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ABSTRACT

In this thesis we study the classical problem of determining
the asymptotic behavior of a2 runction F(z) defined by
F(z) = [ g(wexp[-z¢(w)]dw ,
r
where T 1is a continuous curve which may be finite or infinite in
length. Although an alternative procedure is illustrated in The Method
of Darboux (Chapter VII), it is generally true throughout the thesis
that the use of the substitution t = ¢(w) 1is envisaged, and F(z)
will have a canonical representation of the form
F(z) = [ f(t)exp(-zt)dt ,
l'll

where
d
f(t) = g(w) d—‘:' ’
and ' is the image of T 1in the complex t-plane.

In the classical situations considared by Barnes [2] and
Watson [21], the success of finding the-asymptotic behavior of a Laplace
integral ff(t)exp(-zt)dt depends on f£(t) having at most a branch-
point singﬁlarity at t = o of the form tl-l. In this thesis, we
study a situation in which £(t) has a singularity at t = o which is
of the form tk-l(log t)". Although gome work along these lines has

already been accomplished by Erdélyi (8], our proofs differ from those
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used by Erdélyi and the results of the present thesis are more extensive

than the results contained in the paper mentioned above.

As a justification for our study of logarithmic singularities,
we find the complete asymptotic expansion of u(z,R,0), a result which,

as far as we are aware, has not yet been obtained.
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CHAPTER I

Watson's Lemma

For many years, the study of the analytical properties of
functions, F(z), with integral representations of the form

(1.1) F(z) = f f(t) exp (-z ¢(t))dt, =z a complex variable,
T

has been one of major mathematical interest. The path of integration,
I', is normally taken to be a continuous curve in the complete complex
t-plane, and T may or may not be a closed curve. In spite of the
extremely restricted form which the integrand of (1.1) is assumed to
have, the extent of the class of functions so defined is sufficiently
large to embrace many of the higher transcendental functions of major
importance in modern science. The following table illustrates some

of the specific functions and classes of functions which have such an

integral representation.

Obtaining information concerning the behavior of a function
F(z) within a neighborhood of some fixed point z = 2z is of interest
to, and indeed in one way or another seems to encompass, mostkparts
of classical analysis. The limit process, the Landau order relations
0 and o, convergent expansions of various types, and some types of
divergent expansions, all were designed to give information of the
type described above. There is, however, considerable difference in

the detailed information sought and obtained by using these different
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procedures. Information of this type is called asymptotic information.

Although the situation in which the fixed point z, is a
finite point in the complex z-plane is of considerable interest, most
asymptotic results are stated in a canonical form by taking z, to be
the point at infinity. A particular neighborhood system, U(z, R, @, B),

defined as the point set for which
(1.2) o < arg z < B, |z]| >R, a, B and R > o real numbers

plays an important role in deriving asymptotic information. Unless
otherwise stated, o and B remain fixed during a discussion. Different

members of the set of neighborhoods are obtained by choosing different

values of R.

In particular, the Landau order relations are defined as follows:

(a) The notation F(z) = 0(G(z)), as z -+ », implies the existence of
a fixed constant K such that |F(z)| < K |6(z)| for every z in
some neighborhood U(z, R, o, B).

(b) The notation F(z) = 0(G(z)), as 2z -+ », 1implies that for every
choice of fixed ¢ > o, there exists a neighborhood U(z, R(e), a, B)

such that ]F(z)l :_eIG(z)I for every 2z in U(z, R(e), @, B).

To illustrate the type of problems that will be considered in
the present thesis, suppose that F(z) is defined by a convergent Laplace

integral

©
m

(1.3) F(z) = f £(t) exp (-zt)dt, Iarg zl_i 2 A, A fixed and positive.
o

Further, it is assumed that £(t) has a convergent expansion of the form



(1.4) £(t) = Z bn t , r fixed and positive,
n=1

which can be integrated term-by-term to yield a convergent series

representation of F(z) of the form
0
(1.5) F(z) = ) a_z R

where a = bn I'(n r_l), and each bn is a fixed complex number.

The power series nature of (1.5) implies that for every fixed

integer N > o,

v . _X
r

(1.6) F(z) = z a z + o(z r), as z - « in |arg z| j.g-- A .
n=1

Clearly, (1.6) gives very detailed information of the behavior of F(z) in
neighborhoods of the point at infinity. Poincaré made the observation

that this information depends only on the result contained in-(1.6), and

is independent of the assumptions and the procedure by means of which (1.6)
was obtained. Indeed, the validity of (1.6) does not implylthe convergence
of the series in (1.5). The introduction of powers of z— ¥ is no more
general than the situation in which r = 1, and only powers of z_l are
considered. One can be obtained from the other by a simple substitution

of variables. With this in mind the Poincaré definition of an asymptotic

expansion is formulated as follows:

Poincaré's Definition of an Asymptotic Expansion.

A formal power series, Z a, z_n, convergent or divergent, is
n=o
called an asymptotic expansion of a function F(z) if, for every fixed



integer N > o,

oy 0(2_(N+1)), ag z » w,

(1.7) F(z) =

n

il 12

a 2
n
o

The validity of (1.7) may be restricted to a sector o < arg z < «, The

notation used to indicate the validity of (1.7) is

(1.8) F(z2) ~ ] a_z ", as z-+o in o< arg 2<8B.
n=o
An important property of the Poincare asymptotic expansion is
that the expansion, i1f it exiets, is unique, The coefficlents a, are

determined by the recurrence relations:

m-l
(1.9) a = lim F(z) , 8 = lim 2"[F(z) - [ a_z M.
0 Lo+ B oo pmo B

These formulae, coupled with the fact that lim z"[exp(-b|z|P)] = 0,
zZ >

for every non-negative integer m, and all fixed, positive, numbers b
and p, imply that every function g(z), satisfying g(z) = O(axp(-blzlp)),

a8 z -+~ in o < arg z < B, has the unique asymptotic expansion
(1.10) g(z) ~0, as z -+ in o < arg z < 8.

In turn, it will be true, that two functions F(z) and G(z) such that
(1.11) F(z) = G(2) + g(2),

g(z) as above, will have the same asymptotic expansion.

Functions satisfying the order relation g(z) = O(exp(-b|z|P)),

as z+» in o < arg z < B are sald to be exponentially small, and it
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is usual to replace such functions by zero at any stage in a proof being

used to establish the validity of Poincare asymptotic expansion.

Within the framework provided by Poincare, the determination
of the asymptotic behavior of functions defined by (1.1) has been the
object of intensive study. Among the many results now known, one due to
G.N. Watson [21] is of major importance. In order to provide a basis for
a generalization of the result due to Watson, now known as Watson's Lemma,

his statement and proof of the result are reproduced below.

Watson's Lemma.

If (i) £(t) dis analytic when |t| < a + §, where a > o,

8§ > o, except at a branch-point at the origin, and

(1.12) £(e) = J a t¥

when |t| < a, r being positive; (ii) |£(t)| <K ePt, where K and

b are independent of t, when t is positive and t > a;
(1ii) |arg z] j_%-- A, where A > o; and (iv) |z| is sufficiently

large: then there exists a complete asymptotic expansion given by the

formula
P o -
(1.13) F(z) = [ £(t) exp(-zt)dt~ [ a 1Dz .
o m=1
Proof: If M 4is any fixed integer, we have
w1 2o 2.1
(1.14) |£(e) - ] a ¢ | <k ¢ exp(bt)
m=1

throughout the range of integration, where Kl is some number independent

of ¢t.



Hence
@ M-l » -1
(1.15) [ f(t)exp(-zt)dt = Y a tF exp(-zt)dt + Ry s
) m=0 o

where
© g—1

(1.16) IR, < [ K t¥  exp(bt) |exp(-zt)|dt
o

R [=R

< Ky I‘(I-:-) {Re(z) - b} >

provided that Re z > b, which is the case when |z| is sufficiently
large; and since {Re(z) - b}_l = 0(%) for the range of values of 2z

under consideration, we have
M

@ M-1
+ 0(z r) ,

(1.17) | f(t)exp(-zt)dt = | a r(-';-‘) 2
o m=1

N g

and so the integral possesses the complete asymptotic expansion, which

is of Poincaré's type.

In attempting to generalize Watson's Lemma it is important to
separate the necessary and sufficient conditions which he uses from those:
that are only sufficient. It is known [7] that a necessary and sufficient.
condition for a Lapléce integral to converge is that fixed real numbers
K and o must exist for which

t
(1.18) |/ £(u)du| < K exp(ot), t2>0,
)

and the integral will then converge when Re z > ¢ > 0. If the integral in

(-]

(1.19) F(z) = [ g(t) exp(-zt)dt
o
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is convergent, then integration by parts gives

© t
(1.20) F(z) = z [ £(t) exp(-zt)dt, £(t) = [ g(u)du ,
o 0
and therefore |f(t)| < K exp(ot), t > o. Although this condition on
f(t) does not imply that the same condition is satisfied by g(t) in

(1.19), the integral representation of (1.20) can be considered as a

canonical form for (1.19). For this reason, the condition [£(t)| < K exp(ot),

which is assumed by Watson, is actually implied, for the canonical form
(1.20), by the convergence of the integral. 1In its canonical form, there

is of course no hope that this condition can be either weakened or

generalized.

vSince the translation t = t' + A places

<}

(1.21) F(z, A) = [ g(t) exp(-zt)dt
A

into the form

(1.22) F(z, A) = exp(-zA) f g(t + A) exp(-zt)dt ,
0

it is clear that for every fixed A > o, the convergence of (1.21) is

sufficient to ensure that
(1.23) F(z, A) = 0(exp(-zA)), as z + > in larg z|'i-% -4,

and, therefore, F(z, A) is, under these conditions, exponentially small.

Since

A o ’
f g(t) exp(-zt)dt + f g(t) exp(-zt)dt
(o) A

(1.24) F(2)

A
f g(t) exp(-zt)dt + O(exp(-zA)), as z + = in |arg z]_i

o

r_
2

4,
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one can and must obtain the desired asymptotic information about F(z),
A

up to the order of terms that are exponentially small, from f g(t)exp(~zt)dt.
It is this property of Laplace integrals that enables one to gee that

the detailed asymptotic behavior of F(z) must be determined by the
behavior of g(t) in an infinitesimal interval o < t < A. Watson has
obtained this behavior when g(t) has a singularity at t = o0 of
branch-point type. Although it is possible to obtain worthwhile generaliza-
tions of Watson's Lemma for branch-point singularities, the major areas in
which new results now lie are in investigations. in which the nature of

the singularity differs from the one used in Watson's Lemma. In the

present thesis, integrands with logarithmic singularities will receive

detailed study.

An examination of (1.23) suggests that the essential feature

of the result could be preserved without requiring A to be fixed. It

seems possible that a requirement like A 3_b|z|p_l, p fixed (0 < p < 1),

b fixed and positive, may imply that F = O(exp(—elz|P)), as z » « in
|arg zI 5.%-— A, for some fixed € > o. Thus A might be a function of

z with the property 1lim A = 0. The desired result is established in

ZzZ > ®©
the following lemma.

Lemma 1.1.

Consider

(1.25) F(z, A) = f f(t) exp(-zt)dt, ]arg z| 5_%-- A,
A
where A = A(z) 1is positive for every finite 2z in u(z, R, - % + A,‘% )

for some fixed R, and A(z) is bounded in U. If
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(1) 1lim |z| A(z) = =

2 > ®

(1) |£@)| <M 1 exp(ot), t > A,
where M, o and ) are arbitrary fixed real numbers, then
(1.26) |F(z, A)| = o(AA exp(-zA)), as z +~ in U.

Proof: The assumptions imply

1

(1.27) |F(z, A)| <M [ £ exp(ot) |exp (-zt) |dt.
A

By means of the substitution t = A(L + t') one obtains

(1.28) |F(z,A)| <M AA|exp(-(z-o)A)|f 1+ t)l~l|exP[-(z - o)At] |dt.
o

| £ A<1, A+t <1 in t>0, andif A1,
1+ t)x_l < exp(At) in t > o. In either case, (1 + t)A_l < exp(|x|t).

Hence

co

(1.29) [ (1+t)""Y|exp(-(z-0)At) |dt < [ exp[-(A]z|sina - A - |A])E]de
o (o]

1

ZAlz[ sin & - Ao - |A] >0, as |z| > =,

because 1lim |z|A(z) = », A is bounded, and A, ¢ and |A| are fixed
2z > ®
numbers. This, of course, implies the required result

(1.30) F(z,A) = o(AA exp(-zA)), as z > » in |arg z| j_%-- A.

A more general result than Lemma 1.1, with the exception that

A 1is more restricted, is contained in Lemma 3.1, Erdelyi and Wyman [12].
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When ) > o, A bounded immediately gives F(z,A) = c(exp(-zA)),
and, as before, the condition A _2_b|z|p-l will imply F(z,A) is
exponentially small. On the other hand, X < o introduces a factor that

is a fixed power of |z|, and hence, will not modify this particular

result. This implies

(1.31) F(z,A) = o(exp(-¢|z|P)), as z >« in |arg z| j;% - b,

as long as A is bounded and A 3_b|z!p-l

It will be of later interest that the result contained in

(1.31) does not requiré the convergence of

(1.32) F(z) = F(z,0) = [ £(t) exp(-zt)dt.
o
The particular instance in which convergence may fail, X <o, will

be of value when other paths of integration, which must of course

avoid the point t = o, are considered.

Having described or established some of the general properties
of Laplace integrals, procedures will now be discussed by means of which
the conditions of Watson's Lemma can be relaxed. Suppose, by means of

Watson's Lemma, it is established that

©

(1.33) F(z) = [ £(t) exp(-zt)dt
o

has an asymptotic expansion of the form

(1.34) F(z) ~ z a z ’ z + o in |arg zl <%-A,
n=l ° -

L]
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Sometimes the expansion (1.34) might be valid even 1f z = «® in a wider
range of arg z than the one given above, and examples are known where
z may be allowed to approach « in a < arg z < B, where B -« might
be greater than 27. On the other hand, there may well be no relation
between the asymptotic behavior of F(z) in the region |arg z| :_% - A
and in regions excluding |arg z| j_%-- A. For example,
(1.35) z/1+ z = E (—1)n z—n, |z| >1,

n=o0
is a convergent expansion, which provides an asymptotic expansion as
z + o with arg z unrestricted. The function z(1 + e_z)/l + 2z has
the following asymptotic representation:

(1.36) z(l+e 2)/(1+z) ~ ] -1)" 2z, z+ = in |arg z| j_%-— A s
n=o

(1.37) z(l+e 2)/(L+z) ~ ) -1 2", z>= in %-+ A < |arg z| E_%; - A,
n=o0

The asymptotic behavior of z(1 + e %)/(1 + z) is quite different in

the two sectors |[arg z| < T_ A and T+ 8 < |arg z| < ELR A.
-2 2 - - 2

There exist quite powerful, but not necessarily infallible,
methods by means of which the range of validity of an asymptotic expansion
can be extended beyond that normally given by Watson's Lemma. Sometimes
the integrand has sufficient regularity to allow a deformation of the

path of integration to take place. Thus the same function F(z) may

have the integral representation

weiY i i

i £(t) exp(-zt)dt |arg(ze™ ") ]| <5 b
)

(1.38) F(2)

]

eiY f‘ f(teiY) exp(-zeth)dt .
o
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where, by analytic continuation, the choice of the real number vy may
be arbitrary within a certain interval. One might then use Watson's Lemma

for (1.32) to retrieve the same asymptotic expansion

-1
r

(1.39) F(z)~ ] a z ~, as z>« in |arg (zel") | j_%._ A.

n=1

If, for example, the choice of y is arbitrary in lyl < %-, then the
range of validity of (1.39) becomes |arg z| <m - A, an extension of
the range of validity of the expansion obtained, in the first instance,
by the use of Watson's Lemma. An important situation in which this
particular technique fails occurs when the path of integration is finite
in length, say £(t) = o, t > a > o. Thus

a
(1.40) F(z) = [ £(t) exp(-zt)dt.
[o]

It is interesting to note that while the integral in (1.40) may well
converge for every finite 2z, and arg 2 unrestricted, the initial use
of Watson's Lemma still imposes the condition z + = in |arg z| 5_%—- A

for the validity of

- n
(1.41) F(z) ~ ) a z t
n=o
The substitution t =a - t' gives
a
(1.42) lexp(az)] F(z) = [ £(a - t) exp[-(-2)tldt ,

o

and a second use of Watson's Lemma would give, under the condition of

that Lemma, that

n
(1.43) [exp(az)] F(z) ~ ) bz r', z > in |arg(-z)| 5_-’2’- - A,

n=1
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the constants bn and r' of (1.43) need not bear any relation to the
constants a and r in (1.41). When the exponential factor, exp(az),
is taken into account, the asymptotic behavior of F(z) exhibited by
(1.41) and (1.43) is quite different in the two different sectors

hmzli%—AaM hmz|1%+m

Two important properties must be noted. The use of non-integral
powers of z implies that the z-plane has been cut in a suitable manner
to make z® a single valued function, this cut normally being made from
z=o0 to z=-®», with the implication that -7 < arg z < 7. The
asymptotic behaviors exhibited in (1.41) and (1.43) do not provide a
complete description of the asymptotic behavior of F(z) as z >« in
the complete-cut-plane, -m < arg z < 7. There exist gaps in the sectors
which include arg z = * % . To overcome this deficiency, the following
technique is often useful. The straight line path of integration

joining t =0 to t =a is deformed in an infinitesimal manner as -

described below:

A
Figure 1.1. Figure 1.2.

One hopes that the integrand has sufficient regularity to allow

a use of Cauchy's theorem to write

A a
(1.48) F(z) = [ f(t)exp(-zt)dt + [ £(t)exp(-zt)dt
o A
A a-A
= [ f£(t)exp(-zt)dt + exp(-az)[ f(a-t)exp(zt)dt.
o o
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The use of Watson's Lemma as illustrated for (1.38) would be expected to

yield, for the situation in Figure 1.1,

n n
(1.45) F(z) ~ z a z ¥ exp(-az) Z bn z T ,
n=1 n=1

with the obvious meaning that, for every fixed integer N > o and M > o,

N .n _ AN+1) M -n
(1.46) F(z) = ) a z “+0(z ° )+exp(-az)[ [ b 2z ©
a=1 n=1 °
_ (M)

+0(z ),

and a range of validity provided by the intersection of

(1.47) |arg (z exp(i4)) | i% -% and |arg(-z exp(~14)) | il;- -% 5
or

(1.48) -%-%—Aiarng_%—%a and —32—"+%Af_argzi-%+%,
or

(1.49) -%-%f_argzi--g—+-§-,

and one of the missing gaps has been covered. The validity in the

remaining gap is obtained by the deformation indicated in Figure 1.2,

Although the proof used establishes the validity of (1.46) in
a very narrow interval of arg z, the actual validity is the complete-
cut-complex z-plame, |arg z| < m - A. When |arg z| < % - A, all of
the terms in (1.46) involving the exponential factor are 0(2—(N+1)/ Ty

m
as z > ® in |arg z| <% -8, and therefore
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N _n
r

(1.50) F(z) = z a z + 0(z-(N+1)/r), as z +» in |arg z| < T o,
n=1 n -2
or
® -2
(1.51) F(z) ~ Z a 2 ¥ , as z > in Iarg z| 5_%-— A,
n=1

which is, of course, the correct result for the range of arg z given.

Similarly, for |arg z| _>_—;- + A, all of the terms not possessing the

- 1
exponential factor are 0((exp(-az))z 1) /x ), and therefore
w -
! ki3
(1.52) F(z) ~ exp(-az) ) b 2z ,as z+® in |arg z| >3t 4,

n=1
which is again the correct asymptotic expansion for the indicated range
of arg z. However, the proof of (1.45) was given for the missing gaps

in arg z, and hence (1.45) is valid as z > in |arg z| <7 - A.

The use of (1.45) to describe the asymptotic behavior of
F(z) as z + in |arg z| <m - A gives the first indication that
strict interpretation of the Poincaré framework is not sufficiently
general to describe adequately the asymptotic behavior of relatively
simple Laplace integrais. Although the modifications required to
accommodate (1.45) are simple to make, the existence of (1.45) does
indicate that it may be desirable to provide a much more general frame-
work in which asymptotic theory may be discussed. Such a framework will

be described in the next chapter.

