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Abstract

The fluid mechanics literature suggests that the ability to manipulate the very-large-scale motions

(VLSMs) that exist within turbulent boundary layers (TBLs) would provide influence over the

unwanted drag forces, noise, and vibrations associated with these flows. The ability to suppress

these negative effects would then allow for greatly improving the function of various engineering

systems. Consequently, the work documented within this thesis focuses on developing sensing and

actuation capabilities for the targeted control of VLSMs in physical systems.

Wall-mounted pressure sensors are the most practical sensor type for real-world flow control

applications. However, it is not known whether such sensors can be used for the targeted control

of VLSMs because the relationship between wall pressure and the VLSMs has not been identified.

To remedy this, a pressure measurement system capable of capturing wall-pressure fluctuations in

a noisy wind tunnel environment is developed. Simultaneous measurements of wall pressure and

velocity are then used to identify the relationship between wall pressure and the VLSMs for the

first time. It is found that the wall-normal velocity component of the VLSMs is responsible for

producing wall-pressure fluctuations at low frequencies via suction and splatting at the wall. This

result suggests that it is possible to use the low-frequency wall-pressure signal to identify VLSMs

in real time for the purpose of targeted control.

Targeted actuation of the VLSMs has been explored in previous work using jets, spanwise surface

motion, and (numerical) body forces. In contrast, the present work considers actuation using active

surface deformations applied locally in the wall-normal direction. An “active surface” is developed

to produce simple surface deformations over a range of actuation frequencies and amplitudes. An

initial evaluation of the device is then conducted using a laminar boundary layer (LBL) to form a

baseline understanding of the actuation strategy in a steady flow. This initial evaluation reveals that

the active surface is capable of producing both high- and low-speed streamwise velocity fluctuations
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with similar magnitudes. Actuation at low frequencies is found to be the most promising for

flow control because the resulting motions are stronger, more stable, and concentrated along the

centreline of the actuator. Moreover, a linear modelling technique is found to adequately describe

the input-output dynamics of the actuated flow, thus suggesting that the actuation strategy is

amenable to the powerful tools of modern control theory.

The active surface is then deployed beneath a TBL where it is used to actuate at the frequencies

associated with the VLSMs. The device is found to be capable of producing high- and low-speed

motions that are similar to synthetic VLSMs when considering their dimensions and ability to mod-

ulate the surrounding turbulence. Additionally, these motions act as a local actuation because their

strength decays rapidly with streamwise distance. These characteristics indicate that the active

surface may be well-suited for targeted control of the VLSMs using a feed-forward strategy. Alter-

natively, the turbulence-modulating properties of the actuated motions may also be appropriate for

a control strategy. Most notably, the present results indicate that the high-speed motions produced

by downward deformations of the active surface act to reduce turbulence production within the

logarithmic layer of the TBL.

Finally, the motions produced by the active surface in the LBL and TBL are compared at low

actuation frequencies. Both sets of actuated motions appear similar in form but with a few distinct

differences. First, the motions produced in the TBL advect more quickly as a percentage of the

freestream velocity than those produced in the LBL. Second, the motions produced in the TBL

are weaker as a percentage of the freestream velocity when compared to those produced in the

LBL. These differences lead to an attempt to scale the results to obtain a collapse of the data.

The resulting normalizations suggest that the shape factor of the boundary layer plays a role in

determining the advection velocity of the motions produced by the active surface. Similarly, the

shape factor and Reynolds number may be part of what determines the strength of the actuated

motions.
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ReD Reynolds number computed using D and U∞

Reδ∗ Reynolds number computed using δ∗ and U∞

Reθ Reynolds number computed using θ and U∞

Reτ Reynolds number computed using λ and Uτ

Rh Toeplitz autocorrelation matrix of h

Rpn Toeplitz autocorrelation matrix of pn

Rpui Space-time correlation between p and ui

xv



R+
pui

Space-time correlation between p > 0 and ui

R−
pui

Space-time correlation between p < 0 and ui

RLS
pui

Space-time correlation between pLS and ui

RLS+
pui

Space-time correlation between pLS > 0 and ui

RLS−
pui

Space-time correlation between pLS < 0 and ui

R
LSq
pui Space-time correlation between pLSq and ui

R
LSq+
pui Space-time correlation between pLSq > 0 and ui

R
LSq−
pui Space-time correlation between pLSq < 0 and ui

RVLS
pui

Space-time correlation between pVLS and ui

RVLS+
pui

Space-time correlation between pVLS > 0 and ui

RVLS−
pui

Space-time correlation between pVLS < 0 and ui

S− Strength of the low-speed actuated motions

S+ Strength of the high-speed actuated motions

Smax Peak strength of the actuated motions

St Strouhal number computed using D and U∞

t Time coordinate

∆t Change in time coordinate

ti ith time instance

tp Thickness of the pinhole material

u Fluctuating streamwise velocity

ui Fluctuating ith component of velocity

u′i Remainder of ui following a triple decomposition

⟨u⟩mϕ Model for visualization of the actuated motions

U Instantaneous streamwise velocity

Uc Advection velocity

Ui Instantaneous ith component of velocity

Us Speed of sound

Ut Velocity of a tracer particle

∆Ut Velocity difference between a tracer particle and the surrounding fluid

Uτ Friction velocity

U∞ Freestream velocity

v Fluctuating wall-normal velocity

V Instantaneous wall-normal velocity

Vc Volume of the cavity beneath the microphone pinhole

w Fluctuating spanwise velocity

W Instantaneous spanwise velocity

x Streamwise coordinate

∆x Change in streamwise coordinate

xi ith coordinate

∆xi Change in ith coordinate

xvi



xm Measurement location

y Wall-normal coordinate

∆y Change in wall-normal coordinate

z Spanwise coordinate

∆z Change in spanwise coordinate

αp Pinhole angle

δ Boundary layer thickness

δX Boundary layer thickness based on 0.XU∞

δ∗ Displacement thickness

ϵ Bias uncertainty of calibration

θ Momentum thickness
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Chapter 1

Introduction

1.1 Motivation and Challenges

A multitude of engineering systems feature fluid flowing over a solid surface. Adhesion of the fluid

molecules to the surface leads to the no-slip boundary condition, which enforces the velocity of the

surface onto the fluid elements that are immediately adjacent to it. Viscous forces then lead to a

layer of the fluid exhibiting a gradient over which the fluid velocity transitions from that of the

surface to that of the freestream. This affected layer of fluid is known as a boundary layer. When the

fluid velocity is low, the surface exposed to the flow is small, and the system is free of disturbances,

the boundary layer can remain laminar. However, the high fluid velocities, large surfaces, and

disturbances found in most physical systems result in the amplification of instabilities, causing

the boundary layer to quickly transition into chaos and irregularity as is illustrated by the flow

visualization of Figure 1.1. The resulting turbulent boundary layer (TBL) significantly influences the

forces, vibration, heat transfer, mixing, and acoustic noise affecting a given system, thus elevating

the scenario from an interesting physics problem to one of immense practical importance to the

engineering community.

Considerable scientific effort has been expended towards understanding the dynamics of TBLs

and how these dynamics can be exploited or mitigated to improve various systems. Despite the

progress, there is still much that is not understood about TBLs, and there are several reasons for

Figure 1.1: Visualization of a turbulent boundary layer. Adapted from Pirozzoli and Bernardini
(2011) with permission from Cambridge University Press.
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this. First, the governing equations of fluid dynamics are coupled, nonlinear, partial differential

equations, which are mathematically intractable for realistic flow situations. Direct numerical

simulation of the discretized equations is one route to solution that yields dense information about

the velocity and pressure fields. However, such simulations are limited by the currently available

computational power and are therefore unable to resolve flows with a high Reynolds number, i.e., the

parameter used to describe how turbulent a fluid flow is. Experimental facilities can achieve much

higher Reynolds numbers, but measurements are not nearly as fruitful as simulation results. Current

image-based particle velocimetry techniques can produce reliable velocity field measurements in a

single plane or within small volumes, but such measurements require significant labour and the

resulting data is far less rich than that of a simulation. Moreover, measurements of the fluctuating

pressure field have been historically difficult to execute and are only reliably obtained as point

measurements at the moment. The lack of sufficient computational power for high-Reynolds-number

simulations and the difficulty obtaining measurements in experiments have made it challenging to

advance our understanding of TBLs.

Although our understanding of TBLs is incomplete, sufficient progress has been made to take

advantage of the dynamics in some applications. For example, the boundary layer over the wing

of an aircraft is sometimes forced to transition prematurely so that the diffusive properties of

turbulence can be exploited. High-momentum fluid farther from the surface diffuses into regions

much closer to it, allowing the boundary layer to overcome an adverse pressure gradient and prevent

flow separation. This allows the wing to operate at higher angles of attack to increase lift, but

comes at the cost of increased drag as sustaining the turbulent motions requires additional energy.

In contrast, there is no benefit extracted from the turbulent flow over the fuselage of the aircraft.

Here, the boundary layer transitions to turbulence naturally, resulting in an increase of the drag

forces that must be overcome by the propulsion system and a worsening of the induced vibrations

and noise experienced by passengers. In this scenario and many others it would be immensely

beneficial to have the ability to control the drag, noise, and vibrations associated with the TBL –

an outcome that is significantly more difficult to achieve. Despite the challenges, the outcome is

likely worth the trouble because “modern turbulence control has applications of epic proportion”

(Brunton and Noack, 2015). Again considering the example of an aircraft, it is estimated that

roughly half of the energy required to propel such a vehicle is consumed by the drag forces from

its TBLs (Goldhammer, 2009). Reducing the drag by only 1% would result in reducing fuel costs

by $100 million annually in the United States alone (Gad-el-Hak et al., 1998). These fuel savings

would of course be accompanied by a large reduction in greenhouse gas emissions; some estimates

indicate that the same 1% drag reduction would lower global CO2 emissions by 9 million tonnes

annually (Leschziner et al., 2011).

To improve the systems affected by TBLs (less drag, noise, vibration, etc.), strategies must

be developed that allow for the manipulation of the flow to produce a more desirable outcome.

Such flow control strategies can be considered in two broad categories: passive and active (Gad-

el-Hak, 2000). Passive strategies, for example the use of surface modifications (Abu Rowin et al.,
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2018) or fluid additives (Warwaruk and Ghaemi, 2021), are attractive because they do not require

energy input. However, these strategies can only be applied in specific scenarios and therefore the

applications are quite limited. In contrast, active strategies are more widely applicable because they

make use of sensing and actuation to enhance the performance of a system. They come with the

expense of increased complexity, but also open the door to control theory and machine learning. As

a result, active strategies often have more potential upside than passive strategies, and this is why

the present thesis focuses on the active control of TBLs. Unfortunately, active strategies are not

straightforward to implement in practice. Why this is the case becomes clear when considering the

complicated physics of TBLs in the context of the four components required to formulate an active

control strategy: the desired state, sensors, actuators, and controller. The challenges associated

with each of these components are discussed below.

Desired state. The desired state of the TBL must be known so that the control system can

be designed to drive the TBL to this state. At first, this appears to be the most straightforward

component of the control strategy since it is clear that a state of reduced drag, noise, etc., is

desirable. According to Gad-el-Hak et al. (1998), such a state can be achieved relatively easily

using classical flow control techniques, for example global suction at the wall. However, these

strategies typically require more energy to function than is saved by the flow modification. The

desired state of a TBL is therefore one that can be produced efficiently while still yielding a benefit

for a given system. Gad-el-Hak et al. (1998) go on to suggest that such a state may by achievable

by targeting coherent structures in the flow: “One ponders, what would become of wall turbulence

if specific coherent structures are to be targeted, by the operator through a reactive control scheme,

for modification? ... If such structures are nonintrusively detected and altered ... net performance

gain might be achieved.” Determining whether desirable TBL states can be achieved efficiently

with targeted control is an active area of research today.

Sensing. Sensors must be used to observe the current state of the TBL so that the controller

can be informed about which action to take next. It is crucial that they are placed at or within

the surface so that they do not cause a protrusion into the flow and a worsening of the turbulent

state. The sensors must therefore be able to accurately represent the state of the flow at a distance.

Whether measurements of velocity, pressure, or both are being used for this purpose, knowing how

these sensor signals relate to the state of the TBL is a significant challenge. The velocity of a fluid

is a local quantity, and so velocity sensors placed at or near the surface cannot directly measure the

state of the velocity field farther from the surface. In contrast, the pressure signal at the surface

contains useful information about the state of the velocity field at a distance because pressure is a

global quantity (Pope, 2000). However, pressure signals contain information about all motions in

the flow, and so using such a signal to infer the state of a TBL is complicated. The above make it

clear that sensing for the purpose of TBL control is not straightforward.

Actuation. Actuators must be able to reliably force the TBL to the desired state and maintain

that state over time. Just like sensors, actuators should be incorporated into the surface if possible

so that they do not cause significant protrusions into the boundary layer. They must therefore
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be able to function while embedded in a surface and have authority over the flow at a distance.

Additionally, they must be able to operate efficiently to improve the likelihood that the control

strategy will achieve a net performance gain. Many types of actuators have been explored for

targeted control with the most popular being fluidic actuators (e.g., jets) and plasma actuators.

Both types of actuators have disadvantages such as the need for fluid storage, high voltages, etc.

As concluded in the review by Cattafesta and Sheplak (2011), “the future is bright for active flow

control, but the search for the perfect actuator continues”. This statement remains true more than

a decade later and highlights the ever-present difficulty of selecting an appropriate actuator for a

flow control application.

Controller. The controller takes as input the sensor signals representing the state of the TBL and

determines how the actuators should be operated to reach or maintain the desired state. Controller

design typically relies on an accurate model of the actuated system, which allows for developing

the control law using theory and simulation. While modern control theory provides a massive

suite of tools for developing controllers, the most powerful and commonly used of these tools are

largely limited to linear systems of low dimension (Chen, 1999). Unfortunately, turbulent flows are

nonlinear systems with tremendous dimensionality. As a result, the degree to which actuated TBLs

can be represented using linear models with low dimension is not yet clear. Moreover, simulating

actuated TBLs using the full governing equations for the purpose of trial-and-error control design is

prohibitively expensive, computationally speaking. There are therefore immense hurdles in the way

of those looking to develop effective controllers for manipulating TBLs to produce a more desirable

outcome.

None of the components discussed above are trivial in the context of TBL control. This can be

contrasted with a more typical control application: a robotic arm. Such a device will include several

joints, the positions of which are sensed and actuated directly using commonly available hardware.

The equations of rigid-body dynamics then readily provide low-order models for controller design

and simulation (Lynch and Park, 2017). This contrast in difficulty is why factories are filled with

effective robots but aircraft do not have drag- and noise-reduced TBLs. It is therefore important

to continue improving our ability to apply active control to TBLs so that the affected systems can

be made more efficient and effective in the future.

1.2 Approach and Objectives

The present thesis focuses on developing sensing and actuation capabilities based around a control

strategy for TBLs that is both novel and promising. Following the suggestion of Gad-el-Hak et al.

(1998), the strategy involves targeting a subset of the coherent motions within TBLs that are

dynamically important. The motions in question and the approach to sensing and actuating these

motions are discussed next.
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Targeting the Very-Large-Scale Motions

Focusing on the largest motions that exist within TBLs is the primary theme associated with the

present thesis. These are the so-called very-large-scale motions (VLSMs), which are also known

as superstructures, that occupy the logarithmic layer of the flow (Kim and Adrian, 1999; Hutchins

and Marusic, 2007a). These motions are characterized as long, meandering regions of high and low

streamwise velocity fluctuation that have been observed to extend beyond 20 times the boundary

layer thickness in length (Hutchins and Marusic, 2007a). Although the VLSMs are a recent discov-

ery relative to the long history of TBL research, they have emerged as being critical to the dynamics

of the flow. They carry a considerable amount of kinetic energy and shear stress (Balakumar and

Adrian, 2007; Lee and Sung, 2011), are responsible for modulating the amplitude and frequency of

near-wall fluid motions (Hutchins and Marusic, 2007b; Mathis et al., 2009; Ganapathisubramani

et al., 2012), and are associated with extreme wall-shear events (Hutchins et al., 2011; Pan and

Kwon, 2018). They are a desirable target for a control strategy for three primary reasons. First,

the characteristics described above suggest that the ability to control the VLSMs would provide

influence over the energy, turbulence production, and drag associated with TBLs. Second, they

become increasingly important to the dynamics of the flow as Reynolds number is increased (Smits

et al., 2011), and real-world applications typically feature TBLs at high Reynolds numbers. Finally,

the elongated nature of these motions places their influence in the lowest frequency range of the

turbulence spectrum. This makes it easier to develop a suitable actuator and also increases the

likelihood that a control strategy will produce a net performance gain since low-frequency actuation

consumes less energy. The targeted control of VLSMs is clearly worth investigating, but has only

been the subject of a handful of studies to date. They therefore serve as the target for the sensing

and actuation capabilities developed in the present work.

Sensing with Wall-Pressure Measurements

The sensing capabilities developed here focus on whether the VLSMs can be identified in real

time using the pressure signal at the surface beneath a TBL, i.e., the wall pressure. This choice

was made because pressure sensors are by far the most practical for implementation into physical

systems. However, there are challenges associated with the use of wall pressure as an indication

of the state of the velocity field. First, pressure measurements are easily corrupted by acoustic

noise sources (Willmarth, 1975; Bull, 1996; Tsuji et al., 2012), which there is no shortage of within

engineering systems. The pressure measurement system utilized must therefore be designed to

account for acoustic noise in real time while remaining sensitive to the pressure fluctuations of the

VLSMs in the low-frequency range. Second, pressure is a global quantity as mentioned previously.

