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Abstract

This thesis aims to provide a method to include the effect of the gravitational fields of

binary systems when simulating them with one-dimensional stellar evolution codes.

We also apply this method to simulate the evolution of binary systems until the donor

fills its Roche Lobe.

The first part of this thesis is focused on describing the numerical code that was

created to obtain several quantities related to binary systems. We then introduce a

method that makes use of some of these obtained quantities to include the effects of

a binary system’s effective acceleration if one is evolving the stars a one-dimensional

scheme. We provide a code that could apply this method in one-dimensional stellar

evolution codes.

The latter part of the thesis is dedicated to utilizing this method to simulate binary

systems up to the onset of the Roche lobe overflow. At this stage, this deviation

should be most pronounced. We compare the evolutionary track produced by our

method with what the standard treatment predicts. We find that the extent to which

the donor stars differ at the Roche lobe overflow deviated between the techniques

is sensitive to the stars’ masses and the system’s initial orbital separation. We also

report an exceptional case where the final points could differ exceedingly. We finally

simulate the possible progenitor of the V1309 Sco binary system and discuss the

outcomes.
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Preface

This thesis is an original work by Ali Pourmand in collaboration with professor Natalia

Ivanova at the University of Alberta.

Chapter 2 contains text that has been accepted by ApJ for publication as “Prop-

erties of binary systems in a one-dimensional approximation”, Pourmand, A., and

Ivanova, N. on May 7th, 2023. In this paper, I construct a method that allows one

to simulate binary systems in a one-dimensional scheme. This work involved writing

a numerical code that carries out simulations to create databases, including prop-

erties of binary systems. After verifying the accuracy of these obtained properties,

another code, including the method to use these databases to simulate the effective

acceleration of binary systems, was introduced, which is available for public use in

https://github.com/AliPourmand/1D binary star properties. The creation of the

codes, plots, databases, and the derivation of the analytical terms resulted from my

collaboration with N. Ivanova, who led the project.

Chapter 3 is devoted to using the code and databases created in Chapter 2 to

simulate binary systems up to the Roche lobe overflow and discussing the outcomes.

The simulations carried out and plots created in this chapter are my original work.

Chapters 1 and 4, which are an introduction to the topic, and the findings of this

thesis, respectively, are my original writing.
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To Eddington and Chandrasekhar, the two who wed stellar evolution to fundamental

physics and beautiful mathematics
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Chapter 1

Introduction

Binary stars are stellar systems consisting of two stars that are gravitationally bound

together, and thus orbit around each other. Binary systems aren’t rare to be found.

For example, recent findings have shown that about 70% of massive stars will not only

have a companion star but also their evolution will be affected by the companion’s

presence [1]. Even for solar-like stars, studies have shown that in catalogs such as

Hipparcos, about 56%± 2% of the data are single stars, with the rest having one or

more companions [2]. Studying binary stars comprises a distinct and active area in

astronomy.

What has made studying these systems more interesting during the past years is

that binary stars provide a major channel for the formation of exotic astronomical

phenomena. Such phenomena include merger events of neutron stars due to their

orbital decay due to gravitational wave radiation [3]. In the dawn of gravitational

wave detectors such as The Laser Interferometer Gravitational-Wave (LIGO) and

The Laser Interferometer Space Antenna (LISA), theoretical astrophysics is aiding

the observations by answering fundamental questions such as the following one: what

is the frequency of gravitational waves events we expect to detect from different

astrophysical sources? Two examples in literature that have carried out such studies

are [4], who estimated the rates of compact object merger events possibly observable

by LIGO, and [5], who discussed the prospects of detecting gravitational waves from

1



the Common Envelope (CE) phase.

Answering this question relies on the ability to accurately predict the fate of the

evolution of stars in binary systems, and has been carried out by studies such as [6]

in the past. However, the uncertainties of the outcome of certain evolutionary phases

in binary stellar evolution, most notably the common envelope (CE) phase, have im-

peded studies such as the one mentioned for accounting for the contribution of this

phase with proper theoretical backing. The natural prerequisite for understanding

binary stellar evolution is the knowledge of how single stars evolve. In the follow-

ing, we will briefly describe key concepts in stellar structure and evolution of single

stars before moving on to the several specific issues that the binary stellar evolution

introduces.

1.1 Evolution of single stars

The evolution of single stars is a well-developed field. What is helpful is that the

life of a single star mainly depends on only two parameters, the initial mass and

chemical composition (rotation could influence the evolution to some minor extent as

well [7]). One of the best tools used to depict stars’ evolution is to plot their effective

temperature Teff , and surface luminosity, L, at each step of their evolution. Such a plot

is known as the Hertzprung-Russell (HR) diagram. The HR diagram depicting the

evolution of several stars with different initial masses is provided in Figure 1.1. The

dashed line is known as the Main-Sequence (MS). On the MS, stars live while using

Hydrogen nuclear burning as the energy source. The MS phase of stellar evolution

is the most long-lasting phase of stellar evolution [8]. Stars of different masses begin

their MS lives on the HR diagram at the different locations at the MS. The tracks

on the HR diagram that originate at the MS correspond to the evolution of the stars

after the MS. Please note that the lengths of segments of these lines do not indicate

the time spent during corresponding evolutionary stages.

Stars remain in hydrostatic equilibrium (HE) for most of their evolutionary time,

2
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Figure 1.1: HR diagram for single stars. Solid lines show the evolutionary tracks of
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lines indicate the lines of constant radii, with their corresponding value denoted. The
tracks have been obtained using MESA [9], [10], [11], [12],[13], [14], with a sample inlist
used to obtain them provided in Appendix A
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meaning that usually gravity and pressure balance each other. The concept of HE is

quantified inside single stars with the following equation:

dP

dr
= −Gmρ

r2
, (1.1)

where P is pressure, r is the radius of the zone, m is the mass of the star up to the

radius r, ρ is the density of that zone, and G is the gravitational constant.

The following sections will explain two important concepts that will be useful in

our future studies.

1.1.1 Timescales in Stellar Evolution

A helpful set of terminology is commonly used among astrophysicists to evaluate the

time it takes for notable changes to happen during the evolutionary stages. The three

main timescales are the following:

1. The Nuclear Timescale, τnuc.

2. Thermal Timescale, also known as Kelvin-Helmholtz (KH) Timescale, τKH.

3. Dynamical Timescale, τdyn.

For stars, almost always the following inequalities are valid (apart for exceptional

stages such as supernovae explosions)

τnuc >> τKH >> τdyn. (1.2)

1.1.2 Energy Transfer Mechanisms

The energy created in the star’s core eventually gets transferred to the star’s surface,

resulting in its apparent luminosity. The transfer of energy takes place using 3 main

processes, which are:

1. Convection

4



2. Radiation

3. Conduction (only important in regions of stars with degenerate matter [8]. Since

in normal stellar material it doesn’t play a major role, it will hereafter be

neglected in our study.)

The mechanism that dominates the energy transfer inside a star may vary from

region to region. Moreover, the location, both in mass and in radius, for each energy

transfer mechanism changes throughout the star’s evolution. For example, a star with

5M⊙ initially has a convective core and radiative envelope on its MS. When the star

enters the giant phase, it has a radiative core and convective envelope.

The energy transfer mechanisms are often used to interpret which is the core and

what is the envelope. The standard tool to differentiate between adiabatic convec-

tive regions and radiative regions is the Schwarzschild criterion. According to the

Schwarzschild criterion, the condition necessary for a region to undergo radiative

energy transportation rather than convective energy transport is:

∇r < ∇a . (1.3)

Here ∇a is the temperature variation a gas element undergoes during an adiabatic

change in pressure, also known as the adiabatic exponent:

∇a =
d log T

d logP

⃓

⃓

⃓

⃓

ad

(1.4)

∇r is the radiative temperature gradient. It shows how the temperature change

with a pressure change if all the energy transportation is radiative. It is defined as

∇r =
d log T

d logP

⃓

⃓

⃓

⃓

rad

(1.5)
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1.2 Stellar Evolution Codes

Non-rotating stars are spherically symmetric. Stellar properties such as pressure,

temperature, density, etc., are only functions of the distance to the center. One could

use a simplified set of stellar structure equations to model the evolution of stars for

the periods where HE is in place. There has existed for a long time a plethora of

stellar evolution codes to simulate the evolutionary tracks of stars [15], [16], [17]. The

stellar evolution codes that work under the assumptions of spherical symmetry are

usually referred to as one-dimensional (1D) stellar evolution codes.

One of the most popular 1D stellar evolution codes that are used nowadays is the

Module for Experiments in Stellar Astrophysics, MESA, package [9], [10], [11], [12],[13],

[14]. MESA has several qualities that have increased popularity in the community

during the past few years: it is free and open-source and includes a vast library

of physics one could choose to use. Most importantly, one can include additional

equations, modifying the adopted physics model. Due to the latter, MESA is the code

we will use throughout this work.

1.3 Binary Systems

The fate of stars in binary systems couldn’t be classified as straightforwardly as

could be done for single stars. That is due to several complexities which require

some explanation. Along with the mass, rotation, chemical composition, and age of

the two stars, the influencing parameters affecting the evolution of stars in a binary

system are orbital separation and eccentricity. The mass ratio q of the two stars in

the system is another important quantity in determining the evolutionary outcome.

The mass ratio is defined as

q =
M1

M2

, (1.6)
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where M1 and M2 are the two stars’ masses. In the following, we will refer to M1 as

the donor star, and M2 as the companion star.

The first aspect that makes binary stars’ evolution different from single stars is

that they no longer experience only the spherically symmetric gravitational force.

The companion star’s gravitational pull, along with the centrifugal forces due to the

orbital motion of the stars around their center of mass, is also felt by both the donor

star and the companion star. The effective potential Ψ of a point with coordinates

(X, Y, Z) in the vicinity of a binary system. It is given with the following equation

(in the corotating frame, and assuming the orbital plane is the xy-plane):

Ψ(X, Y, Z) = −GM1

|R1|
− GM2

|R2|

−1

2
Ω2

[︃

(X − a
M2

M1 +M2

)2 + Y 2

]︃

. (1.7)

HereM1 andM2 are the donor and companion star masses, a is the orbital separation,

Ω =
√︁

G(M1 +M2)/a3 is the binary system’s orbital angular velocity, and R1 and R2

are the distances of each element to the donor star’s and companion star’s centers:

|R1| =
√
X2 + Y 2 + Z2 ,

|R2| =
√︁

(X − a)2 + Y 2 + Z2 . (1.8)

The effective acceleration (we will be using this term instead of gravitational accel-

eration for binary stars since it doesn’t only constitute the effects of gravity anymore)

geff could be obtained in the following way:

geff = −∇Ψ. (1.9)

One useful way to rewrite these two variables is if we make them dimensionless.

To do so, we use the scaling factor used in [18] to define a dimensionless potential ξ,

and dimensionless effective acceleration η:
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Ψ = −G(M1 +M2)

2a
ξ

geff = −G(M1 +M2)

2a2
η. (1.10)

Figures 1.2 and 1.3 depict contours for ξ and η in the xy-plane and xz-plane,

respectively, for stars with several different mass ratios. As can be seen in the figures,

the closer to the donor star’s center, the closer the effective potential and acceleration

to spherical symmetry. The further from the center, the more contours deviate from

the spherical shape and turn into a teardrop shape once they reach the first Lagrange

Point L1. Lagrange Points are points in which the effective acceleration felt is zero.

They are denoted by Li, with i being the index starting from the highest potential.

From the shown shape of effective acceleration, it is reasonable to assume that stars

whose size are much smaller than the size of the Roche Lobe (the equipotential surface

passing L1), don’t feel an effective acceleration much different from a single star.

However, this deviation may become notable for stars close to filling their Roche

Lobes (the situation we are mainly interested in; see 1.4). Roche Lobe Overflow

(RLOF) is the term used to describe the phenomena when a star in a binary system

has filled its Roche Lobe. Eggleton found a numerical fit relating the size of the Roche

Lobe to the mass ratio and orbital separation by computing the volume of the Roche

Lobe VRL for different mass ratios and equated this volume with the volume of the

sphere to obtain the “volume-equivalent radius” of the Roche Lobe, also known as

the Eggleton radius [19], which we will denote with RL1.

The second issue that makes the evolution of binary stars different from single stars

is the possibility of mass transfer (MT) phenomena between the two stars. It is well

known that stars expand notably in some stages of their evolution. Suppose the star

expanded enough to exceed its Roche Lobe in size1. In that case, the outer layers

1this threshold is checked in 1D stellar codes by comparing the radius of the star and the Eggleton
radius
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Figure 1.2: Color plots depicting the dimensionless potential ξ in a binary corotating
frame for two mass ratios: q = 0.5 and q = 4, from top to bottom. Plots show
2D slices in the xy−plane (left panels) and xz−plane (right panels). The color bar
represents the chosen range of values of the scaled potential ξ at each point. The
white areas are where ξ is outside the scope of interest for our work. The coordinates
are in units of the orbital separation, and the Lagrange points have been denoted by
Li.
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Figure 1.3: Plots of the contours of the dimensionless effective acceleration η, in a
binary corotating frame, for two mass ratios: q = 0.5 and 4, from top to bottom.
Shown are slices in the xy−plane (left panels) and xz−plane(right panels). The
coordinates are in units of the binary separation, and the Lagrange points have been
labeled by Li. As can be seen, near the center of the two stars, the gradient of
change in the values of η is much steeper, and the shape of the contours is much more
spherically symmetric.
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Figure 1.4: Shown are the evolutionary tracks of the donor star,M1 = 3M⊙, evolved in
a binary system with the companion star ifM1 = 3M⊙. The initial orbital separations
in the case shown with the red solid line is a = 11.36R⊙, and the donor started the
MT. In the case shown with the black dashed line, the initial orbital separation is too
large to initiate the MT during the shown evolution. The tracks were obtained using
the binary module available in MESA [11].

of the donor star that are close to the companion star are no longer bounded by the

gravitational pull of the donor star and will start to be attracted by the companion

star. Relocation of the donor’s mass to the companion, or the mass transfer (MT),

will change the mass ratio of the system. In some cases, MT could drastically change

the evolutionary tracks of binary stars from single stars (as an example, see figure

1.4).