Before concluding the present chapter, it is desirable to call
attention to some of the properties of the seemingly more general

integral representation given in (1.1),
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(1.53) F(z) = [ £(t) exp(-z ¢(t))dt.
r

If one desires to use the Watson's Lemma technique on (1.53), an obvious

substitution to try is

w, with inverse t = t(w),

(1.54) o (t)

resulting in

d
f f(t) E&-exp(—zw)dw,
r'

(1.55) F(z)

where T' is the image of I in the w-plane. Let us suppose that T
begins at t = A and ends at t = B. These points may be the same,
making I a closed curve, or one, or both, may be the point at infinity.
It is assumed that ¢(t) has sufficient regularity to ensure that the
image T' 1is a continuous curve in the w-plane, and f(t) will allow
an integration by parts to take place. It is not assumed that %&- is

continuous at every point of the path of integratiom.

Integrating by parts gives

w=¢(B)

\4
(1.56) F(2) = (f £ dw) exp(-zw)] + 2 [ o(w)exp(~zw)dw.
9 (A) w=¢ (A) r'
B
= (/] £(t)dt) exp(-z ¢(B)) + z [ ¢(w) exp(~zw)dw,
A r'
where
w at t
(1.57) o(w) = [ £(r) - dw = [ £(r)dt.
9 (A) A

Hence the determination of the asymptotic behavior of F(z), given by

(1.53), becomes equivalent to the determination of the asymptotic behavior

of
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(1.58) G(z) = £' o(w) exp(-zw)dw ,
an integral that at least has the Laplace form of integrand. For
definiteness in description, let us assume Re $(B) > Re ¢(A). When
¢(w) has sufficient regularity to deform ' into the straight line
joining w = ¢(A) to w = $(B), then the Watson's Lemma procedure
might apply. Although far from obvious at this time, the possibility that
Re ¢(B) = Re ¢(A) does not actually cause a major difficulty. In the
situation described above, the tramslation w =t + ¢(A) gilves
¢ (B)-¢(4)
(1.59) [exp (z $(A)] G(2) = [ g(t) exp(-zt)dt ,
o
and the precise form of a Laplace integral has been obtained. The
general properties of these integrals tells us that, up to the order of
exponentially small terms, one need only discuss the asymptotic behavior
of
E

(1.60) G(z, E) = [ g(t) exp(-zt)dt ,

o
where |E| can be chosen to be positive, and arbitrarily small. This
very important fact makes the procedure outlined considerably easier
than one might have expected from the original form of the integral. Once
the existence of Laplace form of integrzl is established, it is not

necessary to exhibit the inversion involved in (1.54)

(1.61) $(t) = w, t=t(w) ,
t
and the subsequent expression, (1.57), of f f(t)dt din terms of w,
A

at every point of the path of integration. These need only be exhibited in
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an infinitesimal neighborhood. Since the Biirmann-Lagrange inversion
formulae [4] were specifically designed to solve inversion problems of
this type, it is fair to say that the technique described thus far
provide a powerful tool which, under certain ratper general conditions,
will yield the asymptotic behavior of functions defined by generalized
Laplace integrals of the type given in (1.53). In spite of this remark,

the procedure does fail in certain important situations.

When an attempt is made to perform the inversion of o(t) = w
to t= t(w), it is not unusual to find that t = t(w) has one or more
singularities. For the moment, it is sufficient to concentrate on the
case when only one singularity is involved, and for simplicity, it will
be assumed that a translation has been made so that the singularity is
at the origin w = o. Further, it will be assumed that a cut along a
straight line joining w=1o0 to w=w, (Re W, > 0), will make t = t(w)
single-valued along the path of integration I'. A possible situation

is illustrated below.
,I:_'_———/

Figure 1.3.

w-plane

Although it may be possible to deform the contour into two
straight lines, one on the top of the cut and the other on the bottom,

it may be that the best that can be done is as illustrated below:
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h

I
S

w-plane

Figure 1.4,

The deformation of TI'' shown in Figure l.4 is the well-known
loop path of'integration, except that it is not necessary to assume the
path of integration is infinite in length. Although the radius of the
circle r can be taken to be fixed and.arbitrarily”small, the choice

r = o may be forbidden because the integral involved
(1.62) G(z) = f o (w) exp(-zw)dw
L

may fail to converge when the singularity at w =o0 is on the path of
integration. In spite of this, the implication of the use of Lemma 1.1,
would reduce the problem to the determination of the asymptotic behavior
of
(1.63) G(z, r) = f ¢ (w) exp(-zw)dw ,

wi=r
and the infinitesimal straight line for Laplace integrals has been

replaced by an infinitesimal circle.
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The first reasonably general theorem dealing with a problem
of this type is, as far as we are aware, due to E.W. Barnes [2]. This
result is of sufficient importance for the present thesis to reproduce

the statement of the result, and the proof used by Barnes.

Barnes' Lemma.

Given the contour integral

(1.64) 1=2 | -)7 £(t) exp(-zt)dt ,

Cc
where C is the Gamma function contour, Figure 1.5, which encloses the
origin and embraces an axis P from the origin along which Re (zt) 1is

positive, if

(A) the function f(t) admits the convergent expansion
(1.65) £(t) = ) Cn(-t)n , for |t| <&
n=o
(B) the integral I is convergent;
and (C) the complex t-plane is dissected by lines passing away from
the poles of £(t) to infinity in a direction away from the origin, and
the contour C does not contain or cut any of these lines; then

® C
(1.66) I~ ) 2 , as |z| »=.
n=0 I'(l -8 -n) zB+n

proof: Divide up the contour C into two parts L and M. L lies
wholly within the circle of convergence of £(t) and, on L, |z| <4,

where &' =2 -¢ and € is a positive quantity as small as we please.

M forms the remainder of the contour.
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C
P
7
t-plane
Figure 1.5.
We have
g Cn i f B-1 g n
(1.67) I - === [ (-t) {£(t) - C (-t) lexp(-zt)dt
n=o r(l-s—n)zn+8 2n c n=o O
=1, +1,,

where I1 is the integral taken along the contour L and 12 the sum

of the integrals along the two parts of the contour M.

In the integral I, put 2zt =u and let L' be the transformed

contour. The integral becomes

N4B., z N+l ¢ u\n
(1.68) ————f (-u) (- ) c (- H] exp(-w)du .
an L u n=tz<+1 nooz

For any assigned finite value of N, however large,

z\N4L ¢ uyny _ u u
(1.69) |- n=1§+l c -2 | = [Cg1 = Ce2 7 * O3 G % -

I

2
O | * 1Cga 2" # |Cpgyale’ + oee

This series is absolutely convergent and independent of z or u. We

may therefore say that
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z N+1 E

(1.70) - 3 c (-DH <r,,
| n=N+1 ® z l RN

u

where RN is independent of 2z or u, and is finite when N is

finite.

Hence

1

(1.71) |Il| j'TZE:ﬁ;IT

2 [ 1w R Jexp(-u) | lau]
Ll

,BN-1

0¢( ).

Consider in the next place the integral 12 .

If the original contour cut none of the lines of dissection

of the plane, it may be closed up as in the figure below:

Figure 1.6.

For, as we pass over no poles of the subject of integration, by Cauchy's
theorem we do not alter its value. The contour integral 12 can there-

fore be replaced by
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N

(1.72) sint BB pre) - ] (-6)" exp(-ztddt
n=o

a line integral taken from the point o along the axis P to infinity.
If we put. t = o + u/z, we get

© N
(1.73) 1, = EEE;E—E exp(-az)f (o + E)B_l[f(a +-§D - Z Cn(—a—u/z)n]exp(-u)du/z

2
0 n=o

and the integral is taken along a line for which Re(u) is positive.

By our original hypothesis the integral is convergent. It is
finite for any assigned finite value of N, and when |z| is very large

it tends to a finite limit. Hence |12| tends exponentially to zero

with 1/]z].

Therefore for all finite values of N however large we may

take |z| so large that
N B+n -Bg-N-1
.74) |1- ] c/z " T(-8- n)| = 0(z ), as |z| .

n=o

This completes the proof of the lemma.

It is of historical interest to note that the essence of Watson's
Lemma which first appeared in 1918 is actually contained in the result of
Barnes published earlier in 1906. Indeed, by allowing P to be the

real axis, and using the particular instance of the contour C shown

below:

% ,

Figure 1.7.
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one can, by shrinking the circular portion‘to zero, obtain
(1.75) I= EEE;EE fw 1 £ee) exp(-zt)dt, providing ReB > o.
)
From the identity I'(l - B - n) I'(n + B) = (-1)® 7/sin (7B), the result

(1.76) | ¢f1 £(t) exp(-zt)dt ~ ) -1" c, P(n+B)z-(n+B), as |z| » =,
o n=o0

and |arg z| 5_% - 4, follows. A minor difficulty appears when B is

a positive integer.

The use of the loop path of integration allows Barnes to
consider the possibility ReB < o, a situation that makes the integral
(1.76), used by Watson, to be divergent. At the same time, the expansion
(1.65) seems more restrictive than the one used by Watson in (1.12).
However, a detailed study of the proof used by Barnes shows that it is
possible, with very minor modifications, to obtain a far more general
result than the one proposed by Watson. It would seem that this latter
result is misnamed in mathematical literature, and might well be called

Barnes' Lemma.

Until fairly recently, it was not considered necessary to
discuss problems of this type for more than one singularity. The
reasons for this point of view are two-fold. Even though it was well

known that the inversion of
(1.77) o(t) = w

might produce more than one singularity, it was envisaged that the

gingularities, say w = a s a, °°°*, were distinct and of finite affix.
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If the deformation of T' could be made to take the form of a loop about
one and only one singularity, then the existence of the others would be
irrelevant as far as required asymptotic behavior was concerned. Even

if this could not be done, the fact that one could order the singularities
according to. Re ag < Re a; < Re ap < *°¢ would imply that one and

only one of these singularities need be considered. Suppose, for example,

the situation is as jllustrated below, whereby a translation has been

used to make ap = 0.

al

ag

az

w-plane

Figure 1.8.
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al —

/™
N2 ' \

w~-plane

Figure 1.9.

One could of course envisage making an asymptotic evaluation
involving each loop around a singularity separately and then adding the
results together. In some instances the loops would only have the point
at infinity as a point in common, and in the case of the finite paths
between loops the contribution would be exponentially small. However,
even this would not be necessary unless, say, Re a; = o, for certain
values of i. Normally the contribution of all parts of the path of
integration contained entirely within Rew > o are exponentially small,

and, at least to this order, only one singularity need be taken into

account.

More recently, however, the point of view has changed, and
problems are being considered in which the singularities {ag, aj, °*°}
are considered as variables, and interesting situations develop when
two or more singularities begin to approach each other, and in the limit

may coalesce. Further if the positions of the singularities are



- 28 -

variable, it will not normally be possible to order them in a meaningful

way like Re ag < Re aj < ***. Sometimes parameters become involved

as in
(1.78) F(z,al,az,--°,am) = f f(t,al,az,---,am) exp(-2z ¢(t,01,00,°°7,0 ))dt ,
T m

and the inversion problem involves the solution of
(1.79) ¢(t,a1,a2,°°°,am) =w .

An extremely difficult problem is now envisaged if one seeks asymptotic
expansions in 2z which are uniform in the a's. However, the present
thesis will be devéted to the classical situation. Thus our discussion
will center on a determination of the asymptotic behavior of

(1.80) F(z,r) = [ £(t) exp(-zt)dt ,

r
T

vhere T i the infinitesimal interval 0 < t < r, or the
infinitesimal circle |t| = r. This implies of course that generaliza-
tions of Watson's Lemma are almost entirely obtained by considering
geveral different forms of singularity which f£(t) is allowed to possess

at t =0.



CHAPTER 11

Asymptotic Expansions

In Chapter I, it was indicated that it might be desirable to
generalize the Poincaré framework in which asymptotic information can be
discussed. Schmidt [18], Erdélyi [8], Erdélyi and Wyman [12], and
others have developed or applied extremely general frameworks for this
purpose. Although valuable, the definitions and concepts contained in
the papers mentioned above are more general than is required to fulfil
the purpose of the present thesis. These definitions and concepts will

therefore be stated in & simpler form which is more appropriate for the

present thesis.

Let F(z) and G(z) be two functions defined on a point set
R in the complex z-plane, and let z, be a limit point of R, possibly
the point at infinity, (zo itself may but need not belong to R). If
z is a finite point, a neighborhood U(zo, §) of z, will be the set
of all points z such that z ¢ R and |z - zol < 6. If z 1is the
point at infinity, a neighborhood U(zo, §) of z, will be the set of
all points z such that z € R and |z| > & > o. Although all functions
of z must be defined for the points belonging to some neighborhood
U(zo, §), they need not necessarily be defined for all points of R.
Similarly the validity of statements or theorems is restricted to some
neighborhood, and validity is not required for all points of R. Oﬁce

the point set R is used to define the neighborhood system, it recedes
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into the background, and is seldom, if ever, used for any other purpose.

This neighborhood system introduces a topology, and the Landau
order symbols mentioned in the previous chapter will now have the

following meanings:

1. F(z) = 0(G(2)), as z > z , means that there exist a fixed constant
K and a neighborhood U(z , &) such that |F| < K|G| for every

z e U

2. F(z) = o(G(z)), as z~> z , means that for every choice of a fixed
e > o, there exists a neighborhood U(z , §) such that |F| < €|G]

for every 2z e U.

Throughout this thesis, the symbol I will stand for one of two
sets of integers. It may represent the finite set of integers {0,1,2,-+° M},
or it may represent the infinite set of integers {0,1,2,°++}. When

convenient, summations of the form

M
(2.1) I £.(2) = I £ (2, I finite
nel n=o0
or
= Z fn(z) , I infinite
n=o0
will be written as
(2.2) ! £ (2).

When I is infinite the series may be formal and need not converge.

Definition 2.1. A sequence of functions {¢n(z)}, nel, 1s called an

asymptotic sequence if
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(2.3) bpy =00, a8 zvz

as long as n and n + 1 are fixed and both belong to I. Throughout
the notation {¢n(z)} will be used to denote an asymptotic sequence,

and when ambiguity must be avoided the limit point 2z, will in some way

be specified.

Definition 2.2. The series | fn(z) =) fn(z) is called an asymptotic
nel

expansion of a function F(z) 1if, for every fixed integer N ¢ I,
N
(2.4) F(z) = DZO fn(z) + o(¢N), as z >z

The notation
(2.5) F(z) ~ Z fn(z), {¢n}, as z > 2
is used to denote that Z fn(z) is an asymptotic expansion of F(z).

When fn(z) =a ¢n(z), a a fixed complex number, for every
n € I, then the expansion is said to be of Poincaré's type. Furthermore,
A
if the expansion is of this type, and ¢n(z) = (Z2(2)) n , An a fixed

complex number, the expansion is gaid to be of power series form.

An asymptotic sequence {¢n(z)} may be used to divide the
class of complex functions defined for some neighborhood of ‘a limit
point z, into equivalence classes. A concept of asymptotic equality

is introduced in Definition 2.3.

Definition 2.3. Two functions F(z) and C{z) defined on some neighbor-

hood U(zo, 8) are said to be asymptotically equal, written
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(2.6) F(z) ~ G(z), {¢n} , a z7>Z
if
(2.7) F(z) = G(z) + o(¢n) , as z - z2,

for every fixed integer n € I.

Two functions having the same asymptotic expansion are

asymptotically equal, and the converse is true.

Even this degree of generality is not sufficient to describe

the asymptotic behavicr of many of . the known functions of mathematics.

The form

@8  r@~6@ (I fP@; e

nel;

ro, 1] D@ 6PN
nelp

as z >z, with the meaning

Ny .
@9  F@=o@ L] £ (@) + olag )]

N2
2 2
f6,@ 1] £P ) 0]+ oo,
2 1 N2
n=o0
as z >z, where N;, N, ¢+ are arbitrary fixed integers chosen from
I, I3, **° respectively, must often be used to give asymptotic

information for many of the higher transcendental functioms.

For the results to be obtained in this thesis, an asymptotic

sequence {¢n(z)}, with



(2.10) ¢ (2) = (log z) "z

where {un} and {An}, n ¢ I, are sequences of fixed complex numbers,
plays an important role. The limit peoint z, may be the point at

infinity, |z | = =, or the origin, 2, = 0. In either case

Yo, - H
(2.11) ¢n+1/¢n = (log z) ntl n,, =t m,

does not imply ¢ ., = o(¢)), as |z| = or |z| » o, unless further

restrictions on {un} or {An} are stated. In particular {¢_} is an

as

asymptotic sequence if izo| = o and

(2.12) Re A > Re ln’ Hy arbitrary, n and (n+l) both in I;

n+l

or

(2.13) Re An+1 =.Re An, Re LY < Re W, m and (n+l) both in I.

Similarly, corresponding conditions can be stated whereby {¢n}

becomes an asymptotic sequence if the limit point is the origin.

Since
(2.14) 2% (log z)B exp(- elzla) = o(¢n), as z » », every fixed n in I,

for any fixed complex numbers & and B, and any positive real numbers
¢ and 6§, it will be true that terms which are exponentially small in
|z| can be replaced by zero in an asymptotic expansion. Similarly

_ B - Mn "My
(2.15) (log z)" z == o((log z) ~ +z ), as |z| > », every fixed n in
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(which will be true if Re a > Re xn for every fixed n in I), will

imply
(2.16) (log z)is z %~ 0; {¢n}, as |z| »+ = .

Tt is interesting to note that the condition Re An*l > Re An

does not imply lim Re An = =, Hence (2.16) may, in scme instances.
n -+ w
allow terms to be dropped which are not exponentially small.

In the present thesis, when the limit point z, is the point

at infinity, R will be defined to be the sector

I

(2.17) S(8): |arg(z expdiy))| <5 -4, o<Abc<
where y is some fixed real number. In some circumstances, (2.17) is

equivalent to

(2.18) -12r-+A—Y_<_argz§_12r--A-y,

and in all cases R 1is equivalent to
(2.19) (4k-1)12r-+A—Yiargzi(4k+l)-g--A-y,
for some fixed integer k.

As mentioned at the beginning of Chapter II, the definitions
and concepts that have now been stated are just simpler forms of more
general definitions and concepts given in [18], [8] and [12], and our
statements are just paraphrases of the statements in their papers. All

of the properties that have been proved in the above mentioned papers
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for these more general forms of asymptotic expansions will of course

apply to the forms stated in the present chapter.



CHAPTER III

Branch-Point Singularities

The use of Watson's Lemma to determine, under certain conditions,
an asymptotic expansion of a function F(z) defined by a Laplace integral,
(3.1) F(z) = [ £(t) exp(-zt)dt ,

o
is one of the more important tools that have been designed to obtain the
asymptotic behavior of functions of a complex variable. In spite of
this, there do exist important generalizations of Watson's result which
do not change the branch-point nature of the singularity that £(t) is

assumed to have at t = o-.

Among the generalizatioms which are more or less obvious, it
might be noted that the requiremént of a straight line path of inte-
gration can be relaxed in certain circumstances. Consider
(3.2) F(z) = [ £(t) exp(-zt)dt ,

r
where I is a continuous curve beginning at t = A and ending at
t = B. It will be assumed that t = A 1is a point of fixed finite affix,

and that t = B need not satisfy such a restriction.
If C is the closed contour shown in Figure 3.1, then
(3.3) f f(t) exp(-zt)dt = 2ri E ,

C

where E 1is the sum of the residues of £(t) at the poles of £(t)
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contained within C, providing f£(t) 4is continuous within and on C

t-plane
Figure 3.1.

and regular, except for a finite number of poles, within C. This would

mean
B
(3.4) [ £(t) exp(-zt)dt = [ £(t) exp(-zt)dt - 211 E ,
r A
and analogous expressions can be obtained if the straight line AB
happens to intersect I, or if T happens to be completely below AB.

