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Abstract 

 

Lipidomics, a subfield of metabolomics, offers comprehensive insights into the lipid 

composition of biological systems. Lipids, comprising a broad class of biological molecules, are 

essential to several biological functions. They play critical roles in cell membrane formation, 

serving as signaling molecules and storing energy. Studying the lipidome can give insights into 

cellular processes and metabolic pathways. Several diseases affect lipid synthesis and metabolism, 

making lipidomics a valuable tool in health research. Understanding lipid changes caused by 

diseases can aid in biomarker research for early detection and disease progression. However, 

despite its potential, lipidomics requires more reliable and sensitive methods to enhance the 

profiling of biological samples. 

Biological samples are susceptible to changes in their composition due to a broad range of 

factors, impacting lipid composition and adding uncertainty to quantitative analyses. To ensure a 

robust LC-MS workflow, it is crucial to maintain uniform sample concentrations, guaranteeing 

consistent instrument response. However, a standard method for lipid quantification has not been 

established in lipidomics. Often, metabolomics or proteomics techniques are used instead. Given 

the diverse characteristics of lipid samples, a specific method for lipid normalization is essential. 

The first part of this work focuses on developing a reliable Sulfo-Phospho-Vanillin (SPV) assay 

for normalizing samples in LC-MS lipidomics. This colorimetric method, optimized for better 

limits of detection and quantification, ensures accurate lipid measurements by reducing variability. 

Furthermore, this study also evaluates lipid profiles in human saliva, investigating the effects of 

different normalization methods on lipid annotations.  
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The second part of this work focused on developing a two-dimensional liquid 

chromatography-mass spectrometry (2DLC-MS) method. By optimizing the HILIC method and its 

integration with RPLC-MS, a robust 2DLC-MS framework was developed to overcome common 

analytical challenges in lipidomics, such as ion suppression and co-elution. This method showed 

improvements in peak resolution and reduction of ion suppression through a fractionation 

approach. Comparative analyses using different data processing software revealed varying levels 

of annotation accuracy, highlighting the importance of software selection in lipidomics studies. 

Moreover, Chapter V describes the development and optimization of a 1.0 mm inner diameter LC-

MS method using Orbitrap for lipidomic profiling. The optimized method was validated using 

biological samples, demonstrating improved lipid coverage and peak resolution. Lastly, Chapter 

VI applies the methods developed in Chapters IV and V to investigate how cisplatin and rapamycin, 

two cancer drugs, alter lipid profiles in non-small cell lung cancer (NSCLC) cells. This chapter 

focuses on understanding the metabolic disruptions caused by these chemotherapeutic agents, 

providing a comprehensive lipidomic profile of A549 cells under different treatment conditions. 

The results reveal significant lipid composition and metabolism changes, highlighting the distinct 

and combined effects of cisplatin and rapamycin. 

This work shows that more sensitive methods can improve lipid profiling and offer a 

comprehensive understanding of metabolic changes caused by diseases and treatments. The results 

described herein show the potential of lipidomics for biomarker discovery. 
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Chapter I: Introduction 

 

1.1. Background on Lipidomics and Applications in Health Research 

Lipidomics is a subfield of metabolomics focused on studying lipids in biological systems. 

It involves identifying and quantifying lipid molecules and their interactions with other lipids, 

proteins, and metabolites. It provides insights into the diverse roles these molecules play in 

biological systems, such as cell membranes, signaling pathways, and energy storage systems. 

Lipids are essential to cell structure, forming the lipid bilayer of cell membranes, which regulates 

the entry and exit of substances1,2. Additionally, lipids act as signaling molecules, mediating 

processes such as inflammation, cell growth, and cell death1–3. Lipid metabolism is crucial for 

energy storage and production, with fatty acids being a primary energy source during fasting or 

intense exercise. Lipids also form lipid rafts, microdomains in cell membranes that play a crucial 

role in signal transduction and protein sorting1,4. 

By evaluating how the lipidome changes, research can aid in discovering disease 

mechanisms for different conditions, such as cardiovascular diseases, diabetes, neurodegenerative 

disorders, and cancer3,5–8. Recent developments, such as Ion Mobility Mass Spectrometry (IMS), 

have enabled the precise identification and quantification of a wide range of lipid species. 

Additionally, advances in bioinformatics aid the analysis of complex lipidomics data, allowing 

researchers to identify lipid biomarkers associated with various diseases and to elucidate the 

underlying mechanisms of lipid metabolism2,9–12. 
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High throughput lipidomics profiling has demonstrated specific phospholipid and 

sphingolipid alterations in metabolic disorders such as diabetes and obesity. These lipid changes 

can serve as early indicators of disease and progression, offering potential targets for therapeutic 

intervention2,6,13,14. In cancer research, lipid alterations were associated with cancer development 

and metastasis. Specific lipid species, such as ceramides and sphingolipids, regulate cell death and 

proliferation, highlighting their importance in cancer biology. Cancer cells often exhibit altered 

lipid profiles that can be used to distinguish between different cancer types and stages15,16. 

Additionally, lipidomics has made contributions to understanding neurodegenerative diseases. 

Lipid alterations in the brain and cerebrospinal fluid have been linked to conditions such as 

Alzheimer's disease and Parkinson's disease5,17–19. For example, changes in glycerophospholipid 

and sphingolipid metabolism have been associated with neuronal degeneration and cognitive 

decline, demonstrating how lipidomics can enhance modern medicine by identifying lipid-based 

biomarkers for disease diagnosis and treatment monitoring20. 

 

1.2. The Importance of Lipids 

Over the years, lipid molecules have been defined differently, reflecting the complexity and 

diversity of these biomolecules. Despite many attempts to describe this class of molecules, a 

consensus on a single, all-encompassing definition still needs to be reached. Different sources 

provide varying descriptions based on their focus and scope of study. The IUPAC Gold Book 

defines lipids as "a loosely defined term for substances of biological origin that are soluble in 

nonpolar solvents”21. Similarly, biochemistry books have described this class as "a class of 

biological molecules defined by low solubility in water and high solubility in non-polar solvents" 
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or "a broad group of naturally occurring molecules that include fats, waxes, sterols, fat-soluble 

vitamins, monoglycerides, diglycerides, phospholipids, and others. They are characterized by their 

insolubility in water and solubility in nonpolar solvents"22,23. Despite these varying definitions, 

they all emphasize the solubility of lipids in nonpolar solvents and their insolubility in water, a key 

characteristic of their roles in biological systems24,25. 

 

1.2.1. Lipid Structures, Subclasses, and Biological Functions 

LIPID MAPS is a comprehensive resource for lipid research supported by an association 

of international researchers. It aims to provide a structured classification system and extensive data 

on lipid molecules. LIPID MAPS categorizes lipids into eight subclasses based on their chemical 

structure and biological functions. These classes include fatty acyls (FA), glycerolipids (GL), 

glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), 

saccharolipids (SL), and polyketides (PK)26,27. Structural examples for each of these subclasses can 

be found in Figure 1.1.  
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Figure 1.1. General Structures for each lipid subclass 

 

1.2.2. Fatty acyls (FA) and Conjugates 

Fatty acyls are fundamental building blocks of complex lipids, consisting of a hydrocarbon 

chain with a terminal carboxyl group. They are essential to various biological processes, including 

energy storage, cellular structure, and signaling pathways. They are categorized based on the 

presence or absence of double bonds and the number of carbon atoms in their structure28–30. Fatty 
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acyls typically have an even number of carbon atoms in mammalian samples because their 

biosynthetic pathway involves adding two-carbon units derived from acetyl-coenzyme A (CoA). 

Common even-chain fatty acids include palmitic acid (FA 16:0) and stearic acid (FA 18:0). Odd-

chain fatty acids, such as pentadecanoic acid (FA 15:0) and heptadecanoic acid (FA 17:0), are less 

common and often originate from dietary sources or microbial fermentation in the gut. However, 

they have been studied for potential health benefits, including anti-inflammatory properties29.  

Moreover, FA lipids are also classified based on the presence or absence of double bonds. 

Saturated Fatty Acids (SFAs) are lipids that contain no double bonds, such as palmitic acid (FA 

16:0) and stearic acid (FA 18:0). Saturated Fatty Acids are typically solid at room temperature and 

often found in animal fats and some plant oils. Monounsaturated Fatty Acids (MUFAs) contain 

only one double bond, such as oleic acid (FA 18:1), which is present in olive oil and is known for 

its beneficial effects on cardiovascular health, and palmitoleic acid (FA 16:1)30,31. Species with two 

or more double bonds are known as Polyunsaturated Fatty Acids (PUFAs). They can be further 

divided into omega-3 and omega-6 fatty acids based on the position of the first double bond from 

the methyl end. Examples of omega-3 FA include alpha-linolenic acid (FA 18:3) and 

eicosapentaenoic acid (EPA, FA 20:5), which are known for their anti-inflammatory properties and 

cardiovascular benefits32. Omega-6 fatty acids, such as linoleic acid (FA 18:2) and arachidonic acid 

(FA 20:4), play crucial roles in cell signaling and inflammation32–35. Figure 1.2 shows structural 

examples of SFAs, MUFAs, and PUFAs. 

According to the LIPID MAPS database, Fatty acyls and conjugates can be further 

subdivided into 14 categories based on their structural characteristics: Fatty Acids (FA), Wax 

Esters (WE), Wax Diesters (WD), FA estolides (FAHFA), Short fatty ester (SFE), Fatty aldehydes 
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(FAL), Fatty alcohols (FOH), Acyl carnitines (CAR), Acyl CoAs (CoA), N-acyl amines (NA), N-

acyl ethanolamines (NAE), N-acyl taurines (NAT), Eicosanoids, and Fatty acyl glycosides27,36,37.  

 

Figure 1.2. Structural examples of fatty acyls a) Saturated Fatty Acid (FA 16:0); b) Monounsaturated Fatty Acid (FA 16:1); and c) 

Polyunsaturated Fatty Acid (FA 18:2). 

 

1.2.3. Glycerolipids (GL) 

Comprised of at least one fatty acid chain esterified to a glycerol backbone, GLs play a role 

in energy storage and membrane structure. They are composed of glycerol, a three-carbon alcohol, 

that is the backbone to which fatty acids are esterified and characterized by the number of fatty 

acids attached to the glycerol backbone2,38. LIPID MAPS categorizes GLs into nine subclasses 

based on their chemical structure, as follows: Monoacylglyceride (MG), Diacylglyceride (DG), 

Triacylglyceride (TG), Estolide (TG-EST), Sulfoquinovosylmonoacylglycerol (SQMG), 

Monogalactosylmonoacylglycerol (MGMG), Digalactosylmonoacylglycerol (DGMG), 

Sulfoquinovosyldiacylglycerol (SQDG), Monogalactosyldiacylglycerol (MGDG), 
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Digalactosyldiacylglycerol (DGDG), with MG, DG and TG being the most common GL (Figure 

1.3)26,36,37. 

 

Figure 1.3. Structural examples of glycerolipids a) Monoacylglycerol (MG 18:2), b) Diacylglycerol (DG 18:1/16:0), and c) 

Triacylglycerol (TG 16:0/12:0/18:0). 

 

Triacylglycerides are the most abundant glycerolipids. They consist of three fatty acid 

chains esterified to a glycerol molecule. These molecules are highly hydrophobic and stored as 

lipid droplets within adipocytes, the cells that make up adipose tissue. Triacylglycerides are one of 

the primary sources of energy storage in animals. In periods of energy excess, dietary fats are 

converted into TGs and stored in adipose tissue. During energy demand periods, TGs are 

hydrolyzed by lipases to release free fatty acids and glycerol into the bloodstream39,40. Besides their 

role in energy storage, TGs have other critical biological functions such as thermal insulation, 
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mechanical protection, and hormone production40,41. Excessive accumulation of TGs in adipose 

tissue leads to obesity, associated with an increased risk of metabolic disorders such as type 2 

diabetes, cardiovascular diseases, and certain cancers6,40,41.  

Similarly, DG contains two fatty acid chains esterified to a glycerol molecule, and they are 

essential intermediates in the biosynthesis and metabolism of TG and phospholipids. They also act 

as signaling molecules, activating protein kinase C (PKC), which regulates various cellular 

processes, including growth, differentiation, and cell death. Studies have associated changes in DG 

metabolism and signaling with cancer42,43. Lastly, MG comprises a single fatty acid chain esterified 

to the glycerol backbone and plays a role as an intermediate in lipid metabolism. During digestion, 

TG is broken down into MG and free fatty acids, which are then absorbed by the intestinal cells 

and re-esterified into TGs for transport. Some MG can also act as signaling molecules interacting 

with cannabinoid receptors to regulate appetite, pain sensation, and immune response44,45.  

 

1.2.4. Glycerophospholipids (GP) 

Glycerophospholipids are a major subclass of lipids consisting of the main components of 

cellular membranes, providing structural integrity and regulating membrane fluidity and 

permeability. They are comprised of a glycerol backbone, two fatty acid tails, and a phosphate 

group attached to a polar head group. According to LIPID MAPS, glycerophospholipids can be 

subdivided into four subcategories, namely Phospholipids (PL) and lysophospholipids (LPL), 

Phosphatidylinositol phosphates (PIP), N-modified phospholipids (N-mod PL) and Oxidized 

phospholipids (Ox PL)1,36–38. 
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Phospholipids are the main components of cell membranes and play a crucial role in 

maintaining membrane structure and fluidity. Common phospholipids include phosphatidylcholine 

(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), 

phosphatidylglycerol (PG), and cardiolipin (CL) (Figure 1.4). Each of these molecules has a 

distinct polar head group, which determines their specific functions in the membrane.  

 

Figure 1.4. Structural examples of glycerophospholipids a) Phosphatidylinositol (PI), b) Phosphatic acid (PA), c) 

Phosphatidylglycerol (PG), d) Phosphatidylserine (PS), e) Phosphatidylcholine (PC), f) Phosphatidylserine (PE), and g) Cardiolipin 

(CL). 
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Phosphatidylcholine is the most abundant phospholipid and the main cellular membrane 

component. Phosphatidylethanolamine, the second most abundant, contributes to membrane 

curvature and fusion. Phosphatidylserine plays a role in cell signaling and apoptosis. 

Phosphatidylinositol and its derivatives, like PIP2, are important for signal transduction pathways. 

Phosphatidylglycerol is a key component of lung surfactant and is essential for proper lung 

function. It is involved in cardiolipin biosynthesis, predominantly found in the inner mitochondrial 

membrane, and plays a critical role in mitochondrial function and apoptosis1,26,46. 

Glycerophospholipids are synthesized in the endoplasmic reticulum and Golgi apparatus, 

where phosphatidic acid works as an intermediate. These lipids are important for membrane 

structure, cell signaling, lipid metabolism, and mitochondrial function. Alterations in 

glycerophospholipid metabolism are linked to various health issues, including cardiovascular 

diseases, neurodegenerative disorders, lung diseases, and mitochondrial dysfunctions1,7,46,47. 

Lysophospholipids are derived from phospholipids by the removal of one fatty acid chain. 

This results in a single fatty acid tail, making them highly amphipathic and capable of acting as 

potent signaling molecules. Lysophospholipids, such as lysophosphatidylcholine (LPC), are 

involved in inflammatory responses, modulate immune cell functions, and influence membrane 

curvature and permeability48. Phosphatidylinositol phosphates (PIPs) are phosphorylated 

derivatives of phosphatidylinositol (PI) and play an important role in cellular signaling by acting 

as docking sites for proteins involved in various pathways. Some PIPs, such as PI4P, PIP2, and 

PIP3, are involved in processes like signal transduction, membrane trafficking, and cytoskeletal 

dynamics49. 
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N-modified phospholipids have been chemically modified by adding nitrogen-containing 

groups, altering their physical and chemical properties and affecting their function and interaction 

with other cellular components. They play roles in signaling and membrane dynamics, although 

specific examples and functions are less well characterized than other phospholipid subclasses50. 

Lastly, oxidized phospholipids (Ox PLs) undergo oxidative modifications, usually because of 

oxidative stress. These modifications can impact the structure and function of cellular membranes, 

leading to modified membrane properties and signaling pathways. Oxidized phospholipids are 

linked to various pathological processes, including inflammation, atherosclerosis, and cell death. 

They can serve as signaling molecules that modulate immune responses and other cellular 

processes51. 

 

1.2.5. Sphingolipids (SP) 

A diverse class of lipid molecules, sphingolipids play a role in cellular structure and 

signaling. They are essential components of cell membranes, particularly in the brain and nervous 

system, and are involved in many cellular processes. Sphingolipids consist of a sphingoid base, 

such as sphingosine, linked to a fatty acid via an amide bond, forming a ceramide, the central 

building block of more complex sphingolipids52. LIPID MAPS subdivides sphingolipids into three 

categories: Sphingoid bases (SPB), Ceramides (Cer), and Phosphoceramides and 

Glycosphingolipids, as shown in Figure 1.526,36,37. 

Ceramides are the simplest sphingolipids, and more complex sphingolipids are obtained 

from them. They are crucial in cell signaling, regulating apoptosis, cell growth, differentiation, and 

stress responses, besides being involved in the formation of lipid rafts52. Sphingomyelin (SM), a 
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phosphoceramide, is the most abundant sphingolipid in mammalian cell membranes, especially 

nerve cells. They consist of a ceramide backbone linked to a phosphocholine head group. 

Sphingomyelins are essential for maintaining membrane structure and function, and they play roles 

in signal transduction and cell recognition46. Glycosphingolipids are ceramides with one or more 

sugar molecules attached to them. They are further subdivided into cerebrosides, gangliosides, and 

globosides. Cerebrosides contain a single sugar moiety (glucose or galactose), while gangliosides 

have complex oligosaccharide chains with one or more sialic acids. Glycosphingolipids are 

involved in cell-cell communication, adhesion, and signal transduction and are abundant in the 

nervous system52,53. 

 

Figure 1.5. Structural examples of sphingolipids a) Sphingosine (SPB 16:1), b) Ceramide (Cer 16:1;O2/16:0), and c) Sphingomyelin 

(SM 16:1;O2/16:0).  

 

Some neurological disorders have been associated with changes in sphingolipids 

concentration. For example, Gaucher's disease is characterized by the accumulation of 
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sphingolipids in the organism due to problems in their catabolic enzymes54. Studies have also 

linked sphingolipid metabolism to cancer progression by affecting cell growth, apoptosis, and 

metastasis. Ceramide and Sphingosine-phosphates (S1P) have opposing roles in regulating cell 

fate, with ceramide promoting apoptosis and S1P promoting survival and proliferation55. 

 

1.2.6. Sterol Lipids (ST) 

Sterol lipids maintain cell membrane structure, modulate membrane fluidity, and serve as 

precursors for many biological molecules. Cholesterol is the most well-known sterol lipid and has 

several functions in the body. Sterol lipids are characterized by a common structure with a four-

ring core called the cyclopentanoperhydrophenanthrene ring system. Cholesterol, for example, 

consists of this sterol backbone with a hydroxyl group at the 3-position and a hydrocarbon tail. 

This amphipathic nature allows cholesterol to insert into cell membranes, interacting with 

phospholipids and sphingolipids1,56. Examples of ST are shown in Figure 1.6. 

Cholesterol is an important component of animal cell membranes, as it regulates membrane 

fluidity and permeability. This molecule interacts with the fatty acid tails of phospholipids, 

reducing membrane fluidity at high temperatures and preventing membrane solidification at low 

temperatures. This dual role helps maintain membrane integrity and function across a range of 

temperatures1,56. Additionally, cholesterol is a precursor for steroid hormones, including 

glucocorticoids, mineralocorticoids, and sex hormones (estrogens, androgens, and progesterone). 

These hormones are synthesized in the adrenal glands, ovaries, and testes and play critical roles in 

regulating metabolism, immune function, salt and water balance, and reproductive processes57. 

According to LIPID MAPS, sterol lipids can be classified into Free cholesterol (FC), Sterols (ST), 
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Cholesteryl esters (CE), Steryl esters (SE), Bile acids and derivatives (BA), Sterylglycosides (SG) 

and Acylsterylglycosides (ASG)27,37. 

 

 

Figure 1.6. Structural examples of sterol lipids a) Cholesterol (ST 27:1;O), b) Estradiol (ST 18:3;O2), c) Cholic acid (ST 24:1;O5), 

and d) Cholesteryl Ester(CE 12:0). 

 

In the liver, cholesterol is converted into bile acid, which is important for the digestion and 

absorption of dietary fats and fat-soluble vitamins. Bile acids act as detergents that emulsify fats, 

facilitating their breakdown and absorption58. Vitamin D, an important vitamin for maintaining 

calcium and phosphate homeostasis, promoting bone health, and supporting immune function, uses 

cholesterol for its synthesis in the body59. Studies have shown that high cholesterol levels increase 

the risk factors for cardiovascular diseases, such as coronary artery disease and stroke. Elevated 

levels of low-density lipoprotein (LDL) cholesterol contribute to the formation of atherosclerotic 

plaques, leading to vascular inflammation and blockage60–62.  

 

 holesteryl ester

 holesterol Estradiol  holic acid

a) b) c)

d)
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1.2.7. Prenol Lipids (PR) 

Prenol lipids are a less common subclass of lipids synthesized from five-carbon isoprene 

units (C5H8) linked together in various ways to form linear or cyclic structures. These lipids are 

important in different biological processes, such as electron transport, and as precursors for 

vitamins and hormones, such as vitamin A (retinol), vitamin E (tocopherol), and vitamin K 

(phylloquinone)24,63. Figure 1.7 shows structural examples of the prenol lipids. 

Because they are precursor molecules of vitamins, prenol lipids play an important role in 

cell protection from oxidative stress. Furthermore, deficiencies in vitamin K can lead to 

osteoporosis and bleeding disorders64,65. 

 

 

Figure 1.7. Structural examples of prenol lipids a) Vitamin A (Retinol, PR 20:5;O), b) Vitamin E (alpha-tocopherol, PR 29:3;O2), 

and c) Vitamin K2 (PR 41:10;O2). 

 

1.2.8. Saccharolipids (SL) 

Saccharolipids are a unique class of lipids characterized by the direct linkage of fatty acids 

to a sugar backbone. Although they play a significant role in bacterial physiology, these molecules 
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are often not included in lipidomics studies because of their high polarity and solubility in water. 

Saccharolipids can be further categorized into lipopolysaccharides and polyketides, each with 

distinct functions and applications1,23,38. 

Lipid A, a lipopolysaccharide, is essential for detecting and responding to Gram-negative 

bacterial infections. Excessive immune activation can lead to septic shock, which can be fatal. 

Moreover, polyketides are often used in antibiotics, which has led to the development of antibiotic 

resistance66,67. Some structural examples of SL are shown in Figure 1.8. 

 

 

Figure 1.8. Structural examples of Saccharolipids a) E. coli Lipid A, b) Cannabinol, and c) Trichostatin. 

 

1.3. Analytical Methods in Lipidomics 

Research in lipidomics has evolved significantly since its beginning, yet it faces several 

challenges in comprehensively understanding and characterizing the lipidome. These challenges 
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arise from various sources, such as the diversity and complexity of lipid species to technical issues 

related to lipid extraction, stability, and quantification38,68–70. 

 

1.3.1. Sample Preparation and Storage 

As described previously, lipid species are diverse molecules with different structures, 

biological functions, and physical chemical properties. Therefore, accurately detecting and 

quantifying these molecules can be challenging. Accurate and reproducible lipid extraction is an 

important step in lipidomics research. Although studies have shown some yield better results than 

others, no consensus on the most suitable method has been reached2,38,68,71. 

Lipid extraction protocols commonly use modified versions of the Bligh and Dyer or Folch 

method. However, some studies have also employed variations of the MTBE method. Both Bligh 

and Dyer and Folch's methods use a mixture of chloroform, methanol, and water to extract lipids, 

including phospholipids, glycolipids, and neutral lipids. Besides relying on chloroform, which is 

highly toxic, these methods suffer from the drawback that their organic layer is on the bottom, 

requiring a more experienced analyst72,73. On the other hand, the MTBE (methyl-tert-butyl ether) 

method uses a mixture of MTBE, methanol, and water, with lipids partitioning into the upper 

MTBE phase. This method offers a safer alternative that utilizes less toxic solvents, providing 

efficient extraction with simpler phase separation, though it may not extract very polar lipids as 

effectively74.  

Moreover, in lipidomics, accurate quantification is vital for accurately profiling the 

lipidome, understanding the biological processes, and identifying disease biomarkers. Variability 

in sample concentration can lead to inconsistencies and inaccuracies in the data. Hence, sample 
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normalization is important for obtaining accurate and comparable lipidomics data. This process 

involves adjusting the concentration of lipid samples to account for variations in sample size, 

extraction efficiency, and other factors that can affect lipid measurements. Normalization strategies 

such as total lipid normalization, internal standards, protein or DNA content, and cell number or 

tissue weight are commonly used. Furthermore, lipids are susceptible to oxidation and degradation 

during extraction, storage, and analysis. Therefore, strict quality controls are necessary to ensure 

proper sample handling and reproducible results, such as maintaining a stable and relatively low 

temperature. Lipid extracts can be stored at -20 °C, whereas samples should be stored at -80 °C for 

long-term storage. Furthermore, repeated freeze-thaw cycles can also cause lipid degradation 

through the formation of ice crystals and increased exposure to oxygen. To minimize these effects, 

lipid extracts should be subdivided into small aliquots before freezing, allowing only the amount 

needed for analysis to be thawed at a time and minimizing the number of freeze-thaw cycles for 

each aliquot38,75–77.  

 

1.3.2. Separation Methods 

Separation techniques reduce the complexity of lipid mixtures, allowing a more accurate 

identification and quantification. The most common separation techniques used in lipidomics 

include liquid chromatography (LC), gas chromatography (GC), supercritical fluid 

chromatography (SFC), and thin-layer chromatography (TLC). 
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1.3.2.1.Liquid Chromatography (LC) 

Liquid chromatography is one of the most widely used techniques in lipidomics due to its 

versatility and high resolution. Ultra-high-performance Liquid Chromatography (UHPLC) is an 

advanced form of LC that operates at higher pressures, providing faster and higher-resolution 

separations. This technique helps analyze lipid classes with subtle structural differences. 

Depending on the stationary and mobile phases, UHPLC can be characterized as Normal Phase 

(NP), Reversed Phase (RP), or Hydrophilic Interaction Liquid Chromatography (HILIC)78–80. 

In NP chromatography, the stationary phase, commonly silica, is polar, and the mobile 

phases, such as hexane or chloroform, are non-polar. NP chromatography can separate lipids based 

on their polarity in lipidomics, particularly neutral lipids such as TG, ST, and FA. Its drawbacks 

are solvent compatibility, safety concerns, limited applicability for polar lipids, reproducibility 

issues, and integration challenges with detection methods. Because of these limitations, the use of 

NP chromatography has been decreasing over the years78. 

Similarly to NP, RP chromatography is a polarity-based separation. However, this method 

employs a non-polar stationary phase, such as C18 or C8 columns, and a polar mobile phase, 

usually a mixture of water and organic solvents like methanol or acetonitrile. It is the most applied 

LC method in lipidomics research to separate lipids based on their hydrophobicity. While RP 

chromatography is highly effective for separating hydrophobic lipids and is widely used in 

lipidomics, its major drawback is its limited retention of hydrophilic lipids. Other issues, such as 

mobile phase compatibility and longer run times, should be evaluated before using RP9,75,78,81.  

Lastly, HILIC uses a polar stationary phase and a mobile phase with a high concentration 

of organic solvents, such as acetonitrile or methanol. Hudrophilic Interaction Liquid 
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Chromatography is an excellent technique for separating polar lipids, such as phospholipids and 

lysophospholipids, often poorly resolved by RP. However, its columns often require longer 

equilibration times, decreasing throughput, and its polar interactions can lead to peak tailing. 

Moreover, lipid subclasses with hydrophobic headgroups, such as TG, DG, and ST, are not well 

retained, making comprehensive lipidomics work challenging78,79,82. 

Recently, studies have proposed combining orthogonal separation methods to enhance 

separation in complex mixtures. Unlike conventional one-dimensional liquid chromatography 

(1DLC), which often struggles with the complexity and diversity of lipid species, two-dimensional 

liquid chromatography (2DLC) provides a higher resolving power by combining two distinct 

separation mechanisms, such as RPLC and HILIC. This approach allows for the effective 

separation of non-polar and polar lipids, thereby ensuring comprehensive lipid profiling. Two-

dimensional liquid chromatography studies have shown a significantly higher number of lipid 

annotations compared to 1DLC, with peak capacities reaching 1784 versus 448, respectively. This 

increased peak capacity is crucial for detecting a broader range of lipid species. However, 2DLC 

also presents challenges, including higher complexity and cost, sophisticated instrumentation 

requirements, advanced data processing needs, and time-consuming method development78,83,84. 

 

1.3.2.2.Gas Chromatography (GC) 

In gas chromatography, analytes are vaporized and carried through a column with an inert 

gas (e.g., helium). They are separated based on their volatility and interactions with the stationary 

phase. Although some studies have used GC, it has not been widely used in lipidomics research 

because analytes need to be derivatized before analysis, making it time-consuming84,85. However, 
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recent studies have shown GC can be an effective technique for lipidomic profiling, including the 

analysis of FA and ST lipids84,86,87.  

Similarly to 2DLC, two-dimensional gas chromatography (2DGC) can enhance the 

separation and identification of complex lipid mixtures by combining two different GC separations, 

improving resolution and peak capacity. Some studies have used comprehensive 2DGC to analyze 

complex lipid mixtures, revealing lipid species that cannot be detected using traditional one-

dimensional gas chromatography (1DGC)88,89. However, GC is unsuitable for non-volatile or 

thermally labile lipids, such as large phospholipids and glycolipids, requiring complementary 

techniques like liquid chromatography-mass spectrometry (LC-MS) for comprehensive lipid 

profiling84,87,88. 

 

1.3.2.3.Supercritical Fluid Chromatography (SFC) 

In supercritical fluid chromatography, a supercritical fluid, commonly carbon dioxide 

(CO2), is used as a mobile phase.  By combining the properties of gases and liquids, SFC allows 

efficient and rapid separations with minimal environmental impact. Supercritical fluid 

chromatography provides high efficiency in separating lipid classes due to the low viscosity and 

high diffusivity of supercritical CO2, yielding faster separations than traditional liquid 

chromatography (LC) with reduced column backpressure. It is particularly effective for non-polar 

lipids, including TGs, FA, and ST. Recent studies highlighted using SFC in lipidomics, such as the 

comprehensive profiling of lipids in biological samples and the analysis of lipid composition in 

olive oil90–93.  
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Moreover, SFC is environmentally friendly, as supercritical CO2 is nontoxic, 

nonflammable, and readily available, reducing the need for organic solvents and the risks 

associated with their use. However, challenges such as limited availability of suitable columns, 

time-consuming method development, and higher initial instrumentation costs exist84,90,92. 

 

1.3.2.4.Thin-Layer Chromatography (TLC) 

Thin-layer chromatography is a cost-effective technique that can be used for preliminary 

lipid separation and qualitative analysis. Thin-Layer Chromatography can be useful for separating 

a wide range of lipid classes, including GP, GL, ST, and FA. It allows the visualization of lipid 

classes and subclasses based on their migration patterns and staining characteristics, and it is often 

used as a preparatory step for more advanced analytical techniques like LC or GC84,94. 

The most important limitations of TLC include lower separation resolution when compared 

to GC or LC, limited quantitative capabilities, and reproducibility issues because of variations in 

plate coating thickness, solvent composition, and environmental conditions. Studies have shown 

TL ’s applicability in lipidomics, such as in combining a TL -Blot system with matrix-assisted 

laser desorption/ionization-quadrupole ion trap-time of flight (MALDI-QIT-TOF) mass 

spectrometry (MS) for the analysis of human brain gangliosides. That study revealed changes in 

the composition of gangliosides in the hippocampus gray matter of patients with Alzheimer's 

disease compared to control patients84,94,95. 
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1.3.3. Lipid Analysis 

Different analytical techniques can be used in lipidomics studies, depending on the study’s 

objectives, throughput, and availability. Each method will provide detailed information about lipid 

composition and structure, giving insights into lipid metabolism and its role in health and disease. 

The most common analytical techniques used in lipidomics include Nuclear Magnetic Resonance 

(NMR) spectroscopy and Mass Spectrometry (MS)68,75,84. 

 

1.3.3.1.Nuclear Magnetic Resonance (NMR) 

Nuclear Magnetic Resonance spectroscopy is used for structural elucidation and 

quantification of lipids. It provides comprehensive information, enabling detailed analysis of lipid-

lipid and lipid-protein interactions and complex lipid mixtures' composition and structural 

characteristics. NMR can provide detailed structural information about lipids, allowing for the 

identification of functional groups, double bonds, and the position of fatty acyl chains in GL, GP, 

and SP84,96,97. 

High-resolution NMR can differentiate between isomers and conformers of lipid molecules, 

which is important to understand their biological functions. Studies have shown the applicability 

of NMR for metabolomics and lipidomics. Besides structural elucidation and quantification, NMR 

can study lipid-lipid and lipid-protein interactions, giving insights into the dynamics and 

organization of lipids in biological membranes. Additionally, NMR allows for the study of lipid 

dynamics, including lipid molecule mobility and exchange rates75,98,99. 
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1.3.3.2.Mass Spectrometry (MS) 

Mass spectrometry is the analytical technique most commonly employed in lipidomics 

studies because of its high sensitivity, specificity, and ability to provide detailed structural 

information. Throughout the years, various MS techniques and configurations have been used in 

lipid analysis, each offering unique advantages for lipid identification, quantification, and 

structural elucidation. Different approaches have been used for lipidomic analysis.  This section 

will cover some of the most used MS approaches in lipidomics2,71,75,84. 

Shotgun lipidomics is a direct infusion MS technique in which lipid extracts are introduced 

into the mass spectrometer without prior chromatographic separation. Studies have shown that 

shotgun analysis can yield comprehensive coverage of lipid species and high throughput. However, 

because it is not associated with a separation technique, it is prone to ion suppression100. 

Ionization techniques are crucial in lipidomics for generating ions from lipid molecules, 

enabling their analysis by a mass spectrometer. The most common ionization methods used in 

lipidomics include Electrospray Ionization (ESI) and Matrix-Assisted Laser Desorption Ionization 

(MALDI), each offering distinct advantages, and both have been extensively applied in lipidomics 

research75,84,101. Electrospray Ionization is a soft ionization technique that produces ions from large, 

polar molecules. It has often been used in lipidomics studies and is usually coupled with high-

resolution mass spectrometers for lipid profiling. ESI is known for its gentle ionization process, 

which minimizes fragmentation and preserves the integrity of lipid species. It is compatible with 

several mass spectrometers, and its ability to provide detailed structural and quantitative 

information makes it essential in lipidomics research. Several studies have demonstrated high-

sensitivity lipidomics methods using ESI. However, limitations include matrix effects, variability 
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in ionization efficiency for different lipid species, formation of multiple adducts, in-source 

fragmentation, and a limited ionization range for highly non-polar lipids68,71,84,102–104. 

Alternatively, MALDI is another soft ionization technique used in lipidomics. Matrix-

Assisted Laser Desorption Ionization is used for imaging mass spectrometry (MSI), allowing for 

the spatial resolution of lipid species within biological tissues, making MALDI a powerful tool for 

studying the distribution and localization of lipids in various samples, including tissues and cell 

cultures. A recent lipidomics study used MALDI-MSI to investigate lipid metabolism alterations 

in A549 lung tumor spheroids treated with hydroxychloroquine, showing significant changes in the 

spatial arrangement of lipids within the proliferative and necrotic regions of the spheroids. 

Although MALDI has shown to be a powerful technique for lipidomics research, ionization 

efficiency and matrix effects must be considered to maximize its effectiveness84,101,105. 

Mass analyzers are crucial components of mass spectrometry, determining the mass-to-

charge ratio of ions. Lipidomics' most used mass analyzers include Quadrupole Time-of-Flight 

(QToF) and Orbitrap102,106,107. The QToF mass spectrometer combines the quadrupole's mass 

filtering capabilities with the high resolution and mass accuracy of time-of-flight (ToF) analyzers. 

QToF-MS is a robust and cost-effective instrument with resolutions ranging from 30,000 to 60,000. 

Due to its sensitivity and fast data acquisition rates, it has often been used for targeted and 

untargeted lipidomics and metabolomic studies. However, frequent calibration is required to 

maintain mass accuracy, and it has a lower mass resolution than instruments like Orbitrap-MS, 

which can limit its ability to distinguish between closely related ion peaks103,106. 

On the other hand, the Orbitrap mass analyzer can offer ultra-high-resolution and accurate 

mass measurements. Orbitrap instruments provide superior sensitivity and resolution, which is 
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essential for accurately profiling lipids, especially low-abundance species. The high mass accuracy 

of Orbitrap instruments improves the reliability of lipid identification, reducing the chances of 

misidentification and allowing for the differentiation of isomeric and isobaric species. However, 

Orbitrap analyzers are generally more expensive than other mass spectrometers regarding initial 

purchase and maintenance costs. Additionally, while Orbitrap provides high-resolution and 

accurate mass measurements, it may not offer the same throughput as other mass spectrometers, 

such as QToF instruments106,107. 

Quadrupole Time-of-Flight and Orbitrap mass analyzers can perform tandem mass 

spectrometry (MS/MS), a technique for detailed structural elucidation that involves fragmenting 

lipid molecules and analyzing the resulting product ions107,108. Tandem mass spectrometry 

information is vital for lipid identification and structural elucidation. By fragmenting the lipid 

molecules, MS/MS can provide information about fatty acyl chain compositions and headgroups, 

aiding in understanding their biological roles and interactions. Moreover, MS/MS allows the 

differentiation of isomeric and isobaric species, which is important in lipidomics since many lipid 

species have similar masses77,103,109.  Lipidomics studies often use MS/MS for lipid annotation and 

structural elucidation. However, it is essential to note that this technique does not offer information 

about double bonds and fatty acyl positions, limiting its accuracy103,110. Furthermore, both 

instruments allow for data-dependent acquisition (DDA, also known as auto-MS.MS) mode, which 

is critical for acquiring detailed structural information. 

In auto MS/MS mode, a full-scan (MS1) spectrum is first acquired to detect all ions entering 

the mass spectrometer within the selected m/z range. The system automatically selects one m/z ion 

isolated within the quadrupole for the following scan. This isolated ion is then fragmented under 
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collision-induced fragmentation to obtain structural information for annotations (MS/MS or MS2 

spectrum). Multiple MS2 spectra may be acquired for different precursor ions before the next full-

scan (MS1) acquisition. The cycle time, or number of scans per cycle, includes one full scan (MS1) 

and a variable number of MS2 scans, depending on the acquisition rates set for the method. This 

value ensures an appropriate number of MS1 scans to define peak shapes (at least 5 points/peak). 

However, only a fraction of the detected ions are fragmented to generate MS2 spectra - usually, 

the peaks with the highest intensity111,112. 

Ion Mobility Spectrometry (IMS) adds another dimension of separation to mass 

spectrometry. It separates ions based on their mobility through a gas under the influence of an 

electric field. Lipidomics studies have used this technique to improve lipid separation because it 

can separate isomeric and isobaric lipid species, which can be challenging to distinguish using mass 

spectrometry alone. Moreover, IMS effectively improves the identification and characterization of 

lipids in biological samples113,114. An advanced form of IMS, Trapped Ion Mobility Spectrometry 

(TIMS), offers even greater separation capabilities. It provides unmatched sensitivity and 

resolution when combined with Time-of-Flight mass spectrometry. Trapped Ion Mobility 

Spectrometry Time-of-Flight Mass Spectrometry (TIMS-ToF) traps ions in an electric field and 

separates them based on mobility, followed by high-resolution mass analysis. A recent study used 

TIMS-ToF to improve the coverage and accuracy of untargeted lipidomics115–117. 

 

1.3.4. Data Processing and Analysis 

A strict data processing routine must be established to obtain accurate lipidomics results. 

Lipidomics requires meticulous data processing to ensure that the data reflects biological variations 
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rather than technical artifacts. This is vital for understanding lipid functions, discovering 

biomarkers, and developing therapeutic strategies68,75,106,108,118. 

The acquired data needs to be aligned using tailored data processing software capable of 

handling complex datasets. These software tools usually have noise reduction, peak detection, 

alignment, mass recalibration, peak picking, and deconvolution functions. Over the years, different 

software has been used for lipidomics data processing, such as MetaboScape and MSDial. 

However, no consensus has been reached on the best software to use11,119,120. Because of the lack 

of consensus and to tailor it to their specific needs, some research groups have developed in-house 

software tools for lipidomics data processing14,120. 

 

1.3.4.1.Data Alignment and Normalization 

Post-acquisition data normalization and scaling are used to correct systematic biases and 

variability so that the data can reflect biological changes. Technical variations, such as differences 

in sample preparation, instrument performance, and environmental conditions, can introduce 

significant errors in lipidomics data if not adequately addressed38,71,75,118. 

Normalization methods like Total Ion Current (TIC) and internal standard normalization 

are often used in lipidomics work. TIC normalization adjusts for variations in the total signal 

intensity across different runs by scaling each signal proportionally to the total signal intensity, 

helping to correct for differences in sample injection volume and ionization efficiency9,75,118,121. 

Internal standard (IS) normalization involves adding a known quantity of a compound or mixture 

of compounds not naturally present in the samples. The IS signal is then used to normalize the 
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signal for the naturally occurring lipid, correcting variabilities in sample preparation, instrument 

performance, and data acquisition75,103,108.  

Moreover, quality control (QC) procedures are used in these workflows to monitor 

instrument performance and data consistency, which helps identify and correct analytical drifts, 

assuring the quality of the data. QC samples are aliquots of a pooled sample representative of the 

entire study and are analyzed periodically throughout the batch run75,103,108. 

 

1.3.4.2.Lipid Identification and Annotation 

Lipidomics data processing workflows often include lipid identification and annotation 

steps using spectral libraries and databases like the Human Metabolome Database (HMDB) and 

LipidBlast. Advanced algorithms match experimental spectra to database entries, considering mass 

accuracy, isotope distribution, fragmentation patterns, and retention times. However, accurate lipid 

identification and annotation remains a challenge in lipidomics because of the complexity and 

diversity of lipid species, potentially leading to ambiguous matches. The structural similarity 

among different lipid molecules often results in overlapping mass spectra, making it difficult to 

distinguish between them. Additionally, variations in experimental conditions, such as differences 

in instrumentation and sample preparation methods, can affect the reproducibility and accuracy of 

the results108,118,122. 

Most lipid libraries are in silico (i.e., predicted by computers based on the expected 

fragmentation patterns of lipids). However, experimental spectra can vary with instrumental 

design, performance, settings, and convoluted spectra resulting from co-isolation of precursors 

with similar m/z values. Although this is a common and widely accepted practice within lipidomics, 
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annotations may suffer from low scores due to a mismatch between computer-predicted datasets 

and the obtained experimental spectra120,123. Furthermore, lipid annotation and lipid identification 

are two distinct processes in lipidomics. Lipid annotation involves assigning possible structures to 

observed features based on existing knowledge and in silico databases, often without definitive 

experimental confirmation. In contrast, lipid identification requires direct experimental evidence, 

such as experimental MS/MS spectra of lipid standards, to confirm the structure of a lipid molecule. 