There are other effects that play a role in binary stellar evolution that are absent

in the evolution of single stars: magnetic braking, gravitational waves, and, most

important for this thesis, tidal evolution. As mentioned previously, although the main

factor determining the evolution of stars is their initial mass, the rotational velocity of
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stars could also affect the evolutionary tracks to some extent [20]. In binary systems,

the angular frequency of the two stars is influenced by tidal interactions between

the two stars. The physical principle behind tidal effects is that stars are not point

objects, which results in a torque being exerted upon each star. The exertion of this

torque results in the evolution of the angular rotation (for more information on the

equations that govern tidal evolution, see [21], and [22]).

Tidal effects and other processes specific to binary systems have been incorporated

in MESA [11]. However, MESA’s binary package does have some shortcomings. For

example, the effective acceleration used for stars in a binary system is the same as if

each star was single.

1.4 Motivation

As described previously, once a star in a binary system overfills its Roche Lobe, the

MT will initiate. The MT could be stable or unstable, depending on the circum-

stances. If the mass transfer is unstable and occurs on the order of τdyn, the binary

system may enter an evolutionary phase known as the CE phase [23]. The phase got

this name because the companion star finds itself orbiting inside the expanding enve-

lope of the donor star – they share a “CE”. Once the companion star starts to orbit

inside the envelope, the orbital energy is transferred from the orbit to the envelope.

This results in even faster orbital decay. The CE phase could result in either the

merger of the two stars or the ejection of the envelope accompanied by the formation

of a compact binary. For a more comprehensive picture of the possible endings of

binary stellar evolution, refer to [24]. Figure 1.5 shows a schematic illustration of the

two mentioned outcomes.

We are interested in constructing a precise picture of binary stars at the initial

stage of their CE phase to cast more light upon the fate of binary stars. To do so,

we can choose one of the tools used in theoretical astrophysics, 1D stellar evolution

codes, or 3D hydrodynamical codes.
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?

Compact BinaryUnstable Mass Transfer 

Merger Event

Figure 1.5: Schematic depicting two of the possible outcomes of the CE phase. The
upper right shape shows when envelope ejection is successful, and a compact binary
is formed. The lower right depicts a merger scenario.

The time it takes for binary stars to reach the beginning of the CE phase is often

similar to its nuclear timescales τnuc. Since we know that τnuc ≫ τdyn, 3D hydrody-

namical codes are impractical to use for this purpose, as they are only efficient for

events that take place on the order of dynamical timescales. Furthermore, they don’t

handle aspects of stellar physics such as convective and radiative energy transport,

or nuclear reactions.

In binary systems, HE is preserved at least until CE initiates. That allows us

to use 1D stellar evolution codes for the evolution prior to the CE. However, the

gravitational effect of the companion star and the centrifugal forces also have to come

into the picture. Moreover, when one of the stars gets comparable in size to the Roche

Lobe, it gets notably deformed from spherical symmetry. Hence, 1D stellar evolution

codes have to be modified.
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1.5 Observational Data

Relating CE theory to observations isn’t straightforward, mainly due to its duration’s

short timescale (∼ τdyn). It doesn’t mean, of course, that we can not relate CE with

observations. Historically speaking, Paczynski used a CE phase as the mechanism to

explain the existence of compact (short-period) binaries [25]. Compact binaries are

two evolved stars orbiting each other at a short distance. This orbital separation is

smaller than the radius these evolved stars would have had if their evolution followed

what single stellar evolution predicts. The puzzle as to how such observed systems

could be formed was solved with the proposal of the CE theory. Therefore, from its

inception, this theory was not based on direct observations of a CE phase but on the

observations of its consequences.

In the following section, we will describe a binary system known to have gone

through a merger event. This system makes a good specimen to investigate how good

of an assumption it is to ignore the effects of the binary gravitational field.

1.5.1 V1309 Scorpii

V1309 Scorpii is an exceptional case in the history of binary stellar evolution. It is the

first direct observation of a binary system that ended in merging the two stars into

a single object [26]. A relatively sudden outburst was recorded from a region of the

sky at the time of this merger event. Before this, several years of observational data

were available for the region of the sky in which this outburst was observed. Based

on those observations, it was indicated that prior to this outburst, a binary system

with an orbital period of about 1.4 days existed there [26]. It was also established

that the system’s orbital period had been decaying over time prior to the outburst.

These findings support the theory that this outburst resulted from a merger event of

two stars in a binary system.

Based on the works of [27], who calculated a grid of initial conditions to find a match
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to the observed properties of the progenitors, it could be assumed that the progenitor

binary had a mass ratio of q ≈ 10 and a donor star mass of about M = 1.52M⊙.

Studies such as [28] have attempted to simulate the outcome of the merger event

of this system. However, these studies focus on simulating the events following the

onset of the CE phase. Before our study, such studies usually used stars evolved using

a single gravitational field up to the Roche Lobe size. It is unclear how good of an

assumption this is.

1.6 Thesis Objectives

Our study’s primary goal is to obtain properties of binary systems at the onset of

the CE phase. To do so, we must develop a physically valid method to evolve binary

systems. The main issue with creating such a method is that the effective acceleration

that binary stars feel deviates from a single star’s gravitational field, especially the

stars that are close to filling their Roche Lobe. Therefore, we cannot use MESA’s stan-

dard binary package, as it neglects the effect of centrifugal forces and the companion

star in the binary system’s effective acceleration.

Our study consists of two parts. First, we develop the method that takes into

account the effects of the companion star and the centrifugal forces while evolving

stars in binary systems. Second, we use our novel method to model stellar evolution

up to the start of the MT, to see how much this previously neglected physics could

change the expected outcomes.

1.7 Thesis Outline

Our thesis is organized in the following way: in § 2 we describe how to obtain properly

3D reduced binary effective acceleration for 1D stellar codes.

§ 3 is devoted to applying our method developed in § 2. We discuss how stellar

evolution changes using our 3D-reduced binary approximation if compared with the
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existing approaches. The discussion uses a grid of stellar models and then goes into

detail for the two specific observed systems.

In § 4 is the conclusion and the discussion of the possible future work.
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Chapter 2

Properties of Binary Systems in a

One-Dimensional Approximation

ALI POURMAND1 AND NATALIA IVANOVA1

1Department of Physics, University of Alberta, Edmonton, T6G 2E7, Alberta,

Canada

ABSTRACT

Evolutionary calculations for stars in close binary systems are in high demand to

obtain better constraints on gravitational wave source progenitors, understand tran-

sient events from stellar interactions, and more. Modern one-dimensional stellar codes

make use of the Roche lobe radius RL concept in order to treat stars in binary systems.

If the stellar companion is approaching its RL, mass transfer treatment is initiated.

However, the effective acceleration also affects the evolution of a star in a close binary

system. This is different from the gravity inside a single star, whether that single star

is rotating or not. Here, we present numerically obtained tables of properties of stars

in a binary system as a function of the effective potential: volume-equivalent radii of

the equipotential surfaces, effective accelerations and inverse effective accelerations

averaged over the same equipotential surfaces and the properties of the L1 plane

cross-sections. The tables are obtained for binaries where the ratios of the primary

star mass to the companion star mass are from 10−6 to 105 and include equipotential

surfaces up to the star’s outer Lagrangian point. We describe the numerical methods
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used to obtain these quantities and report how we verified the numerical results. We

also describe and verify the method to obtain the effective acceleration for non-point

mass distributions. We supply a sample code showing how to use our tables to get

the average effective accelerations in one-dimensional stellar codes.

Keywords : Multiple star evolution — Binary stars — Roche Lobe — Lagrange

points

2.1 Introduction

Binary stars are stellar systems consisting of two stars that are gravitationally bound

together and orbiting around each other. If the radius of one of the stars during

the course of its evolution becomes comparable to the orbital separation, the binary

is termed a close binary. In a close binary such phenomena as tidal spin-up, stable

mass transfer (MT), or unstable MT (common envelope evolution) can occur. The

evolution of each star in a binary system can be significantly altered from the evolution

of a similar but evolved-in-isolation star. Substantial attention is now given in modern

one-dimensional (1D) stellar codes to treat the evolution of stars on their way toward

the start of MT. The structure of the donor star, specifically of its envelope, at the

start of MT – when the volume of the donor star is approaching the volume of its

Roche lobe – plays a crucial role in determining whether the MT proceeds stably or

unstably.

Upon approaching contact, each star in a binary system is affected strongly by the

gravitational field of its companion and by the binary’s orbital motion. However, the

primary effect that is considered by 1D stellar evolutionary codes is the size of the

Roche lobe of the donor star. Recently, it has become appreciated that the donor star

may remain in a state of substantial Roche lobe overflow (RLOF)1 for an evolutionary-

noticeable time while keeping MT in a stable regime, appearing, for example, as

1As substantial RLOF, we mean an overflow by 10-20 percent of the donor Roche lobe radius,
where the donor is approaching the effective potential surface passing through by the donor’s outer
Lagrangian point.
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Ultra-Luminous X-ray sources [29]. Furthermore, the binding energy of the donor’s

envelope at the onset of CE, following the MT while the donor significantly overfills

its Roche lobe, plays an essential role in the initial conditions of three-dimensional

(3D) simulations of common envelope events [24]. When a star is close to its Roche

lobe radius, or overfills it, the outer parts of the stellar envelope are strongly affected

by the effective acceleration in a binary system, and this effective acceleration is

different from the one that a single star experiences. While the knowledge of what

is happening to the star in this regime has been around for about 60 years[30], this

physics has not yet been included in detail in 1D stellar calculations.

The main goal of this paper is to provide the community with the database we

have constructed. That database contains the various properties of binary stellar

systems and the code that allows anyone to easily use binary physics in their future

binary or MT numerical studies using 1D codes. We review in § 2 the physics that

becomes relevant when simulating the gravitational field of a binary star. In § 3

we discuss the assumptions made to approximate binary stars into a 1D scheme,

and the numerical methods employed to obtain volume-equivalent radii and average

gravitational accelerations for our tables; we also obtain some analytical expressions

which determine how this gravitational acceleration behaves close to the center of the

donor star, and allow verification of the numerical method in this regime. In § 4 we

verify our results by comparing them to various published results and present self-

convergence checks. In § 5 we discuss the effects of a non-point mass on the binary

potentials, and how to use our tables in the case of non-point masses. This Paper I is

devoted to the numerical methods only. The application of the tables that we obtain

for binary evolution, and the scientific outcomes, are described in the follow-up Paper

II.
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2.2 Binary in a corotating frame

Here we review the theory of binary’s effective potential and introduce the specific

quantities we obtain numerically and present in the database.

2.2.1 Effective binary potential.

We consider a coordinate system in corotation with the binary, with the origin at the

donor star’s center. The xy plane is the plane of the orbit, and the co-rotating plane

is rotating around the axis which passes through the center of mass of the binary

system. The effective potential Ψ is then

Ψ(X, Y, Z) = −GM1

|R1|
− GM2

|R2|

−1

2
Ω2

[︃

(X − a
M2

M1 +M2

)2 + Y 2

]︃

, (2.1)

where M1 and M2 are the donor and companion star masses, a is the orbital separa-

tion, Ω =
√︁

G(M1 +M2)/a3 is the binary system’s orbital angular velocity, and R1

and R2 are the distances of each element to the donor star’s and companion star’s

centers,

|R1| =
√
X2 + Y 2 + Z2 ,

|R2| =
√︁

(X − a)2 + Y 2 + Z2 . (2.2)

We construct a unitless (or scaled) potential ξ following the convention of [18],

Ψ ≡ −G(M1 +M2)

2a
ξ . (2.3)

We introduce the mass ratio q

q ≡ M1

M2

, (2.4)

and unitless distances
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Figure 2.1: Two-dimensional slices showing the scaled potential ξ in a binary coro-
tating frame for three mass ratios: q = 0.2, 2, and 5, from top to bottom. Shown
are slices in the xy−plane (left panels) and xz−plane (right panels). The color bar
represents the chosen range of the scaled potential ξ at each point. We plot a narrow
range of equipotentials for a better resolution in the region of interest; the white
areas are where ξ is outside the chosen ranges. The coordinates are in units of the
orbital separation, and the Lagrange points have been denoted by Li. The black line
passing through L1 is the L1-plane (the plane through the first Lagrange point and
perpendicular to the line attaching the two stars). The equipotential surfaces passing
through L1, L2, and L3 are shown with black lines.