If the poles of f£(t) within C occur at t = 3 i=1,2,¢¢°,k, and

the poles are respectively of oxder m, then

k exp(zai)
(3.5) E = —P .(2) ,
421 (mi - 1! m, 1
where
dmi_l 3
(3.6) P _l(z) = =7 [t "£(t + ai) exp(-zt)] s
i dt i t=0

and Pm _l(z) is a polynomial in 2z of degree miwl. This implies of
i
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course that the asymptotic behavior of E is completely known, and,
) B
therefore, the asymptotic behavior of f £(t) exp(-zt)dt will, in
A
turn, determine the asymptotic behavior of [ £(t) exp(-zt)dt.
r

The substitution t' =t - A gives
B T

(3.7) [ £(t) exp(-zt)dt = exp(-z8) [ £(t + A) exp(-zt)dt, T =B - A,
A )

and in (3.7) the path of integration is the straight line joining t =o

to t =T, where T may or may not be the point at infinity.

It is of interest to note that the exponential nature of the

B
terms in E and f £(t) exp(-zt)dt will imply, as 2z > © in certain
A
B
gsectors of the plane, that f f(t) exp(-zt)dt is exponentially small
A

with respect to one or more terms of E, and the converse will also

be true, as z + > in other sectors. In either case, a rather simple
expression for the asymptotic behavior of f £(t) exp(-zt)dt might exist.
If z > «» in an unrestricted manner, the iiplied simplification, obtained

by dropping exponentially small terms, will not exist.

Within the restrictions placed on £(t) by the use of Cauchy's
Residue Theorem, the straight line path of Laplace integrals may be
considered as a canonical path of integration. For this reason, it now
becomes possible to return to the more detailed discussion of the
asymptotic behavior of a function F(z) defined by
T

(3.8) F(z) = [ £(t) exp(-zt)dt ,
o
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where T = |T| exp(iy) # 0 is a fixed, finite or infinite point, and

the path of integration is the straight line joining t =o to t = T.

In order to generalize Watson's result, two asymptotic
sequences {¢n(z)} and {wn(t)} are defined in the following way. As
before, I stands for the finite or infinite set of integers given in
Chapter II. It will be assumed that {An}, ne I, is a sequence of

fixed, complex numbers, for which

(3.9) Re An+l > Re An’ for every n, providing n and nt+l are

both members of 1I.

This condition ensures that

-2
(3.10) {4 (2) =2z "}

is an asymptotic sequence as z »> ®, and arg z 1is unrestricted. The

game is true for the sequence

A -1
(3.11) wn(t) =t " , as t~> o, and arg t is unrestricted.

One must of course assume suitable cuts in the 2z and t-planes to make
-\ A -1

z ® and t© single-valued functions of 2z and t respectively.

Generalized Watson's Lemma.

If:

(i) F(z), as defined by (3.8), exists for some fixed 2z =2z ;

A_-1 A-1
(1) £@) ~ ¥ a % 5 (&£ };
nel n

as t +o along arg t =y, where each a, is a fixed complex
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number and Re Ao >0 ;

then

=A -A
(3.12) F(z) ~ ] a T(\) 2 By o {z ™
nel

as z + o in |arg(z exp(iy)) | 5_%-— A, where A is any fixed number

in 0 < A j_%-. The result is uniform in the approach of 2z > =. in

the sector given above.

Proof: The general properties of Laplace integrals ensure that F(z)
exists as long as. Re(z exp(iy)) > Re(zo exp(iy)). Furthermore, for
any arbitrary fixed choice of t =c¢ = lc| exp(iv), 0 < |e| < |T|, it

is true that
T

(3.13) [ £(t) exp(-zt)dt = 0Cexp(-¢|c||z])) »
c

uniformly in arg z, as z > in |arg(z exp(iy))] fﬂ%-— A, for

gsome fixed € > o. Hence
T

(3.14) [ £(t) exp(-zt)dt ~ o5 {2 ",
c

as z + » in |arg(z exp(iv))| j_%-- A. This, of course, implies

c -A
(3.15) F(z) ~ [ £(t) exp(-zt)de; {z ny
(o]

’
uniformly in arg z, as z > in |arg(z exp(iv)) | f-g" A.

For every fixed integer N in I, and any fixed choice of

e > 0, there exists a fixed number r such that

A_-1
n

N
(3.16) f£(t) = ) a £t *Ry,
n=o
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where

AN—l
(3.17) IRNI < elt | , providing |t| <r, argt=1vy .

Hence, for a fixed choice of ¢ for which |c| <r,

c N c ln—l
(3.18) f f(t) exp(-zt)dt = Z a t exp(-zt)dt + SN ,
o n=o0 o
with
c
(3.19) Sy = £ Ry exp(-zt)dt .

From the properties of Laplace integrals it follows that

¢ -1 well 2 -1
(3.200 [ t " exp(-zt)dt t exp(-zt)dt + O(exp(-c|c]||z]))
o

1}

f
J
o

-\
F(An) z %+ O(exp(—eicilzl)) .

Further, (3.17) and (3.19) give

¢ Ayl welY N1
(3.21) ]SN| <e [ |t7 exp(-zt)dt| < e [ [t 7 exp(-zt)dt|
o o
_>\ ~——
N . i
=o(z ), as z -+ in |arg(z exp(iy))| <5 - A

These results couple together to give
_An —An
(3.22) F(z) ~ ] a TA)z 5 {z 1,
nel

uniformly in arg z, as z >« in |arg(z exp(iy))| :_%-- A.

In the Barnes result, the function F(z) i1is defined by
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(o4)

(3.23) F(z) = 5 £(t) exp(-zt)dt ,
T

where the path of integration is shown below.

t-plane

Figure 3.2.

The form of proof that will be used requires that the circle
|z| = r be deformed into a smaller circle, if necessary, and therefore

regula~ity of £(t) is required within the region shown below.
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,::::::::::EEE:/ »
7 -1 + vy < arg(-t) <m+y
4 c — —
/L‘/
/
/

W

A

Figure 3.3.

Generalized Barnes' Lemma.

(ot)
Consider F(z) = L f(t) exp(-zt)dt, where the path of
2w T

integration is illustrated in Figure 3.2. If:

(i) F(z) exists for some fixed 2z = z, 3
(ii) f£(t) 1is regular within, and continuous on the boundary of, the
shaded cut annulus of Figure 3.3, where the outer circle is of

¢ # o may be chosen

fixed radius, and the inmer circle |z

to be fixed and arbitiarily small;
, A -1 A -1
(1ii) £(e) ~ ] a (-t) s (e ),
nel

as t>o in -7+ vy < arg(-t) <y + 7 ;

(iv) as before, Re A > Re An, for every n ¢ I, providing n and

n+l

n+l are members of I, and, in addition, for some fixed n = k

in I, Re Ak >0 3
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A -A
(3.24) F(z) ~ [ a/T@Q-2)z "y 2 My,
nel

unifornly in arg z, as z > = in |arg(z exp(iy))| 5_% - b4,

Proof: Let Ik be the set of integers {0,1,2,°°*,k~1}, and define

fk(t) by
An—
(3.25) £.(t) = £(t) - ] a (-t) .
nel
k
Hence
a2y A1 <v> (-zt)dt = F(z) - | if(°+)( ) exp(ozt)d
3.2 - £, (t)exp(-zt)dt = F(z) - a -+ -t exp(-zt)dt
2m T k neIk n 27 T
= F(z) - Z a a1 f(o+)(—t) n_lexp(—zt)dt-
neIk n 2r weiy

+ O(exp(—alzl)),

for some fixed ¢ > o, wuniformly in arg z, as 2z -+ « in
|arg(z exp(iy))| 5_%-— A. Anticipating the final result, the exponmentially
small term is dropped, and

a (o)

(3.27) F@)~s | —~—2——+F [ f(Dexp(-zt)dr; {9 ()} ,

A 2m
neIk 2 n P(l—An) T

uniformly in arg z, as z ~  in |arg(z exp(iy))]| f_%-— A, and
{¢n} can be any asymptotic sequence for which exponentially small

terms can be replaced by zero.
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The function fk(t) has the same properties of regularity

possessed by f(t), and in addition

Ak—l
(3.28) fk(t) = 0(t ), as t -+ o, Re_kk > o,

This implies that the circular part of the contour can be shrunk to zero

and
(o) ., T
(3.29) -z—fr- { £, (t)exp(-2t)dt = 5 [£ fk(te_2"i) exp (-zt)dt
T
- [ £,(t) exp(-zt)dt].
(o]

The conditions of the Generalized Watson's Lemma can be applied to both

of these integrals to give

g ot i -\ -imd
(3.30) 5o [ £ (t) exp(-zt)dt ~ - [ I a Tz Te .
T nel-I
k
—An imA
- Y a Tr()z e n]
“ n
neI—Ik

-A_ sin(m Xn)
~ 7 ar@)z * ——%
n n n

neI—Ik

An —An
~ z an/z rq - An); {z "},
neI—Ik

uniformly in arg z, as 2z >« in |arg(z exp(iy))] 5_%-- A.
From (3.27) and (3.30), it then follows.that

)
(3.31) F(z) = o f £(t) exp(-zt)dt
T
A =-A
~ J a/z®r@-1), {z M,
nel n n
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uniformly in arg z, as 2z~ in |arg(z exp(iy)) | :_%-— A.

Generalizations of Watson's Lemma can be found in the book of
Jeffrey's and Jeffrey's [13], Erdélyl [9]. Wyman [22], and many others.
Almost all of the ideas found in the work of these authors have been
brought together to form the basis of the generalization of Watson's
Lemma given in the present chapter. As mentioned previcusly, the work
of Barnes seems to be relatively unknown, and consequently generalizations
of his result, as far as we are aware, do not seem to have been attempted.
In one essentlal feature the proof that was given for the generalized

Barnes' Lemma followed a pattern given by Perron [171.

When

(3.32) F(z) = [ f(t)exp(-zt)dt ,
o

the conditions under which the inverse
o +ie
o

(3.33) £(t) = 'z‘Tl?If F(z)exp(zt)dt
g =i=
(o]

exists are.well known. It is easily seen that the preblem of deter-
mining the behavior of f(t) as t - = is the same problem that is
5eing considered in the present chapter. The determination of the

‘behavior of f£(t) as t - o+ presents, however, a difficult problem.

If F(z) has a convergent expansion of the form

© -A
n

(3.34) F(z) = ) - a r(x )z ,

n=o

which can be integrated term by term to give



- 47 -

U°+iOQ
F(z) exp(zt)dt

(3.35) £(t) = 55 |
co-iw

0+l
o F(Xn) o -2

z B exp(zt)dt

1}
m
=
N
B
H"

then the behavior as t + o would be established. Although we shall
not pursue this problem further, it does seem worth while to investi-
gate the theorems converse to those given in the present chapter, with
the distinct possibility existing that all than can be said, concerning
branch-point singularities of the type used in the present chapter, has

been said, and no further generalizations are possible.

Watson's Lemma is so important in asymptotic analysis, and
has been known for so many years, that there exist hundreds of important
examples which can be used to illustrate the way the lemma can be used

for specific functions. Since the function

-]

(3.36) u(z, B, a) = f F(z, t)dt ,
(o]

where
(3.37) F(z,t) =T fire+ 1) rGa+t+1), ReB > -1,

plays an important role in the work of later chapters in this thesis,

it will be used to illustrate the techniques developed in the present

chapter. One can write
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a 2]
(3.38) = ??EE;—EY £ f(t) exp[-t log(z—l)]dt ,
where
(3.39) £(t) = t°/T(a + t + 1),

In some fixed neighborhood of the origin, f(t) has a convergent

expansion of the form

n,.~1
D{r i? + 1)] tn+B , D =fg_ .

(3.40) £(t) = }

n=o

Further, as t =+ », tB/F(a + t + 1) is bounded. Hence,

. = P l(ern)] T(atl) . ~1,-n-f-1
G v LD T e (s

uniformly in arg z, as z > o in Iarg(log(z-l))| j_%-— A. However,
1og(z-1) = -log|z| - i arg z, and therefore arg(log(z-l)) +o0 as.

z + 0 in. an unrestricted manner. This implies
2" ° Dn[F_l(a+1)] (B+l)n

-1l..-n
; {(log(z 7)) 11,

(3.42) u ~

uniformly in arg z as z » o in an unrestricted manner, providing
Re B > -1. By using Barnes result, it is now possible to remove the

restriction that Re B > -1, Consider

(o) (-t) B

S B
2m 2 T (a+t+1)

(3.43) ¥(z,8,0) = I'(-B)z expl- t(log(z 1)) 1dt.

If -1 < Re B < 0o, one can easily show that y(z,B,2) = u(z,8,0), and
hence by analytic continuation, ¥(z,B8,a) continued to represent n(z,B,a)

when Re B < -1. Using the generalized Barnes' Lemma immediately gives
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n._n. -1
(<1) " DT (a+l)I]1+B+l;- {(1og(z—l))—n_6-1}]

(3.44) u(z,8,0) ~ T(-B)2"[ ] A
n=0 n! I'(-n-B)[log(z 7)]

as z +o0; Re B <-l. As before,

o o (B+l) n. -1
2 n DI (D] . p10¢z7h) ™,

(
(1og(z_1))8+1 n=o0 n! (log(z-]'))n

(3.45) n(z,8,0) ~

as z +o, and a, B may now be considered to be unrestricted.

In ths next chapter, a complete discussion of the behavior of

u(z,B,0) as |z| -~ will be given.



CHAPTER IV

The Asymptotic Behavior of u(z, B, a)

As far as we are aware, the asymptotic behavior of the

(4.1) u(z, 8, a) = [ F(z, t)dt ,
(o}
where
ott . tB
(4.2) F(z, t) = 2 /T(@+1) *T(a+t+1),

has never been fully discussed. In addition to giving some of the
important properties of this function - [11], a rather incomplete
discussion of the asymptotic behavior is given. Unfortunately, in

addition to being incomplete, the partial results given are incorrect.

In the present chapter the correct asymptotic behavior of
as |z| » » will be obtained. It is of passing interest to note that
the proof that will be used to obtain the behavior of u(z, B, a) as
|z] » » can also be used, with a minor modification, to obtain the
asymptotic behavior of p as z + 0, a result that was obtained in
the previous chapter, and, in fact, is well known [11], p. 219. When
this behavior becomes known, a significant generalization of ﬁatson's

lemma will be obtained.

Besides the theorem of Barnes which we stated in Chapter I,
many other asymptotic results of major importance are obtained in the

paper [2]. From a very broad point of view, the pattern of the present
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chapter will follow the pattern set by Barmes. However, the details
of proof will differ so significantly from those used by Barnes that

no detailed use will be made of his work.

The paper mentioned above obtains the complete asymptotic

behavior of a function defined by

® n
(4.3) Gz, @) = | ——,
n=o al!(n + @)

a function that is not the same as u(z, B, a). However, their asymptotic

behaviors are closely related.

In [11], p. 222, the Laplace transformation of u(z, B, a)

is given by

(4.4) f u(z, B, o) exp(-sz)dz = s-a_l(log s)_B—l s
0

with Re a > -1 and Re s > 1. The usual inversion formula gives

ctic

(4.5) Wz, B, &) = 21)"Y [ H exp(sz)ds ,
c-iw .

where H s—a-l(log s)-B-l, and c¢ is any arbitrary real number in

¢ >1. In (4.5), z 1is real and positive.

It is possible to use Cauchy's theorem to deform the path of
integration in a variety of ways. The symbol L will be used as a
generic symbol to denote paths of integration that begin and end at the
point at infinity with the direction of approach to infinity being

restricted to the second and third quadrants of the complex s-plane.
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The contour L must loop aroung the origin in a counter-clockwise
direction so that both s = o and s = 1 are contained within the
region bounded by L, and the contour must not cross any cuts placed
in the s—plane in order to make s_a_l(log s)-B-l a single-valued
function of s. The main purpose of the deformation is to find an
integral representation of 1(z, B, @) ~in which the restriction

Re & > -1 can be removed, and the requirement that 2z be real and
positive may be relaxed. An appeal to the principle of analytic
continuation allows one to identify the function of (4.5) with the

function defined when the path of integration becomes L.

’

Suppose .that sz is replaced by s, and W is defined by a

suitable path of integration L, then

(4.6) u(z, B, a) = (Zwi)—l za’f 8 (log exp(s)ds .

-a"l 2_) -B-l .
i 2

If 2z is now allowed to be complex, there are three possibilities that

must be considered when choosing the contour L.

If A denotes an arbitrarily small fixed positive nﬁmber, the
paths of integration and éuts in the s-plane will be illustrated only

for the case
(4.7) 0<argz<m~2A
r_ I
(4.8) 7~ A< arg 855-2 + 4.

In this range arg(s/z) = arg s - arg z, and log(s/z) = log s -
log z. Since u(z, B, o) = u(z, B, a), no other range of arg z need be

considered. The choice of L and the cuts in the s—plane are illustrated

below.
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I

2+A1<%+Ai§argzin-2A1

s-plane

Figure 4.1.



Oiarng_%-Az

Y
L s-plane
Figure 4.2.
\ A
8 = 2
] jal < 1
by

s-plane

Figure 4.3.
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Although three cases are listed, permitting the possibility that
arg a = o allows the analysis to be accomplished in two steps. In every
case it is necessary to discuss the asymptotic behavior of

(4.9) F(z,8,8) = @)™ [ 677 (log 7P exp(edds .
L

The path of integration, L;, is divided into two parts Ly = A+ B,

where A is that portion of L; contained within |s| §_|z|6 for a fixed
& in 0 < § < 1. Clearly as |z] -, A will include all of the
circular portion of L; and part of the straight line parts of L;.

Under these circumstances B will always consist of two disjoint straight

line portions of Lj.

On B, logfsb satisfies the inequalities
(4.10) |arg® | < 108 < I20g|2]] + |ars@)] -

Since Iarg(%)l is uniformly bounded away from zero, |10g(§)]
is similarly uniformly bounded away from zero. Although |1og(§)|
becomes unbounded on B, it is either bounded by log|z| or by log|s|,
depending on which is larger. An easy estimate gives, for |s| 3_|z|6,
that a fixed ¢ > o must exist for which

(4.11) f s-q_l(log %)_B_l exp(s)ds =.0(exp(-e|z|6)) s
B

as z » ©, with o, B unrestricted. (Compare with the result (1.31)).

The order relation holds uniformly.

On the part A of the path of integration,



(4.12) s‘“‘l(log(go)'s'l < 5% 1oz 5 - log 2)

[
-~
|
-
(]
ocQ
N
-~
/2]

-8-1 -a-1 E (B+l)n (log s)"

L}
~
1
=
(o]

m
N
~
7]

n=o n! (log z)*
n N+1
- (-los 2\"B-ls-a~l N (B+1)n (log s)n + 0((log s) 1,
& =/ n!  (log z) (log z)

n=o

as z + », for every fixed integer N > o. Since i s_a-l(log s)exp(s)ds
L
exists as an absolutely convergent integral for each fixed integer =n > o,

one must have

413 ) [ s os 9 e (s)as
A

N (B+1) -1
= (~log z)-B-l[ z : n (27i)

= = s-a—l(log s)nexp(s)ds
n=o0 * (log 2) A

+0((log 2 ¥

, as z » o,
However by the same argument used to obtain (4.11)

(4.14) (21ri)_l / s_a—l(log s)nexp(s)ds = (21ri)_1 i s_a—l(log s)nexp(s)ds
A L

'*'0(61{[)(—E|Z!6))i as z > o,

and, therefore from (2.14)

(4.15) (2ni)—l f s-a_l(log s)nexp(s)ds ~ (—l)nDn[F-l(u+1)]; {¢n = (log z)-n},
A

as z + », where D = é%-. These results coupled together give
(8+1)_PP[1 7 (a+1)]

(4.16) F(z,8,0) ~ (-log 2 ° [ | —; {(log.p) ™
n=o n! (-log 2z)
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as z > in 0 < arg z < m - 24;. Further, this implies

n, -1
B_lloi (8+1) DT “(otl)]

=0 n{ (-log z)"

(4.17) u(z,B,a) ~ z%(-log z)~ ;5 {(log z) "}

1
providing z + « in %+ Ay < arg z < 7 - 2A;, a result that automatically

1
implies the formula holds if -w + 24; < arg z < - % -0

It is of passing interest to note that, with minor modification;
the same proof can be used to prove (4.17) holds when z + o in an
unrestricted manner, a result that was obtained in a different way in

the previous chapi:ef'and also in [11], p. 219.