This distinction is crucial for accurate lipidomic analysis and data interpretation123. 

For MS/MS matching, the precursor ions are identified with a strict m/z tolerance of 5.0 

mDa. This high precision ensures that the ions selected for fragmentation are accurately matched 

to known lipid molecules. Tier 1 annotations require a high confidence level, with an MS/MS score 

threshold of 500, indicating a strong similarity between experimental and reference spectra. Tier 2 

annotations, while still reliable, have a lower MS/MS score range of 100 to 500, reflecting a less 

confident match but still within acceptable limits. Features not annotated by MS/MS match proceed 

for putative annotation by mass match using the LIPID MAPS platform. This step involves 

searching for mass matches within a 5.0 mDa error margin14,75,103,108,118,122.  

Given the complexity of lipid molecules, lipidomics studies often use filtering systems to 

refine the annotations.  For MS/MS annotations, these filters may include a retention time window 

based on IS and the possibility of the subclass ionization with that adduct. Furthermore, since the 

same feature may be annotated as multiple species because of isomers and isobars, tier-based 

filtering systems can be used to refine mass match annotations. Previous studies have used retention 

time filtering to ensure that the annotated species are within the expected retention time range for 

their lipid class; adduct detection to confirm the ionization pattern matches the expected adducts 
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for the lipid class; and annotation ranking, which ranks annotations based on the method 

characteristics and the biological sample context. This step considers the likelihood of each 

annotation, considering the lipid’s chemical properties and its typical occurrence in the specific 

biological sample being analyzed. This tiered approach enhances the accuracy and reliability of 

lipid identification by systematically narrowing down potential annotations75,103,110,118,122. 

Nomenclature in lipidomics is another essential aspect of lipid identification and 

annotation. The systematic naming of lipids follows specific conventions that describe the structure 

and class of the lipid molecule. This nomenclature includes details such as the number of carbon 

atoms and double bonds in the fatty acyl chains, the type of head group, and any modifications to 

the lipid molecule. Consistent and accurate nomenclature is vital for clearly communicating 

lipidomics data and comparing results across different studies. The nomenclature employed herein 

is based on the guidelines of the International Lipid Classification and Nomenclature Committee, 

the Lipidomics Standards Initiative, and LIPID MAPS27,37,75,118. 

 

1.3.4.3.Statistical Analysis 

Statistical analyses allow lipidomics studies to interpret complex data sets, identify 

significant patterns, and draw biological conclusions. However, searching for minor changes 

within thousands of random molecules can be challenging, especially given the complexity of 

lipidomics datasets. Due to a lack of reliable statistics and validation, the reproducibility and 

validity of omics data have been questioned. Understanding statistical models to avoid false 

performance-enhancing practices is, therefore, essential for high-quality results118,124,125. 
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Scaling methods such as log transformation, Pareto scaling, and auto-scaling are crucial for 

stabilizing variance across different lipid species and improving data interpretation in multivariate 

statistical analyses. However, they should be carefully selected because each one will impact the 

dataset differently. Log transformation reduces data skewness and stabilizes variance, making the 

data more suitable for statistical analysis, especially when dealing with data spanning several orders 

of magnitude124,126. Pareto scaling balances the importance of large and small features in the data, 

ensuring that variables with higher variance do not dominate the analysis. By reducing the 

influence of highly variable features, Pareto scaling helps to highlight subtle but biologically 

significant changes across samples. Auto-scaling, known as unit variance scaling, centers each 

variable by subtracting the mean and dividing by the standard deviation. This approach gives 

variables equal weights, allowing for fair comparison across features. Auto-scaling is particularly 

useful when the data set contains variables with vastly different scales, ensuring that all features 

contribute equally to the analysis124,127. 

Multivariate statistical techniques such as Principal Component Analysis (PCA) and Partial 

Least Squares Discriminant Analysis (PLS-DA) are commonly used in lipidomics to explore 

complex datasets. PCA is an unsupervised method that reduces the dimensionality of the data while 

preserving as much variability as possible. It identifies patterns and clusters within the data, helping 

to visualize the relationships between different samples and lipid species. PCA simplifies the 

complexity of high-dimensional data while retaining its essential characteristics by transforming 

the data into a new coordinate system (i.e., principal components), where the most significant 

variances lie on the first few principal components. This method is particularly effective in 

highlighting the underlying structure of the data, revealing correlations and trends that are not 

immediately apparent in the raw data2,103,128. Furthermore, PCA also provides a way to quantify 
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the variance explained by each principal component. By reducing the number of dimensions, PCA 

makes the data more manageable and facilitates analyses, such as clustering and classification. In 

this work, PCA score plots were mainly used to evaluate the reproducibility of the QC injections108. 

PLS-DA is a powerful tool for analyzing high-dimensional lipidomics data. Unlike PCA, 

which is unsupervised, PLS-DA incorporates response variable information during model building, 

increasing its ability to distinguish between groups. This statistical model can identify the variables 

(lipid species) that most contribute to the group separation, making it a powerful tool in biomarker 

discovery129. By maximizing the covariance between the lipidomics data and the class labels, PLS-

DA provides a robust model that can classify samples accurately and highlight significant 

biomarkers. However, model validation is essential in PLS-DA analysis to ensure a robust and 

reliable result. R², or correlation coefficient, indicates how well the model explains the variability 

of the data. The predictive ability (Q²) measures how well the model predicts the separation of the 

groups. There are no set values for R² and Q² to suggest a well-fitting and predictive model. 

However, significant differences between them indicate the model may be overfitted, especially in 

high-dimensional datasets with relatively few samples. Overfitting occurs when the model captures 

noise instead of the underlying data patterns, leading to poor generalization of new data. 

Permutation testing involves randomly shuffling the class labels and re-fitting the PLS-DA model 

to these permuted data sets. By comparing the model's performance with the original and permuted 

data, researchers can assess whether the observed classification is better than random chance, 

helping to identify potential overfitting and ensuring the model's predictive power is 

genuine108,129,130.  
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Variable Importance in Projection (VIP) scores are an important output of PLS-DA, 

indicating the importance of each variable in the model. Variable Importance in Projection scores 

help identify the most significant variables contributing to the observed separation between 

different groups and are calculated based on the contribution of each variable to the model's total 

explained variance. High VIP scores indicate variables highly influential in separating the classes, 

making them potential biomarkers prioritized for further investigation131. 

Furthermore, univariate statistical methods analyze one variable simultaneously to assess 

its significance between different groups. In the following studies, t-tests and volcano plots were 

employed. The t-test compares the means of two groups and determines whether they are 

significantly different. This test calculates the ratio of the difference between group means to the 

variability of the groups, resulting in a t-statistic. This statistic is then compared to a critical value 

from the t-distribution to determine the p-value. A low p-value (typically less than 0.05) indicates 

that the observed difference is statistically significant and not due to random chance. Volcano plots, 

on the other hand, are scatter plots that visualize the results of t-tests by plotting the significance 

(p-value) against the magnitude of change (fold change) for each lipid species. Lipids with large 

fold changes and low p-values appear far from the origin, typically in the top left and top right 

corners, indicating significant differences between groups. Lipids near the center, with small fold 

changes and high p-values, are not significantly different. Studies use t-tests and volcano plots to 

visualize significantly altered lipid species, highlighting key lipids that may serve as potential 

biomarkers or targets for further study108,131 . 
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1.4. Current Challenges and Limitations in Lipidomics Research 

The importance of lipidomics has been increasing significantly in the past two decades, 

with significant advancements in analytical technologies, such as ultra-high-resolution mass 

spectrometers and improvements in LC systems and column technology. However, this field still 

faces several challenges that can impact the accuracy and reliability of lipidomic data, influencing 

the interpretation of biological processes and biomarker discovery. 

Accurate and reproducible extraction and quantification of lipids from biological samples 

is still challenging. Sample normalization is essential to ensure consistency and comparability of 

results. However, conventional normalization methods, such as using protein or metabolite 

concentrations, may not be suitable for lipidomics due to the unique chemical properties of lipids. 

Furthermore, global lipidomics profiling has faced significant challenges in differentiating similar 

lipid species, either isomers and isobars or species with similar properties that coelute during LC 

separation. Isomers have the same molecular formula but different structural arrangements, while 

isobars have the same mass but different elemental compositions. These species often yield 

identical MS signals, making it difficult to distinguish them without high-resolution MS and 

advanced LC techniques. Coeluting species, which elute simultaneously during chromatographic 

separation, further complicate the annotation process. The lack of extensive and specialized 

databases for lipid analysis adds another layer of difficulty, as current databases may not cover the 

full range of possible lipid species or provide sufficient resolution for distinguishing similar 

compounds. Additionally, the existing software tools are often inadequate for comprehensive lipid 

analysis, lacking the power to annotate complex lipidomic data accurately. Improvements in 

chromatographic methods, high-resolution MS, and the development of more extensive and 
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accurate lipid databases and software tools are crucial to enhancing the accuracy of lipid 

identification and overall lipidomics research. 

 

1.5. Thesis Objectives 

The work described herein aimed to develop and optimize current lipidomics methods and 

apply those to improve the understanding of the role of lipids in biological systems. The first 

objective was to develop a normalization method targeting lipids and use it to reduce data variations 

from data collection and factors such as hydration and biological sex. Chapter II describes the 

development of the Sulfo-phospho-vanillin (SPV) assay, which can quantify lipids and normalize 

their concentrations before LC-MS analysis. Chapter III compared the effects of different sample 

normalization methods on the lipidomic profiling of human saliva. It compares the advantages and 

disadvantages of normalizing saliva samples using total metabolite concentration (TMC) and total 

lipid concentration (TLC, measured using the SPV method developed in Chapter II) before LC-

MS analysis.  

The second objective focused on improving separation and increasing annotation 

confidence for lipidomics studies. In Chapter IV, a HILIC method was developed to be used as the 

first separation dimension in a 2DLC-MS workflow. Lipid class elution profiles were accessed in 

both HILIC and RP, generating a comprehensive elution profile for each subclass and increasing 

the accuracy of our annotations. Moreover, a comparison of different software tools for lipidomics 

data processing was conducted in this chapter for a robust and reproducible data processing routine. 

Chapter V focused on comparing the performance of QToF-MS and Orbitrap-MS in 

lipidomics studies to improve lipid separation and increase resolution. This chapter also describes 
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the development of an LC-MS method using a 1.0 mm inner diameter (ID) column. Lastly, Chapter 

VI evaluates the potential impacts of cisplatin and rapamycin on non-small cell lung cancer cells 

(NSCLC) using the methods developed in Chapters IV and V. 

This study aimed to demonstrate the importance of lipid studies and the need for continuous 

improvement in the development of the lipidomics method. These improvements are crucial to 

generating more reliable and accurate results that can be used in biomedical sciences and biomarker 

discovery. By enhancing lipidomics methodologies, this research contributes to the broader 

understanding of lipid roles in health and disease, ultimately supporting the development of better 

diagnostic and therapeutic strategies. 

 

  



Chapter II 

 

38 

 

II 

Chapter II: Development of a Robust Sulfo-Phospho-Vanillin Assay for Sample 

Normalization in LC-MS-Based Lipidomics 

 

2.1. Introduction 

In recent years, the field of lipidomics has been rapidly advancing and gaining increased 

attention due to highly sensitive analytical techniques, such as liquid chromatography−mass 

spectrometry (LC-MS), which has been widely used for the exploration of biological processes 

and biomarker discovery9,70,77,78,103,132. However, the field still faces significant challenges, such 

as the lack of standardized protocols for sample preparation and variability in sample 

concentration, which can pose an issue for the accurate quantification of lipids and the 

establishment of a reliable LC-MS lipidomics workflow133–136. Studies reported the variability in 

lipid concentration between males and females, with levels of SM being higher in females than in 

males. Moreover, females were more susceptible to age-associated differences, with TG levels 

being significantly higher in older females than in young females, which can impact the results of 

lipidomics studies136. In response to the variability in lipid concentration across samples, relative 

lipid quantification emerges as a critical strategy to ensure consistent and accurate quantitative 

analysis77,137. 

Normalization procedures can be performed pre-analysis or post-analysis during data 

processing steps. Although post-analysis normalization is common in lipidomics (e.g., 

normalization to the total or median peak intensity), it doesn’t account for variations in extraction 

efficiencies and instrument response103. Hence, pre-analytical normalization, incorporated in 
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sample preparation steps, is an ideal approach for samples with high variations in lipid 

concentrations. In this context, normalization refers to adjusting the volumes or concentrations of 

individual samples to ensure a uniform level across all samples, facilitating a consistent basis for 

analysis. A suitable normalization method must be user-friendly, cost-effective, and ideally 

performed after initial sample preparation to correct for any variations introduced during this 

phase77,137. 

Nevertheless, looking for an optimal normalization method that can be accurately applied 

across different sample types has proven challenging.  Over the years, different normalization 

approaches have been applied to biological samples, such as gravimetric analysis, fluorometry, 

cell counting, enzymatic reactions, and total protein or metabolite quantification, all of which come 

with their limitations137–141. Gravimetric analysis, while precise under ideal conditions, struggles 

with solvent residues and requires meticulous handling by skilled analysts. Fluorometry is 

susceptible to interference from naturally fluorescent substances within samples, which can lead 

to inaccurate lipid measurements. Cell counting fails to account for the variability in lipid content 

across cells of different sizes or stages of growth. Enzymatic reactions, specific to certain lipid 

types, might not reflect the complete lipid profile of a sample. Lastly, total protein or metabolite 

quantification assumes a constant ratio between protein and lipid content, which can vary 

significantly depending on the organism's metabolic state or environmental conditions142–147. 

These challenges show the complexity of accurately quantifying lipids across diverse 

biological samples, and in this context, the Sulfo-phospho-vanillin (SPV) method emerges as a 

promising alternative. Initially proposed in the 1930s, this colorimetric method is based on the 

reaction of a double bond with sulfuric acid (H2SO4), forming an intermediate, followed by its 
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reaction with the phospho-vanillin reagent. The product is a coloured compound, and lipid 

concentrations can be estimated based on colour development. This reaction has been downscaled 

and applied in different sample matrices, suggesting its potential77,148–150. Despite the multi-decade 

investigation into the mechanisms behind the SPV reaction, a consensus is yet to be reached. The 

most accepted mechanism was initially proposed in 1972 and involves a two-step reaction in which 

the H2SO4 reacts with the double bond present in the molecule to form a carbonium ion. 

Subsequently, the carbonium ion reacts with the phospho-vanillin carbonyl group to yield a pink-

coloured compound (Figure 2.1). Although fatty acyl chains may have multiple double bonds, this 

study demonstrated higher derivatization efficiency for a single double bond per molecule. 

However, it is still possible for multiple double bonds to react within the same molecule, implying 

that although the reaction’s efficiency peaks with a single interaction, the overall colorimetric 

response can be amplified by the presence of multiple reactive sites within a single molecule151. 

Moreover, a recent study postulated alternative pathways for carbonium ion formation in the 

presence of H2SO4 and the absence of double bonds152.  
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Figure 2.1 Proposed mechanism for the Sulfo-phospho-vanillin reaction. a) Formation of the carbonium ion; b) Formation of the 

phosphor-vanillin reagent; c) Reaction between the phosphor-vanillin reagent and the carbonium ion forming the pink-coloured 

product. 

Nevertheless, the SPV method represents a viable alternative for normalizing total lipid 

content in biological samples. In lipid molecules, the double bonds are mainly located at the fatty 

acyl side chains, regardless of class or subclass. Furthermore, 35 to 60% of the mammalian 

lipidome is estimated to contain at least one double bond13,33,34,153,154. Hence, The SPV reaction is 
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an adaptable method with the potential to overcome challenges posed by lipid class and fatty-acyl 

chain, posing as a strong candidate for sample normalization in lipidomics studies148,149,151,152. 

In addition to normalizing samples, using an appropriate extraction method before LC-MS 

analysis is critical for achieving uniform instrumental responses, enabling precise and comparable 

lipidomic profiles. In addition to these challenges, the initial preparation of biological samples is 

also crucial, which may include the application of effective homogenization protocols or cell lysis 

techniques to ensure comprehensive lipid extraction. Effective cell lysis is often achieved using 

one of three methods: liquid-liquid extraction (LLE), freeze/thaw cycles, and ceramic bead-

assisted extraction155. This step is crucial for managing the challenges associated with lipid 

analysis, such as variable responses to different lipid classes and the accurate detection of low-

abundance lipids, while preventing issues like column saturation, sample carryover, and excessive 

ion suppression108,137. 

The present work focused on optimizing and applying the SPV method within our 

lipidomics LC-MS workflows. The main goal was to optimize the method to perform accurate 

relative lipid quantification in different sample matrices (e.g. human saliva and serum, and MCF-

7 and A549 cell lines) such that it integrates seamlessly with our current lipidomics workflow 

while enhancing the method's sensitivity and reproducibility. Furthermore, we evaluated its 

performance in real-world samples to address possible nuances generated by biological matrix 

effects. Although previous studies have also proposed modifications to the SPV method, the 

optimizations proposed herein are tailored to the requirements of LC-MS-based lipidomic analysis, 

offering insights into the method's application and implications for accurate lipid quantification in 

a previously unexplored context77,148,149. 
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2.2. Experimental 

2.2.1. Reagents and Equipment 

Ammonium formate (MS grade), oleic acid (99%), ethanol (95% v/v), vanillin, phosphoric 

acid (H3PO4, BioUltra, ≥85% (T)), and H2SO4, along with the deuterated lipid mix Splash 

Lipidomix Mass Spec Standard (provided by Avanti Polar Lipids, Alabaster, AL, USA) for 

internal standardization, were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). High-

purity LC-MS grade solvents such as acetonitrile (ACN), methanol (MeOH), dichloromethane 

(DCM), water, 2-propanol (IPA), and chloroform were purchased from Honeywell (Charlotte, 

North Carolina, USA). 

 

2.2.2. Saliva Sample Collection and Processing   

Saliva samples were gathered from two participants (one female and one male) across two 

consecutive days at three distinct times: morning, afternoon, and evening. The volunteers collected 

their saliva by spitting directly into sterile 50 mL polypropylene tubes. Morning collections were 

done after an overnight fast, without any water intake, while samples taken in the afternoon and 

evening were collected at least one hour after the participants' last meal or beverage. Additionally, 

all samples were collected no less than one hour after the volunteers had brushed their teeth. 

Following collection, the samples were centrifuged at 2,500 x g for 15 minutes. The resulting 

supernatant was divided into several aliquots and stored in sterile micro polypropylene tubes at -

80 ºC pending further analysis156. 
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2.2.3. Cell Culture 

The method's performance was evaluated using two distinct cell lines: MCF-7 (ATCC 

HTB-22) and A549 (ATCC CCL-185). Each cell line was separately cultured in T-75 flasks under 

optimal conditions: MCF-7 cells in Dulbecco's Modified Eagle Medium (DMEM) and A549 cells 

in F-12k medium (Kaign’s Modification of Ham’s F-12 Medium). Both cultures were 

supplemented with 10% fetal bovine serum (FBS), maintained at 37 ºC in a humidified atmosphere 

containing 5% CO2, and the medium was renewed every two to three days. The cells were 

harvested through trypsinization, which involved washing the cells with cold phosphate-buffered 

saline (PBS), incubating them with 3.0 mL of 0.25% trypsin/EDTA (Hyclone, Logan, Utah, USA) 

at 37 ºC and 5% CO2 for 5 minutes, and quenching the reaction with 8 mL of growth medium. 

Subsequently, the cell suspensions were transferred to 15 mL sterile polypropylene tubes and 

centrifuged at 900 rpm for 7 minutes. The supernatant was aspirated off, leaving behind the cell 

pellet. For the MCF-7 line, one pellet was resuspended in 1 mL of growth medium and 

homogenized through gentle pipetting. The cell count was determined using a hemocytometer 

before aliquoting the cells into 2 mL sterile micro polypropylene tubes, each containing 1×105 to 

3×106 cells. Other cultures were distributed into triplicate aliquots in 2 mL sterile micro 

polypropylene tubes without cell counting. 

The aliquoted cells were then centrifuged at 900 rpm for 7 minutes to pellet them to remove 

the growth medium. The pellets were washed three times with 1 mL of cold PBS and dried under 

a gentle nitrogen stream before being stored at -80 ºC until further analysis. 
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2.2.4. SPV Method Optimization 

An initial experiment was carried out using the refined method outlined by Cheng et al. 

(2011), which involved adding a maximum of 100 µL of lipid extract in 1:1 (v/v) DCM/MeOH 

into the well plate, followed by solvent evaporation149. Next, 100 µL of concentrated H2SO4 was 

added to the samples, which contained between 5 and 120 µg of lipids, which were then heated at 

90 ºC for 20 minutes. After heating, 50 µL of phospho-vanillin reagent, which was prepared 

according to Knight et al. (1972) with modifications from Cheng et al. (2011) by dissolving 

vanillin to a final concentration of 0.2 mg/mL in a mixture of 2:18:5 of EtOH/H2O/H3PO4, was 

introduced108,149,151. Upon visible colour development, the absorbance was measured at 540 nm. 

Based on these initial findings, several adjustments were made to tailor the method to our specific 

needs. 

External calibration curves were constructed under each condition to optimize the method, 

and their performances were compared. The standard solution was prepared by diluting the oleic 

acid standard with 1:1 (v/v) DCM/MeOH to a concentration of 1 mg/mL. Volumes ranging from 

2.5 to 17.5 µL of this solution were used to construct each calibration curve. 

The first modification involved optimizing the incubation time and temperature after the 

addition of the phospho-vanillin reagent, testing conditions at room temperature (22 ºC), 40 ºC, 50 

ºC, 60 ºC, and 80 ºC for durations of 20 or 80 minutes (initial conditions were 90 ºC for 20 

minutes). Next, to minimize lipid sample dilution, we investigated varying volumes of H2SO4 (the 

initial 100 versus 50 µL) to minimize lipid sample dilution. Lastly, we explored different solvent 

mixtures for the lipid extract to find those that might offer benefits for potential future uses. The 

solvents assessed included a 2:1 chloroform/methanol (v/v) mixture, a 9:1 ratio of mobile phase A 
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(MPA) to mobile phase B (MPB) (with MPA consisting of 10 mM ammonium formate in a 

50:40:10 mixture of MeOH, ACN, and H2O, and MPB comprising 10 mM ammonium formate in 

a 95:5 mixture of IPA and H2O), and a 9:1 MPA/MPB mix without ammonium formate. 

The selection of optimal conditions was based on several criteria: improvements in 

detection and quantification limits, the linearity range, the volume of sample required, and the 

method's practicality for regular analysis. We used Student’s t-tests to evaluate significant 

differences across all conditions, with a p-value of less than 0.05 considered statistically 

significant. 

 

2.2.5. Sample Preparation 

Lipid extraction for saliva and cell samples was performed using a modified version of the 

Folch liquid-liquid extraction protocol adapted to small sample volumes. Briefly, samples were 

vortexed with the Splash Lipidomix Mass Spec Standard (Avanti Polar Lipids, a mixture of 14 

deuterated lipids in methanol, employed for internal standardization) and extracted with a mixture 

of 2:1 DCM/MeOH, followed by a clean-up step with water (8:4:3 DCM/MeOH/water). After 10 

min equilibration at room temperature, the mixtures were centrifuged at 12,000 rpm and 4 ºC for 

10 minutes. The bottom organic layer was employed for lipidomics72,103After extraction, an aliquot 

of the organic layer was evaporated to dryness and resuspended in chromatographic mobile phases 

before LC-MS injections. The resuspended samples were stored in polypropylene inserts placed 

inside autosampler vials sealed with a PTFE/silicone septum at 4 ºC for a minimum of 4 hours and 

a maximum of 24 hours before analysis. 
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2.2.5.1.Extraction of Lipids from Saliva Samples 

A 225 µL saliva sample was mixed vigorously for 20 seconds with 1.1 µL of Splash 

Lipidomix Mass Spec Standard (Supp. Table 1) and 449 µL of methanol. After this initial mixing, 

900 µL of DCM was added, followed by another 20-second vortex. Then, 113 µL of water was 

introduced to the mixture, which was vortexed for an additional 10 seconds and allowed to settle 

at room temperature for 10 minutes. The mixture was centrifuged at 12,000 rpm at 4 ºC for 10 

minutes. From the separated organic layer, 720 µL was taken and evaporated under a gentle 

nitrogen stream at room temperature over 15 minutes. The resultant dry residue was reconstituted 

in a 17:3 mix of MPA/MPB to achieve a final volume of 45 µL. For quality control, a pooled saliva 

sample (QC), created by combining equal volume aliquots from all samples, was processed 

alongside every six-sample batch using the identical extraction methodology. 

 

2.2.5.2.Extraction of Lipids from Cell Samples 

Three techniques for cell lysis were evaluated to identify the best approach for extracting 

lipids from cells: LLE, freeze/thaw cycles, and ceramic bead-assisted extraction. In the LLE 

method, a dried MCF-7 cell pellet (with an approximate count of 6×105 cells) was processed using 

a method similar to that for saliva samples. In brief, cell pellets underwent extraction with 1.8 µL 

of Splash Lipidomix Mass Spec Standard, 38.2 µL of MeOH, 80 µL of DCM, and 30 µL of H2O. 

Following equilibration and centrifugation, a portion of the organic phase (68 µL) was dried under 

a gentle stream of nitrogen for 15 minutes and reconstituted in a 9:1 mix of MPA/MPB to a total 

volume of 45 µL. 
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For the freeze/thaw cycle approach, cell pellets were initially suspended in 30 µL of a 1:1 

MeOH/H2O mixture. The samples were quickly frozen in liquid nitrogen for 2 minutes and then 

thawed in water for 2 minutes with vortexing, a process that was repeated three times. The lysed 

cells were then subjected to the same extraction steps as in the LLE method. 

In the ceramic bead-assisted extraction method, three ceramic beads were added to the vial 

containing the cell pellet. After adding each solvent, samples were homogenized using a tissue 

homogenizer for one cycle at 4.5 m/s for 20 seconds and then processed as described in the LLE 

protocol. 

Following the determination of the most effective extraction technique, all further 

extractions were conducted under these optimal conditions. Independent of the initial cell count, 

cell samples were extracted to a final volume of 150 µL, utilizing 5.0 µL of Splash Lipidomix 

Mass Spec Standard (Avanti), 128.3 µL of MeOH, 266.7 µL of DCM, and 100 µL of H2O. The 

dried extracts were then reconstituted in a 9:1 mixture of MPA/MPB to a final volume of 150 µL. 

For quality control (QC), pooled cell samples were processed using the identical protocol as the 

test samples. 

 

2.2.6. Determination of Total Lipid Content for Sample Normalization 

Before conducting LC-MS analysis, the lipid concentrations of the extracts were assessed 

using the optimized SPV method. A 15 µL portion of each lipid extract (organic layer) was dried 

under a gentle nitrogen stream. Subsequently, 50 µL of concentrated H2SO4 was added to the 

residue, followed by incubation at 90 ºC for 20 minutes and then cooling at -20 ºC for 10 minutes. 

To the samples, 50 µL of the phospho-vanillin reagent (consisting of 17% H3PO4 and 0.2 mg/mL 
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vanillin) was added, and the mixture was incubated at 60 ºC for 20 minutes. After incubation, the 

absorbances of the samples were measured using a microplate reader at 540 nm149. Lipid 

quantification was carried out using oleic acid as the external calibration standard. An analytical 

curve was constructed by utilizing various volumes (ranging from 2 to 20 µL) of a 1 mg/mL stock 

solution of oleic acid, which was then diluted to a final volume of 100 µL with H2SO4 and the 

phospho-vanillin reagent, maintaining the same ratio as for the samples. 

 

2.2.7. LC-MS Analysis 

After quantifying total lipids, saliva sample normalization was conducted by injecting an 

optimal mole amount determined using a pooled sample for LC-MS analyses. Injection volumes 

ranged from 2 to 16 µL for positive and negative ion modes, with the pooled sample injection 

volumes set at 4 and 10 µL, respectively.  

On the other hand, some MCF-7 cell samples, whose total cell counts had been previously 

determined, were used to estimate the cell count in all other samples. Once the cell count was 

estimated, each sample was diluted to achieve 8.6×104 cell equivalents/µL across all samples. 

Injection volumes were set at 3 µL for positive and 12 µL for negative ion modes. The need for 

different normalization approaches comes from differences in sample handling, such as the large 

injection volumes (i.e., over 12 µL) required to inject a uniform amount of moles for the saliva 

samples, which could lead to significant peak broadening157. 

Lipid extracts underwent analysis via reversed-phase ultra-high-performance liquid 

chromatography (UHPLC) coupled to a high-resolution quadrupole-time-of-flight (QToF) mass 

spectrometer with an electrospray ionization (ESI) source. Chromatographic separation was 



Chapter II 

50 

 

carried out using a Dionex 3000 system and a Waters Acquity CSH Premier C18 column. The 

mobile phases consisted of MPA: 10 mM ammonium formate in 50:40:10 ACN/MeOH/H2O and 

MPB: 10 mM ammonium formate in 95:5 IPA/H2O. A gradient separation lasting 22 minutes 

(starting at 5% MPB and reaching 95% MPB at 18 minutes) was followed by a 10-minute re-

equilibration period. The flow rate was set at 250 μL/min, with a column temperature of 45 ° . 

MS/MS qualitative information was obtained for all sample injections using auto-MS/MS, with a 

cycle time of 1.2 seconds and active exclusion of precursors detected for more than three 

consecutive spectra within 0.50-minute intervals. Injection volumes were adjusted for each 

polarity and application based on ionization performance and experimental goals. Cell sample 

extracts were injected in volumes of 3 µL and 12 µL in the positive and negative ionization modes, 

respectively. Saliva samples were profiled comprehensively by injecting 3.47×10-6 mol in the 

positive ionization mode and 5.78×10-6 mol in the negative ionization mode. 

Samples and blanks were prepared and injected randomly, but normalized and non-

normalized samples were consistently injected on the same day. To ensure consistent quality 

control, a pool of aliquots from all samples was used for quality control (QC) and injected with 

each batch of 10 samples. 

 

2.2.8. Data Processing and Lipid Annotation 

MetaboScape 4.0 (Bruker Daltonics, Billerica, MA, USA) was used to analyze saliva 

samples with a minimum intensity cut-off set at 5,000 counts for positive ionization and 4,000 

counts for negative ionization. Positive and negative ionization for cell pellets had a minimum 

intensity cut-off of 5,000 counts. Chromatograms were aligned using a minimum peak length of 
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six spectra, m/z re-calibration with sodium formate calibrant solution, a m/z tolerance of 5.0 mDa, 

and a retention time tolerance of 10 seconds. Isotopes and adducts were removed within a 

correlation threshold of 0.8. Recursive extraction was employed to search for features with missing 

values in over 20% of injections without applying the minimum intensity limit to the raw data. 

Aligned features were filtered based on detection in over 80% of injections in at least one group. 

Missing features were substituted using the minimum group intensity for features detected in more 

than 50% of injections within each group and the global minimum intensity for features detected 

in less than 50% of injections within each group. 

Lipid annotation followed a three-tier putative annotation approach. Tiers 1 and 2 relied on 

acquired tandem mass spectrometry (MS/MS) spectra, while tier 3 annotations were based on mass 

matches in features previously not annotated. Lipid annotation protocols adhered to guidelines 

established by the Lipidomics Standards Initiative. Tier 1 and Tier 2 annotations utilized the MS-

Dial LipidBlast library (https://fiehnlab.ucdavis.edu/projects/LipidBlast), the Human Metabolome 

Database (https://hmdb.ca), and the MassBank of North America L −MS/MS libraries 

(https://mona.fiehnlab.ucdavis.edu) combined with MetaboScape 4.0 software. Tier 1 annotations 

had a precursor m/z tolerance of 5.0 mDa and an MS/MS score threshold of 500, while Tier 2 

annotations had an MS/MS score between 100 and 500. All features not previously annotated by 

MS/MS match were searched against the LipidMaps database for mass-match annotation (tier 3 

with m/z error smaller than 5.0 mDa). Due to the nature of lipid molecules, multiple isomers and 

isobars are possible within the mass tolerance of 5.0 mDa; therefore, we used a 5-tier system to 

ensure more accurate annotations. All annotation possibilities were filtered based on retention time 

and adduct detection and subsequently ranked according to the characteristics of the employed 
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method and biological fluids. The filtering system used herein has been previously described and 

employed by Buzatto et al. (2020)108. This study did not evaluate the positions of double bonds 

and stereospecific configurations of glycerol derivatives. Annotated lipids were categorized into 

subclasses and seven main categories following the classification system proposed by the 

International Lipid Classification and Nomenclature Committee, the Lipidomics Standards 

Initiative, and the LIPID MAPS database. Internal standards added during lipid extraction were 

identified based on retention time and accurate m/z values. 

 

2.2.9. Post-acquisition Normalization and Statistics 

Analytical curves generated for the SPV method optimization were evaluated based on their 

reproducibility, repeatability, limit of detection (LOD), limit of quantification (LOQ), and 

sensibility (m). The following formulas determined detection and quantification limits, where SD 

is the standard deviation of the curve’s response. 

LOD = 3 × SD
m⁄  

LOQ = 10 × SD
m⁄  

Hypothesis testing by Student’s t-test was used to compare the sensitivity of the optimized 

SPV protocols with a confidence interval of 95%. The null hypothesis stated no difference between 

the sensitivities, whereas the alternative hypothesis stated that the difference was significant 

(p>0.05). 

Isotope-labeled standards were utilized to mitigate ion suppression effects and other 

variations that might arise during sample handling. Class-matched normalization was performed 
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by associating each annotated lipid with an internal standard belonging to the same or most similar 

lipid subclass. Thus, the annotated lipids were normalized using one of the 14 deuterated standards 

present in the Splash Lipidomix Mass Spec Standard. However, features not previously annotated, 

whose lipid subclass remains unknown, were excluded from any statistical analyses. 

The annotated lipids were matched with the most similar deuterated internal standard, and 

normalized intensities were calculated by dividing the original peak intensity (i.e., peak height) of 

the annotated lipid by the peak intensity of the matched internal standard. Subsequently, the dataset 

was normalized by the summed intensity ratios (total intensity) for all annotated features within 

each sample and auto-scaled before statistical analysis using MetaboAnalyst 5.0. Features 

exhibiting low experimental reproducibility (RSD > 30% for QCs) were excluded before statistical 

analysis. 

Statistical analysis involved Principal Component Analysis (PCA) and partial least square-

discriminant analysis (PLS-DA). The PCA and PLS-DA score plots in this study showcase 

experimental replicates for each sample, with the clustering among quality control samples 

indicating technical reproducibility. PLS-DA models were assessed through leave-one-out cross-

validation and permutation tests (1,000 permutations), with R2, Q2, and p-values provided in figure 

captions. 

 



Chapter II 

54 

 

2.3. Results and Discussions 

2.3.1. SPV Method Optimization 

We first attempted to replicate the work by Cheng et al. (2011) to better understand their 

original optimization of the SPV method149. The procedure employed vegetable oils, such as 

canola oil (cooking grade), as a lipid standard to build analytical curves to quantify total lipid 

content. The methodology was originally described for less than 100 µL aliquots of lipid extract. 

A sample aliquot with a canola oil concentration of 15 mg/mL and volumes varying from 0.5 to 

30 µL was loaded into a microplate and evaporated to dryness. The residue was mixed with 100 

µL of concentrated H2SO4 and incubated at 90 ºC for 20 minutes, then cooling down at -20 ºC for 

10 minutes. 50 µL of the phospho-vanillin reagent (0.2 mg/mL vanillin in 17% H3PO4) was added 

to the sample. After visual colour development (pink hue), the absorbance was determined using 

a microplate reader at 540 nm.  The original paper mentioned 10 minutes for colour development 

after the addition of the phospho-vanillin reagent; however, we were unable to fully reproduce 

their results with said incubation time. A longer incubation of 80 min (Figure 2.2) was required to 

achieve similar sensitivities for the calibration curve published initially by Cheng et al. (2011)149–

151,158. 
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Figure 2.2. Reproduced results of the analysis carried out by Cheng et al. (2011) using canola oil as the calibrant standard. (m= 

0.0067 and R2=0.9994). 

 

Although we replicated the published results after altering the incubation time, the 80-

minute interval is unpractical for routine analyses. Furthermore, using commercially available 

vegetable oils is not ideal for quantifying lipids due to low purity and undefined composition. 

Therefore, we decided to optimize the methodology. 

First, we replaced the commercial vegetal oil with a high-purity lipid standard for 

calibration. In this study, we investigated the composition of human saliva and epithelial cell 

samples; thus, an ideal standard would be a lipid found or closely related to human metabolism. 

Oleic acid is a monosaturated fatty acid (FA 18:1) commonly found in significant amounts in 

human biofluids, such as breast milk and saliva, making it a suitable calibrant159. All optimizations 

were performed using oleic acid as the external calibrant standard, and the x-axis units were 
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changed from lipid mass (µg) to concentration (mM), considering suitability for future 

applications.  

Second, we evaluated the effect of different incubation conditions. Previous reports in the 

literature have indicated that heating after adding the phospho-vanillin reagent could improve 

sensitivity148,150,158. Hence, we evaluated the method's performance in different temperatures, 

ranging from 40 to 80 °C with an incubation time of 20 minutes (Figure 2.3). 

 

 

Figure 2.3. Calibration curves under different temperatures and incubation time conditions using oleic acid as a calibrant standard. 

a) Experiment at room temperature and incubation time of 80 minutes (blue): R2: 0.9945; Equation: Abs= (1.0521±0.0564)x + 

(0.0319±0.0281); b) Experiment at 40ºC and incubation time of 20 minutes (green): R2: 0.9920; Equation: Abs= (1.1718±0.0745)x 

+ (0.0513±0.0372); c) Experiment at 60ºC and incubation time of 20 minutes (black): R2: 0.9927; Equation: Abs= 

(1.9218±0.1166)x + (0.1020±0.0582); d) Experiment at 80ºC and incubation time of 20 minutes (orange): R2: 0.9905; Equation: 

Abs= (2.0355±0.1410)x + (0.0752±0.0703). Significant differences (p < 0.05) between the curves are noted by subscript letters 
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Incubation temperatures between 40 ºC and 80 ºC for 20 minutes resulted in higher slopes 

than the original room temperature (22 ºC) incubation for 80 minutes. Therefore, heating the 

samples after adding the phospho-vanillin reagent increases the method's sensitivity. To evaluate 

if analytical curves were significantly different, the slopes and intercepts of the various conditions 

were compared using Student t-tests (Supp. Table 2). Significant differences in slope (p <0.05) 

were observed for the 60 and 80 ºC conditions when compared to the original method. The p-

values obtained were less than 0.05, indicating statistically significant differences in the slopes 

between the high-temperature conditions (60 ºC and 80 ºC) and the original room temperature 

method (22 ºC). This statistically significant result confirms that heating the samples enhances the 

sensitivity of the phospho-vanillin assay. The higher slopes at increased temperatures suggest that 

the method is more responsive to the analyte when the samples are heated, leading to more reliable 

results. An increased sensitivity means lower limits of detection, which pose an advantage when 

analytes are present in very low concentrations. However, it's crucial to consider the impact of 

higher temperatures on the stability of biological samples and reagents148.  

Considering that the highest temperature tested (80 ºC) had the highest sensitivity, it should 

have been the chosen temperature for incubation. However, this temperature is close to the initial 

incubation temperature of 90 ºC after adding H2SO4. Exposing lipid molecules to elevated 

temperatures for extended periods may lead to polymerization byproducts152. Since no significant 

differences were observed between 60 and 80 ºC, 60 ºC was chosen as a better incubation 

temperature after adding the phospho-vanillin reagent. 

Different SPV protocols use between 100 and 180 µL of acid, with sample aliquots ranging 

from 5 to 100 µL. In some cases, this can result in both analytes and standards being diluted over 
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20-fold, depending on the aliquoted volume, which may cause a significant decrease in 

sensitivity148,149. We opted for reducing the volume of H2SO4 to 50 µL (Figure 2.4). When 

employing a smaller acid volume (50 µL), samples are two-fold less diluted than in the method 

proposed by Cheng et al. (2011), enhancing the method’s sensitivity and limit of detection (Table 

2.1)148,149. Reducing the amount of acid will lower the final dilution of the sample; however, it will 

also limit the amount of analyte that can be detected since there will be less acid available to react 

with the lipid molecules. In highly concentrated samples, this could pose an issue; however, in 

lipidomics, that is hardly ever the case. We often have samples that are too diluted, with only trace 

amounts of analytes. Additionally, when working with biological samples, the analyst must always 

be mindful of sample availability, as the amount of sample available might be limited to only a 

few microliters. Therefore, an analytical method that reduces the volume of required samples and 

still provides accurate results is typically preferred. 
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Figure 2.4. Analytical curves for oleic acid (1 mg/mL) comparing the method’s sensitivity when using 50 and 100 µL H2SO4 in 

the SPV method; a) Experiment using 100 µL of H2SO4: R2: 0.9985; Equation: Abs= (2.2021±0.0494) x + (0.01903±0.0081); b) 

Experiment using 50 µL of H2SO4: R2: 0.9974; Equation: Abs= (5.8788±0.2135) x + (0.0855±0.0403). 

We observed a significant difference between the slopes for 100 and 50 µL of H2SO4 (p-

value < 0.05, shown in Supp. Table 3). The higher slope promoted by the reduced volume of H2SO4 

resulted in improved LOD, LOQ, and sensitivity (m). The significant changes in the figures of 

merit make this new condition more suitable for applications in diluted samples. Hence, future 

experiments employed the volume of 50 µL of H2SO4. 
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Table 2.1. Limits of detection, quantification, and sensitivity for the SPV method using 50 µL and 

100 µL of H2SO4. 

 50 µL 100 µL 

LOD (mM) 0.037 0.080 

LOQ (mM) 0.122 0.265 

Sensitivity (mM) 0.8694 0.2311 

 

After determining the optimum incubation time and temperature after adding the phospho-

vanillin reagent and optimizing the amount of H2SO4 added, we investigated the solvents used 

during sample derivatization. Lipids are extracted from the samples before the derivatization 

procedure. In the original method, Cheng et al. (2011) described 2:1 chloroform/MeOH as the best 

solvent for the lipid extract used in this reaction, which would be advantageous if we could take 

an aliquot of the organic layer during extraction for derivatization149. However, samples are 

extracted using a high sample/solvent ratio (normally at least 1 part of the sample for 40 parts of 

solvent), which would mean using a very diluted sample, and in turn, impact our accurate ability 

to quantify the lipid content72,108. Another option would be to resuspend the samples in 2:1 

chloroform/MeOH after reconcentration. However, injecting strong solvents, such as chloroform, 

in the long term could negatively affect the LC system, column, and mass spectrometer. 