21



x ≡ X

a
, y ≡ Y

a
, z ≡ Z

a
, |r1| ≡

|R1|
a
, |r2| ≡

|R2|
a

. (2.5)

Then ξ can be written as

ξ(x, y, z) =
q

(1 + q)

2

|r1|
+

1

1 + q

2

|r2|

+

[︃

(x− 1

1 + q
)2 + y2

]︃

. (2.6)

Example contour plots of the unitless equipotentials for several mass ratios (two-

dimensional slices for xy plane and xz plane) are shown in Figure 2.1. In the case of a

binary considered in a corotating frame, five equilibrium points exist that correspond

to local extrema of the effective potential. The most important for studies of binary

interactions are the positions of unstable equilibrium L1, L2, and L3, located on the

line through the centers of the two large bodies (see examples shown in Figure 2.1).

In this paper, we will refer to L1 as the inner Lagrangian point and L2 and L3 as the

outer Lagrangian points. The outer Lagrangian point closest to the donor star is L2

for q < 1, and is L3 for q > 1.

2.2.2 Effective acceleration.

We are interested in finding the unitless effective acceleration η, acting in the direction

normal to the equipotential surfaces. This is the gradient of the potential, which is

perpendicular to the equipotential surface at each point,

η = −∇ξ. (2.7)

It is easiest to find this gradient of the potential by using its x, y, and z components,

ηx, ηy, and ηz, respectively,

22



ηx =
2q

1 + q

x |r1|
r41

+
2

1 + q

(x− 1) |r2|
r42

−2

[︃

x− 1

1 + q

]︃

, (2.8)

ηy =
2q

1 + q

y |r1|
r41

+
2

1 + q

y |r2|
r42

− 2y , (2.9)

ηz =
2q

1 + q

z |r1|
r41

+
2

1 + q

z |r2|
r42

. (2.10)
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Figure 2.2: ηx, ηy, and ηz shown for mass ratio q = 2. The coordinates are in units
of the orbital separation.

A plot depicting ηx, ηy, and ηz can be seen in Figure 2.2. The unitless effective

acceleration η is then given by

η =
√︂

η2x + η2y + η2z . (2.11)
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Contours for effective accelerations are shown in Figure 2.3. The effective acceleration

with physical units geff = can be then recovered as:

geff =
G(M1 +M2)

2a2
η. (2.12)

Figure 2.3: Two-dimensional slices showing the contours of the effective acceleration
η, in a binary corotating frame, for three mass ratios: q = 0.2, 2, and 5, from top to
bottom. Shown are slices in the xy−plane (left panels) and xz−plane(right panels).
The coordinates are in units of the binary separation, and the Lagrange points have
been denoted by Li.
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2.3 One-dimensional representation

As shown in Figures 2.1 and 2.3, for stars in a binary system, there is no spherical

symmetry for either effective potentials nor effective accelerations. Close to the center

of each star, a close-to-spherical symmetry can be observed, but the further away from

the center of each star one goes, the more significant the influence of its companion

and of the orbital motion becomes. The closer one gets to the L1 point, the more the

shape of the potential gets close to a teardrop shape. Outside of the L1 point, the

equipotentials take on a shape similar to a peanut. The effective acceleration, on the

other hand, entirely disappears at L1.

Our goal here is to develop a method to approximate 3D binary stars’ gravitational

fields for 1D considerations. Our approach is based on the concept of equipotential

shells (3D shells that enclose the center of the stars). We will only focus on the donor

star for the remainder of the paper. A 3D depiction of a sample equipotential shell

outside of the Roche lobe and limited by the L1-plane can be seen in Figure 2.4. The

L1-plane is the plane that is parallel to the y − z plane, and passes through the L1

point.

The key physical property of the equipotential shells is that, in the case of hydro-

static equilibrium, both isobaric surfaces and surfaces of constant density coincide

with equipotential surfaces. Therefore here we consider averaging the effective accel-

eration that affects the star over the equipotential surfaces. The effective accelera-

tions are found as a function of the volume-equivalent radii of the same equipotential

surfaces.
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Figure 2.4: A sample equipotential surface outside of the Roche lobe in a binary star
with the mass ratio q = 2, shown in blue color. The equipotential surface is limited
by the L1-plane, shown in red color. The coordinates are in units of the orbital
separation.

2.3.1 Volume-equivalent radii

Each equipotential surface encloses some volume Vequip. This volume can be associated

with a sphere of the same volume. This sphere has a so-called volume-equivalent

radius

Req =
3

√︃

3Vequip
4π

. (2.13)

The idea of the volume-equivalent radius was introduced in the past (see, for ex-

ample, [30]). The best known numerical fitting of 3D integrations for the unitless

volume-equivalent Roche-lobe radius is the famous equation of [19]
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rL1
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
. (2.14)

The physical volume-equivalent Roche lobe radius of the star RL1
then is found by

multiplying rL1
by the orbital separation a, RL1

= rL1
a.

For volume integrations, we use spherical coordinates. We define i and j as the

indices describing the directions in φ (azimuthal angle) and ϑ (polar angle) for inte-

grations, where φ ∈ [0, π] and ϑ ∈ [0, π/2]2. We divide each of these domains into nϕ

and nϑ respectively (we adopt nφ = 2nϑ). We define k to be the index describing the

potential shell with ξk. The rijk is the location of the equipotential shell ξk in each

angular direction ij, or, specifically, the distance to the origin r for the given angles

φ and ϑ. rijk is found iteratively until at least the convergence condition

⃓

⃓

⃓

⃓

ξ(rijk, φi, ϑj)− ξk
ξk

⃓

⃓

⃓

⃓

≤ 10−12 (2.15)

is satisfied. Here ξ(r, φ, ϑ) is the potential at the location (r, φ, ϑ), while ξk is the

potential for the equipotential surface for which we search.

The numerical integrator uses spherical volume elements in each angular direction

φ and ϑ, and the volume between the kth shell and (k − 1)th shell in the potential is

∆Vsph,k = r2ijk sinϑj∆rijk∆φ∆ϑ . (2.16)

∆rijk is the step in the ij direction. This is not constant for the entire potential shell

k but depends on the location of the currently sought potential ξk in ij-direction, and

the location of the previous potential, ξk−1. Using the symmetry of the equipotential

in a binary system, we perform the volume integration in the angular domain as above

and then multiply by 4.

2The values of unitless acceleration, η, and equipotentials, ξ, in a binary system have the symme-
try along z-direction with respect to the orbital plane xy, as well as along y-direction with respect
to xz-plane. Therefore, only integrations in ϕ ∈ [0, π] and ϑ ∈ [0, π/2] are needed.
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The volume integrations are limited by the outer Lagrange point’s equipotential

shell of the donor star, and the L1 plane. These limitations affect volume integrations

for shells that are located outside the L1 equipotential. The L1 plane is depicted as

a black line in the 2D slice of Figure 2.1 and as a red plane in the 3D Figure 2.4.

2.3.2 Effective accelerations

The unitless effective accelerations at each location are found using equations 2.8,

2.9, and 2.10.

The weighted averages of the effective acceleration for each equipotential shell are

obtained with the area of the triangular elements on that equipotential surface dAij
3,

Figure 2.5: A depiction of a part of the equipotential shell with triangular meshes on
it shown in 3D; for a random shell in the case of the mass ratio q = 0.5. Only a part
of the integration domain is shown, to make the triangular mesh visible.

3We compared the performance of triangular mesh area elements and spherical area elements
(as did [18]) and found that the triangle method provides faster convergence to obtain surfaces on
equipotential shells. This is especially important for the shells outside the Roche lobe, where element
areas of the surfaces of equipotentials do not resemble spherical area elements.
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Figure 2.6: The three zones of integration; this specific example is for a mass ratio
of q = 2. The zones are defined as described in equation 2.19, see § 3.3 for further
details.

ηavg =

∑︁

i

∑︁

j ηijdAij
∑︁

i

∑︁

j dAij

, (2.17)

where i and j are the indices of φ and ϑ for which the triangles are summed. Here

ηij is the unitless effective acceleration averaged over three triangles’ vertices.

Figure 2.5 shows a sample triangular mesh scheme for an equipotential shell.

2.3.3 Integration zones

The potential is very sensitive to the distance from the center. To accommodate this

sensitivity, we divide the integration zones into three regions:
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ξ1 = ξ(0, 0, 0, q) (2.18)

ξ2 = ξ(0.05xL1
, 0, 0, q)

ξ3 = ξ(xL1
, 0, 0, q)

ξ4 = ξ(xL,outer, 0, 0, q)

An example of the three integration regions can be seen in Figure 2.6.

Near the center, the true binary potential and effective acceleration η are not very

different from these in a spherically symmetric single star

ξ = ξss +∆ξ, ∆ξ =

(︃

3 + 2q

2q(1 + q)
r +

2q − 1

6q
r3
)︃

ξss ,

η = ηss +∆η, ∆η = −2

3

(1 + q)

q
r3ηss . (2.19)

Here ξss is the unitless effective binary potential in a a spherically symmetric star,

ηss is the unitless effective acceleration in a spherically symmetric star, and r is the

unitless distance to the center of the first star (distance in the units of the binary

separation). For the derivation, see derivations in Appendix §C and Equation 2.40.

The expected deviations near the center, ∆ξ and ∆η, are very small.

The expected local truncation error due to the limited resolution during numerical

integration for any quantity is of the order of 2π2/n2
ϕ times that quantity. We have

checked and verified numerically that our integrations for volume equivalent radii

and averaged effective accelerations are limited by the adopted angular resolution, as

expected for RErr. The limited numerical precision with which we can obtain solutions

near the center does not allow us to resolve this behavior correctly, for instance the

error in finding volume equivalent radii is δerr(Req) ≈ (2/3)(π2/n2
ϕ) (assuming that Req

is of the order of one). However, this error might be comparable to the radius itself

and hence leads to an even larger error in finding the effective gravity. We introduce
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as ram the unitless distance to the origin within which the analytical solutions using

Equation 2.19 have to be used, as opposed to the distances r > ram, where numerical

integrations have to be used.

We have verified that for the mass ratios in the range of [10−6, 105], at ran =

0.05xL1
, the non-sphericity effect is ∆ξ/ξss ≲ 10−4, and hence the higher terms do

not contribute substantially. This makes Equation 2.19 directly applicable. The

numerical precision to find the potential or the effective acceleration, with nφ = 4000,

is approximately 10−6. With this resolution, the numerical ”noise” due to truncation

error contributes at less than a percent of the obtained values for various quantities

for our smaller mass ratio q = 10−6, and as little as 0.01% for all mass ratios q > 1.

The numerical noise decreases with r, albeit the role of terms neglected in Equation

2.19 grows. Therefore ran = 0.05xL1
is a compromise at which we can still trust the

analytic solution but can start to trust the numerical solution for a wide range of

mass ratios.

For r < ran we therefore consider that the potential and effective acceleration

should be provided by Equation 2.19. For the intermediate zone, we start our numer-

ical integrations at r = ran.

In our runs, we use 500 shells between ξ2 and ξ3, equally spaced in distance between

0.05xL1 and xL1 and 100 shells between ξ3 and ξ4, equally spaced in the logarithm of

the potential between ξL1 and ξLouter.

2.3.4 Properties in the L1 neighborhood cross-section

We also compute several properties at the L1 plane to provide in our database. These

properties are functions of unitless equipotential shells passing through the L1 plane.

The intersections of equipotential shells with the L1 plane appear as ellipse-like curves

on the L1 plane (see Figure 2.7). The tabulated properties are as follows4:

4Note that all L1-plane properties are obtained for equipotential shells exceeding the Roche Lobe.
In the database we provide, all the columns corresponding to these properties are set to zero for all
equipotential shells within the Roche lobe.
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Figure 2.7: The intersection of several equipotential surfaces with the L1 plane for
q = 0.2. Axes are in units of the orbital separation.

• The area of the cross-section of the L1 plane and the equipotential shell passing

it, as a function ξ. The area integration uses polar coordinates with 4000 angular

resolution per quadrant

• The locations of intersections of this cross-section with the xy-plane and xz-

plane, as a function of ξ.

• The effective acceleration averaged over the intersection between the equipo-

tential and the L1− plane.

• The effective acceleration averaged over the entire area of each of these elliptical

cross-sections.
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2.4 The numerical results
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Figure 2.8: This plot shows the results of our highest resolution run for the volume
equivalent radii passing the first three Lagrange points, as a function of the mass
ratio. The horizontal axis is in the units of orbital separation. RL3 volume around
the donor star exists only for mass ratios greater than 1. Note that the outer Lagrange
point is L3 for mass ratios greater than 1, and is L2 for mass ratios less than 1.

2.4.1 Self-convergence
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Figure 2.9: Self-convergence test for the effective acceleration for mass ratios q = 2.
The vertical axis is the normalized error in effective acceleration for angular resolu-
tions m = 500, 1000, 2000, and 4000 (Equation 2.20). The horizontal axis is F , the
fill-out factor F (Equation 2.21). F > 1 means the equipotentials are outside of the
Roche lobe.

We have computed the properties of interest for 109 mass ratios in the range of

log10 q ∈ [−6, 5]. We have divided this range into three regimes based on the possible

applications it could have:

A : log10 q ∈ [−6,−2],∆(log q) = 0.25

B : log10 q ∈ (−2, 2],∆(log q) = 0.05

C : log10 q ∈ (2, 5],∆(log q) = 0.25
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The first range A is relevant to the regime of planets or stars orbiting a supermassive

black hole, range B is a typical range of mass ratios for two stars in a binary system,

and range C could be used in studies where one wants to investigate the effects of

the interactions of a star and a Jupiter-like planet, from the star’s perspective. The

list of all properties provided for each mass ratio can be found in Appendix A, Table

2.1.