In Figure 4.3, vy will now be the portion of Lj which is
not part of Lj. It will therefore consist of the part encircling s = z,
and the two straight lines necessary to join y to L;. If we replace
s by (1-s8)z,
4.18) (2n) 72" [ ™ (20g)) P texp(s)as = (2ni) Yexp(z) [ (1-s)"*t
Y Y'

« (log(l-s) )-8-1exp(-sz)ds

with y' as shown below. The radius of the circle can still be chosen

arbitrarily in 0 < R < 1.

Within and on y', (1—s)-m-l(1og(l-s))_Bm:L has a convergent

expansion of the form

.19 (-9 Ltog@-sNTF T = -0)Pt ] a9, [s| <1,
n=o

where
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s=1l-a
s-plane
Figure 4.4.
(-l)n ar -0~-1 ,log(l-s) -8-1
(4.20) a =42 o™ RS
ds s=0
Hence

: N
G @) log-s) P = () F ] a ) H Ry,

n=o
where for any fixed integer N > O, RN is a regular function of s in
|s| <1, and

(4.22) Ryl <ks|™, sl <1,

for some fixed K > o. Hence
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.23 @)L [ (1-s) " H(10g(1-8)) P lexp(-zs)ds
Y'

n-B-1

N -1
= ) a_(2ri) [ (-8) exp(-zs)ds

n=o0 v

+ (211:[)-1 / (-s)_B_1 Ry exp(~zs)ds.
,Yl

If the integer N is chosen so that N - Re(g - 1) > o, then
the circular part of y', for the remainder term only, can be shrunk to
zero; leaving only straight line segments embracing the line joining

s =0 to s=1-a. By using (4.22), one obtains

~p-1 -2y
(4.248) - |f (-8) Ry exp(-zs)ds| < 2K [ |s" ~ exp(-zs)ds|
y! )
< . 2K
=T NHI-R
|2 ¥
providing Iarg(ze-ie)| < %-, or - %-+ 9 < arg z < %-+ 9, and this

range will embrace the transitional region arg z = %-.
Again by an argument used before,
(4.25)  (2r1) f'(-s)n_s—lexp(-zs)ds = (2ri)"t {(-s)n_s_lexp(—zs)ds
Y
+ OCexp(-€|z])), as |z| + =,

where 1 consists of y' and the extension of the straight line portions
to infinity in the direction arg s = -8. This gives
B-n

4.26) @r)7Y (=) P exp(-ze)ds N prpiy 5 {6, = 2
Y'

B_n}

, as z -+ o,

Coupling these results together gives
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G2 @ -8) " (log(1-6)) P exp(-2s)ds
.Y'
~ 2P [ E - 3 {z .
n

n=0 T(B+l-n)z

Hence

(4.28) (Zwi)-l 2® f s_a_l(log(§))—B_lexp(s)ds
Y
B v é -
~ 2" exp(z) [ ] ————31-——-;; s {24,
n=0o T(g+l-n)z

as z -+ in 0 < arg z < %-+ 9. The exponential nature of this behavior

allows one then to write

a

(4.29) u(z,B,0) ~ 28 exp(z) [ ] ——n——n; {z "}
n=o T(B+l-n)z

o (BH) DI (atD)] )
[ 7 ; {(log z) "}

n=o0 n! (-log z)"

g-1

+ za(—log z)~

as z~+» in |arg z| <m - 2A, for any fixed A in 0 < A 5_% ;3 a

result that is uniform in the approach of 2z - ». The meaning of this
result is of course that for any fixed integer M > o and N > o,

a

N
(4.30) wu(z,8,0) = 2° exp(2)[ } e R CI)

n=o0 T(g+l-n)z

o, M (1) D1t (otl)]

n=0 n! (-log z)

+ z%(-log z + 0((log Z)-M-l)]

as z + », Clearly when |arg z| 5_%—- A, the exponential dominates,
and every term of the first series dominates every term of the second
series. In |arg z| 3_%-+ A, the converse situation holds. When

arg z -~ t %-, no clear cut dominance exists except under special cir-

cumstances. If Re a > Re 8, then the first series can be dropped.
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When 8 = -m-1, m = 0,1,2,3,°++, then all of the terms of
the first series of (4.29) are zero, the second series has only a finite
number of terms. In this case, there is no singularity at s =1, and

(21r:L)-l f s-a-l(log s)™ exp(sz)ds
L

(4.31) U(Z’Bsa)

(=1)m . Dm[(21ri)-l f s-a-l exp(sz)ds]

L
m ._m 2%
= (-1)" D {F?E;Iy}
- (_l)m . za(log z)m ? ™ Dn{F-l(a + 1)} ,
n=0 = (log z)"

and this exact well-known expansion adequately describes the asymptotic

behavior of u(z,8,0) as 2z =+ or z - o in an unrestricted manner.

The case B =m, m= 0,1,2,°++, 1is also a special case in
that the singularity at s = 1 1is a pole of order mtl, and is no longer
a branch point. The path of integration to determine u can be broken
into two parts, a path of the form L;, and a complete circle around
s = 1, there exists a rather elegant evaluation of the integral that

encircles s = 1, the value is of course the residue of the integral

at this pole.

The circle around s = 1 is deformed into the path of integra-

tion y shown below:
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s-plane

Figure 4.5.
We consider
-1 -o-1 -m-1 ,
(4.32) I = (2ri) f 8 (log s) exp(sz)ds, m = 0,1,2,°*+, Rea <o
Y

Since the integral is now regular on the real axis 0 < 8 < 1, the
integral along the straight line portions vanishes. The substitution

8 = eV glves

(4.33) I= (21r:l.)"l f (-w)—m—l exp(ze—w + aw)dw ,
L

where L begins at w = «, loops the origin in the counter-clockwise

manner, and ends at w = «, Since
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© n
(4.34) exp(ze_w) . exp(ow) = ) ﬁT exp[-(n - a)w],
n=o
(4.35) M I SR
' m! % n!
n=o
_ 1 T m mr o zo .n
r=o n=o0
a2 ? ™) (=)™ 6" % , where 6 =z 4
m! neo T ’ dz *

By the Leibnitz rule, one obtains

o ,m

(4.36) I=2"06"(z%e%)/m! ,

with this exact evaluation, the condition on & can now be removed. This

result implies

o

(4.37) u(z,m,0) ™ ﬁT o™ (2% &%)
mtl o o
bRz g () o I og 97 {(log 2]
(log 2z) n=o0

where m = 0,1,2,°°° .

This result can be used to correct a result given in [11],

where the statement equivalent to

a-N

(4.38) v(z,a) = u(z,0,a) = e + 0(z ), ag z > ®

in |arg z| < m is given, for every integer N > o. For m = o, (4.37)

gives

o 1

z 1
" log z {P(a+l) +0 ( )},

log 2z

(4.39) v(z,a) = e°
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and the result given in (4.38) is incorrect because za/log z ¢ O(ZQ—N),
for any non-negative integer N. Although it is not difficult to pick
up the error in [11], we omit it in view of the rather simple derivation

of the correct result for v(z,0) which one could obtain by the method

used in the present chapter.

In the earlier work of Barnes [2] and the later work of Watson
[21] which we mentioned in Chapter I, the success of finding the
asymptotic behavior of a Laplace integral f f(t)exp(zt)dt depends on
f(t) having at most a branch-point singulaiity at t = o of the
form t®. It is now clear from the asymptotic behavior of u(z,B,a)
that this work can be extended to allew £(t) to have combinations of
branch-point singularities and logarithmic singularities of the form

ta(log't)B. The extension of this work will be given in the next

chapter.



CHAPTER V

Generalizations of Watson's Lemma

Although the discussion of the asymptotic behavior of a

function F(z) defined by
(5.1) F(z) = | £(t) exp(-zt)dt
r
will be continued in this chapter, the function f(t) will now be

allowed to possess singularities which are of branch-point and logarithmic

type.

When the identity

iy
og . N
(5.2) f tk_l exp(-zt)dt = T(A)z A, Re A > o0, |arg(zeiY)| <-%

[o)

is differentiated m times with respect to A, the result is

meiY m
.3 | 7 log ©)" exp(-zt)dt = 4 rmz ™M
o a™
T () )iy =2 -
= 7 Cm) T 7 (A)z “(-log )" F
r=0 r
or
°°eiY m
Gy [ 2 Llog o) exp(-zt)dt = (log 2™ 12 [ DI 0) (208 77
[o] r=0

From (5.4), one might reasonably conjecture that

welY

(5.5) f tx_l(—log t)uexp(-zt)dt = (log z)u'z-x' Z (—l)r(i)r(r)(x)(log z)_r,
o r=0
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a conjecture that is false. The series in (5.5) diverges for all finite

values of log z. However, the weaker result

walY ©

(5.6) [ tl_l(-log t)exp(-zt)dt ~ (log z)“-z-A~[ ) (—l)r{i}r(r)(k)(log z) '3
o r=0

{(log 2) "},

as |z| » =, does hold under suitable conditions.

B

Since integrals of the type f tx—l(—log t) exp(-zt)dt, and
1 r (i (i') ~r
expressions of the form Z (-1) [r)r (A)(log z) , will conmstantly

r=o
be used in the present chapter, the notations

B
(5.7) L(A,B,A,u,2) = f tk_l(-log t)u exp(-zt)dt
A
N T (x) ~-r
(5.8) 5, (\uslog 2) = [ (1) B () (1og 2)
r=0

will be used to reduce the amount of repetition. In (5.7) the path of

integration is the straight line joining t =A to t = B.

For any fixed point t =c = |c| exp(iy), the following result

holds:
(5.9) L(c, @ exp(iy), A, u, 2) = 0(exp(—s|z|)), for some fixed € > o,

providing Re A > o, and z > ©» in any fixed interval containéd within

arg(z exp(iy))| = T _Aa<¥, 1f y=¢c, and 0<c <l then the
) 2 -

condition Re p > -1 must be added. This result, coupled with (5.4), gives

(5.10) L(o, c, A, m, z) = (log z)" 2 Sm(k, m, log z) + 0(exp(-€|z|)),
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as |z| » », where in this instance m 1is a non-negative integer. One

can interpret this result in two obvious but quite different ways. It

is true that
(5.11) L(o, ¢, A, m, 2) ~ (log 2)" 2~ [s,(2s m, log 2); {(log 2) "}

with the meaning that for every integer o < N < m,

A

(5.12) L(o, ¢, A, m, 2) = (log z)® 27" {S (A, m, log z) + o((log z)—N)],

as |z| > =.

It is also true that

m
.13 Lo, o dy m ) (DT E= 2 (o),
, dx

as |z| > =, providing {¢n} is an asymptotic sequence for .which
(5.14) exp(-e|z|) = o(s ) or exp(-elz]) mo; {o},
as |z| » =.

Since every sequence

(5.15) ¢_ = P_(log z)/zAn ,

where Re An+l > Re kn and Ps(w) is a polynomial whose degree s 1is
arbitrary, is an asymptotic sequence as |z| + =, it becomes cleaf that
the interpretation (5.13) will lead to asymptotic information which is
more detailed in nature than that which would be obtained by using (5.11).
The estimates of error involved are quite different in nature. Both

points of view will be used to obtain generalizations of Watson's Lemma.
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For
a
(5.16) : F(z) = [ £(t) exp(-zt)dt,
o

it will be assumed that:

"

(1) t =a= |a|] exp(dy), la| > o, is a fixed point in the

complex t-plane;
(ii) the path of integration is the straight line joining
t=0 to t = a;
(iii) S(A) is defined as in (2,17) to be the point set in the

z-plane for which |arg(z exp(iy))| j_%-- A, A fixed in

o <A 5_3-;

2

(iv) F(z) exists for some 2z = z,

Theorem 5.1. If:

(1) for each integer N € I,

Xn—l AN—l
a t Pn(log t) + o(t (log t)

(5.17) £(t) = m(N)y

n

il ~12

o
as t »o along arg t = vy;
(ii) Pn(w) is a polynomial of degree m = m(n);

(iii) {An} is a sequence of fixed complex numbers, with

Re A > Re An, Re Ao > o0, for all n such that n

n+l

and n+ 1 are both in 1I;

« (dv) {an} is a sequence of fixed complex numbers;

then as z +» 2 in S(A)
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- -\
(5.18)  F@ ~ ] a_ B (0)II0)z M5 {z “(leg ™™,
nel

where Dn is the operator Dn = E%— . The result is uniform in the
n

approach of z » «» in S(4).

A

Proof: Trivially {z B(1og z)m(n)} is an asymptotic sequence as |z| »+ =

in S(A). For any fixed choice of t = c # o on the path of integration,

(3.13) implies

a
f f(t) exp(-zt)dt
c

(5.19) I(z, c)

-A
0(exp(-8|z])) ~ 0; {z ™(log z)m(n)},

uniformly, as z > « in S(A), where & is some fixed positive number.

Writing
N -1
(5.20) £(e) = ] a t P_(log t) + Ry
n=o
gives
c N c An-l
(5.21) [ f(t)exp(-zt)dt = [ a [ t P (log t) exp(-zt)dt + 1.,
[o} n=o0 o
where
Cc
(5.22) r, = £ Ry exp(-zt)dt.
 Using (5.13) and (5.19) gives
. a N -An
(5.23) [ £(t) exp(-zt)dt = ] a P ()T )z "]

o n=o

+ Iy + O(exp(-&lz|))
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for some fixed 6 > o, as z > in S(4).

Since the choise of t = ¢ is arbitrary, it may be chosen

sufficiently small so that

c
(5.24) ry = i RN exp(-zt)dt
satisfies
c A1
(5.25) erI <€ f It N (log t)m(N)exp(-zt)dtI.
o

Replacing zt by t gives

v =\, - wexp(i arg(zc)) A -l n(N)
(5.26) |ryl < elCtog 2™z N| J e (- %ﬁé‘fﬂ exp(-t)dt|.
[o]

The existence of the integral, uniformly bounded in z as z > « in

S(a), implies

=X

(5.27) r. = oz M(log z)

n(N)
N ),

uniformly, as z » » in S(4).

These results give

fh f(t) exp(-zt)dt

(5.28) F(z) =

(o]

T ~a M m{¥)
= Eo a Pn(Dn)[F(An)z ]+o0(z “(log z} ),
uniformly, as z >« in S{A). Hence
= 2 m(n)

(5.29) F(z) ~ )} a P (D)IT(x)z ™13 {z "(log 2) " "},

nel non n

uniformly, as z >« in S(4).
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When m(n) = o for all n e I, then Pn(Dn) is 2 constant,
and the result of Theorem 5.1 reduces to the result contained in the

general form of Watson's Lemma given in Chapter III.

In particular, if

A -1
(5.30) £(t) ~ z a t n (log t), as t ~+ o,
theorem 5.1 gives
o . 4 —An
(5.31) £ f(t)exp(jzt)dt ~ia dAn [P(An)z ]

-2 -A
~ z anF(An)[w(An) - log zlz . (g nlog z},
where (1) = I'"'(A)/T(}). This particular result is given by D.S. Jones

in [14], p. 439.

It is interesting to note that Theorem 5.1 can be used to
yield asymptotic results for Fourier integrals of the form

b
(5.32) 1I(z) = [ £(t)exp(izt)dt, z real and positive,
a

where the path of integration is the porcion of the real axis a < t < b.

Erdélyi [10] and Jones and Kline [15] have considered the case where

t - Lo - ¥t o(t) toglt - a),

(5.33) £(t)

€ CN[a,b], o< A<1l, and o < yu < 1l. By repeated integration by

iAa

parts, they obtain
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N-1
(5.34) 1I(z) = Z anF(n+A)exp[i(az + %{n+k))]{w(n+k) -log z + 1 ng-(n+l)
n=0
N1 m =(n+y) -N
+ Z an(n+u)exp[i(bz +-E(n-u))]z Yot o(z ),
n=o0

as 2z - +», where

n

1 d u=-1
(5.35) a = ;]';;E'{(b - a) $(a)}
and
14" A-1
(5.36) bn = E;b—ﬁ {(b - a) ¢(b) log(b - a)}.

Although the method of repeated integration by parts gives a
simple derivation of an asymptotic result when it can be applied, it is
not normally a good procedure to use for proving general theorems. The
method places unnecessary restrictions on the integrand. Although the
function ¢(t) = sin(/t — a) 1is not once differentiable at t = a, a
complete asymptotic expansion of I(z) can easily be obtained. Theorem
5.1 and a procedure outlined in Chapter I will be used to obtain a more

general result than the one mentioned above.

A
/\
a t-plane Ret-axis-:

Figure 5.1.




- 73 -

Consider a function I(z) defined by

A b
(5.37) I(z) = | f(t)exp(izt)dt + [ f(t)exp(izt)dt
a A
A A
= [ f£(t)exp(izt)dt - [ £(t)exp(izt)dt.
a b

In the first integral we replace t by t+ a, and in the

second we replace t by b - t. This will give
A-a b-A

(5.38) I(z) = exp(iza)f f(t+a)exp(izt)dt + exp(izb)f £ (b-t)exp(-izt)dt.
) )

1f the conditions of Theorem 5.l are satisfies by both integrals, then

it 1is possible to write
=X -A

(5 39) I(Z) ~ exp(iza)[ Z a(l)P(l)(D;l))[r(kn)('iZ) n]; {z n(log z)ml(n>}];
n€1
—H
+ exp(izb)[ ] a(2) (2)(D(2))[T(u )(12) n1. {z ®(log z)mz(n)}]’
nSIz

as z + » in the intersection of |arg(-1iz exp(iy))| 5_%—— Al and

|arg(iz exp(iyl))l <58y where

|A - a| sin vy

(5.40) tan Yy = - .
b-a- |A- a| cos v

We are of course assuming, for each N1 € Il

-1

Ny A
(5.41) £(t) = 2 2P (e o Pt(ll)(log(t—a)) o (=) M (log(e-a))™m W)

as t > a along aA, and for each N2 € 12’

N u -1 "
5.4 £ = [ aPw-0 " 2P (logo-0) + ob-0) % (1og(b-t)) "2 M)

n=0

as t b along Ab.
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By taking Yy sufficiently small, it can be proven that (5.39)
holds as 2z -+ +», with z real and positive. Finally, if the conditiions
of Cauchy's Theorem are satisfied, then (5.39) will hold when the path
of integration is the straight line joining t =a to t = b. From a
purely pragmatic point of view, the result contained in (5.39) is far
more general than the result obtained by integration by parts. In
addition to a generalization of the integrand, Cauchy's Theorem does
not require differentiability on the boundary. Since it does require
regularity within the boundary, no mathematical prcof has been given to

show that one procedure is more general than the other.
When
A=l u=-1
(5.43) £(t) = (t-a)" “(b-t)" “¢(t) log(t-a),

and the conditions of our result are satisfied, then (5.39) reduces

identically to the result obtained by integration by parts.
As a second example, consider

1l
(5.44) I(z) = f tk-llog t sin(/t)exp(izt)dt, Re A > o.
: 0

In a neighborhood of t = o, f(t) = tx_l log t sin Yt has the conver-

gent expansion

(-1 an-1/2

A-1 5
(5.45) t " log tsin Ve = ] ooyt log t
n=0
and, in a neighborhood of t =1,
A-1 v n ntd" a1
(5.46) t log t sin vt = Z b (1-t) ", b_=-————(t" “log t sin/t) ,
e M n n! .0 =1
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is also convergent. Hence

n
(5.47) all) = (—g%)l—)—! , A =Atn+g, Pril) @ = v, m) =1,
a:lz) = bn R un =n+ 1, PI(IZ) (w) = 1, mz(m) = o,
and therefore
(5.48) f t 1og t sin/t exp(izt)dt
1
-(Ants)
~ 1 Z (2<+i§! O 40+ DHIVQ 0+ D) - log 2 + 1 F1(-12) 2
- (o)
;s {z log z}]

+ exp(iz)[ ] b n!(iz)-(n+1); 2,

n=o

as 2z + o, z real and positive.

The function sin Yt is not even once differentiable at t = o,

and yet the validity of the expansion given above is easily eestablished.

Erdélyl [8] has given an elegant proof of a result from which

it is easily established that the function

c
(5.49) L(o,CA,u,2) = f tk-l(-log t)" exp(-zt)dt
)

has an asymptotic expansion

{5.50) L{o,cydsu,s2) ~ z—A(log z)¥ [s_(x,u,log z); {(log z)-n}],

as z - « through positive real values of z. Although elegant, the

proof is not well adapted to extensions allowing 2z > = in the complex
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plane, and does not seem readily adapted to further generalizations.
For this reason, a direct proof of the result given in (5.50) will be

given. The ultimate result will be obtained by a sequence of lemmas.