Furthermore, the initial portion of chromatograms would be affected by peak splitting and other 

effects due to the strong sample composition compared to initial chromatography conditions78.  

Our LC-MS lipidomics protocol requires resuspending samples in 9:1 MPA/MPB before 

injection. This composition ensures good LC-MS performance and compatibility between the 
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sample and initial chromatography conditions. However, that would require an additional step if 

lipid extracts were first resuspended in chloroform/methanol for lipid quantification, then dried to 

remove this solvent mix and resuspended again in MPA/MPB for injection. Besides increasing 

sample preparation time, this process would prolong exposure to light and air, which could lead to 

degradation of the lipids in the sample. It would be advantageous if the same conditions could be 

used as the solvents for sample derivatization, resulting in fewer drying and resuspending steps, 

reducing the time required for sample preparation and the possibility of lipid degradation102. We 

compared the performance of the SPV procedure using 2:1 chloroform/MeOH as the sample 

solvent with 9:1 MPA/MPB with and without ammonium formate (Figure 2.5). 

 

 

Figure 2.5. Analytical curves for Oleic acid (1 mg/mL) comparing the sensitivity of standard mi in different solvents. a) Experiment 

using 9:1 MPA/MPB without ammonium formate (black): R2: 0.9995; Equation: Abs= (0.5072±0.0078)x + (0.1422±0.0104).; b) 

Experiment using 9:1 MPA/MPB with ammonium formate (yellow): R2: 0.9855; Equation: Abs= (0.6388±0.0548)x + 

(0.0708±0.0726); c) Experiment using 2:1 Chloroform/MeOH (red, initial conditions): R2: 0.9961; Equation: Abs= 

(0.8596±0.0381)x + (0.1806±0.0505). 
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Even though the sensitivity of the SPV method is higher when employing a 2:1 mixture of 

chloroform/MeOH as solvent (curve “c”, red), the sensitivity of the analytical curve is not 

significantly different (p-value= 0.18, shown in Supp. Table 4) when compared to the curve 

obtained with  :1 MPA/MPB with ammonium formate (curve “b”, yellow). The decreased 

sensitivity comes from lipids being less soluble on our mobile phase mixture than chloroform or 

DCM. Resuspension of the extract in 9:1 MPA/MPB with ammonium formate allows for an aliquot 

of our resuspended lipid extract to be analyzed by the SPV method and subsequently by LC-MS 

without any additional steps, resulting in an optimized timeframe that benefits both the workflow 

and the samples.  

After further optimizing the SPV method for this application, we determined the lower and 

upper detection limits, as well as aliquot volumes required for reproducible analysis, using the 

oleic acid standard. The method had the best linearity between 0 and 3.5 mM (total lipid content, 

Figure 2.6). The detection limit was determined as 0.008 mM. 
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Figure 2.6. Limit of detection and linear range of the optimized SPV calibration curve employing 9:1 MPA/MPB with ammonium 

formate as solvent. a) Linear range of the calibration curve: R2: 0.9885; Equation: Abs= (0.6716±0.0256) x + (0.2870±0.0484); b) 

Scatter plot for the region where linearity is lost. 

 

Lastly, we evaluated the ideal sample volume required for best quantification performance 

using blood serum lipid extract. Serum samples were extracted following a modified Folch liquid-

liquid extraction protocol adapted to small sample volumes72,103. The obtained extracts were dried 

down under a gentle nitrogen flow and resuspended in 9:1 MPA/MPB with a 10-fold dilution. For 

example, the extract obtained from an initial serum aliquot of 1.0 µL was evaporated to dryness 

and resuspended to 10.0 µL of 9:1 MPA/MPB, always in triplicates. This procedure was repeated 

for all volumes of serum samples present in Table 2.2. Different volumes of the resuspended 

extract (0.5 to 5.0 µL) were used to determine the optimum extract volume for quantification 

(Table 2.2). 
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Table 2.2. Ideal volume and concentration of lipid extract for SPV using human serum. 

Volume of 

serum (µL) 

Volume of 

extract (µL) 

AVG conc. in the 

original sample 

(mM) 

AVG conc. In 

aliquot (mM) 

AVG 

abs. 
SD 

RSD 

(%) 

0.5 5 0.058 0.003 0.212 0.003 2 

1.0 10 0.623 0.062 0.292 0.001 0.3 

1.5 15 0.491 0.074 0.306 0.018 6 

2.0 20 0.453 0.091 0.328 0.013 3 

2.5 25 0.522 0.130 0.378 0.013 2 

3.0 30 0.530 0.159 0.414 0.047 7 

4.0 40 0.572 0.229 0.503 0.013 2 

5.0 50 0.557 0.278 0.565 0.047 7 

LOD - - 0.008 - - - 

LOQ - - 0.028 - - - 

AVG Original concentration: Lipid concentration in the raw sample before any dilution; AVG concentration: Lipid concentration 

in the aliquot used in SPV. 

 

All aliquots exhibited relative standard deviations (RSD) lower than 10%. However, when 

the original concentration was calculated, significant differences were observed between the 5 µL 

aliquot and the others. We employed Student’s t-tests (Supp. Table 5) to evaluate significant 

differences between 5 µL lipid extract aliquots and all additional extract aliquots, which confirmed 

there was a significant difference (p<0.05) between them. With that in mind, such small samples 

are unreliable for accurate quantification using the SPV method. 
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The total lipid concentration obtained for the smallest aliquot (0.5 µL of serum and 5.0 µL 

of extract) was 0.001 mM, below the LOD of 0.008 mM, which can cause the observed significant 

differences between this and the other aliquots. The obtained results indicate that the minimum 

amount of serum for accurate total lipid quantification is 1.0 µL, corresponding to 10 µL of extract, 

since the smallest volume tested (0.5 µL of the sample) yields concentrations below de LOD. 

However, if larger amounts of sample are available, 15 µL of lipid extract (1.5 µL of sample) 

would be the most adequate aliquot volume for quantification. Using higher amounts of sample 

whenever possible improves the reliability and precision of the measurements by providing a 

higher concentration of analytes, reducing the relative impact of experimental variability, and 

ensuring that measurements are well above the LOD.  

Hence, the SPV protocol was fully optimized to better suit our applications' needs. The 

fully optimized version is detailed in Figure 2.7. 
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Figure 2.7. Optimized SPV protocol for relative lipid concentration determination followed by LC-MS analyses. 

 

Since the SPV method was first introduced in 1937, many optimizations have been 

proposed, each applying it to different biological matrices, miniaturizing, and overall improving 

the limits of detection of the initial method77,148–150,158,160. Among those, Vatassery et al. (1981) 

described its use for measuring lipids in cerebral spinal fluid (CSF) using 1 mL of H2SO4 and 5 

mL of phosphor-vanillin reagent incubated at 37 ºC for 10 minutes150. This work used a slightly 
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elevated temperature to increase reaction efficiency and decrease incubation time, but it required 

elevated amounts of sample. Cheng et al. (2011) proposed a miniaturization of the reaction, using 

100 µL of H2SO4 and 100 µL of the phospho-vanillin, without any heated incubation after adding 

the phospho-vanillin reagent148,149. The optimizations proposed allow the application of the 

method when limited amounts of samples are available, though they require longer incubation 

time. Yet another proposed optimization was described by Anschau et al. (2017) using 20 µL of 

sample, 180 µL of H2SO4, and 500 µL of phospho-vanillin, incubated at 37 ºC for 15 minutes to 

measure lipid concentrations in yeast cells and microalgae. The method used small amounts of 

sample and a slightly elevated temperature to decrease incubation temperatures. However, the 

larger amount of H2SO4 used caused samples to be too diluted, impacting the method’s limit of 

detection148,149. 

A recent study by Bailey et al. (2022) also proposed optimizing the SPV method for 

lipidomics applications. However, it's important to point out that their focus shifted towards 

employing higher concentration standards, differing from what is normally seen in our samples, 

which focus on high-sensitivity analysis of small amounts of biological samples. More 

specifically, their optimization process involved 10 to 100 µg/mL concentrations. Because of their 

concentration range, some differences in the optimization outcomes can be observed compared to 

the method described in this work. One important contract point is the use of lower volumes of 

H2SO4 (50 µL). Lower volumes of H2SO4 resulted in decreased sensitivity. However, our study 

shows that employing such lower volumes can increase sensitivity while still maintaining 

robustness and linearity (R² > 0.995) across a satisfactory linear range appropriate to the intended 

samples (up to 3 mM)77.  



Chapter II 

68 

 

Moreover, Bailey et al. (2022) suggested potential reproducibility issues could be 

associated with dried samples. Drying samples often results in the accumulation of the lipid content 

at the well's bottom and given the microplate's limitations in aiding thorough sample mixing, 

concerns regarding reproducibility may arise. Alternatively, we suggest a modification in the 

procedure by using sterile micropropylene tubes. This modification allows vigorous sample 

mixing and subsequent transfer of the final-coloured product to a microplate for UV-Vis 

quantification. At first, this may seem like an unimportant detail; however, it becomes significant 

when considering the final volume of our solution (100 µL) since even small amounts of solvent 

(ranging from 10 to 20 µL) can significantly influence the outcomes. Incorporating a drying step 

within the micropropylene tubes served two purposes: it reduces the final volume, thereby 

increasing the sensitivity, and effectively addresses potential issues from inadequate sample 

mixing77. 

Furthermore, differences in the incubation procedure following the addition of the 

phospho-vanillin reagent are also worthy of attention. Bailey et al. (2022) optimized the incubation 

time and phospho-vanillin concentrations. In contrast, our study optimized incubation time and 

explored the influence of temperature. Bailey et al. (2022) tested a range of incubation 

temperatures ranging from 10 to 60 minutes and found that 30 minutes yielded a favourable 

balance between completing the reaction and time efficiency. They also noted that a 60-minute 

incubation led to a nearly complete reaction. On the other hand, our methodology suggests 

incubations of 20 minutes at 60 ºC, based on the concept that higher temperatures help expedite 

reaction kinetics, thus facilitating completion77,148. By using elevated temperatures, our study 
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accelerated the completion of the reaction and increased the linear range compared to other 

methods148,149. 

In summary, all methods previously cited, including ours, were fine-tuned to align with 

their respective applications. It is worth noting, however, that the approach outlined in our study 

benefits from rigorously testing across standards and real-world samples, reinforcing its 

applicability and leading to a higher confidence in its efficacy for routine lipidomic analyses. 

 

2.3.2. Saliva Sample SPV Normalization for LC-MS Analyses 

The fully optimized SPV method (Figure 2.7) was applied to five-fold concentrated saliva 

samples obtained from a female and a male volunteer at three different time points (morning, 

afternoon, and evening). Sample normalization was performed by injection of the same number of 

moles of lipids from each sample, which corresponded to different injection volumes. First, we 

determined the total lipid content of a pooled saliva sample through the optimized SPV method 

with oleic acid as the normalization standard (0.578 mmol/L). The ideal injection amount for this 

pooled sample was determined based on the number of detected features and summed intensities 

(total intensities for all detected chromatographic peaks), being 3.47×10-6 mmol for positive 

ionization (6 µL injection of the lipid extract with total lipid content of 0.578 mmol/L) and 

5.78×10-6 mmol for negative ionization (10 µL injection), with injection volumes for pooled 

samples being 6 and 10 µL for positive and negative ion modes respectively. These ideal injection 

amounts were then used to determine the optimum injection volume of each individual sample 

based on their total lipid contents.  
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The total lipid content of each individual sample was determined using the optimized SPV 

method (between 0.354 and 1.411 mM). Subsequently, the ideal injection volume was calculated 

for each sample to match the previously determined optimal injection amounts of 3.47×10-6 mmol 

for positive ionization and 5.78×10-6 mmol for negative ionization, i.e., different volumes of each 

sample were injected to achieve the analysis of the same number of moles of lipids (2 to 17 µL). 

For example, the sample coded as “F1” had a total lipid concentration of 0.459 mM. To achieve 

the optimal injection of 3.47×10-6 mmol for positive ionization, we injected 7.5 µL of that sample 

(Table 2.3). Injecting the same amount of analyte (in moles) from each sample ensures consistency 

and comparability across all samples. This minimizes variations from different concentrations, 

improving accuracy and reliability. Standardizing the number of moles injected also helps to 

improve measurement precision and reproducibility, as instrument response and ion suppression 

will be similar across all samples. 

A potential pitfall of injecting different sample volumes is the size of the injection plug in 

the chromatographic column, which can affect peak shapes and separation. Alternatively, the 

sample could have been diluted or concentrated to the same concentration before injection. 

However, this alternative procedure could introduce more variability and potential errors. Dilution 

might lower concentrations below detection limits, making low-abundance lipids hard to quantify. 

Concentrating samples could cause lipid degradation, matrix effects, or detector saturation, leading 

to inaccuracies. Injecting different volumes to achieve the same moles of lipids ensures optimal 

analysis conditions, maintaining the accuracy and integrity of lipid quantification. 

The normalized samples (i.e., injections of different volumes to amount to the same number 

of moles) were compared to non-normalized samples (same injection volumes for all samples). A 
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total of 6 µL of the non-normalized samples was used in the positive ion mode and 10 µL in the 

negative ion mode, while injection volumes ranged from 2 to 17 µL for normalized samples. All 

injection volumes and lipid concentrations are detailed in Table 2.3. 

Table 2.3. The injection volume, total lipid concentration, summed intensity in both polarities, and 

optimized number of moles were used to inject SPV-normalized saliva samples. 

Sample code 

Injection volume (µL) Extract 

concentration 

(mM) 

Number of moles injected 

(mmol) 

Positive 

ion mode 

Negative 

ion mode 

Positive ion 

mode 

Negative ion 

mode 

Pooled sample 6.0 10.0 0.578 

3.47×10-6 5.78×10-6 

F1 5-fold con. 7.5 12.6 0.459 

F4 5-fold con. 4.7 7.9 0.733 

F6 5-fold con. 3.7 6.2 0.926 

M2 5-fold con. 6.7 11.2 0.515 

M3 5-fold con. 7.2 12.1 0.478 

M5 20-fold con. 5.2 8.7 0.665 

F2 10-fold con. 5.6 9.4 0.615 

F3 5-fold con. 2.5 4.1 1.411 

F5 5-fold con. 7.4 12.4 0.466 

M1 5-fold con. 9.8 16.3 0.354 

M4 5-fold con. 9.6 16.0 0.360 

M6 10-fold con. 8.6 14.3 0.404 

F – Female sample; M- Male sample; con. – concentrated. 

 

We compared the results obtained for normalized samples (injections of the same molar 

amounts from each sample, resulting in different injection volumes) with LC-MS analyses of non-
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normalized samples, which were obtained by injections of the same volumes of each sample (6 µL 

of the non-for positive ionization and 10 µL for negative ionization). Figure 2.8 compares the 

number of features and total intensities (the summed intensities for all detected features) between 

SPV-normalized and non-normalized samples. The observed variation between detected features 

and summed intensities is reduced for the SPV-normalized saliva samples than for the non-

normalized samples, which is also observed for the summed intensities.  This indicates that the 

SPV normalization helps obtain a more similar number of features and summed intensities for all 

samples, demonstrating the adequacy and validity of this method for lipid normalization before 

LC-MS analysis.  
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Figure 2.8. Detected features and summed intensities for normalized and non-normalized samples. a) Detected features for non-

normalized and normalized saliva samples; b) Summed intensities for non-normalized and normalized saliva samples. 

 

When comparing the number of detected features, a difference greater than 2-fold can be 

observed among the non-normalized samples (Figure 2.8.a blue), with the number of features 

ranging from 5,000 to 12,000. In contrast, for normalized samples (Figure 2.8.a gray), it went from 

6,000 to 8,000. Similarly, the summed intensities varied significantly for the non-normalized 

samples (Figure 2.8.b blue), while smaller variations were observed for the normalized samples 

(Figure 2.8.b gray). Since samples were normalized by the number of injected moles, using the 

QC as a reference, it was expected that, for the normalized samples, both detected features and 
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summed intensities would be similar to those observed in the QCs, which indeed happened since 

variations became more subtle in the normalized samples. Samples that were more concentrated 

than QCs had fewer detected features after normalization. Furthermore, when comparing inter-

sample variability, normalized samples showed a significant reduction in RSDs compared to the 

non-normalized samples. The RSD for the number of detected features decreased from 26% to 

5%, and the RSD for summed intensities dropped from 38% to 16%. These findings show that 

normalization significantly reduces variability and enhances consistency in lipid analysis. 

Normalized samples had fewer variations in detected features and summed intensities, making the 

analysis more reliable. 

In biomarker research, we usually opt for maximizing the detection of a higher number of 

features or more intense signals (higher summed intensities) to ensure the best sensitivity, as that 

approach means a better chance to identify biomarkers usually present in small concentrations. 

However, if the samples are too concentrated, the results will be impaired by detector saturation, 

ion suppression, lipid aggregation, and alterations in the extraction efficiency. For this work, we 

normalized the samples based on the pooled QC to ensure good analytical performance. 

Normalization based on the most or the least concentrated sample may be suitable for different 

applications. In turn, the increased ion suppression will reduce the detected species, reducing the 

chances of identifying lipids present in lower concentrations and affect quantification 

performance102. 

Normalized and non-normalized datasets were aligned and processed separately. For non-

normalized samples, a total of 12,788 features were detected in positive and negative ionization 

modes after polarity merging for the saliva samples. These included 9,156 on positive and 3,632 
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on negative ionization. Regarding lipid annotation, 616 lipid species were annotated by MS/MS 

match, including 459 lipids in tier 1 (MS/MS score >500) and 152 lipids in tier 2 (MS/MS score 

<500) for non-normalized saliva samples. The remaining 12,172 features previously not annotated 

were searched in the LipidMaps database for putative annotations by accurate mass-match (tier 3), 

which resulted in another 2,008 lipid annotations (with an m/z tolerance of 5.0 mDa). Similarly, 

12,580 features were detected in both ionization modes for the normalized dataset, composed of 

9,095 on positive and 3,485 on negative ionization. For this dataset, 589 features were annotated 

by MS/MS match, including 445 in tier 1 and 144 in tier 2. The 11,991 features not annotated by 

MS/MS match were searched in the LipidMaps database for putative annotations, resulting in 

2,315 lipid annotations. All lipid annotations, mass errors, and MS/MS scores for this study can 

be found in Supp. Table 6 for non-normalized samples and Supp. Table 7 for normalized samples. 

Some MS/MS-annotated features (tier 1 or 2) were excluded from the statistical analysis since they 

were not annotated as lipids (medications, other metabolites, and contaminants from sample 

preparation). 

Out of the 14 deuterated lipids contained in the standard mixture, twelve were detected, 

with a maximum m/z error of 3.5 ppm (Figure A.1). Annotated compounds were matched to one 

of the internal standards for normalization, according to lipid subclass and retention time range. 

Since internal standards were added before lipid quantification, all samples had the same amount 

(number of moles) of internal standards added to them, regardless of total lipid content. However, 

because different injection volumes were used for each sample, the variation in peak intensities of 

the internal standards from sample to sample was significant, introducing variability in 

quantification.  
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A pooled saliva sample (QC) was used to verify the reproducibility of injections and 

extractions. Following data processing, the annotated lipids displaying RSDs higher than 30% for 

the QC experimental replicates were excluded due to low experimental reproducibility.  

Multivariate statistical analysis was performed for normalized and non-normalized 

samples to assess the effects of the two conditions evaluated in this study (sex and sample 

collection time). Both conditions are known to cause alterations in the lipid profile of samples 

134,135. The PCA plots without (Figure 2.9.a) and with normalization (Figure 2.9.c) show the QC 

injections tightly clustered, which indicates excellent technical reproducibility. However, 

differences in sample clustering and statistical analysis can be overcome when both methods are 

compared. For the non-normalized samples (Figure 2.9.a), the PCA plot shows that the male 

samples (green) have a slight separation on the first principal component (PC1), and the female 

samples (red) have a separation on the second principal component (PC2). The same behaviour 

can be observed for the male samples in the normalized dataset, which have a slightly lower overall 

variation on the PC1 and marginally higher on the PC2 (Figure 2.9.c). The present findings 

demonstrate that SPV normalization does not affect the separation between samples with different 

biological characteristics while ensuring that lipid concentrations remain similar across all 

samples. The procedure guarantees optimal analytical performance without interfering with the 

samples' natural biological differences. This finding strongly supports the suitability and potential 

adoption of the normalization technique in forthcoming biomarker discovery investigations. It is 

crucial to acknowledge the significance of this approach, as previous research has emphasized the 

influential role of biological sex in the exploration and interpretation of salivary biomarkers161,162. 
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Figure 2.9. Statistical analysis for lipidomics of saliva normalized and non-normalized samples when grouped by sex. a) PCA score 

plot for non-normalized saliva samples with 3 QCs; b) PLS-DA score plot build for five components for non-normalized samples, 

resulting in R2: 0.9995; Q2: 0.5473 and p= 1 for 1000 permutations; c) PCA score plot for normalized saliva samples with 3 QCs;  

d) PLS-DA score plot build for five components, for normalized samples, resulting in R2: 0.9985; Q2: 0.3994 and p= 1 for 1000 

permutations. 

 

 The PLS-DA cross-validation results showed relatively low Q2 values for both the non-

normalized and normalized datasets (0.5473 and 0.3994, respectively), indicating overfitting in 

both statistical models. Despite the overfitting, the PLS-DA plots demonstrate clear and distinct 
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separation between the groups. However, the low Q2 values suggest that biological sex alone does 

not adequately explain the variability in the data. Other factors, such as the time of sample 

collection or the hydration habits of the volunteers, may have also influenced the lipid profiles 

observed. This study was intended as a pilot study, focusing on adequate sample handling and 

analysis to optimize the protocol for saliva samples for future projects. Consequently, a small 

number of biological replicates (N=1) was used for each collection point, which may reduce the 

reliability of the statistical models employed in the study. 

We also evaluated how the collection period affects the statistical analysis of the lipidome 

profile in saliva samples. The PCA and PLS-DA score plots in Figure 2.10 differ from those in 

Figure 2.9 since samples are grouped by collection time instead of sex. When comparing both PCA 

plots, the morning (dark blue) and evening (green) normalized samples in Figure 2.10.c have a 

smaller variation on the first principal component (PC1) than their counterparts in the non-

normalized dataset in Figure 2.9.a. However, for the morning samples, a greater variation is seen 

in the second principal component (PC2) for the normalized samples. In contrast, the afternoon 

samples (red) show a smaller variation in PC2 when comparing normalized and non-normalized 

samples, respectively.  
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Figure 2.10. Statistical analysis for lipidomics of saliva normalized and non-normalized samples when grouped by sampling time. 

a) PCA score plot for non-normalized saliva samples with 3 QCs; b) PLS-DA score plot build for five components for non-

normalized samples, resulting in R2: 0.9995; Q2: 0.6334 and p= 1  for 1000 permutations; c) PCA score plot for normalized saliva 

samples with 3 QCs; d) PLS-DA score plot build for five components, for normalized samples, resulting in R2: 0.9999; Q2: 0.6935 

and p= 0.587 for 1000 permutations. 

 

PLS-DA plots have low Q2 values (0.6334, and 0.6935 for non-normalized and normalized 

data, respectively). The low Q2 values suggest the overfitting of the statistical model, which 

indicates that this model cannot accurately predict the class of the samples when grouped by 
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collection time. On the other hand, both have R2>0.995, which indicates that the lipidome 

variations are highly explained by the sample collection time. Both PLS-DA plots show significant 

separation between the three collection points. Still, the normalized samples are displayed in 

tighter groups. Hence, the normalization procedure emphasized the biological differences between 

the investigated samples without introducing biases. Saliva samples vary significantly in lipid and 

metabolite concentrations; thus, analyzing it without previous content normalization can introduce 

bias or complicate biomarker discovery8. 

The small number of biological replicates (N=1) may cause decreased reliability of the 

statistical models applied herein. Hence, we further performed univariate statistics using Volcano 

plots. The volcano plot for non-normalized saliva samples, regardless of sex or collection time, 

(Figure A.2.a) shows that 564 lipid species were significantly changed, with PC, Cer, TG, DG, PE, 

SM, and HexCer being the lipids classes with the highest numbers of significantly changed lipid 

species. On the other hand, in the volcano plot for normalized saliva samples (Figure A.2.b), 

showed 171 altered lipid species, with PE, HexCer, and PC representing the most significant 

changes.  

Figure 2.11 shows a comparison between the number of annotations in each subclass for 

normalized and non-normalized datasets, as well as highlights the number of statistically different 

annotations for each method (Figure 2.11.b). These graphs show that the number of annotations 

for each subclass is similar with and without normalization before LC-MS analysis, corroborating 

the theory that sample normalization does not add bias to the analysis. However, when looking at 

the annotated lipid subclasses which were statistically different using the volcano plot analysis, we 

see that the number of altered lipids is noticeably higher for some subclasses, such as Cer, DG, 
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PC, SM, and TG. These results show that normalizing the samples reduces the number of 

significantly altered species compared to non-normalized samples, indicating an inflated number 

of statistical changes when no normalization is applied. Furthermore, significant changes observed 

in specific lipid species in this study can be attributed to factors related to sample handling, 

biological variability, and the physiological roles of these lipids. Proper normalization helps to 

highlight these changes by reducing technical variability, thereby providing a clearer picture of the 

biological differences. 



Chapter II 

82 

 

 

Figure 2.11. Comparison of annotated lipid subclasses present in non-normalized and normalized datasets. a) All subclasses 

annotated; b) Subclasses that were statistically significant in the Volcano plot (p<0.05 and FC <0.67 or FC.> 1.5). 
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2.3.3. Cell Lysis Optimization 

After the pilot study for saliva samples, the SPV method was applied in cell pellets. The 

main goal was to determine the number of cells in unknown samples when cell counting is not 

possible or practical to allow normalization to the same concentration (number of cells/µL). First, 

the sample preparation method was briefly optimized. Three cell lysis methods were evaluated, 

including bead-assisted lysis, solvent-mediated lysis, and freeze/thaw cycles, based on the number 

of features, summed intensities, experimental variabilities, and reproducibility. Each lysis method 

was applied to two MCF-7 cell pellets containing approximately 2x106 cells, and extractions were 

performed in duplicates. Student’s t-test, PCA, and PLS-DA were used to evaluate possible 

statistical differences among the methods.  

Figure 2.12 shows the total number of detected features and total summed intensities (i.e., 

the summed intensities for all detected features) for each method and Figure 2.13 displays the PCA 

scores plot. We observed that bead-assisted lysis yields a higher number of features and improved 

summed intensities, as well as lower variation between experimental replicates. Although the 

freeze/thaw method is widely used for cell lysis, it resulted in lower reproducibility for untargeted 

lipidomics, with RSDs of 27% and 48% for the number of detected features and summed 

intensities, respectively. We found no significant differences when freeze/thaw was compared to 

both bead-assisted extraction and LLE, but these methods had RSDs of 6% and 7% for the number 

of detected features and 8% and 16% for summed intensities, respectively (Supp. Table 8). While 

cost-effective, the freeze/thaw approach can lead to biomolecule degradation and incomplete lysis 

due to repeated thermal stress, possibly explaining its lower efficiency in feature detection and 

intensity summation163. The high RSDs combined with the reduced number of detected features 
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and summed intensities indicate that the freeze/thaw method is not ideal for lipidomics, and 

alternative approaches should be considered if feasible for the intended purposes. 

The bead-assisted lysis requires the use of disposable ceramic beads and a bead-beater 

device, being less cost-effective than the other methods. Still, it provided a higher number of 

detected features and summed intensities for lipidomics. The mechanical disruption of cellular 

structures is effective at breaking down membranes and strong protein-lipid and protein-protein 

interactions, which may not be disrupted by gentler methods such as vortex-assisted LLE without 

beads164,165.  LLE can be considered a middle ground between freeze/thaw and bead-assisted 

extraction since it will not have the drawbacks from thermal stress and the associated cost with 

beads and bead beater homogenizers. Differences between LLE and bead-assisted extraction are 

not statistically significant, and they have similar RSD for the number of detected features, 

although the RSD for summed intensity is slightly higher for LLE. In conclusion, lipid extraction 

using only solvents yields similar features and summed intensities when compared to bead-assisted 

extraction, showing the potential of mechanical methods in enhancing lipid recovery165. 
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Figure 2.12. Comparison among different cell lysis methods using four cell samples each as of a) Number of detected features for 

lipid extractions under different conditions; b) Summed intensities for lipid extractions under different conditions. 

 

 Since the sample preparation study was only a small part of a larger project, the sample 

size was limited, resulting in only two biological replicates (with three injections each). The PCA 

score plot (Figure 2.13) shows that samples extracted using LLE have the lowest variation for both 

PC1 and PC2. After carefully considering the acquired data, the chosen method for sample 

preparation was a traditional LLE extraction, using only solvents without any further assistance 

from freeze/thaw or beads. 
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Figure 2.13. PCA score plot for different sample preparation techniques for cellular lipidomics using four biological replicates with 

three experimental replicates for each condition. 

 

2.3.4. SPV Normalization of Cell Pellet for LC-MS 

The SPV method was employed to determine the number of cells in unknown samples 

from different cell lines (MCF-7 and A549). We first employed the SPV method using MCF-7 

pellets to construct a calibration curve correlating the number of cells with lipid concentration 

(Figure 2.14). All samples were analyzed in triplicates, and the RSD for the estimated cell numbers 

ranged from 2 to 29%. The number of cells in unknown samples was then calculated based on this 

analytical curve, and samples were diluted to have the same number of cells per microliter before 

injection. Samples were analyzed as normalized and non-normalized to evaluate improvements in 

lipid profile. Figure 2.14.a  shows the calibration curve using MCF-7 cells and the concentrations 
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calculated for each sample. All samples were analyzed in triplicates, and the RSD for the estimated 

cell numbers ranged from 2 to 19%. 

 

 

Figure 2.14. The relationship between the number of cells in pellets and lipid concentration is determined by SPV. a) Calibration 

curve using MCF-7 cell pellets as a calibrant standard (y=1.00x + 0.3033 R2=0.9919); b) Average number of cells in each cell 

pellet. 

 

Following SPV quantification, the analytical curve was employed to determine the number 

of cells in unknown samples. Unlike what was previously done for saliva samples, the goal was to 
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inject the same volume of every sample. The approach changed because sometimes a very high 

(>15 µL) or very low (<2 µL) volume will be needed to achieve the same concentration for all 

samples, which results in additional sample preparation steps. Additionally, when injecting high 

volumes, chromatograms are susceptible to peak broadening, splitting, and tailing, which makes 

data alignment more challenging157.  

Non-normalized cell samples were extracted, resuspended to 9:1 MPA/MPB, and analyzed 

by LC-MS. Alternatively, normalized samples were diluted to the same concentration (number of 

cells/µL) before analysis. We injected volumes of 4 and 12 µL for both normalized and non-

normalized samples for positive and negative modes. The acquired data was subsequently aligned 

in MetaboScape 4.0, and lipid annotation was performed as described by Zardini Buzatto et al. 

(2021)103. After alignment, 7,938 features were detected after polarity merging, of which 4,847 

were detected in positive ion mode, and 3,091 were detected in negative ion mode. MS/MS 

annotation yielded 1,169 annotations, 1,057 of those tier 1 (MS/MS score > 500) and 112 tier 2 

(500 > MSMS score > 100). The remaining features not annotated were searched against the 

LipidMaps database for accurate mass match annotation (mass error < 5mDa), which resulted in 

686 annotations. Figure 2.15 shows the lipid subclass distribution of the annotated species for cell 

samples, and a list of all annotations can be found in Supp. Table 9. 
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Figure 2.15. Distribution of lipid annotations across lipid subclasses and annotation tiers. Tier 1 annotations were MS/MS matches 

with scores higher than 500, Tier 2 were MS/MS matches with scores between 100 and 500, and Tier 3 were mass match 

annotations. 
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 Twelve internal standards (out of 14) were annotated with a maximum m/z error of 1.0 

ppm for positive and 1.2 ppm for negative ionization (Figure A-1). Internal standard normalization 

was performed by matching each annotated lipid to the most similar internal standards, always 

observing lipid subclass and retention time range. Four annotated features in tiers 1 and 2 (MS/MS) 

that were not lipids were excluded from the statistical analysis. Quality control was performed by 

analyzing pooled samples (QC) for every batch of 10 samples to verify the reproducibility of 

injections and extractions experimental reproducibility. Features with RSD higher than 30% for 

the QC replicates were excluded before statistics due to low experimental reproducibility. 

Statistical analysis was performed on the annotated features with RSD lower than 30% in the QC 

samples. 

The PCA scores plots for non-normalized (Figure 2.16.a) and normalized samples (Figure 

2.16.c) show tightly clustered QC injections in both datasets, suggesting technical reproducibility. 

However, sample normalization before LC-MS lipidomics affects sample clustering, as samples 

appear more clustered in the normalized PCA plot (Figure 2.16.c) than in the non-normalized plot 

(Figure 2.16.a). Although the QC samples in Figure 2.16.c are somewhat spread out, indicating 

variability, the overall clustering of the normalized samples shows improved grouping by cell line. 

Both MCF-7 (green) and A549 samples show lower PC1 and PC2 variations in the normalized 

dataset, suggesting that normalization can reduce bias regarding lipid concentration (or number of 

cells) in these samples. Furthermore, cell samples are to be clustered by cell line in both non-

normalized and normalized datasets, which indicates that normalization does not add a bias to the 

samples regarding which cell line they belong to. PLS-DA models for both datasets were also 
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evaluated (Figure 2.16.b and Figure 2.16.d); however, not much information was obtained, 

considering both models had high R2, Q2, and p>0.05. 

 

 

Figure 2.16. Statistical analysis for cellular lipidomics, comparing normalized and non-normalized cell pellets of different cell 

lines. a) PCA score plot for non-normalized cell samples with 12 QCs; b) PLS-DA score plot build for five components for non-

normalized samples, resulting in R2: 0.9998; Q2: 0.9585 and p= 1 for 1000 permutations for non-normalized samples; c) PCA score 

plot for normalized cell samples with 12 QCs; d) PLS-DA score plot build for five components, for non-normalized samples, 

resulting in R2: 0.9999; Q2: 0.9877 and p= 0.001 for 1000 permutations for normalized samples. 

 

a) b)

c) d)
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We frequently use statistical models to identify significantly altered lipids, which may 

indicate underlying biological processes. Due to the small number of biological replicates (N=1) 

in this study, the reliability of these models is limited. However, this project serves as a proof of 

concept to ensure proper sample handling and analysis for future research. Therefore, we 

conducted a univariate statistical analysis using volcano plots (Figure A.3) to compare non-

normalized and normalized samples for both MCF-7 and A549 cells. Figure 2.17 shows a 

comparison of the number of significantly different lipid species in normalized and non-

normalized datasets. Non-normalized samples had 609 significantly altered lipid species, whereas 

normalized samples had 632. When looking into the lipid annotation distribution, although Figure 

2.17 shows some variations, we can see that most lipid subclasses follow similar profiles. 

Furthermore, when looking at the individual annotations, only 27 that were present in the non-

normalized dataset were not present in the normalized dataset, those belonging to Cer, DG, PC, 

PE, PG, and PS lipid subclasses. This comparison indicates that both normalized and non-

normalized samples have very similar behaviors. While normalization aids us in ensuring 

robustness and reproducibility from sample to sample, it does not create a bias in the statistical 

analysis. 
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Figure 2.17. Comparison between the number of lipid annotations present in each subclass for MCF-7 and A549 cell lines in 

normalized and non-normalized conditions.  
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2.4. Conclusions  

This study presents an adaptation of the SPV method, meant to address sample 

normalization to achieve a uniform concentration of total lipid content in biological samples for 

lipidomic analysis. Our findings show that our optimized method speeds up normalization, 

increases sensitivity, and decreases the LOD compared to prior optimizations. By applying this 

method to real-world samples, we confirmed that this protocol avoids introducing any bias into 

the analysis and eliminates biases caused by subtle differences within the samples. 

Previous studies have also optimized this method for lipidomic workflow. However, this 

optimization is one of the few to have been employed in a pilot study and have multivariate and 

univariate statistical analysis performed. Additionally, this optimization allows for a broad 

concentration range (from 0.009 to 3 mM) without displaying any decrease in reaction efficiency, 

sensitivity, or reproducibility. To ensure the method’s applicability, these studies were conducted 

and validated using different sample types to provide a comprehensive assessment, ranging from 

serum for validation and extending to saliva and cell samples for applications. The applications 

shown in this study corroborate the methods’ capability of addressing normalization needs across 

a diverse range of sample types.  

However, this method still presents limitations, one of which is its time-consuming nature. 

This limitation may restrict its application in some situations, requiring caution. Yet another 

limitation is that this method may not be suitable for very diluted samples, such as extracellular 

vesicles, single-cell, or spheroid samples. Although the limit of detection was significantly 

improved with our modifications, it is still not low enough to accurately quantify samples that are 

so diluted. 



Chapter II 

95 

 

In conclusion, this work presents an optimized version of the Sulfo-phospho-vanillin 

method, offering an alternative path for sample normalization that uses lipids instead of proteins 

or metabolites for lipidomic studies. Using the SPV method helps reduce bias and improves the 

reliability of studies, showing its value in lipidomic studies. 
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III 

Chapter III: Lipidomic Profiling of Human Saliva: Effects of Normalization 

Methods and Experimental Conditions  

 

3.1. Introduction 

Lipidomics is a field that focuses on the role of lipids within biological systems. Over the 

past two decades, its research importance has increased significantly due to its role in identifying 

and explaining complex pathways in different health conditions5,166,167. Lipidomics studies often 

use serum or plasma samples; however, saliva offers unique advantages due to its non-invasive and 

easy collection methods, making it interesting for diagnostic purposes14,17,70,168. 

Saliva is a biofluid that contains a wide range of biomolecules, including proteins, nucleic 

acids, metabolites, and lipids. It is also known to reflect local and systematic health conditions and 

is sometimes considered an ultrafiltrate of plasma, highlighting its value as a diagnostic tool. 

Furthermore, saliva collection can be particularly advantageous in some scenarios, such as 

longitudinal studies that require frequent sampling. Moreover, people with a fear of needles are 

more likely to participate in studies if saliva collection is used instead of blood, and children often 

find blood draws distressing, so using saliva as a sample makes participation more comfortable and 

less intimidating17,161,168. 

Lipid concentrations in biological fluids are susceptible to change due to a broad range of 

factors, such as diet, health conditions, biological sex, physical activity, and environmental factors.  

Ishikawa et al. (2014) reported differences in lipid composition found in human blood and that 
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these were related to the age and biological sex of participants. Moreover, studies by Mielgo-Ayuso 

et al. (2013) showed alterations in lipid compositions due to diet and physical activities. Therefore, 

although studies have also shown that saliva can be used as a diagnostic biofluid instead of blood, 

these concentration variations must be addressed for accurate lipid profiling17,134–136,161,168,169.  

When using saliva samples for diagnostic purposes or biomarker discovery, intrasample 

variations should be minimized, lowering the chance of interference or false positives. One 

alternative is sample normalization before LC-MS analysis, a common practice for lipidomics and 

metabolomics, given that different studies have reported significant changes across different 

samples within the same study77,136,137. However, significant discussion has arisen on which 

normalization method is more suited for lipidomics sample normalization. Studies have normalized 

sample concentration using various techniques, such as gravimetric normalization and equalizing 

sample amounts before lipid extraction. Moreover, studies also used protein, DNA, or metabolite 

concentration, assuming a linear relationship between these and lipids139,170–172. 

Furthermore, Bailey et al. (2022) and Wu & Li (2014) highlight the importance of choosing 

an adequate method for sample normalization77,137. One popular way to measure metabolite 

concentration is by using ninhydrin to detect amino acids. Briefly, the amino group of an amino 

acid reacts with ninhydrin to form an intermediate (Schiff base).  This intermediate reacts with a 

second ninhydrin molecule, creating an intermediate compound (dihydroxy indene-dione). This 

compound undergoes rearrangement to form the final product (Ruhemann's purple). The intensity 

of this colour is directly proportional to the amount of amino acid present, with colours varying 

from pale yellow for low-concentrated samples to dark purple for high-concentrated 

samples137,173,174.  
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However, some studies suggest that using metabolite or protein concentration methods to 

infer lipid concentration might lead to data misinterpretation. Phosphatidylcholine (PC) is one of 

the most abundant lipid subclasses in mammalian samples, a major component of the cell 

membranes. However, it does not have an amino group in its structure and, therefore, would not 

react with ninhydrin to form the purple-colored product. Similarly, Phosphatidylinositol (PI), 

Phosphatidylglycerol (PG), Cardiolipin (CL), Sterol lipids (ST), and Glycerolipids (MG, DG, and 

TG) are unlikely to undergo reaction with the ninhydrin unless they have structural modifications. 

Therefore, the ninhydrin reaction may present challenges in properly quantifying lipid content, as 

it cannot react with some of the most abundant lipid species1,110,136,175–178.  

Alternatively, a quantification method tailored for lipids would mitigate these issues and 

more accurately describe the lipid composition of the samples. The Sulfo-phospho-vanillin assay 

(SPV) has been previously used in lipidomic LC-MS studies and yielded lower data variations with 

higher reproducibility. As proposed by Chabrol & Charonnat (1937), in this assay, a double bond 

within the lipid backbone reacts with sulfuric acid (H2SO4), forming an intermediate that reacts 

with the phospho-vanillin reagent. The pink-colored compounds indicate the amount of lipid 

species present in the sample77,149. Studies have estimated that the mammalian lipidome comprises 

around 60% of lipid molecules with at least one double bond. Therefore, the SPV assay reacts with 

a significant amount of the lipid content of the sample34,151,154.  

The advantages and disadvantages of using total metabolite concentration (TMC) and total 

lipid concentrations (TLC) to profile saliva sample lipidomics were assessed herein. Furthermore, 

annotated lipid features were compared, and the effects of normalization before LC-MS analysis 

on lipid annotation in these samples were evaluated. 
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3.2. Experimental 

3.2.1. Reagents and Equipment 

Ascorbic acid (99%) was purchased from Alpha Aesar (Haverhill, Massachusetts, United 

States), Sodium acetate (Fisher, Waltham, Massachusetts, United States), Acetic acid, LC-MS 

grade acetonitrile (ACN), methanol (MeOH) and dichloromethane (DCM) were purchased from 

Honeywell (Charlotte, North Carolina, USA). Ammonium formate (mass spectrometry grade), 

ethanol (95% v/v, EtOH), LC-MS grade water (H2O), and isopropanol (IPA) were purchased from 

Sigma-Aldrich (St. Louis, Missouri, USA). Ninhydrin and LipidRep Internal Standard Basic Mix 

for Serum/Plasma (NovaMT from Nova Medical Testing, Edmonton, AB, Canada). The 

composition of LipidRep is shown in Table 3.1. 
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Table 3.1. List of Lipid Standards present in the NovaMT LipidRep Internal Standard Basic Mix. 