We show the volume equivalent radii passing the first three Lagrange points, as a

function of the mass ratio in Figure 2.8.
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Figure 2.10: Self-convergence test for the volume-equivalent radius for mass ratio
q = 0.2. The vertical axis is the normalized error in volume equivalent radius at L1

for angular resolutionsm = 500, 1000, 2000, and 4000 (Equation 2.20). The horizontal
axis is the fill-out factor F (Equation 2.21).

We investigate at which angular resolution our numerical solver self-converges.
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Under the self-convergence test, we mean a numerical study in which the resolution

of numerical interactions is continuously increased, to see a) if the difference between

the numerical outcomes at increasing resolutions continuously decreases, without new

features appearing and b) that said difference becomes smaller than the required

numerical precision. While self-convergence is often termed as simply convergence,

it is important to remember that self-convergence does not verify that the numerical

results have converged to a correct solution, for the latter one has to do at least

verification tests5. The number of angular zones we considered is φ = 500, 1000, 2000,

and 4000 for φ in the range φ ∈ [0, π] and ϑ in ϑ ∈ [0, π/2].

For a quantity A, obtained with the angular resolution m, we define as the nor-

malized error

∆Am

A
=
Am − A4000

A4000

(2.20)

We use the highest angular resolution, nϕ = 4000, to compare the other angular

resolutions with it and see whether the deviation is decreasing with increasing angular

resolution or not.

In Figures 2.9 and 2.10 we provide typical convergences for effective acceleration

and volume equivalent radii as functions of the fill-out function F . F is a unitless

function used to compare different mass ratios’ potential distributions up to the outer

Lagrange points (which could be L2 or L3), defined as by [18]:

F =
ξL1

ξ
, for ξ ≥ ξL1

,

F = 1 +
(ξL1

− ξ)

(ξL1
− ξLouter)

, for ξ ≤ ξL1
. (2.21)

F is defined in such a way that F ∈ [0, 1] for potential shells inside and up to the

L1 equipotential surface, and F ∈ [1, 2] for shells outside of the L1 equipotential

5Validation – i.e., the measure of numerical model accuracy between model predictions and
measurements of the real world – is not possible in our case, as for most astrophysical problems.
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and inside the outer Lagrange point’s equipotential shell. Our results show that

self-convergence is obtained quickly. For all mass ratios, the absolute value of the

normalized error for effective accelerations is less than 10−4 (|∆Am/A| < 10−4) for

m = 4000 outside of the Roche lobe, and is below 5 × 10−6 within the Roche lobe.

Volume-equivalent radii and equipotential areas are obtained with the normalized

error less than 10−7. We, therefore, consider our final results presented in the database

and obtained with nφ = 4000 to be self-converged.
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Figure 2.11: Deviation of RL1
(L1 volume-equivalent radius) from [19] relation (the

blue line). Deviation of Router (the outer Lagrange equipotential volume-equivalent
radius) from the one provided by the Equation 2.22 (the orange line). The deviations
are shown as functions of mass ratio q.
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2.4.2 Verification for Volume-Equivalent Radii

We have verified our volume-equivalent radii against two numerical fits available in

the literature (i) the L1 equipotential ([19] see also Equation 2.14 in this paper), and

(ii) the outer Lagrange point’s equipotential as provided by [31],

Router

RL1

= 1 +
2.74

1 + [(1.02− ln q)/σ]2
1

7.13 + q0.386
,

and

σ =
49.4

12.2 + q−0.208
. (2.22)

In the above, RL1
is the radius of the Roche lobe found by using the approximation

of [19]. Note that here we modified Equation (3) of [31] to match our definition of q

([31] define the mass ratio as the companion star’s mass divided by the donor’s).

The results are shown in Figure 2.11. The fitting equation for RL1
of [19] has been

reported (in the paper where the equation was presented) to be accurate to 1%. The

fitting equation for Router by [31] has been reported by them to be accurate to 0.15%.

However, the equation for Router also, by definition, includes the uncertainty in RL1

from the formula of [19]. We find that we have agreement within 1% for both fitting

equations.

2.4.3 Verification for Effective Acceleration

[18] has provided coarse tables with numerically obtained average effective acceler-

ation on the equipotential as a function of the potential. We have compared our

average effective acceleration passing the L1 shell and the L2 shell (obtained with

nφ = 4000) with that of [18]. The deviations are within 10−4 for the values at the

outer Lagrangian equipotential (their F = 2), and within the last significant digit of

the values that [18] provides for L1 equipotential (their F = 1). These deviations are

consistent with our test for self-convergence.
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Figure 2.12: The deviation in effective acceleration from our tables for mass ratios
q = 0.2 (the left plane) and q = 2 (the right plane), as a function of the volume
equivalent radius. The red star denotes the equipotential passing L1. The green
curve in each figure is the analytical expression 2.40. We show the analytical solution
for the distances within 0.5 of RL1, albeit we use it only for the distances within 0.05
of xL1

, as described in the text. One can see that the analytical solution matches the
numerical solution for a large range of distances. The blue line shows the case when
the effective acceleration is average over the whole contour surrounding the star, and
the orange line shows the effective acceleration with L1 plane is excluded from the
averaging.

2.4.4 Deviation of the binary effective acceleration from spher-

ically symmetric gravitational acceleration

The final result of the effective acceleration is shown in Figure 2.12. The analytical

solution at distances close to the center has also been plotted and, as one can see, the

numerical results correspond to the analytical equation very closely.

2.4.5 Deviation of the binary effective acceleration from the

case of a solid body rotating star

If a star is a solid body rotator, it experiences an additional acceleration that opposes

gravitational acceleration. If one assumes spherical symmetry, the effective accelera-

tion, averaged over a spherical shell, can be expressed in the units of acceleration in

a non-rotating star as

ηrot
ηss

= 1− 2

3

1 + q

q
r3 = 1 + δηrot . (2.23)
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Here we introduced the relative deviation that rotation causes, δηrot. Analogously,

one can consider that our numerically obtained and tabulated acceleration is

η

ηss
= 1 + δηtab . (2.24)

In Figure 2.13, we compare those two terms for the binaries with the mass ra-

tios range in the interests of stellar binaries. The comparison is provided for stars

presumed to fill their Roche lobe – their radii are taken to be equal to their volume-

equivalent Roche lobe radii. The effective binary potential always results in the

average effective acceleration being smaller (in its absolute value) than in the case of

a spherically symmetric star that rotates with an angular velocity equal to the binary

angular velocity.
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Figure 2.13: The deviation in effective acceleration from our tables from a solid body
rotating star, as a function of the mass ratios (blue circles). The deviation is provided
for stars that fill their Roche lobe. With orange stars, we show the deviation where
we used Eggleton’s equation for Roche lobe radius instead of our integrated quantities
for the spherically symmetric acceleration and the rotating term. See §2.4.5.
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2.4.6 Alternative treatment of the effective acceleration

It has been argued that instead of the effective gravity g (averaged over the equipo-

tential), the quantity that should be averaged on the equipotentials for the inclusion

in the stellar equations is ⟨g−1⟩, (see [32]; [33], [34], for how to use it). We provide

the unitless quantity ⟨g−1⟩ in our numerical tables. The quantity ⟨g−1⟩−1 deviates

from spherically symmetric gravity even more significant than ⟨g⟩, as can be seen

from Figure 2.14 where we show the values on L1 equipotential for a range of mass

ratios ⟨g⟩ × ⟨g−1⟩ = ⟨η⟩ × ⟨η−1⟩.
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Figure 2.14: The effective gravity averaged over equipotential multiplied by the in-
verse effective gravity averaged over equipotential, as a function of the mass ratios.
See §2.4.6.
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2.4.7 How to use the provided quantities

This work is devoted to the evolution of stars within the gravity field of a binary

system. Hence, throughout this paper, we use the same definition of the effective

acceleration as per Equation 2.11 – we always consider the magnitude of the effective

acceleration vector component that is normal to the equipotential surface at each con-

sidered location. The adopted definition of the effective acceleration holds for values

obtained on the L1 plane, including the inverse values of the effective acceleration.

In the main data table (see Appendix 2.6 for more detail), we provide:

(a) values from 3D integrations made throughout the closed 3D surface (including

the L1-plane)

(b) values from 2D integrations for the L1 plane only.

When the considered star overfills its Roche lobe, the values on the truncated

(limited by the L1-plane) equipotential layers of the star are to be reconstructed from

the 3D values provided in a), excluding the 2D values provided in b). For example,

the effective acceleration at i-equipotential shell inside the star is to be found using

the 3D area A, the averaged (over A) 3D effective acceleration η, the 2D area of

L1-plane ALpl, and the averaged (over the L1-plane) effective acceleration ηLpl:

ηi =
ηA− ηLplALpl

A− ALpl

. (2.25)

We also provide the auxiliary data table with values from 3D integrations made

throughout the truncated surface only, excluding the L1-plane. This table can be

used directly without reconstruction. Note that the angle-distributed mesh does not

always fall on the cross-section of the 3D equipotential lines and the L1-plane. Hence,

the truncated 3D area will not have a continuous transition to the L1-plane. This

3D integration is prone to carry errors due to an incomplete layer of triangular mesh

between 3D equipotential and flat L1-plane. While both methods provide essentially
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the same value, the second has a more significant numerical convergence error, and

we strongly recommend using the reconstruction method.

For the L1-plane, the quantities in the main data table are not related to the

component of the effective acceleration that is perpendicular to the L1-plane, ηx,L1.

Suppose one needs values for the x−component of the acceleration only, that can

be easily obtained doing 2D integration on the L1-plane for ηx with x = xL1 (see

Equation 2.8), and then recovering the value with physical units by multiplying it

by −G(M1 +M2)/2a
2. While this quantity is not the primary goal of this work, we

supplement the averaged values for the ηx-component separately in another auxiliary

data table (see Appendix 2.6).

2.5 Effects of a non-point mass

A real star is not a point mass. One has to obtain a 3D stellar model to include

the effect of a realistic 3D mass distribution on the effective acceleration. Here, we

only consider a first-order effect. We start with defining the local mass fraction as a

function of the distance to the center of the first star

qloc(req) ≡
Mloc(req)

M2

, (2.26)

where qloc(req) is the mass fraction that assumes the mass within the volume-equivalent

radius, Mloc(req) is the local mass coordinate inside the donor, Mloc(req) ≤M1.

We start by considering the deviation in the gravitational potential due to a non-

point mass distribution inside the first star, keeping the second star’s gravitational

contribution, and the effect from being in the corotating frame, the same as previously

ψ(R⃗) = −G
∫︂

M1

dm

|R1|
− GM2

|R2|

−1

2
Ω2

[︄

(︃

x− aM2

M1 +M2

)︃2

+ y2

]︄

(2.27)
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Here, the first term is, in principle, a 3D integral that has to be taken through

the donor star’s interior. The effective acceleration is the gradient of the effective

potential. We consider the changes in the first term of the effective potential due to

the mass having a spherically symmetric but non-point mass distribution. The former

assumption takes us to the Newton shell theorem, which states that the gravitational

field due to the mass inside a given radius acts as a point mass to elements at that

radius, whereas the mass outside of that radius does not exert a net gravitational

force on those elements. In the case of spherically-symmetric mass distributions, the

unitless effective acceleration can be written then as

ηx,loc(x, y, z) =
2xqloc(req)

(1 + q)|r1|3
+

2(x− 1)

(1 + q)|r2|3

− 2(x− 1

1 + q
) ,

ηy,loc(x, y, z) =
2yqloc(req)

(1 + q)|r1|3
+

2y

(1 + q)|r2|3
− 2y ,

ηz,loc(x, y, z) =
2zqloc(req)

(1 + q)|r1|3
+

2z

(1 + q)|r2|3
. (2.28)

The total acceleration at the given location can be found as

ηloc(r) =
√︂

η2x,loc + η2y,loc + η2z,loc . (2.29)

Based on the shape of the local potential, we consider the correctional term for the

effective acceleration as

δη(qloc(req), q, req) =
2 (qloc(req)− q)

(1 + q)

1

r21
. (2.30)

We also introduce a simple ”modified” effective acceleration as

ηmod(qloc(req), q, req) = η(q, req) + δη(qloc(req), q, req) . (2.31)

Here, η(q, req) is the same unitless effective acceleration as previously, for point-mass

binaries, and its values for each q and req can be found from the tables we obtained

and provided for the reader.
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In order to test this approximation, we considered polytropes with n = 1.5 and

n = 3. For the local mass ratio, we assumed that the mass within each volume-

equivalent of the numerically obtained binary equipotential (each equipotential itself

is a function of the local mass) is the same as within the same volume in a spherically

symmetric polytrope.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Req/a

10

20

30

40

q=1

adjusted point to poly n =3
adjusted point to poly n =1.5
poly n =3
poly n =1.5

Figure 2.15: The simplified effective acceleration and the integrated effective acceler-
ation, as a function of Req, for polytropes with n = 3 (blue line) and n = 1.5 (orange
line). Shown for the case q = 1.

