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ABSTRACT

The three-dimensional flow pattern and heat transfer
characteristics of sguare section, rotating, closed
thermosyphons were explored using the SIMPLE-C algorithm to
solve the three-dimensional Navier-Stokes eguations under
steady, laminar flow conditions. The effects of Rayleigh
number, Ekman number, Prandtl number, gravity and
eccentricity on the behaviour of radial, eccentric and
concentric thermosyphons were revealed.

The flow pattern in a radial thermosyphon consists of
an annular refluent flow near the two closed ends combined
with a bifilamental flow in the mid length region. A
distinctive feature of the rotating radial thermosyphon 1is
that the Coriolis force may flatten the axial velocity
profile, making it look almost two-dimensional.

In an eccentric thermosyphon, a bifilamental main
circulation is formed; superimposed on that is an S-shaped
secondary flow induced near the ends by buoyancy and
Coriolis forces. This secondary flow modifies the main flow
profile.

As expected, the flow pattern of a concentric
thermosyphon consists of a central core in which hot fluid
moves towards the cold end and an annular flow in which cold
fluid moves towards the hot end. Under the influence of the
Coriolis force,a converging ring flow {(at the hot end) and a

diverging ring flow (at the cold end) are formed.



The plots of Nu~Ra indicate that an impeded regime
succeeds the conduction regime for all the three
thermosyphons; and they suggest th:* a boundary layer regime
succeeds the 1impeded regime in radial and eccentric
thermosyphons at least.

When Ek decreases. the heat transfer rate has a maximum
for the radial thermosyphon, whereas the heat transfer rates
decrease monotonically for eccentric and concentric
thermosyphons. At about Ek=104, the heat transfer rate for
all the three types begin to drop quickly when Ek decreases
further. It seems that the flow regime is defined by both Ra
and Ek. As the Ekman number decreases, the Coriolis force
plays a bigger role.

Flow patterns and Nusselt numbers are almost the same
for Pr>>1. For liquid metal (Pr=0.01), however, flow is much
more vigorous, and Nu is lower.

As gravity becomes important, the heat transfer rate is
higher, and the flow pattern may be modified accordingly.

When eccentricity becomes smaller, the heat transfer
rates are lower due to a weaker body force field. The heat

transfer rate of the concentric thermosyphon is the lowest.
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1. INTRODUCTION

The origin of the name "thermosyphon" is uncertain: the
name appeared as early as 1928 in the sales literature of
Deere and Co. to describe their cooling system. However, the
idea was used by members of the Perkins family in the early
19th century in their boilers and other heat distribution
systems [1] ‘.

The thermosyphon is a circulating fluid system designed
to transfer heat from one place to another, and is driven by
thermal buoyancy forces. A temperature difference between
the two end parts of the thermosyphon is all that 1is
reguired for continuous operation; lechanical 1inputs are
excluded.

According to the nature of the confining boundaries,
the number or type of phases, and the nature of the body
forces, thermosyphons can be categorized as (a) open or
closed; (b) tubular or loop; (c) single-phase or two-phase;
(d) gravitational or rotational.

In the literature, there is some confusion between the
thermosyphon and the heat pipe. Actually, the heat pipe is
similar in construction to the thermosyphon; in the heat
pipe a wick is fixed to the inside surface of a tube, and
the flow 1is driven by capillary forces. The wick is an
integral and important part of a heat pipe. A system without

a wick should be considered a thermosyphon.

‘References are given numerically.

1



Some common industrial applications of the thermosyphon
include gas turbine blade cooling, electrical machine rotor
cooling, nuclear reactor cooling, heat exchangers, and
cooling for internal combustion engines. Some other
applications of thermosyphons include preservation of
permafrost, cryogenic cool-down apparatus, and steam tubes
for bakers' ovens. Because of the variety of thermosyphon
characteristics, numerous future applications could be added
to the list.

Probably the best known application of the rotating
thermosyphon, especially in their early days, is turbine
blade <cooling where the centrifugal acceleration is
responsible for creating a body force field. H. Holzwarth
first proposed this application in 1938 [2]. E. Schmidt [3]
was the first one to build an experimental apparatus to
carry out an experiment with a thermosyphon cooling rotor
blade. Later developmental work was reported by H. Cohen and
F.J. Bayley [4] on closed and open radial thermosyphons used
in blades cooling.

Another application of the rotating thermosyphon is in
electrical machine rotor cooling [5,6,7]. Both concentric

and eccentric types of thermosyphon were suggested in such

applications,



1.1 LITERATURE REVIEW

The thermosyphon literature is extensive. A very good
review paper has been written by D. Japikse [1]. A book, The
Tubular Thermosyphon: Variations On a Theme, by G.S.H. Lock
will soon be available [8]. Some research works on ratural
convection in enclosures are also relevant to this topic:
for example, the review paper by I. Catton [9].

Most of the previous work has been experimental. Some
empirical relations were given under different conditions.
Though the empirical relations are helpful in obtaining a
preliminary idea about the flow regime, and useful i
industrial design, they are not very useful in helping us
understand detailed flow structures and the real physical
process that may 1lead to the future improvement of the
device.

in the next section, a review of previous work on the
single-phase, closed, laminar flow thermosyphon will be

made. Emphasis will be given to understanding of the flow

structures.

1.1.1 Stationary Closed Thermosyphon

Initial contributions to this topic paid little
attention to internal flow patterns. Lock [10] and Bayley
and Lock [11] reported the first comprehensive experimental
and analytical study of the closed vertical thermosyphon
where emphasis was given to the type of midtube exchange

mechanism and the effect of Prandtl number and aspect ratio



on heat transfer. In order to interpret their experimental
results, Lock proposed a model with three idealized exchange
mechanisms for the midtube region. When the Rayleigh number
is beyond a "critical" value, as in a layer of fluid heated
from beneath, there is an upward core flow with a refluent
annular downward flow in the top half of the tube; in the
bottom half of the tube, there is a downward core flow with
a refluent annular upward flow. In the middle region, Lock
suggested three exchange mechanisms coupling the two parts,
as shown 1in Figure 1.1. At 1low values of the Rayleigh
number, becith anrular flows return to their own cores,
allowing only conduction across the interface. The second
mechanism , *termed "convection", assumes the annular flow
from the bottom half becomes the top half upward core flow,
while the annular flow from top half becomes the bottom half
downward core flow. The third exchange mechanism, "mixing",
presupposes a violent collision of the opposing streams.
Lock further noted that he expected in practice that the
actual coupling mechanism would probably contain elements of
each of the idealized cases.

Japikse [12], Japikse, Jallouk & Winter [13], and
Japikse & Winter [14] performed detailed experimental
studies of a closed vertical thermosyphon with a circular
horizontal cross-section. The fundamental flow process, in
the sense of stable laminar flow, was observed to exist, as
indicated in Figure 1.2. Flow visualization showed that the

midtube exchange mechanism consists of individual streams of



*[ot] %201 £q paisabbns swstueyoaw Ibueyox?d 9’31yl |*| Iinbig

burxip UO01498AU0) o1} INPUO)

28 3ﬂ M

P

[ V y y M!Uu i
) g ﬁ
~m,..N4m... v/ ' i
4’5 43 Py - -

M) ' 1/ ﬁw peen,
ﬁ o
.!’

\ \ r o : A
o

y




ascending hot and descending cold fluid crossing the
mid-height plane. The flow streams approach the opposite
annular flow and are subseguently bent into a horizontal
direction so that they proceed radially toward the tube
center. At the centerline they are diverted once again
continuing in their original axial direction, and thus
forming a cluster of warm (or cool) streams in the cool (or
warm) tube halves. The number of streams increases with
Rayleigh number. As few as two up and two down, and as many
as ten up and ten down were observed depending on the
Rayleigh number and the Prandtl number. The Prandtl number
was found to be quite important for describing flow
stability. Generally, the flow 1is stable for Pr>90 and
unstable for Pr<20,

A three dimensional numerical study was made of the
laminar flow in a c¢losed thermosyphon of sguare cross
section by Mallinson et al.[15]. Good agreement was obtained
between the finite-difference solution and the experimental
visualizat.uns of Japikse et al. [13] and themselves. The
solution for a high Prandtl number fluid identified a
conduction regime with a weak toroidal flow, and a
convectic~, regime in which an increasing number of
individual ttreams cross the mid-height plane with
increasing Rayleigh number. Transitions from toroidal
conduction flow to two-stream convection flow, two-stream to
four-stream flow and four-stream to six—-stream flow were

revealed.
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Three dimensional buoyancy driven flows 1in vertical
cylindrical tubes were also simulated with a finite
difference technique by Crespo et al. [16]. The complex
three dimensional flow structure of the asymmetric regime
with a range of moderate (1~4) aspect ratios was analysed
and displayed graphically, as shown in Figure 1.3. The flow
patterns were similar to those of Mallinson et al. [15].

Lock & Zhao [17] conducted a three dimensional
numerical study cof the laminar flow field in a water-filled,
square-section, closed tube thermosyphon with an aspect
ratio 5. The effect of altering the longitudinal temperature
profile imposed on the 1long wall was revealed. In the
vertical position, a refluent flow appeared at both ends and
a pair of opposed filaments was retained in the central
region, but a significant change occurred near the mid
height position where it was observed that local symmetry of
the bifilamental flow was exhibited with respect to a
diagonal plane as shown in Figure 1.4. By altering the
longitudinal temperature distribution, a Bénard cell in each
end was found with 1large end temperature gradients and
smaller central gradients; an extended annular refluent flow
over a greater length of the tube was found with large
central gradients and nearly isothermal end regions.

Due to the importance of <convection in thermal
insulation, metal casting and crystallization phenomena, the
problem of buoyant circulation in a slender horizontal

cavity has also received much attention. The works of



Figure 1.3 Three-dimensional velocity field

obtained by Crespo et al. [16].



Figure 1.4 Axial velocity profile from numerical

results by Lock and Zhao [17].
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Cormack, Leal & Imberger [18], Cormack, Leal & Seinfield
[19] and 1Imberger [20] provide an appropriate point of
departure. These were analytic, numerical and experimental
studies of a two dimensional closed rectangular cavity with
the two end walls being held at different temperatures and
the side walls being adiabatic. The characteristic flow
structure within these slender cavities was revealed: a
central bifilamental core region of essentially parallel
opposite flows joins two end regions. These findings were
supported later by the analysis of Bejan & Tien [21,22]
using conducting side walls. A schematic of the flow is
shown in Figure 1.5.

Ostrach, Loka & Kumar [23] conducted an experimental
study which extend the above observations on two-dimensional
cavities to higher Rayleigh numbers and lower sienderness
ratios. They not only confirmed the existence of a
bifilamental core region, but also discovered secondary
cells in the end regions for slenderness ratios less than 5.

Experimental results for free convective flow of gases
in a2 horizontal cylinder with different end temperatures and
a linear temperature distribution along the side wall were
reported by Schiroky & Rosenberger [24] wusing a laser
Doppler anemometer. It was found that the velocity profiles
in the central region near the mid-length point were the
same as expected from two-dimensional models, at least for
low Rayleigh numbers; for the end regions, pronounced

three-dimensional flow behaviour was observed. Smutek et al.
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[25] conducted a three-dimensional numerical simulation in a
horizontal cylinder, and discovered similar flow patterns.

Later, Bontoux et al. [26] carried out a more detailed
three-dimensional numerical study of flows in circular
cylindrical cavities. They revealed the existence of a
paired vortical secondary flow in the mid plane as shown in
Figure 1.6. In particular, they were able to reconcile the
longitudinal primary circulation, driven by the difference
in end wall temperatures, with the lateral secondary
circulation, driven by radial temperature gradients.
Subsequently, Bontoux et al. [27] cystematically organized
previous results, by comparing the two-dimensional
approximation results and the three-dimensional analysis, to
emphasize the inherently three-dimensional character of the
flow in cylindrical tubes.

Recently, Han [28], Lock & Han [29], Lock & 2Zhao [30]
performed three—dimensional numerical studies on buoyant
laminar flows in an inclined, square-section cavity.
Complete heat transfer curves from the conduction regime to
the impeded flow regime were given. It was found that a
secondary motion in the form of a vortex pair developed
within the core filament in the impeded regime. Such
secondary flow was found to produce a significant increase
in heat transfer rate. The internal details of the flow
pattern were found to be quite similar to those reported for

a circular cylinder by Bontoux et al. [26].
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1.1.2 Rotating Thermosyphon Simulation

E. Schmidt [3] was the first one to carry out an
experiment using the thermosyphon as a tool for cooling
rotor blades. Later H. Cohen and F.J. Bayley [4] discussed
in detail the advantage of thermosyphon cooling gas turbine
rotor blades. Two experiments were conducted. In the first,
a rotating apparatus was used to give gualitative
indications of the effectiveness of the system; and in the
second a static rig was used to study the detailed heat
transfer mechanism.

The Pametrada project reported by Brown [31] gave some
information concerning rotational effects on closed
thermosyphon performance. A liquid metal cylindrical closed
thermosyphon was tested. Temperature variations between the
two ends of the thermosyphon were attributed to Coriolis
forces but were not of a significant magnitude to affect
heat transfer.

Ogale [32] investigated a rotating closed thermosyphon
for turbine blade cooling with variable diameter holes., He
measured heat transfer rates for cylindrical and airfoil
cross sections filled with a liquid metal.

Japikse et al. [12,13] conducted a static study of an
closed thermosyphon inclined from the vertical to simulate
rotation. The gravitational acceleration may then be
resolved into two compcnuents, one parallel to the tube axis
and one normal to it. Visualization studies were made with a

transparent apparatus tilted so that the centerline of the
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thermosyphon was inclined up to 18° from the vertical.
Experiments showed that the initial effect of inclination
was to cause a gradual rearrangement of the convective
exchange mechanism at the vertical position. For inclination
angles larger than 12°, the bifilamental flow at the central
region almost extended to the two ends.

Bontoux et al. [33] and Lock and zZhao [17] conducted
three dimensional numerical studies of a thermosyphon
inclined up to 30° degree from vertical. A flow pattern for
the inclined thermosyphon was revealed: a deep refluent flow
appeared near both ends but a pair of opposed filaments was
retained in the central region. Thus, in the lower (hotter)
region of the tube, a descending core of cold fluid was
balanced by an annulus of warmer ascending fluid which
gradually merged into a single filament flowing along the
centre of the top half. This model 1is consistent with

experimental observations [12,13,34].

1.2 PURPOSE AND SCOPE OF THIS WORK

Up to now, there appears to be no theoretical wqu
directly related to the study of fluid flow and heat
transfer in single-phase rotating thermosyphons. The details
of the flow patterns are uncertain except for some knowledge
of tilted stationary thermosyphons. The purpose of present
work 1is to wuse the SIMPLE-C algorithm to explore the
single-phase, square section, closed tube thermosyphon under

laminar, rotating conditions numerically. Detailed flow
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patterns will be described for radial, eccentric and
concentric thermosyphons rotating about a vertical axis. The
effects of Rayleigh number, Ekman number, Prandtl number,
gravity and eccentricity on flow pattern and heat transfer
rate are revealed. In particular, the influence of the

Coriolis force is discussed in detail.



2. FORMULATION AND METHOD OF SOLUTION

2.1 GEOMETRY AND COORDINATE SYSTEM

The problems were cast as natural convection in a
square-section rectangular cavity rotating steadily in three
different configurations: radial, eccentric and concentric,
as shown in Figqures 2.1, 2.2, 2.3, respectively. The
geometry of the thermosyphon is specified by three lengths:
S in the X direction, L in the Y direction, and D in the Z
direction. We <can define two dimensionless parameters,
aspect ratios, to describe the geometry of the thermosyphon.
The length D in the Z direction is chosen as the reference
length because D is the "diameter" of the tube for all the
three configurations; thus A, = S/D and A, = L/D are the two
aspect ratios in the X and Y directions respectively. The
coordinate system is fixed to the thermosyphon as indicated
on the figures. The rotating vector Q is parallel to the
X-direction, and the gravitational vector is in the negative
X-direction. & is the radial distance from the rotating axis
to the plane Y¥=0. In the concentric thermosyphon, & egquals
to -L/2.

For the radial thermosyphon, the temperature of the
surface Y=0 was fixed at a uniform low temperature T_; the
temperature of Y=L surface was fixed at wuniform high
temperature T,. For the other four surfaces X=0, X=§S, Z=0,
and 2=D, the temperature was assumed to vary linearly with

Y.
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Figure 2.3 Orientation and coordinate system

for concentric thermosyphon.
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For the eccentric and concentric thermosyphons, the
temperature of the surface X=0 was fixed at a uniform higﬁ
temperature T,, while that of X=S was fixed at a uniform low
temperature T,. At the other four surfaces Y=0, ¥=L, 2Z=0,
2=D, the temperature varied linearly with X. Thus the
boundary temperature was uniform at the ends and around the

circumference at any given section.

2.2 FORMULATION OF THE PROBLEM

I1f the Eckert number is small, the viscous dissipation
and compression work in the energy eqguation may Dbe
neglected. For natural convection in rotating system, the

scale of velocity may be written as V€=BATQQRD; then

\Y _ BATQ'®RD _ BR°RD
CAT - CAT =~ C

p

The new group BQ%EVTP has been called Ostrach number [44].
The typical range of Ostrach number for most fluid is from
107° to 107® at the largest.