Lipid Species Chemical Formula Exact Mass Concentration (mg/mL) 

[D5]LPC 18:1 C26H47D5NO7P 526.37898 1.01 

[D5]LPE 18:1 C23H41D5NO7P 484.33203 2.70 

[D5]MG 18:1 C21H35D5O4 361.32350 3.25 

[D3]FA 16:0 C16H29D3O2 259.25851 3.75 

[D5]PI 16:0_18:1 C43H76D5O13P 841.57232 3.37 

[D5]PG 16:0_18:1 C40H72D5O10P 753.55627 3.90 

[D5]PS 16:0_18:1 C40H71D5NO10P 766.55152 3.15 

[D3]ST 27:1;O (cholesterol-d3) C27H43D3O 389.37315 3.50 

[D5]PA 16:0_18:1 C37H66D5O8P 679.51949 3.50 

[D3]Cer 16:0/18:1 C34H64D3NO3 540.53038 1.95 

[D5]PC 16:0_18:1 C42H77D5NO8P 764.60864 1.65 

[D5]PE 16:0_18:1 C39H71D5NO8P 722.56169 4.00 

[D5]DG 16:0_18:1 C37H65D5O5 599.55316 1.35 

[D5]TG 16:0_18:1_16:0 C53H95D5O6 837.78283 3.75 

[D3]CE 18:1 C45H75D3O2 653.61846 3.50 

 

3.2.2. Study Design and Sample Collection 

Saliva samples were collected from six healthy volunteers (three males: MA, MB, MC, and 

three females: FA, FB, FC) under three conditions: morning (no food or water), morning (after 

drinking two glasses of water), and evening (two hours after dinner). Morning (no food or water) 
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samples were collected immediately upon waking, before consuming food or water or brushing 

teeth. For the morning (after water) condition, participants drank two glasses of water upon waking 

before collection. Evening samples were collected two hours after dinner. Participants spat into 

sterile 50 mL polypropylene tubes, stored at -20 °C, and transported to the lab on ice. 

Morning (no food or water) samples were diluted with 20% ethanol in 1:1, 1:2, 3:2, and 

undiluted (raw sample) ratios. Samples were aliquoted and stored at -80 °C for analysis. Two blank 

samples per condition ensured accuracy and reliability. The dilution with 20% ethanol mimicked 

commercial saliva collection kits, which stabilize and preserve samples by maintaining pH, 

preventing bacterial growth, and stabilizing proteins and enzymes. Since these kits are 

commercially available and well-known to clinicians and researchers, they would be a viable option 

for collecting saliva samples for future assays.  This study aimed to assess how different dilution 

ratios affect analytical outcomes, providing insights into the impact of commercial kits on sample 

quality and analysis results156,179,180. 

 

3.2.3. Sample Preparation 

All samples were extracted using a modified Folch liquid-liquid extraction (LLE) method. 

A 40-fold sample/solvent ratio (saliva/2:1 dichloromethane/methanol) was used for all saliva 

samples and blanks. A pre-prepared mixture of fifteen deuterated lipid standards in 7:3 (v/v) 

dichloromethane/methanol (NovaMT LipidRep) was added to each sample before extraction, with 

concentrations adjusted to match the expected lipid class distribution. The Folch solvent ratios 

(8:4:3 DCM/MeOH/H2O) were maintained, using dichloromethane instead of chloroform to 

reduce carcinogenic risk and cost. The original Folch sample/solvent ratio (1:20) was adapted to 
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1:40 for miniaturized extractions of small sample volumes. The sample (21 µL) and internal 

standards mixture were vortexed for 20 seconds after the addition of each solvent, starting with 

278.7 µL MeOH, followed by 557 µL DCM, and finishing with a clean-up step with 187.9 µL 

water. The mixture equilibrated at room temperature (20-23 °C) for 10 minutes before 

centrifugation at 12,000 rpm and 4 °C for 10 minutes. An aliquot of the organic phase was 

evaporated to dryness under a gentle nitrogen flow at room temperature for 10 minutes. The dried 

residue was resuspended in a 42 µL of 4:1 MPA/MPB mixture before injection. Samples were 

stored in polypropylene inserts inside autosampler vials sealed with PTFE/silicone septa at 4 °C 

for a minimum of 4 hours (to ensure equilibrium) and a maximum of 24 hours (to minimize lipid 

degradation) before LC-MS analysis72,103. 

 

3.2.4. Total Metabolite Concentration (TMC) Determination 

TMC was carried out using an adapted protocol by Wu & Li (2014). Before quantification, 

a protein precipitation step was performed: 5 µL of saliva samples were mixed with 25 µL of EtOH 

in sterile micropropylene tubes. After vortexing the mix, samples were incubated at -20 ºC freezer 

for 1 hour and then centrifuged at 12,000 rpm for 15 minutes.  

After protein precipitation, a 20 µL aliquot of the supernatant was pipetted into a 

microplate, mixed with 120 µL of the reagent mix, prepared by combining a buffer solution of 

acetic acid and sodium acetate (pH = 5 and 0.04 M), ascorbic acid (3 mg/mL), and ninhydrin (30 

mg/mL) in a 1:2:3 (v/v/v) ratio, and incubated at 90 ºC for 20 minutes. After incubation, samples 

were cooled in the -20 ºC freezer for 5 minutes before adding 40 µL of cold EtOH. Absorbance 

was measured at 570 nm using a microplate reader. A mixture of amino acid standards was used 



Chapter III 

103 

 

as the external calibration standard, and an analytical curve was constructed by serial dilution of 

the standard mix solution137,181.  

 

3.2.5. Total Lipid Concentration (TLC) Determination 

TLC was determined using a method previously optimized, described in Chapter II. Briefly, 

a 20 µL aliquot of lipid extract (organic layer) was dried under a gentle nitrogen stream before the 

addition of 50 µL of concentrated H2SO4, followed by incubation at 90 ºC for 20 minutes and 

cooling at -20 ºC for 10 minutes. Then, 50 µL of the phospho-vanillin reagent (PV reagent) was 

added, and the mixture was incubated at 60 ºC for another 20 minutes. After incubation, the 

absorbances of the samples were determined using a microplate reader at 540 nm. Oleic acid was 

used as the external calibration standard, and an analytical curve was constructed as previously 

described in Chapter II77,149.  

 

3.2.6. LC-MS Analysis 

This study was subdivided into three phases. In Phase 1, lipidomic analysis was performed 

without normalization, using the same sample volumes and dilution factors. In Phase 2, before LC-

MS analysis, samples were normalized by TMC, where different volumes of samples were dried 

and resuspended to the same TMC before extraction, ensuring normalized extraction efficiencies, 

ion suppression, and aggregation effects. Finally, in Phase 3, normalization by SPV was employed, 

with samples dried and resuspended to the same lipid concentration before extraction to maintain 

consistent extraction efficiencies, ion suppression, and aggregation effects. 
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Injection volumes of 3 and 12 µL were used for positive and negative ion modes, 

respectively. The same injection volumes were used for non-normalized saliva samples to establish 

a baseline for comparison. Lipid extracts were then analyzed by reversed-phase (RP) ultra-high-

performance liquid chromatography (UHPLC) coupled to a high-resolution quadrupole-time-of-

flight (QToF) mass spectrometer with an electrospray ionization (ESI) source. Chromatographic 

separation was carried out using a Dionex 3000 system and a Waters Acquity CSH Premier C18 

column. The mobile phases consisted of MPA (10 mM ammonium formate in 50:40:10 

ACN/MeOH/H2O) and MPB (10 mM ammonium formate in 95:5 IPA/H2O). A gradient separation 

of 16 minutes was employed (0 min, 15% MPB; 0.5 min, 15% MPB; 2.3 min, 25% MPB; 9.3 min, 

42% MPB; 10.1 min, 78% MPB; 12 min, 90% MPB; 13 min, 98% MPB; 14.5 min, 98% MPB; 15 

min, 15% MPB) with a flow rate of 0.300 mL/min from 0 to 9.3 minutes, then decreasing to 0.270 

mL/min up to 10.1 minutes, and further reducing to 0.210 mL/min until the end of the run because 

of increased backpressures when using higher content of 2-propanol in the mobile phase mixture. 

A re-equilibration segment, with an increasing flow rate from 0.210 mL/min to 0.300 mL/min after 

2 minutes, was employed at the end of the separation (0 min, 15% MPB), and the column 

temperature was maintained at 45 °C throughout108. 

MS/MS qualitative information was obtained for all sample injections using auto-MS/MS 

mode, with a cycle time of 1.2 seconds and active exclusion of precursors detected for more than 

three consecutive spectra within 0.50-minute intervals. Injection volumes were adjusted for each 

polarity and application based on ionization performance and experimental goals. Samples and 

blanks were prepared and injected randomly, but normalized and non-normalized samples were 

consistently injected on the same day. A pool of aliquots from all samples was used for quality 

control (QC) and injected with each batch of 10 samples to ensure consistent quality control14,110. 
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3.2.7. Data Processing and Statistical Analysis 

Data processing was conducted using LipidScreener, an in-house developed, Python-based 

software specifically designed for the untargeted lipidomics workflow used by The Metabolomics 

Innovation Centre (TMIC, Edmonton, Canada). This comprehensive tool includes functionalities 

for mass recalibration, retention time correction based on internal standards, MS/MS fragmentation 

patterns, peak picking, alignment, data cleansing, polarity merging, lipid annotation, and 

normalization. The dataset was recalibrated using a sodium formate segment (1 mM sodium 

formate solution infused into the mass spectrometer in between the separation gradient and the re-

equilibration stage) with a 1 mDa m/z tolerance before data alignment. Peak picking was performed 

with a minimum intensity threshold of 3,000 counts and a minimum peak length of six spectra for 

both positive and negative ionization modes. Oligomers and multiple adducts were managed within 

a 20-ppm m/z tolerance. Aligned features were filtered for detection in at least 80% of injections 

within one group before merging the data from positive and negative ionization modes. 

A three-tier putative annotation approach was used for lipid annotation based on the 

acquired tandem mass spectrometry (MS/MS) spectra and mass match, following protocols of the 

Lipidomics Standards Initiative; however, this study did not address the positions of double bonds 

or the stereospecific configuration of glycerol derivatives103,182. Annotated lipids were categorized 

into subclasses in one of the eight main categories according to standard lipidomics practices 

previously established by the International Lipid Classification and Nomenclature Committee 

(ILCNC), the Lipidomics Standards Initiative, and the LipidMaps database27,36,118,178,182. 

Lipid annotations were obtained by comparing MS/MS libraries, such as the MS-Dial 

LipidBlast library (https://fiehnlab.ucdavis.edu/projects/LipidBlast), the Human Metabolome 
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Database (https://hmdb.ca), and the MassBank of North America L −MS/MS libraries 

(https://mona.fiehnlab.ucdavis.edu) with acquired MS/MS spectra. Annotations had at least a 40% 

similarity between experimental and library spectra, with a m/z tolerance of 5 mDa for precursor 

ions and 10 mDa for fragments. Annotated features underwent adducts, m/z error, carbon to double 

bond ratio, even or odd fatty acyl chains, structural modifications, plasmenyl presence, and 

expected ionization and detection efficiency for each lipid class filters to ensure accurate and 

reliable lipid annotation14,36,183–187. 

Variations during sample preparation and ion suppression effects were accounted for using 

a mixture of 15 deuterated internal lipid standards. Post-acquisition data normalization was 

performed by class-match by pairing annotated lipids with one of the internal standards from the 

same or the closest lipid subclass available. Normalized intensities were calculated by dividing the 

original peak intensity (peak height) of the annotated lipid by the peak intensity of the matched 

internal standard. The dataset was then normalized by the summed intensity ratios (total intensity) 

for all annotated features within each sample and auto-scaled before statistical analysis using 

MetaboAnalyst 6.0. Features with low experimental reproducibility (RSD > 30% for QCs) and 

unannotated features were excluded before statistical analysis.  

Multivariate statistical analysis included Principal Component Analysis (PCA) and Partial 

Least Square-Discriminant Analysis (PLS-DA), which were validated through leave-one-out cross-

validation and permutation tests (1000 permutations). R2, Q2, and p-values are provided in the 

figure captions. Volcano plot analysis was used for univariate statistical analysis. 
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3.3. Results and Discussions 

3.3.1. Sample Normalization 

For TMC, samples were subdivided into two batches of 25 and 24 samples. Figure 3.1.a 

shows the calculated metabolite concentrations for samples and blanks. In contrast, calibration 

curves for each batch are shown in Figure B.1. The calculated RSD (%) between the method blanks 

of the two batches was 10.1%, indicating good reproducibility. Supp. Table 10 lists the individual 

calculated concentrations (in mM) and the amounts aliquoted for each sample to ensure the same 

molar amount of lipids. Each aliquot was dried and resuspended to 21 µL before lipid extraction, 

resulting in the same total lipid concentration within each injected sample.  

On the other hand, samples were divided into three batches containing 15, 15, and 19 

samples for TLC determination, and their calculated lipid concentration for each sample and blank 

is shown in Figure 3.1.b. The calibration curves for each batch are shown in Figure B.2. Supp. 

Table 11 lists the individual calculated concentrations (in mM) and the amounts aliquoted for each 

sample, which was dried and resuspended to 21 µL before lipid extraction. 
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Figure 3.1. Calculated metabolite and lipid concentrations (mM) for saliva, QC, and blank samples.  a) Metabolite concentration 

was determined using the TMC method; b) Lipid concentration was determined using the TLC method. 
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Figure 3.1 shows the importance of normalizing sample concentration before LC-MS 

analysis, as concentrations vary significantly among samples. In blank samples, metabolite and 

lipid concentrations varied significantly and were sometimes higher than in actual samples, 

resulting in an elevated relative standard deviation (RSD) of 98% and 67%, respectively. This high 

RSD in blank samples can be due to several factors that impact measurement variability. Blanks 

serve as controls to provide a baseline for the method’s performance without the target analytes. 

However, residual contaminants, reagents, or background noise from the analytical process can 

introduce variability. Additionally, the low metabolite concentration in blanks often yields results 

close to the method’s detection limit, making them more prone to fluctuations and measurement 

errors. Most blank samples yielded negative or near-zero lipid concentrations, likely because the 

detectable lipids were below the detection limit77,137. 

The literature debates which method is more suitable for sample normalization before LC-

MS analysis. Studies have used protein, DNA, and metabolite concentrations to normalize lipid 

extracts. However, the correlation between those and lipids is unknown and may vary among 

different sample matrices170,171,188. When choosing which method to use for analyte quantification, 

several factors must be taken into account, such as limit of detection, sensitivity, specificity, sample 

preparation requirements, reproducibility, precision, and throughput189,190.  

With that in mind, our first comparison regarded each method’s detection limit. From the 

calibration curves generated in our experiments, we calculated that the LOD for the TMC method 

was 0.05 mM, whereas for the TLC method, it was 0.12 mM. This indicates that TMC is a superior 

method in terms of sensitivity since its LOD is 2.4-fold lower than the one for TLC. However, 

extremely low LOD is not often necessary. Therefore, the TLC method could be used in most 
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situations. Both methods were shown to be reproducible, as multiple batch analyses were 

performed, and all of them had similar results and low RSDs for the method blanks, 4.3% and 10% 

for TLC and TMC, respectively, indicating a slightly higher reproducibility to TLC method since 

its RSD is 2.3-fold lower than for TMC.  

Regarding sample preparation requirements, the TMC only needs a protein precipitation 

step before sample analysis. In contrast, TLC samples need to undergo LLE to extract lipids before 

quantification. That means that for TLC, in this proposed workflow, we would need two 

extractions, one for quantification and another for LC-MS analysis after sample normalization. In 

contrast, for TMC, we would only need to perform one extraction after sample normalization. 

Nevertheless, low throughput workflows should not significantly impact performance, as parallel 

LLE is possible, and four or five batches can be extracted in a day. However, when considering 

high throughput workflows, this would decrease efficiency. 

When evaluating specificity and selectivity, TMC is based on the reaction of ninhydrin with 

amino acids. It can react with other compounds that have an amino group present, including lipids. 

Considering the sample preparation before sample normalization by TMC, it is possible other 

compounds would react with the ninhydrin and thus generate an increased signal 174. On the other 

hand, the TLC method is based on the reaction between the phospho-vanillin reagent and a double 

bond within the analyte. Since it is performed after an LLE, the labeling is more specific to 

hydrophobic compounds, including lipids. It excludes most metabolites, proteins, and other 

potential interferents, making this approach more specific151.  

As outlined herein, each of these methods presents advantages and disadvantages; 

therefore, another factor to evaluate is how well they correlate. Ideally, using a lipid-specific 
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quantification method would be best. However, in a scenario where another method has similar 

performance and is less time-consuming or allows for high throughput if the correlation between 

the quantification results between both methods is high, this other method might be a suitable 

alternative77,137,138. Figure 3.2 displays the relationship between the quantification results for TLC 

and TMC. 

 

 

Figure 3.2. Relationship between metabolite concentration and lipid concentration in saliva samples (R2 = 0.7620). 
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these two measurement methods in these saliva samples. An R2 value of 0.7620 indicates that the 

TMC measurements can explain approximately 76.20% of the TLC variance. This correlation 

implies that TMC can reliably predict TLC results, supporting the potential use of TLC as an 
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indicates that TMC can be used alternatively when TLC is considered too time-consuming or 

impractical, especially when high-throughput quantification may be necessary 191. 

 

3.3.2. Lipidomics profile of saliva samples generated by UHPLC-QToF-MS 

Fourteen internal standards were detected in positive and negative ionization, with absolute 

values for m/z error inferior to 2.3 ppm (Figure B.3). The only standard not detected in the positive 

ionization mode was [D5]FA 16:0, while cholesterol was not detected in the negative ionization 

mode due to poor ionization. Because of their structural and chemical properties, FA and 

cholesterol were not expected to be detected in the respective polarities. 

The LC-MS analysis of saliva samples resulted in 9,055 detected features, including 4,594 

detected in positive ionization and 4,461 in negative ionization. Lipid annotation yielded 2,829 

annotations, including 1,162 in Tier 1 (MSMS score ≥ 500), 170 in Tier 2 (100 ≤ MSMS score < 

500), and 1,497 in Tier 3 (mass matched annotations), all with m/z error up to 6 ppm (Supp. Table 

12). The most abundant lipid category was Sphingolipids, with 34.3% of annotated species (968 

lipids) belonging to this category, followed by Glycerophospholipids with 30.1% of annotation 

(852 lipid species) and Glycerolipids with 24.1% of annotations (682 lipids, Figure B.4). Figure 

3.3 illustrated the lipid annotation distribution among the different lipid subclasses and annotation 

tiers. 
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Figure 3.3. Distribution of lipid annotations across lipid subclasses and annotation tiers. Tier 1 annotations were MS/MS matches 

with scores higher than 500, Tier 2 were MS/MS matches with scores between 100 and 500, and Tier 3 were mass match annotations. 
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Saliva can be considered an ultrafiltrate of plasma samples. However, we observed some 

differences in their lipid composition. In plasma, the most abundant lipid species are often TGs, 

CEs, PCs, and PEs, whereas, in saliva, we observed DG, Cer, HexCer, TG, PE, and PC as the most 

abundant. One of the possible reasons for the observed difference in lipid distribution is that 

saliva’s lipid composition is known to reflect the health of the oral cavity.  n situations where the 

conditions in the oral cavity have suffered any alterations (hygiene, disease-related, or gut 

microbiome), the lipidome will reflect those17,168,177,192,193.  

The peak intensities (i.e., peak heights) of annotated lipids were normalized using the most 

similar internal standards (peak intensity of the annotated lipid/peak intensity of the most similar 

internal standards). Those annotations that belonged to a subclass we did not have standards for 

were normalized by matching to the most similar lipid class, considering molecular structure, 

properties, and chromatographic retention times. Normalized features were filtered by RSD < 30% 

to remove non-reproducible lipids. The remaining features were auto-scaled and normalized by 

sum (i.e., total peak intensities for all annotated lipids) before statistical analysis. The PCA score 

plot (Figure 3.3 Figure 3.4.a) shows tightly clustered QC injections, indicating the reproducibility 

and suitability of the methods used. In the PCA plot without the QC replicates (Figure 3.4.b), we 

see samples normalized by TLC slightly more clustered than Controls and TMC samples. The PLS-

DA score plot (Figure 3.4.c) suggests separating the normalized (TMC and TLC) samples from the 

control group, indicating that sample normalization before LC-MS analysis may lead to different 

biochemical states. 

Unfortunately, the limited number of samples and the complexity of the dataset resulted in 

an overfitted PLS-DA model, as indicated by the low Q2 value. The model passed a permutation 
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test and showed good linearity (R2 of 0.8167) but poor predictive ability (Q2 of 0.5634). This work 

does not intend to employ PLS-DA models to predict sample groups but to evaluate each 

normalization method's applicability. Hence, the model is appropriate for the intended purpose. 

Still, expanding the number of samples when building PLS-DA models for predictive purposes 

based on highly complex datasets is recommended to prevent overfitting.  However, the results 

indicate that large-scale studies of the effect of normalization on samples before LC-MS are 

reasonable.  
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Figure 3.4. Statistical analysis for lipidome of saliva samples using different normalization methods before lipid extraction (control 

– samples which were not normalized; TMC – samples normalized by total metabolite concentration; TLC – samples normalized 

by total lipid concentration). a) PCA score plot with 24 QC replicates (pooled from individual saliva samples); b) PCA score plot 

without QCs; c) PLS-DA score plot with 5 components (R2: 0.8167; Q2: 0.5634; p 0.001). 

 

The small number of biological replicates (N=1) may decrease the reliability of the 

statistical models applied herein to find significantly altered lipids that may relate to sample 

normalization before LC-MS analysis. However, the project was a pilot study to ensure adequate 
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sample handling and analysis for future research. Hence, we performed univariate statistics using 

Volcano plots (Figure B.5). Comparisons were made by analyzing Controls and TLC-normalized 

samples (Figure B.5.a), Controls with TMC-normalized samples (Figure B.5.b), and lastly, TMC-

normalized and TLC-normalized samples (Figure B.5.c), and the number of significantly altered 

species is shown in Figure 3.5. When comparing Control and TLC-normalized samples, 304 

features (27%, Supp. Table 13) were significantly altered, with PE contributing 51% of the altered 

species, with most being unsaturated PEs. Furthermore, 74% of significantly altered features were 

high-confidence annotations as they were Tier 1 or Tier 2 annotations. The most significant fold 

changes observed were PE 18:0_20:3 (Tier 1, FC 3.9404 and p < 0.05) and DG 43:8 (Tier 3, FC 

3.9841 and p 0.005). 

Second, we compared Control and TMC-normalized samples, which resulted in 39 altered 

lipid annotations, or 3% of all annotations (Supp. Table 14). Of those, 74% were Tier 1 or Tier 2 

annotations, and FA was the lipid subclass with more altered lipids (11 or 28%), which were Tier 

1 or Tier 2 annotations. PE was the subclass with the second-highest number of altered lipids 

(13%), and its annotations were 40% in Tier 1 and 60% in Tier 3. The highest fold change was 

observed for DGDG 16:0_17:1 (Tier 1, FC 1.9231 and p 0.03718). 

Last, we compared the lipidome of TMC-normalized and TLC-normalized samples, which 

yielded 197 significantly altered lipids (18%, Supp. Table 15), and among those, 69% were Tier 1 

and Tier 2 annotation. Similar to what was noted when comparing Control and TLC-normalized 

samples, 63% were PE lipids, annotated mostly in Tiers 1 and 2. PE 14:0_16:1 showed the highest 

fold change (Tier 1, FC 2.5685, and p 0.00022). 
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Only one lipid, PE 54:3, was affected in all three comparisons. In addition, another 27 lipid 

species were simultaneously altered in Control/TLC-normalized samples and Control/TMC-

normalized samples (PE 50:1, CerP 43:5;O2, PI 36:2, FA 17:0, FA 17:0, CerP 19:0;O2/2:0, FA 

22:1, FA 19:1, FA 24:2, CE 33:6;O2, PC 22:0_22:0, NAGlySer 15:0/16:0, NAGlySer 15:0/17:0, 

PE O-52:4, FA 20:4;O, MG 18:1, ACer 42:6;O3, LPE O-18:2, HexCer 18:1;O2/38:9, FA 18:2;O, 

LPC 20:4, SPB 32:3;O5;S, LPC O-16:0, LPC 18:2, PE 18:0_20:3, PE 16:0_20:3, and DGDG 

16:0_17:1). Furthermore, another 28 lipid species were simultaneously altered in Control/TLC-

normalized samples and TMC-normalized/TMC-normalized samples (PIP2 35:5;O, FA 20:4, TG 

59:7;O2, HexCer 41:2;O4, FA 20:3, TG 49:0;O3, GlcADG 19:0_18:1, HexCer 18:0;O2/18:1, TG 

50:5;O2, TG 55:3;O2, HexCer 20:1;O2/34:4, TG 64:10, Cer 17:0;O3/36:2, SM 46:0;O4, PE 54:1, 

PE 54:2, PE 26:1_26:2, SM 45:5;O6, TG 59:8;O2, PE 42:0;O, Cer 18:0;O2/32:2;O, Cer 

20:0;O3/32:1, HexCer 37:1;O4, TG 55:6;O2, LPC 34:3, HexCer 43:3;O5, and PC O-18:0_26:4). 

Moreover, in Figure 3.5 PE is the most altered species when comparing Control vs. TLC 

and TMC vs. TLC. Alterations in PE levels may indicate changes in cellular processes, potentially 

driven by physiological changes in the oral cavity, inflammation, or overall health of the 

participants. These findings suggest that PE lipids are sensitive to experimental conditions or the 

normalization methods employed in this study. Additionally, since PEs contain a free amine group 

that can react with ninhydrin, their increased reactivity might contribute to the observed alterations.  
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Figure 3.5. Number of annotations that were significantly different (p< 0.05 and FC<0.67 or >1.5) in the Volcano Plot analysis for 

TMC versus TLC (blue), Control versus TMC (pink), and Control versus TLC (green). 

 

3.3.3. Implications and Considerations for Choosing a Normalization Method for Lipidomic 

Profiling of Saliva 

In this study, we performed a comprehensive lipidomic analysis of human saliva samples 

collected under different conditions. The results show the importance of sample normalization and 
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how normalization methods can impact lipidomic data. Understanding the biological implications 

of our findings is essential, not just for guiding future studies but for making lipid annotation more 

reliable and improving knowledge of the lipid roles in physiological and pathological 

processes77,110,120,184. 

Previous studies have demonstrated the importance of sample normalization in lipidomic 

analyses. For example, Bailey et al. (2022) reported that normalization by TLC improves the 

reproducibility of lipidomic data. Similarly, our results indicate that TLC normalization provides 

higher reproducibility than TMC normalization in saliva samples. However, our study highlights 

significant variations in lipid profiles depending on the normalization method used. These 

differences could be attributed to saliva's unique composition and complexity as a biological 

fluid77. 

LC-MS analysis often requires sample normalization before injection to ensure accurate 

and reproducible quantification. In this study, we compared two different methods for sample 

normalization: TMC and TLC). Each method offers advantages and disadvantages to our workflow 

and has the potential to influence the interpretation and reliability of the data. 

The TMC method has a higher sensitivity, emphasized by a lower LOD when compared to 

TLC. This increased sensitivity can be beneficial when working with samples containing low 

concentrations of metabolites, such as saliva, which also displays a low concentration of 

lipids8,121,168. Additionally, TMC involves a simpler sample preparation process, requiring only a 

protein precipitation step before derivatization and analysis. It fits almost effortlessly in our 

workflow and is more suited for high-throughput studies. Furthermore, in studies regarding both 

metabolomics and lipidomics, TMC has shown a high correlation with total lipid content. Thus, it 
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can be used to normalize samples for both analyses.  However, using TMC to normalize lipid 

samples can also lead to specificity issues, as the method is based on the reaction of ninhydrin with 

compounds containing amino groups. Some common lipid subclasses are not expected to have an 

amino group in their structure (e.g., PC, FA, MG, TG, DG, and ST) and, therefore, would not react 

with ninhydrin. PC is often the most abundant lipid subclass in mammalian samples; thus, using a 

method that would not account for the content of PC in the samples can generate 

bias17,36,77,136,137,168,175,192,194. 

On the other hand, although TLC can be more time-consuming since it requires a longer 

sample preparation workflow, using a method targeted to lipid quantification can increase 

specificity and reduce interferences. The phospho-vanillin reagent used in TLC reacts with double 

bonds, which, although they can be present in any molecule, are known to be present in most lipid 

structures. However, since lipid quantification is performed after LLE, the likelihood of 

interference from metabolites or other molecules is lower. Furthermore, the TLC method shows 

higher reproducibility, with lower relative standard deviations (RSDs), which is essential to ensure 

consistency13,33,34,153,195. 

Furthermore, data interpretation and statistical analysis show that the implications of 

choosing a normalization method go beyond just which one is more reproducible or sensitive. PCA 

and PLS-DA analyses show that both methods behave similarly. However, when analyzing the 

volcano plots, we see a higher number of features being significantly different from controls when 

samples are normalized by TLC. In contrast, the opposite is seen when samples are normalized by 

TMC. 
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Although this might indicate that TMC is more suitable for LC-MS lipidomics sample 

normalization, another possibility exists. Because TMC lacks specificity and fails to account for 

some of the most abundant lipid classes, bias in the analyses is created, which can mask the 

significance of some features. Therefore, when comparing TMC and control samples using the 

Volcano plot analysis, a very small number of features are shown to have a significant difference. 

In summary, comparing TMC and TLC normalization methods highlights the importance 

of carefully selecting the appropriate normalization strategy based on the study's goals and the 

specific characteristics of the sample matrix and analytes of interest. While TMC offers greater 

sensitivity and simplicity, it may introduce bias by failing to capture significant alterations in lipid 

subclasses that lack amino groups. This limitation could mask biologically relevant differences, as 

reflected in the smaller number of significantly altered features. On the other hand, despite being 

more time-consuming, TLC provides higher specificity and reproducibility by directly targeting 

lipid quantification. The increased number of significantly altered features in TLC-normalized 

samples suggests it may be a more reliable choice for detailed lipidomic studies.  

 

3.4. Conclusions  

TMC and TLC normalization methods displayed both advantages and disadvantages for 

lipidomics sample normalization. Therefore, the choice of which method to use depends on the 

specific goals of the study. TLC is preferred for detailed, lipid-focused studies due to its specificity 

and reliability. However, despite its lower specificity, TMC can be valuable for larger metabolic 

profiling studies. 
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Furthermore, the choice of normalization method can have implications for the accuracy 

and reliability of lipidomic data. Precise lipid quantification is essential for developing diagnostic 

tests and biomarker discovery in clinical settings. Our study suggests that TLC normalization is 

more suitable for detailed lipid-focused studies due to its specificity and lower variability. Our 

findings suggest the potential of salivary lipidomics as a diagnostic tool and provide grounds for 

future large-scale studies to explore lipid biomarkers for various health conditions and how sample 

normalization affects these results. 

However, the small sample size used in this study and the fact that only two normalization 

methods were evaluated may limit the correlation of our findings with those from large-scale 

works. Additionally, the heterogeneity of saliva samples and potential biases introduced during 

sample collection and storage could also influence the results. To address these limitations, future 

studies should aim to include a larger and more diverse cohort of participants to validate the results. 

Additional studies involving other biological fluids, such as blood or urine, would also aid in 

determining whether the effects observed herein are specific to saliva. 
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IV 

Chapter IV: Enhancing untargeted lipidomics through offline 2DLC: method 

development and evaluation of data processing tools. 

 

4.1. Introduction 

Lipidomics is a rapidly growing research area characterized by analyzing lipid species in 

biological samples and their relationship to physiological or pathological processes77,108. Given the 

importance of lipids in structural composition, cell signaling, energy storage, health and 

environmental changes can cause significant alterations in the lipidome. Therefore, the study of 

these hydrophobic biomolecules can help in biomarker discovery, the elucidation of biochemical 

pathways, and the characterization of organisms and cell lines, amongst other applications17,77,108. 

Still, comprehensive lipid analysis remains a field that needs research due to challenges in lipid 

separation, annotation, and data processing routines. 

The Lipid Maps Structure Database (https://www.lipidmaps.org/) includes over 48,000 

unique lipid structures, subdivided into eight categories: Fatty acyls (FA), Glycerolipids (GL), 

Glycerophospholipids (GP), Sphingolipids (SP), Sterol lipids (ST), Prenol lipids (PR), 

Saccharolipids (SL) and Polyketides (PK)36,178. Considering the diversity of lipid structures, 

defined mainly by different headgroups (i.e., phosphocholines, glycerol, and 

phosphoethanolamines) and fatty acyl compositions, untargeted lipidomic analysis requires precise 

analytical methods capable of annotating and quantifying a wide array of species. Reversed-phase 

liquid chromatography (RPLC) is often used in untargeted lipidomics approaches to separate lipids 

according to their hydrophobicity. However, it suffers from drawbacks such as ion suppression and 
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coelutions since many species can have similar overall molecule polarities, affecting sensitivity, 

quantification performance, and annotation accuracies83,110,196. Alternatively, Hydrophilic 

Interaction Liquid Chromatography (HILIC) separates lipids based on their head group polarity. 

Furthermore, it offers enhanced retention for analytes poorly retained in RPLC, such as 

lysophospholipids (LGPs), emerging as an orthogonal method to complement RPLC78,196,197. 

Hence, combining HILIC and RPLC into a two-dimensional liquid chromatographic method 

(2DLC) could help improve lipid class separation and reduce ion suppression and coelutions, 

further improving untargeted lipidomics studies63,198.  

Although 2DLC can significantly enhance lipid class separation and address common 

analytical challenges, selecting and evaluating processing software tools becomes crucial. LC-MS 

data's peak picking, and alignment algorithms are vital for reliable quantifications or relative 

comparisons199,200. The annotation of lipid species typically depends on tandem mass spectrometry 

(MS/MS), which provides information on headgroups and fatty acyl chains. The obtained spectra 

are compared to in silico databases through various algorithms, (e.g., dot-product or cosine 

similarity scores), and the accuracy of annotations is impacted by factors such as low spectral 

resolution, alterations of fragmentation patterns for different instruments, lack of standards, and 

low-quality library data75,201,202. Considering the importance of data analysis for lipidomics, it is 

vital to choose appropriately which platform to use11,178,201. 

One of the most common 2DLC challenges, specifically online versions, is sample dilution 

in the first dimension. This makes analysis more challenging since analytes are now present in a 

lower concentration (m/v), making them harder to detected78,203. Furthermore, offline 

methodologies offer more possibilities for mobile phase resuspension solvents and ratios, reducing 
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possible problems from incompatibility between solvents and initial conditions from both 

dimensions. Considering the challenges mentioned above in separating and annotating lipids, we 

describe the development of an offline two-dimensional liquid chromatography-mass spectrometry 

(2DLC-MS) method, combining HILIC with reverse-phase liquid chromatography (RPLC-MS) to 

improve lipidomics data acquisition. However, even when 2DLC methods are used, some 

challenges regarding data processing will still be present, such as peak picking, alignment, and 

MS/MS matching routines. With that in mind, we compared different data processing tools for 

lipidomic analysis to decide which software performs best for our approach. 

 

4.2. Experimental 

4.2.1. Reagents and Equipment 

LC-MS grade acetonitrile (ACN), methanol (MeOH), and dichloromethane (DCM) were 

sourced from Honeywell (Charlotte, North Carolina, USA). Ammonium formate (mass 

spectrometry grade) and LC-MS grade water (H2O) and isopropanol (IPA) were obtained from 

Sigma-Aldrich (St. Louis, Missouri, USA). A mixture of 15 deuterated lipids was used for internal 

standardization, including standards for different subclasses (NovaMT LipidRep Internal Standard 

Basic Mixes for Tissue/Cells and Serum/Plasma, Nova Medical Testing, Edmonton, AB, Canada). 

Supp. Table 16 lists all standards used for method validation. 
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Table 4.1 List of Lipid Standards present in NovaMT LipidRep Internal Standard Basic Mix. 

Lipid species Chemical formula Exact mass 

[D5]LPC 18:1 C26H47D5NO7P 526.37898 

[D5]LPE 18:1 C23H41D5NO7P 484.33203 

[D5]MG 18:1 C21H35D5O4 361.32350 

[D3]FA 16:0 C16H29D3O2 259.25851 

[D5]PI 16:0_18:1 C43H76D5O13P 841.57232 

[D5]PG 16:0_18:1 C40H72D5O10P 753.55627 

[D5]PS 16:0_18:1 C40H71D5NO10P 766.55152 

[D3]ST 27:1;O (cholesterol-d3) C27H43D3O 389.37315 

[D5]PA 16:0_18:1 C37H66D5O8P 679.51949 

[D3]Cer 16:0/18:1 C34H64D3NO3 540.53038 

[D5]PC 16:0_18:1 C42H77D5NO8P 764.60864 

[D5]PE 16:0_18:1 C39H71D5NO8P 722.56169 

[D5]DG 16:0_18:1 C37H65D5O5 599.55316 

[D5]TG 16:0_18:1_16:0 C53H95D5O6 837.78283 

[D3]CE 18:1 C45H75D3O2 653.61846 

 

4.2.2. Sample Preparation 

The analyses were performed with chicken liver tissue, human serum, and MCF-7 cells 

(human breast cancer). Chicken liver was purchased from the local supermarket, subdivided into 

small aliquots, and stored in 2 mL sterile polypropylene tubes in the -20 ºC freezer until analysis. 
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Tissue sample homogenization was performed using the Bioprep-24 Homogenizer (Bio-Equip) and 

ceramic beads. Human serum samples were purchased from Sigma-Aldrich (St. Louis, Missouri, 

USA), aliquoted and freeze-dried. Aliquots were then stored in the -20 ºC freezer until resuspension 

in 1 mL of LC-MS grade water and analysis. MCF-7 (ATCC HTB-22) cells were cultured 

individually in T-75 flasks under optimum conditions using Dulbecco's Modified Eagle Medium 

(DMEM), supplemented with 10% fetal bovine serum (FBS). Cultures were incubated at 37 ºC in 

a humidified 5% CO2 atmosphere and renewed every two to three days. When 80% confluency 

was reached, cell samples were harvested by trypsinization. Briefly, after washing the cells with 

phosphate buffer saline (PBS), 3.0 mL of 0.25% trypsin/EDTA (Hyclone, Logan, Utah) was added, 

and samples were incubated at 37 ºC for 5 minutes. Quenching was performed by adding 8 mL of 

growth medium. Samples were transferred into 15 mL sterile polypropylene tubes and centrifuged 

for 7 minutes at 900 rpm before the supernatant was gently aspirated to separate it from the cell 

pellet. 

All samples were extracted using a modified Folch liquid-liquid extraction (LLE) 

method72,103. To this end, a 40-sample/solvent ratio (µL/mL) was used for serum samples, whereas 

a 200-sample/solvent ratio (mg/mL) was used for tissue and cell samples; extraction volumes and 

masses can be found in Supp. Table 17 A mixture of 15 deuterated lipid standards (NovaMT 

LipidRep) was added to each sample before extraction, and the standard concentrations were 

adapted to match the expected lipid class distribution in each sample type. The classical Folch 

solvent ratios (8:4:3 DCM/MeOH/H2O) were maintained for all extractions, although DCM 

replaced chloroform due to lower carcinogenic risk and costs. The mixture of sample and internal 

standards was sequentially vortexed for 20 second intervals with each solvent, starting with MeOH, 

followed by DCM, and finalizing with a clean-up step with water. The mixture was then 
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equilibrated at room temperature (20-2 ⁰ ) for 10 minutes before centrifugation at 12,000 rpm and 

4 ºC for 10 minutes. An aliquot of the organic phase was evaporated to dryness under a gentle 

nitrogen flow and at room temperature for 10 minutes. The dried residue was resuspended in 

30:15:4:1 ACN/IPA/MeOH/H2O before injection.  

To prevent sample degradation, samples were stored in polypropylene inserts placed inside 

autosampler vials sealed with PTFE/silicone septa at 4 ºC for a minimum of 4 hours (equilibration 

period) and a maximum of 24 hours (to prevent lipid degradation) before the LC-MS analysis. 

 

4.2.3. Hydrophilic Interaction Liquid Chromatography (HILIC) Method Optimization 

A previously published HILIC-MS method employed for the comprehensive annotation of 

lipids species was used as the foundation for this study.  The original method described by Xu et 

al. (2020) employed a 25-minute gradient slope at a 0.2 mL/min flow rate with MPA - 10mM 

ammonium formate and 0.1% formic acid in 50:50 ACN/H2O and MPB - 10mM ammonium 

formate and 0.1% formic acid in 95:5 ACN/H2O. The lipid extract was resuspended in 5:4:1 

IPA/ACN/H2O before injection83. After obtaining preliminary results using this method, 

modifications were proposed to make it more suitable for this application, including resuspension 

solvents, mobile phase compositions, and gradient slopes. The optimized HILIC-MS methodology 

employed mobile phases composed of MPA - 10 mM ammonium formate in 60:40 ACN/H2O (v/v) 

and MPB - 10 mM ammonium formate in 95:3:2 ACN/MeOH/H2O (v/v/v). Additionally, a 26-

minute gradient separation was employed (0 min 100% MPB; 0-2 min 100% MPB; 2-4 min 98% 

MPB; 4-4.5 min 98% MPB; 4.5-6 min 96% MPB; 6-8.5 min 93% MPB; 8.5-9.5 min 93% MPB; 

9.5-12 min 91% MPB; 12-17 min 86% MPB; 17–25min 80% MPB; 25-26 min 20% MPB), 
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followed by 4  min re-equilibration (0 min, 20% MPB; 0.5 min, 100 % MPB; 6 min, 100% MPB) 

at a 0.250 mL/min flow rate and column temperature of 45 °C. Dried lipid extracts were 

resuspended in 30:15:4:1 ACN/IPA/MeOH/H2O for injection. 

To perform the offline 2DLC experiments, lipid extracts were fractionated into five 

fractions using an Agilent Infinity 1220 LC coupled to a 1260 Infinity II Analytical-Scale Fraction 

Collector and a Waters Acquity Premier BEH Amide column (1.7 µm, 2.1×100mm, Waters 

Corporation, Milford, MA, USA). All fractions were collected into sterile polypropylene 1.5 mL 

tubes and evaporated to dryness under a gentle nitrogen flow and at room temperature for 1 hour. 

The method was tested using 85 commercial lipid standards from different subclasses (Supp. Table 

16) with variable fatty acid chain lengths, number of double bonds, and modifications. 