As shown in Figure 2.15, the exact integration and the simplified method are in

agreement with each other. We conclude that the simplified method, as described,

can be used to obtain effective accelerations inside the star from our precalculated

tables for point mass cases and the correction term. It should be noted that, for
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regions close to the center, r1 ≤ 0.05xL1
, we make use of the following analytical

expression, to obtain the effective acceleration:

η = ηss,loc +∆ηloc; ∆ηloc = −2

3

(1 + q)

qloc(r1)
r31ηss,loc. (2.32)

It is assumed that, in the vicinity of the center, req ≃ r1. In this equation, ηss,loc is

the effective acceleration of a single, non-point mass star up to that zone:

ηss,loc =
2qloc(r1)

(1 + q)

1

r21
. (2.33)

The derivation of these equations is written in C.3.

The subroutine that we provide (see the description in Appendix B) makes use of

the described method.

2.6 Conclusions

We have described the method we use to obtain numerically effective accelerations

for a star in a binary system as a function of either the effective potential, or the

volume-equivalent radius.

Our method is inspired by the fact that isobaric surfaces coincide with the equipo-

tential shells when stars are in the hydrostatic equilibrium. This makes the concepts

of volume-effective radii and average effective acceleration of each shell a valuable

tool to simulate binary stars in a 1D stellar evolution code.

Our method for obtaining the volume-equivalent radii of each equipotential shell

is to integrate with spherical volume elements from the vicinity of the center of the

donor star up to the point where the corresponding potential is equal to that sought,

with fixed precision. The average effective acceleration on each shell is obtained

by dividing each shell into triangular mesh areas and then calculating the weighted

average of the effective acceleration, with the weight being the area of the triangular

mesh element. The integration area includes L1-plane. In addition, we obtained the
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effective accelerations averaged on the L1-plane as a function of the cross-sectional

area or effective potential (the semi-major and semi-minor axes of these ellipse-like

cross-sections are also tabulated). Values on the equipotential shell only (excluding

L1-plane) can be recovered from the two provided values. We also obtained the

average inverse effective acceleration, averaged over the entire equipotential level and

on the L1-plane.

We provide the tables for a range of mass ratios, from 10−6 to 105. We have

verified the provided tables for self-convergence by taking the run for several angular

resolutions. We have also validated the tables by comparing our results to the fit

provided for the volume equivalent radius of the shell passing through L1 by [19], the

fit provided for the volume equivalent radius of the shell passing through the outer

Lagrange point by [31] and the average effective acceleration of shells passing through

L1 and L2 tabulated by [18] for certain mass ratios.

Further, we provide analytical expressions describing the effective acceleration’s

behavior in the vicinity of the center of the donor star in order to check whether our

numerical tables work well close to the center. We also describe a rapid method to

obtain effective accelerations for the non-point mass profiles that can take place in

stars, using our pre-calculated table for point-mass calculations. This rapid method

has been tested and verified to agree with the results for integrating the polytropic

mass distribution for n = 1.5 and n = 3, encompassing most of the mass distributions

that are plausible in stars.

We have provided a subroutine for the community that can be used in any 1D

stellar code to rapidly obtain effective accelerations (as a function of the local mass

and radius) that are more appropriate for the case of binary stars. We hope that

the method, the tables, and the subroutine will help with further progress in the

understanding of binary star evolution.

N.I. acknowledges funding from NSERC Discovery under Grant No. NSERC
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pute Canada (www.computecanada.ca).

APPENDIX

A. DESCRIPTION OF THE TABLES

We provide one file for each of the 109 calculated mass ratios q between 10−6 and 105.

The file’s name contains the value of log10 q for which it was obtained. Each file has

15 columns of data, as described in Table 2.1. There are 600 data points (rows) for

each table, starting from ξ = ξ(0.05xL1
, 0, 0) to ξ = ξLouter. The equipotential shell

passing via L1 is the data point number 500.

Columns 3–8 of data provide values at the equipotential shells at all data points as

obtined from 3D integrations. Hence, the equipotential shells are inclusive of the L1-

plane; the truncated equipotential areas and values on them are to be reconstructed

as described in § 2.4.7. The columns 9–14 provide data for the L1-plane but only

for mass ratios log10 q ≤ 2.5 (a regime where stellar interactions may lead to a mass

transfer with a non-negligible mass stream thickness). The L1-plane properties are

given only at the rows 501-600 for the equipotentials less to the L1 value. In rows

1–500, columns 9–14 are filled with the “0” value as a placeholder. For log10 q > 2.5,

columns 9-14 for rows 501-600 are filled with the “0” value. For point mass cases,

one needs three quantities, the donor star mass M1, the mass ratio q, and the binary

separation a, to recover values in CGS. The conversions can be found in Table 2.1.

Another set of files we provide on the website includes a compact version of the

previously mentioned. In this version, the units of potential and effective acceleration

have been provided in terms of a single point-mass star’s potential and acceleration,

respectively. This version of the table and the relevant conversion units are tabulated

in Table 2.2. This table is used by the code described in Appendix 2.6 to obtain

effective accelerations.
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Table 2.1: The properties computed and included in our database for each mass ratio.

quantity notation conversion equation

1 equipotential shell number

2 mass ratio q unitless

3 fill-out function F unitless

4 potential ξ ξ × −GM1(1+q)
2qa

5 volume-equivalent radius Req Req × a

6 effective acceleration averaged on the equipotential shell ηshell ηshell × GM1(1+q)
2qa2

7 inverse effective acceleration averaged on the equipotential shell ⟨η−1
shell⟩ ⟨η−1

shell⟩ × 2qa2

GM1(1+q)

8 area of the equipotential shell A A× a2

9 area of L1 cross-section ALpl ALpl × a2

10 y intersection of L1 cross-section yLpl yLpl × a

11 z intersection of L1 cross-section zLpl zLpl × a

12 effective acceleration averaged over the intersection with L1−plane ηL ηL × GM1(1+q)
2qa2

13 effective acceleration averaged over L1 cross-section area ηLpl ηLpl × GM1(1+q)
2qa2

14 inverse effective acceleration averaged over L1 cross-section area ⟨η−1
Lpl⟩ ⟨η−1

Lpl⟩ × 2qa2

GM1(1+q)

In addition, a file has been provided with properties corresponding to the first three

Lagrange points for all mass ratios computed, see Table 2.3. For mass ratios lower

than 1, where the outer Lagrange point is L2, and L3 is on the opposite side, we have

filled −1 for properties corresponding to L3; the same has been applied for columns

5 and 6 of mass ratios with log10 q > 2.5.

There are two more supplementary tables (see §2.4.7). One of them is very similar

to Table 2.1, but 3D quantities were obtained while doing integrations over truncated

equipotentials. The second supplementary table provides values of ηx integrated on

L1-plane.

B. Subroutine for Effective Acceleration

The subroutine that we provide uses as input M1, r1 (distance from the center of the

donor star), M1,loc (enclosed mass of the star from the center up to r1), M2, and a.

By choice of the user, it returns either value of the effective acceleration in CGS, or
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Table 2.2: The compact version of the database that will be used in B

quantity notation conversion equation

1 volume-equivalent radius Req Req × a

2 relative potential ξrel ξrel × −GM1

req

3 relative average effective acceleration on equipotential shell ηrel,shell ηrel,shell × GM1

r2eq

4 relative average effective acceleration on L1 cross-section ηrel,Lpl ηrel,Lpl × GM1

r2
eq

5 area of L1 cross-section ALpl ALpl × a2

6 area of equipotential shell A A× a2

Table 2.3: The properties computed and included in our database for each of the first
three Lagrange points.

quantity notation conversion equation

1 mass ratio q unitless

2 volume-equivalent radius of shell passing L1 Req,L1 Req,L1 × a

3 volume-equivalent radius of shell passing L2 Req,L2 Req,L2 × a

4 volume-equivalent radius of shell passing L3 Req,L3 Req,L3 × a

5 area of L1 cross-section of L2 shell ALpl,L2 ALpl,L2 × a2

6 area of L1 cross-section of L3 shell ALpl,L3 ALpl,L3 × a2

7 average effective acceleration on the Lplane of L2 shell ηLpl,L2 ηLpl,L2 × GM1(1+q)
2qa2

8 average effective acceleration on the Lplane of L3 shell ηLpl,L3 ηLpl,L3 × GM1(1+q)
2qa2
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the effective acceleration as a fraction of the single star’s effective acceleration. The

values are for the truncated equipotentials. Our subroutine that uses these databases

gives the effective acceleration as a function of the masses of the two stars, the orbital

separation, and the distance from the center of the donor star. Once the mentioned

inputs to the subroutine are given, the code determines between which two mass

ratios does the local mass ratio fall in between. Then for those two tables it finds

where the distance from the donor star’s center falls in between and interpolates for

the effective acceleration between the two volume equivalent radii. After doing this

for both mass ratios, it interpolates again, this time between mass ratios and the

two obtained accelerations corresponding to those mass ratios to obtain the finalized

effective acceleration. This acceleration could be given in CGS units, or as a unitless

parameter by dividing it by the local gravitational acceleration if there was only a

single star.

If the mass ratio specified is lower than the minimum mass ratio in the database

(10−6), or larger than the maximum mass ratio (10+5), the code will output an error.

If the distance and orbital separation is specified such that r1/a ≤ 0.05, the subroutine

will use the analytical expression 2.40 to obtain the effective acceleration instead. The

code as it is should not be used for the cases when the mass ratio is above 10+2.5, and

there is RLOF. In the latter case, the user should re-do this table using 3D quantities

obtained while doing integrations over truncated equipotentials. The databases and

sample subroutines are available at Zenodo [35], and updates will be available at

https://github.com/AliPourmand/1D binary star properties.

C. Behavior Close to the Center of M1

We consider a coordinate system in corotation with the binary, with the origin at the

donor star’s center. The xy plane is the plane of the orbit, and the co-rotating plane

is rotating around the axis which passes through the center of mass of the binary

system. The effective potential Ψ in a spherical coordinate system that rotates with
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the fixed binary orbital angular velocity Ω =
√︁

G(M1 +M2)/a3:

Ψ(R, ϑ, φ) = −GM1

R
− GM2

√︁

(R cosφ sinϑ− a)2 +R2 sin2 φ sin2 ϑ+R2 cos2 ϑ

−1

2
Ω2

[︃

(R cosφ sinϑ− a
M2

M1 +M2

)2 +R2 sin2 φ sin2 ϑ)

]︃

. (2.34)

HereM1 andM2 are the donor and companion star masses, a is the orbital separation,

and R is the distance to the origin.

The first term Ψss is the potential of a spherically symmetric single star of massM1.

The other two terms represent the deviation of the effective potential ∆Ψ = Ψc +Ψb

due to having a companion of mass M2, Ψc, and due to being in a coordinate system

that rotates with Ω, Ψb. Introducing r = R/a, the terms are reduced to:

Ψss(r, ϑ, φ) = −GM1

a

1

r
,

Ψc(r, ϑ, φ) = −GM2

a

1
√︁

r2 − 2r cosφ sinϑ+ 1
,

Ψb(r, ϑ, φ) = −1

2

G(M1 +M2)

a
[r2 sin2 ϑ

−2r
M2

M1 +M2

cosφ sinϑ+
M2

2

(M1 +M2)2
] . (2.35)

We want to investigate the behavior of the effective acceleration and potential at

distances close to the center; thus we assume that equipotential surfaces there are

almost spherical (we have verified this assumption by numerical integrations).

C.1. Effective acceleration

As the equipotential surfaces are almost spherical, we adopt that for the effective

acceleration, the only derivative of the effective potential that matters is the derivative

by r.
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∂∆Ψ(r, ϑ, φ)

∂r
=

G

a
[M2

(r − cosφ sinϑ)

(r2 − 2r cosφ sinϑ+ 1)3/2

− (M1 +M2)r sin
2 ϑ+M2 cosφ sinϑ] . (2.36)

In the limit r ≪ L1,

∂∆Ψ(r, ϑ, φ)

∂r

⃓

⃓

⃓

⃓

r≪1

=
G

a

[︁

M2(r − 3r cos2 φ sin2 ϑ)− (M1 +M2)r sin
2 ϑ

]︁

.(2.37)

After the integration over all angles, the only contributing term that remains is

from being in the co-rotating frame, while the contribution of the gravitational field

of the companion has vanished:

⟨︃

∂∆Ψ(r, ϑ, φ)

∂r

⃓

⃓

⃓

⃓

r≪1

⟩︃

=
1

4π

∫︂

4π

∂∆Ψ(r, ϑ, φ)

∂r

⃓

⃓

⃓

⃓

r≪1

dΩ = −2

3

G(M1 +M2)

a
r . (2.38)

Finally, the relative deviation of the gradient of the effective potential in a binary,

from the case of the spherically symmetric one, near the center, is

⟨︃

∂∆Ψ(r, ϑ, φ)

∂r

⃓

⃓

⃓

⃓

r≪1

⟩︃

/
∂Ψss(r)

∂r
= −2

3

(M1 +M2)

M1

r3

= −2

3

(M1 +M2)

M1

R3

a3
. (2.39)

Converting to the unitless acceleration used throughout in this manuscript, and

realising that r used in here is equivalent to r1, we have for the deviation in the

average effective acceleration due to being in a binary:

∆η = −2

3

1 + q

q
r31 ηss . (2.40)

Here ηss is the the average effective acceleration of a spherically symmetric single star,

and q =M1/M2.
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C.2. Potential

In the limit r ≪ 1, the second term that provides the effect due to having a companion

is:

Ψc(r, ϑ, φ) = −GM2

a

(︃

1 + r cosφ sinϑ− r2

2

)︃

.