More specifically, the solution to the Poisson pressure equation, which is valid for incompressible,

Newtonian fluids, reveals that pressure fluctuations are dictated by the velocity field throughout

the entire domain (Pope, 2000). This means that all turbulent motions contribute to the pressure

fluctuations at any given point in the flow, not just those that are being targeted. The relationship

between the pressure signal and the target motions must therefore be well-understood in order to
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use the signal to inform a controller. The relationship between wall pressure and the VLSMs was

not known prior to the present work and therefore two chapters of this thesis are dedicated to

developing a suitable pressure measurement system and identifying this relationship for the first

time.

Actuation with Active Surface Deformations

The actuation capabilities developed here focus on targeting the VLSMs using active surface defor-

mations applied in the wall-normal direction. This actuation strategy was primarily motivated by

the results of two previous studies. First, the earlier work of Carlson and Lumley (1996) showed

that one type of wall-normal surface deformation, a “Gaussian bump”, could be used to target

streaky structures in wall-bounded flows. They found that raising the Gaussian deformation below

a high-speed streak pushes the high-speed fluid away from the wall which in turn allows the adja-

cent low-speed region to expand, resulting in a lower shear stress at the wall. Conversely, raising

the deformation below a low-speed streak resulted in the expansion of the adjacent high-speed

region and an increase in shear stress at the wall. These results reveal a possible mechanism for

targeting streaky structures such as VLSMs using active surface deformations. The second moti-

vating study is that of Luhar et al. (2015), who used a resolvent analysis to evaluate the potential

of pressure-driven compliant surfaces to control wall-bounded turbulence. They found that these

passive surfaces can be optimized to effectively suppress modes resembling VLSMs, but that such

a surface also produces effects elsewhere in spectral space that are detrimental to the control goal.

A passive compliant surface may therefore not be the best option for targeting VLSMs. However,

a surface that relies on deliberate actuation to produce local wall-normal deformations may be ca-

pable of targeting VLSMs without being accompanied by detrimental side effects. Actuation with

active surface deformations has been largely overlooked in the flow control literature (Cattafesta

and Sheplak, 2011), and so three chapters of the present thesis are dedicated to developing an

active surface and determining how it affects boundary layer flows.

Objectives

Considering the motivation, challenges, and approach outlined above, the primary objectives of

this thesis can be stated:

1. Design, construct, and test a pressure measurement system capable of sensing the wall-

pressure fluctuations of the VLSMs within a noisy environment.

2. Identify the relationship between wall pressure and the VLSMs within a TBL.

3. Design, construct, and test an active surface with the geometric and frequency response

characteristics necessary for targeting the VLSMs.

4. Determine how the active surface influences boundary layer flows in general and whether it

is a viable actuator for targeting the VLSMs.
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1.3 Thesis Overview

This thesis is organized into four parts: Background, Sensing, Actuation, and Closing. These parts

and the chapters within are described below.

Part I: Background

• Chapter 1: Introduction

This chapter has outlined the motivation, challenges, objectives, and organization of the

present thesis.

• Chapter 2: Boundary Layers

An overview of boundary layers is presented which includes common definitions, the equa-

tions of motion, and a literature review of TBLs in the context of the present work. This

review covers coherent motions, velocity statistics, wall-pressure fluctuations, moving-surface

actuators, and previous attempts at targeting the VLSMs.

• Chapter 3: Experimental Methods

The major details of the experiments are covered. This includes the wind tunnel used for

experiments and how the desired boundary layers are generated. The velocity measurement

technique and data acquisition systems are also discussed. The particulars of the individual

experiments associated with the results chapters are provided within those chapters.

Part II: Sensing

• Chapter 4: Development of the Pressure Measurement System

The development of the pressure measurement system is documented. The measurement

requirements, sensor selection, component design, algorithm design, and testing of the system

are discussed.

• Chapter 5: Low-Frequency Wall-Pressure Sources in a Turbulent Boundary Layer

Simultaneous wall-pressure and velocity measurements are used to investigate the pressure-

velocity coupling at low frequencies within a TBL. The measurements are validated by

comparison to the literature, revealing excellent agreement. The relationship between wall-

pressure and the VLSMs is then identified for the first time.

Part III: Actuation

• Chapter 6: Development of the Active Surface

The development of the active surface is documented. The actuation requirements, actuator

selection, assembly design, surface deformation characteristics, and tuning of the device are

discussed.

• Chapter 7: Laminar Boundary Layer Forcing with Active Surface Deformations

The active surface is used to force a laminar boundary layer (LBL) and the impact on the
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flow is evaluated using measurements of the velocity field. The primary analyses determine

the effects of actuation frequency and amplitude. Linear modelling of the actuated flow is

then explored using a data-driven technique.

• Chapter 8: Turbulent Boundary Layer Forcing with Active Surface Deformations

The active surface is used to force a TBL and the impact on the flow is evaluated using

measurements of the velocity field. The analyses reveal the average motions produced by the

actuation technique and their impact on the surrounding turbulence. Comparison with the

LBL results allows for estimating how the active surface may effect a wide range of boundary

layers.

Part IV: Closing

• Chapter 9: Conclusions

The thesis is concluded with a synthesis of the present contributions and suggestions for

future work.

• Appendix A: Uncertainty Analysis

The uncertainties are estimated for the instantaneous measurements conducted for this thesis

and for various statistical quantities presented in the primary results chapters.

• Appendix B: MATLAB Code

The MATLAB codes for non-trivial algorithms used throughout this thesis are documented.
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Chapter 2

Boundary Layers

Boundary layers found in engineering systems are exposed to a wide range of conditions. Each of

these conditions, e.g., a pressure gradient, can influence the dynamics of the flow. To facilitate

comparison, researchers focus on the canonical case unless otherwise stated: an incompressible

boundary layer formed from a Newtonian fluid over a smooth, flat surface with minimal disturbances

or gradients of any kind. This type of basic boundary layer is the focus of the present thesis and

therefore also the focus of this section. Note that many of the equations discussed here will not be

associated with a specific reference since they are considered common equations of fluid dynamics.

Such equations can be found in texts such as Pope (2000) or Schlichting and Gersten (2017).

2.1 Definitions

Decades of research and engineering concerned with boundary layers have produced various def-

initions that can be found throughout the literature. Some are so common that they are never

introduced, and others seem to be defined one way or another using one symbol or another as a

matter of preference. Here the boundary layer definitions that are used in the present work are

briefly introduced to avoid any confusion. To begin, the fluid density is ρ, the dynamic viscosity is

µ, and the kinematic viscosity is ν = µ/ρ.

A Cartesian coordinate system is used where x, y, and z denote the streamwise, wall-normal, and

spanwise directions, respectively. The origin of the coordinate system is always placed at the surface

over which the boundary layer forms and therefore y = 0 is the wall location. The instantaneous

velocity components in the x, y, and z directions are U , V , and W while the instantaneous pressure

is P . The brackets ⟨.⟩ are used to denote an ensemble average in time. The Reynolds decomposition

is

U = ⟨U⟩+ u, (2.1a)

V = ⟨V ⟩+ v, (2.1b)

W = ⟨W ⟩+ w, (2.1c)

P = ⟨P ⟩+ p, (2.1d)
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where u, v, and w are the fluctuating velocity components and p is the fluctuating pressure. The

subscripts i = 1, 2, 3 will sometimes be used as vector notation for velocity (Ui, ui) and the

coordinate directions (xi) to indicate that all three components are relevant. Einstein notation

applies in these cases.

The uniform flow sufficiently far from the wall such that it is not affected by viscous forces is

referred to as the freestream and moves at a velocity U∞. The boundary layer begins at the wall

and ends at the boundary layer thickness δ where the mean velocity has become sufficiently close to

U∞. Since the transition from the boundary layer to the freestream is continuous and quite gradual,

the actual value of δ can be a bit ambiguous. One common approach to computing δ is to use the

point at which ⟨U⟩ = 0.99U∞. This value is typically denoted as δ99 and is used when dealing with

both LBLs and TBLs. A second approach specifically for TBLs is to compute δ by fitting the mean

velocity profile to a modified version of Coles’ law of the wake (Perry et al., 2002). This approach

produces values that are roughly 20% larger than δ99 for a given TBL (Hutchins et al., 2011). Errors

can therefore be introduced when comparing boundary layer properties between studies that have

employed a different definition of δ. To partially remedy this, the thickness of the TBL studied in

the present thesis is defined as the point at which ⟨U⟩ = 0.995U∞. This produces values of δ that

are roughly half way between what is produced by the two previous definitions and therefore the

error is minimized when comparing to the literature as a whole.

Integral measures of the boundary layer thickness are also frequently reported. The displace-

ment thickness of an incompressible boundary layer is defined as

δ∗ =

∫︂ ∞

0

(︃
1− ⟨U⟩

U∞

)︃
dy, (2.2)

and represents the distance that the wall would need to be displaced in a frictionless flow to

obtain the same mass deficit as the boundary layer. Similarly, the momentum thickness of an

incompressible boundary layer is defined as

θ =

∫︂ ∞

0

⟨U⟩
U∞

(︃
1− ⟨U⟩

U∞

)︃
dy, (2.3)

and represents the thickness of a layer of fluid with velocity U∞ for which the momentum flux is

equal to the momentum deficit of the boundary layer. Notice that neither δ∗ nor θ depends on

the definition of δ and therefore they can be compared between studies without ambiguity. Both

parameters can be used to define the shape factor as

H =
δ∗

θ
. (2.4)

The shape factor is an indication of how much momentum is present near the wall.

11



The shear stress at the wall is defined as

τw = µ
∂⟨U⟩
∂y

⃓⃓⃓⃓
y=0

, (2.5)

and represents the average force per unit area exerted by the fluid on the wall. This quantity is

used to compute the friction velocity of a boundary layer which is defined as

Uτ =

√︃
τw
ρ
, (2.6)

and is typically used as the velocity scale for the near-wall region of the flow where viscous effects

are dominant. Similarly, the viscous lengthscale is defined as

λ =
ν

Uτ
. (2.7)

The quantities Uτ and λ are often referred to as the inner scales whereas U∞ and δ are referred to

as the outer scales.

Finally, the Reynolds number is a dimensionless parameter that is used to quantify how turbu-

lent a flow is. There are three definitions that are commonly used for boundary layers. First, the

Reynolds number can be computed using either δ∗ as

Reδ∗ =
U∞δ∗

ν
, (2.8)

or using θ as

Reθ =
U∞θ

ν
. (2.9)

Both of these definitions represent a ratio between inertial forces and viscous forces within a bound-

ary layer. In contrast, the Reynolds number can also be computed using the inner and outer

lengthscales as

Reτ =
Uτδ

ν
=

δ

λ
. (2.10)

This particular definition is known as the friction Reynolds number and is more well-understood

as the ratio between the largest and smallest lengthscales in a TBL as is demonstrated by the

right-most side of the above equation. It remains an indication of how turbulent the flow is because

the separation between the smallest and largest scales in a flow increases as the flow becomes more

turbulent.
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2.2 Equations of Motion

Although not used explicitly in the present work, the equations of motion for an incompressible

Newtonian fluid will be briefly reviewed to inform the reader and to reveal a few insights they

provide. The equations are derived by applying the conservation of mass and momentum to a fluid

element along with a few assumptions about viscous stress. For the conservation of mass this yields

∂Ui

∂xi
= 0. (2.11)

The above is known as the continuity equation and it captures the solenoidal nature of the instanta-

neous velocity field and by extension also the fluctuating velocity field. Similarly, the conservation

of momentum yields

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
. (2.12)

The above is simply referred to as the momentum equation and represents the application of New-

ton’s second law of motion to a fluid element. Together, Equations (2.11) and (2.12) constitute the

incompressible Navier-Stokes equations. They completely describe the motion of incompressible

Newtonian fluids, which makes them incredibly useful, and they are nonlinear partial differen-

tial equations, which makes them notoriously difficult to work with. The intractability of these

governing equations is what impedes the application of control theory to fluid-dynamical systems.

There are two manipulations of the Navier-Stokes equations that reveal details about the nature

of turbulent flows. First, the Reynolds decomposition can be applied and followed by a time average

to obtain the Reynolds-averaged Navier-Stokes (RANS) equations as

⟨Uj⟩
∂⟨Ui⟩
∂xj

= −1

ρ

∂⟨P ⟩
∂xi

+ ν
∂2⟨Ui⟩
∂xj∂xj

− ∂⟨uiuj⟩
∂xj

. (2.13)

Notice that the RANS equations are similar in form to Equation (2.12) but without the time

derivative and with a new term featuring the Reynolds stress tensor ⟨uiuj⟩. These equations can

be used to solve for the mean velocity and pressure of a turbulent flow if the new term can be

modelled as a function of ⟨Ui⟩ and ⟨P ⟩; this is referred to as the closure problem and has been the

subject of study for decades. Progress on this problem is what stands in the way of the efficient

and accurate determination of average flow fields at high Reynolds numbers – an ability that has

the potential to revolutionize engineering design. Unfortunately, the Reynolds stress term in the

RANS equations cannot be neglected without significant error. Taking a closer look, it is clear

that the Reynolds stress term is the divergence of the Reynolds stress tensor. This indicates that it

captures the degree to which the stresses resulting from turbulent fluctuations act as sinks or sources

of momentum (i.e., forces). The turbulent fluctuations then act to force the RANS equations, and

therefore the mean flow, despite the fact that ⟨ui⟩ = 0 by definition, therefore highlighting the
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complex nature of turbulent flows in general. As will be discussed later in Section 2.3, the Reynolds

stresses reveal where turbulence is produced within TBLs and how the dominant motions vary as

Reynolds number is increased.

The second manipulation requires taking the divergence of the Navier-Stokes equations followed

by applying the continuity equation to yield

1

ρ

∂2P

∂xj∂xj
= −∂Ui

∂xj

∂Uj

∂xi
. (2.14)

This particular equation is referred to as the Poisson pressure equation and it is typically used to

couple the pressure and velocity fields. The Reynolds decomposition can be applied to obtain a

version of the equation for the fluctuating pressure with two source terms as

1

ρ

∂2p

∂xj∂xj
= −2

∂⟨Ui⟩
∂xj

∂uj
∂xi

− ∂2

∂xi∂xj
(uiuj − ⟨uiuj⟩). (2.15)

The first term on the right-hand-side of the above is referred to as the rapid pressure because it

responds immediately to a change in the mean velocity profile. The term is linear with respect to

the fluctuating velocity field and reflects the interaction between the turbulent motions and the

mean flow. As a result, it dominates where the mean velocity gradient is strong, for example very

close to the wall in a TBL. In contrast, the second term is referred to as the slow pressure and is

nonlinear. It contains the Reynolds stress tensor and reflects the turbulence-turbulence interactions

in the flow. Overall, Equation (2.15) reveals that the fluctuating pressure field in a turbulent flow

results from the complex interaction of the fluctuating velocity field with the mean flow and with

itself.

The solution to a Poisson equation requires integration over the entire relevant domain. Con-

sidering the equations above, this reveals that the pressure at any one point depends on the velocity

field at every other point in the flow. The inspection of the Poisson pressure equation therefore

reveals two key pieces of information: i) pressure is related to the velocity field in a nonlinear

manner, and ii) pressure is a global quantity. Both of these facts make it difficult to use pressure

sensors as inputs to a controller that seeks to act on the velocity field.

Finally, the Navier-Stokes equations can also be used to derive the Blasius boundary layer

solution for the LBL profile. Assuming steady, two-dimensional flow with zero pressure gradient,

the Navier-Stokes equations reduce to

∂⟨U⟩
∂x

+
∂⟨V ⟩
∂y

= 0, (2.16a)

⟨U⟩∂⟨U⟩
∂x

+ ⟨V ⟩∂⟨U⟩
∂y

= ν
∂2⟨U⟩
∂y2

. (2.16b)

The above are a form of the boundary layer equations and can be transformed into a nonlinear

ordinary differential equation and solved numerically. The resulting Blasius solution is shown in
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Figure 2.1. The solution is self-similar and so profiles with varying U∞ and δ99 will overlap as long

as the profile is normalized with these parameters. The Blasius profile is used in Chapter 7 to

validate the LBL produced for the evaluation of the active surface.

2.3 Turbulent Boundary Layers

This section provides an overview of the velocity and pressure fields of TBLs. While the present

thesis does not focus on the unactuated velocity field, the well-established velocity characteristics

are used to validate the present measurements and to confirm that the experimental facility produces

the desired flow field. Moreover, the discussions throughout the results chapters frequently reference

various features of the velocity field that the reader may not be familiar with. Therefore, the

characteristics of the velocity field that are relevant to the present work will be briefly reviewed

before discussing what is known about the wall-pressure fluctuations. Note that some of the studies

cited here consider channel or pipe flows instead of boundary layer flows because some aspects of

wall-bounded turbulence are universal.

2.3.1 Coherent Motions

Contrary to popular belief, turbulence is not random chaos as it features distinct patterns that

remain coherent over space and time. These so-called coherent motions (or coherent structures,

eddies) are paramount to the dynamics of TBLs and the associated statistics (Robinson, 1991;

Smits et al., 2011). Of course, the VLSMs that this thesis focuses upon are the largest coherent

motions that exist within TBLs. However, the present discussion of coherent motions begins by

considering what is referred to as the hairpin vortex, which is another essential element of TBLs

(Adrian, 2007). Note that a commonly-accepted and rigorous definition of a vortex does not exist

(Jeong and Hussain, 1995). However, the definition of Robinson (1991) is straightforward and

reasonable for the following discussion: “A vortex exists when instantaneous streamlines mapped

onto a plane normal to the vortex core exhibit a roughly circular or spiral pattern, when viewed

from a reference frame moving with the center of the vortex core.”