Throughout, it will be assumed that Re A > o, ¢ = |c| exp(iy),

where vy and |c| are fixed, with o < |c] < 1, Although p 1is fixed,

it may be any complex number.

Lemma 5.1.
-2+8
If a= |z exp(ly), 6 fixed, o < § < 1, then there will

be a fixed p > o such that

(5.51) L(o,a,A,u,2) = O(Z-)\-p)s

as z + o in S(A). The path of integration is the straight line

joining t =0 to t = a.
Proof: Consider

a
(5.52) L(0,85A5H,2) = f tx_l(—log t)u exp(-zt)dt.
o

On the path of integration,

a
(5.53) |L(o,a,A,u,2) | < [ tA_l(-log t)Mdt
o

When Re p > o, then for any n > o (-t" log t)# 1s bounded on the
path of integration. For the case Re u < o, (-log t)u is itself

bounded on the path of integration. Hence, along the path of integration,

(5.54) | (-1og '] <k | t ™| , for some fixed K > o
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where n is arbitrary when Re p > o, and n =o when Re i < o.

This coupled with (5.53) gives

(5.55) |L(o,a,A,u,z)| <M | ax-nu| , for some fixed M > o.
Since a = Izl-z+6 = Izl-l . Izl—(l_s), it follows that
(5.56) |L(0,a,Asu,2)| < M » 2]

. &2 Z |5 (1=8) (=) —mu

The condition Re A > o ensures that Re[A(1-8)-(2-8)nu] > o, under
the conditions that y is fixed, and either n =0 or n may be

chosen arbitrarily small. Hence a fixed p > o must exist such that

(5.57) L(0,a,A,1,2) = O(Z—A_p), as z > in S(A).

For use at a latter stage, this particular result can be put

into a more useful form. When Re u > o, (5.57) obviously implies
(5.58) L(0,a,0,1,2) = 0(z ""P(log 2)"), as z~>= in S(b).

If Re u < o, write p = p, + p,, where both p and p, are positive.
- 1 2 1 2

Since (log z) "/2°2 » 0 as 2z + , it will follow that

(5.59) L(o,a,A,u2) = O(z-l—pl(log z)u), as z + o in S(4)
where again Py is some fixed positive number. Hence

(5.60)  L(o,a,A,us2) = 0(z " P(log 2)"), as z~>= in S(n),

for some fixed p > o, and u unrestricted.
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Lemma 5.2.

With a as in Lemma 5.1,

a2z -1 n
(5.61) L(o,az,A,n,1l) = f u" “(-log u) exp(-u)du
0

= O(Z—p), as z + in 8S(a),

for some fixed p > o.

The proof parallels that of Lemma 5.1.

If
-8
(5.62) b= |z| = exp(iy),

then by Lemma 1.1, it follows that
c

(5.63) f tx-l(-log )" exp(-zt)dt = 0(exp(-s|z|l—6)),
b

for some fixed € > o, as z -« in S(4). Further it is trivial

to prove that

. iy
wexpii arg(ze ')] ,_ -
(5.64) | u* L(log u)Pexp(-u)du = 0Cexp(-¢|z| %)),
bz

Vo)
>
N’

for some fixed € > 0o, as z > in S

Lemma 5.3.

With a and b defined as above, for any integer n > o,

zb
(5.65) L(za,ab,\,n,1) = (—l)n f uk-l(log u)nexp(—u)du
za

~ (—1)n F(n)(k); {(log z) "},
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as z >« in S(A).

Proof:
i
wexp[i arg(ze Y)] =1

(5.66) L(za,zb,\,n,1) = (—l)n f u” “(log u)nexp(-u)du
)

- L{o,az;A,n,l) - L(bz,~exp(i arg(zeiy)),x,n,l)

1" fw u* L (1og u)Pexp(-u)du + 0¢z""),
o
for gsome fixed p, as 2z > in S(A).
Hence
(5.67) L(za,zb,7,m,1) = (<D 1™ () + 0¢z™)
s (DT ™0y 5 (g 27T,
as z+e in S(b).

Theorem 5.2.

If
¢ -1
(1) L(o,c,yA,us2z) = f t (-log t)u exp(-zt)dt;
)
(ii) X, u fixed complex numbers, with Re A > o;

(2i1) ¢ = |c| exp(iy), |e| <1, and y a fixed real number,
then
(5.68)  L(0,c,A,u,2) ~ z " (log z)" [S_(h,u,log 2); {(log z) "},

as z >« in S(A).
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Proof:
b 1
(5.69) L(0,CyA512) = f t" “(-log ) exp(-zt)dt
a

+ L(0,a,A,H,2) + L(b,CsA,H,2),

where a and b have been chosen as points on the path of integration

such that

la| exp(iv), |al |z|—2+5, § fixed in o < § < 1,

[
1

(5.70)
=8

|2

o
]

|b| exp(iv), |b]
From (5.60) and 5.63), it follows that

| b1 A=
(5.71) L(o,cohm,2) = [t (-log ) exp(-zt)dt + 0(z °(10g 2)"),

a
for some fixed p, as z > in S(a).
Turning attention to
P -1

(5.72) L(a,b,A,u,2z) = [ t° ~(-log t)" exp(-zt)dt ,
a

the substitution u = 2zt gives

o 2% a1
(5.73) L(a,b,\,u,2) = 2 f v “(log z - log u)Ll exp(-u)du
az
and
-A M bz A-1 log u H
(5.74)  L(asb,\,m,2) = 2z (log 2)" [ u (1- 185'29 exp(-u)du.
az

Since |log u/log z| <1- 61, for some fixed 61, o < 61 <1, as

2z +® in S(A), then for any fixed integer N > o, the finite binomial
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expansion, with remainder, gives for all points on the path of inte-

gration that

lo _ n oy (log w)™
(5.75) (1 - —&—log Y = 1 Dt () B Ry
n=o (log 2)"
where
| 10 u)N+l i
(5.76) |RN| < K—E————N+l K
(log z)

for some fixed K > o. Hence

(5.77) L(a,b.}A,u, z) =z (1og )M E (1) ( ) (Log 2)~ f u l(log u)"exp (~u)du

n=o az
+ rN] .
where
bz A-1
(5.78) g = f u exp(—u)RN du .
az

Using (5.67) gives

N
(5.79) Llaybor,u,2) = 2 (log 2°1 [ D (Ir™ () ctog 2™ + 0™ + xyl,
n=o

as z +» in S(A). Further

bz
(5.80) |rN| < K|log z|-(N+l)f la* L (10g )N exp(-u)du|
az iy
, _ wexp[i arg(ze ')] ,_
< K|log z| (1) i |uA (10g u)N+1exp(—u)du|.
0

It is triyial to show that the integral in (5.80) exists and

is bounded in arg z. Hence
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-N-1

(5.81) L(a’b’)\’u’z) = z—)\(loﬂ Z)ULSN(R,M-log z) + 0((log z) )1,

as z +® in S(A). Further, the order relation does mot depend on

arg z. This proves the required result.

A combination of the results given thus far yields
=\ -
(5.82) L(o,»exp(iy),\,u,2) ~ z (log 2)“[Sm(k,u,log z): {(log 2) "}
-\ o - -
~ 2 log 2P T LR 0) (o 2075 {(log )TN
n=o n
ags z »» in S(A), vroviding Re A > c. If y = o, the existence of
L requires Re u > -l. If

ooeiY

(5.83) L(o,=exp(iy),A,u-2) = f tk-l(-log £)¥ exp(-zt)dt

)
is examined, it is reasonable to expect that the result contained in
(5.82) can be used to advantage to discuss the asymptotic behavior of
integrals of the form

a
(5.84) F(z) = | £(t) exp(-zt)dt, a = |a| exp(iv)
(o]

with f£(t) now allowed to have logarithmic type singularities, as well
as singularities of branch-point type. In several respects, the asymptotic
behavior is quite different than one might expect. Before proceeding,

one further result is required.

Lemma 5.4.

There exists a fixed complex number ¢ = |c| exp(iy) #o0

such that
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c

(5.85) I=] |tA-1(-log t)exp(-zt)dt| = O(z_l(log 2)"), as z+® in S(4),
o

where A, u are fixed complex numbers, with Re A > o. The path of inte-

gration is the straight line arg t = y Jloining t=o0 to t =c.

Proof: Along the path of integration ¢ = pexp(ly), o0 <p < |e|. Hence

|c| a=1 u

(5.86) |I] <K [ p°"I(-log o = 1n)"| exp(-|z|(sin a)p)dp,
o
where o = Re A. As |c| + o, log p » =. This implies. by taking |c|
sufficiently small, that
|c| a-1 B

(5.87) 1] < K ] o “(=log p) exp(-|z|(sin A)p)dp

o

< K L(o, |c|,a.8,|z|sin 4),

. = whaere B = Re u. The constant K is being used as a generic symbol

whose value may change from time to time in the proof. Theorem 5.1 can

be used to give

(5.88) I = 0((|zlsin 8)%(log(|z|sin 8)®), a8 |z| »=
- 0|zl (log|2)®), as |z| +=
- 0¢z"%(log 2)P), as z -+ in 5(2)
= 0(z M (10g D), as z+% in S(A).

The fesult is uniform in arg z as z + « in 5(4).

Theorem 5.3.

If:
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(1) F(z) as given in (5.84) exists for some fixed z = z ;

o
A -1
n

U
(11) {t (-log t) D1  {s an asymptotic sequence as t + o,

where {An}. {un}, ne I, are both sequences of fixed

complex numbers, with Re Ao > 03

An-l un An-l Hy
(1i1) f£(&) ~ ) a t (-log t) ; {t (-log t) '},
nel

as t+ o along arg t = v;

then
-An Ma
(5.89) F(z) ~ Z a L(o,a,\_,u_,2); {z ~(log z) R
n n’'n
nel
as z + = in S(4).
Proof: For any fixed choice of ¢ = |c|exp(iy) # o, no matter how small,
c a
(5.90) F(z) = | f£(t)exp(-zt)dt + [ £(t)exp(-zt)dt.
0 c
From (3.13),
c
(5.91) F(z) = [ £(t)exp(-zt)dt + O(exp(-8|z1)),
o
for some fixed & > o, as z =+« in s(a).
For any fixed N ¢ I,
N An—l Ry
(5.92) £(£) = [ a t  (logt) +Ry

n=o0

where for anv givem € > o, there will exist a complex number ¢ # o such

that

AN-l By
(5.93) R <elt” (logt) |, argt=v, le] < el
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Hence

N
(5.94) F(z) = Z a L(o,c,kn,un,z) +r + 0(exo(-6]z])),
n=o

ag z + o in S(A), and

c Al H
(5.95) er| <el |t N " (-1og t) N exp(-zt)dt|
)
<K-e: |Z-AN(log Z)uNI
by Lemma 5.4.
Since
(5.96) L(o,c,An,un,z) = L(o.a,An.un,z) - L(c,a,An,un,z)

= L(o,a.An,un.z) + 0(exp(-6§lz|)),

for some fixed & > o. as z > in S§(A), it follows that

N My *N
(5.97) . F(z) = ] a L(o,a,A ,u,2) +o(z “(log 2) ),
n=o

as z -+« in 8(A), and therefore

_An Ya
(5.98) F(z) ~ nél a L(o,a,An,un,z); {z “(log z) 1},

as z + >~ in 8§(4).

This result is a simplification of a result due to Erdélyi [8].
It should be pointed out that condition (ii) of Theorem 5.2 is stated in
a manner different from that given in Erdélyi [8] in order to clarify a
possible ambiguity in the statement of the Erdelyi result. If

A -1 u

¢n =t (-log t) n’ then
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A_q- U_, =M
(5.99) ¢n+1/¢n =t n+l n(—log £) n+l n.

Hence ¢n+l/¢n +0, as t o, if

(a) Re An+l > Re A

(5.100)

and Re

(b) Re An = Re A < Re oo

n+l n+l

This means that '{¢n} will be an asymptotic sequence as t =+ o providing
for every fixed n ¢ I either (a) or (b) is true. It does not mean for
example that as n varies either (a) is always true for every mn, or

that (b) is always true for every n. For example

t2

o t 2, —_—
0, = t-log ), Tip gy PR T Tiog ey

is an asymptotic sequence as t > O. If the substitution ¢t =

made in ¢n’ then

o1 *n
(5.101) ¢, = ——-—An_l (log 2)

z
“Aa n
is an asymptotic sequence as 2z * ©, and of course {z (log z) '}

will also be an asymptotic sequence.

There 1s no real quarrel with the statement of the Erdélyi
result which uses (5.100) instead of condition (1i) of Theorem 5.3. It
is simply a matter of clarification of what (5.100) means that has

suggested the alternative form of the condition.

The Erdélyi result may not be as useful in some circumstances
as one might expect. To illustrate, consider Theorem 5.3 when

Re An+l > Re An whenever n and ntl are both in I. It will also
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be assumed a =a = 1 in (5.89).

From (5.96) and Theorem 5.1, it follows that

-

(5.102) L(o,a.xo,uo.z) ~ 2z °(log z) °r 2 {-1) ( ) (n)(A )(log z) "
n=o0
5 {(log 2) "M,
and
2, (n)
(5.103) L(o,a,A ,uy,2) ~ 2z ~(log e z (-1) ( Lpn (A;)(Log 2) 7"
n=o0

; {Qog 2) "M,
as z -+ o in S(4).

Hence for any fixed integers No >0 and N1 > 0.

-A N -N

u H
(5.104) F(z) = z °(log 2) °[ T DRI () (log ™ + o((loz 2) )]
n=o
X (n) B
+ 2z “(log z) [ z (-1) ( ) (A )(log z) ™+ o((log z2) )]
n=o

M M1
+0(z “(log z) ), as z-+ o in S(4).

Y u
If the term z C(log z) ° is factored from the expressions in (5.104),

one obtains

=
(5.105 F(z) = z °Clog 2) °I X (-1) ( )™ () (log 27
n=o
-N A=A Hqa=U
"+ o((log 2z) % +0(z ° l(1og z) 1 o)],

as z + o in S(A). Since Re xl > Re Ao
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Ao-xl 17 -No
(5.106) z (log z) = o((log z) "), as z > in S(A).

Hence
- H No u -N
(5.107) F(z) =z °Clog 2) °L § (D*(2r™ 0 )(tog 2™ + o((lor ) )]
n=o
or
Y i _
(5.08)  F(z) ~z °(log 2) °[S,(u ) 5108 2);  {(log 2) )]

as z +» in S(4).

If My is not a non-negative integer. then Sm(uo,ko,log z)

has an infinite number of terms, each of which is larger than every term

-\ U
in z 1(log z) 1 Sw(ul,kl,log z). From a pragmatic point of view the

first term of (iii) gives the complete asymptotic expansion of F(z).
This is a somewhat surprising result because the situation when the B
are non-negative integers is quite different. In such a case, every

term of (iii) gives a contribution to a much more accurate form of

asymptotic expansion.

As an illustration of this phenomenon, consider
1
! 2
(5.109) F(2) = f (-log t)“ cos t exp(-zt)dt.
o

This will have the asymptotic expansion
1 1

(5.110) F(z) ~ 2 “(log %[ ] -D*()}r(n1,_,(og 2™ {(log 2) "},
n=o

as z > in S(A). It does seem strange that every function
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1

a
(5.111) F(z) = | (-log t)% £(t)exp(-zt)dt,
0

will have exactly the same asymptotic expansion, for any fixed complex

number a, as long as the integral exists, and

(5.112) f£(t) =1+ o(tA), as t+o along arg t = arg a, Re A > o.

If the Erdélyi form of (5.89) is reduced to its natural prag-
mstic form of (5.108), then it is clear that the result is no longer a
generalization of Watson's Lemma except in so far as the first term is
concerned. It is therefore natural to ask whether such a generalization
does exist in which the powers of (-log t) can take values which are

not non-negative integers. It is possible, for example, to ask for

conditions on f(t) in

a
(5.113) F(z) = | £(t) exp(-zt)dt
(o}

which will ensure that

~A U -A u
(5.114) F(z) ~ z a z B(log z) n : {z %(log 2) oy .
nel

where Re A > Re A, whenever n and n+tl are in I, and u_ 1is
n+l n n

an arbitrary complex number. This would then be a generalization of

Watson's Lemma, with the result of this Lemma being obtained when

W, = o In order to answer this question, we shall digress to discuss

briefly the function u(t,8,0) of Chapter IV. This function has the

asymptotic expansion

o (B+1)
(5.115) (e, Ba0) ~ t%(-log £ P T (- —2 u(l,mn-1,0) (-log )
n=o

{(-log t) "}], as t - o.
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Further.

at & |
(5.116) u(1,-n-1,0) = (- [r(a+l)]| .
This gives

)1, as t -~ o.

a -
(5.117)  u(t,B8,0) = & (log )% () | g L

r(a+l) log t

Hence

(5.118) _tl Clog) "
. u(t,-un-l,kn-l) = TOO) 1+ 0(log t)], as t - o.

' A -1 I
The sequences {u(t,-un—l,kn—l)} and {t " (-log t) "} a8 t-+o and

A H
{z "(log z) N} a8 2z + «» are all asymptotic sequences for the same

conditions on '{An} and '{un}. It is assumed thdt such conditions are

met,'and all three are asymptotic sequences. In such a situation one

can study functions £(t) which have asymptotic expansions of the form
A -1 U A_-1 u

(5.119) £(t) ~ ] a € (-log t) B, (¢® (-log £) "}, as t o,
nel

which has already been accomplished, or one can discuss the possibility

that

(5-120) f£(t) ~ z an U(t""un'ly}\n'l); {u(t,'un—l,An'l)}.
nel

ag t = e If (5,126) exists then the eenstants a, @ze given by

(5,121) 8 Eiiﬁe £68) fuley=u =0 =1)
A=

um £(e) TO )/ o ( 1eg £) Y

tE>0
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k-1
a, = tlimo[f(t) - ngo a_ u(t,~u -1,A ~1)1/u(t,-m-1,3 -1)
k-1 Ak-l M
= lim TO[E(E) - ) a  u(t,-u -1,1 -1)1/t (-log t) .
t+o0 n=0Q

Although these formula€ give an explicit determination of
thege constants, the formulae are not useful in specific determinationms.
The problem cf determining conditions on £(t) for which (5.120) is
valid is interesting, but is not a problem which will be considered in

this thesis.

Theorem 5.4.
If

a
(1) F(z) = f f(t) exp{-zt)dt, a= |a|exp(1y),

1%

exists for some fixed 2z = zo 3

a1 n
(11) {t ™ (-log t) ®} 4is an asymptotic sequence as t + o,

with Re An >0 for all n e I;

A_-1 u
(111) £(t) ~ ¥ a_ uCt,-u-1,A -1): {t " (-log t) "},
| n ’’n
as t+o along arg t = y:
then
~A Yn -A n
(5.122) F(z) ~ | a z R(log z) " {z ™(log 2z) "},

nel

as z > o in S(A). The result holds uniformly in the approach of

Z r »,
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Proof: For any fixed choice of ¢ = [c|exp(iy) # o, it is true that

c a
(5.123) F(z) = [ E(t)exp(-zt)dt + [ f£(t)exp(-zt)dt
(o] (]

c
= f f(t)exp(-zt)dt + O(exp(—6|z|)),
0

for some fixed 6 > o, as z + <« in S(A). From (iii). it follows

that for any fixed integer N ¢ I,
) N
(5.124) £(t) = ] a_ u(te-p 1,2 -1) + Ry,

n=o

where for every e > o. there will exist a number |c' such that

(5.125) |RN| < g|t (-log t) |, providing |t| < e

Since the choice of ¢ in (5.123) is arbitrary, there is no loss of
generality in identifying fe| in (5.123) with that in (5.125), and

assuming |c| 1s small if so desired. These results give

N c
(5.126) F(z) = z a, f exp(-zt)u(t,-un-l,An—l)dt + .
n=o o

+ 0(exp(-8]z|)). as z -+~ in S(4),

where
c AN-l N

(5.127) |rN| <€ f ]t (-log t) exp(—zt)dtl,

o

which as before, (5.95), means
-A

N "N
(5.128) ry = o(z “(log z) ), as z o in 8(4).