(2.41)

After the integration over all angles, we have:

⟨︁

∆Ψ(r, ϑ, φ)|r≪1

⟩︁

/Ψss(r) =
3M2

2 + 2M1M2

2M1(M1 +M2)
r +

2M1 + 5M2

6M1

r3, (2.42)

and, for the unitless potential, with q =M1/M2:

∆ξ =

(︃

3 + 2q

2q(1 + q)
r1 +

2q + 5

6q
r31

)︃

ξss . (2.43)

C.3. Effective acceleration for non-point mass

The derivation for non-point mass is similar to described in C.1, with the difference

that in the Equation 2.34, the total mass M1 in the first term (Ψss) is replaced by

the local value of mass,

Ψss,loc(r, ϑ, φ) = −GMloc

a

1

r
. (2.44)

Here Mloc is the local mass coordinate inside the donor star at a distance r from

the star’s center. Thus, the effective acceleration of a single, non-point mass star at

radius r and with local mass Mloc is:

∂Ψss,loc(r)

∂r
=
GMloc

a

1

r2
. (2.45)
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⟨︃

∂∆Ψ(r, ϑ, φ)

∂r

⃓

⃓

⃓

⃓

r≪1

⟩︃

/
∂Ψss,loc(r)

∂r

= −2

3

(M1 +M2)

Mloc

r3 ≡ −2

3

(M1 +M2)

Mloc

R3

a3
. (2.46)

The unitless form of the following equation could be obtained if we use the fact

that the scaling factor for effective acceleration 2.12 is the same for both terms of the

numerator and the denominator of the left-hand side, we can write the left hand side

as:
⟨︃

∂∆Ψ(r, ϑ, φ)

∂r

⃓

⃓

⃓

⃓

r≪1

⟩︃

/
∂Ψss,loc(r)

∂r
=

∆ηloc
ηss,loc

(2.47)

And, finally, using the definition of qloc:

∆ηloc = −2

3

1 + q

qloc(r1)
r31 ηss,loc . (2.48)
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Chapter 3

Application: Initial conditions of

Common Envelope Events

3.1 Introduction

This thesis aims to investigate the initial conditions of the CE phase. In this chapter,

we have first discussed in § 3.2 how we couple our subroutine with the stellar evolution

code MESA to include the effective acceleration of binary systems. In § 3.3 we have

described the initial parameters of the grid of binary systems we have simulated. In

§ 3.4 we describe the three methods we use to carry out these simulations.

Then, in §3.5, we present and discuss the results of the grid, by comparing the

results obtained by each method. §3.6 is then focused on a scenario in which the

difference between these three methods is extreme. Finally, in §3.7, we discuss the

result of simulating V1309 Scorpii’s progenitor up to the donor star’s RLOF.

3.2 Modifying gravitational field in MESA

To explore the effect of the modified gravitational field on a star that evolves in a

binary system, we will use the stellar evolution code MESA. MESA uses the following

equation in each mesh zone to calculate the gravitational acceleration gMESA

gMESA = cgrav(Rloc)
Mloc

R2
loc

. (3.1)
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Here cgrav is a variable defined in MESA. By default, it equals the value of Newton’s

gravitational constant G. However, since it is a variable, it can be considered a

function of the mesh zone’s local mass Mloc and radius Rloc coordinates, and hence it

can be altered for each mesh zone.

We implement the subroutine described in Appendix 2.6 into MESA to obtain the

effective acceleration1. This subroutine allows us to find the binary geff for any mesh

point inside the considered star. geff is a function of the mesh point’s local mass and

radius coordinates, as well as the total mass of each star and the orbital separation.

The subroutine can return geff either in CGS or as a fraction of what an isolated

single star would feel at that mass and radius coordinate – in other words, it provides

geff/gMESA. The convenient way to alter cgrav is using the latter form, which we do

so with the following equation

cgraveff(Rloc, qloc, qtot, a) =
geff

gMESA

× cgrav(Rloc) . (3.2)

Then the effectively acting acceleration that all stellar structure equations are evolved

within MESA’s is

geff = cgraveff(Rloc, qloc, qtot, a)
Mloc

R2
loc

. (3.3)

Thus, by incorporating the subroutine in run star extras (a file that enables users

to modify how MESA works), we can successfully change the effective acceleration

throughout the donor star at each timestep of evolution.

3.3 Grid of Simulations

We select 4 initial masses for the donor star, M1 = 1, 3, 7 and 15M⊙, 4 mass ratios

for the binary system, q = 0.5, 1, 2 and 10, and 7 final radii to evolve the donor star

to, as the grid of simulations, 2, 5, 20, 50, 100, 200 and 500, see Table 3.1. This grid

1This is possible via the use other cgrav option in MESA
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Table 3.1: Table including the mass ratios q (first row), final radii rf (first column),
and orbital separations (in solar radii) of our grid of initial conditions (the terms in
parenthesis indicate the value of orbital separation for M1 = 3M⊙ stars which as
explained, we have set their evolution to end at 45R⊙ instead of 50R⊙. Note that
these selections will be used for each initial donor mass specified.

rf\q 0.5 1 2 10

2R⊙ 6.23 5.27 4.54 3.45

5R⊙ 15.58 13.19 11.36 8.64

20R⊙ 62.34 52.78 45.45 34.54

50R⊙ (45R⊙ for M1 = 3M⊙) 155.86 (140.28) 131.95 (118.76) 113.63 (102.27) 86.47 (77.83)

100R⊙ 311.73 263.9 227.27 172.95

200R⊙ 623.46 527.81 454.54 345.91

500R⊙ 1558.66 1319.53 1136.35 864.79

of 4× 4× 7 setups allows us to explore the parameter space of initial conditions for

the CE phase. There is an exception. 3M⊙ star, at about rf = 50R⊙, is changing

its evolutionary stage from Hydrogen shell burning to He core burning. As a result,

a slight change in the radius at RLOF could lead to selecting a stellar model either

before or after He core burning, and the models will have naturally vastly different

structures. For the 3M⊙ star, we use rf = 45R⊙.

3.4 Three Approaches

To evaluate the effect of “true” effective acceleration, we will model the evolution of

each case in our grid using three different approaches:

1. modified gravity – MESA for single star evolution coupled with our modified

gravitational acceleration subroutine for binary systems.

2. standard MESA’s standard binary package.

3. fully synchronized MESA’s standard binary package, including tidal evolution

and orbital synchronization.
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We consider that Cases 2 and 3 are the two limiting cases, as they represent

no rotation and the maximum allowed rotation. Our modified gravity, Case 1, is

expected to be close to Case 3, though see §2.4.5, where we showed that the effective

acceleration in a binary could differ from a solid rotation case up to 20 percent.

First, we choose the values at which we want the donor stars to fill their Roche

lobes. We use then Eggleton’s relation [19] to find the orbital separation when the

star is at the RLOF

a =
0.6q2/3 + ln(1 + q1/3)

0.49q2/3
RL1 . (3.4)

The input for the simulations is the initial orbital separation a. A sample inlist for

each of the 3 methods for one of the cases in our grids is provided in Appendix B.

It is important to note that the goal of our study is not to perform proper binary

evolution but to disentangle and evaluate the effect of taking into account binary

physics on the stellar structure. We hence keep a star in a binary with a fixed orbital

separation. At the same time, the donor star is held in the state of corotation with

the binary in the first and third approaches. Therefore, in our simulations, there is no

orbital angular momentum loss or transfer, and the system’s total angular momentum

(including the angular momentum of the donor) doesn’t change. Conserving the total

angular momentum while allowing the angular momentum transfer from the orbit

to the donor would lead to vastly different evolutionary paths to RLOF. It would

make the task of pinpointing the effect of using the different binary physics almost

impossible.

3.5 Results of the Grid Runs

We use the locations on the HR diagram where the donor stars overfill their Roche

Lobes as the primary diagnostic to monitor the difference between the three meth-

ods. Figures 3.1-3.4 show the results for four mass ratios. The evolutionary track of
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Figure 3.1: Position on the HR diagram of the simulations with q = 0.5 when the
donor star has reached Roche Lobe Size. The red star indicates the final point using
method 1, the blue diamond indicates method 2, and the purple triangle indicates
the result using method 3 (the three methods were explained in 3.4). The solid black
lines depict the evolutionary tracks of single stars with the same initial conditions the
donor star has. The black dashed line is the MS branch.

simulation with various binary physics follow each other closely, and there isn’t much

use in showing their entire evolutionary tracks.

The endpoints for most of the simulations were obtained with a relative tolerance

of 0.1%, or, in other words, the final stellar model’s radius was obtained within 0.1%

of the requested rf . The exception is the set of simulations with M1 = 15M⊙ and

rf = 500R⊙, where the best relative tolerance we could achieve is 1%.
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Figure 3.2: Figure similar to figure 3.2, for mass ratios q = 1.
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Figure 3.3: Figure similar to figure 3.2, for mass ratios q = 2.

62



3.63.84.04.24.4
logTeff,K

0

1

2

3

4

5

lo
gL

, L

10

1 M
3 M
7 M
15 M
MS
1.Modified gravity
2.Standard MESA
3.Fully synchronized

Figure 3.4: Figure similar to figure 3.2, for mass ratios q = 10.
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3.5.1 Discussion

Several implications could be made from these figures, which are listed below:

1. Overall, it could be said that the difference in the final point on the HR diagram

is relatively small

2. With increasing mass ratio, the spaces between the three methods’ final points

mostly seem to increase

3. It could also be inferred that for greater final radii (meaning more evolved stars),

the deviation between the 3 methods seems to increase

4. We notice that most final positions obtained with method 1 fall between method

2 and method 3, as expected.

3.6 Initial Conditions Resulting in Extreme Devi-

ations

As discussed in the previous section, the final position on the HR diagram, in most

cases, doesn’t vary significantly between methods 1-3. Although this is an outcome

that one could expect from most initial parameters, there are some initial parameters

where the difference between these methods could be extremely pronounced. This

section discusses the outcome of simulating one such system to the Roche Lobe size.

The initial conditions for this system are M1 = 3M⊙, q = 10, and a = 22.14R⊙

(which gives rf = 12.8R⊙).

The evolutionary tracks that are obtained when simulating this system with the

three methods are presented in Figure 3.5. As can be seen, the final position on the

HR diagram that method 2 predicts is exceptionally far from the positions methods

1 and 3 predict.

To further investigate this simulation, we have plotted the adiabatic and radiative

exponents of the donor star at the RLOF as the function of the radial coordinate
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Figure 3.5: HR diagram showing evolutionary tracks for the donor star in the binary
system described in Section 3.6 (M1 = 3M⊙, q = 10, and a = 22.14R⊙), evolved up to
the Roche Lobe size. The evolutionary tracks were obtained with the three methods
described in Section 3.4.

for all three methods. The three methods all predict the donor star has developed a

convective envelope at the onset of RLOF. However, the depth of the envelope varies

for all three methods. Method 1 predicts the convective envelope stops at about

11R⊙, while for methods 2 and 3 this value changes to 7R⊙ and 12R⊙, respectively.

The mass coordinate for where the convective envelope stops is about 2.54M⊙ for

method 2. Meanwhile, methods 1 and 3 predict the outer convective envelope is only

above the mass coordinate about 2.97M⊙.

The Kippenhahn diagram2 for the evolution of this system with method 2 is shown

in 3.7. As is apparent from this diagram, this external convective envelope that can

2the Kippenhahn diagram depicts the evolution of the internal structure of a star as a function
of time
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Figure 3.6: The adiabatic and radiative exponents that the 3 methods predict once the
donor star described in Section 3.6 reaches the Roche Lobe size. Adiabatic exponents
∇a are shown by the blue line, and Radiative exponents ∇r are depicted with the
orange line.

be seen in Figure 3.6 has just started developing at the end of the simulation.

This analysis reveals another interesting outcome: even though methods 1 and

3 predict relatively close locations on the HR diagram, the depth of the convective

envelopes at that point are notably different from each other (in terms of radial coor-

dinates). The depth of the convective envelope may play a decisive role in determining

whether the possible mass transfer will be stable or unstable [37].

Hence, we make the two following conclusions:

1. Inclusion of the effects of effective binary acceleration could result in notable
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Figure 3.7: Kippenhahn diagram showing the evolution of internal structure of the
donor star in the binary system described in Section 3.6 (M1 = 3M⊙, q = 10, and
a = 22.14R⊙). The horizontal axis shows the evolutionary time passed throughout
the simulation in Mega years, and the vertical axis indicates the mass coordinate of
the star. In a Kippenhahn diagram, different colors are used to differentiate between
the physical processes happening in each mass coordinate. The abbreviations of these
physical processes are written in color used to visualize them under the horizontal
axis. The most notable physical processes in this star’s evolution are convective areas
(light blue), nuclear burning (light red), and overshoot (cream). Towards the very
end of the evolution, an external convective area has formed. This plot was created
with MESA’s package for visualization pgstar [36].

differences between the simulation outcomes.

2. The proximity these three methods may predict on the HR diagram doesn’t

necessarily entail similar internal structures.