A schematic of an idealized hairpin vortex is shown in Figure 2.2. Its apt name comes from

the hairpin loop structure depicted in the schematic, which features a head and two legs in its

complete form. The head of the vortex is located away from the wall while the legs trail behind,

resulting in an overall inclination of roughly 45◦ to the wall (Head and Bandyopadhyay, 1981;

Ganapathisubramani et al., 2006). The mean shear of the boundary layer supports the rotational

direction of the vortex which acts to eject fluid between its legs and sweep fluid around its outside.

Here, an ejection refers to fluid motion that is up and back with respect to the mean flow (u < 0,

v > 0) while a sweep refers to fluid motion that is down and forward (u > 0, v < 0) (Corino

and Brodkey, 1969; Wallace et al., 1972). Both ejections and sweeps are also considered important

coherent motions within TBLs. The ubiquity of hairpin vortices and their tendency to produce

ejections and sweeps help explain the observation that instantaneous u and v within TBLs have

opposite signs more often than not (more on this in Section 2.3.2).
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Figure 2.1: The Blasius solution for a steady, two-dimensional boundary layer with zero pressure
gradient.

Hairpin vortices are rarely symmetric as depicted in Figure 2.2 because the surrounding turbu-

lence distorts them. They are also not always found in their complete form. Instead, it is common

to observe distorted, partial hairpins that may be missing one portion or another of the complete

structure. For example, the structure could be missing one leg to produce a “cane” or be missing

both legs to produce an “arch” (Adrian and Liu, 2002; Ghaemi and Scarano, 2011; Dennis and

Nickels, 2011a). Vortices resembling single legs of hairpins, which are often referred to as quasi-

streamwise vortices, are also prevalent (Robinson, 1991). Any of these partial hairpin vortices can

exist alone. However, they are typically found within packets consisting of a series of hairpin or par-

tial hairpin vortices aligned in the streamwise direction (Head and Bandyopadhyay, 1981; Adrian

et al., 2000; Marusic, 2001; Ganapathisubramani et al., 2003; Tomkins and Adrian, 2003; Dennis

and Nickels, 2011a). Packets are thought to form as a result of the “autogeneration mechanism”

which causes hairpin vortices with sufficient strength to generate new hairpins on their downstream

side (Zhou et al., 1996, 1999). Just like individual hairpin vortices, the packets are often inclined to

the wall such that the most downstream vortices are larger. However, this inclination is not quite

as steep as that of an individual hairpin vortex (Head and Bandyopadhyay, 1981; Adrian et al.,

2000; Dennis and Nickels, 2011a).

The combined motions of the hairpin vortices within a packet produce specific effects. First, the

series of hairpin vortices produce an alternating series of ejections and sweeps. These alternating

motions oppose one another to form inclined shear layers and stagnation points (Adrian et al.,
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Figure 2.2: Annotated schematic of an ideal hairpin vortex showing the associated sweep (u > 0,
v < 0) and ejection (u < 0, v > 0) motions.

2000). The signature produced by this process was referred to as the “bursting cycle” before

hairpin packets were more well-understood (Adrian, 2007) and the associated shear layers are also

considered to be coherent motions (Robinson, 1991). Second, the combined ejections and sweeps act

to move momentum across the gradient of the boundary layer profile (Adrian et al., 2000; Tomkins

and Adrian, 2003; Dennis and Nickels, 2011a). The ejections between the legs of the hairpins lift

low-speed fluid away from the wall to form an elongated low-speed motion. That is, low-speed with

respect to the local mean velocity. Similarly, the sweeps at the sides of the packets move high-speed

fluid towards the wall to produce elongated high-speed motions. Such high- and low-speed streaks

are another important type of coherent motion found within TBLs. The visualization from the

measurements of Ghaemi and Scarano (2011) shown in Figure 2.3 highlights an example of these

streaks. The locations of the vortices, ejections, and sweeps relative to the streaks are evident

within this visualization, as is the existence of distorted, partial hairpin vortices.

Hairpin vortices and packets exist in a hierarchy of sizes across the entirety of the boundary

layer thickness such that smaller vortices/packets are often nested within the larger ones (Adrian

et al., 2000). At the smallest scale these hairpin vortices, both full and partial, are associated with

the near-wall high- and low-speed streaks (Blackwelder and Eckelmann, 1979; Adrian and Liu,

2002; Tomkins and Adrian, 2003). Near-wall streaks with the same sign of fluctuation are typically

spaced in the spanwise direction at a distance of around 100λ (Smith and Metzler, 1983; Lin et al.,

2008), making them the smallest streaks present within TBLs. The visualization of Ghaemi and

Scarano (2011) shown in Figure 2.3 is an example of these near-wall streaks. When viewed in

streamwise–spanwise planes, the size of the streaks that are present within a TBL increase with

distance from the wall. The streaks can reach widths of up to around 0.5δ (Tomkins and Adrian,

2003; Dennis and Nickels, 2011b), which indicates that the maximum spanwise spacing between
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Figure 2.3: Instantaneous visualization of the near-wall streaks and the associated vortical struc-
tures. In (a), the high-speed streaks are shown with green while the low-speed streaks are shown
with blue. In (b), only the low-speed streaks are shown with blue while the vortical structures
are shown with red. The magnified details of (b) also show sweeping motions in yellow and ejec-
tion motions in grey. Adapted from Ghaemi and Scarano (2011) with permission from Cambridge
University Press.
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streaks of the same sign of fluctuation is ∼δ. It is therefore the case that high- and low-speed

streaks that scale on both inner (λ) and outer (δ) variables exist within TBLs.

The high- and low-speed coherent motions within TBLs with streamwise lengths ranging from

roughly 1–3δ are considered to be large-scale motions (LSMs) (Balakumar and Adrian, 2007). Due

to the inclination of the associated packets, the LSMs can extend through most of the boundary

layer thickness. The packets extending to near the outer edge of the boundary layer likely explain

the outer “bulges” at the interface between the boundary layer and freestream described in ear-

lier investigations of TBLs (Robinson, 1991). A visualization highlighting the hairpin packet and

streaks associated with an LSM from the measurements of Dennis and Nickels (2011a) is shown in

Figure 2.4. The distorted, partial structures of the hairpin vortices in the packet are visible and

can be seen to increase in size with downstream distance to produce the characteristic inclination

discussed previously. The high- and low-speed streaks formed by the collective ejection and sweep-

ing motions of the hairpin vortices are also visible. Coherent motions with the sizes necessary to

be considered LSMs, such as the one shown in Figure 2.4, are common within TBLs (Adrian et al.,

2000; Ganapathisubramani et al., 2003; Dennis and Nickels, 2011b).

The coherent motions considered for targeted control in the present work are high- and low-

speed streaks with streamwise lengths greater than 3δ (Balakumar and Adrian, 2007). These

so-called VLSMs (Kim and Adrian, 1999) or “superstructures” (Hutchins and Marusic, 2007a)

are believed to form due to the concatenation and merging of the LSMs (Balakumar and Adrian,

2007; Lee and Sung, 2011; Dennis and Nickels, 2011b; Lee et al., 2014; Kevin et al., 2019). They

have been observed to extend upwards of 20δ in the streamwise direction (Hutchins and Marusic,

2007a) and typically do not surpass ∼0.5δ in height or width (Dennis and Nickels, 2011b). A key

characteristic of the VLSMs is their meandering behaviour which masks their true length when not

accounted for in measurements (Hutchins and Marusic, 2007a; Kevin et al., 2019). These motions

are an attractive target for a control strategy because they carry a considerable amount of kinetic

energy and shear stress (Balakumar and Adrian, 2007; Lee and Sung, 2011), are responsible for

modulating the amplitude and frequency of near-wall fluid motions (Hutchins and Marusic, 2007b;

Mathis et al., 2009; Ganapathisubramani et al., 2012), and are associated with extreme wall-shear

events (Hutchins et al., 2011; Pan and Kwon, 2018). A visualization of a low-speed VLSM from

the measurements of Dennis and Nickels (2011a) is shown in Figure 2.5. The coherent motion is

surrounded by hairpin and partial hairpin vortices and can be seen to extend more than 7δ in the

streamwise direction.

The coherent motions reviewed here include hairpin and partial hairpin vortices, ejections,

sweeps, shear layers, and streaks. These motions are arranged in predictable patterns and exist

across a large range of scales. Considering that the smallest and largest streaks are spaced in the

spanwise direction by roughly 100λ and δ, respectively, it can be concluded via Equation (2.10)

that the ratio of the largest to smallest streaks in a TBL vary by a factor of ∼Reτ/100. The

near-wall streaks and VLSMs can therefore have sizes differing by several orders of magnitude in

high-Reynolds-number TBLs – an observation that is commonly referred to as the separation of
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Figure 2.4: Instantaneous visualization of an LSM with the vortices of the associated hairpin
packet labelled. The low-speed motions are shown with blue, the high-speed motions are shown
with red, and the vortical motions are shown with black. Adapted from Dennis and Nickels (2011a)
with permission from Cambridge University Press.

Figure 2.5: Instantaneous visualization of a low-speed VLSM (blue) and the associated vortical
structures (black). Adapted from Dennis and Nickels (2011a) with permission from Cambridge
University Press.
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scales. Despite this, they are strikingly similar in form as is evident when comparing the near-wall

streaks in Figure 2.3 to the VLSM in Figure 2.5. Scale separation by several orders of magnitude

suggests that it is unlikely that the near-wall streaks simply grow into the VLSMs (Hutchins and

Marusic, 2007a). However, the similarity between the near-wall streaks and VLSMs has prompted

researchers to ponder whether the same process is responsible for producing and maintaining streaky

motions at all scales within wall-bounded turbulence (Kevin et al., 2019). Whether this is true or

not remains an unanswered question for the time being.

2.3.2 Velocity Statistics

The most commonly-discussed and well-understood velocity statistics for TBLs are the mean veloc-

ity profile and Reynolds stresses. Both are briefly covered here because they are used throughout

the results chapters of this thesis. First considering the former, the law of the wall for the mean

velocity profile leads to the relationships

⟨U⟩
Uτ

=

{︄
y/λ y/λ ≲ 5,

(1/κ)ln(y/λ) + C y/λ ≳ 30,
(2.17)

where κ and C are constants. The region defined by y/λ ≲ 5 is referred to as the viscous sublayer

while the region y/λ ≳ 30 (up to a point) is referred to as the logarithmic layer. The intermediate

region 5 ≲ y/λ ≲ 30 is referred to as the buffer layer. The values of the constants have been

obtained from experiments and are typically found to be κ = 0.41 and C = 5.0 for smooth walls.

The relationships in Equation (2.17) have been shown to hold up well in experiments despite

being formulated using simple scaling arguments. The mean velocity profiles of TBLs across a

large range of Reynolds numbers are shown on semi-logarithmic axes in Figure 2.6, where both

relationships are highlighted relative to collected data. Excellent overlap is observed between the

data closer to the wall. However, this is not the case for the outer-most portion of each velocity

profile as there is a point at which the profile deviates from the logarithmic law. The outer region

characterized by a deviation from the logarithmic law is often referred to as the wake region (Coles,

1956). Upon closer inspection, it is clear that the start of the wake region, which is also the end

of the logarithmic region, is dependent on the Reynolds number. More specifically, the logarithmic

layer becomes increasingly extended at higher Reynolds numbers. As a result, the dynamics that

characterize the logarithmic layer become more dominant as Reynolds number is increased.

The Reynolds stresses are shown for a simulated TBL in Figure 2.7. The streamwise normal

Reynolds stress ⟨u2⟩ features a distinct peak within the buffer layer. This peak can be attributed to

the near-wall streaks and “bursting” (Robinson, 1991), which are of course directly tied to hairpin

and partial hairpin vortices (Adrian, 2007). Following the near-wall peak, ⟨u2⟩ tapers off gradually

in the logarithmic layer before reducing steeply near the outer edge of the boundary layer. Different

behaviour is observed for the wall-normal Reynolds stress ⟨v2⟩ and spanwise Reynolds stress ⟨w2⟩,
neither of which feature a distinct peak but instead appear to be hump-shaped. Similarly, the

Reynolds shear stress ⟨uv⟩ is also hump-shaped, but, in contrast, is always negative. These Reynolds
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Figure 2.6: Mean velocity profiles of TBLs across a large range of Reynolds numbers. Adapted
from Marusic and Hutchins (2008) with permission from Springer Nature.

stresses are generally representative of those observed in all TBLs, although there are differences as

Reynolds number is increased. The scaling of the peak locations and peak values of the Reynolds

stresses as a function of Reynolds number have been considered in detail by Buschmann et al.

(2009).

The negative Reynolds shear stress observed in Figure 2.7 is an indication of the prevalence

of ejection and sweeping motions within TBLs. These motions are related to the production of

turbulence, which can be observed directly in the production term from the turbulent kinetic energy

equation with the boundary layer approximation applied:

P = −⟨uv⟩∂⟨U⟩
∂y

. (2.18)

Although the peak Reynolds shear stress occurs in the logarithmic layer, the steep velocity gradient

near the wall results in the peak turbulence production occurring within the buffer layer. Despite

this, the total contribution of turbulence production becomes dominated by the logarithmic layer

as Reynolds number is increased (Smits et al., 2011). This is a direct result of the emergence of

VLSMs within the flow as Reynolds number is increased and is a key reason why the VLSMs are

considered attractive for targeted control.

The influence of the VLSMs on the streamwise Reynolds stress is clear when viewing ⟨u2⟩ over
increasing Reynolds numbers. Such data are presented in Figure 2.8, which contains results from

laboratory-scale TBLs all the way up to atmospheric flows. The buffer-layer peaks align when
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Figure 2.7: Square root of the Reynolds stresses from a direct numerical simulation of a TBL at
Reθ = 3000. Adapted from Hwang and Sung (2017) with permission from Cambridge University
Press.

the horizontal axis is plotted as y/λ. However, the height of the peaks increase with Reynolds

number despite ⟨u2⟩ being normalized by Uτ . This indicates that the peak is not only a function

of the inner scales. In fact, the amplitude modulation caused by the VLSMs is responsible for

increasing the intensity of the near-wall motions (Hutchins and Marusic, 2007b; Mathis et al., 2009;

Ganapathisubramani et al., 2012), thus leading to larger ⟨u2⟩ in the buffer layer. The increasing

strength and influence of the VLSMs with increasing Reynolds number is therefore visible in both

the heightening of the near-wall peak and also the increase of ⟨u2⟩ in the logarithmic layer where

the VLSMs exist. As demonstrated in Figure 2.8, the portions of the ⟨u2⟩ curves beyond the buffer

layer collapse when the horizontal axis is plotted as y/δ, indicating an outer-layer scaling for the

VLSMs. Since the VLSMs scale with outer-layer variables while strongly influencing the near-wall

motions, it is evident that a complicated interaction exists across the scales within TBLs. This

behaviour is also evident in the pre-multiplied spectra of u, which capture the total contribution of

various wavelengths to ⟨u2⟩ as a function of wall-normal location (Hutchins and Marusic, 2007a).

2.3.3 Wall-Pressure Fluctuations

Experimental limitations have made it difficult to study the wall-pressure fluctuations beneath

TBLs in the past. The low-frequency range of pressure fluctuations is often corrupted by the back-

ground noise in experimental facilities (Willmarth, 1975; Bull, 1996; Tsuji et al., 2012) or limited by

the frequency response of the measurement device, while the high-frequency range can be spatially

filtered when pressure transducer dimensions are too large with respect to the lengthscale of the

smallest pressure fluctuations (Schewe, 1983; Lueptow, 1995; Gravante et al., 1998). Additionally,

any pinhole-type measurement device will introduce some finite error (Shaw, 1960) and also act as
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Figure 2.8: Streamwise Reynolds stress within TBLs across a range of Reynolds numbers compared
using inner (left) and outer (right) scaling for the wall-normal distance. The open symbols represent
data from laboratory-scale flows at Reτ = 700 to 23000. The closed symbols represent data from
atmospheric flows. Adapted from Kunkel and Marusic (2006) with permission from Cambridge
University Press.

a Helmholtz resonator (Tsuji et al., 2007), which has the potential to distort measurements. The

above are why the first few decades of research on the wall pressure beneath a TBL did not reach

final conclusions regarding even simple single-point statistics (Bull, 1996). It is important to keep

these difficulties in mind when discussing the relationship between wall pressure and the largest

motions in the TBL. The size of these motions should place some portion of their influence in the

low-frequency range, which is one of the extremes that is difficult to reliably measure and therefore

often filtered out of measurements entirely.

A significant portion of past investigations into the wall pressure beneath a TBL focused on

single-point statistics and pressure-pressure correlations (Willmarth and Wooldridge, 1962; Corcos,

1964; Bull, 1967; Panton et al., 1980; McGrath and Simpson, 1987; Farabee and Casarella, 1991;

Keith et al., 1992; Tsuji et al., 2007; Klewicki et al., 2008; Palumbo, 2012). The picture that emerges

from these studies is as follows. There are two distinct groups of wall-pressure fluctuations, one

containing the low and mid frequencies and one containing the high frequencies of the wall-pressure

power spectrum. The low and mid frequencies scale with outer variables, and the associated

fluctuations have been found to advect faster, decay slower, and have a larger spanwise extent

than those in the high-frequency group. These characteristics suggest that the low- and mid-

frequency fluctuations are associated with larger pressure-producing motions in the outer portion

of the flow. In contrast, the high-frequency group of fluctuations scale with inner variables. The

motions that produce these fluctuations are likely associated with turbulence production near the
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wall and the smaller structures resulting from the breakdown of larger ones. The high-frequency

pressure fluctuations travel a distance proportional to their wavelength before decaying completely.