For a newtonian fluid at constant rotating speed @, the
equations for conservation of mass, momentum and energy

under rotation conditions can be written as [42]:

=S
+
L)
<
<
]
o

(2.1)

= + 2p OxV + p Qx(OxT)

~VP + pg- u Vx(VxV) (2.2)



pc. 2L _  vir

o Bt (2.3)

The D/Dt 1is the material derivative which consists of
contributions from both the local and convective time rate
of change. The r is the displacement vector from the axis of
rotation.

It should be noted that, generally speaking, the
physical properties of fluid in the above equations are
functions of the temperature and pressure. It is difficult
to solve such equations exactly. Some more assumptions have
to be made to simplify the situation.

The Boussinesqg approximation is used here to simplify
the problem, that is,

(1) The density variation is taken tc ve negligible except
where the body force field is concerned. (The p&x(Qxr)
term in (2.2) is treated as a body force field, even
through strictly speaking it is an inertial term.)

(2) Other physical properties of the fluid are treated as
constant.

The general discussion of the validity of the Boussinesg

approximation: can be found in references [35,36,43]. The

most demanding conditions are

BAT < 0.1, aldT < 0.1 (2.4)

where
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Q

a = ——(35), {2.5)

aT

P

are the thermal expansion coefficient and relative viscosity
change with respect to temperature. The buoyancy terms
consist of both the rotational and gravitational effects,

and can be written as

po [g - Qx(8xr)] - pB(T-Ty) g - Qx (8xr)] (2.6)

where T, is the reference temperature:

T, = 0.5(T, + T.) (2.7)

The pressure may be split into two (static and dynamic)

parts,

P = P, + P, (2.8)
where the hydrostatic part, P,, 1s going to balance the
"head" of fluid, and has no effect on the fluid motion; that
is,

- VP, + p, [g - @x(8xr)] =0 (2.9)
Only the dynamic pressure P,, affects fluid flow.

Finally, under steady state condition, the governing

equations simplify to:



V-V =0

(V-V) V + 2 OxV

= %Vpd - B(T-T,)[g - 8x(¥xE)] + » V¥

T-VT = k V27

(2.10)

(2.11)

(2.12)

The above partial differential egquations can be written

in component form using the Cartesian

indicated in figures (2.1 - 2.3). Thus

g_g * %\—{ + -0
[a;;;z 332;’2 ef’;fz] B(T-T)g
o8 - B} - wE - ha

P B(T-T, )2 (R+Y)
p[a;:z, J’;;“z @;;’2 B(T-Ty) Q% (2-3)

coordinate

+ 20QW

- 29V

system

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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The no-slip boundary conditions at all six walls will

be adopted here for the three components of the velocity,

c
f
<
Il

W =20
at X =0, X =S8, Y=0, Y=L, Z =0, 2 = D.
The temperature boundary conditions for the radial

thermosyphon are:

T =T, at ¥ = 0
T = T, at ¥ = L
T=TL+%(TH-TL) at X =0, X=5, 2 =0, Z =D.

In the eccentric and concentric cases, the temperature

boundary condition is:

T = T,, at X = 0

T = T, at X = 8§

T = T~ 2(T,-T,) at Y=0, Y=L, 2 =0, Z = D.
The linear temperature distribution simulates

conducting walls. In a real situation, the appropriate
condition might be between a linear distribution and an

adiabatic condit. ..

2.3 NON-DIMENSIONALIZATION

Non-dimensionalization will be employed here instead of
normalization due to the complexity of the problem. It is
obvious that there are many choices in selecting a set of
scales for non-dimensionalization. For a rotating

thermosyphon, the non-dimensional variables will be defined

as



x = &
= X
¥y =1
u = U
AvVB(T,-T,)Q° (KR+L)D
v = v
= 2
AYVB(T,=T,)Q" (R+L)D
W
w = 2
VB(T,-T,)Q° (R+L)D
T-T,
¢ = Ty= Ty
Py
p = 7
pB(T,~T,)Q (K+L)D
Substituting the above variables into

(2.13-2.17),

we can write the non-dimensionalized

as follows:

du , dv , 2w _

ax oy Yz =0

LU 4 o2u , . du _ 1 9P

ox 9y az Ai 3x

.;;r 1 2%y 1_2%u 2%u 1
+ [ z t 3 7+ —7 ] ¢
v Ra "a’ 5x A, 3y’ oz AR

WY 4 Gy, Lav ] op

ax oy 3z = p¢ 09y

27

eguations

equations

(2.18)

(2.19)
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2pr;1 @' 1 2%y 2%

+ +
v Ra “al ax’ al a2y’ oz’
R, +
1 1Y 2 2Pr
- (=) + = 6 S w (2.20)
Ay(R1+1)¢ A,V Ra Ek°
ow , 2w , 2w _ 9P
Usx * Vay T Yoz T "oz
+ 2Pr[1 2w 1 3w 182w
v Ra "al ax” a) oy’ a8z’
_ 1 ,2-0.5 _ 2Pr
Ay( R+ 1 )o 22, s 5k Y (2.21)
29 2¢ 29
Uax * Vay T Y3z
_ 2 1 02%°¢ 1 23’ 2%
T v Pr Ra[Ai ox* a2 2y’ oz’ (2.22)
where
B(T,~T, )@’ (&+L)D> . _
Ra = P— is the diameter based Rayleigh
number.

Ek = - is the Ekman number.

D

Pr = % is the Prandtl number.
Q2 (K+L) . . :
R, = -—75——— is the acceleration ratio.
K . ..
R, = T, 1s the eccentricity.
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As a result of non-dimensionalization, five parameters
appear. The Rayleigh number characterizes the relative
importance of the buoyancy and viscous effects. The Ekman
number is a measure of the viscous force compared to the
Coriolis force. The Prandtl number is simply a property of
the fluid and is the relative ability of the fluid to
diffuse momentum versus heat. The acceleration ratio is the
ratio of centrifugal force over the gravity force. The
eccentricity is the ratio of the distance from the rotating
axis to the thermosyphon and the radial 1length of the
thermosyphon.

The non-dimensionalized hydrodynamic boundary
conditions follow as

u=v=w=0, at x=0, x=1, y=0, y=1, z=0, z=1.

While the thermal boundary conditions for radial
thermosyphon are,

¢=-1, at y=0.

¢=1, at y=1.

¢=2y-1, at x=0, x=1, z=0, z2=1,

For eccentric and concentric thermosyphons,
¢=1, at x=0.

p=—1, at x=1.

¢=1-2x, at y=0, y=1, z=0, z=1,.
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2.4 METHOD OF SOLUTION

2.4.1 General Discussion

The governing equations (2.18) to (2.22) form a set of
noniinear elliptic partial differential equations. It is
impossible to use classical analytical methods to solve
these equations in closed form. Fortunately, the development
of numerical methods and the availability of large digital
computers make it possible to solve these egquations
numerically.

There are gquite a few procedures which can be used to
solve the partial differential equations numerically. Two
major classes are the finite difference method and the
finite element method. Finite difference methods have been
well developed for fluid flow and heat transfer. In general,
finite difference methods are attractive for physical
problems with geometrically simple boundaries.

One of the algorithms proven to be valid in solving
convection diffusion problems, especially in three
dimensions, is the SIMPLE-type algorithm [37]. Instead of
using the central difference scheme, or the up-wind scheme,
the power-law scheme is here adopted to solve the convection
and diffusion problems. In a convection-diffusion problem
where the pressure is neither ©prescribed nor given
explicitly by an equation, the continuity equation in the
SIMPLE algorithm 1is transformed into an equation for

pressure.



21

In this study, a modification to the SIMPLE algorithm
(Semi-Implicit Method for Pressure-Linked Equations), the
SIMPLE-C (SIMPLE-consistent) algorithm of Van Doormaal and
Raithby [38] will be used.

2.4.2 Discretization

The full details of derivation are described in
references [37,38]. Only some major steps are given here.

To illustrate the method, if the dependent variable is

denoted by ¥, the general differential equation may be

written as:
V-W =T V¢ + S (2.23)

First the full spatial domain is divided into NxMxL small
rectangular volumes. N is the number of divisions in the X
direction, and M and L are those in the Y and Z directions,

respectively. Integrating the eguation (2.23) over the whole

domain, gives
J\'/-w/ dv = Jr‘vzw av + J S gv (2.24)

One sample finite volume is depicted in Figure 2.4 to
illustrate the evaluation of the integral in (2.24). 1 The
centre point of the finite volume, the calculating point, is
designated as P and the neighboring points as E, W, N, S, T

and B correspondingly. Points on the six surfaces of the



Figure 2.4 A sample finite volume.
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volume are called e. w, n, s, t and b, respectively.

The final discretization equation for the point P in

the form of an algebraic equation can be written as:

ap¥p = ag¥e * ayW, * aW, + agys * apl; + agy, * b (2.25)

where

aE = DeA(IPe|)

aw = DwA(lpwl)

ay = DA(|P,])

ag = DA(|P.])

ar, = DA(|P])

ag = DA(|P,])

b = SaxAyAz

+ MAX(-F.,0) (2.26a)
+ MAX(-F_,0) (2.26b)
+ MAX(-F_,0) (2.26¢)
+ MAX(-F_,0) (2.264)
+ MAX(-F_,0) (2.26e)
+ MAX(-F,,0) (2.26f)

(2.269)
ay + ag + a, + a, (2.26h)

F and D are flow rates and diffusion conductance. They are

defined as



TAyAz
F, = uAylz G, = 7?£?x:

Fw = UUAYAZ :[3w = (5}{)

F, = v AzAx D, = 1%

F, = v _AzAx D = (5
F, = w.AxAy D, = (5z),

raxa
F, = w,AxAy D, = Tg;j%‘

The Peclet number P is taken as the ratio of F and D:

and so on.

34

(2.27a)

(2.27b)

(2.27c¢c)

(2.274)

(2.27e)

(2.27£)

thus,

(2.28)

The power-law formulation for the function A(|P|) is

adopted in the form

A(|P]) = MAX(0,(1-0.1]P])®)

(2.29)

Equations (2.25) for all the nodal points in the domain

thus form a set of linear algebraic equations which can be

solved by using the TDMA algorithm.



2.4.3 Algorithm

It has been noted that the velocities can be obtained
only when the pressure field is given or 1is somehow
estimated. Unless the correct pressure field is employed,
the resulting velocity field will not satisfy the continuity
equation. An imprecise velocity field based on a gquessed
pressure field p' is denoted by u', v', w'. This velocity

field is obtained from the following equations:

aeu: =z anbu:.b + (p;_p; ) Ae + b (2.30a)
anvr: = Z anbv:;b + (P;"p;)An + b (2.30b)
atw: = Z anbw:b + (p;—p;)At + b (2.30c)

Suppose the correct pressure p is

p=p +p’ (2.31)

Where p' will be called the pressure correction. The
coresponding velocity <corrections u', v', w' can be

introduced in a similar way, thus

u=u + u' (2.32a)

v = v 4+ 7 (2.32b)
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W= w + w (2.32c)

Substituting (2.32) into (2.30), and noting that u, v, w

will satisfy eqguations (2.30), gives

a,u, = Za,u) + (p,-p:)Aa, (2.33a)
a,vl = La,vy + (Dh-DiA, (2.33b)
a,w, = Za,w} + (pL-pr)A, (2.33c)

Referring to reference [38], the velocity correction
equations in the SIMPLE-C algorithm are obtained by
subtracting the Z a_ ,u', term from both sides of the
equations, and the term Z a_ (u',-u',) on the righthand

sideis neglected. This yields:

U, = do(pp-pk) (2.34a)

vh = d,(pp-py) | (2.34b)

w, = &,(p,-pr) (2.34c)
where

e
de = a—e_i——a—;—)— (2.35a)



A,

a, = ————an_z 2 (2.35b)
A,

dt = m (2.35c)

To obtain the pressure correction equation, it is

necessary to integrate the continuity equation; thus,
(u.—u,)Ayldz +(v -v_ )AzAx +(w,~w, )AxAy = O (2.36)
Substituting all the velocity components given by the

velocity-correction fomulas (2.32) and (2.34), yields the

pressure correction equations.

8pPp = 8gPy * auPy * 8yD) * agPy * a;p. + aypy * b (2.37)
where

a, = d,AyAz (2.38a)

a, = d,AyAz (2.38b)

a, = d AzAx (2.38c¢)

ag; = d,AzAx (2.384)

a, = d,AxAy (2.38e)



38

a, = d,AxAy (2.38¢£)
a, = a, + a, + ay, + ag + a; *+ a, (2.38qg)
b = (ul-ul)AyAz + (vi-vl)AzAx + (wy—w.)AxAy (2.38h)

It can be seen that the term b 1s essentially the
left-hand side of the continuity eguation (2.36) evaluated
in terms of the starred velocities. I1f the starred
velocities satisfy the continuity equation, b is zero, and
no pressure correction is needed.

A step by step description of the solution procedure

using the SIMPLE algorithm [37] is presented below,

1. Guess the pressure field p'.

2. Solve the momentum equations to obtain u', v' and w'.

3. Solving the pressure correction egquation (2.37) for p°',
by wusing u', v' and w' in the <calcu.ation of

coefficients.

4. Calculate u, v, w from their starred values from
equation (2.32) and equation (2.34). The pressure p is
calculated from equation (2.31).

5. Solve the discretization energy eqguation for
temperature.

6. Use the corrected pressure p as a new gdguessed pressure
p', return to step 2, and repeat the whole procedure

until a converged solution is obtained.
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2.4.4 validity and Accuracy of the Program

The algorithm was embodied in a computer program using
FORTRAN-77 by Jianchiu Han [28] and modified later by the
present author.

As a test of the validity of the program, the same
problem treated by Mallinson & de Vahl Davis [39] (natural
convection in an enclosure with one vertical wall heated and
the opposite wall cooled), was re-calculated by Han [28].
Agreement within 2% in calculating the maximum velocity and
the Nusselt number was obtained.

The heat transferred into and out of the system was
catculated separately throughout the study, all the
difference were within 5%. It is reasonable to believe that
the accuracy of the program using the present mesh size in
the calculation of Nusselt number is within about 5~10%. A
discussion of consistency and accuracy test is presenced in

Appendix A.

2.5 DEFINITION OF NUSSELT NUMBER

The non-dimensionalized heat transfer coefficient, the
Nusselt number, 1is defined as convection heat transfer
coefficiert over pure conduction heat transfer coefficient,
representing how much the heat transfer 1is enhanced by
convection. There are several ways to choose the heat

transfer rate Q and the length H in defining Nu,

_ QO H
Nu = A K AT (2.39)
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For a thermosyphon, the heat transfer rate through all the
walls of the tube is used. For a stable system, the heat in
equals to the heat out. In the numerical calculation of heat
transfer rate Q, a two-node formula was used for the 1local
temperature gradient. The area A 1s chosen as half of the

total wall area of the tube,

A = SL + LD + DS (2.40)

-

"r. order to compare with the pure conduction value, the

~emperature difference AT is taken as
AT = T, - T, (2.41)
And the length H is chosen as the distance from the heated

wall to the cooled wall. For a radial thermosyphon, H = L:

for a eccentric or concentric thermosyphon, H = S.



3. RADIAL THERMOSYPHON

The behaviour of the radial thermosyphon shown in
Figure 2.1 will be studied in this chapter. The effects of
Rayleigh number, Ekman number, Prandtl number, acceleration
ratio and eccentricity on the heat transfer rate and flow
pattern will be explored by using the Nusselt number curve
and primary and secondary flow profiles.

In this case, A, in those governing eguations is fixed
to 1, and A, is fixed at 5. Due to the anticipated
characteristics of the flow, a non-uniform 15x51x15 mesh
network was used with dense grid points applying to the

boundaries near the walls at the X and Z directions.

3.1 THE EFFECT OF RAYLEIGH NUMBER

In this section, the effect of Rayleigh number on the
neat transfer rate and flow pattern will be studied. All
other parameters will be fixed: Ek=5x10"°, Pr=100, R =100,
R,=100.

Because the Rq=92(8+L)/g is 100, the 1influence of
gravity on the system is negligible. The body force is the
centrifugal force only. Since R;=R/L is 100, the body force
created by rotation 1is almost uniform over the whole tube.
Pr=100 implies a relatively viscous fluid. The Ekman number
Ek=v/9D° is chosen to be 5x10° almost the lowest value for
which we can obtain converged solution.

It has been noted that the thermal and hydrodynamic

regimes of the tubular thermosyphon are reflected in the

41
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plot of Nusselt number against Rayleigh number. Figure 3.1
shows such a plot. ItA is evident that convection has a
negligible effect on heat transfer rate for sufficiently low
Rayleigh numbers, but convection eventually appears as the
Rayleigh number increases beyond Ra=10°. The results confirm
the expectation that, beyond the «critical (conduction
maximum) Rayleigh number, the behaviour of the system
spanned two established regimes: impeded and boundary layer.
It seems that the impeded regime lies in a very short range,
and then a boundary layer regime develops.

A previous stationary vertical thermosyphon result [17]
is also plotted in Figure 3.1; in which the Q°(®+L) in the
definition of Ra is replaced by g. It is evident that the
rotating thermosyphon does not give a significantly higher
heat transfer rate for the same Rayleigh number, at least
not for the conditions examined here near Ek=5x10">. This
finding is contrary to the expectation that Coriolis force
would increase the heat transfer rate by increasing the
secondary flow. Inspection of the governing eqguations
reveals that the Coriolis acceleration does increase the
secondary flow (the flow in the 2 direction), but at the
same time it reduces the primary flow (the flow in the Y
direction). The two processes roughly balance each other.