3.7 Progenitor of the Observed Phenomena: V1309

Scorpii

We use the initial conditions mentioned for the progenitor in Section 1.5.1, which

were q = 10, M1 = 1.52M⊙. We adopt the initial period as P = 1.4 days, as was

observed before the outburst. We keep using the same assumption as for our grid
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Figure 3.8: Evolutionary tracks of V1309 Sco.

of models that the orbital separation does not change throughout the evolution. We

make use of an inlist that has been specifically designed to include the physics that is

relevant in the case of V1309 Scorpii. This inlist has been previously used by [38] and

can be seen in Appendix B, Listing B.5. The corresponding initial orbital separation

is a = 6.4R⊙, which provides the radius at the RLOF is rf = 3.7R⊙. We evolved this

initial setup, using the three methods described in 3.4, up to the onset of the RLOF.

The resulting evolutionary tracks can be seen in Figure 3.8. At the more advanced

evolutionary stages (and larger radius), the evolutionary paths provided by the three

methods get more distant from each other.

The effective temperature of the binary was measured to be about Teff ≈ 4500K

[26], with a 500K uncertainty [27]. Our simulations show that the donor star evolved

with the modified gravity has Teff ≈ 4870K at RLOF. This value is in the expected
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range of values. However, we note that it does not significantly differ with methods

2 & 3, where the progenitor’s effective temperature is found to be ≈ 4970K and

≈ 4760K, respectively.

It should be stated that simulations performed using MESA can not account for the

physical effects due to the contact between the two stars’ surfaces. In a star that is

strongly deformed due to proximity to its Roche lobe, the effective temperature is also

not uniform and varies throughout the star’s surface. Therefore, one should use 3D

codes to properly model observable properties such as the effective temperature. For

example, [38] has carried out 3D simulations for the progenitor of V1309 Scorpii using

the StarSmasher code. Those simulations naturally obtained 3D surface distribution

of the effective temperature of the donor star at the RLOF stage as a function of

surface gravity.
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Chapter 4

Summary and Ongoing Work

The primary goal of our thesis was to provide a method to include the effect of the

gravitational fields of binary systems to use them in 1D stellar evolution codes. We

also aimed to apply this method to simulate binary systems up to the RLOF. A

summary of the main points in each chapter of the thesis is given in the following.

In Chapter 2, we have presented the database containing spacial and gravitational

properties of the effective binary potential. The database was obtained for 109 mass

ratios in the [10−6, 105] range. For each mass ratio, the database provides values

for spatial coordinates from near the center of the donor star to the outer Lagrange

point. We also provided an approximate method to utilize the database for simulating

the effective acceleration of non-point mass donor stars as a function of the one-

dimensional radial coordinate. We tested this method’s accuracy by numerically

integrating two different donor stars with polytropic mass distributions in a binary

gravitational field, and comparing the values of the effective acceleraions with what

our approximate method finds. This method uses the analytical expression (Equation

2.40) we derived that calculates the donor star’s effective acceleration in regions to

the center of the donor star.

In Chapter 3, we first described how our method had been incorporated via a

subroutine to MESA to simulate the evolution of binary stars with the effective gravity

taken into account. We then described the grid of initial conditions for binary systems
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we simulated up to the onset of the RLOF. The goal was to see how notable the effects

of including the effective acceleration of binary stars could be. We also described two

additional methods we use to evolve this grid. These two additional methods are

used to compare our new approach with what MESA could traditionally predict for

the evolution of these systems.

After plotting the results of this grid on the HR diagrams, we concluded that the

final points of the evolutionary tracks on the (Teff , L) plane – at the start of RLOF

– of each of the three methods do not differ much from each other. However, we

observed a growth in the separation between the final points obtained by the three

methods as we increased the mass ratios q or the radii at the RLOF.

We also discussed the result of simulating a specific binary system where the out-

come of one of the methods demonstrated a relatively significant difference in the

final location on the HR diagram. After investigating the interior structure these

three methods predict, we noticed that the depth of the convective envelope of the

donor star obtained by each method notably differs from the other methods. We

found out as a result of studying the internal structure of these simulations that

proximity on the HR diagram doesn’t necessarily imply similar internal structures.

In light of the mentioned simulations, we discovered that including the binary

gravitational field causes the evolutionary tracks and the location on the HR dia-

gram where the donor star fills its Roche Lobe to change from what is predicted by

traditional approaches. The variation that this inclusion causes is a function of the

mass ratio and the radius of the donor at the start of RLOF (which corresponds

to the star’s evolutionary stage at the exact moment). The final points on the HR

diagram usually do not significantly differ from each other, although we discovered

that exceptional cases do exist.

We also simulated an observed system that underwent a merger event: V1309

Scorpii. We simulated the progenitor donor star of V1309 Scorpii up to its RLOF

with the three methods, and noticed some differences between the three predicted
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evolutionary tracks. However, these differences were not that spectacular. Specifically

for the case of the effective temperature Teff at the final point of the simulation, the

temperature that the three methods predicted all fell into the uncertainty range of

the observed value.

We conclude this thesis by mentioning that the structure that the donor star has

prior to the initiation of the MT is a more important question than the position

on the HR diagram. More specifically, the energy budget of the expanded star is

a key quantity in predicting the outcome of the CE phase (e.g., whether a merger

event could happen or not). Calculating the binding energy from the outcomes of

MESA simulations, which utilize our modified subroutine isn’t a straightforward task.

Thus, the remaining questions on this topic could be summarized in the following two

points:

1. Devise a method to obtain the energy budget in a binary system before and

after the CE event – similar to the standard energy formalism, but with the use

of the novel 3D reduced approach we have developed

2. Calculate the energy budget in stellar models obtained using the three men-

tioned methods and then compare how much these values differ.
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Appendix A: Sample Inlists

Inlists are text files which give MESA commands on how to start, proceed with, and

where to end the simulations.

Here, we have provided a sample inlist used for one of the stars evolved in figure

1.1.

1 &s t a r j o b
2 ! s e e s t a r / d e f a u l t s / s t a r j o b . d e f a u l t s
3

4 ! beg in with a pre−main sequence model
5 c rea te pre ma in sequence mode l = . f a l s e .
6

7

8 ! d i s p l ay on−s c r e en p l o t s
9 p g s t a r f l a g = . t rue .

10

11 / ! end o f s t a r j o b name l i s t
12

13

14 &eos
15 ! eos opt i ons
16 ! s e e eos / d e f a u l t s / eos . d e f a u l t s
17

18 / ! end o f eos name l i s t
19

20

21 &kap
22 ! kap opt ions
23 ! s e e kap/ d e f a u l t s /kap . d e f a u l t s
24 use Type2 opac i t i e s = . t rue .
25 Zbase = 0.02
26

27 / ! end o f kap namel i s t
28

29

30 &con t r o l s
31 ! s e e s t a r / d e f a u l t s / c on t r o l s . d e f a u l t s
32

33 ! s t a r t i n g s p e c i f i c a t i o n s
34 i n i t i a l m a s s = 3 ! in Msun un i t s
35 i n i t i a l z = 0 .02
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36

37

38

39 ! s o l v e r
40 ! op t i ons f o r energy conse rva t i on ( s ee MESA V, Sec t i on 3)
41 energy eqn opt ion = ’ dedt ’
42 u s e g o l d t o l e r a n c e s = . t rue .
43

44

45

46 / ! end o f c on t r o l s name l i s t

Listing A.1: sample inlist used to obtain 1.1
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Appendix B: Sample Inlists for

evolution up to RLOF

In this section, we have provided sample inlists that we will use to simulate the donor

stars up to the Roche Lobe in Chapter 3, with the 3 different methods mentioned

in Section 3.4. B.1 Is the sample inlist used for method 1. B.2 is the sample inlist

used for commanding the donor star’s evolution for methods 2 and 3. B.3 and B.4

are used for specifying the commands related to binary stellar evolution for methods

2 and 3 respectively.

The initial conditions such as donor star and companion star mass, initial orbital

separation, and the photospheric radius’s upper limit will vary for the different initial

conditions in the grid, but the rest of the commands stay the same. This is the case

for all the simulations carried out in Chapter 3 with the exception of those related to

V1309 Scorpii in Section 3.7. An inlist with more specific commands for the physics

involved (such as stellar winds) was used in the case of V1309 Scorpii, whose inlist

could be seen in B.5.

1 &s t a r j o b
2 ! s e e s t a r / d e f a u l t s / s t a r j o b . d e f a u l t s
3

4 ! beg in with a pre−main sequence model
5 c rea te pre ma in sequence mode l = . f a l s e .
6

7 ! save a model at the end o f the run
8 save model when terminate = . t rue .
9 save mode l f i l ename = ’ l a s t .mod ’

10

11 wr i t e p r o f i l e when t e rm ina t e =. t rue .
12 f i l e n ame f o r p r o f i l e wh en t e rm i n a t e =’ p r o f i l e l a s t . data ’
13 save photo when terminate = . t rue .
14
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15 ! d i s p l ay on−s c r e en p l o t s
16 p g s t a r f l a g = . f a l s e .
17

18 c h a n g e i n i t i a l n e t = . t rue . ! switch nuc l ea r r e a c t i on network
19 new net name = ’ pp and cno ext ras . net ’
20 auto extend net = . t rue .
21 h he net = ’ pp and cno ext ras . net ’
22 co ne t = ’ co burn . net ’
23 adv net = ’ approx21 . net ’
24

25

26 / ! end o f s t a r j o b name l i s t
27

28

29 &eos
30 ! eos opt i ons
31 ! s e e eos / d e f a u l t s / eos . d e f a u l t s
32

33 / ! end o f eos name l i s t
34

35

36 &kap
37 ! kap opt ions
38 ! s e e kap/ d e f a u l t s /kap . d e f a u l t s
39 use Type2 opac i t i e s = . t rue .
40 Zbase = 0.02
41 k a p f i l e p r e f i x = ’OP gs98 ’
42 kap lowT pre f ix = ’ lowT fa05 gs98 ’ ! f o r lower temperatures .
43

44

45 / ! end o f kap namel i s t
46

47

48 &con t r o l s
49 ! s e e s t a r / d e f a u l t s / c on t r o l s . d e f a u l t s
50

51 ! s t a r t i n g s p e c i f i c a t i o n s
52 i n i t i a l m a s s = 1 ! in Msun un i t s
53 i n i t i a l z = 0 .02
54 ! s top when photosphere r i s g r e a t e r than t h i s l im i t , in Rsun un i t s
55 pho to sphe r e r uppe r l im i t = 2
56

57 ! t o l e r an c e o f stop
58

59 when to s top a to l = 0 . d0
60 when to s t op r t o l = 0.001 d0
61

62 ! atmosphere
63 atm option = ’T tau ’
64 atm T tau re l a t i on = ’ Eddington ’
65 atm T tau opac ity = ’ f ixed ’
66

67 ! op t i ons f o r energy conse rva t i on ( s ee MESA V, Sec t i on 3)
68 max abs r e l run E er r = −1
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69 ! ! ! ! ! ! ! ! ! ! ! ! ! ! opt ion to use modi f i ed g rav i ty subrout ine
70

71

72 us e o the r cg r av = . t rue .
73 ! f o r modi f i ed g rav i ty
74

75 ! ! ! ! ! i nputs used in subrout ine s
76 ! ! mass r a t i o q= M1/M2
77 x c t r l ( 1 ) = 0 .5 d0
78 ! ! o r b i t a l s epa ra t i on o f the binary in s o l a r r a d i i
79 x c t r l ( 2 ) = 6 .23 d0
80

81

82

83 mix ing l ength a lpha = 2 .0
84 u s e Ledoux c r i t e r i on = . f a l s e .
85

86

87 overshoot scheme (1 ) = ’ step ’
88 over shoot zone type (1 ) = ’ burn H ’
89 ove r shoo t z one l o c (1 ) = ’ core ’
90 ove r shoo t bdy loc (1 ) = ’ top ’
91 ov e r shoo t f (1 ) = 0 .35
92 ove r shoo t f 0 (1 ) = 0.05
93

94

95 ! s o l v e r
96 ! op t i ons f o r energy conse rva t i on ( s ee MESA V, Sec t i on 3)
97 energy eqn opt ion = ’ eps grav ’
98

99

100 u s e g o l d t o l e r a n c e s = . f a l s e .
101

102

103 ! output i n t e r v a l
104 t e rm i n a l i n t e r v a l = 1
105 h i s t o r y i n t e r v a l = 1
106 p r o f i l e i n t e r v a l = 1
107 max model number = −1
108 max num prof i le models = 10
109 pho t o d i g i t s = 5
110 pho t o i n t e r v a l = 50
111 / ! end o f c on t r o l s name l i s t

Listing B.1: sample inlist for method 1

1 &s t a r j o b
2 ! s e e s t a r / d e f a u l t s / s t a r j o b . d e f a u l t s
3

4

5

6 ! beg in with a pre−main sequence model
7 c rea te pre ma in sequence mode l = . f a l s e .
8
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9

10 ! save a model at the end o f the run
11 save model when terminate = . t rue .
12 save mode l f i l ename = ’ l a s t .mod ’
13

14

15

16 wr i t e p r o f i l e when t e rm ina t e =. t rue .
17 f i l e n ame f o r p r o f i l e wh en t e rm i n a t e =’ p r o f i l e l a s t . data ’
18 new ro t a t i o n f l a g = . t rue .
19 c h a n g e i n i t i a l r o t a t i o n f l a g = . t rue .
20 ! d i s p l ay on−s c r e en p l o t s
21 p g s t a r f l a g = . f a l s e .
22