This behaviour is not observed for the lowest frequencies, which appear to decay independent

of their wavelength. The wall-pressure spectrum also features a region that scales with a mix

between inner and outer variables, indicating that the frequencies in this region are a result of the

interaction between the inner and outer scales of the flow. This region falls between the mid and

high frequencies and is referred to as the “overlap” or “universal” region of the wall-pressure power

spectrum.

The general characteristics of the wall-pressure power spectrum have been summarized by

Hwang et al. (2009) and are shown in Figure 2.9 as a function of the angular frequency ω = 2πf .

The four regions of the spectrum are highlighted: the low-frequency, mid-frequency, overlap, and

high-frequency regions. The spectrum climbs in magnitude from the low-frequency region until

a peak is reached in the mid-frequency region. The spectrum then declines in magnitude as it

passes through two segments of constant proportionality: one in the overlap region and one in the

high-frequency region. The constant decay in the high-frequency region has been observed in the

past to be approximately ω−5 to ω−6 (McGrath and Simpson, 1987; Goody, 2004; Palumbo, 2012;

Van Blitterswyk and Rocha, 2017) while the decay in the overlap region is typically closer to ω−0.7

(McGrath and Simpson, 1987; Goody, 2004; Tsuji et al., 2007; Van Blitterswyk and Rocha, 2017).

The behaviour of the low-frequency region is not well-established at the moment. Some attempts

at modelling the wall-pressure spectrum suggest that the low-frequency region should vary with ω2

as discussed by Panton et al. (1980) and Bull (1996), while another model predicts a ω1.1 to ω1.5

proportionality (Panton and Linebarger, 1974). There is currently some experimental evidence to

support the former (Farabee and Casarella, 1991; Palumbo, 2012), but reliable low-frequency data

are difficult to obtain owing to background noise contamination and frequency response limitations

of the available pressure transducers.

Integrating the power spectrum and taking the square root produces the root-mean-square

wall pressure prms. This quantity is important for engineering design, experimental validation,

modelling, etc. An empirical relation for prms has been derived by Farabee and Casarella (1991):

(︃
prms

ρU2
τ

)︃2

= 6.5 + 1.86ln

(︃
Reτ
333

)︃
, (2.19)

which is valid for Reτ > 333. This relation has been found to agree well with direct numerical

simulations and experiments for Reτ up to roughly 20000 (Tsuji et al., 2007, 2012). Equation (2.19)

is used in Chapter 5 to validate the present wall-pressure measurements.

Identifying the coherent motions responsible for the wall-pressure fluctuations has mainly been

pursued using pressure-velocity correlations and conditional averaging. These techniques were used

early on to show that the near-wall “bursting” was associated with a distinct wall-pressure pattern

(Kim, 1983; Thomas and Bull, 1983; Kobashi and Ichijo, 1986). The pattern consists of a large wall

pressure maximum with smaller pressure minimums on its upstream and downstream sides. Kim
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Figure 2.9: General characteristics of the wall-pressure spectrum beneath a TBL. Adapted from
Hwang et al. (2009) with permission from Elsevier.

(1983) and Kobashi and Ichijo (1986) explicitly associated the bursting cycle, and therefore the

convecting pattern, with inclined streamwise vortex pairs, while Thomas and Bull (1983) connected

the cycle to the passage of a shear layer that forms on the upstream side of a hairpin structure. It

is now known that the bursting cycle is a series of ejections and sweeps formed by hairpin packets

(Adrian, 2007), which indeed feature both inclined vortex pairs and shear layer structures. Many

of the studies that followed focused on the high-amplitude pressure peaks (HAPPs) at the wall,

which can be positive or negative (Johansson et al., 1987; Karangelen et al., 1993; Kim et al.,

2002; Ghaemi and Scarano, 2013). A HAPP is defined as |p| ≥ kprms where k is typically 2 to

3. Karangelen et al. (1993) found that the HAPPs associated with k = 3 are present only 5% of

the time, yet they are responsible for 49% of prms, indicating that the motions associated with the

HAPPs are quite important for understanding the fluctuating wall pressure. Ghaemi and Scarano

(2013) measured the time-resolved, three-dimensional pressure field near the wall beneath a TBL

using tomographic particle image velocimetry by integrating the Poisson pressure equation. Their

results, considered along with those of the past investigators, reveal that negative HAPPs are caused

by the low-pressure cores of quasi-streamwise vortices and hairpin heads, while the positive HAPPs

are caused by the stagnation of shear layers formed when sweeps occur upstream from ejection

events caused by hairpin or partial hairpin vortices. Considering these results along with those

of Kim (1983), Thomas and Bull (1983), and Kobashi and Ichijo (1986), it is clear that hairpin
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vortices are a significant source of wall-pressure fluctuations. The HAPPs caused by these hairpins

are clearly visible in the wall-pressure probability density shown in Figure 2.10, the long tails of

which deviate significantly from Gaussian behaviour to indicate large wall-pressure values.

Relatively few studies to date have been able to provide a detailed description of the fluid

motions associated with the wall-pressure fluctuations at the lowest frequencies of the spectrum.

The earlier work of Panton et al. (1980) and Farabee and Casarella (1991) associated the low-

frequency fluctuations with relatively passive motions in the outer layer, but these studies were

carried out prior to knowledge of the VLSMs, which have only been a focus for the last two

decades. The more recent study of Beresh et al. (2013) employed Taylor’s hypothesis along with an

array of pressure sensors to study the wall-pressure footprint beneath a supersonic TBL at Mach 2.

Note that VLSMs have been observed in a Mach 2 TBL in past experiments at a similar Reynolds

number (Elsinga et al., 2010). Beresh et al. (2013) found that highly elongated, meandering regions

of positive and negative fluctuation were visible in their lowpass-filtered visualizations of the wall-

pressure footprint. However, a regular alternation between positive and negative fluctuation in the

spanwise direction was not observed as would be expected of the VLSMs. They also found that

these highly elongated pressure footprints were much lower in magnitude than the fluctuations

with higher frequencies, suggesting that any wall-pressure footprints caused by the VLSMs may be

quite weak. It therefore may be the case that the expected alternation was not observed due to

issues with transducer sensitivity. Similarly, Buchmann et al. (2016) investigated the relationship

between velocity and wall pressure beneath a transonic TBL at Mach 0.5–0.8 (Reτ = 5100 to 9500).

They computed the space-time pressure-velocity correlations shown in Figure 2.11, revealing that

positive wall-pressure fluctuations are negatively correlated with streamwise velocity in a wall-

attached region extending roughly 4–5δ downstream from the wall-pressure sensor. This is larger

than the minimum length defined for the VLSMs (Balakumar and Adrian, 2007) and also falls

just short of the length of the VLSMs inferred from statistics (Hutchins and Marusic, 2007a; Lee

and Sung, 2011). Such a large streamwise extension of the correlation is not observed for the

negative wall-pressure fluctuations. Buchmann et al. (2016) concluded that the elongation of these

correlations provides evidence that large-scale structures play an important role in determining the

near-wall pressure field.

The most thorough investigation into the relationship between wall pressure and the largest

motions in a TBL was performed by Naka et al. (2015), this time in the incompressible regime

(Reτ = 2465 to 6390). These authors extensively investigated the coupling between velocity and

wall pressure as well as between velocity and field pressure throughout the height of the boundary

layer. In agreement with the results of Buchmann et al. (2016), the space-time pressure-velocity

correlations of Naka et al. (2015) revealed that streamwise velocity is negatively correlated with

positive wall-pressure fluctuation in a highly elongated, wall-attached region downstream from the

pressure measurement location. Once again, such an elongated correlation was not observed for

negative wall-pressure fluctuations. Naka et al. (2015) concluded that this elongated correlation may

be related to the VLSMs, but their primary conclusions focused on other features of the correlations
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Figure 2.10: Probability density of wall pressure beneath a TBL shown on linear and logarithmic
axes for Reθ = 5900 to 16700. Adapted from Tsuji et al. (2007) with permission from Cambridge
University Press.

which were much stronger. More specifically, they found that wall-pressure fluctuations occur at

the edges of large (O(δ)) organized motions with strong wall-normal velocity components. Positive

wall-pressure fluctuations were found to be associated with the leading edge of a strong sweeping

motion of the splatting type. Here, “splatting” refers to a downward motion that impacts the wall

and spreads out. Downstream from this sweep exists a region of positive streamwise and wall-

normal velocity, which is a first-quadrant event (in the u-v plane) and therefore does not fit the

description of a sweep or an ejection. Conversely, negative wall-pressure fluctuations were found to

be associated with a localized ejection occurring upstream from the pressure measurement location

while another strong sweeping motion occurred downstream. The sweeping motions associated

with both positive and negative wall-pressure fluctuations were accompanied by quasi-streamwise

vortical motions. Naka et al. (2015) suggested by comparison with the results of Ghaemi and

Scarano (2013) that these patterns could be related to large hairpins. However, counter-rotating

quasi-streamwise vortex pairs that act to induce a sweep between them, which are present in their

results for both positive and negative wall-pressure fluctuations, are not consistent with this notion.

Interestingly, Naka et al. (2015) also found that field pressure, even very close to the wall, could

clearly be linked to the VLSMs, while the wall pressure could not. It is not clear how the VLSMs

could influence the pressure field of the whole boundary layer thickness without affecting wall

pressure.

28



Figure 2.11: Correlations between wall pressure and velocity in a TBL at Reτ = 5100 and
Ma = 0.5. Adapted from Buchmann et al. (2016) with permission from Springer Nature.

2.4 Control

The body of literature regarding the control of TBLs is far too large to review here. This section

will therefore focus on the two subtopics that are directly relevant to the present work: i) actuation

with moving surfaces and ii) the targeting of VLSMs with active control strategies.

2.4.1 Moving-Surface Actuators

A wide range of moving surface actuation strategies have been investigated in the past. To simplify

the discussion moving forward, these strategies can be considered in three primary groups depending

on whether they utilize wall-normal surface motion, in-plane surface motion, or dynamic elements.

Wall-normal and in-plane motion include techniques that utilize relatively smooth and continuous

surface deformations or movements in their respective directions to interact with the flow. In con-

trast, dynamic elements are moving-surface actuators with discontinuous geometries, e.g., featuring

gaps, steps, or abrupt protrusions at the wall. These include flush-mounted piezoelectric cantilevers

(Jacobson and Reynolds, 1998; Jeon and Blackwelder, 2000; Kim et al., 2013; Bai et al., 2014; Qiao

et al., 2017, 2018; Tang et al., 2019, 2021; Tang and Jiang, 2020), active vortex generators (Osborn

et al., 2004; Seshagiri et al., 2009; Barth et al., 2011; Le Pape et al., 2012; Joubert et al., 2013), and

some forms of dynamic roughness (Segawa et al., 2002; Jacobi and McKeon, 2011, 2017; Duvvuri
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and McKeon, 2017; Gildersleeve et al., 2017; McKeon et al., 2018; Amitay and Gildersleeve, 2019;

Huynh and McKeon, 2020a,b; Tang et al., 2020; Huynh et al., 2021). The former two actuator types

are distinctly different from dynamic roughness because their primary effect is to form relatively

organized streamwise vortices, with piezoelectric cantilevers achieving this via a mechanism similar

to that of a synthetic jet (Jacobson and Reynolds, 1998; Kim et al., 2013).

Dynamic roughness interacts with the flow by introducing roughness perturbations with some

form of temporal oscillation. There are two clear drawbacks associated with this type of forcing.

First, the roughness has the potential to significantly increase drag locally, and so a successful

control strategy will have to overcome not only the energy loss of operating the actuator, but

also the energy loss associated with this excess drag. Second, the forcing is asymmetric because

an effect opposite to what is produced by the roughness cannot be achieved by the actuator. In

contrast, piezoelectric cantilevers and active vortex generators are more promising for many flow

control applications because the resulting streamwise vortices are more useful for targeting coherent

motions. These vortices can be considered a form of symmetric forcing because each streamwise

vortex will induce a high- and low-speed streak at the wall. Leveraging this effect using a staggered

arrangement of actuators can allow for producing both positive and negative velocity fluctuations

at a target location. Despite this, both of these actuator types still feature discontinuous geometry

and therefore they also must overcome excess drag. Although there are drawbacks associated with

dynamic elements, they remain suitable for some applications. For example, they can be used to

study how a given flow reacts to dynamic perturbations (Jacobi and McKeon, 2011, 2017; Bai et al.,

2014; Duvvuri and McKeon, 2017; Tang et al., 2019, 2021; Tang and Jiang, 2020). Additionally,

promising results have been achieved in the realm of separation control (Osborn et al., 2004; Le Pape

et al., 2012; Joubert et al., 2013; Amitay and Gildersleeve, 2019), and piezoelectric cantilevers in

particular have been employed successfully in feedback and feedforward control schemes (Jacobson

and Reynolds, 1998; Qiao et al., 2017, 2018).

In-plane surface motion introduces wall-parallel fluid velocity near the surface as a result of

viscous effects and the no-slip boundary condition. This technique appears to overcome the main

issues associated with dynamic elements. It does not introduce any roughness at the surface, and it

can be considered symmetric forcing since the surface can in theory be moved or deformed in both

the positive and negative streamwise or spanwise directions. The recent review of Ricco et al. (2021)

provides a near-exhaustive summary of turbulent drag reduction achieved using near-wall traverse

forcing – a category that includes in-plane surface motion in the spanwise direction. This work shows

that drag reductions of up to around 50% have been reported in both experimental and numerical

studies of wall-bounded flows employing open-loop spanwise surface motion of various forms. The

most effective form appears to be streamwise traveling waves of spanwise surface motion as depicted

schematically in Figure 2.12. This type of open-loop surface motion has been the dominant form

of in-plane surface motion studied in the past. Some investigations have considered streamwise

surface motion (Choi et al., 1994; Hamelin and Alving, 1996; Menu and Tavoularis, 2007; Józsa

et al., 2019, 2020) or rotating disks (Klewicki and Hill, 2003; Ricco and Hahn, 2013; Wise et al.,
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2014; Wise and Ricco, 2014), but far less attention has been dedicated to these concepts and their

implementation has been mostly numerical.

In-plane surface motion is clearly a promising actuation strategy for turbulent drag reduction

applications, but there are some limitations to discuss. First, this actuation technique relies on

the continuous motion of the surface. That is, a “move-and-hold” strategy is not an option like

it is for other actuators such as dynamic roughness and active vortex generators, both of which

can continue to influence the flow when operated statically. Second, implementing a surface that

is capable of these types of motions is not straightforward in practice, especially when considering

that streamwise travelling waves of spanwise surface motion seem to be the most promising strategy

for drag reduction. Experimental investigations of in-plane surface motion have typically resorted

to oscillating a flat plate (Laadhari et al., 1994; Choi and Clayton, 2001; Choi, 2002; Di Cicca

et al., 2002; Iuso et al., 2003; Ricco, 2004; Kempaiah et al., 2020) or utilizing a flush-mounted

belt system (Hamelin and Alving, 1996; Kiesow and Plesniak, 2003; Menu and Tavoularis, 2007).

These strategies allow for uniform surface motion, but they do not allow for the generation of

travelling waves. To obtain a travelling wave motion, some researchers have segmented the surface

into thin elements that can be oscillated independent of those that are adjacent (Auteri et al.,

2010; Marusic et al., 2021). Others have explored the development of flexible surfaces that can be

continuously deformed using electromagnetic actuation and electroactive polymers (Gouder et al.,

2013) or actuated lattice structures (Bird et al., 2018). These studies represent steps in the right

direction, as it appears that much of the remaining work in this particular area is a question of

how to engineer a surface capable of producing the required surface motions.

Wall-normal surface motion, which is one focus of the present thesis, can be applied at many

different scales. At the small scale the surface can be actively deformed to produce dimples,

pimples, or ridges to yield local actuation or another type of dynamic roughness (Arthur et al.,

2006; Huebsch, 2006; Dearing et al., 2007, 2010; Huebsch et al., 2012; DeMauro et al., 2015; Ge

et al., 2017). At the large scale, a major segment of the surface of a fluidic device can be actively

deformed to produce morphing geometry (Munday and Jacob, 2002; Thill et al., 2008; Jones et al.,

2018; Garland et al., 2019). It is also possible to use open-loop surface waves to modify the mean

characteristics of wall-bounded flows (Mito and Kasagi, 1998; Itoh et al., 2006; Klumpp et al., 2010,

2011; Tamano and Itoh, 2012; Koh et al., 2015; Roggenkamp et al., 2015, 2019; Meysonnat et al.,

2016; Albers et al., 2019, 2020; Fernex et al., 2020; Li et al., 2020). This strategy is similar to

the in-plane surface waves discussed previously, but the drag reductions obtained by wall-normal

surface waves have not been as large as those achieved by their in-plane counterpart (Ricco et al.,

2021).

The present work does not consider dynamic roughness, morphing geometry, or surface waves.

Instead, the goal is to determine whether it is feasible to target coherent motions within the flow

using active wall-normal surface deformations applied locally. It should be stated that this actuation

strategy is not without its drawbacks. For example, wall-normal actuation is also likely to increase

drag locally. However, the strategy has not received much attention in the past and therefore its
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Figure 2.12: Schematic representation of a streamwise traveling wave of spanwise surface motion
where Uc is the advection velocity of the wave. Adapted from Bird et al. (2018) under CC BY 4.0.

potential for flow control is unknown. The few studies that have considered such a strategy are

discussed next.