Figure 3.2 shows the velocity field in a longitudinal
horizontal plane (the mid x plane perpendicular to the
rotating axis) for Ra=5x10°. As in a vertical thermosyphon,

this reveals that the deep flow, i.e. near the closed ends,
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has an annular refluent form. In the mid length region,
however, the flow is evidently bifilamental with hot fluid
moving radially inward over the leading face supplying the
core flow in the cooled section while cold fluid moving
radially outward over the trailing face to supply the heated
section core flow. The bifilamental central region occupies
about half of the tube length.

Figure 3.3 illustrates the development of the axial
velocity profile for the same conditions used in Figure 3.2.
It 1is immediately obvious from this figure that the
bifilamental flow gradually develops from the annular flow
near the ends; and it is equally obvious that the annular
flow does not extend around all four sides of the tube, as
in a vertical thermosyphon. The Coriolis acceleration has
flattened the flow, making it look almost two-dimensional. A
similar flattening of the velocity profiles has been
reported by Kheshgi and Scriven [40] and Speziale [41] for
forced flow in rotating rectangular ducts.

The transverse velocity field is provided in Figure
3.4. This secondary motion is caused solely by Coriolis
acceleration. The velocity vectors are almost all in the 2Z
direction, which has the Coriolis force component. Near the
closed {(cooled) end, the flow splits at the centre on the
leading face and begins moving towards the top and bottom
walls. Then the fluid turns around moving towards the
trailing face. On planes progressively further from the end,

two pairs of vortices appear and develop gradually. At the
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mid length plane, there are two symmetric pairs of vortices
mainly in the Ekman layers, the regions near the top and
bottom walls. This behaviour is reminiscent of that observed
in the highly tilted thermosyphons [28,29,30], and is also
reported for forced flow in rotating rectangular channels
[40,41].

The ratio of the magnitudes of main flow velocity to
secondary flow velocity is found to be about one, indicating
that the main flow and the secondary flow have the same
importance on heat transfer. The vortical secondary flow
continuously turns the outside fluid in and the inside £luid
out, making the four side walls heat transfer up to about
80% of the total, as discussed later.

Figures 3.5, 3.6, 3.7 show the wvelocity at the
longitudinal mid » plane, the axial velocity profile and the
transverse veloc:"v field for Ra=2x10". Basically the flow
pattern is the same as for Ra=5x1('. C(onsidering the scale
here is half the scale for Ra=5x10" we conclude that the
flow here is much weaker than the flow at Ra=5x10° as
suggested by the Nu~Ra plot in Figure 3.1. The Nusselt
number is about one third of that at Ra=5x10°. It is
interesting to note that the side wall heat transfer jumps
to 90% of the total, indicating that for lower Rayleigh
numbers, the secondary flow induced by the Coriolis £force
plays an even bigger relative role.

For quite high Rayleigh numbers, Ra=10", the

longitudinal velocity field at the mid x plane, axial
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velocity profile v and transverse velocity field are given
in Figures 3.8, 3.9 and 3.10, respectively. The basic flow
patterns are maintained, while transition to another flow
pattern appears. The bifilamental flow at the mid length
shrinks to about only one third of the tube 1length, and
begins to » . through to form a vortex at the mid length
region. By . .king at the axial velocity profile v in Figure
3.9, it is evident that the symmetry about the mid X plane
is broken; and near the top and the bottom of the tube (that
is within the Ekman layers), the axial velocity shows
maxima. The interesting maxima were also reported by Kheshgi
and Scriven [40] and Speziale [41] for forced convection in
rotating channels. The symmetry about the mid x plane is
also lost in the transverse secondary £low field. Near the
end region; the Ekman layer is more obvious; and in the mid
length region, a complex £flow pattern appears. This also
indicates a transition from this flow pattern to another
more complex, probably unstable flow pattern.

The details of the heat transfer contribution
attributable to each of the five faces are shown in Figure
3.11. As Ra increases, the heat transfer through the leading
face contributes more to the total heat transfer rate. This
is consistent with the finding that the refluent flow at the
end extends as Ra increases. The heat transfer through the
end wall contributes about 20% or less for most Rayleigh

numbers; except at Ra=10", where the end/total ratio is 76%.
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3.2 THE EFFECT OF EKMAN NUMBER

The Ekman number, defined as Ek=u/9D:, represents the
relative importance of the viscous force in relation to the
Coriolis force. The effect of Ek will be tested here with
other parameters fixed. A Rayleigh number of Ra=5x10° will
be chosen as a reference value, and Pr=100, R,=100, R;=100
are the same as in section 3.1.

It might be expected that as the Ekman number
decreases, the heat transfer rate should increase in the
laminar flow region; that is the Coriolis effect would
increase. This was not always true, as illustrated by Figure
3.12. As the Ekman number decreases below 1, indicating a
faster rotating speed and higher Coriolis force, the Nusselt
number increases first, reaches a maximum at about Ek=10f,
and then drops gquickiy. Below about Ek=2x10ﬁ, it was
difficult to get a stable, converged solution. Some
preliminary probing beyond this point suggests that the
system may break from the present flow pattern to several
"cats eye' cells in the main flow; the heat transfer rate
then appears to jump to a very much higher value.

It seems that in order to fully describe the thermal
and hydrodynamic regimes of a rotating thermosyphon, in
addition to the Nu~Ra curve, the plot of Nu~Ek is also
needed. The flow regime is thus a function of both Ra and
Ek. Generally speaking, as the Ekman number decreases, the
Coriolis force plays a bigger role. At the beginning, the

heat transfer rate increases through secondary circulation
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as Ek decreases, while at the same time, the main flow is
retarded. When these two processes balance each other, the
heat transfer rate reaches a maximum. For this regime, we
might call it Coriolis-enhanced regime. As Ek decreases
further, the heat transfer rate decreases quickly due to
reduced main flow. We might name this regime as
Coriolis-impeded.

As Ekman number increase from Ek=5x10" to Ek=2.5x10 °,
the same flow pattern is maintained, as shown 1in Figure
3.13. That is a bifilamental flow at the mid length region
with an annular refluent flow at the two ends. The refluent
main flow near the ends covers all four sides of the tube as
shown in Figure 3.14; the Coriolis effect is obvious in the
secondary flow as indicated in Figure 3.15. Two pairs of
vortices are obtained at the mid 1length plane, and heat
transfer rate reaches a maximum. At this Ekman number and
below, the majority of viscous shear is in the Ekman layers
along *he top and bottom walls.

For Ek=5x10"', the velocity field in the longitudinal
horizontal plane is shown in Figure 3.16. The bifilamental
flow shrinks to about two fifth of the total length, and the
refluent end flow extends and is symmetric about the mid =z
plane. Figures 3.17 and 3.18 show the main flow profile and
the transverse secondary flow. The main flow profile is
quite similar to that observed in stationary thermosyphons
tilted from the vertical [17]. The refluent main flow

extends more around 2ll four sides of the tube, and the
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Coriclis effect is imperceptible in the secondary flow.

3.3 THE EFFECT OF PRANDTL NUMBER

The Prandtl number, v/k, represents the relative
diffusion rates of momentum and heat in the fluid. It 1is
well known that the Prandtl number has 1little effect on
Nusselt number in natural convection when Pr>1.

For Ra=5x10°, Ek=5x10"’, R;=100, R,=100, the curve of
Nusselt number as a function of Prandtl number is given in
Figure 3.19. The Nusselt number 1s almost constant at 4.7
for Prandtl numbers from 1 —_o 00. It drops to about 1 at
Pr=0.01., Compared to Nu=0."t for pure ccnduction, it 1is
still a significant heat transfer rate.

The Nusselt number may be defined as the convection
heat transfer coefficient over the conduction heat transfer
coefficient, 1indicating how much heat transfer may be
attributed to <convection. For small Prandtl numbers,
representing a high thermal conductivity, the increase c¢n
rea: transfer rate due to convection 1s relatively small.

How the Prandtl number alters the flow pattern is hard
to predict. Figure 3.20 shows the velocity field in the
longitudinal mid x plane for Pr=0.01. Considering the scale
is fifteen times that 1in Figure 3.2 for Pr=100, it 1is
evident that the flow 1is very vigorous. The bifilamental
tlow in the central region is greatly extended, and the
annular refluent flow at the two ends shrinks to only one

fifth of the length. The whole flow field looks guite close
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to uni-cellular flow found in the stationary horizontal
thermosyphon.

Small viscosity also represents a low rotation speed
for a constant Ekman number, implying that the influence of
Coriolis effect will be smaller. Figure 3.21 and Figure 3.22
represent the main flow profile and the secondary flow,
respectively. The flattened, two-dimensional shape of the
main flow found before is barely detectable, especially in
the central region. Two maxima appear in the main flow
profile near the end, Basically the secondary flow is the
same as in Figure 3.4 canused by Coriolis force, except at

the mid leny.h region, the flow is not symmetric.

3.4 THE EFFECT OF ACCELERATION RATIO

The above results were _.btained for an acceleration
catio R;df(ﬁ+L)/g=100. The body force field is then created
purely by centrifugal force; gravity is negligible. In this
section, by fixing Sther parameters, l1.e. Ra=5x10",
Ek=5x10"%, Pr=100, R,=100, the effects or gravity on heat
transfer rate and flow will be explored.

When the acceleratior. ratic derreases, gravity becomes
more important for constant of Ra and Ek. It may be expected
that the heat transfer rate will increase as Rg approaches
one due to increased body force field. Figure 3.23 confirms
this trend. Because dgravity acts perpendicular to the main
flow direction, the increase in heat transfer is small. When

Rg decreases from 100 to 1, the heat tran fer rate increases



Figure 3.21 Development of the axial velocity profile

for Pr=0.01, at Ra=5x10', Ek=5x10"°, R,=100, R,=100.
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about 20%.

When R,=1, both the gravity force and the centrifugal
force have the same magnitude, but the centrifugal force
acts in the same direction as the main flcw, whereas the
gravity acts on the secondary flow. Hence as R, decreases,
the primary flow tends to change its orienta*ion. Figure
3.24 clearly 1illustrates the change in o:i.entation. By
comparison with Figure 3.3, it is evident that the indirect
buoyancy forces alter the shape and location of the opposed
filaments in the mid length region and is reflected aiong
the entire length of the tube. wvhe tendency for the Coriolis
torce to generate a two-dimensional flow is thus mcdified by
gravity.

Figure 3.25 reveals how the Coriolis force, acting
tangentially on the 2 direction, combines with gravity,
acting vertically on the X direction, to prcduce a complex
secondary flow pattern. Near the closed end, lateral motion
away from a stagnation point is still observed but thermal
buoyancy augments any downward flow, especially near the
leading face. This distortion continues with increasing
distance from the closed end, but apparently has little
effect on the mid length re. on. The vortices in the mid
length region were found to be slightly anti-symmetric. The
effect of the gravitational acceleration in the midddle of
the thermosyphon is evidently slight, as heralded in the

axial velocity profile.






o

X, U

face

- —_ - - .« . . - .
~ .
.
Y & = * e -_— -- . v . ’
“ W . - - N
1 N ) .
[=S. P N M - - . . N
ot ', N P . R " - .
© *
5] N A ‘ ‘ - -
T . . y . . .
[+¥] v Vb .
— . ’
T ‘1 P - L]
- / - - .
) 3 , B ~e . - . - -
- o » . - .
! . . . . . .
- - - - .
B , . . N - - — — Y . . « . - -
. O
it !
v |
' o

U
/
i
§ \
|

. -
~ vy -
N —_—— e — - . v . - .
T - a4 e N oa .~ e . T e T
L - ~—
o - —_— e e ——— . — » r v v o b o e e e - -
o = = e - o~ - > <« - - h
o doctas - — - ~ -

~

=3
o
o

F = = = = = = T - = T [ = O = T T >
h + - - — — - - - -— ~— "‘1 Y hind —-- - - . - -
. ~ - -~ Y s e
—_— . -
\ \‘ r's - A - - ‘ - -
. » . . Qu‘ Lo .
. .
. \ 13 ’ ¢ ‘ J
v, a ~ - - [J ot ~ -
4 1 o - ’ ’
¢
L)
- B
I - - . . , L e - ~ - . R \
v . . A ]
" ’ . M N N “ _ i . - . « . R
o}
. 0 a [ - ¢
vy f - - - - o " . . . N . ?
’
v‘ ‘l
AR | * t 4 “ ke - - 4 4 v - * M ’ -
L |
v
]
A , “ 7 ! ’ - - N 4 ra S . ! i ’ .
‘ . L1 *
. N - e / 4 ’ R v - / ! t .
l\~ - [} . ’.'\‘ .
. - ” w . - -
e — ~ — L B . t . .-
o.:‘ - —_— —— - v - — e -— PR oM - — — — - B e
P NP = - - - - -~ -— pl Yy obka - - - - N - pa - 4

Figure 3.25 Development of the transverse velocity field

for R,=1, at Ra=5x10°, Ek=5x10", Pr=100, R,=100.
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3.5 THE EFFECT OF ECCENTRICITY

All of above results were obtained for an eccentricity
R,=®/L=100, when the body force field is almost wuniform
along the whole system. Wher the thz.mosyphon is closer to
the rotating axis, the body force is weaker and is no longer
uniform. With the other parameters constant (Ra=5x10%,
Ek=5x10"°, Pr=100, Rg=100), it may be expected, that the
Nusselt number will decrease when the length ratio
decreases. As shown in Figure 3.26, when R,;=1, the Nusselt
number is 77% of that when R,;=100; when R,;=0, the Nusselt
number is 1.86, 40% of that when R;=100.

When R,;=1, both the primary circulation and the main
flow profile are almost the same as for R,=100, except they
are weaker. The secondary flow, as shown in rigure 3.27, is
somewhat different in the mid length region. The mid length
symmetry found for R;=100 is now lost. The pair of vortices
in the hot fluid coming from the cuter end occupies a bigger
area because the body force in the outer end is stronger.

When the R;=0, the cold &nd reaches the axis of
rotation, the main circulation is no longer the same; the
change is illustrated in Figure 3.28. At the cold end, flow
in almost one fifth of the tube length is very weak 1f not
stagnant, and heat 1is transferred by conduction in this
region; the fluid circulates elsewhere. Since the
centrifugal force has a component in the Z direction, the
secondary flow is caused by this component and the Ceoriclis

force; the flow pattern 1s chang ACCCiaLy Uiy A
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illustrated in Figure 3.29.

3.6 CONCLUSIONS

In this chapter, the three dimensional flow structure
and heat transfer properties of a single-phase, radial
thermcsyphon in the laminar flow region were explored with
the axis of rotation vertical.

Basically, the flow Pattern consists of an annular
refluent flow at the two closed ends combined with a
bifilamental flow in the mid length region; hot fluid moves
over the leading face and cold fluid moves over the trailing
face. The distinctive characteristic of the rotating
thermosyphon is that the Coriolis force may flatten the
axial velocity profile, making it look almost
two-dimensional. The secondary motion is caused mainly by
Coriolis acceleration. Two pairs of vortices with strength
mainly in the Ekman layers appear at the mid length region,
reminiscent of the behaviour in a tilted, gravitational
system.

Varying the Rayleigh number does not significantly
alter the flow pattern, except that as Ra increases, the
refluent flow at the two ends extends. At the highest
Rayleigh number, for which we have a converged solution,
transition to a new flow pattern appears.

The plot of Nusselt number against Rayleigh number was
used to reflect the thermal regimes. Above the conduction

maximum Rayleigh number, the behaviour of the system spanned
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two established regimes: impeded and boundary layer. 1t was
found that the rotating thermosyphon does not give a higher
heat transfer rate for this Ekman number range compared to
the stationary thermosyphon.

As Ekman number increases, the flow pattern remains,
but. the flattened two-dimensional main flow srofile
gradually disappears due to the decreasing Coriolis force.
At Ek=5x10"', the flow pattern is quite similar to that
observed in stationary vertical thermosyphon.

As the Ekman number decreases, indicating a faster
rotating speed and higher Coriolis force, the Nusselt number
increases first, reaches a maximum and then drops guickly.
This is because the Coriolis force increase the secondary
flow, but reduces the primary flow at the same time; the two
processes evidently balance each other. It seems that the
thermal and hydrodynamic regimes of a rotating thermosyphon
are defined by both Ra and Ek.

For Pr<<1, the flow is much more vigorous. The
bifilamental flow in the central region is extended, and the
whole flow field 1is quite close to unicellular flow.
Decreasing the Prandtl number will decrease the Nusselt
number. It does not mean a decrease in heat transfer rate,
but implies that the effect of convection is reduced.

By taking gravity into consideration, it was found that
the indirect buoyancy force alters the shape and location of
the opposed filaments in the mid length region and is

reflected along the entire length of the tube. As the
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acceleration ratio becomes one, that means gravity becomes
equally important to the «centrifugal force, the heat
transfer rate increases about 20%.

As expected, reducing the length ratio gives a weaker
flow. For R=0, the 1inner part of the fluid becomes
stagnant, leaving fluid circulating in the outer part of the

tube; the heat transfer rate drops by 60% at R,;=0.



4. ECCENTRIC THERMOSYPHON

In this chapter; fluid flow and heat transfer in the
rotating eccentric thermosyphon, shown in Figure 2.2, will
be studied in the laminar flow regime. The vertical axis of
rotation is parallel to its centre line. The thermosyphon is
heated from below and cooled at the top. When the
thermosyphon rotates, the centrifugal force will create a
body force field similar to that in a horizontal stationary
thermosyphon. The centrifugal force field is thus
perpendicular to the main temperature gradient.