23

24

25 c h a n g e i n i t i a l n e t = . t rue . ! switch nuc l ea r r e a c t i on network
26 new net name = ’ pp and cno ext ras . net ’
27 auto extend net = . t rue .
28 h he net = ’ pp and cno ext ras . net ’
29 co ne t = ’ co burn . net ’
30 adv net = ’ approx21 . net ’
31 save photo when terminate = . t rue .
32

33

34

35 / ! end o f s t a r j o b name l i s t
36

37

38 &eos
39 ! eos opt i ons
40 ! s e e eos / d e f a u l t s / eos . d e f a u l t s
41

42 / ! end o f eos name l i s t
43

44

45 &kap
46 ! kap opt ions
47 ! s e e kap/ d e f a u l t s /kap . d e f a u l t s
48 use Type2 opac i t i e s = . t rue .
49 Zbase = 0.02
50 k a p f i l e p r e f i x = ’OP gs98 ’
51 kap lowT pre f ix = ’ lowT fa05 gs98 ’ ! f o r lower temperatures .
52

53

54 / ! end o f kap namel i s t
55

56

57 &con t r o l s
58 ! s e e s t a r / d e f a u l t s / c on t r o l s . d e f a u l t s
59

60 ! s top when photosphere r i s g r e a t e r than t h i s l im i t , in Rsun un i t s
61 pho to sphe r e r uppe r l im i t = 2
62 i n i t i a l z = 0 .02
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63

64

65

66 ! t o l e r an c e o f stop
67

68 when to s top a to l = 0 . d0
69 when to s t op r t o l = 0.001 d0
70

71

72 ! atmosphere
73 atm option = ’T tau ’
74 atm T tau re l a t i on = ’ Eddington ’
75 atm T tau opac ity = ’ f ixed ’
76

77

78

79 ! op t i ons f o r energy conse rva t i on ( s ee MESA V, Sec t i on 3)
80 max abs r e l run E er r = −1
81

82 mix ing l ength a lpha = 2 .0
83 u s e Ledoux c r i t e r i on = . f a l s e .
84

85

86

87

88 overshoot scheme (1 ) = ’ step ’
89 over shoot zone type (1 ) = ’ burn H ’
90 ove r shoo t z one l o c (1 ) = ’ core ’
91 ove r shoo t bdy loc (1 ) = ’ top ’
92 ov e r shoo t f (1 ) = 0 .35
93 ove r shoo t f 0 (1 ) = 0.05
94

95

96

97 ! s o l v e r
98 ! op t i ons f o r energy conse rva t i on ( s ee MESA V, Sec t i on 3)
99 ! ene rgy eqn opt ion = ’ eps grav ’

100 energy eqn opt ion = ’ dedt ’
101 u s e g o l d t o l e r a n c e s = . t rue .
102

103

104 ! output i n t e r v a l
105 t e rm i n a l i n t e r v a l = 1
106 h i s t o r y i n t e r v a l = 1
107 p r o f i l e i n t e r v a l = 1
108 max model number = −1
109 max num prof i le models = 10
110 pho t o d i g i t s = 5
111 pho t o i n t e r v a l = 50
112

113

114

115
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116 / ! end o f c on t r o l s name l i s t

Listing B.2: sample donor star inlist for methods 2 and 3

1 &binary j ob
2

3 i n l i s t n ame s (1 ) = ’ i n l i s t 1 ’
4 i n l i s t n ame s (2 ) = ’ i n l i s t 2 ’
5

6 c h a n g e i g n o r e r l o f f l a g = . t rue .
7 c h a n g e i n i t i a l i g n o r e r l o f f l a g = . t rue .
8 n ew i g n o r e r l o f f l a g = . t rue .
9

10 e v o l v e bo th s t a r s = . f a l s e .
11

12 / ! end o f b ina ry j ob name l i s t
13

14 &b ina r y c on t r o l s
15 t e rm i n a l i n t e r v a l = 100
16

17 m1 = 1.0 d0 ! donor mass in Msun
18 m2 = 2 . d0 ! companion mass in Msun
19 i n i t i a l p e r i o d i n d a y s = −3.9d0
20

21 i n i t i a l s e p a r a t i o n i n R s u n s = 6.23
22 i n i t i a l e c c e n t r i c i t y = 0 .0 d0
23 d o t i d a l c i r c = . t rue .
24 ! ! ! ! ! ! ! ! i f RLOF, i t ’ l l j u s t stop
25 t e rm i n a t e i f i n i t i a l o v e r f l o w = . t rue .
26

27 mdot scheme = ’ roche lobe ’
28

29 l im i t r e t en t i on by mdot edd = . t rue .
30

31 max t r i e s t o a ch i e v e = 50
32

33 do jdo t g r = . f a l s e .
34 do jdot ml = . t rue .
35 d o j d o t l s = . f a l s e .
36 do jdot mi s s ing w ind = . f a l s e .
37 do jdot mb = . f a l s e .
38

39

40 do t i d a l s yn c = . f a l s e .
41

42 d o i n i t i a l o r b i t s y n c 1 = . f a l s e .
43

44

45 / ! end o f b i n a r y c on t r o l s name l i s t

Listing B.3: sample binary controls inlist for method 2

1 &binary j ob
2
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3 i n l i s t n ame s (1 ) = ’ i n l i s t 1 ’
4 i n l i s t n ame s (2 ) = ’ i n l i s t 2 ’
5 c h a n g e i g n o r e r l o f f l a g = . t rue .
6 c h a n g e i n i t i a l i g n o r e r l o f f l a g = . t rue .
7 n ew i g n o r e r l o f f l a g = . t rue .
8 e v o l v e bo th s t a r s = . f a l s e .
9

10 / ! end o f b ina ry j ob name l i s t
11

12 &b ina r y c on t r o l s
13 t e rm i n a l i n t e r v a l = 100
14

15 m1 = 7.0 d0 ! donor mass in Msun
16 m2 = 3.5 d0 ! companion mass in Msun
17 i n i t i a l p e r i o d i n d a y s = −3.9d0
18

19 i n i t i a l s e p a r a t i o n i n R s u n s = 45.45
20 i n i t i a l e c c e n t r i c i t y = 0 .0 d0
21 d o t i d a l c i r c = . t rue .
22 ! ! ! ! ! ! ! ! i f RLOF, i t ’ l l j u s t stop
23 t e rm i n a t e i f i n i t i a l o v e r f l o w = . t rue .
24

25 mdot scheme = ’ roche lobe ’
26

27 l im i t r e t en t i on by mdot edd = . t rue .
28

29 max t r i e s t o a ch i e v e = 50
30

31 do jdo t g r = . f a l s e .
32 do jdot ml = . t rue .
33 d o j d o t l s = . f a l s e .
34 do jdot mi s s ing w ind = . f a l s e .
35 do jdot mb = . f a l s e .
36

37 do t i d a l s yn c = . t rue . ! ! ! f o r case 2 f a l s e
38

39 sync type 1 = ’ Instantaneous ’
40

41 sync mode 1 = ’Uniform ’
42

43 d o i n i t i a l o r b i t s y n c 1 = . t rue . ! ! ! f o r case 2 f a l s e
44

45

46 / ! end o f b i n a r y c on t r o l s name l i s t

Listing B.4: sample binary controls inlist for method 3

1 &s t a r j o b
2 ! s e e s t a r / d e f a u l t s / s t a r j o b . d e f a u l t s
3

4 ! beg in with a pre−main sequence model
5 c rea te pre ma in sequence mode l = . f a l s e .
6 ! s e t u n i f o rm i n i t i a l c ompo s i t i o n =. t rue .
7 ! i n i t i a l z f r a c s = 3
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8

9

10 ! save a model at the end o f the run
11 save model when terminate = . t rue .
12 save mode l f i l ename = ’ v1309 l a s t .mod ’
13

14 wr i t e p r o f i l e when t e rm ina t e =. t rue .
15 f i l e n ame f o r p r o f i l e wh en t e rm i n a t e =’ p r o f i l e v 1 3 0 9 l a s t . data ’
16

17 ! c on t r o l the output
18 h i s t o r y c o l umn s f i l e = ’ h i s to ry co lumns . l i s t ’
19 p r o f i l e c o l umn s f i l e = ’ p r o f i l e c o l umns . l i s t ’
20

21 ! d i s p l ay on−s c r e en p l o t s
22 p g s t a r f l a g = . t rue .
23

24

25 c h a n g e i n i t i a l n e t = . t rue . ! switch nuc l ea r r e a c t i on network
26 new net name = ’ pp and cno ext ras . net ’
27 auto extend net = . t rue .
28 h he net = ’ pp and cno ext ras . net ’
29 co ne t = ’ co burn . net ’
30 adv net = ’ approx21 . net ’
31

32

33 / ! end o f s t a r j o b name l i s t
34

35

36 &eos
37 ! eos opt i ons
38 ! s e e eos / d e f a u l t s / eos . d e f a u l t s
39

40 / ! end o f eos name l i s t
41

42

43 &kap
44 ! kap opt ions
45 ! s e e kap/ d e f a u l t s /kap . d e f a u l t s
46 use Type2 opac i t i e s = . t rue .
47 Zbase = 2d−2
48 k a p f i l e p r e f i x = ’OP gs98 ’
49 kap lowT pre f ix = ’ lowT fa05 gs98 ’ ! f o r lower temperatures .
50

51

52 / ! end o f kap namel i s t
53

54

55 &con t r o l s
56 ! s e e s t a r / d e f a u l t s / c on t r o l s . d e f a u l t s
57

58 ! s t a r t i n g s p e c i f i c a t i o n s
59 i n i t i a l m a s s = 1 .52 ! in Msun un i t s
60 i n i t i a l z = 0 .02
61
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62 ! when to stop
63 ! max age=2.4488+09
64 max yea r s f o r t imes t ep = 1 . e7
65

66

67 ! wind
68 hot wind scheme = ’Vink ’
69 cool wind RGB scheme = ’ Reimers ’
70 cool wind AGB scheme = ’ Blocker ’
71 Vink s c a l i n g f a c t o r = 0 .1 d0
72 Re ime r s s c a l i n g f a c t o r = 0 .1
73 B l o c k e r s c a l i n g f a c t o r = 0 .5
74 RGB to AGB wind switch = 1d−4
75 c o o l w i nd f u l l o n T = 0 .8 d4
76 ho t w ind fu l l on T = 1 .2 d4
77

78 ! atmosphere
79 atm option = ’T tau ’
80 atm T tau re l a t i on = ’ Eddington ’
81 ! a t t en t i on : the f i t t e d enve lope were obta ined with Eddington opt ion

above
82 ! which atm option = ’ photosphere tab l e s ’
83

84

85

86 ! r o t a t i on
87

88 ! e lement d i f f u s i o n
89

90 ! mlt
91 ! convect ion s e t up
92 ! d e c r ea s e o f mixing l ength makes V1309 Sco progen i t o r c o o l e r at the

same rad iu s
93 ! va lue 1 .88 reproduces as in the paper
94 mix ing l ength a lpha = 1.88
95 u s e Ledoux c r i t e r i on = . t rue .
96 a lpha semiconvect i on = 0.001
97

98 overshoot scheme (1 ) = ’ step ’
99 over shoot zone type (1 ) = ’ any ’

100 ove r shoo t z one l o c (1 ) = ’ core ’
101 ove r shoo t bdy loc (1 ) = ’ top ’
102 ov e r shoo t f (1 ) = 0 .35
103 ove r shoo t f 0 (1 ) = 0.05
104

105

106 us e o the r cg r av = . t rue .
107 ! s top when photosphere r i s g r e a t e r than t h i s l im i t , in Rsun un i t s
108 pho to sphe r e r uppe r l im i t = 3 .70
109

110 ! t o l e r an c e o f stop
111

112 when to s top a to l = 0d0
113 when to s t op r t o l = 0.001 d0
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114

115

116 ! ! ! ! ! i nputs used in subrout ine s
117 ! ! mass r a t i o q= M1/M2
118 x c t r l ( 1 ) = 10 . d0
119 ! ! o r b i t a l s epa ra t i on o f the binary in s o l a r r a d i i
120 x c t r l ( 2 ) = 6 .4 d0
121

122

123 ! mixing
124

125 ! t imes teps
126 l i m i t f o r r e l e r r o r i n e n e r g y c o n s e r v a t i o n = 1d−5
127 h a r d l im i t f o r r e l e r r o r i n e n e r g y c o n s e r v a t i o n = 1d−3
128 va r c on t r o l t a r g e t = 1d−4
129 d e l t a l g T e f f l i m i t = 0.0003 d0
130 d e l t a l gT e f f h a r d l im i t = −1
131 de l t a l gL l im i t L m in = −100
132 d e l t a l g L l im i t = 0.001 d0
133 d e l t a l gL h a r d l im i t = −1
134

135 ! mesh
136

137 ! s o l v e r
138 ! op t i ons f o r energy conse rva t i on ( s ee MESA V, Sec t i on 3)
139 energy eqn opt ion = ’ eps grav ’
140 u s e g o l d t o l e r a n c e s = . t rue .
141 max abs r e l run E er r = 1 . e10
142

143 ! output i n t e r v a l
144 t e rm i n a l i n t e r v a l = 1
145 h i s t o r y i n t e r v a l = 1
146 p r o f i l e i n t e r v a l = 1
147 max model number = 5000
148 max num prof i le models = 50
149 / ! end o f c on t r o l s name l i s t

Listing B.5: sample inlist for method 1 for the case of V1309 Scorpii
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