 

4.2.4. HILIC-RPLC-MS analysis 

For the second LC dimension, the dried fractions obtained from the HILIC separations in 

the fraction collector were resuspended in 8 µL of MPA and 2 µL of MPB (MPA - 10 mM 

ammonium formate in 50:40:10 MeOH/ACN/H2O and MPB - 10 mM ammonium formate in 95:5 

IPA/H2O) and analyzed by reverse-phase ultra-high-performance liquid chromatography (RP-

UHPLC) coupled to mass spectrometry. Chromatographic separation was achieved with a Dionex 

3000 system (Thermo Fisher Scientific, Waltham, MA, USA) and a Waters Acquity CSH Premier 

C18 column (1.7 µm, 2.1×100mm, Waters Corporation, Milford, MA, USA). A 16-min gradient 

was used for separation (0 min, 15% MPB; 0.5 min, 15% MPB; 2.3 min, 25% MPB; 9.3 min, 42% 

MPB, 10.1 min, 78% MPB; 12 min, 90% MPB; 13 min, 98% MPB; 14.5 min, 98% MPB; 15 min, 

15% MPB) using a 0.300 mL/min flow rate from 0 to 9.3 minutes, decreasing to 0.270 mL/min up 
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to 10.1 minutes, and subsequently reducing further to 0.210 mL/min until the end of the run due to 

backpressure constraints. Separation was followed by 4 min re-equilibration (0 min, 15% MPB, 

with flow rate increasing from 0.210 mL/min to 0.300 mL/min after 2 minutes), and the column 

temperature was kept at 45 °C throughout. The UHPLC instrument was coupled to an ultra-high-

resolution quadrupole-time-of-flight (QToF) mass spectrometer (Maxis II, Bruker Daltonics, 

Billerica, MA, USA) with an electrospray ionization (ESI) source (capillary voltage of  4500 V, 

endplate offset of 500 V; nebulizer gas pressure of 1.0 bar, dry gas flow rate of 4.0 L min-1; dry 

temperature of 220 °C, spectra acquisition rate of 1.0 Hz; and m/z range from 150 to 1500 Da). A 

0.40 min mass re-calibration segment was inserted at the end of each chromatogram, during which 

1.0 mM sodium formate calibrant solution in 1:1 IPA/H2O (v/v) was infused with a peristaltic pump 

to ensure high mass accuracy.  

MS/MS qualitative data were acquired for all sample injections using the auto-MS/MS 

feature (oToF Control, Bruker Daltonics). A cycle time of 1.2 s was used, during which one MS1 

spectrum was acquired at 1.44 Hz, followed by multiple MS/MS collision-induced dissociation 

(CID) spectra at a variable acquisition rate of 0.5-2.0 Hz, depending on the precursor intensity (500 

– 500,000 counts, respectively). Active exclusion of precursors was employed for compounds 

detected for more than three consecutive spectra within 0.50 min intervals. Collision energies 

varied according to the precursor m/z values between 20 and 30 eV. Samples were analyzed 

separately in positive and negative ionization modes, using 3 and 12 µL of the lipid extracts, 

respectively. 
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4.2.5. Data Processing and Lipid Annotation 

Three data processing software tools (MetaboScape, MS-Dial, and LipidScreener) were 

used for alignment and lipid annotation. Results were then compared to ensure consistency among 

these software options so that we could make the best choice regarding which software is better for 

processing our 2DLC-MS datasets. A two-tier putative annotation approach was used for lipid 

annotation based on the acquired tandem mass spectrometry (MS/MS) spectra, following the 

previously established protocols by the Lipidomics Standards Initiative and approaches developed 

by previous research group members and previously described in Chapter II103,182.  

For each software, annotations were filtered based on expected adducts and retention times 

for each lipid class and fatty acid composition to filter out potentially incorrect matches. All lipid 

annotations were then converted to a shorthand notation at the species level (definition of lipid 

class or subclass and the summed composition of side fatty acyl chains, PC 36:1), and duplicated 

annotations were filtered out based on MS/MS score and mass error.  

The annotation performance from each software was evaluated based on the expected 

subclasses within each HILIC fraction.  Lipid standards from different subclasses were used to 

determine their elution patterns amongst the five fractions collected after the HILIC separation.  

The obtained annotations were compared against the expected patterns. Subclasses without suitable 

representative standards were assumed to elute in the fraction that contained lipid standards with 

the most similar headgroups but were not considered when discussing annotation accuracy.  
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4.2.5.1.MetaboScape Annotation Procedure 

We first employed MetaboScape 2023b for data processing (Bruker Daltonics, Billerica, 

MA, USA) with a minimum intensity cut-off of 5,000 counts for positive and 3,000 counts for 

negative ionization, a minimum peak length of six spectra, and retention time tolerance of 10 s. 

The detected m/z were re-calibrated based on the sodium formate segment with a m/z tolerance of 

5.0 mDa and lock mass (ESI+ m/z 338.341741 and ESI- m/z 283.264254). We further applied the 

removal of isotopes and adducts within a correlation threshold of 0.8 and recursive extraction (i.e., 

features with missing values found in over 80% of the injections in at least one group were searched 

again within the raw data without applying the minimum intensity limit). The aligned features were 

filtered by detection in over 80% of injections in at least one group. Positive and negative ionization 

features were merged using a 10 ppm and 15-second tolerance before lipid annotation. 

For the MS/MS annotations, we employed the MS-Dial LipidBlast library 

(https://fiehnlab.ucdavis.edu/projects/LipidBlast), the Human Metabolome Database (https:// 

hmdb.ca), and the MassBank of North America L −MS/MS libraries 

(https://mona.fiehnlab.ucdavis.edu). The annotations were split into two confidence tiers: tier 1 

includes lipids annotated within an m/z tolerance of 5.0 mDa for precursors and an MS/MS score 

threshold of at least 500. In tier 2, an MS/MS score between 100 and 500 was used with the same 

m/z tolerance used for tier 127,36,103,119,178,184,187,204.  

 

4.2.5.2.MS-Dial Annotation Procedure 

Second, we tested the annotation performance of MS-Dial (version 5.1.230719), a popular 

open-source software for lipidomics data processing. Peak picking and alignment were performed 
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with a minimum intensity cut-off of 5,000 counts for positive and 3,000 counts for negative 

ionization, mass tolerance of 5 mDa, and retention time tolerance of 15s. The aligned features were 

kept if present in at least 80% of injections in at least one group. 

The default MS-Dial Lipidomics library was used for MS/MS annotations, with a m/z 

tolerance of 5.0 mDa and a minimum fragment intensity of 300 counts. Furthermore, the annotation 

cut-off for the dot product score, weighted dot product score, and reversed dot product score was 

set at 500. The similarity between library and experimental spectra was set to a minimum of 51%119.  

Initial tests with the MSDial software resulted in poor performance. Hence, following 

alignment and annotation using the MS-Dial software, a few in-house Python scripts were 

developed to further improve the software output, using specific parameters to ensure data accuracy 

and reliability. The first step involved removing duplicate entries and a signal-to-noise ratio (S/N) 

filter with a threshold of at least 3. Second, annotations were filtered by RSD and match score. 

Lastly, positive and negative ionization output features were merged using a 5 ppm and 15-second 

tolerance, retaining only high-confidence annotations. 

 

4.2.5.3.LipidScreener as a Tool for Lipidomics Data Processing 

Lastly, we evaluated the performance of an in-house developed, Python-based software 

explicitly designed for the untargeted lipidomics routine employed by The Metabolomics 

Innovation Centre (TMIC, Edmonton, Canada), named LipidScreener. This comprehensive tool 

includes mass recalibration, retention time correction based on internal standards and MS/MS 

fragmentation patterns, peak picking, alignment, data cleansing, polarity merging, lipid annotation, 

normalization, and biostatistics. The dataset was first recalibrated based on the sodium formate 
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segment with a 1 mDa m/z tolerance. The chromatograms obtained under positive and negative 

ionization were aligned using a minimum intensity cut-off of 3,000 counts and a minimum peak 

length of six spectra. Oligomers and multiple adducts were handled within a 20-ppm m/z tolerance. 

Aligned features were filtered by detection in at least 80% of injections in one group before positive 

and negative ionization merging. 

MS/MS annotations were obtained through spectral comparisons with the MS-Dial 

LipidBlast library (https://fiehnlab.ucdavis.edu/projects/ LipidBlast), the Human Metabolome 

Database (https:// hmdb.ca), and the MassBank of North America L −MS/MS libraries 

(https://mona.fiehnlab.ucdavis.edu). We employed a m/z tolerance of 5 mDa for the precursor ion 

and 10 mDa for fragments, combined with minimum similarity between library spectra and 

experimental spectra of 40%. All annotated features underwent several filtering parameters to 

ensure accurate and reliable lipid annotation. These parameters include possible adducts, m/z error, 

the ratio of carbon to double bond present in the molecule, even or odd fatty acyl chains, structural 

modifications, presence of plasmenyl, and expected ionization and detection efficiency for each 

lipid class, which had been previously calculated based on ionization efficiency and biological 

properties for each subclass. Additional parameters include MS/MS similarity between library and 

experimental spectra, fragmentation patterns, and expected fatty acyl composition. These weights 

help in scoring and annotating lipid species by balancing different factors such as ion scores, 

modifications, and library matches, ensuring high-confidence annotations and accurate lipid 

profiles14,36,103,183–187. 
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4.3. Results and Discussions 

4.3.1. HILIC Method Development 

We began this study by reproducing the HILIC-MS method previously published by Xu et 

al. (2020), which uses a 25-minute gradient for comprehensive lipid annotation (Figure 4.1)83. For 

this, serum samples were extracted using an adaptation of the Folch method72,108 to extract small 

sample amounts as described in Chapter II (Supp. Table 17). Samples were mixed with 15 

deuterated lipid standards before extraction (NovaMT LipidRep), and lipid extracts were 

resuspended in a 5:4:1 IPA/ACN/H2O (v/v/v) mixture. 

 

 

Figure 4.1. Base Peak Chromatogram (BPC) for Human Serum samples extracted with NovaMT LipidRep Internal Standard mix 

and analyzed using a Bruker Impact I under positive ionization conditions, reproducing Xu et al. (2020). Results for the HILIC-MS 

method with MPA: 10 mM NH4COOH 50:50 ACN/H2O; MPB: 10 mM NH4COOH 95:5 ACN/H2O; 0.200 mL/min; 45ºC; 25 min 

gradient (0 min – 100% MPB, 10 min – 80% MPB, 25 min – 20% MPB); 13 min equilibration (100% MPB). 
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Chromatographic results obtained using the original gradient indicate that all 15 deuterated 

internal standards in the mix and all other lipid compounds extracted from serum samples eluted 

before the 13-minute mark, even though the proposed gradient was 25 minutes long. Furthermore, 

some lipid species, such as [D5]PG 16:0_18:1, exhibited broadened and split peaks. The 

composition of the resuspension solvent had a high water content (10%), which likely contributed 

to the observed band broadening and peak splitting. Considering water is a highly polar solvent, its 

presence increases the mobile phase's overall polarity, affecting the solute's interaction with the 

stationary phase and retention times and elution profiles. Additionally, the interaction between the 

polar mobile phase and the stationary phase designed for HILIC, which typically favors polar 

interactions, might not be optimal with excessive water, leading to decreased efficiency. 

Furthermore, it can also influence the viscosity and diffusion rates of analytes within the column, 

further exacerbating band broadening and leading to atypical peak shapes78. 

Given the amphiphilic nature of lipids, there is a need to ensure the complete dissolution of 

species within a wide range of polarities and, simultaneously, chromatography requirements to 

ensure suitable peak shapes and reliable injections. With that in mind, we optimized the 

resuspension solvent composition to be more like the initial mobile phase conditions while still 

solubilizing a broad range of lipid structures38,102,205,206. Chromatograms for all resuspension 

solvent tests can be found in Figure C.1. From our optimizations, the optimized resuspension 

solvent composition is 30:15:4:1 ACN/IPA/MeOH/H2O (Figure 4.2).  



Chapter IV 

138 

 

 

Figure 4.2. Extracted Ion Chromatogram (EIC) of NovaMT LipidRep Internal Standard Serum analyzed using a Bruker Impact I 

under positive ionization conditions; MPA: 10 mM NH4COOH 50:50 ACN/H2O; MPB: 10 mM NH4COOH 95:5 ACN/H2O; 0.200 

mL/min; 45ºC; 25 min gradient (0 min – 100% MPB, 10 min – 80% MPB, 25 min – 20% MPB); 13 min equilibration (100% MPB). 

a) Original resuspension solvent (5:4:1 IPA/ACN/H2O); b) Optimized resuspension solvent (30:15:4:1 ACN/IPA/MeOH/H2O). 

 

The resuspension solvent adjustments led to improvements in peak sharpness and higher 

intensities. For example, peak intensities in the 5 to 15-minute elution window improved from 

approximately 3×106 (Figure 4.2.a) to 4×106 counts (Figure 4.2.b). This improvement represents a 

1.3-fold peak intensity increase alongside a notable band-broadening reduction. 

Next, we evaluated the composition of our mobile phases. The original MPB composition 

was 10 mM ammonium formate and 0.1% formic acid in a 95:5 ACN/H2O (v/v). However, all 

lipids eluted within one-half of the total gradient time, indicating a stronger-than-needed 

composition. To improve the separation within the proposed run time, we proposed a slightly 

a)

b)
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weaker MPB composition to 10 mM ammonium formate in 95:2:3 ACN/MeOH/H2O (Figure 

4.3.b), which mitigated the excessive mobile phase strength through the decrease of water content, 

which was replaced with IPA19,78,83,197.  

 

 

Figure 4.3. Extracted Ion Chromatogram (EIC) of NovaMT LipidRep Internal Standard analyzed using a Bruker Impact I under 

positive ionization conditions; MPA: 10 mM NH4COOH 50:50 ACN/H2O; 0.200 mL/min; 45ºC; 25 min gradient (0 min – 100% 

MPB, 10 min – 80% MPB, 25 min – 20% MPB); 13 min equilibration (100% MPB). a) Original MPB composition - 10mM 

ammonium formate and 0.1% formic acid in a 95:5 ACN/H2O (v/v); b) Optimized MPB composition - 10 mM ammonium formate 

in 95:2:3 ACN/MeOH/H2O. 

 

These MPB modifications led to a modest increase in retention times and visually improved 

the chromatographic separation, with the last peak delayed from 12.5 to 13.2 minutes while 

maintaining peak shape integrity. Moreover, we observed a 1.5-fold increase in peak intensities. 

Specifically, focusing on the elution window from 5 to 15 minutes, peak intensities increased 
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between 1.2 and 1.6-fold when comparing pre-MPB optimization (Figure 4.3.a) and post-MPB 

optimization (Figure 4.3.b), indicating a notable signal strength enhancement. This result also 

encouraged us to optimize the MPA composition, initially set at 10 mM ammonium formate and 

0.1% formic acid in a 50:50 ACN/H2O (v/v, Figure 4.4.a). We hypothesized that higher ACN 

contents could improve analyte retention and separation since, in HILIC separation, water is 

considered the strongest solvent, whereas ACN is the weaker78,83. Hence, we tested different 

ACN/H2O ratios, including 60:40 (Figure 4.4.b) and 70:30 (Figure 4.4.c) (v/v). 

 

 

Figure 4.4. Extracted Ion Chromatogram (EIC) of NovaMT LipidRep Internal Standard was analyzed using a Bruker Impact I under 

positive ionization conditions; MPB: 10 mM NH4COOH 95:2:3 ACN/MeOH/H2O; 0.200 mL/min; 45ºC; 25 min gradient (0 min – 

100% MPB, 10 min – 80% MPB, 25 min – 20% MPB); 13 min equilibration (100% MPB). a) Original MPA composition - 10mM 

ammonium formate and 0.1% formic acid in a 50:50 ACN/H2O (v/v); b) MPA composition 10mM ammonium formate in 60:40 

ACN/H2O (v/v); c) MPA composition 10mM ammonium formate in 70:30 ACN/H2O (v/v). 

a)

b)

c)
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Reducing the water content significantly increased analyte retention by enhancing 

interactions with the stationary phase. Although the 70:30 mix provided the best separation, it also 

introduced some peak broadening and slightly reduced peak intensities (Fig. 4.4c). The 60:40 

ACN/H2O ratio was considered a reasonable compromise (Fig. 4.4b), balancing peak shape, 

separation quality, overall peak intensities, and analysis time. This configuration achieved clear 

analyte separation while preserving peak shapes and avoiding unnecessarily long chromatographic 

runs. 

Last, we evaluated the chromatographic gradient, aiming for higher efficiency with 

improved analyte separation. After our modifications, the initial gradient lasted 25 minutes (Figure 

4.5.a), with the last analytes eluting around the 15-minute mark, leaving 10 minutes, or 40% of the 

runtime, unused. 

We proposed different gradient elution and flow rates to try to improve separation. For the 

optimization, we subdivided our chromatogram into three areas: the first 2 minutes of the run 

(where six different subclasses with no chromatographic retention eluted in less than 0.5 minutes), 

the middle area where phospholipids eluted, and the end area where we had the more hydrophilic 

lysophospholipids. After a few tests, we noticed that MPB was too strong to ensure proper 

separation, and those lipid classes were not retained enough in HILIC for it to make significant 

changes in separation (Figure C.2).  

After several tests changing the gradient slope throughout the run, we proposed a new 

gradient elution within 26 minutes (Figure 4.5).  This proposed gradient separation aims to maintain 

an appropriate run time while improving peak efficiency and separation78.  
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Figure 4.5. Extracted Ion Chromatogram (EIC) of NovaMT LipidRep Internal Standard analyzed using an Agilent QTOF under 

positive ionization conditions. A) Initial conditions, including MPA: 10 mM NH4COOH 50:50 ACN/H2O; MPB: 10 mM 

NH4COOH 95:5 ACN/H2O; 0.200 mL/min; 45ºC; 25 min gradient (0 min – 100% MPB, 10 min – 80% MPB, 25 min – 20% MPB); 

13 min equilibration (100% MPB); B) Optimized gradient, including MPA: 10 mM NH4COOH 60:40 ACN/H2O; MPB: 10 mM 

NH4COOH 95:2:3 ACN/MeOH/H2O; 0.250 mL/min; 45ºC, 26 min gradient elution (0 min 100% MPB, 2 min 100% MPB, 2-4 

min 98% MPB, 4.5 min 98% MPB, 6 min 96% MPB, 8.5 min 93% MPB, 9.5 min 93% MPB, 12 min 91% MPB, 17 min 86% MPB, 

25min 80% MPB, 26 min 20% MPB); 4  min equilibration (100% MPB). 

 

After the gradient optimization, better use of the total run time and improved peak 

separation can be observed, with the last analytes eluting around 21 minutes (Figure 4.5.b). 

However, we can also observe increased peak broadening and lower intensities for specific 

standards. Nonetheless, our primary goal in optimizing a HILIC method was that it would serve as 

the first dimension in a two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) 
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framework. Therefore, its main purpose is to effectively separate lipids based on headgroup 

polarity before they undergo RPLC-MS analysis.  

Given that fractions from the first dimension will be further analyzed using RPLC-MS, the 

observed peak broadening was considered not as significant for the overall goal of this work. 

Regardless, the observed peak broadening was considered when planning each collected fraction, 

mitigating further issues. 

 The improvement in lipid class separation achieved with this revised gradient was 

considered sufficient for a first-dimension separation. Therefore, it would allow for the collection 

of well-defined fractions and lay the groundwork for developing our offline 2DLC method. 

 

4.3.2. 2DLC-MS Method Development 

4.3.2.1.Development of the Fractionation Method and Injection Of Standards 

After optimizing the HILIC-MS method, we started its integration with our already 

established RPLC-MS methodology to reduce sample complexity and the co-elution of lipid 

species 78,83,103. Lipid extracts were initially prepared for HILIC separation, followed by the 

collection of fractions. These fractions were dried under gentle nitrogen flow and resuspended for 

RPLC-MS analysis.  

In our first attempt, we tried to collect eight fractions (Figure C.3), targeting separating lipid 

classes that typically co-elute in RPLC-MS, such as PCs and PEs. However, this task proved not 

viable with our current HILIC method, as the resolution between PC and PE is insufficient for them 

to be fully separated. Additionally, having eight fractions was considered excessively time-
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consuming since all of them will have to be analyzed on RPLC-MS, increasing the length of our 

workflow 8-fold. 

After conducting additional tests, we opted for a more efficient approach, settling on a five-

fraction collection strategy. The specific time collection intervals for each fraction are outlined in 

Table 4.2, along with the lipid classes expected in each fraction.  

 

 Table 4.2. Time Intervals and Expected Lipid Classes for Fraction Collection 

Fraction Code Time Interval (min) Expected Lipid Subclasses 

F1 0 – 5 CE, Cer, DG FA, HexCer, MG, PR, ST, TG 

F2 5 – 10 PG 

F3 10 – 15 PA, PC, PE, SM, SPB 

F4 15 – 20 LPC 

F5 20 – 25 LPE, PI, PS 

 

We separated our samples into five fractions to improve the analytical resolution and 

specificity, minimize ion suppression, and reduce co-elution among different lipid classes. These 

steps are crucial for precisely annotating and quantifying lipids9,83. 

A recognized challenge concerning 2DLC methods, particularly online versions, is the 

dilution of samples in the first dimension, which complicates the analysis and often decreases the 

limit of detection78,203. This prompted us to adopt an offline approach, allowing us to concentrate 
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each fraction by evaporation before reconstituting it in a smaller volume of solvent mixture fully 

compatible with our RPLC-MS conditions. This decreased the chance of clogging and peak 

broadening. We opted to resuspend each fraction to the original injection volume (10 µL for this 

study) to aid the performance evaluation. 

We used a mixture of 15 deuterated lipids (NovaMT LipidRep) to evaluate the performance 

of the developed offline 2DLC-MS protocol (Figure 4.6). This experiment addressed two primary 

concerns: assessing potential sample loss throughout the process and determining each standard's 

fractionation pattern and separation improvement. 
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Figure 4.6. Extracted Ion Chromatogram (EIC) for NovaMT LipidRep Internal Standard Serum mix acquired on Bruker Maxis 

Impact II, MPA: 10 mM NH4COOH 60:40 ACN/H2O; MPB: 10 mM NH4COOH 95:2:3 ACN/MeOH/H2O; 0.250 mL/min; 45ºC, 

26 min gradient elution (0 min 100% MPB, 2 min 100% MPB, 2-4 min 98% MPB, 4.5 min 98% MPB, 6 min 96% MPB, 8.5 min 

93% MPB, 9.5 min 93% MPB, 12 min 91% MPB, 17 min 86% MPB, 25min 80% MPB, 26 min 20% MPB); 4  min equilibration 

(100% MPB), diluted 8-fold. a) Standards eluted in F1; b) Standard eluted in F2; c) Standard eluted in F3; d) Standard eluted in F4; 

e) Standard eluted in F5; f) Non-Fractionated standard mix. 
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Figure 4.6 highlights that fraction 1 contains seven of the 15 lipid classes initially present 

in our internal standard mix (MG, DG, TG, CE, Cer, FA, and ST), which correspond to those with 

limited HILIC retention (retention times smaller than 2 min). Yet, when subjected to HILIC 

fractionation followed by RPLC-MS (Figure 4.6.a), these previously coeluting standards are well 

separated in the second dimension, which can be attributed to their different polarities. 

Additionally, certain classes often co-elute by RPLC, such as PG and PI, can be observed eluting 

in distinct fractions when using our 2DLC method. PG is found in fraction 2 (Figure 4.6.b), whereas 

PI is in fraction 5 (Figure 4.6.e). 

Moreover, we compared the average peak intensities obtained for RPLC-MS internal 

standards to those obtained when using 2DLC-MS. The results shown in Supp. Table 18 displays 

recoveries ranging from 81% to 127%, indicating no substantial sample loss during the 

fractionation process. These findings confirm the efficiency of our fractionation and reconstitution 

strategy in preserving sample integrity throughout the 2DLC workflow. 

One of the goals of our study was to improve lipid separation and enhance annotation 

confidence. Hence, we tested several commercially available standards incorporated into pre-

defined mixtures, analyzing them by HILIC-MS alone and subsequently by 2DLC-MS (Figure 

C.4). This way, we were able to determine the fractionation profiles of different lipid subclasses 

with variable fatty acyl composition, which has been previously highlighted in Table 4.2. With that 

information, we determined which fraction of the most common lipid subclasses was more likely 

to appear and used that information to develop our annotation confidence procedure. 

Injecting our standards in the stand-alone HILIC-MS method allowed us to assess specific 

characteristics, such as different fatty acyl chain lengths, number of double bonds, and 
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modifications of those molecules, and draw comparisons between the lipid classes involved in our 

study. We were able to establish a relationship between the retention times and the carbon chain 

lengths of our analytes in HILIC-MS (Figure C.5). Within the same subclass, most standards eluted 

within a 2-minute interval, regardless of any structure differences. These results corroborate that 

the fatty acyl chain length has a minor influence on the retention times in HILIC separations, so 

HILIC focuses on separating analytes mostly based on their headgroup polarity78,83. For instance, 

sterols (ST) with the same number of carbons but varying structural modifications (number of 

oxygens or unique configurations) demonstrated elution times ranging between 1 and 2 minutes in 

HILIC separation. In contrast, in RPLC-MS, those would elute throughout the chromatogram.  

Analyzing the elution patterns of the commercial standards accomplished two objectives: 

first, it demonstrated the efficiency of our fractionation technique, and second, it improved our 

understanding of the post-fractionation distribution of lipid subclasses. The insights this 

experiment gave us were crucial for recognizing potential misannotations in future analyses of 

biological samples and, therefore, in determining our annotation accuracy.  

 

4.3.2.2.Application of 2DLC-MS Method on Biological Samples 

After optimizing the 2DLC method and validating its performance using commercial 

standards, our next objective was to assess its efficiency on complex biological matrices, such as 

tissue or cell samples, showcasing its potential for real-world applications.  Chicken liver extracts 

were prepared by homogenization with a bead-beater and ceramic beads after adding internal 

standards, followed by LLE, following the procedure previously described and the volumes shown 

in Supp. Table 17. A portion of the organic phase was evaporated to dryness and resuspended to a 
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75-fold dilution (mg/mL of resuspended extract). In Figure 4.7, we have a lipidomic profile across 

all five fractions obtained from the chicken liver tissue extracts and a comparison with a non-

fractionated sample.  
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Figure 4.7. Base Peak Chromatogram (BPC) for chicken liver tissue diluted 75x and NovaMT LipidRep Internal Standard Tissue 

mix; a) Fraction 1; b) Fraction 2; c) Fraction 3; d) Fraction 4; e) Fraction 5; and f) Non-fractionated sample. 

 

a)

d)

c)

e)

f)

b)
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From Figure 4.7, we observe that, for tissue samples, most detected features elute in 

fractions 1 and 3, representing 38% and 23% of the features, respectively (Figure C.6.a). The 

2DLC-MS method reveals a 2.1-fold increase in detected features compared to RPLC-MS. The 

summed intensity shows a similar trend, with fractions 1 and 3 corresponding to 46% and 37% of 

peak intensities, reflecting a 1.3-fold increase over RPLC-MS data (Figure C.6.b).  

Similar behaviors are observed in serum and cell samples (Figure C.7 and Figure C.8, 

respectively). Serum samples follow a trend similar to tissue samples, with most detected features 

in fractions 1 and 3, representing 36% and 24% of the total, respectively. This represents a 2.2-fold 

increase compared to RPLC-MS (Figure C.5.a). Summed intensities for fractions 1 and 3 

correspond to 44% and 30% of the total, showing a 1.2-fold increase over RPLC-MS (Figure 

C.5.b). Cell samples show slight differences, with fractions 1 and 3 having the highest number of 

detected features at 29% and 25%, representing a 2.3-fold increase (Figure C.5.a). However, 75% 

of the total summed intensities come from fractions 1 and 3, at 23% and 50%, indicating a 1.2-fold 

increase compared to RPLC-MS (Figure C.5.b). These results indicate that our 2DLC method 

simplifies sample complexity and provides a more detailed and comprehensive view of the 

lipidome across different sample types. 

Drawing from our earlier findings (shown in Figure 4.6), fraction 1 (Figure 4.7.a) 

predominantly contains lipids with hydrophobic headgroups (MG, DG, TG, CE), fatty acids, 

ceramides, and sterols. In contrast, fraction 3 (Figure 4.7.c) mainly comprises 

glycerophospholipids, such as PCs and PEs. The high feature counts and summed intensities in 

these fractions suggest that the lipidome of the analyzed samples is predominantly composed of 
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those species, which aligns with previous studies that say those are the most abundant subclasses 

in tissue samples1,15,110,136,175. 

Lastly, we evaluated the annotation capabilities of our software by comparing the 2DLC-

MS and RPLC-MS methods and examining how many annotations were common to both datasets. 

This comparison allowed us to assess the consistency and coverage of lipid annotations provided 

by each technique, highlighting the strengths and limitations of each approach in annotating lipid 

species displayed in Figure 4.8.   

 

Figure 4.8. Comparison of lipid annotations annotated by the software using 2DLC-MS and RPLC-MS methods. The figure shows 

the number of lipids successfully annotated in the 2DLC-MS and RPLC-MS methods separately and those consistent across both 

methods. 
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The 2DLC-MS method resulted in more lipid annotations across all matrices. Figure 4.7 

and Figure 4.8 show that this method's advantages include reduced sample complexity, fewer 

coelutions, and lower ion suppression. These effects increase summed intensities and the number 

of detected features, which facilitate potentially uncovering low-abundance peaks.  

The 2DLC-MS method reduces sample complexity and reveals more details of the 

lipidome. However, some annotations using only RP may be incorrect due to poor library and low-

quality experimental spectra caused by ion suppression or matrix effects. Since 2DLC minimizes 

these issues, previously misannotated structures can be correctly reannotated, leading to 

mismatches between 2DLC and RP methods. Additionally, incomplete fragmentation, isobaric 

interference, and ion suppression in RPLC further complicate accurate annotation. Lipid species 

like ACer, MGDG, and DGDG are typically found in plants and are rare in other sample types, 

explaining their absence in 2DLC analysis175,202,207. 

Supp. Table 19 to Supp. Table 24 lists all annotated lipids for each method, sample type, 

and Supp. Table 25 lists all features present in RPLC-MS that were not present in 2DLC-MS for 

all sample types. These factors highlight the complexity of lipidomics and the importance of using 

complementary techniques for accurate lipid profiling. By considering these aspects and improving 

sample preparation, instrumental settings, and database quality, the accuracy of MS/MS matching 

can be significantly enhanced. 

The development and proof-of-concept application of our 2DLC-MS method provided an 

overview of its potential for reducing sample complexity and increasing the number of detected 

features. The next step was to evaluate its benefits in other biological samples, including human 

serum and MCF-7 cells (human breast cancer), based on the total number of annotated lipid species 
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and the proportion of annotations assigned to the expected HILIC fraction. Moreover, we compared 

annotation results from fractionated samples against those from non-fractionated samples to 

identify the overlap in annotated lipid species. 

These factors highlight the complexity of lipidomics and the importance of using 

complementary chromatographic techniques, such as HILIC and RP, for accurate lipid profiling. 

The development and proof of concept application of our 2DLC-MS method gave us an overview 

of its potential for reducing sample complexity and increasing the number of detected features.   

 

4.3.3. Lipid Annotation Confidence 

Next, we evaluated our method’s ability to determine lipid annotation confidence across 

different biological matrices, including human serum, MCF-7 cells (human breast cancer), and 

chicken heart tissue samples. For this, we evaluated the total number of annotated lipid species and 

how many of those annotations were assigned to their expected HILIC fraction.  

We first evaluated the annotation performance of lipids detected in human serum using 

LipidScreener (Figure 4.9). Of all annotated lipid species, 93% (548 lipids) belonged to a subclass 

represented in our standard set, indicating whether they were annotated within their expected 

fraction. Among the subclasses with known expected fractions, 79% of them eluted in their 

anticipated fraction (Figure 4.9). This observation further indicates that our offline 2DLC approach 

can be a reliable tool for determining annotation accuracy since most annotations were present in 

their expected fraction, even though some unexpected annotations were present in every fraction. 
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Figure 4.9. Comparative Analysis of Lipid Annotations by Fraction Association for Serum Samples. a) Distribution of lipid 

annotations, which belong to subclasses with a known fraction, and annotations with subclasses with an unknown fraction. b) 

Annotations assigned to a feature in their expected fraction. 

 

Individually analyzing each fraction (Figure 4.10), we can see the percentage of annotations 

that eluted in their expected fraction. Out of the 155 annotations in fraction 1, 85.2% were expected, 

whereas 14.8% were not. Most unexpected annotations in this fraction were assigned to PE, PG, 

and SM. In fraction 2, out of 72 annotations, 91.7% were in their expected fraction, and 8.3% were 

not, with the most unexpected annotations being PI. For fraction 3, out of 164 annotations, 68.9% 

were in their expected fraction, while 31.1% were not, most of these being Cer. Fraction 4 had 120 

annotations, with 81.7% in their expected fraction and 18.3% not, with the most unexpected 

annotations being TG. Lastly, fraction 5 had 36 annotations, with 63.9% in their expected fraction 

and 36.1% not, most being TG. 

Known fraction subclass

Unknown fraction subclass

Annotations in expected fraction

Annotations not in expected fraction

a) b)

41

548

21.0%

7 .0%
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Figure 4.10. Distribution of lipid annotations in their expected fractions (green) versus those not in their expected fractions (orange) 

across five serum sample fractions. The x-axis represents the five fractions, while the y-axis indicates the percentage of annotations.  

 

The annotation performance for fractions 3 and 5 is generally lower than for other fractions. 

Fraction 3 mainly contains phospholipids (PC, PE, and PA), which often coelute in RPLC-MS, 

making accurate annotation difficult because of ion suppression and matrix effects. This can lower 

MS/MS spectra quality and lead to misannotations80,120. Fraction 5 has additional challenges due 

to low-abundant lipid species like LPC, LPE, and PI. The low abundance results in lower signal 

intensities, poorer-quality spectra, and more complicated annotation. Mismatch annotation could 

also occur due to suboptimal fraction collection intervals or unsuitable MS/MS matching 

procedures influenced by data quality from libraries, spectral acquisitions, and algorithms. 

Furthermore, mismatch annotation can happen due to a poor fraction collection interval or 

unsuitable MS/MS matching procedures. These issues may be influenced by the quality of data 
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from existing libraries, our spectral acquisitions, and the matching algorithms used. This points to 

areas for improvement in future work. Additionally, the injection volume of 10 µL in the first LC 

dimension might be causing broader peaks, leading to some lipid classes eluting in multiple 

fractions. Some subclasses have tailing profiles, resulting in multiple fraction elution. Also, a few 

species elute in the last fraction, so even a few false positives can significantly affect the expected 

versus unexpected annotation ratio208. 

To evaluate the versatility and consistency of our method across different sample matrices, 

we repeated this assessment with MCF-7 cell samples and chicken liver samples. Figure 4.11 shows 

a consistent trend, following the pattern previously observed for serum samples. In chicken liver 

samples (Figure 4.11.a), 93% of annotated lipids matched the standard subclasses, with 79% 

assigned to the correct fractions (Figure 4.11.b). For cell samples (Figure 4.11.c), 92% of annotated 

lipids aligned with the subclasses represented by our standards, with 78% of lipid annotations 

assigned to the correct fractions (Figure 4.11.d). 
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Figure 4.11. Comparative Analysis of Lipid Annotations by Fraction Association for tissue and cell samples. a) Distribution of lipid 

annotations for tissue samples, which belong to subclasses with a known fraction, and annotations with subclasses with an unknown 

fraction. b) Annotations for tissue samples assigned to a feature in their expected fraction. c) Distribution of lipid annotations for 

cell samples, which belong to subclasses with a known fraction, and annotations, which belong to subclasses with an unknown 

fraction. d) Annotations for cell samples assigned to a feature in their expected fraction. 

 

 A similar analysis was conducted for tissue and cell samples to evaluate annotation 

performance for each fraction (Figure C.9), paralleling the findings from serum samples. In both 

tissue and cell samples, fraction 5 showed a significantly lower percentage of expected annotations 

(38.8% for tissue and 26.8% for cells). Most of the unexpected matches in tissue samples were TG, 

Known fraction subclass

Unknown fraction subclass

Annotations in expected fraction

Annotations not in expected fraction

a) b)

c) d)
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while cell samples were primarily SM. This pattern mirrors the trend observed in serum samples, 

where fraction 5 also had lower annotation performance, primarily due to the complexities of lipid 

elution and the quality of MS/MS matching procedures. Overall, this consistency highlights areas 

for potential improvement in fraction collection intervals and MS/MS matching algorithms. 

 

4.3.4. Performance of Different Software for Lipidomics Data Processing 

We compared the lipid annotation results obtained from three software tools: Metaboscape 

(Bruker Daltonics, Billerica, MA, USA), MS-Dial, and LipidScreener. The first two options are 

well-known and often used in the lipidomics community. However, LipidScreener is an in-house 

software developed for our RPLC-MS/MS untargeted lipidomics approach. Thus, it may present 

superior results than software that analyzes datasets acquired using other methodologies. For each 

software, we evaluated the accuracy of subclass attributions to the expected fractions and the 

consistency of annotations across the software platforms.  

Figure 4.12 displays the total number of annotations obtained using each software for our 

2DLC-MS/MS data. LipidScreener annotated the highest number of features for all sample types, 

initially suggesting it may be more suitable for processing our datasets. Metaboscape and MS-Dial 

were superior when comparing the percentage of annotated features that eluted within their 

expected fraction (92% average across the different sample types), suggesting their matching 

algorithms might be superior to the ones used by LipidScreener. However, LipidSceener provided 

a higher absolute number of correct annotations (i.e., that eluted within the expected fractions). 
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Figure 4.12. Comparative Analysis of Lipidomics Software Performance. The bar graph displays the total MS/MS annotation 

features obtained by Lipid Screener, MS-Dial, and MetaboScape in the 2DLC-MS analysis across various sample types. It illustrates 

the number of lipid annotations by each software and the proportion of these annotations that coincided with their expected 

fractionation, highlighting the accuracy and efficiency of each software in predicting lipid elution profiles. 
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While LipidScreener stands out in detecting many features, MetaboScape and MS-Dial 

show a higher annotation accuracy for MS/MS matches. While MetaboScape and MS-Dial show 

similar performance percentage-wise, if we look at the absolute numbers, MetaboScape shows its 

superiority by annotating 1.6-fold more features within their expected fraction than MS-Dial. 

Furthermore, although MS-Dial and MetaboScape have similar performances in annotating 

features in their expected fraction, MetaboScape annotates more lipid species correctly. 

The balance between annotation quantity and accuracy highlights the importance of 

selecting the appropriate software based on the analysis's specific needs. Despite MetaboScape and 

MS-Dial's superior performance in accurately matching features, there are still advantages of using 

LipidScreener for lipidomics analysis, as it annotates the most features across all sample types, 

capturing a wide range of lipid species, including low-abundance lipids. Furthermore, like the other 

software, its consistent performance across different samples suggests robustness and adaptability. 

While MetaboScape and MS-Dial offer precise matching, LipidScreener’s extensive detection 

capabilities and customization for our needs may make it more suitable for our workflow. 

To extend the comparison between the three software options, we generated Venn diagrams 

(Figure 18), which highlighted the similarities and differences in annotated species (only those 

found in their specific fraction) from serum, cell, and tissue samples among the software used.  
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Figure 4.13. Venn diagram displaying unique and shared lipid species annotated by LipidScreener, MS-Dial, and MetaboScape. 

The central intersection represents lipids annotated by all three software. At the same time, the outer sections denote the number of 

unique annotations made by each software in a) Serum samples, b) Chicken liver samples, and c) Cell samples. 

 

The Venn diagram analysis (Figure 4.13), showed that LipidScreener exhibits a significant 

number of unique annotations that eluted within their expected fractions. For example, for serum 

samples (Figure 4.13.a) 205 species were only annotated by LipidScreener, 97 were only found by 

Metaboscape, and 80 were seen only on MS-Dial data. Considering LipidScreener detects and 

annotates more features (in absolute numbers) than the other two software, it was expected to have 
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more unique annotations. Furthermore, although MS-Dial and MetaboScape perform similarly, a 

third of their annotations are unique to each software.  

LipidScreener displays similar results for tissue and cell samples (Figure 4.13.b and Figure 

4.13.b, respectively); however, MetaboScape shows the same number of uniquely annotated lipids 

as LipidScreener for cell samples. In both cases, the number of uniquely annotated species by MS-

Dial is smaller than for serum samples. This could indicate that MS-Dial’s capability to annotate 

some lipid species in complex sample types may be compromised, possibly due to the nuanced 

interpretation of mass spectrometry data or lack of a more comprehensive reference database.  

This comparison further exemplifies the need for further research and standardization 

within the lipidomics community. MS Dial and Metaboscape, two popular software platforms for 

lipidomics data processing, provided significantly different results. Only 41% of the MS-Dial 

annotated species were also annotated by Metaboscape, while 55% were annotated by 

LipidScreener (33% of those annotated in the three software) for serum samples. Still, the 71 

annotations all software platforms share highlight their power to annotate lipid species accurately, 

even with their differences. We looked for similarities and patterns in the shared annotations but 

found none. 

In the qualitative analysis, PC had the highest number of annotations, with 27 in serum, 21 

in tissue, and 54 in cells. Other notable lipid classes include DG, which had 4 in serum, 10 in tissue, 

and 15 in cells, and PE, with 1 in serum, 12 in tissue, and 53 in cells. The lipid classes TG and 

HexCer also showed varied concentrations across the sample types, emphasizing the complexity 

and diversity of lipid distributions in different biological matrices. All annotated features in the 

three software for each sample type were summarized into Supp. Table 26. 
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 Patterns among the shared and unique annotations were examined to discern any 

underlying trends. For instance, the high abundance of PC across all sample types suggests its 

critical role in cellular structure and function. PCs are known to be significant components of cell 

membranes, contributing to membrane fluidity and signaling pathways, which highlight their 

biological importance. In contrast, the presence of SM in tissue and cell samples but not in serum 

may indicate tissue-specific roles, possibly related to sphingolipid metabolism and cellular stress 

responses. This specificity suggests the biological significance of lipid class distribution and 

composition in different sample types. FA, another lipid class, exhibited minimal variation, 

suggesting it may not be as biologically distinctive in this context as other classes1,110,209,210. 

Carefully looking at our annotation list for each software shows that PCs, SMs, and TGs 

are some of the most abundant subclasses annotated. However, none of the SMs annotated were 

present in the correct fraction and all software simultaneously. Further analyzing these annotations, 

most had different modifications in their structure (i.e., SM 36:0;O2 and SM 36:0;O3 for MS-Dial 

and LipidScreener, respectively). On the other hand, TG, which had the least annotations in 

MetaboScape, was present in all software and in its expected fraction 78% of the time. No specific 

trends were observed for the shared or unique annotations, suggesting that 1) software tailored for 

this specific dataset might detect more peaks and, therefore, have more peaks to annotate possibly; 

2) potential issues in the theoretical libraries or dataset may lead to spectra with a lot of noise, 

causing potential confusion to the software during the annotation step. 