According to the geometry of the thermosyphon, the two
aspect ratios will be set as: A,=5 and A, =1; the axial
length is five times that of the side. A uniform S51x15x15

mesh network was used.

4.1 THE EFFECT OF RAYLEIGH NUMBER

The basic flow pattern and the effect of Rayleigh
number on heat transfer rate and fluid flow will be studied
in this section. All other parameters will be fixed at:
Ek=2x10"%, Pr=100, R,=160 and R,=100.

Overall Nusselt number as a function of Rayleigh number
is given in Figure 4.1. The shape and magnitudes shown are
similar tc those of the stationary horizontal thermosyphon
[28,29,30], also plotted in Fiqure 4.1, where, in the
definition of Ra, Q*(R+L) is replaced by g. For Rayleigh
number less than 1015, heat 1is transferred mainly by

conduction, even though convection occurs theoretically as

84
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long as there is a temperature difference between the two
ends. After this ‘"critical point", convection gradually
becomes more important, and heat transfer increases
significantly. As indicated by Lock and Han [29], the
boundary layer flow regime begins at about Ra=10" for this
slenderness ratio (A =5). The range in which Ra is larger
than 10°° ang smaller than 10° might Dbe appropriately
described as an impeded regime. In Figure 4.1, a slope of
ab#ut ©.% occurs in the range of Ra from 10° to 10°. On the
left ha’f of the impessn “egime, a concave curve 3joins the
conduction regime; and¢ on the right half, a convex curve
joins the boundary layer regime. The impeded regime acts
like an extended transition bet+een the conduction and
boundary layer regimes. The details of heat transfer from
each faces are shown in Figure 4.2. The distributions and
variations are similar to that of the horizontal stationary
thermosyphon [28,29].

The basic flow pattern in a stationary horizontal
thermosyphon exposed to different end temperatures consists
of a simple primary loop upon which is superimposed a
secondary circulation induced by lateral temperature
cradients. Figure 4.3 illustrates the primary flow of the
eccentric thermosyphon at Ra=5x10°, In the mid-length
region, the familiar two-filament flow is evident, but near
the two ends the flow is complicated. Figures 4.4 and 4.5
show the main flow profile and the secondary flow

respectively. At the hot end, under the influence of the
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Figure 4.3 Velocity field in plane z=0.46

for Ra=5x10" at Ek=2x10"°, Pr=100, R =100, R, =100.



Figure 4.4 Development of the main flow velocity profile

for Ra=5x10° at Ek=2x10", Pr=100, R,=100, R,=100.
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Figure 4.5 Development of the transverse velocity field
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direct buvyancy force, as in stationary horizontal
thermosyphon, the fluid in a lateral plane will .flow in the
Y direction to complete the main flow cycle. Also under the
influence of the Coriolis force, the flow in the Y direction
will 1induce a flow in the 2Z direction. Since these two
forces act together, the secondary flow is changed to the
present S shape (actually reverse of S). As seen in Figure
4.5, it is a clockwise vortical motion in the upper part
(the cold fluid filament), and an anti-clockwise vortical
motion in the lower part (the hot fluid filament). This
vortical motion may be transmitted to the filaments by a
shearing action which causes it to rotate. Reflected on the
main flow, it produces the twisted shape, and the profile is
not flat. Away from the ends, the Coriolis effect becomes
weaker. At the mid length plane, two pairs of weak vortices,
both induced by the lateral temperature gradient. are found.
Over the length of the tube, these must become reconciled
with the S-pattern in the end regions.

Referring to the governing equations, if the Ekman
number is fixed, when Rayleigh number decreases, the
magnitude of the Coriolis term will increase relative to the
buoyancy force. Hence, for smaller Rayleigh numbers, a
stronger Coriolis effect will result; and for larger
Rayleigh numbers, the opposite will be true.

The primary circulation and the main flow prefile at
Ra=5x10" are the same as for Ra=5x10%, except they are

weaker. Figure 4.6 shows the secondary flow field. Near the
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hot end, the secondary flow is the same as for Ra=5x10% in
Figure 4.5. But here, the Corioclis force is relatively
stronger, so the end flow is propagated further towards the
mid lengthk plane. The two pairs of vortices found in Figure
4.5 are absent here.

With Ra=10°, the primary circulation, the main flow
profile and the secondary flow field are shown in Figures
4.7, 4.8, 4.9 respectively. For a higher Rayleigh number,
relative to buoyancy force, the Coriolis force is weaker. As
a result, the secondary flow in the end region is closer to
those found in the stationary horizontal thermosyphon. The
two pairs of vortices in the mid length region are stronger,
and the main flow profile in the region is more smooth. The
twist of the main flow profile near the ends is restricted

to near the side wall.

4.2 THE EFFECT OF EKMAN NUMBER

The Ekman number, representing the relative importance
of viscous and Coriolis effects, is always of major interest
in the study of rotating systems. For higher Ekman numbers,
meaning a smaller Coriolis effect, the system will behave
more like a stationary system.

With other parameters constant (Ra=SX104, Pr=100,
R,=100, R;=100), the flow pattern with Ek=2x10"° 1is already
known. For a higher Ekman number, Ek=2x10"%, the primary
flow circulation, the main flow profile and the secondary

flow field are shown in Fiqures 4.10, 4.11, 4.12,
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ure 4.8 Development of the main flow velocity profile

for Ra=10° at Ek=2x10"°, Pr=100, R,=100, R,=100.
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respectively. The primary circulation is a single cell. Near
the end, the secondary flow is-only slightly modified by the
Coriolis force at the centre of the tube. This modification
is reflected in the main flow profile; the flow is slightly
twisted and is 50% stronger than that at Ek=2x10"%. In the
mid length region of the thermosyphon, a bifilamental main
flow is developed, and two pairs of vortices induced by
lateral temperature gradients are formed.

The individual surface heat transfer rates as functions
of Ekman number are plotted in Figure 4.13. For Ekman
numbers from 10°' to 104, the heat transfer rate decreases
only slightly. Below Ek=10ﬂ, the heat transfer rate drops
more quickly. This is because, as Ek decreases, meaning the
Coriolis effect increases, the secondary flow near the end
is twisted more tc a S shape; the buoyancy force is then
balanced more by the Coriolis force. As a rez.lt, the main
flow velocity is retarded and the heat transfer rate dreps.
This behaviour is found to correspond to a Coriolis impeded
regime in which the heat transfer rate decreases as the

Ekman number decreases.

4.3 THE EFFECT OF PRANDTL NUMBER

The flow pattern for high Prandtl numbey is already
known. Figure 4.14 shows the main flow circulation at
Pr=0.01. Near the end, it is an annular refluent flow not
found before. The flow gradually develops to a bifilamental

flow at the mid length region with the cooler fluid moving
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down at the outer surface, and the hotter fluid moving up at
the inner surface. Superimposed upon this flow, as shown in
Figure 4.15, there is a large cell in the mid length region
with cold fluid down the leading face and hot fluid up the
trailing face. This flow is more clearly shown on the main
flow profile in Figure 4.16. In the secondary flow shown in
Figure 4.17, the Coriolis effect is almost absent. The cell
flow in the mid length region appears to be caused solely by
the lateral temperature gradient.

For Prandtl number larger than 0.1, the Nusselt number
was found to remain almost constant at about 2.3. Then, it
drops rapidly to 1.3 at Pr=0.01. This reveals that the heat
transfer rate increase caused by convection over conduction

is less for a liquid metal.

4.4 THE EFFECT OF ACCELERATION RATIO

As the acceleration ratio R;ﬁf(ﬁ+L)/g decreases,
gravity becomes important. Gravity introduces a body force
field that is in the opposite direction to the temperature
gradient for the arrangement being considered. The system is
then under the action of both direct and indirect buoyancy
forces. The heat transfer rate may be expected to increase
with a decrease in R, if other parameters remain constant.

For R from 100 down to 10, the heat transfer rate
changes very 1little. This suggests that as 1long as Ry is

larger than 10, gravity can be neglected without any serious

error in calculating the Nusselt number. When R, decreases
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Figure 4.16 Development of the main flow velocity profile
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from 10 to 1, the Nusselt number increases from 2.5 to 5.2
as shown in Figure 4.18.

At R,=1, with other parameters constant (Ra=5x10°%,
Ek=2x10"", Pr=100 and R;,=100), the flow pattern is similar to
that at R,=100. Only in the main circulation, a tendency
towards annular refluent flow appears near the ends as shown
in Figure 4.19 and 4.20. This is clearly due to the direct

gravitational buoyancy force.

4.5 THE EFFECT OF ECCENTRICITY

For R, larger than 10, it was found that the
centrifugal force in the Y direction can be treated as
uniform, and the component of the centrifugal force in the Z
direction can be neglected. The flow pattern is the same.
Nusselt number is the same. For R, less than 10, the heat
transfer rate decreases gradually. The Nusselt number drops
from 2.22 at R;=10 to 1.80 at R,=1, and further to 1.26 at
R,=0 as shown in Figure 4.21.

As R, decreases, the centrifugal force field goes down,
and has an incre. ;ing component in the Z direction. But this
has little effect on the flow pattern. Even at R;=0, when
the inner surface coincide with the axis of rotation, the

flow pattern is the same as at R,=100, except it is weaker.



14
= '001=1d ' 01xZ=¥g ‘ 0lxg=e¥ 3e

M 183SUBI3 3e3Y UO orjer uolielaTIdOE 3o 199339 g1'p 9anbrg
*4 Bot
n..m o..N ¢l 01 o 00 ¢'0-
——— 1 | i - 1
N
>
e
4 ]
[ w
o
o
[§ ]
-
[}
z
c
[~
¢ ]
o
o
L. (A
in
o
'} ©




109

»
\
1
f

L

AT >IN~ TL

i

<
.
7
P
5
P € € € € € € 4 L L L L

h=> =~

S
hd

L b
L b

A

7
AR AR I R I T E T T e,

€ £ £ & £ £ £ L L L4 L
@« € 4 & £ £ £ L L &L 4L L
€ € € £ £ € 4 L4 L L £ L L

<
<
<
<

X, U

>
L

€ € A€ € € €€ € CC L &L L L L & &L &Lt L b b
o
<
-
-3

<
<

€ € € € € € € ¢ € € €

- g

€ G -

177777 TTTIIIFIIFIIPIPPREIEBEEPIS PRI RSP s o o
€« LECCE €
22 L8 <€ CLCCLLCCLCLCLCLCLLCLLCLCLLLLLLLLLLCLLLCLCLLC € & & & »

kA dir A I I I I R I - I - S R s e e i I - S A A A A R I 2 T i
4
A
v
<

T T 7T TISEEFEPSEPIISEIISSPPDIIF PP ETY PP

<ty
rre<éFVyvyyvy
rRrrT<éiVVyyn
wneTTK< <L PNAS, TH

0.0

7777)77))>-)?’)-.‘-)-)-—)-)9—)—)—)—)—)-)—)-}-—)—}-—)—)—)—?—)&—)->>??)77777

77>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>‘7

0.0

Y,V

Figure 4.19 Velocity field in plane 2z=0.46

for R;=1, at Ra=5x10°, Ek=2x10">, Pr=100, R,=100.



110

SN
< % =0. X
..33"",2/{!"{("«“‘ \ AN x-0.05

SIS

Figure 4.20 Development of the main flow velocity profile

for R;=1, at Ra=5x10*, Ek=2x10"%, Pr=100, R,=100.



111

'001="4 ‘001=3d ‘. 0Lxz=¥3 ‘,0ixg=eY e

19jsue1y jeay uo £3T1DTI3U8009 Jo 309339 |Z°p @anbig

"y 6o

0°2 ¢l 0'1 ¢o 00 c'o- 0'1- eI 0’2~
1

ST

r
0o'c



4.6 CONCLUSIONS

In this chapter, the flow pattern and heat transfer
characteristics of the rotating eccentric thermosyphon were
explored numerically.

As the thermosyphon rotates about a vertical axis
parallel to its centre 1line, the centrifugal force will
create a body force field similar to that in a horizontal
stationary thermosyphon. The body force field 1s
perpendicular to the main temperature gradient. The system
is driven by indirect buoyancy force, except near the ends,
and a bifilamental main circulation is formed with the
cooler fluid moving down at the outer surface, and the
hotter fluid moving up at the inner surface. Near the closed
ends, under the influence of both the buoyancy force and the
Coriolis force, an S shape secondary flow appears, and this
secondary flow modifies the main flow profile.

The curve of Nusselt number against Rayleigh number is
similar to that for a stationary horizontal thermosyphon in
both magnitude and shape. Flow patterns are similar for all
Rayleigh numbers.

For higher Ekman numbers, indicating a smaller Coriolis
effect, the flow pattern is closer to that of a stationary
system, and the flow is stronger. For relatively low Ekman
number, buoyancy force is balanced more by Coriolis force.
As a result, the main flow velocity is retarded. So the heat

transfer rate drops as Ek decreases.
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At low Prandtl number, the flow is complicated.
Superimposed on the bi-filamental flow, there is a large
cell in the mid length region with cold fluid moving down
the leading face and hot fluid moving up the trailing face.
The heat transfer rate increase caused by convection over
conduction is less for low Prandtl number fluid.

As gravity becomes more important, an annular refluent
flow appears near the ends in the main circulation due to
the direct buoyancy force. The heat transfer rate is then
higher.

The change of eccentricity has little effect on the
flow pattern. A 1lower heat transfer rate occurS as R,

decreases.



5. CONCENTRIC THERMOSYPHON

In this chapter,‘ the behaviour of the rotating
concentric thermosyphon, as illustrated in Figure 2.3 will
be explored. As the System rotates about its own vertical
centre line, the centrifugal force always points radially
outward from the centre line. The bottom end is fixed at a
high temperature and the top end 1is fixed at a low
temperature. The body force field 1is perpendicular to the
main temperature gradient vector. It is important to
recognize that the smallness of the effective radius in a
concentric thermosyphon implies a weaker flow than in the
eccentric thermosyphon. This Suggests that the concentric
device will not likely achieve particularly high heat
transfer rates.

As with the eccentric thermosyphon, the aspect ratios
in the governing equations will be set at: A =5 and A=1.
The parameter R, is always -% in the concentric
thermosyphon. A 51x15x15 uniform mesh network was used to

generate the field data.

5.1 THE EFFECT OF RAYLEIGH NUMBER

In this section, the basic flow pattern of the rotating
concentric thermosyphon and the effect of Rayleigh number on
heat transfer rate and fluid flow will be studied. All other
parameters will be fixed: Ek=2x10"7, Pr=100, and R =100.

For sufficiently 1low temperature gradients, heat is

transferred by conduction from the bottom hotter end to the

114
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top cooler end. As the Rayleigh number increases, e.g. the
temperature difference between the two ends increases, the
fluid flow gradually becomes strong enough to change the
temperature distribution within the thermosyphon; the heat
transfer rate then begins to increase gradually. As shown in
Figure 5.1, when Ra<10’ heat is transferred mainly by
conduction. For Ra from 10%° to 10°, the slope of the
tangent of the curve is about one; this suggests that the
conduction regime is succeeded by an impeded regime.
Comparing with the eccentric system, the heat transfer rate
is much lower, as would be expected with a smaller
eccentricity.

Figure 5.2 gives three longitudinal velocity profiles
for Ra=5x10°. These show that a hot core flow is flowing
upward, then turning around at the top cold end and flowing
downward near the sides of the tube, mainly in the four
corners. The main flow profiles in Figqure 5.3 give a clearer
picture of such a flow pattern, and shows how the square
section modifies the basic axisymmetry.

The presence of a secondary flow is evident in the
flanking profiles in Figure 5.2. This flow is shown in
Figure 5.4. Near the hot end (x=0.01), the fluid tends to
flow radially inwards under the influence of direct thermal
buoyancy, but the Coriolis force changes the flow direction,
and makes the fluid spiral toward the centre. The secondary
flow almost forms concentric circles. This flow propagates

to about two fifths of the tube length. And at the top end,
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an inverse circulation forms.

The primary and secondary flow patterns described above
remained unchanged for all the Rayleigh numbers studied.
Only the velocity magnitudes increased as the Ravleigh
number was increased.

Figure 5.5 gives tr-e surface component heat transter
rates. The heat transfer from the hot end keeps almost
constant for all the Rayleigh numbers. It is the increase of
heat transfer frcm the side walls that makes the total heat

transfer rate rise. And this is purely due to convection.

5.2 THE EFFECT OF EKMAN NUMBER

Consider the flow structure first. Figure 5.6, the main
flow field, Figure 5.7, the main flow profile, and the
Figure 5.8, the secondary flow field, are for Ek=2x10"2.
These indicate that the core upward flow is restricted to a
narrower area, and 1s vigorous. The secondary flow is then
much weaker because the influence of the Coriolis
acceleration is smaller. This suggests that the Coriolis
force gradually enters into a balance with the direct
buoyancy force if Ek decreases sufficiently. The main flow
is thus reduced.

The heat transfer rate increases when the Ekman number
increases, as shown in Figure 5.9. The hot end heat transfer
remains constant for all Ekman numbers, but heat 18
transferred mainly from the side walls. It is the change at

the side walls which makes the total heat transfer change.
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Figure 5.6 Longitudinal velocity field at z=0.46

for Ek=2x10"° at Ra=5x10°, Pr=100, R,=100.
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As Ek decreases, the spiral secondary flow caused by the
Coriolis acceleration gets stronger, the longitudinal
pressure gradientvfalls, and the main flow is reduced. As a
result, the total heat transfer rate decreases as Ek

decreases.