In perhaps the earliest investigation of active surface deformations, Breuer et al. (1989) showed

that wall-normal surface motion could produce both high- and low-speed streamwise velocity fluc-

tuations in an LBL. Impulse-like disturbances were generated using a pressure-driven rectangular

membrane and their evolution was monitored. The authors then showed that a different type of

wall-normal motion, a “travelling bump”, could be used to interact with the disturbance to delay

its growth to farther downstream. Later on, Hofmann and Herbert (1997) used direct numerical

simulations to show that oscillating membranes of varying shapes could be used to generate dis-

turbances in an LBL that match those that occur naturally. This work confirmed that wall-normal

motion can produce both high- and low-speed streamwise velocity fluctuations in a wall-bounded

flow. It also revealed that the delay of disturbance growth demonstrated by Breuer et al. (1989)

could likely be improved by optimizing the shape of the wall-normal surface motion. The delay

of disturbance growth using wall-normal surface motions has more recently been deomnstrated by

both Goldin et al. (2013) and Amitay et al. (2016).

One of the motivating studies for the present work was that of Carlson and Lumley (1996) as

was discussed in Chapter 1. Their simulations showed that an outward Gaussian deformation could

be used to push streaky structures away from the surface, resulting in the expansion of the opposite-

signed streaks that are adjacent to the one being targeted by the deformation. They found that
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the expansion of these adjacent streaks can lead to both decreases and increases in drag depending

on their sign of fluctuation, thus highlighting a possible mechanism for flow control. Shortly after,

Kim et al. (2003) considered periodic actuation of a circular membrane that produced wall-normal

surface deformations beneath a TBL. They measured the resulting phase-averaged velocity field

and found that the device produces a series of high- and low-speed regions that form above the

actuator and advect downstream. They found that the upward motion of the actuator produces

the low-speed regions, while the downward motion produces the high-speed regions. Kim et al.

(2003) also found that their wall-normal deformations produced streamwise vortices under certain

conditions, which is similar to the result obtained by Dearing et al. (2007) using active dimples in

an LBL. Both Kim et al. (2003) and Dearing et al. (2007) employed circular surface deformations

at a constant amplitude of 0.1 times the actuator diameter. However, the frequencies considered by

Dearing et al. (2007) were 1-2 orders of magnitude higher than those considered by Kim et al. (2003)

if the frequency is normalized using the actuator diameter and freestream velocity. The results from

these two studies suggest that higher frequencies are more likely to produce streamwise vortices,

although it is probable that the amplitude and geometry of the deformation also play significant

roles.

A collection of numerical studies have investigated controlling wall-bounded turbulence using

wall-normal surface deformations that react to local variables. The investigations of Endo et al.

(2000) and Kang and Choi (2000) considered control schemes that allowed for each element of the

surface to deform independently. Both investigations achieved drag reduction, but the resulting

surface deformations were highly complex as is shown in Figure 2.13 and are therefore impractical

for application in physical systems. This is why Endo et al. (2000) extended their analysis to

consider a more realistic array of active surface deformations that were elongated in the streamwise

direction and responded to information from upstream shear sensors. This strategy was designed

to act on the near-wall streaks and vortices and could achieve a net positive energy savings. Pamiès

et al. (2011) also considered an array of active surface deformations that were somewhat elongated

in the streamwise direction. The deformations were actuated according to opposition control such

that the surface velocity was used to oppose the wall-normal velocity above. However, this strategy

was not as successful at producing drag reduction, suggesting that the details of such a strategy

are important to its success. Similarly, Zhang et al. (2016) and Ge et al. (2017) considered control

strategies involving active surface deformations with pimple and dimple geometries that reacted to

local variables. Some weaker drag reduction was reported, but overall these strategies appear to

be less effective than that of Endo et al. (2000).

The reactive nature of the control strategies discussed above make it difficult to systematically

study the effects of actuation as a function of actuator inputs such as the frequency (velocity), am-

plitude, and geometry of the deformations. The effects of these parameters are more appropriately

studied using periodic surface deformations with simple geometries. However, this type of study

has not been common, and, as a result, the literature lacks the information necessary for designing

a suitable surface deformation for targeting a given flow feature in a control application.
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Figure 2.13: Wall-normal surface deformations resulting from a reactive control scheme that
allows each surface element to deform independently. Adapted from Kang and Choi (2000) with
permission from AIP Publishing.

2.4.2 Targeting Very-Large-Scale Motions

Only a few studies to date have sought to target VLSMs with an active control strategy. This is

partly because they are a relatively new discovery within the wall-bounded turbulence community,

but also because they are a high-Reynolds-number phenomenon and therefore are more difficult

to produce within experiments and simulations. The first explicit attempt at targeting VLSMs

with active control appears to be the experiments of Abbassi et al. (2017). The VLSMs within a

boundary layer were identified in real time using their wall-shear footprints, and wall-normal jets

were actuated to either oppose or reinforce the wall-normal components of the high- and low-speed

VLSMs, respectively. The strategy allowed for both decreasing and increasing the streamwise

turbulence intensity associated with the VLSMs and could produce a drag reduction of a few

percent. A different approach was demonstrated by the experiments of Marusic et al. (2021),

who used a streamwise traveling wave of spanwise surface motion to target the VLSMs within a

boundary layer. This type of actuation has proved effective for drag reduction when used to target

the near-wall motions, but its efficacy and practicality diminish with increasing Reynolds number

(Ricco et al., 2021). Marusic et al. (2021) showed that it remains a viable drag reduction strategy

at high Reynolds numbers if the parameters of the surface motion are set to target the VLSMs

instead of the near-wall motions. In contrast to these experimental studies, Oehler and Illingworth

(2021) applied linear control to target VLSMs in a channel flow simulated using the linearized

Navier-Stokes equations. Their work suggests that actuator and sensor arrays each in a single

plane (i.e., realistic hardware arrangements) are sufficient for targeting the VLSMs using linear

control schemes. This result is promising because it indicates that the VLSMs might be amenable
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to the tools of modern control theory, although it must be kept in mind that a linearized set of

governing equations was employed in their investigation. Finally, Jacobi and McKeon (2017) used

dynamic roughness to generate synthetic VLSMs for the purpose of exploring the phase relationships

between the very-large and small scales. While they did not implement a targeted control scheme,

it is possible that such synthetic VLSMs could be used to target the naturally-occurring VLSMs

or even offset their influence on the flow.

As it stands, only Abbassi et al. (2017) and Marusic et al. (2021) have been able to target the

VLSMs in experimental applications of flow control. Moreover, only the works of Abbassi et al.

(2017) and Oehler and Illingworth (2021) are consistent with the targeted control concept discussed

by Gad-el-Hak et al. (1998), which requires identifying and altering a specific coherent motion in

real time with the goal of producing a more desirable TBL state. Identifying and altering the

VLSMs in real time would of course require the ability to both sense and actuate the VLSMs, and

these abilities are developed in the present work.
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Chapter 3

Experimental Methods

This chapter presents an overview of the experimental methods that apply generally to the experi-

ments conducted here. The following are covered: the experimental facility, generation of boundary

layers, velocity measurement technique, and real-time system used to generate and acquire various

signals. The specific details of the experiments associated with each results chapter are discussed

within those chapters.

3.1 Wind Tunnel Facility

The work documented within this thesis required a facility capable of generating the boundary layer

flows of interest. The large two-story wind tunnel within the Mechanical Engineering Building at

the University of Alberta was selected for this purpose.

3.1.1 Specifications

The wind tunnel is capable of freestream speeds of up to 35 m/s and features a turbulence intensity

of less than 0.5% at speeds of 5 m/s or greater (Gibeau and Ghaemi, 2020). The test section has

dimensions of 2.4 m × 1.2 m × 11 m (width × height × length) and a contraction ratio of 6.3:1.

Previous investigations have shown that the mean freestream velocity remains uniform within ∼1%

across the span (Johnson and Kostiuk, 2000; Gibeau et al., 2020). The side walls of the test section

are acrylic for optical access, as are some sections of the upper and lower walls. A photograph of

the test section is provided in Figure 3.1.

3.1.2 Generating a Turbulent Boundary Layer

It is necessary for a TBL to have Reτ ≳ 2000 for the VLSMs to have a strong presence (Hutchins

and Marusic, 2007a). Obtaining this Reynolds number in a wind tunnel requires a long surface for

the boundary layer to develop over. This can be achieved by adding a long plate to the test section.

However, it is much simpler to use the existing floor, and so this is what was done here.

First, a tripping device was developed to force a transition of the boundary layer to turbulence

as early as possible. The device consists of a strip of 60-grit sandpaper with irregular protrusions
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Figure 3.1: The test section of the wind tunnel in the Mechanical Engineering Building at the
University of Alberta.

adhered to it as shown in Figure 3.2 (only a small segment is shown). The strip extends 7 cm in

the streamwise direction and spans the entire width of the test section (2.4 m). The “initial trip”

labelled in Figure 3.2 consists of a line of larger protrusions with a maximum height of 5 mm. The

remaining “random protrusions” are much smaller and are meant to break up any coherent motions

that may form from the initial trip. The tripping device was adhered to the floor of the test section

just past the end of the contraction. Following the trip, the boundary layer was allowed to develop

for roughly 7.75 m before reaching the location where the TBL was utilized. Since the maximum

trip height was 5 mm, there were more than 1500 trip heights between the tripping device and

the location where the experiments were conducted. Elsinga and Westerweel (2012) found that

the mean velocity of a boundary layer returned to uniformity roughly 40 trip heights following a

zigzag tripping device, and so the present tripping configuration seems reasonable. Second, the

quality of the test section floor was improved to provide a flat, smooth surface for the development

of the boundary layer. This included leveling all floor panels, filling the gaps between them, and

then sanding the interfaces. This was done for all panels between the tripping device and the

measurement location.

The configuration described above produces a TBL with Reτ = 2600 and δ = 94 mm at

U∞ = 11.8 m/s. This Reynolds number is sufficient to have a strong presence of VLSMs. Moreover,

the boundary layer thickness is large enough and the freestream velocity is low enough to enable

proper measurement of the velocity field using the available equipment (see Section 3.2.3). This

TBL was therefore used for all experiments within this thesis that required the presence of VLSMs.
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Figure 3.2: The boundary layer tripping device used to force a transition to turbulence.

3.1.3 Generating a Laminar Boundary Layer

An LBL was used for the initial evaluation of the active surface. Generating an LBL requires

minimizing the velocity and turbulence intensity of the freestream flow as well as the development

length for the boundary layer. The turbulence intensity of the present wind tunnel rises as the

freestream velocity drops below 5 m/s (Gibeau et al., 2020), and so an LBL cannot be obtained

simply by minimizing the freestream velocity. Moreover, the floor of the test section cannot be

used because the development length leading up to the first point of measurement access would be

too large. Instead, an LBL plate was constructed to allow generating a fresh boundary layer within

the uniform freestream of the wind tunnel.

The LBL plate, which is shown in Figure. 3.3, was machined from aluminum and features a

smooth surface finish. It has a thickness of 12.7 mm, a length of 123 cm, and a width of 100 cm.

The trailing edge is sharp and the leading edge is the profile from Hanson et al. (2012) which has

been optimized for experimental studies of LBLs. The plate is supported by adjustable feet such

that its top surface is located roughly 20 cm from the bottom wall of the test section. This places

the plate well above the boundary layer that develops along the bottom wall. Several openings have

been machined into the plate to accommodate sensors and actuators for a variety of boundary layer

control experiments. These opening are plugged using blank inserts when not in use, thus retaining

the flat and smooth surface necessary for the boundary layer. The most upstream opening was

used to accommodate the active surface in the present work so that the development length was

minimized.

The configuration described above produces a spatially-developing LBL with a mean velocity

that matches the Blasius solution (Figure 2.1) for U∞ = 4.0 m/s. This is the lowest velocity that

can be achieved before the freestream turbulence intensity rises significantly, and so this LBL was

used in the present work.
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Figure 3.3: Photograph of the plate used to generate the LBL.

3.2 Particle Image Velocimetry

Particle image velocimetry (PIV) is a non-invasive technique used to measure the velocity field of

a fluid flow. PIV is briefly covered here because it is the technique of choice for obtaining velocity

measurements in the present thesis. A full treatment of the topic cannot be provided and so the

reader is referred to Raffel et al. (2018) for more information. The uncertainty associated with the

present PIV measurements is discussed in Appendix A.

3.2.1 Working Principle

The basic working principle of PIV involves inferring the velocity field of a fluid flow from the

movement of tracer particles within the flow. These particles are illuminated using a light source

(typically a laser) and imaged using one or more calibrated cameras. Images are taken with a short

time delay between them such that the motion of the tracer particles between subsequent images is

captured. A group of particles within a small interrogation region is then considered. The distance

travelled by the particles ∆xi and the known time between images ∆t are used to compute the

velocity vector for the interrogation region as

Ui =
∆xi
∆t

. (3.1)

This operation is applied across the imaging domain using a regular grid to produce an estimate of

the velocity field.

The PIV working principle assumes that the tracer particles will faithfully follow the flow of

interest. However, perfect tracing is typically not achieved. It is therefore critical to select a particle
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that minimizes the tracing error while also being large enough to scatter sufficient light for imaging.

Stokes’ law can be used to model the dynamics of a tracer particle if the particle is assumed to be

spherical with a diameter dt. Along with Newton’s second law, this produces:

π

6
d3t∆ρ

dUt

dt
= −3πµdt∆Ut, (3.2)

where ∆ρ and ∆Ut are the density and velocity differences between the tracer particle and sur-

rounding fluid, respectively. Equation 3.2 implies that perfect tracing (∆Ut = 0) can be achieved

for ∆ρ = 0, i.e., when the particle is neutrally buoyant. This is achieved in water easily due to

the high fluid density, but is difficult to achieve in air (Scarano et al., 2015; Gibeau and Ghaemi,

2018). When neutral buoyancy cannot be achieved, the time response of the tracer particle is used

to quantify the tracing fidelity. A tracer particle with a time response that is more than an order of

magnitude smaller than the time scale of the flow will have tracing errors of less than 1% (Tropea

et al., 2007). A fog machine is used to seed the wind tunnel with ∼1-µm glycol-water droplets for

the application of PIV in the present work. These droplets have time a response of ∼1 µs (Ragni

et al., 2011) which renders the tracing errors negligible in the boundary layers considered here.

3.2.2 Measurements in a Plane

Planar PIV, which is depicted schematically in Figure 3.4, is the most common variation of PIV

applied in experimental fluid mechanics. A laser sheet with a thickness on the order of 1 mm is

used to illuminate a single plane which is then imaged using one or more cameras that are oriented

normal to the plane. Each interrogation region is taken to be a two-dimensional interrogation

window which is used to extract the in-plane components of the velocity vector that is located at

the centre of the window. The distance travelled by the particles within the interrogation window is

determined using a two-dimensional spatial cross-correlation between subsequent images. A sample

of such a cross-correlation is shown using 32×32-pixel interrogation windows in Figure 3.5. The

associated correlation map features a distinct peak at ∆x1 = 8 pixels representing the shift in the

particles during ∆t. Indeed, the particles in the interrogation window can be seen to have shifted

in the horizontal (x1) direction by 8 pixels. The peak location therefore determines ∆xi for the

application of Equation 3.1.

The above describes the simplest form of the planar PIV correlation process. In reality, typical

PIV software will implement a more complex algorithm to improve the results. First, a multi-

pass cross-correlation can be utilized. The first pass of cross-correlations produces values of ∆xi

across the field of view (FOV). These values are then used to determine the starting point of

the interrogation windows within the second image for the next pass of cross-correlations. This

results in more common particles being captured between interrogation windows, thus improving

the correlation and allowing for the use of a smaller window to yield a measured velocity field

that is denser. Note that window overlap is also used to improve the density of the measured

velocity field. Second, the final pass can employ an interpolation when locating the peak in the
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Figure 3.4: Schematic representation of the planar PIV process where ∆t = t2− t1. Adapted from
Gibeau (2018) with permission.

correlation map. This provides sub-pixel accuracy for ∆xi and therefore also provides improved

accuracy for Ui. Third, a weighting function can be applied to the interrogation windows to bias

the correlation in some way that makes sense. For example, applying a Gaussian weighting will bias

the correlation towards the centre of the window, which is where the final vector will be located in

space. Finally, the interrogation windows can be deformed to account for local shear in the velocity

field. This requires using information from a previous pass and therefore is only available when

using multi-pass algorithms. Each of the algorithmic improvements discussed above are used when

PIV is applied in the present work.

Planar PIV provides access to the two velocity components that are within the imaging plane of

interest. However, it is sometimes necessary to have access to the out-of-plane component as is the

case in the experimental campaigns documented in this thesis. This can be achieved by applying

stereoscopic PIV, which makes use of two cameras placed at angles with respect to the imaging

plane. This allows each camera to capture part of the out-of-plane velocity component, but also

introduces additional complexities into the experimental setup. First, focusing the camera becomes

more difficult because the camera sensor will no longer be oriented normal to the imaging plane.

This is typically remedied by utilizing the Scheimpflug lens condition (Prasad and Jensen, 1995)

along with a smaller aperture size, although the latter can also introduce issues with image intensity.