While all platforms can reliably annotate many lipid species, exclusive reliance on a 

singular software may lead to missed or incorrect annotations. Implementing a multi-software 

approach could significantly broaden the scope of lipidomic analysis, although practical limitations 



Chapter IV 

165 

 

such as processing time and resource allocation must be considered. Critical factors for selecting 

optimal software include user-friendliness, customizability to project-specific requirements, potent 

annotation capabilities, and overall performance. Regarding our needs, LipidScreener emerges as 

a promising option, especially given its design for customization and adaptation to our specialized 

methods and analytical needs. 

LipidScreener, despite being an in-house tool, demonstrated the highest number of 

annotations, making it highly effective for comprehensive lipid detection, suggesting its design, 

tailored for our RPLC-MS/MS workflow, may offer better coverage, especially for low-abundance 

lipids. On the other hand, Metaboscape and MS-Dial, showed higher accuracy in annotating species 

to their expected fractions, indicating they may be more suitable for studies requiring highly precise 

lipid matching.  

A balance between annotation accuracy and quantity is vital in lipidomics studies, 

emphasizing the importance of choosing the right tool based on the study's objectives. While 

Metaboscape and MS-Dial provide precise matching, LipidScreener offers broader detection and 

is customizable for specific workflows. With that in mind, LipidScreener may be the most suitable 

option for our lipidomics research due to its adaptability and ability to capture a broader range of 

lipid species. 

 

4.3.5. Proof-of-Concept Study on Integrating 2DLC Method with LipidScreener Software 

After demonstrating the value of our 2DLC method and comparing our in-house software 

against more established alternatives, we conducted a small proof-of-concept study. This study 

aimed to modify our workflow and data processing routine to incorporate this method.  
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In this study, tissue and serum samples were used. Each sample was extracted as described 

in Supp. Table 17 and injected into RPLC-MS. Pooled tissue and serum samples were used for 

quality control and fractionation. The pooled samples used for fractionation were subsequently 

injected in RPLC-MS along with the other samples. 

We chose LipidScreener as the most suitable software for processing the 2DLC-MS 

datasets because of its adaptability. Minor modifications were made to the original software to 

allow the alignment of fractionated and non-fractionated samples. These modifications included 

adjustments to feature filtering and missing value substitution. Usually, we filter out features that 

are not present in at least 80% of injections in at least one group; this condition was maintained. 

However, features assigned to a fraction group (i.e., F1, F2, F3, F4, or F5) were only kept if they 

satisfied the condition in a non-fractionated group. Additionally, features were only considered 

present in a fraction if present in at least 50% of injections. Furthermore, if a feature was present 

in multiple fractions simultaneously, it was assigned to the fraction with the highest intensity. 

Notably, no missing value substitution was performed for fractionated samples to get the raw 

highest intensity for each fraction. 

After that, data processing followed the previously outlined steps of merging and MS/MS 

annotation. Annotations were then exported to an Excel file, where duplicated annotations were 

sorted by MS/MS score (highest to smallest) and mass error (lowest to largest). Figure 4.14 shows 

a summary of all maintained annotations, which were further evaluated based on their assigned 

fraction. Annotation confidence was assigned as previously described. 
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Figure 4.14. Distribution of lipid annotations across lipid subclasses and annotation tiers. Tier 1 annotations were MS/MS matches 

with scores higher than 500, Tier 2 were MS/MS matches with scores between 100 and 500. 

 

After alignment, 17,474 features were detected following polarity merging, with 11,032 

features detected in positive ion mode and 6,442 in negative ion mode. MS/MS annotation yielded 

a total of 996 annotations. Among these, 179 annotations were duplicated, meaning they appeared 
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at least twice in our dataset. After filtering out these duplicates and ten contaminant annotations, 

we were left with 555 MS/MS annotations. Of these, 518 were classified as Tier 1 (MS/MS score 

> 500), and 37 were classified as Tier 2 (500 > MS/MS score > 100). Of the 15 internal standards 

in our mix, 14 were detected in at least one ionization mode, with a mass error lower than 3 ppm 

for positive and 2 ppm for negative ionization. A list of annotations that have been kept can be 

found in Supp. Table 27. 

Figure 4.14 the most common lipid classes detected are TGs, PCs, PEs, and SMs. These 

findings align with what is typically expected in tissue and serum samples due to their roles in 

energy storage, transport, and cellular structure 110,175,211,212.  

Out of the 555 MS/MS annotations, only eight did not have a fraction assigned to them. 

This indicates that our samples did not detect these features after fraction collection. One possible 

reason for this is that, even before fractionation, these peaks were present in low abundance 

(average intensity of 2x104 or lower, after missing value substitution). Thus, these low-intensity 

peaks might not have been present enough to be detected because of sample losses after 

fractionation. 

After assigning fractions (F1, F2, F3, F4, F5, or RP for those whose peak was not detected 

in the fractionated samples) to our MS/MS annotations, we cross-referenced it with our database 

to correlate lipid subclass to its respective fraction. We used that to determine the annotation 

confidence for this study. From these 555 annotations, 500, or 90.1%, belonged to a subclass we 

had previously profiled, which meant we knew which fraction it was expected to elute, and from 

these 500, 84%, or 418 annotations, were present in the predicted fraction. Figure 4.15 shows how 

these annotations are distributed across the five fractions. 



Chapter IV 

169 

 

 

Figure 4.15. Distribution of lipid annotations in their expected fractions (green) versus those not in their expected fractions (orange) 

across five serum sample fractions. The x-axis represents the five fractions, while the y-axis indicates the percentage of annotations. 

 

Previously, when evaluating our 2DLC method, fractions would be aligned and annotated 

individually and then combined for annotation accuracy assessment. If we compare the results in 

Figure 4.10 and Figure 4.15, we can see improvements, especially in fractions 3 and 5. The overall 

improvement in annotation confidence went from 79% to 84%. However, the improvement is more 

significant when we evaluate individual fractions. Fractions 2 and 4 had very similar performance 

in both data processing scenarios, having about the same percentage of annotations not in their 

expected fraction. However, fraction 1 showed a reduction of 1.7-fold in the annotations, not in 

their expected fraction, going from 14.8% to 8.6%. Similarly, fraction 3 showed a reduction of 1.5-

fold (going from 31.1% to 21.2%), and fraction 5 showed a 2.3-fold (36.1% to 15.4%) reduction. 

These results indicate that aligning and processing fractionated, and non-fractionation injections 
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together aid in annotation accuracy since fractions are less susceptible to ion suppression and, 

therefore, might generate a better fragmentation spectrum for our peaks, improving MS/MS 

annotation83,102. 

 

4.4. Conclusions  

We developed and optimized herein an offline two-dimensional liquid chromatography-

mass spectrometry (2DLC-MS) method for untargeted lipidomics of biological samples. By fine-

tuning the HILIC separation method and integrating it with RPLC-MS, we established a robust 

analytical framework that enhances lipid detection and addresses inherent challenges posed by the 

complexity of biological samples, such as coelutions and ion suppression. The offline 2DLC 

fractionation approach successfully reduced ion suppression and co-elution among lipid classes, 

simplifying sample complexity and significantly improving the accuracy of lipid subclass 

determination. 

The comparative analysis of lipid annotation across different data processing software -

Metaboscape, MS-Dial, and LipidScreener – confirms the role of data processing and annotation 

tools in enhancing annotation reliability in lipidomic studies. More importantly, it shows the 

importance of future research about annotation algorithms to generate more reliable results across 

different laboratories and data processing routines; this highlights that lipidomics is an evolving 

research field, indicating a need for further research. 

Developing and optimizing the method herein is an important step in lipidomic analyses to 

evaluate and improve annotation accuracy. By addressing previous challenges, such as sample 

dilution, ion suppression, and broad peak shapes, our study may guide future research to unravel 
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the complexity of lipids in biological systems, such as disease biomarkers. However, it would be 

significantly more time-consuming, considering all the involved steps (first-dimension separation, 

drying, and second-dimension separation) to perform this method for all samples. Therefore, 

instead of making every sample go through the whole process, we perform the 2DLC analysis only 

on the extra pooled samples. This would give us all the RPLC-MS peaks and fragmentation 

patterns, in addition to the ones unveiled by 2DLC-MS.  

Previous studies have explored the improvement in lipid annotation by reducing sample 

complexity using a 2DLC method. Although our study shares some similarities with other 

previously conducted assessments, ours focuses less on increasing lipid detectability and more on 

annotation accuracy. Although increasing detectability is important, as shown herein, improving 

lipidomics methods to generate consistent and accurate results should be the priority, as both higher 

detectability and accuracy are required for future biomarker and therapeutical studies. 
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V 

Chapter V: Instrument and Column Inner Diameter Effects on LC-MS Lipidomics: 

Quadrupole Time-of-Flight MS vs. Orbitrap MS  

 

5.1. Introduction 

Lipidomics aims to study lipids in biological systems to understand cellular functions and 

disease pathways, as well as aid in biomarker discovery2,38. Lipid molecules maintain cell 

membrane integrity, mediate signaling processes, and serve as energy reservoirs. Because of their 

diverse roles in biological systems, accurate and sensitive lipid profiling is vital for advancing 

knowledge on health and disease1,103,213. However, lipid profiling can be challenging due to the low 

abundance and diverse chemical structures, requiring more sensitive techniques9,24,70,102,132.  

Advances in Mass Spectrometry (MS) and Liquid Chromatography (LC) technologies, 

particularly high-resolution instruments such as Orbitrap-MS and Quadruple time-of-flight (QToF-

MS) and smaller inner diameter (ID) LC columns, have shown a significant potential for enhanced 

analyses of small molecules71,81,213–217. QToF-MS has been extensively used for targeted and 

untargeted lipidomics and metabolomic studies due to its sensitivity and data acquisition rates, 

which make it suitable for high-throughput analyses. Furthermore, QToFs are known to be robust 

and cost-effective instruments, with resolutions ranging from 30,000 to 60,000, making them 

appropriate for most applications14,102,106.  

On the other hand, Orbitrap-MS can provide superior sensitivity and resolution; depending 

on the instrument of choice, the resolution can reach 360,000, which is essential for accurately 
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profiling lipids. These features allow the detection of low-abundance lipid species and the 

differentiation of isomeric and isobaric species, which are common in lipid sampels102,106,108. The 

high mass accuracy displayed by Orbitrap instruments also improves the reliability of the data, 

reducing the chances of missannotation. Additionally, Orbitrap’s high dynamic range allows the 

detection of a wide range of lipid molecules, from very low to very high abundant species, which 

is essential for comprehensive lipidomics studies and a better understanding of lipid pathways in 

diseases71,102,106,107. 

Another challenge in lipidomic studies comprises lipid separation. Finding a suitable 

balance between analysis time and separation remains challenging in LC-MS-based lipidomics. 

Different studies have proposed separation gradients lasting from 20 to 60 minutes to achieve 

optimum separation5,102,108,218. However, extended runs are not practical for high-throughput 

analysis. A significant part of the lipidomics work has been conducted using at least a 2.1 mm ID 

column69,78,108,219. However, studies have shown the advantages of using columns with smaller IDs, 

such as 1 mm ID or even nanoLC columns, making them a promising alternative for 

improvement102,220–222. 

Smaller ID columns, such as 1 mm, enhance the sensitivity and resolution of the analysis 

by reducing band broadening. This leads to sharper peaks and better separation than their 2.1 mm 

counterparts221,222. These improvements can be significant in studies aiming to detect subtle 

changes in the lipidome or low-abundant species. Additionally, 1 mm ID columns require less 

solvent, making the method more cost-effective and environmentally friendly. However, some 

disadvantages are also noted. Smaller columns are more likely to clog and often have lower sample 

loading capacity, which might limit their use in applications requiring larger sample volumes. 
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Despite these challenges, the benefits of increased sensitivity and resolution make 1 mm ID 

columns a valuable tool in advancing lipidomic analyses, particularly in high-throughput settings 

where quick and efficient separation is crucial215–217,221–224. 

With this in mind, this study aims to improve lipidomic analysis and workflows. First, a 

UHPLC method for the Orbitrap-MS was adapted, and its performance compared with the QToF-

MS. This involves optimizing ion source parameters and evaluating the performance in terms of 

sensitivity, resolution, and the ability to detect and quantify lipid species. Second, develop and 

optimize a UHPLC method using a 1 mm ID column and compare it with the traditional 2.1 mm 

ID column. This comparison will assess how the smaller column affects lipid separation, 

sensitivity, and resolution. These efforts aim to improve lipid detection and quantification 

accuracy, a crucial step for better understanding the role of lipid molecules in biological processes 

and disease states. 

 

5.2. Experimental 

5.2.1. Reagents and Equipment 

A standard mixture containing 15 deuterated lipids from various subclasses was purchased 

from NovaMT (LipidRep Internal Standard Basic Mix Serum/Plasma, Nova Medical Testing, 

Edmonton, AB, Canada. Human serum samples, LC-MS-grade water (H2O), and isopropanol 

(IPA) were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). LC-MS-grade acetonitrile 

(ACN), methanol (MeOH), dichloromethane (DCM), and ammonium formate (mass spectrometry 

grade) were obtained from Honeywell (Charlotte, North Carolina, USA).  
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Chicken liver tissue samples were bought from a local supermarket, subdivided into 

aliquots, and placed into 2 mL sterile polypropylene tubes for long-term storage at -80 ºC. Sample 

homogenization was performed using a Bioprep-24 Homogenizer (Bio-Equip) with ceramic beads. 

 

5.2.2. Instrumentation 

The UHPLC experiments described herein were performed under three different settings: 

(1) a  Dionex 3000 system (Thermo Fisher Scientific, Waltham, MA, USA) with a Waters Acquity 

CSH Premier C18 column (1.7 µm, 2.1×100mm, Waters Corporation, Milford, MA, USA) coupled 

to a MaXis II ESI QqToF (Bruker Daltonics, Billerica, MA, USA); (2) a  Vanquish Duo system 

(Thermo Fisher Scientific, Waltham, MA, USA) with a Waters Acquity CSH Premier C18 column 

coupled to a H-ESI Orbitrap Exploris 240 (Thermo Fisher Scientific, Waltham, MA, USA); and 

(3) a  Vanquish Neo system (Thermo Fisher Scientific, Waltham, MA, USA) with a Waters Acquity 

CSH C18 column (1.7 µm, 1.0×100mm, Waters Corporation, Milford, MA, USA) coupled to a H-

ESI Orbitrap Exploris 240. 

 

5.2.3. Orbitrap Method Optimization 

An Orbitrap mass spectrometer initially operated with the manufacturer's default ion source 

parameters, outlined in  

Table 5.1. LC conditions followed those from previous works with a 16-minute gradient 

separation followed by a 4-minute re-equilibration. The separation flow rate was 0.300 mL/min 

from 0 to 9.3 minutes, reduced to 0.270 mL/min from 9.3 to 10.1 minutes, and kept at 0.210 mL/min 
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from 10.1 min to the end of the run, with column temperature at 45 °C throughout. The initial 

conditions were 15% MPB, and the gradient progressed as follows: 0.5 min at 15% MPB, 2.3 min 

at 25% MPB, 9.3 min at 42% MPB, 10.1 min at 78% MPB, 12 min at 90% MPB, 13 min at 98% 

MPB, and held at 98% MPB until 14.5 min, then returned to 15% MPB by 15 min. The mobile 

phase composition used in this work was MPA - 10 mM ammonium formate in 50:40:10 

MeOH/ACN/H2O and MPB - 10 mM ammonium formate in 95:5 IPA/H2O
108. After obtaining 

preliminary results, optimizing the ion source parameters was proposed to enhance the signal 

intensity and improve peak shape ( 

Table 5.1). We compared our optimized ion source parameters with those used in the QToF 

and other published works using Orbitrap103,225.   

 

Table 5.1. Ion source parameters used for the H-ESI Orbitrap Exploris 240, using manufacturers' 

default and optimized parameters. 

 Default parameters Optimized parameters 

Positive ion voltage (V) 3400 4000 

Negative Ion voltage (V) 2300 3500 

Sheath Gas (Arb) 3 60 

Aux Gas (Arb) 2 15 

Sweep Gas (Arb) 0 1 

Ion Transfer Tuber Temp. (ºC) 320 300 
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Vaporizer Temp. (ºC) 0 250 

 

5.2.4. Sample Preparation 

Serum and tissue samples were extracted using a modified Folch liquid-liquid extraction 

(LLE) method72,110. A 40-sample/solvent ratio (µL/mL) was used for serum samples, and a 200-

sample/solvent ratio (mg/mL) was used for tissue samples. Solvent ratios used in the Folch method 

were maintained (8:4:3 DCM/MeOH/H2O). However, chloroform was replaced by DCM to reduce 

carcinogenic risks and costs.  The sample and internal standards mixture was vortexed sequentially 

for 20 seconds with each solvent (MeOH, DCM, H2O) before equilibration at room temperature 

(20-2 ⁰ ) for 10 minutes and centrifugation at 12,000 pm and 4 ºC for 10 minutes. An aliquot of 

the organic phase was dried under a gentle nitrogen flow (10 minutes at room temperature) before 

the lipid extract was resuspended in 8:2 MPA/MPB. Serum samples used a 40-sample/solvent ratio 

(µL/mL), and tissue samples used a 200-sample/solvent ratio (mg/mL). 

To avoid lipid degradation, samples were stored inside the autosampler at 8ºC for at least 4 

hours (to allow equilibration) and 24 hours before LC-MS analysis. All samples were placed in 

polypropylene inserts inside with PTFE/silicone septa. 

 

5.2.5. LC-MS Analysis and Data Processing 

To compare LC-QTOF-MS and LC-Orbitrap-MS for lipidomics, we evaluated the acquired 

data based on 1) the number of detected features and 2) the number of MS/MS annotations. 

Moreover, comparisons regarding sensitivity, resolution, and overall analytical capabilities aimed 
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to identify the strengths and weaknesses of each instrument in the context of our specific 

experimental requirements. 

In both cases, LC separation followed the gradient mentioned herein. The ion source 

parameters used for the LC-Orbitrap-MS were optimized, as shown in Table 5.1. For Orbitrap-MS, 

in addition to the ion source parameters, full scans were performed with an orbitrap resolution of 

240,000, an m/z range of 150 to 1500 Da, and an RF lens set to 90%, with a maximum injection 

time of 60 ms and micro scans set to 2.  

MS/MS data acquisition employed a resolution of 45000, an isolation window of 1.5 m/z, 

and a cycle of 5 scans. Dynamic exclusion was used for acquisition, excluding precursors after 

being detected three consecutive times, with a duration of 5 seconds and a mass tolerance of 10 

ppm. Collision energies varied according to the precursor m/z values between 20 and 35 eV.  

For the QTOF-MS, ion source parameters were set at 4000 V and 4500 V for positive and 

negative ion modes, respectively, with an endplate offset of 500 V; nebulizer gas pressure of 1.2 

bar, dry gas flow rate of 5.0 L min-1; dry temperature of 240 °C, spectra acquisition rate of 1.44 

Hz; and m/z range from 150 to 1500 Da. A 1.0 mM sodium formate calibrant solution in 1:1 

IPA/H2O (v/v) was infused at the end of each chromatogram to ensure mass re-calibration and 

mass accuracy. 

For MS/MS data acquisition, the auto-MS/MS feature (oToF Control, Bruker Daltonics) 

was utilized. The cycle time was set to 1.2 seconds, with active exclusion of precursors detected 

for more than three consecutive spectra within 0.50-minute intervals. For low-intensity precursor 

ions (below 500 counts), an acquisition rate of 0.5 Hz was used, whereas 2.0 Hz was used for high-
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intensity precursor ions (above 500,000 counts). Collision energies ranged between 20 and 30 eV 

depending on the precursor m/z values.  

For both instruments, samples were analyzed separately in the positive and negative 

ionization modes, using 3 µL and 12 µL of the lipid extracts, respectively. 

The acquired data was processed using an in-house-developed Python-based software 

called LipidScreener, designed explicitly for lipidomics workflows used by The Metabolomics 

Innovation Centre (TMIC, Edmonton, Canada). QTOF-MS chromatograms from positive and 

negative ionization were aligned using a minimum intensity cut-off of 3,000 counts. In contrast, 

Orbitrap-MS chromatograms were aligned using a minimum intensity of 150,000 counts. The 

minimum peak length for both datasets was six spectra, and oligomers and multiple adducts were 

managed within a 20-ppm m/z tolerance. After alignment, features were filtered out if they were 

not present in at least 80% of injections in one group before merging the positive and negative 

ionization data. 

LipidScreener can perform MS/MS annotations by comparing acquired MS/MS spectra 

with established libraries, such as MS-Dial LipidBlast library 

(https://fiehnlab.ucdavis.edu/projects/LipidBlast), the Human Metabolome Database (https:// 

hmdb.ca), and the MassBank of North America L −MS/MS (https://mona.fiehnlab.ucdavis.edu). 

For matching, I used a 5 and 10 mDa m/z tolerance for the precursor ion and fragments, 

respectively, along with a minimum similarity spectra of 40%. After annotation, filtering 

parameters (possible adducts, m/z error, the ratio of carbon to double bond present in the molecule, 

even or odd fatty acyl chains, structural modifications, and presence of plasmenyl) were applied to 
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all annotated features to ensure accurate and reliable lipid annotation14,36,110,183–187. Mass match 

annotations were not assessed for the practices described in this chapter. 

 

5.2.6. Optimization of a Micro LC-MS Method Using a 1mm Inner Diameter Column 

Next, the effect of the column's inner diameter on lipidomics assessments was verified by 

adapting the LC-MS gradient separation to a 1 mm I.D. column. The initial method was adapted 

from the previously described procedure, although employing lower flow rates due to backpressure 

constraints. Briefly, A 37-minute gradient was used for separation (0 min, 10% MPB; 1 min, 10% 

MPB; 4 min, 30% MPB; 15 min, 40% MPB; 20 min, 60% MPB; 24.8 min, 60% MPB; 25.8 min, 

93% MPB; 32.8 min, 98% MPB; 35.8 min, 98% MPB; 37 min, 15% MPB), starting with a flow 

rate of 90 µL/min, decreasing to 30 µL/min throughout the run. The column was maintained at 45 

ºC, and separation was followed by a 5-minute re-equilibration segment at 15% MPB, with a 90 

µL/min flow rate. Mobile phase compositions were MPA - 10 mM ammonium formate in 50:40:10 

MeOH/ACN/H2O and MPB - 10 mM ammonium formate in 95:5 IPA/H2O. 

Mobile phase compositions, flow rates, column temperature, and gradient separation were 

fully optimized. Optimal conditions were selected based on peak intensity, visual chromatographic 

separation, and run time, which resulted in a 21.6-minute gradient separation (0 min, 15% MPB; 2 

min, 30% MPB; 4.5 min, 37% MPB; 8.8 min, 48% MPB; 12.7 min, 53% MPB; 12.8 min, 53% 

MPB; 14.8 min, 75% MPB; 17.8 min, 93% MPB; 19.3 min, 98% MPB; 20.4 min, 98% MPB; 21.6 

min, 15% MPB), using a flow rate of 50 µL/min, decreasing to 30 µL/min at 12.8 minutes until the 

end of the run. Separation was followed by a 2.4-minute re-equilibration segment at 15% MPB, 

with a 50 µL/min flow rate, and the column was kept at 55 ºC. Mobile phase compositions were 
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MPA - 10 mM ammonium formate in 40:40:20 MeOH/ACN/H2O and MPB - 10 mM ammonium 

formate in 95:5 IPA/H2O. After optimization, the 1 mm ID LC-MS method was compared to the 

2.1 mm ID LC-MS method described in the previous section. 

5.3. Results and Discussions 

5.3.1. Ion Source Parameter Optimization for Orbitrap Exploris 240 

To test ion source parameters for the Orbitrap, the LipidRep IS mix was prepared in the 

same way it was analyzed in the Bruker QToF. The IS mix injection resulted in low-intensity and 

poorly defined peak shapes (Figure 5.1.a). To optimize these parameters, Orbitrap’s ion source 

default parameters were compared with those from the QToF and some lipidomics studies using 

the Orbitrap instrument110,225. Different conditions (Figure D.1) were tested before choosing the 

optimum ion source conditions for these experiments, which were selected based on signal 

intensity, visual peak separation, and peak shapes displayed in Figure 5.1.b. 
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Figure 5.1. Base Peak Chromatograms (BPC) for LipidRep Basic Standard Mix for Tissue used to optimize the ion source parameter 

optimization a) Orbitrap’s default ion source parameters (Spray Voltage:  400 V on positive and 2 00 on negative  Sheath  as: 3 

Arb; Aux Gas: 2 Arb; Sweep Gas: 0 Arb; Ion Transfer Tube Temp.: 320 ºC; Vaporizer Temp.: 0 ºC); b) Optimized parameters 

(Spray Voltage: 4000 V on positive and 4500 on negative; Sheath Gas: 60 Arb; Aux Gas: 15 Arb; Sweep Gas: 1 Arb; Ion Transfer 

Tube Temp.: 300 ºC; Vaporizer Temp.: 250 ºC). 

 

As shown in Figure 5.1, optimizing the Orbitrap's ion source parameters led to significant 

improvement. When comparing Figure 5.1.a and Figure 5.1.b, the signal intensity significantly 

improved, with increases ranging from 2 to 9 fold. For example, the intensities of the LPC and PC 

peaks increased from 4.5E8 to 9.0E8 and 5.85E8 to 1.34E9, respectively, representing a 2-fold 

increase. The peak for TG displayed a 5-fold intensity increase from 3.5E8 to 1.88E9. The 

a)

b)
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improvement was even more significant for low-abundance peaks, with the intensity of PA 

increasing from 2.21E7 to 2.04E8, representing a 9.2-fold increase in intensity.  

Furthermore, the optimization also yielded an improved signal-to-noise (s/n) ratio, resulting 

in more well-defined chromatographic peaks. This enhancement in the s/n ratio facilitates more 

accurate and reliable annotation of lipid species by reducing the background noise that can obscure 

small peaks. Thirdly, the optimization reduced in-source fragmentation, as indicated by the 

chromatogram's sharper and more well-defined peaks. Moreover, the CE standard in our mix is 

subjected to in-source fragmentation, shown by the m/z 372.37 (m/z for ST) being detected at the 

same retention time as m/z 671.65 (CE main m/z). By optimizing the ion source parameters, in-

source fragmentation was reduced to similar levels as previously observed in the QToF (Figure 

D.2).  

The improved detectability of low-abundance internal standards (i.e., PA, PS, and ST) 

showcases that optimizing the ion source’s parameters is crucial for accurate lipidomic analysis. 

The improved intensity and better-defined peak shapes enhance the robustness of the analytical 

method, ensuring consistent and reliable results across different samples. These low-abundance 

lipid classes play roles in cellular membrane function, signaling, and energy storage; therefore, 

detecting them can be crucial for understanding biological changes in the organism and profiling 

health and disease. These optimizations contribute to more sensitive and accurate lipidomic 

profiling, paving the way for future studies that require high-quality data, such as biomarker 

discovery and the understanding of lipid-related biological processes9,78,81,125,213. 

Orbitrap source parameters vary widely across lipidomics studies depending on the specific 

lipid class being analyzed and the experimental conditions. For instance, some studies may favor 
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higher sheath and auxiliary gas flow rates to enhance ionization efficiency for certain lipid species. 

In contrast, others may optimize ion transfer temperatures or spray voltages to improve the 

detection of low-abundance lipids. These variations highlight the need for customized optimization 

to achieve the most accurate and sensitive results for specific lipidomic applications79,107,226,227. 

After optimizing the Orbitrap’s ion source parameters, its performance was compared to 

that of the QToF for lipidomic analysis of biological samples. For both instruments, 3 µL and 12 

µL of serum and tissue extracts were injected on positive and negative ionization, respectively. 

Both instruments were coupled to the same column, following the same gradient separation. A 

pooled sample of serum and tissue was prepared by mixing equal volumes of all samples, and it 

was used for quality control (QC samples). Figure 5.2 shows the acquired chromatograms for the 

MaXis QToF, and Figure 5.3 shows the chromatograms acquired for the Orbitrap Exploris 240. 
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Figure 5.2. Base Peak Chromatograms (BPC) for serum and tissue samples was injected on a Dionex 3000 system with a Waters 

Acquity CSH Premier C18 column coupled to a MaXis II ESI QToF-MS, with injection volumes of 3 and 12 µL for positive and 

negative ionization, respectively. A) Positive ionization chromatogram for serum samples; b) Negative ionization chromatogram 

serum samples; c) positive ionization chromatogram tissue samples; d) negative ionization chromatogram tissue 
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Figure 5.3. Base Peak Chromatograms (BPC) for serum and tissue samples injected on Vanquish Duo with a Waters Acquity CSH 

Premier C18 column coupled to an H-ESI Orbitrap Exploris 240, with injection volumes of 4 and 12 µL for positive and negative 

ionization, respectively.  a) Positive ionization chromatogram for serum samples; b) negative ionization chromatogram for serum 

samples; c) positive ionization chromatogram for tissue samples; d) negative ionization chromatogram for tissue samples. 

 

Some key points should be highlighted when comparing the data acquired by both 

instruments. The baseline for QToF is around 1 x104 in positive ionization, whereas in the Orbitrap, 

it is 4x107. One reason for this observed difference is the distinct detection methods used. Orbitrap 

uses image current detection, which is inherently more sensitive and thus more prone to higher 

baseline noise. In contrast, the QToF uses a microchannel plate detector, typically resulting in 

lower baseline levels107,228. 
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The detectors in the Bruker QToF saturate at 1 x107 when peaks start to plateau and lose 

their Gaussian shape, as shown in Figure 5.2. On the other hand, Orbitrap instruments do not show 

the same saturation profile, partially because of their detection system; however, peaks are 

considered saturated at 1 x1010 107,228. Moreover, because Orbitrap peaks are sharper and narrower, 

it helps in peak picking and data alignment119,120. Both instruments detected similar features, with 

QToF data yielding 14,373 and Orbitrap 15,487 features. Considering the same injection volume 

was used for analysis in both instruments, the ratio between the number of detected features and 

the amount (in µL) injected is 7% (Figure 5.4). At first, this might not seem significant, although 

it highlights the higher sensitivity of Orbitrap systems106.   

 

 

Figure 5.4. The number of detected features detected in QToF and Orbitrap normalized by the amount of raw samples injected (i.e., 

2 µL for Orbitrap samples and 1.88 µL for QToF samples). 
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Evaluating how many of the detected features were MS/MS and how many are MS features 

can bring further insights into instrument performance, which can help select the instrument that 

might be more suitable for our applications. Of the 15487 features detected for Orbitrap data, 11983 

were MS/MS features, meaning 77% of the detected features can be used for MS/MS annotation. 

On the other hand, out of the 14373 features detected for QToF, only 18% (or 2790 features) were 

MS/MS features (Figure D.3). This indicates that, although both instruments yield a similar number 

of features, Orbitrap can be more suited for studies that require higher annotation confidence 

results, such as biomarker discovery102,117,120. Furthermore, since the Orbitrap was operating at a 

superior resolution (240k) than QToF (60K), this may have contributed to detecting and 

distinguishing between closely related ion peaks106. 

After observing the difference in the number of detected MS/MS features, the next step of 

the data evaluation involved looking at the annotated features. For the QToF dataset, 823 lipid 

species were annotated by MS/MS match. At the same time, 1,252 annotations were found for the 

Orbitrap MS/MS features, representing a 1.5-fold increase in both cases with m/z errors lower than 

5 ppm (Figure D.4. Figure D.4). All annotated features for QToF and Orbitrap can be found in 

Supp. Table 28 and Supp. Table 29, respectively. Moreover, of all QToF annotations, only 527, or 

64%, were also present in the Orbitrap dataset. In contrast, the remaining 296 annotations were 

uniquely annotated in QToF, as shown in the Venn diagram in Figure 5.5. One possible reason for 

this discrepancy is that in the QToF data, some peaks, especially in the middle region of the 

chromatogram, were broad and saturated (Figure 5.2), whereas this was not the case for Orbitrap 

data (Figure 5.3), resulting in less ion suppression and, consequently, not only more but different 

annotations11,184,229. Furthermore, since Orbitrap-MS was being operated in a higher resolution than 
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the QToF, it could differentiate between some peaks with similar m/z106. The subclass lipid 

distribution of all annotated features for both QToF and Orbitrap-MS are shown in Figure D.5. 

 

Figure 5.5. Venn diagram displaying unique and shared MS/MS annotated lipid species in Orbitrap-MS and QToF-MS. The central 

intersection represents lipids annotated by both instruments, and the outer sections denote the number of unique annotations made 

by each instrument. 

 

The choice of instrument significantly impacts study outcomes in lipidomics. Orbitrap's 

higher sensitivity and resolution make it more suitable for comprehensive lipidomics studies, 

offering a more detailed lipid profile. However, QToF remains more accessible and cost-effective 

for some applications. As demonstrated in this study, the choice of instrument can lead to different 

outcomes, with Orbitrap providing more in-depth insights into the lipid profile of the samples. 

The comparison between QToF and Orbitrap instruments demonstrates each platform's 

advantages and trade-offs for lipidomic analysis. While QToF provides faster data acquisition rates 

and is more cost-effective, Orbitrap's higher sensitivity and resolution make it more suitable for 

comprehensive lipidomics, particularly for detecting low-abundance lipids. In this study, the 

725 527 2 6
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Orbitrap's enhanced performance resulted in improved peak shapes, higher intensities, and a greater 

number of MS/MS features, contributing to annotating a broader range of lipid species. Moreover, 

Orbitrap’s superior resolution allows for better separation of isobaric and closely related ion 

species, making it a powerful tool for untargeted lipidomics where precision is important.  

 

5.3.2. Effect of Column Inner Diameter in Lipidomic Analysis 

Considering the higher number of annotated features yielded by Orbitrap-MS, future 

studies were conducted using it instead of QToF-MS, aiming to increase the number of detected 

features, mass accuracy, and annotated species. However, aiming to improve separation efficiency 

and increase sensitivity, I decided to adapt the UHPLC method described herein to an LC column 

with a smaller inner diameter222. 

To successfully adapt the UHPLC previously described to the column with a smaller inner 

diameter, some separation conditions, besides the gradient, had to be optimized. The original 

method described herein employed a column oven temperature of 45 ºC. However, as it can be 

observed in Figure 5.6.a this leads to broad peaks. Lipidomic studies have used temperatures 

ranging from 40 ºC to 65 ºC. Therefore, different temperatures were tested to see how this would 

affect peak shape and separation. Figure 5.6 displays the chromatograms acquired for each tested 

temperature. 
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Figure 5.6. Base Peak Chromatograms (BPC) for Serum samples acquired using MPA - 10mM ammonium formate in 50:40:10 

MeOH/ACN/H2O and MPB -  10mM ammonium formate in 95:5 IPA/H2O; 16-minute gradient (0 min – 15% MPB, 0.5 min – 15% 

MPB, 2.3 min – 25% MPB, 9.3 min – 42% MPB, 10.1 min – 78% MPB, 12 min – 90% MPB, 13 min – 98% MPB, 14.5 min – 98% 

MPB, 15 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting at 100 µL/min until 10.1 min, reducing it to 80 

µL/min from 10.1 to 14.5 µL/min and further reducing it to 50 µL/min until the end of the run.  a) Column oven at 45 ºC; b) Column 

oven at 50 ºC; c) Column oven at 55 ºC; d) Column oven at 60 ºC. 

 

a)

b)

c)

d)
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Figure 5.6 indicates that the increase in temperature led to peak shape improvement, as all 

conditions show narrower and sharper peaks than the starting condition. Analyzing the 

chromatograms, the optimum column temperature of 55 ºC was selected based on peak shape and 

separation (Figure 5.6.e). However, lipid molecules are prone to degradation under increased 

temperatures. Therefore, potential oxidation or sample degradation would be a concern78,102. 

Although there are some differences in chromatographic separation between Figure 5.6.c and 

Figure 5.6.d, a column oven temperature of 55 ºC still significantly improves separation while 

being softer, reducing the risk of sample degradation. This careful consideration of potential issues 

ensures that the proposed modifications are not only beneficial but also reliable. 

With the change in column oven temperature, analytes displayed a reduced retention time, 

causing hydrophilic lipid species, such as LPC, LPE, FA, and MG, to elute between 0.5 and 2 

minutes. Although there was a separation among peaks, most eluted before 6 minutes, indicating 

that the separation conditions were not optimum. To improve analyte retention and interaction with 

the stationary phase, we proposed modifying MPA from 10mM ammonium formate in 50:40:10 

MeOH/ACN/H2O to 10mM ammonium formate in 40:40:20 MeOH/ACN/H2O, making it more 

hydrophilic (Figure D.6). This modification increased peak intensities and improved the separation 

of hydrophilic and phospholipid peaks, which eluted in longer retention times. Hydrophobic lipids 

(TGs and CEs) also showed improved separation, higher intensities, and peak shapes. Although 

this increased the run time from 16 to 20 minutes, the overall improvement in separation, peak 

shapes, and reduced ion suppression made this a valuable optimization230. 

Different studies have demonstrated the effects of temperature on chromatographic 

separation and LC-MS analysis, such as Lenčo et al. (2021). Using slightly more elevated column 
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oven temperatures improves lipid separation, leading to more accurate lipidomic profiling and 

more reliable applications in clinical diagnostics and biomarker discovery108,230,231. Comparing 

these results with the existing literature, our modified method showed superior separation and 

sensitivity, aligning with findings by Lenčo et al. (2021)230. Potential limitations include an 

extended run time, which may affect sample throughput. Future directions could involve testing 

alternative buffers or gradient profiles to enhance separation efficiency further. As shown in Figure 

5.6, the chromatogram illustrates the improved separation and increased peak intensity post-

modification, with sharper and more distinct peaks, particularly for hydrophilic lipids. 

Therefore, we optimized the separation gradient since, until this point, I had been using the 

adapted UHPLC gradient optimized initially for a 2.1 mm ID column. A total of 15 gradients were 

tested (Figure D.7, Figure D.8, and Figure D.9), and the best separation was obtained with a 21 

min gradient  (0 min – 15% MPB, 2.5 min – 31% MPB, 6.4 min – 37% MPB, 9.3 min – 53% MPB, 

9.4 min – 53% MPB, 10.8 min – 65% MPB, 14.8 min – 75% MPB, 16.4 min – 93% MPB, 17.5 

min – 98% MPB, 20 min – 98% MPB, 21 min – 15% MPB); 4 min equilibration (15% MPB); with 

flow rate starting at 50 µL/min until 9.3 min, reducing it to 35 µL/min from 9.3 to 9.4 min and 

maintaining it until the end of the run. The Vanquish Neo LC system has a solvent calibration 

feature, in which all solvents used in the instrument have to be pre-programmed for the system to 

adjust to its viscosity and determine maximum flow rates232. The maximum allowed flow rate for 

MPA was 100 µL/min; however, due to MPB's high viscosity, even at a slightly elevated 

temperature, the maximum allowed flow rate was 35 µL/min.  

In RPLC-MS runs, pressures are usually lower at the start and increase towards the end due 

to the gradient elution of more viscous solvents. However, when running the gradient separations 
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with starting flow rates of 100 µL/min experiments, pressures were higher at the start compared to 

the end (Figure D.10). This atypical behavior led to reducing the starting flow rate to 50 µL/min to 

maintain consistent and optimal system performance. At 12.8 minutes, the flow rate was further 

reduced to 35 µL/min because of backpressure and viscosity constraints. Figure 5.7 shows a 

comparison between the original gradient (with the optimized temperature and MPA) and the fully 

optimized gradient. The chromatogram in Figure 5.7.b has more peaks and an overall higher 

intensity, especially in the middle region, where the phospholipids elute. However, this same region 

looks more crowded because previously coeluted peaks are now being separated after optimizing 

the separation. 
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Figure 5.7. BPC for human serum samples extracted with NovaMT LipidRep Internal Standard mix and analyzed using an H-ESI 

Orbitrap-MS under positive ionization conditions. a) Chromatogram for the original gradient, using MPA - 10mM ammonium 

formate in 50:40:10 MeOH/ACN/H2O and MPB -  10mM ammonium formate in 95:5 IPA/H2O; 16-minute gradient (0 min – 15% 

MPB, 0.5 min – 15% MPB, 2.3 min – 25% MPB, 9.3 min – 42% MPB, 10.1 min – 78% MPB, 12 min – 90% MPB, 13 min – 98% 

MPB, 14.5 min – 98% MPB, 15 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting at 100 µL/min until 

10.1 min, reducing it to 80 µL/min from 10.1 to 14.5 µL/min and further reducing it to 50 µL/min until the end of the run; and b) 

Chromatogram for the optimized gradient, using MPA - 10mM ammonium formate in 40:40:20 MeOH/ACN/H2O and MPB -  

10mM ammonium formate in 95:5 IPA/H2O; 21.6-minute gradient (0 min, 15% MPB; 2 min, 30% MPB; 4.5 min, 37% MPB; 8.8 

min, 48% MPB; 12.7 min, 53% MPB; 12.8 min, 53% MPB; 14.8 min, 75% MPB; 17.8 min, 93% MPB; 19.3 min, 98% MPB; 20.4 

min, 98% MPB; 21.6 min, 15% MPB) with flow rate starting at 50 µL/min until 12.7 min, reducing it to 35 µL/min from 12.7 to 

12.8 µL/min and maintaining it at 35 µL/min until the end of the run. 
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After optimizing separation conditions and gradient, it was time to test the method on 

samples. In the UHPLC method using a 2.1 mm ID, serum samples are diluted 8-fold, and 3 and 

12 µL are injected in positive and negative ion modes, respectively. Until now, most optimizations 

were performed in positive ion mode, as this usually yields a more intense signal, making 

optimization easier, especially for low abundant peaks. However, when injecting 10 µL in negative 

ion mode on the 1 mm ID, a significant peak broadening was noted at the beginning of the 

chromatogram due to column overloading. Studies have shown that smaller ID columns may suffer 

from band brand broadening due to dead volumes216,233. Moreover, smaller injection volumes for 

columns packed with sub 2 µm particles have been recommended to improve separation efficiency 

and avoid overloading222. 

The internal volume of a 2.1 mm ID column is 4.4-fold larger than that of a 1 mm ID 

column; therefore, injecting 4-fold less volume should address the overloading issue. However, by 

reducing the injection volume, the amount of sample being injected was also reduced, reducing the 

sensitivity. To mitigate these issues, different sample concentrations were tested, injecting 1 µL in 

positive and 2 µL in negative ionization. In positive ionization (Figure D.11), reducing sample 

dilution to 6-fold and injection volume to 1 µL (4 µL of 8-fold diluted samples were injected) 

reduced the maximum intensity by 1.7-fold. Similarly, when further reducing sample dilution to 4-

fold, the maximum intensity was decreased by 1.3-fold. However, when comparing samples diluted 

2 and 8-fold, the maximum intensity was in the same order of magnitude, showing that by injecting 

1 µL with samples diluted 2-fold, the obtained results are similar to those of samples diluted 8-fold 

with 4 µL injection volumes. Furthermore, the raw maximum intensity and the ratio between the 
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maximum intensity and the amount of sample used (maximum intensity per µL) can be compared 

(  

Figure 5.8). In positive ionization, although the 6-fold dilution has the highest intensity per 

µL, meaning it yields the highest intensity while using the least amount of sample, it also shows 

the lowest total intensity. Therefore, it might decrease sensitivity and the number of detected 

features. On the other hand, the 8 and 2-fold dilutions have similar maximum intensities and a 

similar maximum intensity per µL, yielding comparable sensitivity and detected features.  
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Similarly, for negative ion mode, when reducing sample dilution to 6-fold and 2 µL from 

8-fold and 10 µL, the maximum intensity decreased by 1.4-fold, and then further reducing the 

dilution to 4-fold, the intensity decreased by 1.1-fold. Samples diluted 2-fold showed an increased 

intensity of 1.5-fold compared to the one obtained at the 8-fold dilution. Moreover, when 

comparing the maximum intensity per µL for each dilution on negative ionization, there is a similar 

pattern, as previously observed in positive. The 6-fold dilution yields the highest intensity using 

the least amount of samples. However, the highest maximum intensity is lower, leading to 

sensitivity loss and a lower number of detected features.  On the other hand, the 2-fold dilution 

yields both an improvement in raw maximum intensity and maximum intensity per µL of sample. 