5.3 THE EFFECT OF PRANDTL NUMBER

When Pr=0.01, representing a very small viscosity, the
fluid flow will be much more vigorous. In Figure 5.10, the
scale is fifty times of that in Figure 5.2 when Pr=100. It
is evident that the flow near the bottom end is quite
similar to that in Figure 5.2, but the top end is very
different. The stagnation point at the bottom end is still
displaced from the centre. The main flow gradually develops
towards the middle. Near the top end, the main flow is
strong and has a stagnation point at the centre of the end.

Figure 5.11 and Fiqure 5.12 present the main flow
profile and the secondary flow field, respectively. From
Figure 5.12, at x=0.01, it seems that the Coriclis force is
strong at the centre, and weak near the walls. A strong ring
flow is formed at the centre, and this flow strongly
modifies the main flow as shown in Figure 5.11. Gradually,
concentric flow is developed towards the mid length plane,
and beyond. At x=0.81, anticlockwise rings still exist at
the centre, but clockwise flow begins to appear near the
walls. Near the cold end, a diverging flow develops from the

centre to the sides; the concentric ring flow found before
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is absent here.

All of this suggests that the Coriolis force does not
have a equal effect on radially converging and diverging
flows. When Pr<<1, inertia terms are more important, and the
difference between the two ends becomes greater.

The Nusselt number was found to be constant at about
0.32 for all the Prandtl number studied, except at Pr=0.01,
when it is slightly lower at 0.30. All of these are only

slightly higher than the pure conduction value of 0.09.

5.4 THE EFFECT OF ACCELERATION RATIO

All of the above results were obtained for a very large
acceleration ratio. For small acceleration ratios,
specifically for R,=1, both centrifugal and gravitational
forces are important. Gravity acts directly in the main flow
direction. This effect largely reinforces the main flow; as
a result, the heat transfer rate is increased,

Actually, for Ra=5x10°, Ek=2x10"%, Pr=100, when R=1,
the basic flow pattern is still the same as in Figures 5.2,
5.3, 5.4, but the flow is much st: onger than at R,=100. The
Nusselt number is increased from 0.31 at R;=100 to 1.07 at

R,=1, as illustrated in Figure 5.13.

5.5 CONCLUSIONS
Flow patterns and heat transfer rates in the concentric

thermosyphon were explored in this chapter.
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As the thermosyphon rotates about its vertical centre line,
the centrifugal force always points radially outward. Hot
fluid moves upward in the central core, and cold fluid moves
downward near the walls, especially in the four corners. The
converging flow at the hot end is twisted by Coriolis force
to form a anticlockwise secondary flow, and the diverging
flow at the top cold end is also twisted to form a clockwise
secondary flow.

Varying the Rayleigh number evidently does not change
the basic flow pattern. The plot of Nu~Ra indicates that
heat is transferred mainly from the side walls, and it is
the increase from the side walls that makes the total heat
transfer rise between conduction and impeded flow regime.

As Ek decreases, the Coriolis force eventually balances
the pressure gradient, and the main flow is reduced. Thus
for a higher Ekman number, the main flow is more vigorous
and the heat transfer rate is higher.

For very small Prandtl numbers, the fluid flow is much
more vigorous. The different effects of Coriolis force on
converging flow and diverging flow is important. The
anticlockwise flow at the hot bottom end propagates almost
to the cold end. The Nusselt number is almost constant for
all Prandtl numbers.

Smaller acceleration ratios enhance the main flow, and

the heat transfer rate increases accordingly.



6. GENERAL CONCLUSIONS AND RECOMMENDATIONS

The behaviour of square section rotating closed
thermosyrnons was studied numericaily under single-phase,
iaminar flow conditions. Detailed flow patterns and heat
transfer characteristics were described for radial,
eccentric and concentric tubes rotating about a vertical
axis. Effort was given to further understanding of the
physical process of the rotating thermosyphon.

The flow pattern in a radial thermosyphon consists of
an annular refluent flow near the two closed ends combined
with a bifilamental flow in the mid length region. a
distinctive feature of the rotating radial thermosyphon is
that the Coriclis force may flatten the axial velocity
profile, making it look almost two-dimensional.

In an eccentric thermosyphon, a bifilamental main
circulation is formed:; superimposed on that is an S-shaped
secondary flow induced near the ends by buoyancy and
Coriolis forces. This secondary flow modifies the main flow
profile.

As expected, the flow pattern of a concentric
thermosyphon consists of a central core in which the hot
fluid moves towards the cold end and an annular flow in
which the cold fluid moves towards the hot end. Under the
Coriolis force, a converging ring flow at the hot end and a
diverging ring flow at the cecld end are formed as the

secondary flow.

133
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The Nu~Ra curves of the three thermosyphons are plotted
in Figure 6.1. The plots indicate that an impeded regime
succeeds the conduction regime for all the three types; and
they suggest that a boundary layer regime succeeds the
impeded regime in radial and eccentric thermosyphons at
least. Tne heat transfer rate of the concentric thermosyphon
is much lower than that of the radial and eccentric due to
weak body force field.

The Nu~Ek curves for the three thermosyphons are
plotted in Figure 6.2. It i< clear that when Ek decreases,
the heat transfer rate has a maximum for radial
thermosyphon, whereas the heat transfer rates decrease
monotonically for eccentric and concentric thermosyphons. At
about Bk=10i, the heat transfer rate for all three types
begins to drop quick.. «when Ek decreases further; the
variation for the ccrcant:ic tharmosyphon 1is relatively
small.

It seems that ‘= order to Tully describe the thermail
and hydrodynamic regimes of a rotating thermosyphon, in
addition to the Nu~Ra curve, the plot of Nu~Ek is also
needed. The flow regime is thus defined by both Ra and Ek.
As the Ekman number decreases, the Coriolis force plays a
bigger role.

The lowest Ek for which a converged solution can he
obtained is about 2x107° for alil three types. Some
preliminary probing for the radial thermosyphon with lower

Ek suggests that a new flow pattern may form, and the heat
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transfer rate may then jump to a much higher value.

Flow patterns and Nusselt numbers change very 1little
for Pr>>1. For Pr=0.01, however, flow is much more vigorous,
and Nu is lower.

As gravity becomes important, heat transfer rates are
higher, and the flow pattern may be modified accordingly.

When eccentricity becomes smaller, the heat transfer
rates are lower due to a weaker body force field. The heat
transfer rate of concentric thermosyphon is the lowest.

As a result of this study, several recommendations for
future work may be made:

1) For engineering application, the practical Ekman number
range is from 10°° to 107, Investigation of the physical
process for Ekman number in this entire range is needed.

2) For 1large temperature differences, or high rotating
speeds, the Rayleigh number is high, and the flow may
not be laminar. Turbulance behaviour of the rotating
thermosyphon is worth exXp. ..-ing.

3) The aspect ratio of a practical thermosyphon might be
quite large. The behaviour of large aspect ratio (length

over diameter) thermosyphons should be investigated.
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APPENDIX A CONSISTENCY 'ND ACCURACY OF THE PROGRAM

Accuracy analysis is important in numerical
calculation, especially for a complicated problem where
experimental data are unavailable for compariscn. The
guestion concerning computational solutions is what

guarantee can be given that the computational solution will
be close to the exact solution of the partial differential
equations. If the exact solution is known explicitly, this
might be easier to answer. For most practical problems, such
as the problem in this work, the exact solution of the
partial differential eguations can not be Obtained
analytically, the exact error caused by using numericail
approximation is therefore unknown. We have to look for
alternatives. There are some technigues that may be used to
estimate the accuracy of the approximate soclution,

The SIMPLE method is based on the central-difference
scheme, and the power-law scheme is used to impove it. So a
higher than second-order accuracy is expected.

One technique for assessing accuracy 1s to obtain
solutions on successively refined grids and tc check that
the solution is not changing to some predetermined accuracy.
This method is easier to perform for a uniform grid system.
Since a non-uniform grigd system was used for the radial
thermosyphon, while a uniform grid system was used for
eccentric and concentric thermosyphons, the eccentric

thermosyphon was chosen as a representative to estimate the
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accuracy of the numerical appreximation.

All the data used in this +hesis were obtained by using
a8 FPS-164 Scientific Computer, but the grid test was carried
out on an IBM Risc 6000 computer. For eccentric
thermosyphon, at Ra=5x10°, Ek=2x107%, Pr=100, R =100, R,=100,
different uniform grid sizes were used to generate field
data. It was found that all the grids tested were equally
good at c~“zhing the general feaiures of the flow structure.
Compar. .~ of velocity in the x direction and total Nusselt

number are given at different grid sizes in Table A.1.

grid u(x10™") Au/u(%) Nu ANu/Nu(%)
FPS-164 51x15x15 0.4207 0.0 2.3019 0.0
IBM Risc 6000 41x15x15 0.4716  12.1 2.4542 6.6
51x15x15 0.4463 6.1 2.3686 2.9
101x15x15 0.4406 4,7 2.3608 2.6
51x19x19 (.4311 2.5 2.2997 -0.1
51x29x29 0.4286 1.9 2.2429 -2.6

Table A.1 Data comparison from different grid sizes.

For a practical fluid flow problem, especially a
complex problem such as the refluent flow here, a minimum
practical grid is required to depict the flow structure. It
was found that at least 13 points were needed in the y and =z
directions. Effort was not given to find out the practical
minimum in the x direction; however less than 41 points may

cause untolerable error. It seems that the grid system
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15> 15 used to generate field data is a fair compromise
between solution accuracy and computational efficiency.
Another method available to estimate truncation error

is the Richardson-type Extrapolation. For three different

mesh sizes,

Ax, x Ay, x Az,
Ax, x Ay, x Az,

Ax, x Ay, x Az,

< <

If Ay, = Az, i=1,2,3, the exact solution Vv may be written

as
¥ = ¥ + C,Ax] + C,Ay! i=1,2,3 (A.1)

where ¢, is the numerical solution from mesh size
Ax,xQy . xbz,; and C, and C, are independent of Ax, and Ay, .

Writing (A.1) in different mesh sizes

v o= "l’l + C'.AXT * C;’Ayl? (a.2.1)
v = ¥, + C,Ax; + C,Ay) (A.2.2)
Vv = Y, + C,Ax; + C,Ay) (A.2.3)

We thus have

v, - v, C1[Ax? - AXT] + Cz[AY; - AY?]

-t —_

“2 T V3 c,lax] - axl] + c,lay] - Ay?]

(A.3)

If Ay, = Ay, = Ay,, (A.3) becomes

v -, _ A};? B AXT

Y2~ ¥ Ax] - AxT (#.4)
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Using the data of u from 41x15x15, 51x15x15, 101=x15x1% in
Table A.1, the above non-linear eguation (A.4) can be solved

numerically. The m is estimated as

m = 8
If Ax, = Ax, = Ax,;, (A.3) becomes
v, - ¥ Ay, - AyS
— . Lz (A.5)
v vy Ay, - Ay,

Using the data of u from 51x15x15, 51x19x19, 51x29x29 in

Table A.1, n is solved numerical as

The exact solution ¥ may be represented as:
Vo= ¢, + C,Aax? + c,ayt (A.6)

This means that, for a relatively coarse grid size, a
more accurate solution may be obtained by reducing the grid
size; below a certain point, the accuracy of the solution
may not be improved substantially by further reducing the
grid size.

For better accuracy and stability control, two levels
of control were implemented in the program. The first level
of control is in the form cf the average local residual of
the corresponding algebraic equations. The second level of
control is in the form of the relative change in the
dependent variables for twoc consecutive iterations. The

criterion for the second level of control was 0.01, while
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the criterion for the first level of control was (.005 for
u, v, w, ¢, and 10 'x0.5" for P, where m = NINT[N. 10} (N is
the 1iteration number). a higher «criterion for p was
necessary for convergence and stability. Usually less than
100 iterations were needed to obtain one sclution. That is

about 2 hour CPU time on FPS-164 computer.



APPENDIX B

THIS IS A PROGRAM SOLVING NATURAL CONVECTION PROBLEMS
IN RADIAL ROTATING SYSTEM

PARAMETER(N=15,M=51,L=15,NN=N+1,MM=M+1,LL=L+1)
PARAMETER(NP=N-1,MP=M-1,LP=L-1)
DIMENSION UP(N,MM,LL),VP(NN,M,LL) ,WP (NN, MK, L)
DIMENSION T(NN,MM,LL),PP(NN,MM,LL),P(NN,MM,LL)
DIMENSION U(N,MM,LL),V(NN,M,LL) ,W(NN,MM, L) ,GRADT{NN)
DIMENSION DX(NN),DY(MM) ,DZ(LL),AP3(2:N,2:#,2L)
DIMENSION Y(M),2(L)
DIMENSION PX(NN),QX(NN),PY(MM),QY(MM),PZ(LL),Qz(LL)
DIMENSION
+AP1(2:N,2:M,2:L),APZ(Z:N,2:M,2:L),S(2:N,2:M,2:L)
DIMENSION
+AE(2:N,2:M,2:L),AW(2:N,2:M,2:L),AN(2:N,2:M,2:L)
DIMENSION
+AS(2:N,2:M,2:L),AT(2:N,2:M,2:L),AB(2:N,2:M,2:L)
DIMENSION
+PSB(2:N,2:L),QSE’2:N,2:L),ANB(Z:N,Z:L),CNB(Z:N,Z:L)
DIMENSION
+PWB(2:M,2:L),QWB(2:M,2:L),AEB(2:M,2:L),CEB(2:M,2cL)
DIMENSION
+PBB(2:N,2:M),QBB(2:N,2:M),ATB(2:N,2:M),CTB(2:N,2:M)
DIMENSION SEB(2:M,2:L),SNB(2:N,2:L),STB(2:N,2:M)

CALL SYS$DISEXC(0,0,0,4)

OPEN(5,FILE="D1"')

READ(5, *)AX,AZ

READ(5, *)RA,PRD,EK,RG, RL

READ(S5, *)ALFV

READ(S5,*)TOLV1, TOLV2,TOLT1,TOLT2, TOLP
READ(S,*)(DX(1),I=1,NN)

READ(5,*) (DY(J),J=1,MM)
READ(5,*) (DZ(K) ,K=1,LL)
READ(S, * )NCR, NCCR, AMP

Y(1)=DY(1)
Z(1)=DZ(1)

DO 21 J=2,M

21 ¥(J)=¥(J-1)+DY(J)
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22

24

DO 23 K=2,L
Z(K)=Z(K-1)+DZ(K)

AA1=1.0/(1.0-ALFV)

AX2=AX%AX

AZ2=AZ%xAZ
RY=1.0/(SQRT((2.0%PRD) /RA))
RX=RY#*AX2

RZ=RY*AZ2

AXI=1,0/AX

AXI2=AXI*AXI

AZI=1,0/AZ

AZI2=AZI1=*AZ1
RK=SQRT((2.0%PRD) /(RA*EK*%2) )

GX=1.0/RX
GY=1.0/RY
G2=1.0/R2Z
GTZ=GZ/PRD
GTX=GX/PRD
GTY=GY/PRD
NCOUNT=0
NCC=0

INPUT INITIAL GUESSED VALUES FOR U, V, WAND T

OPEN(4,FILE="IN")

READ(4,11)(((UP(I,J,K),I=1,N),J=1,MM),K=1,LL)
READ(4,11)(((VP(I,J,K),I=1,NN),J=1,M),K=1,LL)
READ(4,11)(((WP(I,J,K),I=1;NN),J=1,MM),K=1,L)
READ(4,11)(((T(I,J,K),I=1,NN),J=1,MM),K=1,LL)
READ(4,11)(((PP(I,J,K),I=2,N),J=2,M),K=2,L)

DO 22 K=1,LL

DO 22 J=1,MM

DO 22 I=1,N
u(1,3,K)=UP(1I,J,K)

DO 24 K=1,LL
DO 24 J=1,M
DO 24 I=1,NN
v(1,J,K)=VvP(1,J,K)
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26

33

45

50

55

1000

75

80

DO 26 K=1,L
DO 26 J=1,MM

DO 26 I=1,NN
w(1,J,K)=wpP(1,J,K)

APPLY BOUNDARY CONDITIONS

GRADT(1)=-1.0
DO 33 J=1,M
GRADT(J+1)=GRADT(J)+DY(J)+D¥Y(J+1)

DO 45 K=2,L
DO 45 1I=2,N
PSB(I ,K)=0.0
ANB(I ,K)=1.0
CNB(1,K)=0.0

DO 50 K=2,L
DO 50 J=2,M
PWB(J,K)=0.0
AEB(J,K)=1.0
CEB(J,K)=0.0

DO 55 J=2,M
DO 55 I=2,N
PBB(I,J)=0.0
ATB(I,J)=1.0
CTB(I1,J)=0.0

SOLVING U, V AND W FOR GIVEN P AND T

DO 75 K=2,L
DO 75 I=2,N
QSB(I,K)=0.0
SNB(I,K)=0.0

DO 80 K=2,L
DO 80 J=2,M
QWB(J,K)=0.0
SEB(J,K)=0.0
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DO 85 J=2,M
DO 85 1=2,N
QBB(I,J)=0.0
85 STB(1,J)=0.0

SOLVING FOR U

DO 120 K=2,L
DO 120 J=2,M
DO 120 1=2,NP
CALL FLUX(DX(I+1),DX(I),T(I+1,J,K),T(I,J,K),ST)
120 S(I,J,K)=0.5*(DX(I)+DX(I+1))*DY(J)*DZ(K)*AXI*ST*RG+
+AXI2*DY(J)*DZ(K)*(PP(I,J,K)*PP(I+1,J,K))