Second, the relationship between the image and physical space is no longer described using a simple
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Figure 3.5: Sample correlation using 32×32-pixel interrogation windows: (a) the interrogation
window at t1, (b) the interrogation window at t2, and (c) the resulting cross-correlation map.
Adapted from Gibeau (2018) with permission.

calibration factor as is the case for planar PIV. Instead, it is now necessary to conduct a three-

dimensional calibration to map the images to the plane of interest. This is achieved in the present

work using a three-dimensional calibration target along with an additional disparity-correction step

that is known as self-calibration (Wieneke, 2005). The two-dimensional cross-correlation technique

described earlier is applied to the images from each camera after these images have been projected

onto the plane of interest. The three desired velocity components are then obtained by applying a

least-squares technique to the vectors obtained from both cameras.

3.2.3 Equipment and Software

The same PIV system, which is depicted in Figure 3.6, was used for all experiments conducted

for the present thesis. A dual-cavity, high-speed Nd:YLF laser (Photonics Industries DM20-527-

DH) was used to provide illumination. Each cavity of the laser is capable of producing light at a

wavelength of 527 nm and at frequencies of up to 10 kHz. At 1 kHz, the maximum output of each

cavity is 20 mJ per pulse and each pulse has a width of 170 ns. Imaging was carried out using up to

four high-speed cameras (Phantom v611). Each camera features a 1280×800-pixel complementary

metal oxide semiconductor sensor with a 20 µm×20 µm pixel size and 12-bit resolution. The laser

and cameras were controlled using a timing unit (LaVision PTU X) which was programmed using

DaVis 8.4 software installed on a host computer. The same software was used for processing the

images collected during experiments. The resulting velocity measurements were then transferred to

MATLAB for analysis. Finally, a fog machine (American DJ Fog Fury 3000) was used to generate
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Figure 3.6: Block diagram showing the PIV system, real-time system, and their interconnections.

∼1-µm glycol-water droplets as tracer particles for all experiments.

3.3 Real-Time System

The experiments conducted for the present thesis required generating and acquiring voltage signals

for the purpose of interacting with hardware components other than those used for PIV. This was

accomplished using a real-time system as described next.

3.3.1 Simulink Real-Time and Target Machine

Simulink is a MATLAB-based graphical programming language that can be used for system mod-

elling, simulation, and analysis. Simulink Real-Time allows for the compilation of these models into

real-time applications that accommodate input and output signals for the purpose of interacting

with external hardware. The applications are programmed using Simulink on a host computer
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and then run on a target machine that interfaces with various inputs and outputs as depicted in

Figure 3.6. A Speedgoat target machine (Performance model) equipped with a 16-bit input/output

module (IO135) was used to run Simulink Real-Time applications in the present work. The con-

figuration featured an Intel Core i3-6100 processor, a 120-GB SSD, 4096 MB of RAM, and could

accommodate 32 and 16 analog inputs and outputs, respectively, at up to 200 kSPS and ±10 V.

3.3.2 Data Synchronization

The PIV and real-time systems were used simultaneously to acquire various data from experiments.

However, these systems were operated by two different host computers. A process was therefore

developed to synchronize the two data streams for later analysis. This involved using the real-time

system to record the trigger signals for the PIV laser and one camera as depicted in Figure 3.6.

An annotated sample of these signals is shown in Figure 3.7, revealing a train of double peaks

separated by ∆t (Equation (3.1)). These peaks correspond to the trigger signals of the first and

second laser cavities and they can be seen to exist before the camera trigger occurs. This is because

the laser fires for a short time before the camera begins recording images. The first set of laser

pulses after the camera trigger corresponds to the first vector field recorded by the PIV camera.

As a result, the time of the first PIV measurement can be taken to be the halfway point between

these two pulses as is shown in Figure 3.7. The synchronized data from the real-time system is

then extracted at the PIV sampling frequency beginning with this initial point.

Camera trigger Time of first vector field

Δt

1st laser trigger 2nd laser trigger

Figure 3.7: Annotated time series recorded by the real-time system showing the PIV laser and
camera trigger signals and how they were used to synchronize the real-time data stream with the
PIV vector fields.
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Part II

Sensing

45



Chapter 4

Development of the Pressure
Measurement System

This chapter details the development of the pressure measurement system used to identify the

relationship between wall-pressure and the VLSMs within a TBL. The following are covered: the

measurement requirements, sensor selection, component design, algorithm design, and testing of

the system.

4.1 Measurement Requirements

There are several requirements that the measurement system must adhere to. First, the system

must allow for measuring the wall-pressure fluctuations beneath the TBL without disrupting the

flow above the surface. Second, the system must be sensitive enough to capture the wall-pressure

fluctuations produced by the VLSMs, which may be quite weak as suggested by the work of Beresh

et al. (2013). Third, the system must be able to account for the background noise produced by

the experimental facility. And finally, the system must have a flat frequency response across the

frequency range of interest. The summary of Hwang et al. (2009) indicates that the low-frequency

range is defined as ωδ/Uτ ≲ 5, which corresponds to f ≲ 4 Hz in the present TBL. Ideally, the

system should be able to measure frequencies as low as 0.4 Hz to capture a full order of magnitude

of the low-frequency range. Similarly, the work of Tsuji et al. (2007) indicates that frequencies

beyond fν/U2
τ ≈ 0.25 have decayed several orders of magnitude with respect to the beginning of

the high-frequency range. This is a reasonable upper cutoff for the frequency range and corresponds

to f ≈ 3000 Hz in the present TBL. The ideal frequency range for the pressure measurement system

is therefore 0.4 Hz to 3 kHz.

4.2 Sensor Selection

The first necessary condition for capturing the frequency range of interest is acquiring a sensor that

has a flat frequency response across this range. Unfortunately, many sensors that are capable of

measuring very-low frequencies are not sensitive enough for use beneath a laboratory-scale TBL.
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For example, piezoresistive pressure sensors can measure down to 0 Hz (i.e., they can also capture

the static pressure) but typically have low sensitivity. To achieve both high sensitivity and an

adequate response at low frequencies, a 1/2-inch Brüel & Kjær infrasound microphone (model

4964) was selected for the present work. This microphone has a flat frequency response from

0.02 Hz to 20 kHz (±3 dB). However, it must be paired with the associated pre-amplifier (Brüel

& Kjær model 2669) which affects the measurable frequency range. More specifically, the −3 dB

point at the lower end of the frequency response for the combined measurement chain shifts to

0.7 Hz. This results in an attenuation of roughly −5 dB for the ideal low-frequency cutoff of

0.4 Hz, which means that pressure fluctuations at this frequency will be measured at roughly 56%

of their true value. This is sufficient for the purposes of the present work. The microphone also

has a dynamic range of 1.1 × 10−4 to 4.0 × 102 Pa and a nominal sensitivity of 50 mV/Pa.

The empirical relation of Farabee and Casarella (1991) shown in Equation (2.19) indicates that

the present TBL will produce prms ≈ 0.75 Pa, which is more than 6800 times larger than the

smallest measurable pressure fluctuation. This microphone is therefore sufficiently sensitive for the

purposes of the present work. Note that the true sensitivity values of the microphones used here

have been obtained in-house using a constant-frequency calibrator at 1 kHz (Brüel & Kjær 4231).

The uncertainty associated with this calibration is estimated in Appendix A.

4.3 Avoiding Spatial Filtering

The low-frequency response of the pressure measurement system is more-or-less guaranteed by

proper sensor selection. However, the high-frequency response can be attenuated by a spatial

filtering effect (Schewe, 1983; Lueptow, 1995; Gravante et al., 1998). This occurs when pressure-

producing motions in the TBL are smaller than the size of the pressure sensor, resulting in the

measured signal being the average of the signals from all small motions above the sensor. This type

of spatial filtering is avoided by placing the pressure sensor behind a pinhole with a sufficiently

small diameter. A thread-on pinhole attachment was machined from aluminum to replace the

protection grid of the microphone for this purpose. A schematic of the attachment is shown in

Figure 4.1. The known dimensions of the microphone and attachment as depicted in the figure are

Dm = 12.05 mm, dp = 0.49 mm, tp = 1.17 mm, and αp = 40◦. The value of hm is difficult to

determine because it depends on the height of the lip around the microphone diaphragm. This lip

sits flush against the attachment during use and therefore its height determines hm. However, the

lip cannot be measured without damaging the diaphragm. A reasonable estimate is hm ≈ 0.5 mm.

The thread-on attachment has been specially designed for the TBL produced for this thesis.

First, the pinhole is at an angle to ensure that laser light from the PIV measurements does not

pass through the pinhole and heat the diaphragm of the microphone. The present results show no

indication that using an angled pinhole has affected the measurements in any way. Second, the

pinhole dimensions have been chosen to minimize measurement errors. Past work suggests that the

length of the pinhole ℓp (= tp/sin(αp) here) must be at least twice its diameter dp (Shaw, 1960).

Furthermore, the maximum allowable pinhole diameter to avoid spatial filtering is somewhere in
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Figure 4.1: Schematic of the thread-on pinhole attachment for the microphone.

the range 12 < dp/λ < 18 (Gravante et al., 1998). The present thread-on attachment satisfies these

requirements with ℓp/dp = 3.7 and dp/λ = 13.4. Finally, the attachment features external threads

so that it can be mounted to the floor of the wind tunnel test section. The attachment is threaded

until it is flush with the top surface of the floor and then is locked in place using a second threaded

piece. Any remaining gaps between the attachment and floor are filled and sanded to ensure a flat,

smooth surface for the TBL. The actual thread-on pinhole attachment used in this work is shown

in Figure 4.2.

4.4 Correction of Helmholtz Resonance

The thread-on pinhole attachment is necessary for avoiding spatial filtering of the wall-pressure

signal. However, the pinhole and cavity beneath it act as a Helmholtz resonator which has the

potential to distort the frequency response of the pressure signal measured by the microphone.

More specifically, the frequencies near the Helmholtz resonant frequency f∗ will be amplified and

phase-shifted while the frequencies well beyond f∗ will be attenuated and phase-shifted. The

theoretical resonant frequency of a typical Helmholtz resonator is

f∗ =
Us

2π

√︄
Ap

Vcℓp
, (4.1)
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(a)

(b)

(c)

Figure 4.2: Photographs of the (a) top, (b) side, and (c) bottom of the thread-on pinhole attach-
ment with the microphone cartridge installed (no pre-amplifier).
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where Us is the speed of sound, Ap is the cross-sectional area of the pinhole, and Vc is the volume

of the cavity beneath the pinhole. Using the dimensions associated with Figure 4.1, Equation (4.1)

produces f∗ = 2340 Hz. This value falls within the frequency range that is relevant to the present

TBL and so the Helmholtz resonance must be accounted for in the wall-pressure signal.

A typical Helmholtz resonator can be modelled using a second-order transfer function for a

linear, time-invariant system (Tsuji et al., 2007), which has a frequency response G(f) defined by

|G(f)| =

⎡⎣(︄1− (︃ f

f∗

)︃2
)︄2

+

(︃
2ξf

f∗

)︃2
⎤⎦−1/2

, (4.2a)

∠G(f) = − tan−1

[︃
2ξ(f/f∗)

1− (f/f∗)2

]︃
, (4.2b)

where ξ is the damping ratio of the resonator. Given that the pinhole system can be modelled as

linear and time-invariant, the true input pressure p0(t) and the vector of pressure measurements

sampled behind the pinhole pp(t) are related through a convolution with the impulse response of

the system as

pp(t) = g(t) ∗ p0(t), (4.3)

where the impulse response g(t) and the frequency response G(f) are related through the discrete

Fourier transform as G(f) = F{g(t)}. If G(f) and pp(t) are known and G(f) is not zero anywhere,

then p0(t) can be obtained by employing the convolution theorem for Fourier transforms:

p0(t) = F−1

{︃
F{pp(t)}
G(f)

}︃
. (4.4)

The parameters of G(f) must be determined and the function must be sampled and arranged into

a two-sided spectrum with the same frequency bins as F{pp(t)} prior to utilizing Equation (4.4).

The parameters of Equation (4.2) have been determined for the present pinhole system using a

dynamic calibration against a second identical microphone which will be referred to as the reference.

A quasi-anechoic chamber that is similar to the one used by Naka (2009) has been constructed for

this purpose and is shown in Figure 4.3. The pinhole and reference microphones were placed parallel

to each other facing a loudspeaker within the chamber as is shown in the figure. Sound waves

with frequencies ranging from 1 Hz to 5 kHz were generated and recorded by both microphones

simultaneously. The Fourier coefficients of the recorded signals were used to estimate the amplitude

and phase response of the pinhole resonator which were then used to fit G(f), resulting in f∗ =

2200 Hz and ξ = 0.29. This resonant frequency agrees reasonably well with the theoretical value of

2340 Hz. The measured response and the fit model are shown in Figure 4.4. The plot reveals that

the model captures the response of the pinhole well, but the phase response slightly deviates from

that of the model for frequencies beyond f ≈ 2000 Hz, and the amplitude response deviates for
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(a)

(b) (c)

Figure 4.3: Photographs of (a) the quasi-anechoic chamber, (b) the externally supported loud-
speaker, and (c) the externally supported microphones. The microphone on the right in (c) is the
reference and the microphone on the left is fitted with the attachment that is to be calibrated.
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Figure 4.4: Measured frequency response of the pinhole resonator compared to the second-order
model given by Equation (4.2).

frequencies beyond f ≈ 3000 Hz. Moreover, both responses show some differences at f ≈ 1500 Hz.

These discrepancies may be attributable to the geometry of the current pinhole and microphone

cavity, as they do not exactly match the standard Helmholtz resonator. Similar differences between

the measured response and the second-order system were also reported by Tsuji et al. (2007). As

will be discussed shortly, these discrepancies do not significantly affect the signal correction.

The frequency response shown in Figure 4.4 reveals that high frequencies are significantly atten-

uated by the Helmholtz resonator. Since a signal correction using Equation (4.4) requires dividing

by the frequency response, the correction process has the potential to amplify noise at high fre-

quencies beyond those relevant to the present TBL. This is undesirable, and so a lowpass filter

must be applied after the correction. The cutoff frequency of this filter was selected to be 3 kHz

to match the upper cutoff of the frequency range of interest. This filter has been applied such that

the group delay is compensated for, i.e., there is no time delay introduced by the filtering process.

Note that this sort of delay-compensated filter is only possible in post-processing and therefore

cannot be implemented in real time.

The Helmholtz correction has been tested in the quasi-anechoic chamber using a white noise

signal containing frequencies up to 3 kHz. The pinhole signal, before and after correction, is

compared to the reference signal in Figure 4.5, and it is evident that the reference and corrected

signals match quite well. The correlation coefficient between the two signals is 0.97, in contrast

to 0.58 prior to correction. It is therefore evident that the corrected pinhole measurements can
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Figure 4.5: Sample signal of white noise containing frequencies up to 3 kHz: (a) the pinhole
microphone signal pp(t) compared to the reference microphone signal pr(t) and (b) the Helmholtz-
corrected signal p0(t) compared to pr(t).

reliably capture pressure fluctuations up to 3 kHz, which is sufficient to capture the relevant pressure

fluctuations in the present TBL. The MATLAB code used to implement the Helmholtz resonance

correction is provided in Appendix B.

4.5 Background Noise Removal

Finally, the background noise of the wind tunnel must be removed from the wall-pressure measure-

ments. This has been achieved using a Wiener noise cancelling filter as outlined by Hayes (1996),

which requires a simultaneous measurement of the noise field along with the wall pressure. This

has been accomplished using the second microphone supported in the freestream and fitted with a

nose cone. The support structure for this microphone consists of two pieces: one 3D-printed and

one machined from aluminum. The overall design goal of the structure was to permit measurement

of the background noise without disturbing the flow. A photograph of the structure being used to

support the second microphone in the freestream of the wind tunnel is shown in Figure 4.6.

The Wiener noise cancelling filter is posed as an estimation problem of the form

p0(t) = p(t) + pb(t), (4.5)

where, in the present case, p0(t) is the Helmholtz-corrected signal measured through the pinhole,
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Figure 4.6: Annotated photograph of the freestream microphone support installed in the test
section of the wind tunnel.

p(t) is the true wall pressure, and pb(t) is the background noise. The filter provides an estimate for

pb(t) so that it can be subtracted from p0(t) to obtain an estimate for the true wall pressure

p̂(t) = p0(t)− p̂b(t). (4.6)

The ‘hat’ notation used here denotes an estimate. It is important to note that simply subtracting

the measurement of the noise field does not fully remove the background noise from the wall-pressure

signal. This can be due to many reasons, for example slight differences between the microphones,

different propagation paths between the noise sources and microphones, or leakage of the boundary

layer fluctuations into the noise field signal. For this reason, the background noise pb(t) and the

noise field signal pn(t) are distinguished. The latter is the signal recorded by the microphone in

the freestream.

The Wiener filter is applied as a digital filter whose coefficients c, which represent the impulse

response of the filtering system, are obtained by solving the following set of Wiener-Hopf equations:

Rpnc = rpnp0 . (4.7)

Here, Rpn is a Toeplitz matrix containing the autocorrelations of pn(t) and rpnp0 is a vector con-

taining the cross-correlations between pn(t) and p0(t). The compact notation of Equation (4.7) can
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be expanded to better see the contents:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rpn(0) rpn(1) . . . rpn(m− 1)

rpn(1) rpn(0) . . . rpn(m− 2)

rpn(2) rpn(1) . . . rpn(m− 3)
...