Further
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c
(5.129) f u(t,—un-l,kn-l)exp(-zt)dt = f u(t,-un-l,xn—l)exp(—zt)dt
o o

+ 0(exp(-5|z|)).

for some fixed 6 > 0, as z - in S(A). Hence

ooeiY -\

u
(5.130) [ w(e.mu -1,) ~Lexp(-zt)dt = z Melog z) *
[o]

coupled with the results above gives
=A -

N u u
(5.131) F(z) = ] a_z “(logz) " +o(z '(log 2) ),

n=o
as z -+ in S(A), and the order relation is independent of z.

This of course proves

=A [ -A u
(5.132) F(z) ~ ) a z B(log 2z) " ; {z “(log z) ™},
nel
uniformly, as z -« in S(A).
Since
-1 o
m-1 & © ot

(5.133) u(t,-m,a) = (-1) e [P(a+l) )

A -1

1 £

(5.134) u(t,-l,An-l) =TO0

n

This result shows that w =0 will yield Watson's Lemma,
and Theorem 5.3 1s a true generalization of this latter result. In

Theorem 5.4, My is an arbitrary fixed complex number.

Returning to Theorem 5.3, the conditions under which

(5.135) Re An = Re An+1 s Re Moy < Re M
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whenever n and n+l are members of I lead to a result that one
might reasonably expect to hold. In this instance

=A H H u -1
(5.136) F(z) = a, z °[T( ) (log 2) ° - (D)0 ) Gog 2 °

4+ oeer + (-1)r°(:°)r(r°)(xo)(log z)u(’_ro + o((log z)uo-ro)]
o
+ alz-Al[F(Al)(log 21 (HrP o) o 2T
+oeee + (-1)r1[:i)r(r1)cxl>(1og z)ul_rl + o((log z}ul-r1>1
+ oeee
+ aMz—AM[I‘()\M)(log z)LLM - (I;M)I‘(l)(ku)(log Z)HM-l
+oeee 4 (_1)rM(:2)r(rM)(>‘M)(1og 2 ML o (log z)uM_rM)l

4 oo

Under the stated conditions, the ratio z Brz ° is
bounded as z + ». In (5.136), this will mean that none of the terms
in (5.136) become ~ 0 with respect to an asymptotic sequence composed
of powers of (log z)-l. It is possible to regroup the terms of (5.136)

so that F(z) will exhibit an asymptotic expansion of the form

-7 -1
(5.137) F(z) ~z °[] b_(2)(log 2) %, {(log 2) "M,

uniformly, as 2z >« in S(A), where the bn(z) are all bounded
as z + o 1in S(A), and the sequence of fixed complex numbers {Tn}

satisfies Ty, = “Hyo Re Tl Re T, Although the explicit expression
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of bn(z) can be obtained, it is of such complexity that it is hardly
worth while stating the formulae involved. In the situation just
described, every term of the expansion of f£(t) contributes to the
asymptotic expansion of F(z). This is merely in keeping with what

might be expected from an examination of the conditions and result given

in Watson's Lemma.

As an illustration of this form of asymptotic expansion, the

function F(z) defined by

1 A=l
(5.138) F(z) = [ £—eXeCEE) 4 Rer > o
o (1 - log t)u

will be considered. The general procedures of the present chapter may

be used in two different ways. The function (1 - log t) " has the

convergent expansion

(5.139) Q-1og )= [ (M-1og )7,

n=o

providing |t| < e—l. The conditions of Theorem 5.3 are then trivially

satisfied and

(5.140) F(z) ~ ] (-ﬁ) L(o,1,1,-p-n,2); {z “(log 2)™* ™},
n=o0

uniformly, as z + = in S(A). As before

(5.161)  Lloylhmumm,2) ~ 2 0§ D™ oy o 7V
m=o0

{(log 2)7 ¥ ™™,
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uniformly, as 2z + « in S(A). Regrouping terms will then give

(5.142) F(z) ~ zfl(log )7V T a (log z2) ",  {(log z) "}
n=o

uniformly. as z + » in S(4), where

n .
(5.143) a = ] D" (™)

m=0
There does however exist a much simpler asymptotic form of

expansion of F(z). In (5.138), replace t by et. Hence

e_1 A=1

(5.144) F(z) = ¢ [  L—exp[=@e)t] 4
) (-log ey

Directly, one therefore has

(5.145)  F(z) ~ 2 (log(2e)) ™[ [ (-1 ()™ (1) (Logze)) ™
n=o

{(Log(ze)) "},
uniformly, as 2z -« in S(4), or
(5.146)  F(z) ~ 2 (1 + log 7' J L™ a - 108 7
n=o

{(log 2z) "},

uniformly, as 2z + » in S(A). Because of the Poincaré nature of these

expansions, (5.142) can be obtained from (5.146) by writing (1 + log 2) "N =
-u-n 1l .-u-n 1l .=y-n

(log 2z) [1+ TEE—;] . and then expanding [1 + Tog z] in

powers of Tog z °
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The examples given in this chapter are artificial in nature,
and were chosen to illustrate rather simply some of the ways the theorems
in this chapter may be applied. Later in the thesis. other non-artificial

examples will be given to show these applications in a natural setting.



CHAPTER VI

Generalizations of Barnes' Lemma

In Chapter III, integrals of the form

P C
(6.1) F(z) = 5= / £(t)exp(-zt)dt
T

have been encountered, where the path of integration is the loop illus-

trated below.

t-plane
Figure 6.1.

The asymptotic behavior of F(z) was obtained under the
restriction that f£(t) had only branch-point singularities. In the
present chapter, f(t) will be allowed to possess singularities of
logarithmic and branch-point type, and results which correspond to

theorems of Chapter V will be obtained.
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For F(z) defined by (6.1), it will be assumed that:

(1) F(z) exists for some fixed z = z, 3 and

(ii) f£(t) 4is regular within. and continuous on the boundary of,
the shaded cut annulus of Figure 6.1, where the outer circle is of
fixed radius, and the inner circle ]zl = ¢ # o may be chosen to be

fixed and arbitrarily small.

Differentiating the identity

(o+)
(6.2) 2i'n' f (-t))‘-l exp(-zt)dt = -—l—x , Iarg(zeiy)l < -12!-
meiY I'(l- )z

m times with respect to A, vields

(6.3) % ;{::) (-t)A-l(log(-t))mexp(-zt)dt = :I:m [r(l;lx)z}‘] .
Setting

(6.4) M(T,A,u,2) = Ei; {cﬂ)(-t)x-l(log(-t))u exp(-zt)dt,
then (3.13) gives

6.5) M(T,,m,2) = ‘j:m [r(l:)le ;o e},

uniformly in arg z, as z + < in S(A), where {¢n} may be any

‘asymptotic sequence as long as (5.14) holds.

Theorem 6.1.

, (oh)

Consider F(z) = é; / f(t)exp(-zt)dt, and suppose that

conditions (i) and (ii) hold. If, in additionm,

<
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—l An-l n(n)
(111) £(e) ~ ] a; 6" P_(log(-t)); {(-t) = (log(-t)) 1.

nel
as t+o in -7+ y < arg(-t) <y + 7, where Pn(w) is a polynomial
of degree m = m(n);

(iv) Re At1 > Re A, for every n e I, providing n and n+l
both in I, and for some n =k in I, Re Ak >

then

=A
(6.6) F(z) ~ [ apP (D yr~ (1-x yz ®]; {z "(-log )™My

nel
uniformly in the approach of z + > in S(a), where Dn - E%— .
n
Proof: Let Ik = {0,1,2,°++.k=1}. and define
" (6.7) £.(6) = £(t) = [ 8 (-t) " e (log(-t)).
neIk

Then

(o+) (o+) A -1
(6.8) -2-1;£ £, (texn(-at)de = F() - [ @& -2*7)' (&) .

neIk

. Pn(log(-t))exp(-zt)dt.

This result coupled with (6.5) implies

-\
6.9 F@ ~ [ a® @)Dz ") g;f k(t)exn(-ne)dn
ncIk T

(s n(-J.mx l)m(n) },

uniformly in arg z, as £z -+« in B8(A).

As in the proof of (3.19).
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g o9 £ T om T
(6.10) 3= [ £ (t)exp(-zt)dt = 350/ £ (te” Dexp(-zt)dt - [ £ (£)exp(-zt)dt]
T o (o]
i
=7 (L - L

With an argument similar to that used in Theorem 5.1, we obtain

—An timA =\ n(n)
(6.1) I, ~-[ [ aP (@)Ir()z "e "l; {z “(-log 2)" 11,

neI—Ik
where either all upper or all lower signs must be taken. The result in
(6.11) is uniform in the approach of z -+ » in S(A). By adding the two

expansions in (6.11), we have

AIl
|H

g o9 -1 -
(6.12) = { £, (t)exp(-zt)dt ~ ns%_l a P (D)[I"(1-) )z
k

A
{z "(-log z)™™},

uniformly in arg z, as z >« in S(A). The required result (6.6) now

follows from (6.9) and (6.12).

When m(n) = o for all n ¢ I, and. therefore, without loss
of generality Pn(Dn) = 1, the result of Theorem 6.1 becomes as that

contained in the Generalized Barnes' Lemma.

Consider the function M(T,A,u,z) given by (6.4). When u is

a non-negative integer, say u = m, one obtains from (6.5)

m m
(6.13) M(T,A,u,2) ~ REEL [ T MpPr(a-n)1(-log 2 {(-lox 2) M,

z n=o0

with the meaning that for every integer o < N < m,
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m N ‘
(6.14) M(T,A,u,2) = LREEL [y )51l (1)) (<10 2) ™ + o((log )M,

2 n=o

as z >« in S(A). To extend this result from integral to arbitrary

complex values of 1y, an analogue of Theorem 5.2 is given below.

Theorem 6.2.

If
(ot+) _
(1) M(T,\,u,2) = 711;[ (-t))‘ 1(log(--t:))“exp(-zt:)dt:;
T

(i1) A, u fixed complex numbers;
(111) T = |T| exp(iy). |T| <1, and y a fixed real number;
then

(6.15) M(T,A,u,2) ~ 2z (-log 2" | ()01 @11 (-10g ™ ((log )™
n=o

as z > o in 8S(4a).

Proof: Let L be a generic symbol to denote paths of integratior that
begin and end at the point at infinity with the direction of approach

to infinity being restricted to the second and third quadrants of a com-
plex plane. Further, L loops around the origin in a counter-clockwise

direction so that the origin is contained within the region bounded by L.

We first consider y # m, in which case we have, in view of

(3.13),

(o+)

(6.16) M(T,\,u,2) »~ '2—117 I

°°eiY

-0 Log(-t))Pexp(-zt)dt: {(log 2)™"} ,

as z > o in 8(A/2). In (6.16), let =zt = (-8). By Cauchy's theorem,
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the integral becomes

A-1

S (log géuexp(s) ds/z: {(log z)-n},

(6.17)  M(T,A1,2) 57 L(;)

as 2z + < in S(A/2). The path of integration and the cuts in the

s-plane are illustrated below.

8 = 2z

N
/

s-plane

Figure 6.2.

For z restricted to S(A/2) and s confined to the path of

integration L, arg(s/z) = arg s - arg z, hence (s/z)}\f1 = sA-l

Therefore

- . u _
(6.18) M(T,A,u,2) m-%—— / g 1(1og EJ exp(a)ds: {(log z) "},
mi i b4

* 2

1-)

as z + in S(A/2). Since the last integral in (6.18) is of the form

(4.9), we have from (4.16),
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(6.19) M(T,A,u,z) ~ z—x(—log z)Y] Z (i)Dn[F_l(l—A)](-log z)-n;'{(log z)-n}],
Ti=GC

as z + o in S(A/2), hence also as 2z + ® in S(4).

We next consider y = m. By the obvious substitution,

)

s A1 oM
(;) (Log ;] exp(s)ds/z.

-~
(<)}
[
(=]
~

1 (o+
M(T,A,u,2) = EHI
=Tz

Restricting z to be real and negative, we have

(6.21)  M(T,1,u,2) = 5= (-log 2)" [
mi Tz

(o+) M
A=l 1
s (1 - ng—gg exp(s)ds.

Furthermore, by analytic continuation, (6.21) must hold for all values

of z in S(A). From here on the proof follows closely that of (4.16)

and need not be given in full.

Returning to the consideration of the asymptotic behavior of

1 (o4)
(6.22) F(z) = s f f(t)exp(-zt)dt,
T

f(t) be allowed to have combinations of singularities of the form
(—t)a(log(—t))s, with o and B both complex numbers. Before proceeding,

a preliminary result is required, the proof of which follows from (5.85).

Lemma 6.1.

There exists a fixed number r > o such that

(oh) A-1 -2
(6.23) J = f |(—c) (1og(-t))uexp(-zt)dt| = 0(z "(-log z)u), as z -+ o 1n S(A),

relY
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where A, n are fixed complex numbers, with Re A > o. The path of

integration is the loop which starts at t = reiY on the upper edge of

the cut arg t = Y, goes around the origin in the positive sense, and

returns to t = reiY on the lower edge of the cut.

Theorem 6.3.

Consider F(z) as given in (6.22). Ii conditioms (1) and

(i1) hold and if condition (iii) and (iv) are replaced by

An-l un An-l TI
i)' £(e) ~ [ a (-6) " (log(-0)) T {(-t) © (log(-t)) "},
nel

as t>o in -1+ y < arg(-t) <7+ y;

A u
(iv)' {(-t) n (log(-t)) B} is an asymptotic sequence as t > o,

where {An}, {un}, ne I, are both sequences of fixed complex numbers,

with Re Ak > o for some k ¢ I; then

Y u

6.2)  F@ ~ [ a MTAu,2);  {z “(log 2 ),
nel

uniformly in arg z, as z > > in s(a).
Proof: As before, we let Ik = {0,1,2,¢*+,k-1} and set

A -1 M
(6.25) £,.(8) = £(t) - ] a (-t) D (log(-t)) " .

nsIk

Integrating on both sides of (6.25) gives
g ot
(6.26) F(z) = ) a M(T,A 0 ,2) + 517] fk(t)exp(—zt)dt,
neIk T

and, hence, only the last integral need be considered.
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For any fixed integer N > k, N ¢ I, and for any fixed

e > o, we have from (iii)

N Aa” u-n
(6.27) £.(t) = ] a(-t) " (log(-t)) "+ Ry
n=k
where
AN—l Hy
(6.28) |RN|-i e|(-t) (log(-t)) | , providing |[t| < r.

With this fixed r > o,

i (o+) N n (o+) An-l oy
(6.29) o fk(t)exp(-zt)dt = a 3 I (-t) (log(-t)) exp(-zt)dt + ry
re n=k reiY
where
i (ot) ‘
(6.30) Ty = o i Ry exp(-zt)dt.
re:LY

This result, as before, implies

(o+)

2m n=k

N
(6.31) l£ £ (Dexp(-zt)dt = [ a M(T,A u,2) + 1y + 0Cexp(-8|z|))

for some fixed § > o.

From (6.28),

1

N
(log(~t)) = exp(-zt)dt

c (o) AN-
(6.32) eyl < = | (-¢)
1y
re

Identifying r din (6.32) with that in (6.23), we have

“An N
(6.33) ry = 0(z "(~log z) ), as 2z =+ in s(a),
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by Lemma 6.1.

These results combined together give

¢ o iy
(6.34) F(z) ~ ] a_ M(T,A ,u,2); {z ~(-log 2) 1,
nel n n n

as z > in S(A), and the result is uniform in the approach of

z + o in S(4).

The remarks made on Theorem 5.3 apply to Theorem 6.3. That
is to say, if My is not a non-negative integer then the first term of
(ii1)' gives the complete asymptotic expansion of F(z), and in case
Re An = Re xn+l and BRe L] < Re M then every term of the expansion

(iii)' of £(t) contributes to the asymptotic expansion of F(z).

When the above remarks are taken into account, the result
obtained in Theorem 6.3 is no longer a generalization of Barnes' Lemma.
In Chapter V, a true generalization (Theorem 5.4) of Watson's Lemma

was obtained, the proof of which is made very simply as a result of the

identity (4.4)

(6.35) | u(z,8,0) exp(-zt)dt = S-u_l(log s)-B_l
o ) .

An identity corresponding to (6.35) is not available for the integral

(o4)

(6.36) L7 uee,8i0) expl-ztit

instead, we have the rather complicated relation
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(oh) -0-1, mai 1l

(6.37) [ u(-t,B,a)exp(-zt)dt = z [e" " (log z - in)—e_

- e ™ (10g 2 + ﬂi)-B_l].
The following result is an analogue of Theorem 5.4. Since the procedures
of the proof are very much the same as those outlined before, we state

the theorem without proof.

Theorem 6.4.

(ot)
Consider F(z2) = é%-f f(t)exp(-zt)dt, and suppose that
T

conditions (i), (ii) and (iv)' hold. If

A -1 o
(6.38)  £(t) ~ [ a ul-t,mu-1,A-1;  {(-) " (log(-t)) "1,
nel

as t>o in -m+ y < arg(-t) < 7w+ y, then

-1 -\ nlni Hy —nAni By
(6.39) F(z) ~ ) an(2ni) z (log z = im) ~ - e (log z + im) 13
nel
-\ H
{z %(-log z) "y,

as z » © 4in S(A). The result is valid uniformly in arg z as 2z > .

Although the expansion (6.39) seems complicated, the result
obtained is a true generalization of Barnes' Lemma by setting by = ©

for all n in I..



CHAPTER VII

The Method of Darboux

1f a function F(t) is regular at t =0, then it has a
Maclaurin expansion of the form

(7.1) F(e) = ) £ ",
n=0

which will converge within the go-called circle of convergence, say

|t| < R. If, as Darbous [6] assumed, R is finite, then F(t) must
have at least one singularity on the circle ItI = R, When the Maclaurin
coefficients fn satisfy certain restrictions, Abel [1] was able to show
the nature of the singularities which F(t) must have on the cirele of
convergence. In a sense, Darboux investigated the converse of the Abel
result. Darboux's major contribution was to show that, under specified
conditions, the singularities of F(t) on the circle of convergence
acted as critical points, and the asymptotic behavior of fn as n + %
{g obtained from infinitesimal contours surrounding the critical points.’
Since the pattern of proof {initiated by Darboux will be followed in some

detail, we shall not further describe the Darboux procedure.

We assume, as did Darboux, that F(t) has a Maclaurin expansion
with a finite radius of convergence, and that on the circle of conver-
gence F(t) has only s ginite number of singularities. Anticipating the
final result, it is possible to assums & canonical form in which F(t)

has one and only one aingularity on the circle of convergence, with the
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more general result being obtained by adding the contribution of each
singularity. Further, if the singularity occurs at t = b, then the
substitution t = bt' locates the singularity at t' = 1. Using the
canonical form it is therefore assumed that F(t) has a singularity at

t =1, and is regular within and on the contour shown below.

_—‘\\\\\\\\\\\\izitour C:8>o.
m

1
1+

s/

~_ |~

t-plane

Figure 7.1.

By Cauchy's theorem, the Maclaurin coefficients fn of F(t)

are given by

]

/ £ pe)ae

(7.2) 2ri fn L

e peeyae + [ £ E(e)at.
|t|=1+6 |t-1]=6
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Since F(t) is regular on |t| = 1 + 6§, there must exist fixed

numbers € and M such that

(7.3) I/ ™1 R(edde| < M/(L + &)™ < M exp(-en).

This will imply

(7.4) II | e F(e)de ~ 0; {o }, as n-~e,
t|=1+6

as long as {¢m(n)} is any asymptotic sequence for which

(7.5) exp(-en) = 0; {¢m(n)}, as n > o,

Again anticipating the final result, it will be assumed that '{¢m(n)}
is such an asymptotic sequence. One can, under these circumstances,

concentrate on the asymptotic behavior of

(7.6). 1=/ ¢ E)at.
|t-1]|=6

The substitution t = e° gives

7.7 I f F(eu) exp(~nu)du,
r

where T is the image of the circle |t - 1| = 6 in the u-plane. Since
the point t = 1 corresponds to u =o0, |t - 1] = |eu -1 = lu| + O(uz),
as u~> o0, one can by the regularity of the integrand assume T is the
circle |u| = &', where &' > o is fixed, and may be chosen arbitrarily

small. Hence

(ot)
(7.8) I=-] F(e") exp(-nu)du ,
6 1
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(oh)

(7.9) fn w-%; £' F(e") exp(-nu)du; '{¢m(n)}, as n -+ «,

If the conditions of Theorem (6.3) hold, namely,

uy 'Am- _ “m_ : )\m—1 M
(7.100  FeH ~ [ a(-w) " (log(-u) "5 {(-w) T (log(-w)
mel

as u~o in o < arg u < 2m, then

oA H
(7.11) fn ~ Z a M(G',Am,um,n); {n ™(-log n) ny .
mel
as n > <,
In (7.11),
i (O+) )\m—l pm
(7.12) M(8",2 ,u »n) =§;f' (-w) (log(-u)) = exp(-nu)du,
5 ‘

-\ poo© q _ -
~n M™-log n) m[kz (Pt ) 1 (~Log w7
=0 _ .