DO 130 K=2,L

DO 130 J=2,M

DO 130 1I=2,NP

AE(I,J,K)=O.5*(UP(I,J,K)+UP(I+1,J,K))

AW(I,J,K)=O.5*(UP(I—1,J,K)+UP(1,J,K))

CALL

+FLUX(DX(1+1),DX(I),VP(I+1,J,K),VP(1,J,K),AN(I,J,K))

CALL FLUX(

+DX(I+1),DX(I),VP(I+1,J-1,K),VP(I,J—1,K),AS(I,J,K))

CALL

+FLUX(DX(I+1),DX(I),WP(I+1,J,K),WP(I,J,K),AT(I,J,K))

CALL FLUX(

+Dx(I+1),Dx(I),WP(1+1,J,K~1),WP(I,J,K—1),AB(1,J,K))
130 CONTINUE

CALL COEF(DX,DY,DZ,AP1,AE,AW,AN,AS,AT,AB,GX,GY,GZ,
+NN,MM,LL,N,M,L,NP,M,L,0,1,1,ALFV)

CALL SOLVER(AP1,AE,AW,AN,AS,AT,AB,S,U,PX,QX,PY,QY,
+PZ,QZ,PSB,QSB,ANB,CNB,SNB,PWB,QWB,AEB,CEB,SEB,PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,N,MM,LL,ALFV,TOLV1)

SOLVING FOR V

DO 220 K=2,L

DO 220 J=2,MP

DO 220 1=2,N

CALL FLUX(DY(J+1),D¥(J),T(1,3+1,K),T(1,J,K),ST)
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SW1=0.5%(W(I,J,K-1)+W(I,J,R))
SW2=0.5*%(W(I,J+1,K-1)+W(I,J+1,K))
CALL FLUX(DY(J+1),DY(J),SW2,SW1,SW)

220 s(I1,J3,K)=0.5+DX(I)*(DY(J)+DY(J+1))*DZ(K)*(2.*AZ+RK*SW
+*=ST*(RL+Y(J))/(RL+1.) )+DX(I)*Dz(K)*(PP(I,J,K)
+-PP(I,J+1,K))

DO 230 K=2,L

DO 230 J=2,MP

DO 230 I1=2,N

CALL
+FLUX(DY(J+1),DY(J),UP(I,J+1,K),UP(I,J,K),AE(I,J,K))
CALL FLUZX(

+DY(J+1),DY¥Y(J),UP(I1-1,J+1,K),UP(I~1,J,K) JAW(I,J,K))
AN(I,J,K)=0.5%(VP(I,J,K)+VP(I,J+1,K))
AS(1,J,K)=0.5%(vP(I,J- 1,K)+VP(I,J,K))

CALL
+FLUX(DY(J+1),DY(J),WP(I,J+1,K),WP(I,J,K),AT(I,J,K))
CALL PLUX(
+DY (J+1) ,DY(J) ,WP(I,J+1,K-1),WP (I, J,R-1),AB{1,J3,K))

230 CONTINUE
C

CALL COEF(DX,DY,DZ,AP2,AE,AW,AN,AS,AT,AB,GX,GY,GZ,
*NN,MM,LL,N,M,L,N,MP,L, 1,0, 1,ALFV)

CALL SOLVER(APZ,AE,AW,AN,AS,AT,AB,S,V,PX,QX,PY,QY,
+PZ,QZ,PSB,QSB,ANB,CNB,SNB,PWB,QWB,AEB,CEB,SEB,PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NN,M,LL,ALFV,TOLV1)

@]

SOLVING FOR W

DO 720 K=2,LP

DO 720 J=2,M

DO 720 1=2,N

SV1i=0.5%(v(1,J3,K)+V(I,J-1,K))

SV2=0.5%(V(I,J,RK+1)+V(I,J-1,K+1))

CALL FLUX(DZ(K+1),DZ(K),SV2,SV1,SV)

CALL FLUX(DZ(K+1),DZ(K),T(I,J,K+1), T(1,J3,K),ST)
720 s(1,J,K)= AZI2*DX(I)*DY(J)*(PP\I J,R)-PP{I,J,K+1))

+-0. S*DX(I)*DY(J)*(DZ(K)+DZ(K+1))*(AZI*Z O*RK*SV

++ST*(2(K)~-0.5)/(RL+1.))

DO 730 K=2,LP
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DC 730 J=2,M
DO 730 1=2,N

CALL
+FLUX(DZ(K+1),DZ(K),UP(I,J,K+1),UP(I,J,K),AE(I,J,K))
CALL FLUX(
+Dz(K+1),Dz(K),UP(1—1,J,K+1),U°(1—1,J,K),Aw<1,J,K))
CALL

+FLUX(DZ(K+1),DZ(K),VP(I,J,K+1),VP(I,J,K),AN(I,J,K))
CALL FLUZX(
+DZ(K+1),DZ(K),VP(I,J—1,K+1),VP(I,J—1,K),AS(I,J,K))
AT(I,J,K)=0.5*(WP(I,J,K)+WP(I,J,K+1))
AB(I,J,K)=0.5*(WP(I,J,K-1)+WP(I,J,K))

730 CONTINUE

CALL COEF(DX,DY,DZ,AP3,AE,AW,AN,AS,AT,AB,GX,GY,GZ,
+NN,MM,LL,N,M,L,N,M,LP,1,1,0,ALFV)

CALL SOLVER(APB,AE,AW,AN,AS,AT,AB,S,W,PX,QX,PY,QY,
+PZ,QZ,PSB,QSB,ANB,CNB,SNB,PWB,QWB,AEB,CEB,SEB,PBB,
*OBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NN,MM, L, ALFV, TOLV 1)

PRESSURE CORRECTIONS

DO 310 K=2,L
DO 310 J=2,M
DO 310 1=2,N

310 S(I,J,K)=DY(J)*DZ(K)*(U(I—1,J,K)-U(I,J,K))+
+DZ(K)*DX(I)*(V(I,J—1,K)—V(I,J,K))+
+DX(I)*DY(J)*(W(I,J,K—1)—W(I,J,K))

DO 320 K=2,L
DO 320 J=2,M
AW(2,J,K)=0.0
320 AE(N,J,K)=0.0

DO 330 J=2,M

DO 330 I=2,NP

AE(I,J,K)=AA1*AXI2*DY(J)*DZ(K)*DY(J)*DZ(K)/AP1(I,J,K)
330 AW(I+1,J,K)=AE(I,J,K)

DO 340 K=2,L
DO 340 I=2,N
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AS(1,2,K)=0.0
340 aAN(I,M,K)=0.0
DO 350 K=2,L
DO 350 J=2,MP
DO 350 1=2,N
AN(I,J,K)=AA1*DZ(K)*DX(I)*DZ(K)*DX(I)/AP2(I,J,K)
350 AS(I,J3+1,K)=AN(I,J,K)

DO 353 J=2,M
DO 353 1=2,N
AB(1,J,2)=0.0
353 AT(1,3,L)=0.0
DO 357 K=2,LP
DO 357 J=2,M

DO 357 1=2,N
AT(I,J,K)=AA1*AZIZ*DX(I)*DY(J)*DX(I)*DY(J)/APB(I,J,K)
357 AB(I,J,K+1)=AT(I,J,K)

DO 360 K=2,L
DO 360 J=2,M
DO 360 1=2,N
360 AP1(I,J,K)=AE(I,J,K)+AW(I,J,K)+AN(I,J,K)+AS(I,J,K)
++AT(I,J,K)+AB(I,J,K)

CALL SOLVER(AP1,AE,AW,AN,AS,AT,AB,S,P,PX,0X,PY,QY,
*PZ,0Z,PSB,QSB,ANB,CNB, SNB, PWB,QWB,AEB, CEB, SEB, PBB,
+QBB,ATB,CTB, STB,N,M,L,NN,MM,LL,NN,MM,LL, 1.0, TOLP)

DO 365 K=2,L
DO 365 J=2,M
DO 365 I=2,N

365 P(I,J,K)=P(I,J,K)-P(N,M,L)

DO 370 K=2,L
DO 370 J=2,M
DO 370 I=2,NP
370 U(I,J,K)=U(I,J,K)+AE(I,J,K)/DY(J)/DZ(K)*(P(I,J,K)
+-P(I+1,J,K))

DO 380 K=2,L
DO 380 J=2,MP
DO 380 1=2,N
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380 V(I,J,K)=V(I,J,K)+AN(1,J,K)/DZ(K)/DX

385 W(I,J,K)=W(I,J,K)+AT(I,J,K)/DX(I)

390

450

453

455

420

+~-P(I,J+1,K))

DO 385 K=2,LP
DO 385 J=2,M
DO 385 1=2,N

+-P(I,J,K+1))

DO 390 K=2,L

DO 390 1=2,N

DO 390 J=2,M
PP(I,J,K)=PP(I,J,K)+P(I,J,K)

SOLVING T
RNUO=RNU

DO 450 R=2,L
DO 450 1=2,N
QSB(I,K)=-1.0
SNB(I,K)=1.0

DO 453 K=2,L
DO 453 Jg=2,M
QWB(J,K)=GRADT(J)
SEB(J,K)=GRADT(J)

DO 455 J=2,M
DO 455 1=2,N
OBB(I,J)=GRADT(J)
STB(I,J)=GRADT(J)

DO 430 K=2,L
DO 430 J=2,M
DO 430 1=2,N
AE(I,J,K)=U(1,J,K)

(I)x(P(1,3.%)

/DY (J)*(P(1,J,K)

160
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AW(I J,¥)= b( -1,3J3,K)
AT 3, K)=VI(I, J,K)
AS(I,J,K)=V{1,J~-1,K)
AT(I,J,K)=W(1,J, A)
AB(I,J,K)=W(I,3,K-1)
CONTINUE

CALL CJEF(DK,DY,DZ,APT.AE,AW,AN,AS,AT,AB,GTX,GTY,GTZ,
+NN,MM,LL,N,M,LL,N,M,L,1,1,1,1.0)

CALL SOLVER(AP1,AE.AW,AN,AS,AT,AB,S,T,PX,0X,PY,QY,
+PZ,2,PSB,QSB,ANB,CNB, SNB, PWB, OWB, AEB, CEB, SEB, PBB,
+0NBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NN,MM,LL, 1.0, TOLT1)

NCC=NCC+1

IF :ICC.GE.NCCR) THEN
TOLP=AMP*xTQLP

NCC=0

END IF

NCOUNT=NCOUNT+ i

IF (NCOUNT.GE _NCR) THEN
GO TO 4000
END IF

RNU=C.0

DO 500 K=2,L

DO 500 1=2,N
RNP=RNU+DX(I)*DZ(K)*(T(I,Z,K)-T(I,1,K))

ERT=RNU-RNUO
ERT=ABS(ER1)
ERT=ERT/RNT]

IF(ERT.GT.TOLT2) THEN
20 503 K=2,L

CO 503 J=2,M

DO 503 I=2,NP
UP(I,J,K}=0(1,J,K)

DO 505 K=2,L



505

507

520

530

540

4000

DO 505 J=2,MP
DO 505 1=2,N
VP(I,J,K)=V(I,J,K)

DO 507 K=2,LP
DO 507 J=2,M
DO 507 1I=2,N

WP(I,J,K)=wW(I,J,6K)

GO TO 10060C
END IF

CALL ERR(UP,U,N,MM,LL,EU)
CALL ERR(VP,V,NN,M,LL,EV)
CALL ERR(WP,W,NN,MM,L,EW)

IF (EU.GT.TOLV2.0R.EV.GT.TOLVZ.OR.EW.GT.TOLV2) THEN

DO 520 K=2,L

DO 520 J=2,M

DO 520 I=2,NP
Up(1,J,K)=U(1,J,K)}

DO 530 K=2,L

DO 530 J=2,MP

DO 530 1I=2,N
VP(I1,J,R)=V(I,2,K)

DO 540 K=2,LP

DO 540 J=2,M

DO 540 1=2,2
WpP(I,J,K)=W{I,J,K)
GO TO 1000

END IF

RA=RA*0.008
RAL=ALOG10(RA)
RNU=RNU/DY(2)
RNUL=ALOG 10 (RNU )

OPEN(7,FILE="OUTPUT')
WRITE(?,11)(((U(I,J,K),I=1,N),J=1,MM),K=1.LL)

12
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WRITE(7,11)(((V(1,J,K),I=1,NN),J=1,M),K=1,LL)
WRITE(7,11)(((W(1,J,K),I=1,NN),J=1,MM),K=1,L)
WRITE(7,11) (((T(I,J,K),I=1,NN),J=1,MM),K=1,LL)
WRITE(7,11)(((PP(1,J,K),I=2,N),J=2,M),K=2,L)

WRITE(7,111)AX,AZ
WRITE(7,222)Ra,RAL
WRITE(7,333)PRD,EK,RG,RL
WRITE(7,444)RNU, RNUL
WRITE(7,555)N,M,L
WRITE(7,666)NCOUNT, TOLP
WRITE(7,777)EU,EV,EW,ERT

11 FORMAT(13E15.5)

111 FORMAT('Ax:',F5.2," Az:',F5,2)

222 FORMAT('Ra:',E11.3,' Log(Ra/A):',E13.5)

333 FORMAT('Pr:',E11.3,"' Ek:',E11.3,' Rgqg:',Ei1.3,
+' R1l:',E11.3)

444 FORMAT('Nu:',E14.5,' LogNu:',E14.5)

555 FORMAT('Mesh: ',I3,'v*,22,'Z"',12)

666 FORMAT('mMCOUNY:',I15." "OLP' ,E15.5)

777 FORMAT('Eu:',EivU.3,' BEv:',Ei(.3," Ew: " ,E10.3,
+' Et:',el10.3)

STOP
END

SUBROUTINE FLUX{DF,DB,VF,VB,OPT)
R=1.0/(DF+DB)

OPT=R#* (DB*YVF+DF*VB)

RETURN

END

SUBROUTINE PWRLW(GXY,WW,DDS,DS,JUU)
F=DDS*WW

DDI=GXY*DDS /DS

P=F/DDI

X=1.0-0.1*xABS(P)

X=X*X*X*X*X

X=AMAX1(9.0,X)

IF (JUU.EQ.1) THEN



WW=DDI*X+AMAX1(-F,0.0)
ELSE

WW=DDI *X+AMAX1(F,0.0)
END IF

RETURN

END

SUBROUTINE COEF (DX, DY,DZ,AP,AE,AW,AN,AS,AT ,AB,
+GX,GY,GZ,NN,MM,LL,N,M,L +NX,NY,NZ,JX,JY,J32,AL)
DIMENSION DX(NN),DY(MM) +DZ(LL) ,AP(2:N,2:M,2:L)
DIMENSION AE(2:N,2:M,2:L) PAW(2:N,2:M, 2 L)
DIMENSICON AN({2:N,2: M,2:L),AS(2:N,2:M,2:L)

DIMENSION AT(2:N,2:M,2: L) ,AB(2:N,2:M,2:L)
ALI=1.,0/AL

DO 25 K=2,NZ
DO 25 J=2,NY
DO 25 1=2,NX

IF (JX.EQ.1) THEN
DXE=0.5*(DX(I+1)+DX(1))
DXW=0.5*x(DX(1)+DX(1-1))
DDX=DX (1)

ELSE

DXE=DX(I+1)

DXW=DX(1)
DDX=0.5*(DX(I)+DX(I+1))
END IF

IF {(JY.EQ.1) THEN
DYN=0.5*(DY(J+1)+DV(J))
DYS=0.5%x(DY(J)+DY(J~-1))
DDY=DY(J)

ELSE

DYN=DY(J+1)

DYS=DY (J)
DDY=0.5*x(DY(J)+DY(J+1))
END IF

IF (JZ.EQ.1) THEN
DZT=0.5*%(DZ(K+1)+DZ(K))

1o4
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DZB=0.5%x(DZ(K)+DZ{K-1))

DDZ=DZ(K)
ELSE

DZT=DZ(K+1)

DZB=DZ(K)

DDZ=0.5*(DZ(K+1)+D2(K))

END IF

AEW=DDY*DD2
ANS=DDZx*DDX
ATB=DDX*DDY

CALL PWRLW(GX,AE(I,J,K),AEW,DXE, 1)
CALL PWRLW(GX,AW(I,J,K),AEW,DXW,0)
CALL PWRLW(GY,AN(I,J,K),ANS,DYN, 1)
CALL PWRLW(GY,AS(I,J,K),ANS,DYS,0)
CALL PWRLW(GZ,AT(I,J,K),ATB,DZT, 1)
CALL PWRLW(GZ,AB(I,J,K),ATB,DZB,0)

AP(I,J,K)=

ALI*(AE(I,J,K)+AW(I,J,K)+AN(I,J,K)+

+AS(I,J,K)+AT(I,J,K)+AB(I,J,K))

25 CONTINUE

RETURN
END

SUBROUTINE SOLVER(AP,AE,AW,AN,AS,AT,AB,S,QQ,PX,QX,PY,
+QY,PZ,QZ,PSB,QSB,ANB,CNB,SNB,PWB,QWB,AEB,CEB,SEB,PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NX,NY,NZ,ALF,TOL)