...
...

rpn(m− 1) rpn(m− 2) . . . rpn(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(0)

c(1)

c(2)
...

c(m− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rpnp0(0)

rpnp0(1)

rpnp0(2)
...

rpnp0(m− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.8)

Note that m is the selected filter order. As is evident in Equation (4.8), the filter coefficients

can be obtained using only the noise field signal pn(t) and the Helmholtz-corrected pinhole signal

p0(t). The estimated background noise p̂b(t) is then obtained through a convolution of the filter

coefficients with the noise field signal

p̂b(t) = c ∗ pn(t). (4.9)

The background noise can then be subtracted following Equation (4.6) to obtain the estimated

true wall-pressure signal. The Wiener noise cancelling filter has been implemented in the present

investigation using a filter order of m = 16000. The order of this filter was selected by iterating

until the power spectrum converged. Figure 4.7 shows the power spectral density (PSD) of wall

pressure before and after the estimated background noise has been subtracted. It is shown later

in Chapter 5 that the spectrum obtained after subtracting the estimated background noise (black

line) agrees well with the literature.

It is evident in Figure 4.7 that the majority of the background noise in the present wind tunnel

occurs at the lower frequencies as is expected. This highlights the importance of accounting for

the background noise when investigating a low-frequency phenomenon such as the VLSMs. The

PSD obtained after directly subtracting the noise field signal from the wall-pressure signal is also

shown. The background noise is not fully removed in this case, thus justifying the use of the Wiener

filtering technique. The MATLAB code used to estimate the background noise using the Wiener

filter is provided in Appendix B.
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Figure 4.7: PSD of wall pressure Φp(f) without background noise treatment (p0(t)), after sub-
tracting the noise field signal (p0(t) − pn(t)), and after subtracting the background noise estimated
using the Wiener filter (p0(t) − p̂b(t)).
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Chapter 5

Low-Frequency Wall-Pressure Sources
in a Turbulent Boundary Layer

Following the discussion in Section 2.3.3, it is apparent that there are several open questions re-

garding the coupling between wall pressure and the largest motions in a TBL. First, there is some

evidence that the VLSMs do in fact influence wall pressure in some way as is indicated by the elon-

gated features observed in the wall-pressure footprints of Beresh et al. (2013) and the space-time

pressure-velocity correlations of Buchmann et al. (2016) and Naka et al. (2015). However, a clear

connection between wall pressure and the VLSMs has not yet been made and a mechanism govern-

ing the coupling has not been observed or proposed. Second, the large-scale motions associated with

wall pressure by Naka et al. (2015) seem to be manifestations of the averaging process of the corre-

lations because it is not straightforward to associate them with any of the instantaneous coherent

motions commonly observed in TBLs. Further investigation is therefore needed to determine why

the space-time pressure-velocity correlations appear as they do. Finally, the frequency information

associated with the large-scale pressure-velocity coupling has been neglected in past investigations.

That is, it is not known whether any features of the wall-pressure power spectrum can be attributed

to hairpin packets or VLSMs or which frequency ranges that these motions affect. Each of these

issues are examined in this chapter using simultaneous wall-pressure and high-speed PIV measure-

ments in a TBL at Reτ = 2600. We begin by comparing the pressure and velocity statistics with

those of past investigations to ensure our measurements are reliable. This includes a comparison

of wall-pressure statistics, velocity statistics, and space-time pressure-velocity correlations. The

normalized cross-spectra between wall pressure and velocity at a range of wall-normal locations are

then investigated in the form of the magnitude-squared coherence function. Two distinct frequency

bands of high coherence are found to occupy the low-frequency, mid-frequency, and overlap regions

of the wall-pressure spectrum. Filters are used to isolate the wall-pressure fluctuations associated

with each band, and the space-time pressure-velocity correlations are recomputed using the filtered

wall-pressure signals to isolate the motions associated with each band of high coherence. We find

that this analysis decomposes the correlations into simpler, more interpretable parts which can

easily be associated with known coherent motions.
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5.1 Experimental Setup

5.1.1 Turbulent Boundary Layer Configuration

The floor of the wind tunnel was used to generate the TBL as discussed in Section 3.1.2, resulting

in the boundary layer parameters displayed in Table 5.1. A section of the floor at centre span was

replaced by a flush-mounted acrylic plate with dimensions of 1.2 m × 0.6 m (streamwise-spanwise).

The plate was modified to accommodate the pressure measurement system discussed in Chapter 4.

This configuration placed the wall-pressure measurement location (x, y, z) = (0, 0, 0) roughly 7.75 m

downstream from the boundary layer tripping device while the freestream microphone was located

at (x, y, z) = (0, 2.1δ,−5.4δ) as depicted in Figure 5.1.

5.1.2 Wall-Pressure Measurements

The real-time system described in Section 3.3 was used to collect the signals from the pressure

measurement system during experiments. A total of 10 minutes of microphone-only measurements

were recorded for determining the single-point wall-pressure statistics. The remainder of the wall-

pressure measurements were synchronized with PIV measurements using the procedure described

in Section 3.3.2. The acquisition frequency of the real-time system was 20 kHz in all cases.

5.1.3 Particle Image Velocimetry

The PIV system described in Section 3.2.3 was used to conduct three separate PIV experiments for

the purpose of capturing the velocity field of the TBL. The FOVs associated with each experiment

are shown schematically in Figure 5.1 where each FOV is numbered accordingly. All collected

images were pre-processed in the same way. First, the minimum of each ensemble was subtracted

to reduce the background noise. Second, the images were divided by the background-subtracted

ensemble average to normalize the intensity counts.

The FOV denoted as FOV1 in Figure 5.1 was used to capture the flow field from the wall

to beyond the height of the TBL for determining δ, δ∗, θ, and U∞. These measurements were

therefore not synchronized with wall pressure. A 1-mm-thick laser sheet, formed within FOV1

using a combination of spherical and cylindrical lenses, was used to illuminate the tracer particles.

A single camera and a 200-mm lens with an aperture setting of fo/5.6 resulted in a cropped FOV

of (∆x,∆y) = 47 mm × 140 mm with a resolution of 109.6 µm/pixel. A total of 10000 double-

frame images were collected over four sets at an acquisition rate of 25 Hz, corresponding to a

total sampling time of 5.0×104δ/U∞. Following preprocessing, the images were processed using

a multi-pass cross-correlation algorithm. The final pass employed 32×32-pixel Gaussian-weighted

interrogation windows with 75% overlap.

The FOV denoted as FOV2 in Figure 5.1 was used to capture the coupling between wall pressure

and velocity throughout the logarithmic and lower-wake layers of the TBL. These measurements

were therefore recorded simultaneously with the wall-pressure fluctuations. The same laser sheet

from FOV1 was utilized here. A single camera and a 300-mm lens with an aperture setting of
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Reynolds numbers
Reτ 2600

Reθ 6000

Freestream velocity U∞ 11.8 (m/s)

Boundary layer thickness δ 93.8×10−3 (m)

Displacement thickness δ∗ 11.5×10−3 (m)

Momentum thickness θ 8.6×10−3 (m)

Friction velocity Uτ 0.46 (m/s)

Viscous lengthscale λ 36.5×10−6 (m)

Shape factor H 1.34

Kinematic viscosity ν 1.7×10−5 (m2/s)

Density ρ 1.1 (kg/m3)

Table 5.1: Boundary layer parameters at the pressure measurement location and fluid properties.
The viscous lengthscale was determined by fitting the mean velocity profile to the logarithmic law
of the wall with κ = 0.41 and C = 5.0.

fo/8 resulted in a cropped FOV of (∆x,∆y) = 9 mm × 82 mm with a resolution of 64.4 µm/pixel.

The FOV was cropped to be narrow to allow for longer sequences of images to be collected, as

the high-speed camera memory is limited and longer sequences are required for convergence of

the pressure-velocity cross-statistics. A total of 120000 double-frame images were collected over

eight sets at an acquisition rate of 1 kHz, corresponding to a total sampling time of 1.5×104δ/U∞.

The 1 kHz acquisition rate is sufficient for computing the cross-spectra between wall pressure and

velocity while resolving the frequencies of the low-frequency, mid-frequency, and overlap regions

of the wall-pressure power spectrum associated with the present TBL as will be shown later in

Section 5.2.1. The PIV images were processed as described above for FOV1.

Stereoscopic PIV was conducted in the FOV denoted as FOV3 in Figure 5.1. The wall-pressure

fluctuations were again recorded simultaneously. Two cameras each with a Scheimpflug adapter

and a 300-mm lens with an aperture setting of fo/11 were used. A 2-mm-thick laser sheet was

formed within FOV3 using a spherical lens and a collimator. A thicker laser sheet was used here

to improve the correlation between double-frame images, as the freestream flow direction is normal

to FOV3. Both cameras were placed in a forward-scattering orientation with respect to the laser

sheet with 90◦ between their lines of sight. The cameras were calibrated using a two-step process

which included a 3D target calibration followed by a self-calibration using a small set of particle

images (Wieneke, 2005). This resulted in a FOV of (∆y, ∆z) = 94 mm × 188 mm with an effective

resolution of 102.8 µm/pixel. Note that the usable wall-normal (∆y) portion of the FOV is roughly

47 mm due to the height of the laser sheet, which was reduced to retain laser power and obtain a

sufficient intensity count in the images. A total of 21600 double-frame images were collected over
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Figure 5.1: Schematic of the experimental setup. The axes origin is located at the microphone
pinhole and is offset here to not interfere with the FOVs.
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eight sets at an acquisition rate of 1 kHz, corresponding to a total sampling time of 2.7×103δ/U∞.

A multi-pass stereoscopic cross-correlation algorithm was applied to the double-frame images using

48 × 48-pixel Gaussian-weighted interrogation windows with 75% overlap for the final pass.

5.2 Previously-Established Statistics

It is important to verify that the present wall-pressure and velocity measurements are reliable

before moving forward with the primary analyses in Section 5.3. This is accomplished here by

comparing the measurement statistics with those that have been previously established in the

literature. Specifically, we will look at single-point velocity statistics (the mean profile, Reynolds

stresses, and power spectra), single-point wall-pressure statistics (the power spectrum, probability

density, and root-mean-square value), and space-time pressure-velocity correlations.

5.2.1 Single-Point Wall-Pressure and Velocity Statistics

The mean velocity profile and Reynolds stresses, evaluated using each of the three PIV measure-

ments conducted in the present experimental campaign, are displayed on semi-logarithmic axes in

Figure 5.2. The mean velocity profiles in Figure 5.2(a) are compared to the logarithmic law of the

wall with κ = 0.41 and C = 5.0. The profiles from the three PIV measurements agree well with

one another and with the logarithmic law up to approximately y/λ = 400. It is also evident that

the viscous sublayer (y/λ ≲ 5) and buffer layer (5 ≲ y/λ ≲ 30) are not captured by the present

measurements. This is not an issue for the investigation because the measurements have been

optimized to capture the largest motions that occupy the logarithmic and wake layers of the TBL.

The Reynolds stresses (excluding the spanwise velocity component) from all three experiments are

shown in Figure 5.2(b). The streamwise normal component from the hotwire measurements of

Hutchins and Marusic (2007a) at Reτ = 2630 is also included for comparison. It can be seen in

the figure that the present measurements conducted using planar PIV (FOV1 and FOV2) agree

well with one another, and ⟨u2⟩/U2
τ agrees well with the measurements of Hutchins and Marusic

(2007a). In contrast, some deviation is observed for the stereoscopic PIV measurements (FOV3).

This is attributed to the added uncertainties associated with stereoscopic calibration, particularly

with respect to the out-of-plane component (streamwise in this case). Despite this, Figure 5.2(b)

reveals that the Reynolds stresses calculated from stereoscopic PIV agree reasonably well with those

calculated from planar PIV. However, to remain conservative, the use of the present stereoscopic

PIV measurements will be used primarily for qualitative analyses.

The PSD of streamwise velocity fluctuation as a function of wavenumber (Φu(kx); kx = 2πf/⟨U⟩)
has been computed using both sets of high-speed PIV data (FOV2 and FOV3) and is displayed in

Figure 5.3 for two wall-normal locations within the logarithmic layer. The spectra have been nor-

malized such that they can be easily compared to the work of Balakumar and Adrian (2007), who

consolidated the spectra from several investigations of various wall-bounded flows with Reynolds

numbers similar to that of the present TBL. The spectra of Figure 5.3 show excellent agreement

with those shown in Balakumar and Adrian (2007), including the collapse of the curves in the k−1
x

61



Figure 5.2: Velocity statistics at the pressure measurement location (x = z = 0) from the three
PIV experiments: (a) mean velocity profiles and (b) Reynolds stresses. H & M (2007) refers to the
hotwire measurements of Hutchins and Marusic (2007a) at Reτ = 2630.

region (roughly k−1.04
x here). We also see good agreement between the spectra from the planar

(FOV2) and stereo (FOV3) data when they are compared at the same wall-normal location. Note

that the increase in spectral densities at higher wavenumbers is associated with PIV noise. As we

will see later, these higher wavenumbers (frequencies) are not important to the conclusions of the

present chapter.

The PSD of wall pressure (Φp(ω)) is displayed in Figure 5.4 using both inner- and outer-layer

normalizations. The frequencies displayed range from 0.7 Hz to 3 kHz, which is the reliable range

of measurable frequencies as discussed in Chapter 4. The divisions between the low-frequency,

mid-frequency, overlap, and high-frequency regions of the spectrum as defined by Hwang et al.

(2009) are included for reference, revealing that the present wall-pressure measurements capture

the frequencies associated with all four regions. The upper frequency captured by the PIV mea-

surements as dictated by the Nyquist criterion (≤ 500 Hz) is also displayed, indicating that the

PIV measurements resolve the frequencies of the low- and mid-frequency regions and nearly all of

the overlap region. The low- and mid-frequency regions collapse over a range of Reynolds numbers

when they are nondimensionalized using outer-layer variables (Farabee and Casarella, 1991; Tsuji

et al., 2007; Klewicki et al., 2008), suggesting that these frequencies are caused by the motions of

the outer layer. Since both the PIV and wall-pressure measurements capture the entirety of these

regions, the synchronized measurements should resolve the large-scale pressure-velocity coupling

relevant to this investigation.

The spectrum displayed in Figure 5.4 features the characteristics expected for the wall pressure
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Figure 5.3: PSD of streamwise velocity fluctuation as a function of wavenumber (Φu(kx); kx =
2πf/⟨U⟩) computed from the high-speed PIV measurements of FOV2 and FOV3. Note that y/δ =
0.07 and 0.14 coincide with roughly y/λ = 180 and 360, respectively.

beneath a TBL (Hwang et al., 2009). More specifically, the spectrum climbs in magnitude as

frequency is increased until a peak is reached in the mid-frequency region. The spectrum then

declines in magnitude and passes through two ranges of constant proportionality, one in the overlap

region and one in the high-frequency region. The constant decay in the high-frequency region has

been observed to be roughly ω−5 to ω−6 (McGrath and Simpson, 1987; Goody, 2004; Palumbo, 2012;

Van Blitterswyk and Rocha, 2017). The presently observed decay of ω−5.60 shown in Figure 5.4 is

therefore in good agreement with the literature. The same can be said about the ω−0.65 decay in

the overlap region, which is typically observed to be around ω−0.7 (McGrath and Simpson, 1987;

Goody, 2004; Tsuji et al., 2007; Van Blitterswyk and Rocha, 2017). The behaviour of the low-

frequency region is not well established at the moment as was discussed in Section 2.3.3. As is

evident in Figure 5.4, the low-frequency region measured here grows with ω1.07 and therefore shows

the best agreement with the work of Panton and Linebarger (1974).

The root-mean-square wall pressure was calculated by integrating the PSD plotted in Figure 5.4

followed by taking the square root. The inner-normalized value is prms/ρU
2
τ = 3.16, which

represents an error of only 1.7% when compared with the empirical relation derived by Farabee

and Casarella (1991) (see Equation (2.19)). The present wall-pressure fluctuations have a skewness

of 0.056 and a flatness of 4.39, which agree with the values reported by Schewe (1983), Tsuji et al.
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Figure 5.4: PSD of wall pressure (Φp(ω)) normalized using both inner- and outer-layer variables.
The divisions between the four regions of the spectrum are set as defined by Hwang et al. (2009).
The upper frequency resolved by PIV is dictated by the Nyquist criterion.

(2007), and Naka et al. (2015). The probability density of the present wall-pressure measurements

normalized by prms is plotted on linear and semi-logarithmic axes in Figures 5.5(a,b), respectively.

Here, the dashed line is a Gaussian fit to the data for comparison. The approximate envelope of

values reported by Tsuji et al. (2007) for 5870 ≤ Reθ ≤ 16700 (Figure 2.10) is also shown on the

semi-logarithmic axes in Figure 5.5(b) using a grey outline. Since the extreme tails of the probability

density functions in Tsuji et al. (2007) exhibit large amounts of scatter, the envelope depicts the

range of values that we expect the functions to fall within. When looking at the probability density

on linear axes in Figure 5.5(a), we can see that the measured density clearly deviates from the

Gaussian fit at the peak and for densities ranging from roughly 0.05 to 0.2. This same deviation

is visible in the results of Schewe (1983) and Tsuji et al. (2007). An even larger deviation from

Gaussian behaviour is visible when looking at the semi-logarithmic axes in Figure 5.5(b). This

deviation occurs at the extreme tails of the distribution and is indicative of the HAPPs in wall-

pressure fluctuation that have been studied in the past (Johansson et al., 1987; Karangelen et al.,

1993; Kim et al., 2002; Ghaemi and Scarano, 2013). As is evident in the figure, the tails of the
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Figure 5.5: Measured probability density of wall-pressure fluctuations compared to a Gaussian fit
of the same data; shown on (a) linear and (b) semi-logarithmic axes. The grey outline in (b) is the
approximate envelope of values reported by Tsuji et al. (2007) for 5870 ≤ Reθ ≤ 16700.

present probability density function fall within the approximate envelope of values from Tsuji et al.