" {(Llog n) ¥},

as n - «, Furthermore, the specialized results obtained'iﬁ Chépter Vi
when special restribtioné‘are plaéed on the ﬁm can be‘translgted into-
similar results for the asymptotic behavior of -the Macl?&rin éﬁefficienns
fn as n - ». However, because of difficulties which §111 now'be con-

sidered, the explieit results one can obtain are not as elegént as one

might expect, and are not worth wfiting out in detail.

Returning to (7.10), the substitution t = e" gives
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_Am-l o Am—l L
(7.13) F(t) ~ ] a (-log t) (log(-log t)) 7; {(-log t) (log(-log t)) '},
mel
A_-1
as t+1 in o < arg(t-1) < 2r. At t =1, (-logt) ™ has an

A-1
algebraic branch point singularity of the type (-(t-1)) n , and

H H
(log(-log t)) " has a logarithmic singularity of the type [log(-(t-1))] .
In terms of the function F(t) an expansion of the form (7.13) is not
a natural form, and an explicit determination of the a will be rarely

available. A more natural form of expansion will be

-3 A_~-1

A ~L H H
(7.14) F(&) ~ [ b (e=1) ™ {log[-(e-1)]} "3 {(e-1) ™ (log(-(t-1))) "},

mel

as t-=+1 in o < arg(t-1l) < 2m. As long as one desires only one or
two of the leading terms of the asymptotic expansion, there is no real
difficulty, and one can determine a, and a; with a reasonable amount
of calculation. Because the form (7.13) is not natural, any specialized
results which one might obtain, by the process mentioned above are not
really worth the effort to obtain them. In order to overcome this
difficulty, it is our intention to introduce an idea used first by

Burkholder [3], and then later used by Perron [17], and Erdelyi and

Wyman [12].

Returning to (7.2), the number & will no longer be considered

to be fixed, and will be chosen to be

I}

3 |-

(7.15) s
If on the circle |t| = 1+ 6§, F(t) satisfies

(7.16) F(t) = 0(n®), as n >,
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for some fixed real number s, then

s
(7.17) J e le@ae=0 |—2—| , a n->e,
|t]=1+8 U'+fﬂ
n
= 0(exp(-cv/n)), as n > %,
for some fixed € > o. The result
(7.18) f ¢t F(t)dt ~ o; '{¢m(n)} s as n >

|t]=1+6

is recaptured except that the asymptotic sequence '{¢m} must now be

chosen so that
(7.19) exp(-ev/n) ~ o; '{¢m(n)} R as n > o .

Under these circumstances, the complete asymptotic behavior of the

Maclaurin coefficients will again be determined by the asymptotic behavior

of
(7.20) 1= [ %1 re)ae.
|t-1]=6
In (7.20), (t-1) is replaced by t to obtain
(7.21) S I= [ £(t+l) exp[-(n+l) log(t+1)1dt

|t]=s

= |f| exp(-(n+l)t) F(t+l) exp[-(n+l){log(t+l) - tl}ldt.
t{=6

At this stage, it will be assumed that F(t+l) has the canonical form
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(7.22) F(t+l) = (-£)" " L(log(-t))¥e(t),

where A and u are fixed complex numbers, and G(t) is regular at

t = 0. The factor G(t)exp[-(n+l){log(t+l)~-t}] is written as

(7.23) G(t)exp[-(n+l){log(t+1)-t}]
=uauﬂ-%w¥“%t?"”n

where

(7.24) w = (n+l)t.

The expression on the right side of (7.23) will have a convergent

expansion of the form

2(log(t+l) - t)y,
2

(7.25) G(t) exp[- %-wt{
t

=7 Pm(w)tm ,
m=o

as long as

(7.26) wt = 0(1), as n -+ o,

The coefficients Pm(w) are Appell polynomials whose degree does not

exceed m. An explicit expression for Pm(w) is given by

_1 4 1 2(log(t+l) - t)
(7.27) Pm(w) = o o [G(t) exp{- 5 wt| 2 ]}]t=o .

Since wt = (n+1)t2, wt = 0(1), as n > », will certainly be satisfied

within and on |t| = X , where K is any fixed positive number, and
n
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may be taken as large as we please. For any fixed integer N > o,

(7.25) can be written as

(7.28) G(t)expl- % wt{Z(log(tﬂz-l) = )y

t

N
= [ B t"+ Ry

m=0

where RN is regular at t = o, and for which

w1
(7.29) R =0(a? M)

, Aas n > ®,

providing |t| < This result gives

X
/o

N Ah-1 '
(7.30) 1= ) (D" Ifl(—t) (log(~£))"P_((n+l)t)exp[-(n+1)t]de
m=o0 t]=6

<+ EN R
where

'A_ll'i -
(7.31) Ey = |f|(—t) (tog(-t))"exp[-(nt1)t] Ry dt.
t|=6
It is always possible to choose the integer N large enough so that
Re(A+N+1) > o, and therefore the regularity of the integrand will allow
the replacement of the circular path of integration by two straight

lines joining t = o to t = 4§, one on the top side of the cut in the

t-plane, and the other on the lower side of this cut.
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Path of Integration L.

lE’a_—

t-plane
Figure 7.2.
Hence
M1
(7.32) gl = 0(n ? [0 (log(-t)) Pexp(-(mDDe)AED), a5 n > =,
L
and, as before,
log n)"
(7.33) IENI = O(L—g—ﬁ) s as n > ®,
2
n
Since
i
(7.34) o =Lllogm)
m 4+ B
~T2
n

is an asymptotic sequence,

(7.35) I~ ] 1" I Ll n)y 1y s,

m=0 A+ 2
n
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Therefore the Maclaurin coefficients, £, of F(t) have the asymptotic

expansion
s m - (lo n)u
(7.36) fn ~ Z (-1) Jm 3 {——vii7;——} , as n > o,
m=0 A +-§
n

In (7.35), Im is given by

A+m-1

(7.37) I = ff—t) (Log(~£))"E_((n+l)t)exp(~(n+l)t)dt,
t]=6

and Jm is given by

=L

/
t

| (—t))\m-l(log(—t))qu( (nt+l)t)exp(-(ntl) t)dt.
=§

In order to show that (7.36) is an asymptotic result worth having, the
asymptotic behavior of J, o as n + » will be obtained. The Appell

polynomials Pm((n+l)t) may be written

m
(7.39) Pm((n+l)t) = Z ps(n + 1)° ts, where 18 is a fixed number.

8=0
Hence
m s |
(7.40) g = ) pg(n + 1)° M(8', Mmts, u, ntl),
8=0

where M is given in (7.12). Hence

m - H @ - -
(7.41) 3~ J p, LRealH) ¢ 7 5kl ne6)) (~Log (me1))
8=0 (n+ 1) k=0

i {(log@+1))7*}], as n+w

_ U @ - m -1 . .
. X 1og(n;i%l_ [.] [E)(-log(n+l)) k ) psDk(F l(l-A—m-s))
(ntl) k=0 8=o0

H {(log(n+l))-k}], as n >,
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The order of the terms Jm indicates that the result in

(7.36) can be improved to read

ST ety (teem -
(7.42) £, mzo DT B }, as n>e.

From (7.41),

_ H *® . _ -
Gam g~ LGN T () Caog i) ™ p BTGNS
(n + 1) k=0

. {(log(atl)) ™}, as n e,

and
~log( booe Kt -

(7.44) 5y ~ LRI [ () (log(ar)) ™ ) p DKIr 2 (-2-)]
(n+ 1) k=0 §=0

. {(log(ntl)) ¥}, as n >

Hence, for any integer N > o

(7.45) 3 - 6oy Lo (“+1) [ Z 14 (~Log (a+1)) SD* (17 (2-1)]
o ‘k
(n + l) k=0
' 1 1
+0 +0(=1,
(Log (a+1))¥E &

as n - «. Clearly, none of the terms of J, can contribute to the
asymptotic expansion unless the infinite asymptotic expansion for J°
terminates after a finite number of terms. The same will obviously be

true for J , m > 1. Hence the general situation is

H - - -
(7.46) £~ Glo) 422 ‘“:1” (] (O Cropn ™ a-n1; {(og@in ™
(n+1 k=0
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as n > »,

For the special case u a non-negative integer, a more
accurate asymptotic expansion does exist. This is true because the
infinite series expansions for Jm all terminate. Returning to (7.38),
the path of integration can be replaced by the infinite loop with the

introduction of a term that is exponentially small. Hence

) )
(7.471) 3= 2% f (—t)Am—l(log(—t))qu((n+l)t)exp(-(n+1)t)dt

u  (ot)
I S (-t)""m'lpm((n+1)c)exp(—(n+1)t)dt

(D)™ [ ()l (r)exp(-w)dwl.

From (7.27), (7.47) can be written

(oh)

(7.48) 3 ~—2§;d7 [(mt1) L j ] () M L [ oo (ROBLEHDy 14y
e L. eyt e
ml g H ge® log(t+l) t=0 [ (1-A-m)
the general form of (7.48) is
(7.49) 3= -(—::’fﬁll‘%q ((Log (1)) ™Dy

where Qu(z) is a polynomial whose degree does not exceed u. In (7.42),
there is therefore no need to drop any of the terms, and the more accur-

ate expansion is worth retaining.
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The results thus far obtained, derived for a so-called
canonical form, allow a direct derivation of a more general result.

Returning to (7.21), it will now be assumed

Mo : )‘m-l Y
(log(-t)) = G _(£); {(-t) (log(-t)) 1},

A
(7.50) F(t+l) ~ | (-t) "

mel

as t » o, where each Gm(t) is regular at t = o. Hence for each

fixed N e I,

N Amfl W
(7.51) F(t+l) = ) (-t) (log(-t)) = G_(t) + Ry(t)
m=0
where
AN-l o
(7.52) RN(t) = o((-t) (log(-t)) ), as t > o.

Hence, I of (7.21) becomes

(7.53) I= |flF(t+1)exP[-(n+l)log(t+l)]dt
t|=8
N Am—l W
=7 [¢o (log(-t)) Gm(t)exp[-(n+l)log(t+1)]dt
m=o |t|=8

* lfl R (t)exp[-(nt1)log(t+1) 1dt.
ti=¢

As long as an integer N can be chosen so that
(7.54) Re Ay > 0

and RN(t) is sufficiently regular in the cut neighborhood |t] < 6
to replace the circular path of integration by thé two straight line

segments joining t =o0 to t =6, above and below the cut, then



- 122 -

A

u
N
(7.55) [ R(tdexpl-(ntl)log(t+1)lat = o[ LBE) | - 0g y s o,

Finally, each term of the asymptotic expansion is of the canonical form
discussed in this chapter, and the asymptotic behavior of each term can

be determined as n » «,

A A
The choice of the factor (-t) ™ rather than t © in our

general theorem was dictated by a desire to provide direct application

of the Barnes' Lemma. Clearly if the natural factors in the expansion
A A
of F(t+l) have the form ¢t m(log t) m’ it would be possible to write
1k lm ikﬂlm Am
t=e (-t), t =e (-t) *, and log t = log(-t) + ikm, for some

integer k. This would imply an awkward re-expansion in order that a

direct application of the results of this chapter be applicable to the

A u
factors ¢t m(log t) M Rather than follow this course, it is

recommended that one recast the results of the chapter using

(oh)
(7.57) f tx-l exp(-zt)dt = 2mi

- 3 ’
meiy (ze iTr))‘I‘(l - 1)

as the basic integral. For any positive integer un, one obtains by

differentiating u times with respect to 4,

(o+) -1
(7.58) f t” “(log t)uexp(-zt)dt = 2ni

meiy . r

] o~

(pf -0 T ze I M,
o}

and the corresponding exact expression when u 1s a non-negative integer
is replaced by an asymptotic expansion for all other values of .
Obviously everything can then be repeated to derive the analogous results

when terms of the form tl_l(log t)u are the natural factors to use in
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the expansion of F(t+l).

As an example to illustrate the Method of Darboux applied

to logarithmic type singularities, the function
, log(l - t
(7.59) B(e) = [FBEZ B 5oy = exp(im),

will be used. Although this example does little else than repeat some
of the theory, it is being used to compare the procedure with known
methods of finding the asymptotic behavior of Stirling numbers of the
first kind. It will also be used to illustrate that the final form of
an asymptotic expansion so often depends on the procedure used to develop

the form. Writing the Maclaurin expansion of F(t) as

(7.60) F(t) = ) AI(I“):“ , A o expim)
n=o0 °

then
AL R

(7.61) AT = o é

and as our general theorem shows

where y is the circle |t - 1| =

() 1
(7.62) An m2—£

£oF
)
i (o+) F(t +1)
~ ﬁf -—————n+1 dt ,
8 (t + 1)
i (o4) u
~3- [ [log(-t)]"exp[-(n + u + 1)log(t + 1)]dt.
8
In applying our previous results, X =1, G(t) = ‘-—!L‘——',
(t + 1Y

and the asymptotic expansion can be immediately obtained from (7.42). It is
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simpler however to consider A = 1, G(t) =1, and z=n+yu+1

as the asymptotic variable, and the results will apply even though u

may be a complex number.

Writing
(o)
7.69 A sk [ enpl-(atitD)e] [Log(-) 1 Vexpl- Lgp (2ea(trl) = By,
§ t

where w = (n + u + 1)t, we have seen that only the first term in the

expansion of

wt 12(1955t+1) =8y - Z P ()"
t m=0

(7.64) exp[-

need be considered as long as 1 1is not a non-negative integer. In

this case
) 1 (e+) u )
(7.65) An ~ E;'f exp (- (ntutl) t) (log(~t)) "dt = M(8,1,u, (n+utl))
8 i
einp[

Log(hetD)’ (7 (45roy ST, loglaru) ™

m=0

5 {(log(ntu+l)) ™}

as n + ». The first two non-zero terms of (7.65) are given by

iﬂu U |

(w) [1og (nt+u+l)] U u(p=1)r'(1) 1

(7.66) A [ E— +0 ]
(obutl) log (n+irtl) (log(n+u+1))2 ((193(n+u+1))3]

imu |
L _ue p=l.. _ (u-1r' (1) 1 ,
oDy (Log(nptl))” UL - foranTy * of (rog (s +1))2)]

as n > ®,
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The Stirling numbers of the first kind Sﬁ have the

generating function

(7.67) [log(1+t)]" = [ Do sl ¢”
n=m

with the obvious relation to the Aéu> given above by

(7.68) Aé“) = ?H%%TT S;+u(-l)u+n, when u 1is a non-negative integer.

Jordan [16], page 161, gives the asymptotic result

(7.69) |k, |~ %)%-'- [Log () + ¥ L

where vy = -I'(l) is Euler's constant. The two results (7.66) and
(7.69) agree to the order in (7.66). However, the procedures of the
present chapter allow a much deeper result to be obtained when u 1is

a non-negative integer.

From (7.42), it follows that

- {Qogant)} ¥,
1+m ¢

(7.70) PV I TL I I
n m=0 n (ntu+l)

where from (7.48)

(-n)® ¢ " t Atm -A-m
(7.71) I~ T [ - {(log(t+l)) }t=°(n+u+1) Ir(34m)sin wA]Anl .
da dt
Hence
1 4d" A,
(7.72) J s =—— [(n+p+l) "T'(X)sin mA], _
o) T o A=1

and



- 126 -

u - -
(7.73) 3, % - 2 4= BOsD) (at) I O)stn ml,

T af
1

a" -A-1
= = == —— [(n+p+l) " T(O+2)sin wAl, _, .
27 dAu A=l

If n= lO3 and p = 2, then

1 % -2

(7.74) 3 ~28  2003) " *r(A)sin mAl.

o T d>‘2 A=l

= 2(1003) 1[log 1003 + y]
and
- 2

(7.75) 3.~ - 294 1(1003) 2 (+2)sin m]

17" % 2 A=1

- (1003)%[log 1003 - 3 + 2y].

By taking these first two terms of the asymptotic expansion (7.70) the

result obtained in Au)3 ~ 0.01493617441 which is a reasonably accurate

10
approximation to the exact value of A(z)3 = 0.01494504564.,

10



CHAPTER VIII

Examples

Although quite general theorems have been established by
means of which Watson's Lemma has been generalized, no pretence is made
that necessary and sufficient conditions for the validity of the
results have been found. This point is stressed to emphasize the fact
that it is the pattern, not the detail, of proof which is important.
The pattern of proof need not be abandoned in a specific example just
because one or more of the conditions of validity of a particular

theorem does not happen to be true.

In the present chapter, the main ideas and concepts will be

illustrated by specific examples.

Example 1. An Application to a Problem taken from Aerodynamics.

The function F(z) defined by

- 1
(8.1) F(z) = [ cos(zx)dx [ (L - y — /fly — ., = real and positive,
o -1 x4ty 1-y

occurs in the theory of aerodynamics. F. Tricomi [20] showed that

(8.2) F(z) = 1-1—‘2’5—2 (1 +0(l)), as z ++=o .
Z

To obtain this result, Tricomi first showed that for =z > o,

1
(8.3) F(z) = 2 [ K(/T - tZ)t exp(-zt)dt,

(o]
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where K(k) is the complete elliptic integral of the first kind,
and is defined by

/2

(8.4) K@) = | z—S k| < 1,
o vl - kzsin2¢
STl 14, 2
-2F(2’2’l’k) ’

where F(a,b; c; z) is the hypergeometric function. Since

@5 KVI-)=1FF,3:L 1-t%)

o 6-) G‘)
Z [k - 2 log t]t2n s
=0 (nl) n

n
o=

n

(Higher Transcendental Functions, volume I, page 74) , where
(8.6) k= 2[y(at) - via + P,

it follows that

° (%)nc% n 2n
8.7) R(V/IT-t%) = ) ~—===2[h - log ]t
n
n=0 (n!)
where
(8.8) B = ¥(ntl) - ¥ + %).

By Theorem 5.1,
. & &
(8.9) F(2) ~ 2[ ] _gn_zfg {(201)th_ - T'(2042) + (2n41)1 log 2}z -(2n+2)
n=o (nl)

; {(log z) g~ (2m¥2)
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—

as z »> ® in Iarg z| < 3.

Computing the first two non-zero terms, one has

2(h - T'(2) + log z) (6h, - T'(4) + 6 log z)
(8.10) F(z) = 9 5 +% 1 - + 0(log6z) ,

4 Z z

2(log 4 = 1+ vy + log 2) +_l (6 log 4 - 17 + 6y + 6 log z)
2 2 4

Z Z

+ 0(10562) ,
2z

m

as z -+« in |arg z| < 2

This is of course a more general result than that obtained

by Tricomi.
By returning to (8.3), the substitution t =1 - t' gives
L .
(8.11) exp(z)F(z) = 2 [ (1-t)K(/(2-t)t) exp(-(-zt))dt ,
o

where

(8.12) (1-OR(EDD = (1-0) FG, 35 1; t(2-t))

has a convergent Maclaurin expansion of the form

(8.13) L-Ok(/(2-6)8) =5 ] at",

with

(8.14) a = l’ a. = _% s *te .
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By the usual form of Watson's Lemma, one obtains

nla 1

(8.15) F(z) ~ 7 exp(-2z) [ Z nn+1 R n+1}]
n=o0 (-2) z

as z + in |arg z| >%.

In order to include the missing sectors in which arg z = * -g
lie, it is necessary to write
1, /1
(Z)n(Z)n -(2n+2)

(8.16) F(z) ~2[ ) ———=5- {(20+1)1h_ - I'(20+2)+(2n+1)!log z}z
n=o (n!) n

; {(log zyz~ 2ty

nla
n

+ 71 exp(-2)[ z

e 1
I | H,
n=o (_z)n+1 zn+l

and now z > » within |arg z| < 7.