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

NXP=NX-1

AE(2:N,2:M,2:L),AW(2:N,2:M,2:L)
AN(2:N,2:M,2:L),AS(2:N,2:M,2:L)
AT(2:N,2:M,2:L),AB(2:N,2:M,2:L)
AP(Z:N,Z:M,Z:L),S(2:N,2:M,2:L),QQ(NX,NY,NZ)
PSB(2:N,2:L),0SB(2:N,2:L),SNB(2:N,2:L)
PWB(2:M,2:L),QWB(2:M,2:L),SEB(2:M,2:L)
PBB(Z:N,Z:M),QBB(Z:N,Z:M),STB(Z:N,Z:M)
CNB(2:N,2:L),CEB(2:M,2:L),CTB(Z:N,Z:M)
ANB(2:N,2:L),AEB(2:M,2:L),ATB(Z:N,Z:M)
PX(NN),QX(NN),PY(MM),QY(MM),PZ(LL),QZ(LL)



NYP=NY-1
NZP=NZ-1

100 A1=1.0-ALF

DO 10 K=2,NZP
DO 10 J=2,NYP
DO 10 1I=2,NXP
10 S(I,J,K)=S(I,J,K)+A1*AP(I,J,K)*QQ(I,J,K)

DO 30 K=2,NZP
DO 30 I=2,NXP

PY(1)=PSB(I,K)
QY(1)=QSB(I,K)

DO 35 J=2,NYP
ST=S(I,J,K)+AE(I,J,K)*QQ(I+1,J,K)+AW(I,J,K)
+*%QQ(I-1,J,K)
++IT(I,J,K)*QQ(I,J,K+1)+AB(I,J,K)4QQ(I,J,K~1)
Pl\J)=AN(I,J,K)/(AP(I,J,R)—AS(I,J,K)*PY(J-]))

35 QY(J)=(ST+AS(I,J,K)*QY(J*?))/(AP(I,J,K)
+~AS(1,J3,K)*PY(J-1))
QY(NY)=(SNB(I,K)+CNB(I,K)*QY(NYP))/(ANB(I,K)
+~CNB(I,K)*PY NYP))

QQ(I,NY,K)=0QV(NY)

DC 40 J=1,NYP
40 QQ(I,NY-J,K)=PY(NY—J)*QQ(I,NY~J+1,K)+QY(NY-J)
3C CONTINUE

DO 50 K=2,NZP
DO 50 J=2,NYP

PX(1)=PWB(J,K)
QX (1)=QgwB{J,K)

DO 55 I=2,NXP
ST=s(I,J,K)+AN(I,J,K)*QQ(I,J+1,K)+AS(I,J,K)*QQ(
+(I;J-1,K)+AT(I,J,K)*QQ(I,J,K+1)+AB(I,J,K)*QQ(I,J,K~1)
PX(I)=AE(I,J,K)/(AP(I,J,K)—AW(I,J,K)*PX(I—1))

55 QX(I)=(ST+AW(I,J,K)*QX(I-T))/(AP(I,J,K)-AW(I,J,K)
+*PX(1-1))
Qx(Nx)=(SEB(J,K)+CEB(J,K)*QX(NXP)>/(AEB(J,K)
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+-CEB(J,K)*PX{NXP))

QQ(NX,J,K)=0QX(NX)
DO 50 I=1,NXP
QQ(NX-1,J,K)=PX(NX-I)*QQ(NX-I+7,J,K)+QOX(NX-1I)

DO 150 J=2,NYP
DO 150 I=2,NXP

PZ(1)=PBB(I,J)
QZ(1)=QBB(I,J)

DO 155 K=2,NZP
ST=S(1,J,K)+AE(I,J,K)*QQ(I+1,J,K)+AW(I,J,K)=*QQ
+(I-1,3,K)+AN(I,J,K)*QQ(1,J+1,K)+AS(I,J,K)*QQ(I,J~1,K)
PZ(K)=AT(I,3,K}/{aP(I,J,K)-AB{(I,J,K)*PZ(K-1))
QZ(K)=(ST<AB{I,1,"V *QZ(K-1))/(AP(I,J,K)
+-AB(1,J,% s FZ(E~ ",

QZ(NZ)="0 4y, JYCTB{I,J)*QZ(NZP))/(ATB(I,J)
+=CTB(I,J i3 wre )

oQ(I,J,NZ2)=QZ(NZ)

DO 160 K=1,NZP
QQ(I,J,N2-K)=PZ(NZ-K)*QQ(1,J,NZ-K+1)+QZ(NZ-K)
CONTINUE

ER=0.0

DO 60 K=2,NZP

DO 60 J=2,NYP

DO 60 I=2,NXP

X="  7,J,K)*QQ(I1,J,K)-S{I,J,K)
+-AE(I,J,K)*QQ(1+1,J,K)-AW(I,J,K)*QQ(I~-1,J,K)
+=AN+I,J,K)*QQ(I,J+1,K)-AS(I,J,K)*Qu:I,J-1,K)
+-AT(1,J,K)*QQ(l,J,K+1)—AB(I,J,K)*QQ(I,J,K-1)
X=ABS(X)

ER=ER+X

ER=ER/FLOAT(NXP~-1) /FLOAT(NYP-1) /FLOAT(NZP-1)
IF(ER.GT.TOL) GO TO 100

RETURN
END
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SUBROUTINE ERR(EP,EN,NX,NY,NZ,ER)
DIMENSION EP(NX,NY,NZ),EN(NX,NY,6NZ)
NXP=NX-1
NYP=NY-1
NZP=NZ- 1
RX2=NX-2.0
RY2=NY¥-2.0
R22=NZ2-2.0
R3=RX2*RY2%RZ?2
ER=0.0
DO 81 K=2,NZP
DO 81 I=2,NXP
DO 81 J=2,NYP
E1=gP(I,J,K)-EN(I,J,K)
E1=E1*E1
E2=EN(1,J,K)*EN(I,J,K)
IF (E2.EQ.0.0) THEN
E1=E1
ELSE
Ft1=E1/E2
END IF
ERP=ER+E 1
EL=SQLT(ER)
ER=ER/R3
RETURN
END



APPENDIX C

C THIS IS A PROGRAM SOLVING NATURAL CONVECTION PROBLEMS
C IN ECCENTRIC AND CONCENTRIC ROTATING SYSTEM
C
PARAMETER(N=51,M=15,L=15,NN=N+1,MM=M+1,LL=L+1)
PARAMETER (NP=N-1,MP=M-1,LP=L-1)
DIMENSION UP(N,MM,LL),VP(NN,M,LL) ,WP(NN,MM,L)
DIMENSION T(NN,MM,LL),PP(NN,MM,LL),P(NN,MM,LL)
DIMENSICN U(N,MM,LL),V(NN,M,LL),W(NN,MM,L),GRADT(NN)
DIMENSION DX(NN),DY(MM),DZ(LL),AP3(2:N,2:M,2:L)
DIMENSION Y(M),z(L)
DIMENSION PX(NN) ,QX(NN),PY(MM),QY(MM),PZ(LL),QZ(LL)

DIMENSION
+AP1(2:N,2:M,2:L),AP2(2:N,2:M,2:L),S(2:N,2:M,2:L)
DIMENSION
+AE(2:N,2:M,2:L),AW(Z:N,Z:M,Z:L),AN(2:N,2:M,2:L)
DIMENSION
+AS(2:N,2:M,2:L),AT(Z:N,Z:M,Z:L),AB(2:N,2:M,2:L)
DIMENSION
+PSB(2:N,2:L),QSB(Z:N,2:L),ANB(2:N,2:L),CNB(Z:N,Z:L)
DIMENSION
+PWB(2:M,2:L),QWB(Z:M,Z:L),AEB(2:M,2:L),CEB(Z:M,Z:L)
DIMENSION

+PBB(2:N,2:M),QBB(Z:N,Z:M),ATB(2:N,2:M),CTB(Z:N,Z:M)
DIMENSION SEB(Z:M,Z:L),SNB(Z:N,Z:L),STB(Z:N,Z:M)

C CALL SYS$DISEXC(0,0,0,4)

OPEN(5,FILE='D1"')

READ(5,*)AX,AZ
READ(5, *)RA, PRD, EK,RG, RL
READ(5,*x)ALFV

READ(S, *)TOLV1,TOLV2,TOLT1, TOLT2, TOLP
READ(5,*) (DX(I),I=1,NN)
READ(5, %) (DY(J),J=1,MM)
READ(5,*)(D2(K),K=1,LL)

READ(5, *)NCR,NCCR, AMP

Y(1)=DY(1)
2(1)=D2(1)
DO 21 g=2,M

21 ¥(J)=Y(J-1)+DY(J)
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DO 23 K=2,L
2(K)=2(K-1)+DZ(K)

AAY=1.0/(1.0-ALFV)

AX2=AX*AX
AZ2=AZ*AZ

RY=1.0/(SQRT((2.0%PRD) /RA) )

RX=RY*AX2
RZ=RY*AZ2
AXI=1,0/AX
AXI2=AXI*AX1
AZI=1.0/A2
AZI2=AZI*AZI

RK=SQRT((2.0*PRD)/(RA*Y“**2))

RL1=1./(RL+1.)

GX=1.0/RX
GY=1.0/RY
GZ=1.0/R2Z
GT2=GZ/PRD
GTX=GX/PRD
GTY=GY/PRD
NCOUNT=0
NCC=0

INPUT INITIAL GUESSED VALUES FOR U, V, WAND T

OPEN(4,FILE="'IN"')

READ(4,11)(((UupP(1,J3,K),
READ(4,11)(((VP(I,J,K),

READ(4, 11)(((wP(1I,J,K)

READ(4,11)(({(T(1,3,K ..,
READ(4,11) (((PP(1,J,K),

DO 22 K=1,LL
DO 22 J=1,MM

DO 22 1=1,N
U(1,J3,K)=U0P(1,J,K)

DO 24 K=1,LL
DO 24 J=1,M
DO 24 I=1,NN

I=1,N),J=1,MM) ,K=1,LL)
I=1,NN),Jd=1,M),K=1,LL)
I=1,NN),J=1,MM) ,K=1,L)
=1,NN),J=1,MM) ,K=1,LL)
I=2,N),J=2,M),K=2,L)
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24 v(1,3,K)=vP(I,J,K)

DO 26 K=1,L
DO 26 J=1,MM
DO 26 1=1,NN

26 W(1,3,K)=WP(1,J,K)

APPLY BOUNDARY CONDITIONS

GRADT(1)=1.0
DO 33 1I=1,N
33 GRADT(I+1)=GRADT(I)-DX(I)-DX(I+1)

DO 45 K=2,L
DO 45 1=2,N
PSB(I,K)=0.0
ANB(I,K)=1.0
45 CNB(I,K)=0.0

DO 50 K=2,L
DO 50 J=2,M
PWB(J,K)=0.0
AEB(J,K)=1.0
50 CEB(J,K)=0.0

DO 55 J=2,M
DO 55 1=2,N
PBB(I,J)=0.0
ATB(I,J)=1.0
55 CTB(1,J)=0.0

SOLVING U, V AND W FOR GIVEN P AND T

1000 DO 75 K=2,L
DO 75 I=2,N
QSB(I ,K)=0.0

75 SNB(I,K)=0.0

DO 80 K=2,L
DO 80 J=2,M
QWB(J,K)=0.0
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80 SEB(J,K)=0.0

PO 85 J=2,M
Lo 85 1=2,N
OBB(I,J)=0.0
85 STB(1,J)=0.0

SOLVING FOR U

DO 120 K=2,L
DO 120 J=2,M
DO 120 1=2,NP
CALL FLUK(DX(I+1),DK(I),T(I+1,J,K),T(I,J,K),ST)
120 S’I,J,K)=O.5*(DX(I)+DX(I+1))*DY(J)*DZ(K)*AXI*ST*RG+
+AXI2*DY(J)*DZ(K)*(PP(I,J,K)—PP(I+1,J,K))

DO 130 K=2,L

DO 130 J=2,M

2C 130 1=2,NP

AC{1,3,K)=C 5% (UP(I,J,K)+UP(I+1,J,K))

AW(I,J,v -(UP(1-1,3,K)+UP(1,J,K))

CALL
+FLUX(DX(I+1),DX(I),VP(I+1,J,K),VP(I,J,K),AN(I,J,K))
CALL FLUX(
+Dx(I+1),DX(I),VP(I+1,J~1,K),VP(I,J—1,K),AS(I,J,K))
CALL
+FLUX(DX(I+1),DX(I),WP(I+1,J,K),WP(I,J,K),AT(I,J,K))
CALL FLUX(

+DX(I+1),DX(I),WP(I+1,J,K~1),WP(I,J,K—]),AB(I,J,K))
130 CONTINUE

CALL COEF(DX,DY,DZ,AP1,AE,AW,AN,AS,AT,AB,GX,GY,GZ,
+NN,MM,LL,N,M,L,NP,M,L,0,1,1,A;FV)

CALL SOLVER(AP1,AE,AW,AN,AS,AT,AB,S,U,PX,QX,PY,QY,
+PZ,QZ,PSB,QSB,ANB,CNB,SNB,PWB,QWB,AEB,CEB,SEB,PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,N,MM,LL,ALFV,TOLV1)

SOLVING FOR V
DO 220 K=2,L

DO 220 J=2,MP
DO 220 I=2,N
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CALL FLUX(DY(J+1),DY(J),T . J+1,K),T(1,J,K),ST)
SW1=0.5%(W(I,J,K~-1)+W(I,J,K))
SW2=0.5%(W(I,J+1,K-1)+W(I,J+1,K))
CALL FLUX(DY(J+1),DY(J),SW2,SW1,SW)
220 S(1,J,K)=0.5*DX(I)*(DY(J)+DY(J+1))*DZ(K)*(2.%AZ*RK*SW
+—ST*(RL+Y(J))*RL1)+DX(I)*DZ(K)#(PP(I,J,K)’PP(I,J+1,K))

DO 230 K=2,L

DO 230 J=2,MP

DO 230 1=2,N

CALL
+FLUX(DY(J+1),DY(J),UP(I,J+1,K),UP(I,J,K),AE(I,J,K))
CALL FLUZX(
+DY(J+1),DY(J),UP(I—1,J+1,K),UP(I—1,J,K),AW(I,J,K))
AN(I,J,K)=0.5%(VP(I,J,K)+VP(I,J+1,K))
AS(1,3,KR)=0.5%(VP(I,J-1,K)+VP(I,J,K))

CALL
+FLUX(DY(J+1),DY(J),WP(I,J+1,K),WP(I,J,K),AT(I,J,K))
CALL FLUX(
+DY(J+1),DY(J),WP(I,J+1,K-1),WP(I,J,K-:),AB(I,J.K))

230 CONTINUE

CALL COEF(DX,DY,DZ,AP2,AE,AW,AN,AS,AT,AB,GX,GY,GZ,
+NN,MM,LL,N,M,L,N,MP,L,1,0,1,ALFV)

CALL SOLVER(APZ,AE“AW,AN,AS,AT,AB,S,V,PX,QX,PY,QY,
+PZ,QZ,PSB,QSB,ANB,CNB,SNB,PWB,QWB,AEB,CEB,SEB,PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NN,M,LL,ALFV,TOLV1)

SOLVING FOR W

DO 720 K=2.LP

DO 720 J=2,M

DO 720 1=2,N

SV1=0.5%(v(1,3,K)+V(I,J-1,K))
SV2=0.5%(V(I,J,K+1)+Vv(I,J-1,K+1))

CALL FLUXR(DZ(K+1),DZ(K),SVZ,SV1,SV)

CALL FLUXR(DZ(K+1)},DZ{(K),7(i,J,K-1),T(I,J,: ", 8T)

720 S{I,J,K)=AZI2*DX(I)*LY¥{Js={ppirs P RYISPRIT L, e

*=0.5*DX(I)*DY(J) *(DZ(R +DZ(K+ i) Jalin, 2, CRRE®5 +
+ST*{Z(K)-0.5)*RL1)

DO 730 K=2,LP
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DO 730 J=2,M
DO 730 1=2,N

CALL
+FLUX(DZ(K+1),D2Z(K),UP(I,J. Y UP(IL,J,K),AE(1,J,K))
CALL FLUX(

+DZ(K+1),DZ(K) ,UP{(I~-1,J,L¢ 1 “P(I-1,3,K),AW(I,J,K))
CALL

FLUX(DZ(K+1),DZ(K),VP(I.J‘K+1),VP(I,J,K),AN(I,J,K))
CALL FLUX(

+DZ(K+1),DZ(K),VP(I,J—‘,ww1),VP(I,J—1,K),AS(I,J,K))

AT(I,J,K)=O.5*(WP(I,J,K)+WP(I,J,K+1))
AB(I,J,K)=0.5*(WP(I,J,K—1)+WP(I,J,K))
CONTINUE

CALL COEF(DX,DY,DZ,AP3,AE,AW,AN,AS,AT,AB,GX,GY,GZ,

+NN,MM,LL,N,M,L,N,M,LP,1,1,0,ALFV)

CALL SOLVER(AP3,AE,AW,AN,AS,AT,AB,S,W.PX,QX,PY,QY,

+PZ,QZ,PSB,QSB,ANB,CNB,SNB,PWB,QWB,AEB,CEB,SEB,PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NN,MM,L,ALFV,TOLV1)

PRESSURE CORRECTIONS

DO 310 K=2,L
DO 310 gJg=2,M
DO 310 1=2,N

310 s(I,J,K)=DY(J)*DZ(K)*(U(1—1,J,K)—U(I,J,K)>+

320

330

+Dz(x)*Dx(1)*(v(I,J-1,K)—V(I,J,K))+
+DX(I)*DY(J)*(W(I,J,K-1)-W(I,J,K))