Overall, using a 2-fold sample dilution and injecting 1 and 2 µL of sample for positive and negative 

ionization, respectively, yields higher intensities while using less sample (i.e., 1.5 µL of raw sample 

are used in the 2-fold dilution and 1.75 µL of raw sample are used in the 8-fold dilution). 
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Figure 5.8. The absolute maximum intensity and maximum intensity per µL of the sample obtained for sample dilutions of 8, 6, 4, 

and 2-fold on a 1 mm ID UHPLC method in a) positive ionization mode and b) negative ionization mode. 

 

The study observed a significant reduction in the intensity of the hydrophobic peaks in the 

1 mm ID UHPLC method (Figure 5.6 and Figure 5.7) compared to the 2.1 mm ID method. One 

potential cause identified is the modifications to MPA. Previously, MPA was less hydrophilic, and 

our samples would be resuspended in 4:1 MPA/MPB. However, after optimizations, MPA became 
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more hydrophilic, and samples were reconstituted in 6:4 MPA/MPB. The study also calculated the 

amount of H2O previously used to resuspend the samples and how much it was now. When samples 

were reconstituted to 10 µL, the final solution would have 0.9 µL of H2O, and after optimization, 

it would have 1.4 µL. This increase in water content may cause lipids to be unstable in the solution, 

leading to sample precipitation, which can lead to issues such as column clogging102,110,149.  

To minimize these issues and improve the intensity of the hydrophobic lipid species, I 

resuspended LipidRep IS in different ratios of MPA and MPB. Results showed that increasing the 

percentage of MPB for sample resuspension improved the hydrophobic lipids' signal without 

affecting the present hydrophilic species or peak shapes (Figure D.13). A 2:3 MPA/MPB ratio 

displayed the best results, improving the hydrophobic peak intensities and intensity ratios among 

the peaks. Furthermore, this resuspension solvent composition now has the same amount of H2O 

used in the 2.1 mm ID UHPLC method and 3 times more IPA; therefore, both hydrophilic and 

hydrophobic lipids should be resuspended and stable in solution until LC-MS analysis102,110,234. 

Until now, all negative ionization experiments were performed using 4500V. However, ESI 

arching due to the applied voltage was noted, affecting ionization stability and performance. To 

mitigate this, the ion source voltage was optimized for negative ionization (Figure D.14). By 

reducing the ionization voltage to 3500 V, peak intensities were improved, and peak shapes did not 

suffer significant changes. 

Lastly, the performance of the 2.1 mm ID and 1 mm ID UHPLC methods were compared 

based on the number of detected features and the number of annotated lipid species (Figure 5.9). 

In the 2.1 mm ID method, 15,487 features were detected, whereas 20,865 features were detected 

in the 1 mm ID method, representing a 1.3-fold increase in detected features. However, it is 



Chapter V 

201 

 

important to consider that a lower amount of sample is consumed in the 1 mm ID method, so if the 

number of detected features is normalized by the amount of raw sample used, as shown in Figure 

5.9.a, the increase in detected features is 1.7-fold instead. The summed intensities for all detected 

features in the 2.1 mm ID UHPLC method was 1.5E11, whereas, for the 1 mm ID UHPLC method, 

it was 8.4E10. Although overall intensities were 1.8-fold higher in the 2.1 mm UHPLC method, 

considering the increased detected features (both the absolute numbers and normalized by the total 

injection volume), this suggests an improved separation and the potential of uncovering previously 

coeluting peaks217,222.  

The 1 mm ID UHPLC method yielded a total of 1,505 lipid annotations, with 1,271 

annotations in Tier 1 and 234 annotations in Tier 2 (Figure 5.9.b). When comparing the absolute 

number of annotated lipid species, a 1.2-fold increase can be observed from what was previously 

annotated for the 2.1 mm ID UHPLC method, further corroborating the higher sensitivity of the 1 

mm ID UHPLC method. Furthermore, by normalizing the number of annotated species by the 

amount of injected sample, the increase in the number of annotations is 1.6-fold, showcasing that 

more species can be annotated using smaller injection volumes. 

Additionally, I compared unique and shared annotations between both methods. Of the total 

annotated lipids, 964 species were annotated in both datasets, indicating a significant overlap. 

However, the 1 mm ID UHPLC method annotated another 541 lipid species not present in the 2.1 

mm ID method, while the 2.1 mm ID method annotated 288 unique lipid species (Figure D.16). 

UHPLC methods with smaller inner diameters increase sensitivity and improve separation. 

Therefore, previously coeluting analytes are expected to be detected using the smaller inner 

diameter method. Furthermore, by increasing the sensitivity and reducing coelutions, some 
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previously coeluting or low-intensity peaks may now be fragmenting better, leading not only to 

more annotations but to a difference in annotated species106,216,217,223.  

 

 

Figure 5.9. Comparison of the detected and annotated features between the 1 mm and 2.1 mm ID columns. A) Number of detected 

features in each UHPLC method relative to the amount of raw sample injected; b) number of annotated features for Tier 1 (MS/MS 

score > 500) and Tier 2 (100 < MS/MS score < 500) for each UHPLC method. 
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A 1 mm ID column enhances analytical performance by improving peak shapes and signal 

intensity. This makes it suitable for studies and clinical applications regarding biomarker discovery 

due to better resolution and sensitivity. However, a 2.1 mm column might be preferred for its 

robustness, higher sample capacity, and shorter analysis time, which can benefit routine analyses 

and methods requiring greater sample throughput. The choice between the two depends on the 

study's specific needs, balancing detailed analysis with practical considerations. 

Comparing the 1.0 mm and 2.1 mm ID columns highlights the benefits and challenges of 

using smaller ID columns for lipidomic analysis. The 1.0 mm ID column demonstrated superior 

sensitivity and improved separation, particularly for low-abundance lipid species. This 

improvement in resolution and peak sharpness allowed for the detection of more features, providing 

a more comprehensive lipid profile. The smaller ID column also resulted in better-defined peaks, 

leading to more accurate lipid annotations. 

However, the 2.1 mm ID column has its advantages, such as higher robustness, greater 

sample capacity, and shorter run times, making it better suited for high-throughput studies. While 

the 1.0 mm ID column is more sensitive, it requires careful optimization to avoid issues such as 

column clogging and increased pressure, particularly with more viscous solvents. Despite these 

challenges, the increased sensitivity and resolution of the 1.0 mm ID column make it a valuable 

tool for studies focused on detecting subtle changes in lipidomes and low-abundance species.  

 

5.4. Conclusions 

This study successfully optimized a UHPLC method using a 1 mm ID column coupled with 

an Orbitrap-MS, resulting in enhanced analytical performance with improved peak shapes, signal 
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intensity, and sensitivity. When comparing the optimized method with a UHPLC method using a 

2.1 mm ID column, the increase in lipid annotations showcases that smaller ID columns, although 

less robust, can provide similar or better results using smaller amounts of sample. 

Furthermore, comparing Orbitrap-MS with the QToF-MS showed that Orbitrap's higher 

sensitivity and resolution make it more suitable for comprehensive lipidomics studies, offering 

more detailed lipid profiles. However, the QToF-MS remains a more accessible and cost-effective 

option for some applications, highlighting the importance of selecting the right instrument based 

on the study's specific needs. Orbitrap-MS was particularly effective in improving the detection of 

low-abundance lipids such as PA, PS, and ST, providing crucial insights into various biological 

processes and disease states, including cancer and neurodegenerative conditions. 

Despite the clear advantages of using a 1 mm ID column, such as increased resolution and 

sensitivity, there are some limitations. The method requires careful optimization to address ion 

suppression and peak broadening challenges. Additionally, the increased run time may affect 

sample throughput, which could be a consideration for high-throughput analyses. 

Future research will include a pilot drug study to assess how this optimized method 

performs in high-throughput settings. This will provide valuable insights into its applicability for 

large-scale clinical and pharmaceutical studies, ensuring that the method can handle the demands 

of high-throughput analysis while maintaining accuracy and reliability. 
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VI 

Chapter VI: Exploring the Lipidomic Impact of cisplatin and rapamycin on Non-

Small Cell Lung Cancer Cells 

 

6.1. Introduction 

To date, cancer is one of the leading causes of mortality worldwide, with non-small cell 

lung cancer (NSCLC) being one of the most challenging types to treat. Lung cancer is among the 

deadliest cancers, with higher death rates than colon, breast, and pancreatic cancer combined.  Over 

half of patients diagnosed with lung cancer die within one year of diagnosis, and the 5-year survival 

rate is around 17.8%. NSCLC accounts for 85% of all lung cancer cases and is classified into three 

types: squamous-cell carcinoma, adenocarcinoma, and large-cell carcinoma. Squamous cell 

carcinoma comprises 25-30% of all lung cancer cases and is strongly correlated with cigarette 

smoking. Adenocarcinoma, the most common type, comprises around 40% of all lung cancer and 

occurs in both smokers and non-smokers. Large cell carcinoma accounts for 5-10% of cases and is 

usually diagnosed by exclusion. These subtypes highlight the complexity and variability in 

NSCLC, necessitating diverse treatment approaches235–237. Recent advancements in targeted 

therapies and immunotherapy have improved outcomes for NSCLC patients, yet treatment efficacy 

and resistance challenges remain. Epidermal Growth Factor Receptor (EGFR) and Anaplastic 

Lymphoma Kinase (ALK) inhibitors have shown efficacy against specific genetic subtypes, while 

immunotherapy has bolstered the body's immune response against cancer cells. However, 

understanding the underlying metabolic changes, particularly in the lipidome, is crucial for further 

enhancing these therapies. Despite these advances, challenges remain in early NSCLC detection 
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and effective management, emphasizing the need for continuous research and tailored therapeutic 

strategies237,238. 

Cisplatin, a platinum-based coordination complex, is often used as a chemotherapeutic 

agent due to its ability to form DNA adducts that disrupt DNA replication and transcription, 

ultimately inducing programmed cell death239,240. Upon entering the cell, cisplatin undergoes 

hydrolysis, replacing its chloride ligands with water molecules, which allows it to bind to DNA. 

This binding results in cross-links, causing bends in the DNA helix and inhibiting DNA replication 

and transcription, thus triggering cell death239,241. In addition to DNA effects, cisplatin significantly 

impacts the metabolome and lipidome of cancer cells, leading to metabolic changes, including 

alterations in amino acid and nucleotide metabolism and other metabolic pathways. Studies have 

also shown that cisplatin can affect phospholipids and sphingolipids, influencing drug sensitivity 

and resistance in cancer cells97,242.  

Despite its efficacy, cisplatin is associated with side effects and drug resistance, limiting its 

therapeutic potential. Common side effects include nephrotoxicity, which can lead to kidney 

damage; neurotoxicity, resulting in nerve damage; and ototoxicity, causing hearing loss. These side 

effects occur due to the accumulation of cisplatin in non-cancerous cells, leading to off-target 

toxicities. Gastrointestinal toxicity, such as nausea and vomiting, is also prevalent, often requiring 

supportive treatments to manage symptoms241–248.  

Alternatively, rapamycin has also shown promise as a chemotherapic treatment by reducing 

cell proliferation and promoting autophagy by inhibiting the mechanistic Target of Rapamycin 

(mTOR) pathway249–251. The mTOR pathway is vital for cell growth, proliferation, and survival, 

and it functions as part of two distinct complexes, mTORC1 and mTORC2. Rapamycin primarily 
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inhibits mTORC1, leading to a decrease in protein synthesis and cell growth. Additionally, 

inhibiting the mTORC1 can lead to autophagy, enhancing its therapeutic effects by removing 

damaged organelles and proteins251–255. Moreover, rapamycin has been shown to prevent the 

formation of new blood vessels, which is crucial against tumor progression. This starves tumors of 

the nutrients and oxygen they need to grow and metastasize249–251,256,257. 

In combination with cisplatin, rapamycin has been shown to reduce some of the resistance 

mechanisms that cancer cells develop against cisplatin, potentially enhancing the overall efficacy 

of the treatment249,250,258–260. Another benefit of combining these drugs is the change in less intense 

cisplatin-induced side effects, as studies have reported that rapamycin can help reduce cisplatin-

induced nephrotoxicity by decreasing inflammation and oxidative stress in renal tissues. These 

protective effects improve the body’s ability to tolerate cisplatin and potentially allow higher doses 

or prolonged treatment, enhancing overall therapeutic efficacy258,261,262. 

Understanding the metabolic changes induced by chemotherapeutic agents is essential in 

determining drug efficacy and resistance. Lipids are major components of cell membrane structure, 

signaling pathways, and energy storage, and their dysregulation can significantly impact cancer 

progression and treatment outcomes1,2,15,240,263. Previous studies have indicated that cisplatin can 

alter phospholipids and sphingolipids, which are essential for cell signaling and membrane 

dynamics, while rapamycin has been reported to affect lipid metabolism, further underscoring the 

need to investigate the lipidomic changes induced by these drugs242,251,258,264. 

This study aims to analyze the changes in the lipidome of A549 cells, a model for NSCLC, 

following treatment with cisplatin and rapamycin, both as single agents and in combination. A 

previously developed high-sensitivity LC-MS method with a 1 mm ID column will be combined 
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with a 2DLC-MS approach to enhance lipid annotation confidence. Understanding these alterations 

can provide insights into the mechanisms underlying drug efficacy and resistance, potentially 

guiding the development of more effective cancer therapies and aiding in biomarker discovery. 

 

6.2. Experimental 

6.2.1. Reagents and Equipment 

LipidRep Internal Standard Basic Mix for Tissue/Cells (Nova Medical Testing, Edmonton, 

AB, Canada), a mixture containing 15 deuterated lipid species from different subclasses, was used 

for standardization. Ammonium formate (mass spectrometry grade), LC-MS grade acetonitrile 

(ACN), methanol (MeOH), and dichloromethane (DCM) were purchased from Honeywell 

(Charlotte, North Carolina, USA). Cisplatin (cis-diamminedichloroplatinum(II)), Rapamycin (5 

mM in 100% DMSO), along with LC-MS water (H2O) and isopropanol (IPA) were obtained from 

Sigma-Aldrich (St. Louis, Missouri, USA.)  

 

6.2.2. Cell Culture and Drug Treatment 

A549 (ATCC CCL-185) cells were cultured in T-75 flasks using F-12k medium (Kaign’s 

Modification of Ham’s F-12 Medium) supplemented with 10% fetal bovine serum (FBS), 

maintained at 37 ºC in a humidified atmosphere containing 5% CO2. The growth medium was 

renewed every two to three days. Cells were harvested when reaching 70% confluency, using 

trypsinization. Briefly, the cells were washed with warm phosphate-buffered saline (PBS). Then, 

3.0 mL of 0.25% trypsin/EDTA (Hyclone, Logan, Utah, USA) was added, and the cells were 
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incubated at 37 ºC and 5% CO2 for 5 minutes. To quench the reaction, 7 mL of growth medium 

was added to the T-75 flask. Subsequently, the cell suspensions were transferred to 15 mL sterile 

polypropylene tubes and centrifuged at 900 rpm for 7 minutes. The cell pellet was resuspended 

into 1 mL of growth medium and homogenized through gentle pipetting before the cell density was 

determined using a hemocytometer. 

Following cell density determination, cells were diluted to facilitate aliquoting an 

appropriate cell density into each 6- or 96-well plate well. After 24 h of incubation, cells were 

treated with the drugs. Untreated control samples were included in all experiments to provide a 

baseline for comparison. Control wells were maintained in growth medium with 0.5% DMSO, 

which matches the solvent concentration in drug-treated samples. This ensures that any observed 

effects can be attributed to the drugs rather than the solvent. Moreover, experiments were 

performed in biological triplicate to ensure data robustness. This includes cell viability assays and 

the lipidomic analyses.  

 

6.2.3. Drug Study 

6.2.3.1.Cell Viability Assay 

Cell viability was determined using the Trypan Blue assay. Briefly, detached cells were 

stained with Trypan Blue, which stains cells that do not have intact cell membranes (dead cells) 

and does not interact with the viable cells265.  

Cells were seeded in a 96-well plate at 50,000 cells/mL density for this assay. Each well 

received 200 µL of fresh growth medium. After 24 h of seeding the cells in the 96-well plate, 
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individual wells were treated with cisplatin and rapamycin with concentrations ranging from 0.5 to 

500 µM and 4 to 20 µM, respectively. A stock solution of cisplatin was prepared in PBS, and 

treatment solutions were prepared by diluting the stock with a fresh growth medium. Meanwhile, 

rapamycin treatment solutions were prepared by diluting the stock with fresh growth medium, 

ensuring the DMSO content was less than 0.5%. Control wells were maintained in growth medium 

with 0.5% DMSO. Cell viability was assessed after 24 and 48 hours of drug exposure. These results 

were used to determine the drug treatment's inhibitory concentration (IC) values and decide which 

concentrations would be used in the study. 

 

6.2.3.2.Drug Treatment 

In this study, cells were treated with cisplatin (IC25, IC50, or IC75), rapamycin (IC25, IC50, 

or IC75), or a combination of rapamycin and cisplatin (IC25, IC50, or IC75). 

Following the previously described procedure, cells were seeded in a 6-well plate with a 

cell density of 50,000 cells/mL in each well. Twenty-four hours after seeding, 1 mL of the old 

growth medium was replaced with 1 mL of fresh growth medium containing one of the previously 

mentioned treatment conditions or no treatment for the control sample. Cells were harvested 

following the same procedure as above after 24 and 48 hours. Then, the cells were transferred into 

2 mL sterile polypropylene vials and washed with cold PBS three times.  

For quality control, a pooled sample was made by combining equal volumes of all samples, 

which was subsequently aliquoted into 2 mL sterile polypropylene vials. To remove any remaining 

PBS, samples were dried under gentle nitrogen flow, purged with nitrogen, and stored at -80º C 

until further analysis. 
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6.2.4. Sample Preparation and LC-MS Analysis 

Cell lysis protocols have been previously optimized in Chapter II. Briefly, cell lysis and 

lipid extraction were performed using liquid-liquid extraction (LLE). Dried cell pellets and 3.5 µL 

of LipidRep Internal Standard Mix for Tissue/Cells were sequentially mixed with 46.3 µL of 

MeOH, 90 µL of DCM, and 33.1 µL of H2O, vortexing after each solvent addition for 20 seconds. 

Following a 10-minute equilibration, samples were centrifuged, and an aliquot of the organic phase 

(76.5 µL) was dried under a gentle stream of nitrogen for 10 minutes and subsequently 

reconstituted in a 3:2 mix of MPA/MPB to a total volume of 17.5 µL. Pooled samples were 

processed using the same protocol as the samples for quality control. Samples were then placed in 

polypropylene inserts in autosampler vials sealed with PTFE/silicone septum at 8 ºC for a minimum 

of 4 hours and a maximum of 24 hours before injection. 

Samples were analyzed by reversed-phase (RP) ultra-high-performance liquid 

chromatography (UHPLC) coupled to a high-resolution Orbitrap Exploris 240 (Thermo Fisher 

Scientific, Waltham, MA, USA) mass spectrometer with a heated electrospray ionization (H-ESI) 

source. Chromatographic separation was achieved using a Vanquish Neo system (Thermo Fisher 

Scientific, Waltham, MA, USA) and a Waters Acquity CSH C18 (1.7 µm, 1.0×100mm, Waters 

Corporation, Milford, MA, USA) column. The mobile phases were MPA (10 mM ammonium 

formate in 40:40:20 ACN/MeOH/H2O) and MPB (10 mM ammonium formate in 95:5 IPA/H2O). 

A gradient separation lasting 21 minutes  (0 min – 15% MPB, 2.5 min – 31% MPB, 6.4 min – 37% 

MPB, 9.3 min – 53% MPB, 9.4 min – 53% MPB, 10.8 min – 65% MPB, 14.8 min – 75% MPB, 

16.4 min – 93% MPB, 17.5 min – 98% MPB, 20 min – 98% MPB, 21 min – 15% MPB); 3 min 

equilibration (15% MPB); with flow rate starting at 50 µL/min until 9.3 min, reducing it to 35 
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µL/min from 9.3 to 9.4 min and maintaining it at 35 µL/min until the end of the run, with a column 

temperature of 55 °C. 

Orbitrap ion source parameters were set as follows: ion voltages of 4000 and 3500 V for 

positive and negative modes, respectively; sheath gas at 60 arbitrary (arb) units; auxiliary gas at 15 

arb units; sweep gas at 1 arb unit; ion transfer tube temperature at 300 ºC, and vaporizer temperature 

at 250 ºC. Full scan analysis was performed with a resolution of 240,000, an m/z range of 150 to 

1500 Da, and an RF lens set to 90%. The AGC target was standard, with a maximum injection time 

of 60 ms and micro scans set to 2. MS/MS qualitative information was obtained for all sample 

injections using a resolution of 45,000, with a cycle of 5 scans and active exclusion of precursors 

detected for more than three consecutive spectra with a duration of 5 seconds and a mass tolerance 

of 10 ppm. Collision energies varied according to the precursor m/z values between 20 and 35 eV. 

Extra MS/MS data was acquired under different conditions to improve lipid annotation. 

 Injection volumes were previously optimized as 1.5 µL and 2.5 µL in the positive and 

negative ionization modes. Samples and blanks were prepared and injected randomly. A pooled 

sample was used for quality control (QC) and injected with each batch of 10 samples to ensure 

consistent quality control. 

Lastly, pooled samples also underwent offline 2DLC analysis to increase annotation 

confidence. The 2DLC method used has been previously described and optimized in Chapter IV. 

Briefly, pooled samples were resuspended in 30:15:4:1 ACN/IPA/MeOH/H2O before 

chromatographic separation and fraction collection in a 26-minute gradient separation (0 min 100% 

MPB; 0-2 min 100% MPB; 2-4 min 98% MPB; 4-4.5 min 98% MPB; 4.5-6 min 96% MPB; 6-8.5 

min 93% MPB; 8.5-9.5 min 93% MPB; 9.5-12 min 91% MPB; 12-17 min 86% MPB; 17–25min 
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80% MPB; 25-26 min 20% MPB), followed by 4  min re-equilibration (0 min, 20% MPB; 0.5 min, 

100 % MPB; 6 min, 100% MPB) at a 0.250 mL/min flow rate and column temperature of 45 °C, 

with MPA - 10 mM ammonium formate in 60:40 ACN/H2O (v/v) and MPB - 10 mM ammonium 

formate in 95:3:2 ACN/MeOH/H2O (v/v/v). Separation was carried out in an Agilent Infinity 1260 

LC system coupled to a 1260 Infinity II Analytical-Scale Fraction Collector and a Waters Acquity 

Premier BEH Amide column (1.7 µm, 2.1×100mm, Waters Corporation, Milford, MA, USA). 

Fractions were individually dried under gentle nitrogen blow for 60 minutes. Dried fractions were 

reconstituted in 3:2 MPA/MPB (MPA - 10 mM ammonium formate in 50:40:10 MeOH/ACN/H2O 

and MPB - 10 mM ammonium formate in 95:5 IPA/H2O – RP mobile phases) and injected in 

RPLC-MS. 

 

6.2.5. Data Processing, Lipid Annotation and Statistical Analyses  

As described in Chapter IV, the data was processed using LipidScreener, an in-house 

software designed for untargeted lipidomics by The Metabolomics Innovation Centre (TMIC, 

Edmonton, Canada)14. Positive and negative ionization chromatograms were aligned using a 

minimum intensity cut-off of 50000 counts and a minimum peak length of six spectra. Oligomers 

and multiple adducts were handled within a 10-ppm m/z tolerance. Aligned features were filtered 

by detection in at least 80% of injections in one group before positive and negative ionization 

merging. 

Lipid annotation followed the procedure described in Chapter IV. Briefly, a two-tier 

annotation approach was used for lipid annotation based on the acquired tandem mass spectrometry 

(MS/MS) spectra103,182. The acquired MS/MS spectra were compared with the MS-Dial LipidBlast 
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library (https://fiehnlab.ucdavis.edu/projects/ LipidBlast), the Human Metabolome Database 

(https:// hmdb.ca), and the MassBank of North America L −MS/MS libraries 

(https://mona.fiehnlab.ucdavis.edu). An m/z tolerance of 5 mDa for the precursor ion and 15 mDa 

for fragments, combined with the minimum similarity between library and experimental spectra of 

40%, was used to increase annotation accuracy. All annotated features were subsequently filtered 

based on adducts, m/z error, the carbon to double bond ratio present in the molecule, even or odd 

fatty acyl chains, structural modifications, and plasmenyl14,36,103,183–187. Annotated lipids were 

divided into subclasses and eight main categories following the classification system proposed by 

the International Lipid Classification and Nomenclature Committee (ILCNC), the Lipidomics 

Standards Initiative, and the LipidMaps database. Furthermore, this study did not evaluate the 

stereospecific configuration of glycerol derivatives and double bond positions36,37,118,178,182. 

After lipid annotation, all detected features were assigned to a fraction, or RP, if not 

detected in any of the 2DL  injections. The assignment was based on the feature’s presence in the 

2DLC injections, calculated as a percentage. The average intensity would be calculated if the 

detected feature was present in more than 50% of the 2DLC injections for that fraction. After 

calculating the average intensity for all fractions that satisfied the criteria, the fraction with the 

highest average intensity was assigned as the one corresponding to that feature. A feature was 

assigned to the RP if it did not correspond to any specific fraction. All lipid annotations were 

filtered based on MS/MS score and mass error, and duplicated annotations were removed, keeping 

the one with the highest MS/MS score and the lowest m/z error. 

After removing possible duplicate annotations, using the elution pattern described in 

Chapter IV, assigned fractions for each annotated feature were compared to expected fractions for 
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each subclass to determine the annotation confidence. Only annotated features assigned to their 

expected fraction were used for statistical analysis.  

Post-acquisition data normalization was used to mitigate ion suppression effects and other 

variations that might arise during sample preparation. Each annotated lipid was matched to one of 

the internal standards, which belonged either to the same lipid class or a similar one based on 

structural and retention time similarities. Normalized intensities were calculated by dividing the 

original peak intensity (i.e., peak height) of the annotated feature by the peak intensity of the 

matched internal standard. Subsequently, the dataset was normalized by the median intensity ratios 

for all annotated features within each sample and auto-scaled before statistical analysis using 

MetaboAnalyst 6.0. Features exhibiting low experimental reproducibility (RSD > 30% for QCs) 

were excluded before statistical analysis. 

The multivariate statistical analysis involved a Principal Component Analysis (PCA) and a 

partial least square-discriminant analysis (PLS-DA). This study's PCA score plots showcase 

experimental replicates for each sample, with the clustering among quality control samples 

indicating technical reproducibility. PLS-DA models were evaluated through leave-one-out cross-

validation and permutation tests (1000 permutations), with R2, Q2, and p-values provided in figure 

captions. Univariate statistics involved Volcano Plot analysis (Fold change, FC, versus p-value for 

Student’s t-test with unequal variances). 
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6.3. Results and Discussions 

6.3.1. Cell Viability Determination 

The primary goal of the cell viability assay was to determine the inhibitory concentration 

(IC) values for cisplatin and rapamycin, representing the concentration required to inhibit cell 

growth by a specific percentage (e.g., IC25 reduces cell viability by 25%)265. These IC values are 

essential for exposing cells to the desired concentrations in subsequent experiments to study the 

effects of these drugs. Figure 6.1 shows the cell viability assay results after 24 and 48 hours of 

exposure. 

The dose-response for cisplatin (Figure 6.1.a) shows that as the concentration of the drug 

increases, cell viability drops significantly, especially at concentrations above 12.5 µM. This 

indicates cisplatin is very potent, with significant cell death at relatively low doses. For 24-hour 

exposures, cisplatin IC50 is 12.5 µM, whereas, for 48-hour exposure, the IC50 is 1 µM, corroborating 

that longer exposures increase the drug's effectiveness for cisplatin260. For rapamycin (Figure 

6.1.b), the decrease in cell viability is less abrupt than that of Cisplatin. After 24 hours of exposure, 

the I IC50 for rapamycin is 4 µM; after 48 hours, it is 2 µM.  

Although the same trend is observed for both drugs, higher cisplatin concentrations are 

required to achieve similar levels of cell death. These results suggest that lower rapamycin 

concentrations are needed, implying that this compound could be more efficient in treating cells 

derived from NSCLC than the latter. Moreover, high concentrations of cisplatin in chemotherapy 

regimens have been known to cause severe side effects, such as nausea and vomiting, hearing loss, 

and kidney damage243,244,246,266. On the other hand, rapamycin causes less severe side effects, such 

as immunosuppression-related infections and delayed wound healing256,267,268. 
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Because of the differences in their mode of action, cisplatin and rapamycin affect the cancer 

cell and tissue lipidome and metabolome differently. Hence, studies have suggested that 

combination treatments with these drugs may support their actions or target different pathways in 

the cells258–260,269. Furthermore, studies have shown that combining these drugs is also beneficial, 

as rapamycin was observed to reduce cisplatin's potential side effects261. After the IC value 

determination, A549 cells were treated under the previously mentioned conditions before being 

harvested for LC-MS analysis. 

 

Figure 6.1. Cell viability of human non-small cell lung cancer (A549) relative to control after 24 and 48-hour exposure to different 

concentrations of (a) cisplatin and (b) rapamycin, using Trypan Blue to stain dead cells.  
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6.3.2. LC-MS Analysis and Annotation Confidence 

The 1 mm ID column LC-MS method detected 9265 features after merging 6193 positive 

and 3072 negative ionizations. Of these, 1832 features were annotated. After removing duplicate 

annotations, 1076 annotations remained. Those were then assigned to one of the five fractions of 

the 2DLC method to determine their annotation confidence, and 94% of annotations belonged to a 

lipid subclass previously profiled in Chapter IV (Supp. Table 30). Twelve deuterated internal 

standards were detected with a minimum m/z error of 0.27 ppm and a maximum of 4.73 ppm 

(Figure E.1). Figure 6.2 displays the percentage of lipid annotations present in their expected 

fraction and the ones not. 

 

Figure 6.2. Distribution of lipid annotations in their expected fractions (green) versus those not in their expected fractions (orange) 

across five A549 cell sample fractions. The x-axis represents the five fractions, while the y-axis indicates the percentage of 

annotations. 
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Of all annotations belonging to a subclass previously profiled (1016 species), 82.5% were 

present in their expected fraction. As noted in Figure 6.2, Fraction 2 had the highest percentage of 

annotations not expected (17.6%), whereas fraction 3 had only 7.3%. Although some annotations 

were present in fractions other than the expected ones, the vast majority were in their expected 

fraction, indicating the method's suitability. Over 60% of all annotations detected in their expected 

fraction were annotated as a glycerophospholipid. In addition, 17.1% were sphingolipids, 13.7% 

were glycerolipids, and 2.6% were fatty acyl (Figure E.2). After careful consideration, only MS/MS 

annotations in their expected fraction were used for statistical analysis to increase the annotation 

accuracy of this study. 

After alignment, 68.2% of the detected features exhibited a relative standard deviation 

(RSD) for QC injections lower than 30%. To improve this and reduce any possible batch effects, 

samples underwent batch correction using QC replicate injections, slightly increasing the 

percentage of features with RSDs lower than 30% to 69.9%. Post-acquisition data normalization, 

using the detected deuterated internal standards, significantly improved the RSD for the QC 

replicates, resulting in 89.9% of the detected features having RSDs lower than 30%. 

The lipidome of A549 cells treated with rapamycin, cisplatin, or a combination of both was 

compared simultaneously, as shown in Figure 6.3. The PCA plot (Figure 6.3.a) shows that the 14 

QC extraction replicates (pooled A549 cell samples) are tightly clustered, indicating consistent and 

reliable sample preparation. However, the high number of samples in that region makes it difficult 

to visualize individual replicates on the PCA plot. The dendrogram (Figure 6.3.b) provides better 

visualization, revealing the clustering of the QC replicates. Furthermore, although most groups are 

clustered around the QC replicates, injections for the combined treatment with cisplatin and 



Chapter VI 

220 

 

rapamycin IC50 are separated from the rest. For this group, there is also a sub-separation between 

the 24- and 48-hour samples, indicating that the exposure length affects the lipidome of the cells 

for this treatment condition. Furthermore, the cisplatin IC75 and cisplatin and rapamycin IC75 

treatments are separated from clustered, albeit separated from other groups, indicating that cisplatin 

is primarily responsible for the observed changes. 

 

Figure 6.3. Statistical analysis for quality control of A549 cell samples treated with cisplatin (IC25, IC50 or IC75), rapamycin (IC25, 

IC50 or IC75), or a combination of rapamycin and cisplatin (IC25, IC50 or IC75). a) PCA score plot showcasing clustered QC extraction 

and injections; b) Dendrogram with injections for all samples. 
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To better evaluate how each treatment condition affected the samples' lipidomes, individual 

PCA score plots (without QCs) and PLS-DA score plots were plotted for each condition (Figure 

6.4). For cisplatin, control, IC25, and IC50 samples were clustered on the PCA (Figure 6.4.a), 

indicating that treating the cells with this drug for 24 or 48 hours does not significantly impact the 

lipidome of the cells. On the other hand, IC75 for cisplatin is separated from the rest, indicating that 

alterations in the lipidome of the cell become more noticeable at this dose. The PSL-DA score plot 

for cisplatin (Figure 6.4.b) did not pass the permutation test (p=0.061 for 1000 permutations) 

because of the high complexity of the dataset and the insufficient number of samples. Nevertheless, 

the result indicates that the lipidome of control samples differs from those of treated samples. 

Furthermore, IC25 and IC50 affect the lipidome similarly since they have no clear separation. 

However, a higher dose (IC75) affects it differently since we can see a clear separation on the PLS-

DA score plot (Figure 6.4.b). Furthermore, the cross-validation details for the cisplatin treatment 

suggest overfitting. Although the model displays a high accuracy and explained variance 

(R2=0.9746), its predictive power is much lower (Q2=0.5972), indicating the observed data should 

be interpreted carefully. 

On the other hand, the PCA score plot for rapamycin (Figure 6.4.c) shows the treatment 

conditions are less clustered than those with cisplatin. The plot also indicates some separation based 

on treatment duration, with slight differences between 24 and 48 hours for all groups, and IC75 

shows the most noticeable separation based on exposure length. The PLS-DA plot for rapamycin 

(Figure 6.4.d) separates the control samples from the treated ones. Additionally, there is some 

separation between IC75 and the other doses, but there is no clear separation between IC25 and IC50. 

Although the PLS-DA analysis passed the permutation test (p=0.038 for 1000 permutations), the 

model was overfitted, as indicated by the difference between the R2 and Q² values. This difference 
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suggests that while the model explains the dataset well, its predictive power is significantly lower. 

Therefore, the model cannot accurately predict the behavior of new samples, although it can still 

indicate trends and possible behaviors to guide future studies.  

Lastly, the PCA score plot (Figure 6.4.e) shows no separation between IC25 and control 

samples when evaluating the combination of drugs for treatment. However, IC50 and IC75 are 

separated from each other and the other groups. Similar to what was observed for rapamycin, a 

slight separation can be observed between different exposure times, especially for IC50. In the PLS-

DA score plot, the treatment conditions for the combined drugs and the control samples show clear 

separations. Control and IC25 samples show no clear separation based on exposure time; however, 

for IC50 and IC75, this separation is more evident, especially for IC50. Moreover, although the model 

displays high accuracy and predictive ability (Q²), the complexity of the dataset aligned with the 

difference between R2 and Q2 suggests the model is overfitted. The permutation test (p < 0.001 for 

1000 permutations) indicates that the observed separation is statistically significant, indicating that 

the model can identify patterns in the data for this condition despite the potential overfitting.  

The PLS-DA analysis suggests that treating A549 cells with cisplatin, rapamycin, or a 

combination of these drugs can significantly impact the lipidome, especially at higher doses. While 

the models suggest overfitting for all treatment conditions, the trends observed herein can help 

guide future studies on how these drugs alter the lipidome. 
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Figure 6.4. Statistical analysis for lipidomics of A549 cells treated with different doses of cisplatin and rapamycin and exposure 

times. a) PCA score plot for A549 cell samples treated with IC25 (pink), IC50 (green), or IC75 (dark blue) of cisplatin and control 

samples (light blue); b) PLS-DA score plot build for five components for A549 cell samples treated with IC25 (pink), IC50 (green), 
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or IC75 (dark blue) of cisplatin and control samples (light blue) R2: 0.9746; Q2: 0.5972 and p= 0.06 for 1000 permutations; c) PCA 

score plot for A549 cell samples treated with IC25 (pink), IC50 (green), or IC75 (dark blue) of rapamycin and control samples (light 

blue);  d) PLS-DA score plot build for five components for A549 cell samples treated with IC25 (pink), IC50 (green), or IC75 (dark 

blue) of rapamycin and control samples (light blue) resulting in R2: 0.9916; Q2: 0.7630 and p= 0.04 for 1000 permutations; e) PCA 

score plot for A549 cell samples treated with IC25 (pink), IC50 (green), or IC75 (dark blue) of rapamycin and cisplatin and control 

samples (light blue);  f) PLS-DA score plot build for five components for A549 cell samples treated with IC25 (pink), IC50(green), 

or IC75 (dark blue) of rapamycin and cisplatin and control samples (light blue) resulting in R2: 0.9803; Q2: 0.8722 and p<0.001 for 

1000 permutations. 

 

Following the PLS-DA analysis, a VIP score analysis was done to identify the lipid species 

that most significantly contributed to the observed separations. For cisplatin treatment (Figure 

E.3.a), the VIP scores highlighted specific lipid species important for the observed separation 

between control and treated samples. Sphingomyelins (SM), TG, PE, and DG were among the most 

influential lipids. Moreover, changes in the normalized summed intensity for the 15 species most 

influenced by the separation were observed. For SM and TG, each had three species significantly 

affecting the separation, and in both cases, one increased and two decreased in normalized 

intensity. Both PE and ST species showed a decrease in normalized intensity for its species. LPC, 

DG, PG, and PC species increased their normalized intensities. These results suggest that the 

observed alterations may have been caused by the cisplatin treatment, which may have induced 

changes in membrane lipid composition and signaling pathways. SM and TG were the most 

influential subclasses, indicating that changes in sphingolipid and glycerolipid metabolism play a 

key role in response to cisplatin treatment. Studies have shown that cisplatin affects signaling 

pathways, such as cell-to-cell communications, by inducing changes in the fluidity and 

permeability of the lipid bilayer. It interacts with the membrane lipids, causing alterations in the 
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drug uptake and resistance mechanisms. This plays a crucial role in drug treatments and leads to 

changes in the drug’s cytotoxicity97,241,242. 

The VIP score analysis for rapamycin treatment (Figure E.3.b) showed 

phosphatidylcholines (PC) are the major lipid species differentiating between control and treated 

samples. PC is one of the major components of cell membranes, indicating that treating A549 cells 

with rapamycin causes significant alterations in the lipid bilayer. Furthermore, SM, TG, and PE 

also showed significant differences between treated and control samples, indicating that treatment 

with rapamycin can also cause alterations in lipid storage and energy metabolism1,249. Most of its 

species also increased in normalized intensity for PC, while most SM species decreased. PE and 

TG showed increased normalized intensity, whereas FA decreased in its normalized intensity. 

Rapamycin has been reported to alter membrane composition and cellular signaling pathways, 

impacting lipid metabolism and cellular functions. By inhibiting mTORC1, rapamycin can reduce 

protein synthesis regulators' activity and influence lipids' metabolism and other macromolecules' 

metabolism257,270,271. 

The VIP score analysis demonstrated that SM and PE are the most important lipid subclass 

driving the observed separations for the combined treatment of cisplatin and rapamycin (Figure 

E.3.c). Here, the normalized intensities showed a decrease for most species driving the separation 

(SM, PI, TG, PS, and PC), whereas for DG, it increases. For PE, most of its species driving the 

separation showed a decreased normalized intensity, with only one of its annotations increasing. 

SM lipids are crucial for maintaining cell membrane integrity, facilitating signaling pathways, and 

influencing drug uptake and resistance. Additionally, PE lipids are important for maintaining cell 

membrane structure, facilitating membrane dynamics, and regulating cellular functions. The role 
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of these lipid species in cell signaling, protein function, and membrane stability makes them vital 

in cellular responses to drug treatments and potential targets for therapeutic interventions in various 

diseases1,250,257,258,262,270. 

The PLS-DA and VIP score analyses indicate lipidome alterations caused by drug 

treatments in A549 cells. These results suggest that cisplatin may disrupt sphingolipid and 

glycerolipid metabolism, impacting membrane lipid composition and signaling pathways. In 

contrast, rapamycin treatment primarily affects PC lipids, indicating significant changes in the lipid 

bilayer, alongside alterations in SM, TG, and PE, reflecting disruptions in lipid storage and energy 

metabolism. However, combined, cisplatin and rapamycin treatment affected SM and PE species 

the most, highlighting their roles in maintaining cell membrane integrity, facilitating signaling 

pathways, and influencing cellular responses to drug treatments. Results suggest that this drug 

treatment combination could increase therapeutic efficacy and alter resistance mechanisms, 

providing insights into the combined treatment's biochemical effects. 

Concerning the Volcano plot analysis (Figure E.4), treatment conditions were evaluated 

separately against control samples to assess the effects of both dose and drug on the lipidome. In 

the cisplatin IC25 condition (Figure E.4.a), 93 species were significantly altered, mainly belonging 

to PC, PE, and Cer subclasses. PC lipids are important cellular membrane structure and function 

components, influencing cellular processes such as signaling and apoptosis. At the same time, PE 

is important in membrane structure and stability, and Cer plays a role in programmed cell death 

and cell cycle regulation. The change in these lipids suggests that cisplatin IC25 impacts membrane 

integrity and apoptotic pathways in A549 cells. These changes can impair cell viability and 
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promote cell death, which is consistent with the cytotoxic nature of cisplatin in cancer 

treatment1,241,272.  