Example 2. Parabolic Cylinder Functions DY(z);

The function DY(z) has the contour integral representation

1l 2 12
-=2" (o) -zt -t
(8.17) D (2) = - I%i). e 27 . 2" ey VL,

|axg(-t)| <,

where . vy 1is a fixed arbitrary complex number. If we differentiate

n-times with respect to vy, then

2 l.2
n -=2z" n (o+) -zt - t
a_ - (n-m) i 2

(8.18) dyn DY(z) = e mzo(:)l‘ (v+l) o O{ e

=

(-1og (-t))2(-t) "V Lat.
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Since the sum on the right is finite, to obtain an asymptotic expansion

n
for d—n- Dv(z) we need only consider the integrals
dv
g (o¥) -zt - %'tz m -v-1
(8.19) Gm(z,\) = Ef e (-log(-t)) (-t) dt.

Let us first expand the function exp(-t2/2) into Maclauiin

series, and hence

® n
(8.20) exp-t2/2) = [ L 0y,
n=0 2 °n!

Substituting (8.20) into (8.19) and carrying out the integration term by

term, we have from Theorem 6.1

-]

~ (DS TN ) M A m,_v-2n
(8.21) 6 (z,v) nZo o zan ooy s ((loe z) ez O},

as z > in |arg z| i% - A. This result coupled with (8.18) yields
n - l 22 @ k
8.22) S-p@~e 2] —EB0®re 2% (g ™2
n-v 2.k k
dv k=0 k!(2z°)

n
as z+® in |arg z]i%-A, where D(n)=d—— and

dv
(8.23) - Cn(v) = y(v=1) e+ (v=(2n-1)), co(\)) = 1.
In particular, we have
1 2 n :
N o (=1)"C (V) _
(8.24) Ve 2 p@)~ ] —5B—; (2 2y,

n=o0 nl (222)n

as z +» in |arg z| f_—;- - 4. The condition for validity,

|arg z| i% - A, A>o0, can be weakened to |arg z| i%}r—- A in
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the usual way. Thus (8.22) and (8.24) hold for |arg z| 5.%F-- A,

A>o0 and z + =,

Example 3.
c
In the subsequent example an integral of the form [ log(-log t)
)
exp(-zt)dt will appear. Although the singularity of the integrand is not

of the type considered in this thesis, we will use the more general

integral

c
(8.25) F(z) = f tk—llog(-log t)exp(-zt)dt
o

to illustrate that the pattern of procedure established in this thesis
will yield the asymptotic behavior of F(z) as z -+ <. Although it is
our hope that useful theorems have been established, it should be noted
again that the pattern of procedure is more important than the actual

theorems which have been established.

In (8.25), it is assumed that Re A > 0 and o0 < c < 1.

Furthermore, for the sake of simplicity we restrict ourselves to real

z and let

(8.26) f(t) = log(-log t).
Thus
(8.27) £(uz t) = log(log z - log u)

= _logu
log log z + log [l Tog z]
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For every fixed positive integer N > o, we have

N n N+1
(8.28) log (1-28Y ._ 7 1 Uoguw , gldogw)
log 2z n n N1

n=] (log 2z) (log z)

as z -+ o, providing

(8.29) —i%g—lz‘- <1-56,
or equivalently
(8.30) 1i6 fucx 2+ » for some fixed & > o.

k4

Therefore the use of the approximation (8.28) must exclude u = o.

The substitution u = tz gives

1 1
(8.31) s St -
z z

)

246 and b =2z . It can then be shown that a fixed p > o

Let a =z
must exist such that

a

(8.32) f tk-lf(t)exp(-zt)dt = O(z-A_p), as z +» o,
0

Furthermore,
¢ -1 1-8

(8.33) [ t"77f(t)exp(-zt)dt = O(exp(-z~ ")), as z + =,
b

Therefore

b -1 -\-
(8.34) F(z) = [ t" " f(t)exp(-zt)dt + 0z~ P), as z + =,
a
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To proceed further, we recall two facts from Chapter V.

For any integer n > o, it is true that

bz A-1 n (n) -n
(8.35) f u' " "(log u) exp(-u)du =T (1) + 0(z '), as 2z > =,

az
for some fixed n > o. Moreover, the integral

, bz _
(8.36) f ]uA l(log u)N+1|exp(-u)du
az

exists and is bounded as 2z > «.

Returning to (8.34), we now substitute, as before, 2zt = u.

The results (8.28), (8.35) and (8.36) combined together now yiéld

(8.37)  z'F(z) = (log log 2){r(x) + 0(z M}
N
APNS 1) (10g ™ () + 0(Clog D7)
n=1

as z + . This will imply

«©

(8.38) (2'F(2) - T log log 2} ~ ] (- 3 (tog ™™ ()5 ((og 27,
n=1

a 2z > »,

Example 4. An Application to Probability Theory.

The integral I(m) is defined by

® 2 m

I(m) = [ xe X (-l—j-—-e—(i)-) dx ,

(8.39) 7

where m is a positive integer, and ©(x) is the probability integral



2 X -u

(8.40) 8(x) == [ e = du.
/1 o

The substitution

(8.41) e-t = L"_ée_(xl

places (8.39) in the form

(8.42) Im) = /[ xe @Dt g

o)

and therefore, as long as x = x(t) satisfies certain conditions, it

can be envisaged that the methods of the present thesis will yield the
asymptotic behavior of I(m) as m + », The function }—iigiil
monotonically increases from o to 1 in the interval -« < x < 4w,
Similarly et monotonically decreases from 1 to o in the interval

0 <t <+, The inverse x = x(t) is uniquely defined, and mono-
tonicially decreases from 4+~ to - as t increases from o to =,
In any closed finite interval ¢ <t <T, ¢ > o, I(m) is exponentially
small, and if terms of this order can be neglected then we need only

discuss the behavior of the integral in an infinitesimal interval con-

tairing t = o, and an interval t > T, where T can be taken to be

arbitrarily large.

The asymptotic behavior of 6(x) is known [5] as x - «,

being given by
2

-x
(8.43) 0 ~1-— (1--Li+ o w e Y,
/1 x 2x bx

as x -+ ®, Further 6(-x) = -6(x) gives
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2

= 1 3 -, 2n
(8.44)  6(x) ~ -1 -2 1- =+ 4 oo s {x™)
/rox ( 2x2 4x4 )

as x + -», Hence as t +» ®, x + -w,

2
-X

(8.45) etal *29(") = -8 _ (1+0o),
2V1mx

and, trivially, a constant K will exist such that |x| < K/t, for

-]
t sufficiently large. This is sufficient to show that f xe_(m+l)tdt

T
is exponentially small. Hence,

[+
xe (m+l) t

(8.46) I(m) ~ f dt ,

o

where c¢ 1is a fixed positive number whose value can be arbitrarily
assigned to be as small as we wish, excluding the choice ¢ = o.

The asymptotic sequence involved in writing (8.46) must be such that
terms which are exponentially small in m can be neglected. When

t+c¢ and x + +», then for any fixed integer N > o,

1
- N I'(n + =
-t _1+8(x) _, _e x r_qy0 2 1
(8.47) e " = 2 1 p— [ Z {-1) 7n + 0( 2N+2)] ’
n=o0 x X
as x>« and t -+ o. Hence
—x2 N I'(n +-% -t

1
(8.48) [] D" m—t ()l =1-e
n=o0 X X

By a method of successive approximation, it is then easily

established that

(8.49) =/ Toge-tealloet) o 1 t + o,
4v-log t -log t
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and additional terms may be calculated if desired. Hence

(m+1)tdt - f (-log t:)]./2 (m+l)tdt 4‘[ 10g( log ) (m+l)tdt

[+
(8.50) [ x
o vY-log t

+ o(Uea@) -/
(D) ,

as m + », the estimate of the remainder being obtained from Lemma 5.4.

By Theorem 5.2,

1
1 —
2 )
(8.51) f (-log RORL N 559%&?}%11-lk2 (142)[r<k>(x)lA=1

(log (@) *;  {(log@+l)) Y] ,

as m > ®, and by the method used in the previous example

1

c - —

(8.52) f log(-log t)(-log t) 2e-(m+1)tdt:
o

_ log 1oggm+1) [ -(1/2) r(k)(x)] (1c>g(m+1))"k
(w+1) VTog (ot kzo( ) A=

{(log@+1)) ¥}

1 (%) X
+ [ c, [TV (A)], ,{log(mtl)) ~;
(w+1)vTog (oF k§1 k A=1t

: -k
{(Log(m+l)) 1] ,
as m +> ., The ¢, are all constants whose values are given by

K
1 ~(1/2
(8.53) e = ) L0,
r=0
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Hence the first two terms of an asymptotic expansion of I(m) are

_ Yrlog(mtl) 1 log log(m+l) 1
(®:20 1 2 —%'IT 07 ey * (log(m+1))3ﬁ)]

Vrlog(w+l) V7 __ log log(mtl)
4

+ 0f
(1) (Log (a+1) /2

(m+l)log(m+l)) :

This compares with a result

vVr log m

(8.55) I(m) ~ -

, 48 m+ @ ,

which was obtained by Tricomi [19].
If one takes m = 100, (8.54) and (8.55) give respectively

(8.56) 1(100) = 0.034577083107

I1(100) = 0.03803625747

and the additional term seems worth having.

Example 5. The Confluent Hypergeometric Function.

The function represented by

1
(8.57) [ % a-t) B Lexp -2ty at
(o]

can be evaluated by means of the confluent hypergeometric function to be

1
(8.58) £ t“'l(l-t)B'lexp(-zt)dt = % 1Fplasbras-z)
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Re a > 0, Re B > o. Differentiating m~times with respect to o and

s~times with respect to B gives the function

! o-1 B-1 m ]
[t 7(1-t)" T(log t) (log(l-t))exp(-zt)dt
o

(8.59) F(2)

mts
3 r()r(a)
= ( F.(o;B+a3-2)) .
(aa)m(as)s r(g+a) 11 )

By expanding (l-t)B-l(log(l—t))B into a Maclaurin expansion,

one obtains

8.60) (-0 og-t)° = [ a (8,0)t", |t] <1,
n=1

where

n
(8.61) a_(8,8) = % d—; [-t)ft

8
" (Qog(1-t))"1 _, -

For any fixed integer N > 1, the finite form of the Maclaurin

expansion can be used to give

B-1 s ¥ n N
(8.62) (1-t)" "(log(1-t))° = ] a (B,8)t + o(t)
n=1

as t + o. This yields

N
8.63) t*tog ©"1-05 2og1-6)° = | a (8,3t H(log 0"

n=1
+ o(t¥ L(10g )™,

as |t] » o. The other conditions of Theorem 5.1 are satisfied, and

(8.64) F(z) ~ ) an(s,s)nm{r(nm)z'(“"“)}; {6 = (log 2y~ By
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as z >« in |arg z| j_%-- A. Since an(B,s) =0 when 1< n < s-1,

the first two non-zero terms of (8.64) are

(8.65) F(z) = (=1)°D™{I(s+a)z >~ %}

s+1( ~-s-0-1

+ (-1) - S 1 (statl)z } + 0((log 2)™

. z-(s+a+2))’

as z > in |arg z| j_%'- A. Written in full, these terms give

m _ (r) m
(8.66) F(z) = (-1°[ ] (-n)"F (") I(ete); (log 2)
r=o0 (log 2) z

m
+ (- 1)s+1( _ s+2)[ X (- 1)m—r(m (a+s+l)] (log 2)

r=o (log z)° P
+ 0((log )™ 2~ (8¥at2)y
Hence
(8.67) F(z) = (-1)° 5lfﬂi-——— { Z D) Il—ziﬁfﬂil (s - §§2J
z° r=o (log z)”

m (r)
" Z (_1)m-r(t:) T (u.+s-:l) + O(Z-z)}
r=o (log z)

as z > o in |arg z| j_%-- A.

To obtain the behavior of F(z) as 2z -+ = outside the region

indicated above, we replace t by 1 - t and obtain

1
(8.68) F(z) = exp(-2) | t& 1(1-t)%(log t)%(log(1-t)) exp(-(-z)t)dt.
(o]
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The integral on the right is of the form (8.59), and hence, Theorem

5.1 can again be used to give

(8.69) F(2) ~ exp(-2)[Ta_(a,mD°(r(w8) (2)” ™81 ((Log (-2) %~ B0

as z + > in .721+ A < |arg z| < m, where the a are given by (8.5).

In this sector, the first two nonzero terms of the expansion are

(8.70) F(z) = exp(~z) [(-1)™0%{T (m+B) (-2) P}
+ D™ (o - BH0P(raar) (-2 B-1,
+ 0((log(-z))®z~ @2y,

8 ()
(8.71) F(z) = (-1)™ L2082 oo sy z 1)@ )____Sﬂiél_.+
(-z) r=o0 (log(-2))F

8
v Lo -2y §eomr( LoD o
r=0 (log(-2))*

as z + in -121+Ailargz|_<_1r.

The total domain of validity of the two expansions (8.64)
and (8.69) still does not cover the complete z-plane. There are gaps
in the z-plane which include the positive and the negative imaginary
axes. However, using a device outlined in Chapter I, one sees that

the asymptotic behavior of F(z) ia these gaps is described by
(8.72) F(z) ~ [Ean(B,s)Dm{r(n+a)z’(“+“)};{(1og z)Reg” ()

+ exp(-2) [1a_(a,mD°( (t8) (-2)” )1 (105 -2)) "8y,



- 142 -

Because of the exponential factor exp(-z), the expansion (8.72)

is valid for any values of arg z. In particular,

m m (r)
(8.73) F(z) = (-1)° _225122_{ T (- ()L (r+o) _
z

r=o ™ (log 2)F

m (r)
1(8 _ s+2) z (_l)m-r[r)r (o+s+1) + 0(2-2)}

z 2 r=0 (log z)

8 s (r)
+ (_l)m (log(-2)) exp (~2) (_l)s—r(S)F (m+B) +
(-z) B rzo ™ (log(-z)"

s (r) _
+-%(a _ gﬂ@a y (_l)s-r(s I* 7 (Btmtl) 0(z 2)}

2 r=o r (log(-z))r

as z -+ © in the complex z-plane.



CHAPTER IX
Conclusion

The present thesis has confined itself to the classical
problem of determining the asymptotic behavior of a function F(2z)

defined by
(9.1) F(z) = [ g(w) exp[-z¢(w)ldw ,
r

where T 1is a continuous curve which may be finite or infinite in
length. Although an alternative procedure was illustrated, it was
generally true throughout the thesis that the use of the substitution
t = ¢(w) was envisaged, and F(z) would have a canonical representa-

tion of the form

(9.2) F(z) = [ f(t)exp(-zt)dt ,
rl
where
dw
(9.3) £(t) = g(w) 37 »

and T' is the image of T 1in the complex t-plane. It was also
envisaged that the so-called critical points would be found among the
singularities of f(t), or possibly at the end points of the path of
integration, and that the asymptotic behavior would be determined by a
finite number of these critical points, say ¢t = a5, 3y, *Tty A where

all of the complex numbers a, are fixed and finite. The first part
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of the general pattern therefore envisages the following situation:

11 1]
A
51 Ys i
\\KV/\\J.\,/-M . a
a a k
1 2
t-plane

Figure 9.1.

.Although A and B are shown as if they were both finite
points and distinct, either or both may be the point at infinity,
and the possibility of T' being a closed curve is not excluded. In
order for the pattern to be successful it was assumed that TI' could

be deformed into a new contour TI" in such a way that

(9.4) [ £(t)exp(-zt)dt = [ £(t)exp(-zt)dt
1-!| r"
+ 211 (Sum of residuss of £{t)exp(-zt)
at a finite number of poles of
f(t) contained within the closed

curve ' +T").

The pattern envisages that the standard of accuracy required

in a specific asymptotic agency is determined by some agency external
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to the general theory of asymptotics, and that the standard of
accuracy is obtained by the choice of a suitable asymptotic sequence
{¢n(z)}. The success of the pattern of procedure then depends on

establishing the result that

' k
9.5) [ f(t)exp(-zt)dt ~ [ [ £(t)exp(-zt)dt, (s (2},
r" i=1l vy
i
as |z| » », where each \f is the portion of a circle with center
at the critical points ¢t = ai, and whose radius is fixed and arbitrarily
small. If (9.5) can be established, then further success depends on

the study of the asymptotic behavior of the functions Fi(z), defined by

(9.6) Fi(z) = f f(t)exp(~zt)dt .
Yy

Although f(t) may have a singularity at t = a, such that

the contour Y; cannot be replaced by the two straight lines shown below,

t-plane

Figure 9.2.
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the pattern does require that it is possible to write £(t) in the

form
9.7) £(t) = g(t) + h(t) ,

where the asymptotic behavior of f g(t)exp(-zt)dt is known, and
Y1

(2 LD

i i

(9.8) [ n(t)exp(-zt)dt = [ h(t)exp(-zt)dt - [  h(t)exp(-zt)dt

Yy 3 8

is valid. The reason for this requirement is that |exp(-zt)| 1is
not normally exponentially small on the whole of the portion of a
circle Yyo and the estimates of remainders become difficult to make
if a result like (9.8) is not true. This procedure allows us to

consider the integral of Watson's Lemma

atc
(9.9) F(z) = [ f(t)exp(-zt)dt ,
a

where the path of integration is the straight line joining t = a

to t =a+ ¢, as a canonical form for the more general problem

being considered in the present thesis. From the development, |c| # o
may be taken to be as small as we please. If the translation

t =t'+ a is effected, the canonical form is reduced to

c
(9.10) F(z) = f f(t)exp(-zt)dt .
o

The pattern envisaged by Watson required an expansion of

the form
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N
(9.11) £(t) = ) £ (t) + Ry(t) ,
n=o0
where
c
(9.12) / RN(t)exp(—zt)dt = o(¢N(z)), as |z » =,
)
and thus
(9.13) F(z) ~ | F(2); {$ ()}, as [z]+=,
nel
where
c
(9.14) F_(z) = / £ (t)exp(-zt)dt .
)

In order to be a result worth having, the asymptotic behavior of

Fn(z) should be known. Indeed Watson's result included

c me1argc
(9.15) [ £ (t)exp(-zt)dt ~ [ £ (t)exp(-zt)dt; {o (2)},
[o] (o]
wexp(iarge)
as |z| + », and an explicit evaluation of [ £ (t)exp(-zt)dt
o

is known. The procedure used in the present thesis to discuss
logarithmic singularities required a modification of this particular
pattern. 1In the first instance, the exclusion of the point t = o
from the validity of (9.11) was required and the pattern required the
establishment of
B

(9.14) F(z) ~ [ £(t)exp(-zt)dt,

o

where o < |a| < |B| < |c|], arga =arg B=argc, and o and B
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might now be required to be functions of z. The substitution u = zt

gives

-1 B2 -1
(9.15) F(z) ~ z f f(uz ")exp(-u)du.

oz
If, for the points on the path of integration, it is true that

N
(9.16) f£(uz D) = [ ¥ (2)p_(u) + olby(2)py(w)), as |z| » =,

n=o

Bz
where | ]pN(u)exp(—u)duI exists and is uniformly bounded in 2z
0z

as |z| + «, then

(9.17)  F(z) ~ z‘l[ngI b (Db (25 (6 (D}, as |z| >

where
Bz
(9.18) hn(z) = f pn(u)exp(-u)du .
oz

Again to be a result worth having, the asymptotic behavior of
wn(z)hn(z) must be known. Although this particular pattern was
introduced to give a detailed study of the situation where f£(t)

has a logarithmic singularity, it shoﬁld be stressed that the pattern
is capable of success for types of singularities other than the one
mentioned above. It seems, therefore, worthwhile to do further
investigation beyond the present thesis in the development of the

pattern with respect to the other types of singularities.

In a paper [12], Erdélyi and Wyman have generalized the
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form of integrand to a study of
(9.19) F(z) = [ h(z,t)dt ,
L

where the narrow form of integrand used in Watson's Lemma is replaced
by an integral of far more general form. A combination of the ideas
in that paper with the ideas of the present thesis should produce

results of considerable significance.
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