DO 320 K=
DO 320 J
AW(2,J,K
AE(N,J,R)=
DO 330 K=2,L
DO 330 J=2,M

DO 330 I=2,NP
AE(I,J,K)=AA1*AXI2*DY(J)*DZ(K)*DY(J)*DZ(K)/AP1(I,J,K)
AW(I+1,3,K)=AE(I,J,K)

2,L
2,M
=0.0
.0

o~ ~ 1

DO 340 K=2,L
DO 340 1=2,N



AS(I,2,K)=
240 AN(I,M, K)=
DO 350 K=2,
DO 350 J—2,MP
DO 350 I=2,N

AN(I,J,R)=AA1xDZ(K)*DX(I)*DZ(K)*DX(1)/aP2(1,J,K)
350 AS(1,J+1,K)=AN(I,J,K)

DO 353 J=2,
DO 353 1=2,
AB(I,J,2)=
353 AT(I,J,L)-0.0
DO 357 K=2,LP
DO 357 J=2,M
DO 357 I=2,N
AT(I,J,RK)=AA1%AZI2%DX(1)*DY(J)*DX(1)*xDY(J)/AP3(1,J,K)
357 AB(I,J,K+1)=AT(I,J,K)

DO 360 K=2,L
DO 360 J=2,M
DO 360 1I=2,N
360 AP1(I,J,K)=AE(I,J,R)+AW(I,J,K)+AN(I,J,K)+AS(I ,J,K)
++AT(I,J,K)+AB(1,J,K)

CALL SOLVER(AP1,AE,AW,AN,AS,AT,AB,S,P,PX,0X,PY,QY,
+PZ,Q0Z,PSB,QSB,ANB,CNB,SNB, PWB,QWE ,AEB,CEB, SEB, PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NN,MM,LL, 1.0, TOLP)

DO 365 K=2,L
DO 365 J=2,M
DO 365 1=2,N

365 P(1,J,K)=P(1,J,K)-P(N,M,L)

DO 370 K=2,L
DO 370 J=2,M
DO 370 I=2,NP

370 u(1,J,K)=0(1,J,K)+AE(I,J,K)/DY(J)/DZ(K)*(P(I,J,K)
+-P(1+1,J,K))

DO 380 K=2,L
DO 380 J=2,MP
DO 380 I=2,N
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380 Vv(1,J,K)=v{(I,J,K)+aN(I,J,K)/DZ(K)/DX(1)*(P(I,J,K)

385 W(I,J,K)=W(I,J,K)+AT(I,J,K)/DX(I)/DY(J)*(P(I,J,K)

330

450

453

455

420

+-P(1,J+1,K))

DO 385 K=2,LP
DO 385 J=2,M
DO 385 1I=2,N

+-P(1,J,K+1))

DC 390 K
DO 390 I
DO 390 J
pPP(1,J,K

2,L
2,N
2,M

P

SOLVING T
RNUO=RNU

DO 450 K=2,L
DO 450 1=2,N
QSB(I,K)=GRADT(I)
SNB(I,K)=GRADT(I)

DO 453 K=2,L
DO 453 J=2,M
QWB(J,K})=1.0
SEB(J,K)=-1.0

DO 455 J=2,M
DO 455 1=2,N
QBB(I,J)=GRADT(I)
STB(I,J)=GRADT(1)

DO 420 K=2,L
DO 420 J=2,M
DO 420 I=2,N
s$(1,3,K)=0.0

DO 430 K=2,L
DO 430 J=2,M
DO 430 1=2,N

AE(I ,J,K)=U(1,J,K)

)=PP(I,J,K)+P(1,J,K)

176
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AW(I,J,KR)=0(1-1,3,K)

AN(I,J,K)=V(1,J,K)

AS(I,J,K)=v(1,J-1,K}

AT(1,J,K)=W(I,J,K)

AB(1,J,K)=W(I,J,K-1)
430 CONTINUE

CALL COEF(DX,DY,DZ,AP1,AE,AW,AN,AS ,AT,AB,GTX,GTY,GTZ,
+NN,MM,LL,N,M,L,N,M,L,1,1,1,1.0)

CALL SOLVER(AP1,AE,AW,AN,AS,AT,AB,S,T,PX,QX,PY,QY,
+PZ,QZ,PSB,QSB,ANB,CNB,SNB, PWB,QWB,AEB,CEB,SEB, PBB,
+QBB,ATB,CTB,STB,N,M,L,NN,MM,LL,NN,MM,LL, 1.3, TOLT1)

NCC=NCC+1

IF(NCC.GE.NCCR) THEN
TOLP=AMP*TOLP

NCC=0

END IF

NCOUNT=NCOUNT+ 1

1F(NCOUNT.GE.NCR) THEN
GO TO 4000
END IF

KkNU=0.0
DO 500 K=2,L
DO 500 J=2,M
500 RNU=RNU+DY(J)*Dz{(K)=*(T(1,J,K)-T(2,J,K))

ERT=RNU-RNUO
ERT=ABS (ERT)
ERT=ERT/RNU

IF(ERT.GT.TOLT2) THEN
DO 503 K=2,L
DO 503 J=2,M
DO 503 I=2,6NP
503 up(1,J,K)=0(1,J,K)

DO 505 K=2,L



178

DO 505 J=2,MP
DO 505 1=2,N
505 vep(1,J,K)=v(I,J,K)

DO 507 K=2,LP
DO 507 J=2,M
DO 507 1=2,N

507 WP(I,J,K)=W(I,J,K)

GO TO 1000
END 1IF

CALL ERR(UP,U,N,MM,LL,EU)
CALL ERR(VP,V,NN,M,LL,EV)
CALL ERR{(WP,W,NN,MM,L,EW)

IF (EU.GT.TOLV2.0OR.EV.GT.TOLV2.0R.EW.GT.TOLV2) THEN

DO 520 K=2,L
0 520 J=2,M
DO 520 I=2,NP
520 uUpP(1I,J,K)=U(1,J,K)

DO 530 K=2,L
DO 530 J=2,MP
DO 530 1=2,N
530 vpP(1I,J,K)=Vv(I,J,K)

DO 540 K=2,LP
DO 540 J=2,M
DO 540 I=2,N
540 WP(I,J,K)=wW(1,J,K)
GO TO 1000
END IF

»]

—

4000 RAL=ALOG10(RA)
RNU=RNU/DY(2)

OPEN(7,FILE="'OUTPUT')

WRITE(7,11)(((Uu(1,J3,K),I=1,N),J=1,MM) ,K=1,LL)
WRITE(7,11)({((Vv(1,J,K),I=1,NN),J=1,M),K=1,LL)
WRITE(7,11)(((wW(1,J,K),I=1,NN),J=1,MM) ,K=1,L)



WRITE(7,11)(((7?(1,J,K),I=1,NN),J=1,MM),K=1,LL)
WRITE(7,11)(((PP{I,J,K),I=2,N),J=2,M),K=2,L)

WRITE(7,111)AX,AZ
WRITE(7,222)RA,RAL
WRITE(7,333)PRD,EK,RG,RL
WRITE(7,444)RNU
WRITE(7,555)N,M,L
WRITE(7,666)NCOUNT, TOLP
WRITE(7,777)EU,EV,EW,ERT

11 FORMAT(13E15.5)

111 FPORMAT('Ax:',F5.2," Az:',F5.2)
222 FORMAT('Ra:',E11.3,' Log(Ra/A):',E13.5)
333 FORMAT('Pr:',E11.3,' £k:',E11.3," Rg:',E11.3,

+' R1:',E11.3)
444 FORMAT('Nu:',E14.5)

555 FORMAT('Mesh: ',I3,'X',I2,'X",I12)
666 FORMAT('NCOUNT:',bI5," TOLP' ,E15.5)
777 FORMAT('Eu:',E10.3,' Ewv:',E10.3,' Ew:',E10.3,

+' Et:',E10.3)

STOP
END

SUBROUTINE FLUX(DF,DB,VF,VB,OPT)
R=1.0/(DF+DB)

OPT=Rx* (DB*VF+DF%*VB)

RETURN

END

SUBROUTINE PWRLW(GXY,WW,DDS,DS,JUU)
F=DDS*WW

DDI=GXY*DDS /DS

P=F/DDI

X=1.0-0.1*%ABS(P)

X=X*X*X*X*X

X=AMAX1(0.0,X)

IF (JUU.EQ.1) THEN
WW=DDI*xX+AMAX1(~-F,0.0)

ELSE



WW=DDI1*X+AMAX1(F,0.0)
END IF

RETURN

END

SUBROUTINE COEF(DX,DY,DZ,AP,AE,AW,AN,AS ,AT,AB,
+GX,GY,GZ,NN,MM,LL,N,M,L,NX,NY,NZ,3X,JY,JZ,AL)
DIMENSION DX(NN),DY(MM),DZ(LL),AP(2:N,2:M,2:L)
DIMENSION AE(2:N,2:M,2:L),AW(2:N,2:M,2:L)
DIMENSION AN(2:N,2:M,2:L),AS(2:N,2:M,2:L)
DIMENSION AT(2:N,2:M,2:L),AB(2:N,2:M,2:L)

ALI=1.0/AL

DO 25 K=2,NZ
DO 25 J=2,NY
DO 25 1i=2,NX

IF (JX.EQ.1) THEN
DXE=0.5%(DX(I+1)+DX (1))
DXW=0.5*%(DX(I)+DX(1I-1))
DDX=DX(1I)

ELSE

DXE=DX(1+1)

DXW=DX(1I)
DDX=0.5*%(DX(I)+DX(I+1))
END 1IF

IF (JY.EQ.1) THEN
DYN=0.5%(DY(J+1)+DY(J))
DYS=0.5%(DY(J)+DY(J-1))
DDY=DY(J)

ELSE

DYN=DY{(J+1)

DYS=DY (J)
DDY=0.5*%(DY(J)+DY(J+1))
END IF

IF (JZ.EQ.1) THEN
DZT=0.5*x(DZ(K+1)+D2(K))
DZB=0.5*%(DZ(K)+DZ(K-1))
DDZ=DZ (K)

180



ELSE
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DZT=DZ(K+1)

DZB=DZ(K)

DDZ=0.5%(DZ{(K+1)+DZ (K))

END 1IF

AEW=DDY*DDZ
ANS=DDZ*DDX
ATB=DDX*DDY

CALL PWRLW(GX,AE(I,J,K),AEW,DXE, 1)
CALL PWRLW(GX,AW(I,J,K),AEW,DXW,0)
CALL PWRLW(GY,AN(I,J,K),ANS,DY¥N, 1)
CALL PWRLW(GY,AS(I,J,K),ANS,DYS,0)
CALL PWRLW(GZ,AT(I,J,K),ATB,DZT, 1)
CALL PWRLW(GZ,AB(I,J,K),ATB,DZB,0)

AP(I ,J,K)}=

ALI*(AE{(I,J,K)+AW(I,J,K)+AN(I, 6 J,K)+

+AS(1,J,K)+AT(I,J,K)+AB(1,J,K))

25 CONTINUE

RETURN
END

SUBROUTINE SOLVER(AP,AE,AW,AN,AS,AT,AB,S,QQ,PX,QX,PY,
+QY,PZ,QZ,PSB,QSB,ANB,CNB, SNB, PWB,QWB,AEB,CEB, SEB, PBB,
+QBB,ATB,CTB,STB,N,M,L ,NN,MM,LL,NX,NY,NZ ,ALF, TOL)

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

NXP=NX-1
NYP=NY-1
NZP=NZ-1

AE(2:N,2:M,2:L) ,AW(2:N,2:M,2:L)
AN(2:N,2:M,2:L) ,AS(2:N,2:M,2:L)
AT(2:N,2:M,2:L) ,AB(2:N,2:M,2:L)
AP(2:N,2:M,2:L),S(2:N,2:M,2:L),0Q(NX,NY,N2Z)
PSB(2:N,2:L),Q0SB(2:N,2:L),SNB(2:N,2:L)
PWB(2:M,2:L),OWB(2:M,2:L),SEB(2:M,2:L)
PBB(2:N,2:M;,0BB(2:N,2:M) ,STE(2:N, 2:M)
CNB{(2:N,2:L),CEB{(2:M,2:L),CTB{(2:N,2:M)
ANB(2:N,2:L),AEB(2:M,2:L) ,ATB(2:N,2:M)
PX(NN),QX(NN),PY(MM),QY(MM) ,PZ{(LL),Q2(LL)
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160 A1=1.0-ALF
DO 10 K=2,NZP
DO 10 J=2,NYP
DO 10 1=2,NXP
10 S(1,J,K)=8(1,J,K)+A1*aP(1,J,K)*Q0(I,J,K)

DO 30 K=2,NZP
DO 30 1=2,NXP

PY(1)=PSB(I,K)
QY(1)=QSB(I,K)

DO 35 J=2,NYP
ST=S(1,J,K)+AE(I,J,K)*QQ(I1+1,J,K)+AW(I,J,K)
+xQC(1-1,J,K)
++AT(I,J,K)*Q0(I1,J,K+1)+AB(I,J,K)*Q0Q(1,J,K-1)
PY(J)=AN(I,J,K)/(AP(1,J,K)-AS(I,J,K)*PY(J-1))
35 QY(J)=(ST+AS(I,Jd,K)*Q¥(J-1))/(aP(1I,J,K)
+-AS(1,J,K)*PY(J-1))
T(NY)=(SNB(I,K)+CNB{I,K)*QY(NYP))}/(ANB(I, K)
+-CNB(1,K)*PY(NYP))

Q0(I ,NY,K)=QY(NY)

DO 40 J=1,NYP
40 QO(I,NY-J,K)=PY(NY-J)*QQ(I,NY-J+1,K)+QY(NY-J)
30 CONTINUE

DO 50 K=2,NZP
DO 50 J=2,NYP

PX(1)=PWB(J,K)
OX(1)=QWB(J,K)

DO 55 I=2,NXP
ST=S(I,J,K)+AN(1,J,K)*QQ(1,J+1,K)+AS(I,J,K)*QQ(
+(1,3-1,K)+AT(1,J,K)*QQ(1,J,K+1)+AB(I,J,K)*QQ(I,J,K-1)
PX(1)=AE(I,J,K)/(AP(1,J,K)-2aW(I,J,K)*PX(I-1))

55 QX(I)=(ST+AW(I,J,K)*Qx(1~-1))/(AP(1,J,K)-AW(I,J,K)
+*xPX(I-1))
OX(NX)=(SEB(J,K)+CEB(J,K)*QX(NXP) ) /(AEB(J,K)
+-CEB(J,K)*PX(NXP})
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QQ(NX,J,K)=0QX(NX)
DO 50 I=1,NXP
50 QQ(NX~-I,J,K)=PX(NX-I)*QQO(NX-I+1,J,K)+QX(NX-1)

DO 150 J3=2 ,NYP
DO 150 I=2,NXP

PZ(1)=PBB(I,J)
QZz(1)=0BB(1,J)

DO 155 K=2,NZP
ST=S(I1,J,K)+AE(I ,J,K)*QQ(I+1,J,K)+AW(I ,J,K)*QQ
+(I1-1,J3,K)+AN(I,J,K)*QQ(I,3+1,K)+AS(I,J,K)*QQ(1,J-1,K)
PZ(K)=AT(1,J,K)/(AP(1,J3,K)-AB(I,J,K)*PZ(K-1))

155 QZ(K)=(ST+AB(1,J,K)*QZ(K-1))/(AP(1,J,K)
+-AB(I,J,K)*PZ(K-1))
OZ{NZ)= {STR(I ,J)+CTB(I ,J)*QZ(NZP))/(ATB(I1,J)
+=L5BLT 3 i%PZ(NZP))

QQ(i,J,N2)=0Q0Z(NZ)

DO 160 K=1,NZP
160 QQ(1,J,NZ-K)=PZ(NZ-K)*QQ(I,J,NZ-K+1}+QZ(NZ-K)
150 CONTINUE

ER=0.0
DO 60 K=2,NZP
DO 60 J=2,NYP
DO 60 I=2,NXP
X=AP(I,J,K)*QQ(I,J,K)-S(I1,J,K)
+-AE(I,J,RK)*Q0(I+1,J,K)-AW(I,J,K)*QQ(1-1,J,K)
+-AN(I,J,K)*QQ(I ,J+1,K)-AaS(1,J,K)*QQ(I1,2-1,K)
+-AT(I,J,K)*xQQ(I1,J,K+1)-AB(I,J,K)*QQ(I1,J,K-1)
X=ABS(X)
60 ER=ER+X
ER=ER/FLOAT(NXP-1) /FLOAT(NYP-1) /FLOAT(NZP-1)
IF(ER.GT.TOL) GO TO 100

RETURN
END

SUBROUTINE ERR(EP,EN,NX,NY,NZ,ER)
DIMENSION EP(NX,NY,6NZ),EN(NX,NY,6NZ)



81

NXP=NX-1
NYP=NY~-1
NZP=NZ-1
RX2=NX-2.0
RY2=NY-2.0
RZ2=NZ2-2.0
R3=RX2*RY2%RZ2
ER=0.0
DO 81 K=2,NZP
DO 81 1=2,NXP
DO 81 J=2,NYP
E1=EP(I,J,K)-EN(I,J,K)
E1=E1%xE1
E2=EN(1,J,K)*EN(I,J,K)
IF (E2.EQ.0.0) THEN

E1=E1
ELSE

E1=E1/E2
END IF
ER=ER+E1
ER=SQRT(ER)
ER=ER/R3
RETURN
END
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