For the IC50 dose (Figure E.4.b), 221 species were significantly affected, and the most 

affected subclasses were the same as observed for cisplatin IC25. This observation indicates that 

higher doses of cisplatin intensify the disruption of lipid metabolism observed at lower doses; it 

does not disturb different subclasses, indicating it does not interfere with other cell functions. 

Furthermore, the consistency in the affected lipid subclasses suggests that these lipid species are 

sensitive to cisplatin treatment. The increased number of significantly altered lipid species at the 

IC50 dose indicates a dose-dependent intensification of the drug’s impact on cellular lipidome, 

leading to more pronounced cellular stress and potential cytotoxicity. This dose-dependent effect 

is consistent with the known mechanism of cisplatin, which includes DNA damage, apoptosis, and 

disruption of lipid metabolism97,241,242,262. 

For cisplatin IC75 (Figure E.4.c), 490 significant features were observed, with PC, PE, TG, 

and Cer subclasses being the most affected. The large number of altered species at this higher dose 

indicates severe membrane integrity and signaling pathways disruption, highlighting the cytotoxic 

effects of high-dose cisplatin on A549 cells. Triglycerides (TG) are crucial for energy storage and 

lipid signaling, and the number of significantly altered TGs suggests metabolic stress and 

disruption of lipid homeostasis. The changes may reflect an altered energy metabolism, indicating 

cellular stress and damage, corroborating the known dose-dependent toxicity of 

cisplatin241,242,248,272,273. 

Similarly to cisplatin, in the IC25 dose (Figure E.4.d) for rapamycin, 100 lipid species 

showed significant changes, mainly Cer, PC, and FA subclasses. FA lipids are important in energy 
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production, membrane synthesis, and signaling pathways, and significant alteration in them may 

suggest a disruption in cellular energy metabolism and membrane dynamics in response to 

rapamycin treatment. Changes in FA levels can indicate shifts in lipid metabolism and the 

activation of stress responses as cells attempt to adapt to the drug-induced inhibition of the mTOR 

pathway. This disruption can lead to altered energy balance, impacting cell growth and survival, 

which aligns with the known effects of rapamycin in reducing cell proliferation and inducing 

autophagy250,253,257. At IC50 (Figure E.4.e), 123 lipid species were significantly altered. Similarly 

to what was observed for cisplatin treatments, an increase in the number of significantly altered 

species was observed between IC25 and IC50 doses; however, most of the altered species belonged 

to the previously discussed subclasses. 

For rapamycin at IC75, 160 species were significantly altered, with PE, PC, Cer, and LPC 

being the most prominent subclasses, suggesting that high drug doses can impact biological 

processes. Rapamycin’s mechanism involves inhibiting the mTOR pathway, thereby reducing cell 

growth and proliferation. The significant changes in LPC – lipids involved in inflammation and 

cell signaling – along with alterations of other lipid subclasses highlight the extensive metabolic 

reprogramming and cellular stress induced by the high-dose rapamycin. These changes likely 

contribute to its therapeutic effects on cancer249,250,257. 

For the combined treatment using cisplatin and rapamycin at IC25 (Figure E.4.g), 77 

significantly altered features were observed, with PC, PE, and FA subclasses being the most 

impacted. At IC50 (Figure E.4.h), the combination treatment resulted in 337 significantly altered 

lipids, mostly belonging to PE, PC, and Cer subclasses. This is similar to what was observed for 
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cisplatin treatments at IC25 and IC50. However, the number of altered lipid species is significantly 

higher, indicating that using rapamycin with cisplatin increases the latter's effects.  

Finally, at IC75 (Figure E.4.i), the combination treatment showed the highest number of 

significant features, with 578 changes, predominantly affecting the PC, PE, Cer, and TG 

subclasses. The most affected lipid subclasses for this treatment condition are very similar to what 

was observed for cisplatin IC75 alone; only the number of significantly altered species is higher, 

corroborating the idea that rapamycin boosts the effects of cisplatin in A549 cells. Furthermore, 

the extensive alteration suggests disruption of lipid homeostasis and cellular functions, confirming 

high-dose cisplatin and rapamycin's potent combined cytotoxic effects on A549 cells258,259,261,262. 
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Figure 6.5. Number of significantly altered (p<0.05 and FC<0.67 or FC >1.5) lipid annotations between Control and treated A549 

cell samples (fold-change ≤ 0.67 or ≥ 1.5 and p < 0.05. a) Control versus samples treated with cisplatin at IC25, IC50, and IC75; b) 

Control versus samples treated with rapamycin at IC25, IC50, and IC75; c) Control versus samples treated simultaneously with 

cisplatin and rapamycin at IC25, IC50, and IC75. 
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6.3.3. Biological Implications 

The lipidomic alterations observed in this study provide insights into the possible metabolic 

disruptions induced by cisplatin and rapamycin treatments in A549 cells. Cisplatin treatment 

significantly changed PC, PE, and Cer. These lipids play crucial roles in membrane fluidity, 

receptor transduction, and receptor localization, which are important in maintaining cellular 

homeostasis4,46,274. Therefore, altering these lipids could lead to dysregulation of the membrane 

lipid composition and disruptions of these processes. Moreover, these changes can affect cell 

proliferation, drug resistance mechanisms, and key cancer progression and treatment factors. In 

addition, the observed alterations in PC and PE species suggest membrane dynamics and cellular 

signaling changes, potentially leading to increased cellular stress and programmed cell death. This 

highlights the importance of lipid metabolism in cancer biology and underscores the therapeutic 

potential of targeting these pathways to improve treatment efficacy97,241,248,249. 

Moreover, combining cisplatin and rapamycin showed enhanced cytotoxic effects and 

lipidomic changes, suggesting an alternative approach to overcome drug resistance. Cisplatin is 

known for its ability to form DNA adducts, leading to programmed cell death, while rapamycin 

inhibits the mTOR pathway, reducing cell growth and proliferation. The combination therapy 

resulted in more pronounced lipid alterations, indicating a collaborative effect that enhances both 

drugs' efficacy. These observations suggest that combining DNA-damaging agents with mTOR 

inhibitors can effectively target multiple pathways in cancer cells, reducing the likelihood of 

resistance and improving therapeutic outcomes. Besides, studies have shown that rapamycin can 

be used to minimize potential side effects from the cisplatin treatment, suggesting even more 

advantages for the combination treatment using both drugs241,257,258,261,262,269. 
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The different lipidomic profiles associated with drug treatments and dosages suggest 

potential biomarkers for predicting treatment response. Personalized medicine approaches can 

leverage these biomarkers to tailor therapies based on individual lipidomic profiles, improving 

therapeutic efficacy and minimizing side effects. For example, specific lipid alterations, such as 

altered PIs and TGs, could indicate a higher chance of response to combination therapy with 

cisplatin and rapamycin. Identifying and validating such biomarkers could enable personalized 

treatment plans, improving patient outcomes and reducing the risk of side effects associated with 

traditional chemotherapy17,231,275. 

 

6.4. Conclusions 

This study explored the lipidomic alterations induced by cisplatin and rapamycin treatments 

in A549 cells as single agents and in combination. Our findings show significant changes in the 

lipid profiles of treated cells, highlighting the potential of lipidomics in understanding the 

metabolic disruptions caused by these chemotherapeutic agents. 

The results showed that cisplatin treatment led to alterations in PC, PE, and Cer lipids, 

indicating changes in membrane lipid composition and signaling pathways. Similarly, rapamycin 

treatment primarily affected PC, SM, TG, and PE, showcasing lipid storage and energy metabolism 

disruptions. Cisplatin and rapamycin exhibited collaborative effects, resulting in pronounced lipid 

alterations and enhanced cytotoxicity compared to single-agent treatments. This combination 

therapy effectively targets multiple pathways in cancer cells, potentially overcoming drug 

resistance mechanisms. The observed synergy between cisplatin and rapamycin supports the 

potential of combination therapies to improve therapeutic outcomes by targeting complementary 
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mechanisms of action. Furthermore, the lipidomic profiles associated with different drug 

treatments and dosages suggest potential biomarkers for predicting treatment response. Specific 

lipid alterations could indicate therapeutic efficacy, allowing personalized treatment strategies.  

Future research should focus on finding and validating possible biomarkers for treatment 

monitoring and disease progression. Exploring differences in drug action between 2D and 3D cells 

before in vivo studies should also be beneficial as it could improve the understanding of drug 

delivery to tissue-like samples. Moreover, in vivo or clinical studies are essential to confirm the 

lipidomic alterations observed in vitro and to assess the therapeutic efficacy and safety of cisplatin 

and rapamycin combination therapy. In addition, identifying and validating potential lipid 

biomarkers across a broader range of cancer cell lines and clinical samples is crucial for 

establishing their reliability and applicability in predicting treatment response and guiding 

therapies.  

 

 

 

 



Chapter VII 

234 

 

VII 

Chapter VII: Conclusions and Future Work 

 

Lipid molecules play diverse and crucial roles within living organisms, such as maintaining 

cellular structure, facilitating signaling, and storing energy. Lipidomics research is important for 

understanding these functions and how lipid dysregulation is associated with cancer, 

cardiovascular diseases, and metabolic disorders. Therefore, developing more sensitive and 

accurate lipidomic methods is essential for advancing our knowledge of lipid biology, identifying 

disease biomarkers, and improving diagnostic and therapeutic strategies. 

This work focused on developing and optimizing analytical methods to improve lipidomic 

profiling in human samples, with potential implications for diagnostic applications. In Chapter II, 

a UV-Vis method was optimized to establish a reliable baseline for lipidomic analyses, ensuring 

high sensitivity and reproducibility. This method was successfully integrated into our UHPLC-MS 

platform and subsequently applied to saliva and MCF-7 cell samples. In Chapter III, comparisons 

were made between the method previously optimized in Chapter II and a Total Metabolite 

Concentration method. The potential biological implications of these normalization methods were 

evaluated, determining which method to use before LC-MS analysis. While normalization using 

total lipid quantification provided higher reproducibility and specificity for lipid-focused studies, 

normalization using total metabolite concentration was more suitable for broader metabolic 

profiling due to its higher sensitivity.  

In Chapter IV, an offline two-dimensional liquid chromatography-mass spectrometry 

(2DLC-MS) method combining HILIC and RPLC-MS was developed and optimized to improve 
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lipidomics data acquisition. The 2DLC-MS method enhanced lipid class separation, reduced ion 

suppression, and improved the accuracy of lipid annotation. Different data processing tools 

(MetaboScape, MS-Dial, and LipidScreener) were evaluated to identify the most effective software 

for lipidomic analysis. LipidScreener provided the highest number of annotations, while 

MetaboScape and MS-Dial offered more precise matching of lipid species to their expected 

fractions. A proof-of-concept study on biological samples confirmed the method’s potential for 

real-world applications and its ability to provide a more accurate view of the lipidome. 

In Chapter V, the performance of Orbitrap-MS and QToF-MS was compared, alongside the 

influence of the column’s inner diameter ( D) on lipidomics data. The optimization of the Orbitrap-

MS ion source parameters resulted in significant improvements in signal intensity and peak shapes. 

This demonstrated higher sensitivity and resolution, leading to more detailed lipid profiles 

compared to QToF-MS. A UHPLC method using a 1 mm ID column was developed, improving 

lipid separation, sensitivity, and resolution compared to the traditional 2.1 mm ID column. 

Lastly, Chapter VI evaluated the potential of the 1 mm ID column combined with the 

2DLC-MS for high-throughput and detailed lipidomic studies to increase annotation confidence. 

The lipidomic changes in A549 cells, a non-small cell lung cancer (NSCLC) model, were evaluated 

following treatment with cisplatin and rapamycin, both as single agents and in combination. 

Cisplatin treatment significantly altered PC, PE, and Cer lipids, potentially impacting membrane 

lipid composition and signaling pathways. Rapamycin treatment affected PC, SM, TG, and PE, 

indicating lipid storage and energy metabolism disruptions. Combined treatment with rapamycin 

and cisplatin resulted in more lipid alterations and enhanced cytotoxicity than single-agent 

therapies, highlighting the potential for overcoming drug resistance mechanisms. 
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This work has advanced lipidomic profiling methodologies, demonstrating their potential 

for diagnostic applications and enhancing our understanding of lipid-related disease mechanisms. 

Future research should focus on expanding sample size and diversity to validate the findings across 

different biological fluids and conditions, especially for other normalization methods. Moreover, 

studies focusing on data processing tools for lipidomics and annotation accuracy to enhance the 

data quality are still required. Continued research in lipidomics will contribute to a better 

understanding of disease mechanisms, improve diagnostic precision, and aid in developing targeted 

therapies, ultimately enhancing patient outcomes. 
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Appendix A 

Appendix A: Supplementary Figures for Chapter II 

 

 

Figure A.1. Mass errors for the Avanti SPLASH Lipidomics Mass Spec standards used for the Saliva study.  a) Mass errors for non-

normalized saliva samples in positive ionization; b) Mass errors for non-normalized saliva samples in negative ionization; c) Mass 

errors for normalized saliva samples in positive ionization; d) Mass errors for normalized saliva samples in negative ionization. 
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Figure A.2. Volcano plot analysis for saliva samples comparing males versus females a) Volcano plots for non-normalized saliva 

samples; b) Volcano plots for non-normalized saliva samples. 
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Figure A.3. Volcano plots for non-normalized and normalized MCF-7 and A549 cell samples. A) Volcano plots for non-normalized 

MCF-7 versus A549 samples; b) Volcano plots for normalized MCF-7 versus A549 samples. 
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Appendix B 

Appendix B: Supplementary Figures for Chapter III 

 

 

Figure B.1.Amino acid calibration curve for TMC a) Batch 1 (Abs= 0.804x + 0.1465, and R2 = 0.9992); b) Batch 2 (Abs= 0.077x + 

0.1984, and R2 = 0.9986). 
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Figure B.2. Oleic acid calibration curve for TLC a) Batch 1 (Abs= 0.541x +0.0620, and R2 = 0.9946); b) Batch 2 (Abs= 0.569x + 

0.0871, and R2 = 0.9945); c) Batch 3 (Abs= 0.580x + 0.0688, and R2 = 0.9984). 
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Figure B.3. Mass errors for the LipidRep Serum/Plasma Standard mix standards used for the Saliva study.  a) Mass errors in positive 

ionization; b) Mass errors in negative ionization. 
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Figure B.4. Lipid annotation distribution across the different lipid categories. A) Lipid categories with absolute number of 

annotations per category; b) Lipid categories with percentage number of annotations per category. 
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Figure B.5. Volcano plot analysis for saliva samples obtained from healthy individuals, which were analyzed by LC-MS in three 

conditions (Controls – not normalized samples; TMC normalized – samples normalized by total metabolite concentration; TLC 

normalized – samples normalized by total lipid concentration). Lipids were considered significantly altered for F  ≤ 0.67 or ≥ 1.5 

and p < 0.05. a) Control/TLC normalized samples; b) Control/TMC normalized samples; c) TMC normalized/TLC normalized 

samples. 
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Appendix C: Supplementary Figures for Chapter IV 

 

 

Figure C.1. Extracted Ion Chromatogram (EIC) for NovaMT Tissue Standard for the different resuspension solvents used to 

optimize the HILIC-MS (MPA: 10 mM NH4COOH 50:50 ACN/H2O; MPB: 10 mM NH4COOH 95:5 ACN/H2O; 0.200 mL/min; 

45ºC, 25 min gradient (0 min – 100% MPB, 10 min – 80% MPB, 25 min – 20% MPB); 13 min equilibration (100% MPB)) method 
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to improve peak shapes and separation. a) 85:15:5 ACN/IPA/H2O; b) 10 mM NH4COOH 95:2:3 ACN/MeOH/H2O; c) 9:1 

ACN/IPA; d) 75:25 ACN/IPA; e) 30:15:4:1 ACN/IPA/MeOH/H2O. 
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Figure C.2. Extracted Ion Chromatogram (EIC) obtained for NovaMT Tissue Standard for the gradient elution optimization of the 

HILIC-MS method; with MPA: 10 mM NH4COOH 50:50 ACN/H2O; MPB: 10 mM NH4COOH 95:5 ACN/H2O; 0.200 mL/min; 

45ºC; a) 25 min gradient (0 min – 100% MPB, 10 min – 80% MPB, 25 min – 20% MPB); 13 min equilibration (100% MPB). b) 18 
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min gradient (0 min – 100% MPB, 3 min – 100% MPB, 8 min – 83% MPB, 11 min – 80% MPB, 15 min – 65% MPB 18 min – 

20% MPB); 8 min equilibration (100% MPB). c) 18 min gradient (0 min – 100% MPB, 2.5 min – 100% MPB, 4.5 min – 90% MPB, 

15 min – 70% MPB, 18 min – 20% MPB); 8 min equilibration (100% MPB). d) 17 min gradient (0 min – 100% MPB, 8 min – 80% 

MPB, 15 min – 60% MPB 17 min – 20% MPB); 8 min equilibration (100% MPB). e) 18 min gradient (0 min – 100% MPB, 8 min 

– 80% MPB, 16 min – 50% MPB 18 min – 20% MPB); 8 min equilibration (100% MPB). f) 18 min gradient (0 min – 100% MPB, 

1 min – 100% MPB, 9 min – 80% MPB, 16 min – 50% MPB 18 min – 20% MPB); 8 min equilibration (100% MPB). g) 18.5 min 

gradient (0 min – 100% MPB, 1 min – 100% MPB, 10 min – 80% MPB, 17 min – 50% MPB 18.5 min – 20% MPB); 8 min 

equilibration (100% MPB). h) 18 min gradient (0 min – 100% MPB, 7 min – 80% MPB, 15 min – 50% MPB 18 min – 20% MPB); 

8 min equilibration (100% MPB). i) 18 min gradient (0 min – 100% MPB, 5 min – 80% MPB, 15 min – 50% MPB 18 min – 20% 

MPB); 8 min equilibration (100% MPB).  
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Figure C.3. Base Peak Chromatogram (BPC) for Human Serum Standard fractionated using a HILIC-MS method (MPA: 10 mM 

NH4COOH 60:40 ACN/H2O; MPB: 10 mM NH4COOH 95:2:3 ACN/MeOH/H2O; 0.250 mL/min; 45ºC, 26 min gradient elution 

(0 min 100% MPB, 2 min 100% MPB, 2-4 min 98% MPB, 4.5 min 98% MPB, 6 min 96% MPB, 8.5 min 93% MPB, 9.5 min 93% 

MPB, 12 min 91% MPB, 17 min 86% MPB, 25min 80% MPB, 26 min 20% MPB); 4  min equilibration (100% MPB)), subsequently 
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injected in a RPLC-MS method (MPA: 10 mM NH4COOH 50:40:10 MeOH/ACN/H2O; MPB: 10 mM NH4COOH 95:5 IPA/H2O; 

0.250 mL/min; 45ºC; 20.5 min gradient (0 min – 5% MPB, 10 min – 40% MPB, 18.8 min – 98% MPB, 20.5 min – 98% MPB)); 

9.5 min equilibration (5% MPB). a) F1 collection interval 0 min – 4 min. b) F2 collection interval 4 min – 9.5 min; c) F3 collection 

interval 9.5 min – 13 min. d) F4 collection interval 13 min – 16 min; e) F5 collection interval 16 min – 18.5 min; f) F6 collection 

interval 18.5 min – 21.7 min; g) F7 collection interval 21.7 min – 25 min; h) F8 collection interval 25 min – 28 min. 
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Figure C.4. Extracted Ion Chromatogram (EIC) for NovaMT Tissue Standard fractionated using a HILIC-MS method (MPA: 10 

mM NH4COOH 60:40 ACN/H2O; MPB: 10 mM NH4COOH 95:2:3 ACN/MeOH/H2O; 0.250 mL/min; 45ºC, 26 min gradient 
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elution (0 min 100% MPB, 2 min 100% MPB, 2-4 min 98% MPB, 4.5 min 98% MPB, 6 min 96% MPB, 8.5 min 93% MPB, 9.5 

min 93% MPB, 12 min 91% MPB, 17 min 86% MPB, 25min 80% MPB, 26 min 20% MPB); 4  min equilibration (100% MPB)), 

subsequently injected in RPLC-MS (MPA: 10 mM NH4COOH 50:40:10 MeOH/ACN/H2O; MPB: 10 mM NH4COOH 95:5 

IPA/H2O; 45ºC; 16-min gradient elution (0 min, 15% MPB; 0.5 min, 15% MPB; 2.3 min, 25% MPB; 9.3 min, 42% MPB, 10.1 min, 

78% MPB; 12 min, 90% MPB; 13 min, 98% MPB; 14.5 min, 98% MPB; 15 min, 15% MPB); 4  min equilibration (15% MPB)), 

with flow rates varying from 0.300 mL/min to 0.210 mL/min. a) F1 collection interval 0 min – 5 min. b) F2 collection interval 5 

min – 9.5 min; c) F3 collection interval 9.5 min – 15 min. d) F4 collection interval 15 min – 20 min; e) F5 collection interval 20 

min – 25 min. 

 



Appendix C 

 

298 

 

 

Figure C.5. Commercial Lipid Standard retention times in HILIC-MS for different subclasses with different carbons and double 

bonds (DB) numbers. a) CE with DB varying from 0 to 3; b) ST with DB varying from 1 to 4; c) MG with DB varying between 0 

and 1; d) TG with 1 DB; e) FA with DB varying between 0 and 1; f) Cer with DB varying from 0 to 2; g) LPE with 1 DB; h) LPC 

with DB varying between 0 and 1; i) PI with 1 DB; j) PA with 1 DB; k) PS with 1 DB; l) PE with 1 DB; m) PC with DB varying 

between 1 and 2; n) PG with 1 DB. 
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Figure C.6. Detected features, summed intensities for each fraction, and non-fractionated sample. a) Detected features for fractions 

(F1 through F5) and non-fractionated tissue samples; b) Summed intensities for fractions (F1 to F5) and non-fractionated samples. 
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Figure C.7. Base Peak Chromatogram (BPC) for Human Serum Standard fractionated using a HILIC-MS method (MPA: 10 mM 

NH4COOH 60:40 ACN/H2O; MPB: 10 mM NH4COOH 95:2:3 ACN/MeOH/H2O; 0.250 mL/min; 45ºC, 26 min gradient elution (0 

min 100% MPB, 2 min 100% MPB, 2-4 min 98% MPB, 4.5 min 98% MPB, 6 min 96% MPB, 8.5 min 93% MPB, 9.5 min 93% 
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MPB, 12 min 91% MPB, 17 min 86% MPB, 25min 80% MPB, 26 min 20% MPB); 4  min equilibration (100% MPB)), subsequently 

injected in RPLC-MS (MPA: 10 mM NH4COOH 50:40:10 MeOH/ACN/H2O; MPB: 10 mM NH4COOH 95:5 IPA/H2O; 45ºC; 16-

min gradient elution (0 min, 15% MPB; 0.5 min, 15% MPB; 2.3 min, 25% MPB; 9.3 min, 42% MPB, 10.1 min, 78% MPB; 12 min, 

90% MPB; 13 min, 98% MPB; 14.5 min, 98% MPB; 15 min, 15% MPB); 4  min equilibration (15% MPB)), with flow rates varying 

from 0.300 mL/min to 0.210 mL/min. a) F1 collection interval 0 min – 5 min. b) F2 collection interval 5 min – 9.5 min; c) F3 

collection interval 9.5 min – 15 min. d) F4 collection interval 15 min – 20 min; e) F5 collection interval 20 min – 25 min; f) Non-

fractionated Human Serum Standard injected in RPLC-MS. 
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Figure C.8. Base Peak Chromatogram (BPC) for MCF-7 cells fractionated using a HILIC-MS method (MPA: 10 mM NH4COOH 

60:40 ACN/H2O; MPB: 10 mM NH4COOH 95:2:3 ACN/MeOH/H2O; 0.250 mL/min; 45ºC, 26 min gradient elution (0 min 100% 

MPB, 2 min 100% MPB, 2-4 min 98% MPB, 4.5 min 98% MPB, 6 min 96% MPB, 8.5 min 93% MPB, 9.5 min 93% MPB, 12 min 
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91% MPB, 17 min 86% MPB, 25min 80% MPB, 26 min 20% MPB); 4  min equilibration (100% MPB)), subsequently injected in 

RPLC-MS (MPA: 10 mM NH4COOH 50:40:10 MeOH/ACN/H2O; MPB: 10 mM NH4COOH 95:5 IPA/H2O; 45ºC; 16-min gradient 

elution (0 min, 15% MPB; 0.5 min, 15% MPB; 2.3 min, 25% MPB; 9.3 min, 42% MPB, 10.1 min, 78% MPB; 12 min, 90% MPB; 

13 min, 98% MPB; 14.5 min, 98% MPB; 15 min, 15% MPB); 4  min equilibration (15% MPB)), with flow rates varying from 0.300 

mL/min to 0.210 mL/min. a) F1 collection interval 0 min – 5 min. b) F2 collection interval 5 min – 9.5 min; c) F3 collection interval 

9.5 min – 15 min. d) F4 collection interval 15 min – 20 min; e) F5 collection interval 20 min – 25 min; f) Non-fractionated MCF-7 

cells injected in RPLC-MS. 
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Figure C.9. Distribution of lipid annotations in their expected fractions (green) versus those not in their expected fractions (orange). 

The x-axis represents the five fractions, while the y-axis indicates the percentage of annotations. a) In chicken liver tissue samples; 

b) in MCF-7 cell samples. 
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Appendix D 

Appendix D: Supplementary Figures for Chapter V 

 

Figure D.1. Base Peak Chromatogram (BPC) for LipidRep Basic Mix Serum Standard used for ion source parameter optimizations. 

A) Orbitrap’s default ion source parameters (Spray Voltage:  400 V on positive  Sheath  as:   Arb  Aux  as: 2 Arb  Sweep  as: 

0 Arb; Ion Transfer Tube Temp.: 320 ºC; Vaporizer Temp.: 0 ºC); b) Optimized parameters 1 (Spray Voltage: 3500 V on positive; 

Sheath Gas: 70 Arb; Aux Gas: 10 Arb; Sweep Gas: 1 Arb; Ion Transfer Tube Temp.: 220 ºC; Vaporizer Temp.: 180 ºC); c) 

Optimized parameters 2 (Spray Voltage: 4000 V on positive; Sheath Gas: 70 Arb; Aux Gas: 10 Arb; Sweep Gas: 1 Arb; Ion Transfer 

Tube Temp.: 220 ºC; Vaporizer Temp.: 180 ºC); d) Optimized parameters 3 (Spray Voltage: 4000 V on positive; Sheath Gas: 70 

Arb; Aux Gas: 15 Arb; Sweep Gas: 1 Arb; Ion Transfer Tube Temp.: 220 ºC; Vaporizer Temp.: 180 ºC); e) Optimized parameters 

4  (Spray Voltage: 4000 V on positive; Sheath Gas: 70 Arb; Aux Gas: 20 Arb; Sweep Gas: 1 Arb; Ion Transfer Tube Temp.: 220 

ºC; Vaporizer Temp.: 180 ºC); f) Optimized parameters 5 (Spray Voltage: 4000 V on positive; Sheath Gas: 60 Arb; Aux Gas: 15 

Arb; Sweep Gas: 1 Arb; Ion Transfer Tube Temp.: 300 ºC; Vaporizer Temp.: 250 ºC). 
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Figure D.2. Extracted Ion Chromatogram (EIC) show CE in-source fragmentation before and after ion source parameter 

optimizations. In black are the ICS for m/z 372.37 (in-source fragment), and in red for m/z 671.65 (main fragment). A) Orbitrap’s 

default ion source parameters (Spray Voltage: 3400 V on positive; Sheath Gas: 3 Arb; Aux Gas: 2 Arb; Sweep Gas: 0 Arb; Ion 

Transfer Tube Temp.: 320 ºC; Vaporizer Temp.: 0 ºC); b) Optimized parameters 5 (Spray Voltage: 4000 V on positive; Sheath Gas: 

60 Arb; Aux Gas: 15 Arb; Sweep Gas: 1 Arb; Ion Transfer Tube Temp.: 300 ºC; Vaporizer Temp.: 250 ºC). 
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Figure D.3. Number of MS1 and MS2 detected features in Orbitrap-MS and QToF-MS using a Waters Acquity CSH Premier C18 

column (1.7 µm, 2.1×100mm) at 45 ºC, MPA - 10 mM ammonium formate in 50:40:10 MeOH/ACN/H2O and MPB - 10 mM 

ammonium formate in 95:5 IPA/H2O), employing a 16-minute gradient for separation (0 min, 15% MPB; 0.5 min, 15% MPB; 2.3 

min, 25% MPB; 9.3 min, 42% MPB, 10.1 min, 78% MPB; 12 min, 90% MPB; 13 min, 98% MPB; 14.5 min, 98% MPB; 15 min, 

15% MPB) with an initial flow rate of 0.300 mL/min until 9.3 minutes, decreasing to 0.270 mL/min up to 10.1 minutes, and 

subsequently reducing further to 0.210 mL/min until the end. 
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Figure D.4. Number of annotated features in Tier 1 (MS/MS score < 500) and Tier 2 (100 < MS/MS score < 500) in Orbitrap-MS 

and QToF-MS. 
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Figure D.5. Distribution of lipid annotations across various lipid subclasses for Orbitrap-MS and QToF-MS. 
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Figure D.6. Base Peak Chromatogram (BPC) for Serum samples acquired using MPB -  10mM ammonium formate in 95:5 

IPA/H2O; 16 min gradient (0 min – 15% MPB, 0.5 min – 15% MPB, 2.3 min – 25% MPB, 9.3 min – 42% MPB, 10.1 min – 78% 

MPB, 12 min – 90% MPB, 13 min – 98% MPB, 14.5 min – 98% MPB, 15 min – 15% MPB); 4 min equilibration (15% MPB); with 

flow rate starting at 100 µL/min until 10.1 min, reducing it to 80 µL/min from 10.1 to 14.5 µL/min and further reducing it to 50 

µL/min until the end of the run and column oven temperature of 55 ºC.  a) MPA - 10mM ammonium formate in 50:40:10 

MeOH/ACN/H2O and b) MPA - 10mM ammonium formate in 40:40:20 MeOH/ACN/H2O. 
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Figure D.7. Base Peak Chromatogram (BPC) for Serum samples used for the evaluation gradients 1 to 5 of the 1 mm ID UHPLC 

gradient optimization using MPA - 10mM ammonium formate in 40:40:20 MeOH/ACN/H2O and MPB -  10mM ammonium 

formate in 95:5 IPA/H2O and 55 ºC;  a) Gradient 1 - 19 min gradient  (0 min – 10% MPB, 0.5 min – 10% MPB, 2 min – 30% MPB, 

7.5 min – 40% MPB, 10 min – 60% MPB, 12.9 min – 72% MPB, 13 min – 72% MPB, 13.5 min – 93% MPB, 17 min – 98% MPB, 

18.5 min – 98% MPB, 19 min – 10% MPB); 4 min equilibration (15% MPB); with flow rate starting at 100 µL/min until 2 min, 

reducing it to 70 µL/min from 2 to 13 min, and further reducing it to 40 µL/min until the end of the run; b) Gradient 2 - 34 min 

gradient (0 min – 0% MPB, 0.5 min – 0% MPB, 4 min – 15% MPB, 7.5 min – 40% MPB, 5 min – 35% MPB, 10 min – 39% MPB, 

17 min – 42% MPB, 19 min – 75% MPB, 27 min – 93% MPB, 31 min – 98% MPB, 33 min – 98% MPB, 34 min – 0% MPB); 4 

min equilibration (0% MPB); with flow rate starting at 100 µL/min until 4 min, reducing it to 70 µL/min from 4 to 17 minutes and 

a)

c)

b)

e)

d)
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further reducing it to 30 µL/min until the end of the run. c) Gradient 3 - 22.6 min gradient (0 min – 15% MPB, 1.5 min – 15% MPB, 

2.5 min – 20% MPB, 2.6 min – 20% MPB, 6.6 min – 33% MPB, 12.6 min – 45% MPB, 13.1 min – 75% MPB, 18.1 min – 93% 

MPB, 20.1  min – 98% MPB, 21.6 min – 98% MPB, 22.6 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting 

at 100 µL/min until 2.5 min, reducing it to 60 µL/min at 2.6 min until 12.6 min, and further reducing it to 35 µL/min until the end 

of the run. d) Gradient 4 - 24.9 min gradient (0 min – 10% MPB, 4 min – 34% MPB, 10 min – 38% MPB, 13.8 min – 55% MPB, 

13.9 min – 55% MPB, 16.9 min – 75% MPB, 18.9 min – 93% MPB, 20.9 min – 98% MPB, 22.4 min – 98% MPB, 24.9 – 10% 

MPB); 4 min equilibration (10% MPB); with flow rate starting at 50 µL/min until 13.8 min, reducing it to 35 µL/min from until the 

end of the run. e) Gradient 5 - 23.9 min gradient (0 min – 10% MPB, 3 min – 34% MPB, 9 min – 38% MPB, 12.8 min – 55% MPB, 

12.9 min – 55% MPB, 15.9 min – 75% MPB, 17.9 min – 93% MPB, 19.9 min – 98% MPB, 21.4 min – 98% MPB, 22.9 – 10% 

MPB); 4 min equilibration (10% MPB); with flow rate starting at 50 µL/min until 12.8 min, reducing it to 35 µL/min from until the 

end of the run. 
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Figure D.8. Base Peak Chromatogram (BPC) for Serum samples used for the evaluation gradients 6 to 10 of the 1 mm ID UHPLC 

gradient optimization using MPA - 10mM ammonium formate in 40:40:20 MeOH/ACN/H2O and MPB - 10mM ammonium formate 

in 95:5 IPA/H2O and 55 ºC;  a) Gradient 6 – 25.1 min gradient  (0 min – 15% MPB, 1 min – 15% MPB, 2.5 min – 34% MPB, 4.5 

min – 36% MPB, 8.5 min – 38% MPB, 13.5 min – 41% MPB, 13.6 min – 41% MPB, 15 min – 75% MPB, 20.6 min – 93% MPB, 

22.6 min – 98% MPB, 24.1 min – 98% MPB, 25.1 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting at 

100 µL/min until 2.5 min, reducing it to 50 µL/min from 2.5 to 13.6 min, and further reducing it to 35 µL/min until the end of the 

run; b) Gradient 7 – 25.6 min gradient (0 min – 15% MPB, 1 min – 15% MPB, 2.5 min – 34% MPB, 6.3 min – 37% MPB, 9 min – 

39% MPB, 14 min – 60% MPB, 14.1 min – 60% MPB, 17.1 min – 75% MPB, 21.1 min – 93% MPB,  23.1 min – 98% MPB, 24.6 

min – 98% MPB, 25.6 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting at 100 µL/min until 1 min, 
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reducing it to 50 µL/min from 1 to 14 minutes and further reducing it to 35 µL/min until the end of the run. c) Gradient 8 – 19.9 

min gradient (0 min – 15% MPB, 0.5 min – 15% MPB, 1.5 min – 34% MPB, 5.7 min – 39% MPB, 10.3 min – 55% MPB, 10.4 min 

– 55% MPB, 12.4 min – 75% MPB, 15.4 min – 93% MPB, 17.4  min – 98% MPB, 18.9 min – 98% MPB, 19.9 min – 15% MPB); 

4 min equilibration (15% MPB); with flow rate starting at 100 µL/min until 0.5 min, reducing it to 50 µL/min at 0.5 min until 10.3 

min, and further reducing it to 35 µL/min until the end of the run. d) Gradient 9 – 18.9 min gradient (0 min – 15% MPB, 2.5 min – 

31% MPB, 6.9 min – 37% MPB, 9.4 min – 55% MPB, 9.5 min – 55% MPB, 11.4 min – 75% MPB, 13.9 min – 93% MPB, 15.9 

min – 98% MPB, 17.4 min – 98% MPB, 18.9 – 10% MPB); 4 min equilibration (10% MPB); with flow rate starting at 50 µL/min 

until 9.4 min, reducing it to 35 µL/min from 9.4 to 9.5 min and maintaining it until the end of the run. e) Gradient 10 - 23.9 min 

gradient (0 min – 15% MPB, 0.5 min – 15% MPB, 1.5 min – 34% MPB, 7.3 min – 37% MPB, 10.1 min – 55% MPB, 10.2 min – 

55% MPB, 12.5 min – 75% MPB, 14.5 min – 93% MPB, 16 min – 98% MPB, 19 min – 98% MPB, 20 – 15% MPB); 4 min 

equilibration (15% MPB); with flow rate starting at 50 µL/min until 12.8 min, reducing it to 35 µL/min from until the end of the 

run. 

 

 

 



Appendix D 

 

315 

 

 

Figure D.9. Base Peak Chromatogram (BPC) for Serum samples used for the evaluation gradients 11 to 15 of the 1 mm ID UHPLC 

gradient optimization using MPA - 10mM ammonium formate in 40:40:20 MeOH/ACN/H2O and MPB - 10mM ammonium formate 

in 95:5 IPA/H2O and 55 ºC;  a) Gradient 11 – 21.6 min gradient  (0 min – 15% MPB, 2.5 min – 31% MPB, 6.4 min – 37% MPB, 

9.4 min – 55% MPB, 10.8 min – 65% MPB, 15 min – 75% MPB, 16.9 min – 93% MPB, 18.1 min – 98% MPB, 20.6 min – 98% 

MPB, 21.6 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting at 50 µL/min until 10.8 min, reducing it to 

35 µL/min until the end of the run; b) Gradient 12 –  21 min gradient  (0 min – 15% MPB, 2.5 min – 31% MPB, 6.4 min – 37% 

MPB, 9.3 min – 53% MPB, 9.4 min – 53% MPB, 10.8 min – 65% MPB, 14.8 min – 75% MPB, 16.4 min – 93% MPB, 17.5 min – 

98% MPB, 20 min – 98% MPB, 21 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting at 50 µL/min until 

9.3 min, reducing it to 35 µL/min from 9.3 to 9.4 min and maintaining it until the end of the run; c) Gradient 13 – 19.9 min gradient 
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(0 min – 15% MPB, 0.5 min – 15% MPB, 1.5 min – 34% MPB, 5.7 min – 39% MPB, 10.3 min – 55% MPB, 10.3 min – 55% MPB, 

10.4 min – 55% MPB, 12.4 min – 75% MPB, 15.4 min – 93% MPB, 17.4  min – 98% MPB, 18.9 min – 98% MPB, 19.9 min – 15% 

MPB); 4 min equilibration (15% MPB); with flow rate starting at 100 µL/min until 1.5 min, reducing it to 50 µL/min from 1.5 to 

10.3 min and further reducing it to 35 µL/min from 10.4 to 10.4 min and maintaining it until the end of the run; d) Gradient 14 – 

23.5 min gradient (0 min – 15% MPB, 2.5 min – 31% MPB, 6.4 min – 37% MPB, 9.3 min – 55% MPB, 9.4 min – 55% MPB, 11.3 

min – 65% MPB, 14.3 min – 75% MPB, 17.2 min – 93% MPB, 19.5 min – 98% MPB, 22.5 min – 98% MPB, 23.5 – 15% MPB); 

4 min equilibration (15% MPB); with flow rate starting at 50 µL/min until 9.3 min, reducing it to 35 µL/min from 9.3 to 9.4 min 

and maintaining it until the end of the run. e) Gradient 15 – 22.5 min gradient (0 min – 15% MPB, 2.5 min – 31% MPB, 6.4 min – 

37% MPB, 9.3 min – 55% MPB, 9.4 min – 55% MPB, 11.1 min – 65% MPB, 14.8 min – 75% MPB, 17.1 min – 93% MPB, 19 min 

– 98% MPB, 21.5 min – 98% MPB, 22.5 min – 15% MPB); 4 min equilibration (15% MPB); with flow rate starting at 50 µL/min 

until 9.3 min, reducing it to 35 µL/min from 9.3 to 9.4 min and maintaining it until the end of the run. 
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Figure D.10. Pump pressure during the gradient elution and optimization for a) Gradient 1; b) Gradient 12  
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Figure D.11. Base Peak Chromatogram (BPC) for human serum samples used to evaluate sample dilution and injection volumes 

for positive ionization. A) Human serum samples diluted 8-fold and injected 4 µL; b) Human serum samples diluted 6-fold and 

injected 1 µL; c) Human serum samples diluted 4-fold and injected 1 µL; d) Human serum samples diluted 2-fold and injected 1 

µL. 
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Figure D.12. Base Peak Chromatogram (BPC) for human serum samples used to evaluate sample dilution and injection volumes 

for negative ionization. A) Human serum samples diluted 8-fold and injected 10 µL; b) Human serum samples diluted 6-fold and 

injected 2 µL; c) Human serum samples diluted 4-fold and injected 2 µL; d) Human serum samples diluted 2-fold and injected 2 

µL. 
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Figure D.13. Base Peak Chromatogram (BPC) for LipidRep Basic Standard mix for serum samples used to evaluate the resuspension 

solvent ratios. A) LipidRep IS in 3:2 MPA/MPB; b) LipidRep IS in 1:1 MPA/MPB; c) LipidRep IS in 2:3 MPA/MPB. 
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Figure D.14. Base Peak Chromatogram (BPC) for LipidRep Basic Standard mix for serum samples used to evaluate the ion source 

voltage for negative ionization. A) 3000 V; b) 3500 V; c) 4000 V; d) 4500 V. 
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Figure D.15. Comparison between the number of MS/MS annotated features (Tier 1, MS/MS score > 500, and Tier 2, 100 < MS/MS 

score < 500, combined) for each UHPLC method. 
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Figure D.16. Venn diagram displaying unique and shared MS/MS annotated lipid species in 1 mm ID and 2.1 mm ID UHPLC 

methods. The central intersection represents lipids annotated by both methods, and the outer sections denote the number of unique 

annotations made by each one. 
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Appendix E 

Appendix E: Supplementary Figures for Chapter VI 

 

Figure E.1. Mass errors for the LipidRep Standard Mix for Tissue/Cells used in this study.  a) Mass errors for A549 cell samples in 

positive ionization; b) Mass errors for A549 cell samples in negative ionization. 
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Figure E.2. Number MS/MS lipid annotation distribution across all subclasses for A549 cell samples. 
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Figure E.3. PLS-DA VIP Scores for A549 cell samples: a) Control and cisplatin-treated samples; b) Control and rapamycin-treated 

samples; c) Control and combination treatment of rapamycin and cisplatin samples. 
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Figure E.4. A549 cell samples volcano plots a) Volcano plots for Control vs. cisplatin IC25 samples; b) Volcano plots for Control 

vs. cisplatin IC50 samples; c) Volcano plots for Control vs. cisplatin IC75 samples; d) Volcano plots for Control vs. rapamycin IC25 

samples; e) Volcano plots for Control vs. rapamycin IC50 samples; f) Volcano plots for Control vs. rapamycin IC75 samples; g) 

Volcano plots for Control vs. cisplatin and rapamycin combined IC25 samples; h) Volcano plots for vs. cisplatin and rapamycin 

combined IC50 samples; i) Volcano plots for vs. cisplatin and rapamycin combined IC75 samples. 


