by jointly performing channel estimation and phase optimization. The data-driven

methods such as DL can benefit from the spatial correlation between the channels to

reduce the length of required training overhead.
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