(2007).

5.2.2 Space-Time Pressure-Velocity Correlations

We now employ space-time pressure-velocity correlations along with Taylor’s hypothesis to inves-

tigate the spatial correlation between wall pressure and velocity throughout the TBL. This is done

to compare the present pressure-velocity coupling with the results of Buchmann et al. (2016) and

Naka et al. (2015) and to establish baselines for later comparison within the present study. Note

that Dennis and Nickels (2008) evaluated the accuracy of using Taylor’s hypothesis to construct

spatial fields in a TBL and showed that the majority of the large-scale errors occur for extrapo-

lations beyond roughly ±3.5δ from the measurement location. As we will see, the main features

of all correlations computed in this investigation fall within this range and therefore we can apply

Taylor’s hypothesis here.

We define the space-time pressure-velocity correlation as

Rpui(∆t, y, z) =
1

ρU3
∞
⟨p(t)ui(t− ∆t, 0, y, z)⟩, (5.1)

where the correlations have been normalized using ρU3
∞ to remain consistent with Naka et al.

(2015). The correlations have also been computed using only p > 0 and p < 0 to isolate the
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motions associated with positive and negative wall-pressure fluctuations. We denote these two

conditional cases as R+
pui

= Rpui |p>0 and R−
pui

= Rpui |p<0.

Equation (5.1) was applied separately to the PIV snapshots from FOV2 and FOV3 and then

Taylor’s hypothesis was used to transform ∆t into streamwise distance using the local advection

velocity Uc. Here we set Uc as the mean streamwise velocity at the corresponding wall-normal

location, as the mean has been shown to closely match the advection velocity for y > 0.05δ (Lee

and Sung, 2011). This technique was employed to avoid the nonphysical streamwise stretching and

compression of the correlations that can occur when a single advection velocity is chosen for use

with Taylor’s hypothesis. Since each wall-normal location is associated with a different Uc, the

streamwise extent of the correlation at each y is different. Interpolation has therefore been used

to form a common ∆tUc grid for plotting. On this grid, ∆tUc < 0 represents upstream from the

pressure measurement location, while ∆tUc > 0 represents downstream. Finally, the symmetry

(and antisymmetry) of these correlations about the z = 0 plane was exploited to improve the

convergence of the results computed using the stereoscopic PIV measurements of FOV3. This was

accomplished by flipping each component of the correlation about z = 0, adding it to the original

(or subtracting in the case of antisymmetry), and then dividing the result by 2. The outcome of

this procedure is that the results appear perfectly symmetric (or antisymmetric) about z = 0 with

the benefit of reduced noise.

Plots of Rpui , R
+
pui

, and R−
pui

in streamwise–wall-normal planes are given in Figure 5.6. The

streamwise and wall-normal components of the correlations are plotted at z = 0, while the spanwise

component is at z/δ = 0.2 to match the plane location plotted by Naka et al. (2015). Note that this

plane must be offset in the spanwise direction because Rpw is antisymmetric about the z = 0 plane

and is therefore zero within it. In general, the shapes, sizes, and magnitudes of the correlations

are in good agreement with those of Buchmann et al. (2016) and Naka et al. (2015), with a few

exceptions that will be detailed shortly.

The contours of Rpu in Figure 5.6(a) reveal that p is positively correlated with u directly

above the pressure measurement location throughout nearly the whole boundary layer thickness

and extending upstream to ∆tUc/δ ≈ −3. Two regions of weaker negative correlation between p

and u extend downstream. The first region begins just past the pressure measurement location and

extends at an angle from the wall to reach ∆tUc/δ ≈ 2.3 and y/δ ≈ 0.7. The second region sits close

to the wall and reaches to ∆tUc/δ ≈ 8 (not entirely shown to keep the figure manageable). These

same features are visible in the correlations of both Buchmann et al. (2016) and Naka et al. (2015),

although there are some differences in the sizes of the features between all three studies. The results

of Naka et al. (2015) suggest that these size differences could be Reynolds number effects. When

we consider R+
pu, the region of positive correlation and the second region of negative correlation

both become larger and more intense, while the first region of negative correlation disappears. The

intensified region of positive correlation now extends across the range −4 ≲ ∆tUc/δ ≲ 1, making

its total streamwise extent ∼5δ. In contrast, the intensified region of negative correlation extends

to roughly ∆tUc/δ ≈ 8.5. The contours of R−
pu show the opposite change to what was observed
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Figure 5.6: Space-time pressure-velocity correlations (Rpui) as defined by Equation (5.1) calculated
using the (a) streamwise, (b) wall-normal, and (c) spanwise velocity components. The superscripts
‘+’ and ‘−’ denote correlations computed using only p > 0 or p < 0, respectively. The streamwise–
wall-normal planes in (a) and (b) are located at z = 0, while those in (c) are located at z = 0.2δ.
The plots in (c) do not cover as much of the wall-normal distance due to the limitations of FOV3.
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for R+
pu; the first region of negative correlation has grown larger and more intense while the other

two regions have become smaller and weaker. A second region of weak positive correlation has

also emerged within the correlations, this time extending downstream at an angle from the wall to

∆tUc/δ ≈ 5.

Figure 5.6(b) reveals that the contours of Rpv are nearly antisymmetric about ∆tUc = 0. The

upstream region shows a negative correlation between p and v, while the downstream region shows

a positive correlation which is slightly weaker than the former but comparable in size. The contours

extend to ∆tUc/δ ≈ ±1.5 and appear to reach the full height of the boundary layer. The same

correlation in Naka et al. (2015) shows more differences between the sizes of the two lobes of

correlation but are overall in good agreement with the present results. Comparison with Buchmann

et al. (2016) is not possible because only the streamwise component of the correlation was reported

in their study. When we consider R+
pv, the upstream region of correlation becomes more intense and

the downstream region less intense; the opposite is true for R−
pv. This too is observed in the results

of Naka et al. (2015). When Rpu and Rpv are considered together, it is evident that the motions

that are most highly correlated with wall pressure generally have u and v components of opposite

sign. This indicates that sweeps and ejections are an important feature of the pressure-velocity

coupling.

Finally, the contours of Rpw at z/δ = 0.2 are given in Figure 5.6(c). The contours indicate that

the spanwise motions associated with wall pressure occupy up to at least y/δ = 0.5. A region of

positive correlation between p and w sits above ∆tUc/δ = 0 and has a total streamwise extent

of ∼1.5δ. The region of positive correlation is attached and inclined to the wall and sits between

two weaker regions of negative correlation, both of which also have streamwise extents of ∼1.5δ.

The upstream region of negative correlation is away from the wall and extends horizontally across

the mid-region of the boundary layer. The downstream region of negative correlation is narrow,

inclined, and attached to the wall. When considering R+
pw, the region of positive correlation and

the upstream region of negative correlation both become stronger, while the downstream region

of negative correlation disappears. When considering R−
pw, the downstream region of negative

correlation becomes stronger, the region of positive correlation becomes smaller, and the upstream

region of negative correlation nearly disappears. These correlations are again consistent with the

results of Naka et al. (2015).

The regions of positive and negative correlation in Figure 5.6(c) feature spanwise motion in

opposite directions. When coupled with the wall-normal component of the correlations, it is evident

that these patterns are associated with quasi-streamwise rotational motions. For example, when

looking immediately downstream from the pressure measurement location, R−
pui

shows spanwise

motion towards z = 0 near the wall, upward motion around z = 0, and motion away from z = 0

farther from the wall to form a rotational pattern. The downstream interface between positive and

negative correlation in R−
pw is therefore related to the rotational axes of an inclined vortical motion

as is labelled in Figure 5.6(c). Similarly, the upstream interface between positive and negative

correlation in R+
pw is associated with a vortical motion that is more horizontal. Because of the
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symmetry of Rpv and antisymmetry of Rpw (about z = 0), these vortical motions exist as counter-

rotating pairs. This observation also supports the coupling between ejection/sweeping motions and

wall pressure, as these motions are often induced by quasi-streamwise vortices.

All components of R+
pui

and R−
pui

can be used to visualize the motions and vortical structures

associated with positive and negative wall-pressure fluctuations by forming vector fields from the

correlations. These visualizations are presented in Figure 5.7, where the background shows the

streamwise component of the correlations using the same colour scaling as Figure 5.6(a). Note

that the correlations for negative wall-pressure fluctuations have been multiplied by −1 so that

the vector directions represent the true flow direction in the visualization. Figures 5.7(a,d) show

the streamwise–wall-normal plane of the corresponding vector field at z = 0. These subfigures

are marked with vertical lines which represent the locations of spanwise–wall-normal planes that

are plotted directly below. The locations of these planes have been selected to show the most

important features of each field. The vector density has been decimated and the vector lengths in

the spanwise–wall-normal planes have been increased to improve the visualizations.

The visualization of R+
pui

shown in Figures 5.7(a–c) reveals that positive wall-pressure fluctua-

tions are associated with an elongated high-speed region with a relatively strong sweeping motion

at its leading edge. This sweep is flanked by large low-speed zones and counter-rotating streamwise

vortical motions, both of which can be seen in Figure 5.7(b); these vortical motions are nearly

horizontal as is evident in the correlation patterns of R+
pw shown in Figure 5.6(c). A first-quadrant

event, i.e., a motion with positive u and v, exists downstream from the large sweep as can be seen

in Figures 5.7(a,c). The visualization of −R−
pui

shown in Figures 5.7(d–f) indicates that negative

wall-pressure fluctuations are associated with a localized upstream ejection and an elongated down-

stream sweep. This particular sweep sits away from the wall over most of its length. Figure 5.7(e)

shows that the upstream ejection in not associated with counter-rotating vortex pairs, while Fig-

ure 5.7(f) shows that the downstream sweep is; these vortical motions are more strongly inclined

with respect to the wall as is indicated in the patterns of R−
pw shown in Figure 5.6(c).

The motions visualized in Figure 5.7 are consistent with those discussed by Naka et al. (2015).

However, they are not a satisfying description of the large-scale pressure-velocity coupling because

it is difficult to find clear patterns of hairpin packets or VLSMs by inspection of these visualiza-

tions. This is because the correlations represent a superposition of many coherent structures of

varying types, sizes, and locations. We therefore conclude that the flow patterns of Figure 5.7 are

manifestations of the averaging process of the correlations. As we will see in the following sections,

decomposing these correlations using different wall-pressure frequency bands yields simpler parts

that are interpretable in terms of the large-scale coherent structures that are known to exist within

TBLs.

5.3 Frequency-Dependent Pressure-Velocity Coupling

We now move on to the primary analyses of the present chapter. Our goal here is to scrutinize

the coupling between the fluctuating wall pressure and velocity throughout the TBL as a function
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Figure 5.7: Visualizations of the vector fields associated with (a–c) R+
pui

and (d–f) −R−
pui

. The
background colour represents the streamwise component of the correlations and has the same scaling
as Figure 5.6(a). The coloured lines in (a,d) show the locations of the spanwise–wall-normal planes
that are plotted directly below. The vector lengths in (b,c,e,f) have been altered relative to those
in (a,d) to improve the visualizations.
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of frequency. As we will see, there are two distinct coupling mechanisms at the lower frequencies

that affect different frequency bands. We first identify these bands using estimates of the coherence

between wall pressure and velocity. We then extract the space-time pressure-velocity correlations

associated with each band to expose the underlying coherent structures responsible for the observed

coupling.

5.3.1 Coherence Between Wall Pressure and Velocity

The cross-spectrum between wall pressure and velocity will allow us to study the pressure-velocity

coupling as a function of frequency. Here we employ a normalized form of the cross-spectral density

known as the magnitude-squared coherence, which will simply be referred to as the coherence

moving forward. The coherence between the fluctuating wall pressure and a fluctuating velocity

component is defined as

C pui(ω, y) =
|Φpui(ω, y)|2

Φp(ω)Φui(ω, y)
, (5.2)

where Φpui(ω, y) is the cross-spectral density between p(t) and ui(t, 0, y, 0), and Φui(ω, y) is the

PSD of ui(t, 0, y, 0). Equation (5.2) is estimated here using Welch’s overlapping segment method.

The coherence function is bounded by 0 and 1, with 0 representing no correlation between the two

signals at a given frequency. A coherence of 1 occurs when the two signals are related through

a single-input single-output linear, time-invariant system. The latter will never be realized for a

turbulent flow due to the nonlinearity and multiple inputs of the governing equations, but the

coherence will allow us to probe any coupling that may exist between wall pressure and velocity.

The estimated coherence between wall pressure and the fluctuating velocity components u and

v for the wall-normal range of FOV2 are presented on logarithmic axes in Figures 5.8(a,b). The

PSD of wall pressure is included in Figure 5.8(c) with the frequency axis aligned to those showing

C pui for reference. When looking at Figure 5.8(a), it is immediately apparent that there are two

separate regions of high coherence with distinct characteristics. We demarcate these two regions

using the dotted vertical lines in the figure at ωδ/U∞ = 0.9 (17.5 Hz) and 8.0 (160 Hz). These

demarcations were selected by visual inspection of the coherence patterns. Note that there is a

slight overlap in frequencies for which the first region of high-coherence transitions to the second,

and therefore the interface separating the two regions is not a straight vertical line. Despite this,

we have selected the single frequency of ωδ/U∞ = 0.9 as the division between these two regions to

simplify the analysis moving forward. The upper frequency of the second region of high coherence

was selected as the point at which the coherence drops below ∼0.05 in Figure 5.8(b).

The first coherent region in Figure 5.8(a), defined by ωδ/U∞ < 0.9, reveals high coherence

between p and u for wall-normal locations up to roughly y/λ = 1300 (∼0.5δ). In contrast, for the

same frequencies, the coherence between p and v in Figure 5.8(b) is much weaker. This suggests

that low frequency u occupying half the boundary layer thickness correlates with low-frequency
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Figure 5.8: Estimated coherence between wall pressure and velocity fluctuation (C pui) as a
function of wall-normal distance as defined by Equation (5.2) for the (a) streamwise and (b) wall-
normal velocity components. Computed using the high-speed PIV measurements from FOV2. The
PSD (Φp(ω)) normalized by outer-layer variables is shown in (c) with the frequency axis aligned
for reference.

72



wall pressure. To estimate the size of the structures associated with the first coherent region, we

assume that the advection velocity of these structures is the mean velocity at the half-height of the

coherent region (y/λ = 650; y = 0.25δ), corresponding to Uc ≈ 0.82U∞. A pressure disturbance

advecting at this velocity would need to have a wavelength of ∼6δ to produce the upper cutoff

frequency of ωδ/U∞ = 0.9. Note that one full wavelength would be made up of a positive structure

(p > 0) followed by a negative structure (p < 0) to produce a pattern similar to a sinusoid. The first

coherent region therefore seems to be associated with high- and low-pressure structures occupying

up to ∼0.5δ in height and extending more than 3δ in length. This is consistent with the VLSMs,

and for this reason we will refer to the pressure fluctuations in the first coherent region as the

very-large-scale pressure (VLSP) fluctuations as labelled in Figure 5.8(c).

We will now consider the second region of high coherence in Figure 5.8 defined by 0.9 <

ωδ/U∞ < 8.0. This region is markedly different than the one associated with the VLSP fluctuations.

First, a higher coherence is observed between p and v than between p and u, although the latter

is still quite strong. Second, the region sits at an angle, with lower frequencies associated with

locations farther from the wall. This is reminiscent of the attached-eddy hypothesis, as larger

attached eddies that extend farther from the wall would be associated with lower frequencies due

to the size of the pressure disturbance that they produce. Finally, the second region of high

coherence between p and v extends farther from the wall than the coherence of the VLSP, surpassing

the maximum captured by FOV2 (∼0.8δ). It is possible that C pv reaches the full height of the

boundary layer, and this is not observed for C pu. This suggests that the pressure fluctuations

associated with this region are stronger than the VLSP fluctuations, as they appear to influence the

wall pressure from a greater wall-normal distance. To estimate the size of the structures associated

with the upper cutoff frequency of the second region of high coherence (ωδ/U∞ = 8.0), we assume

an advection velocity of Uc = 0.74U∞. This is the mean velocity at y/λ = 300, which is roughly the

mid-point of the high-coherence region at the upper cutoff as is visible in Figure 5.8(b). A pressure

disturbance advecting at this velocity would need to have a wavelength of ∼0.6δ to reproduce

the cutoff frequency of ωδ/U∞ = 8.0. We therefore conclude, using the same logic invoked for

VLSP, that the second region of high coherence seems to be associated with high- and low-pressure

structures with streamwise dimensions ranging from roughly 0.3δ to 3δ. We can consider this range

of eddy sizes as being large scale, and therefore the wall-pressure fluctuations associated with the

second region of high coherence will be referred to as the large-scale pressure (LSP) fluctuations as

labelled in Figure 5.8(c).

It is interesting to note that the demarcation between VLSP and LSP coincides with the peak of

the wall-pressure spectrum as is evident in Figure 5.8(c). The location of the peak, and the different

proportionality behaviours on either side, may therefore be associated with a transition between

wall-pressure sources, as C pui indicates that different motions are responsible for the wall pressure

in the frequency bands on either side of ωδ/U∞ = 0.9. The nature of these two types of motions

will be determined in sections 5.3.2 and 5.3.3. It should also be noted that the two frequency cutoffs

do not coincide with the transition between any of the regions of the wall-pressure power spectrum
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shown in Figure 5.4. It can be seen in the figure that ωδ/U∞ = 0.9 is roughly one-quarter of

the way through the mid-frequency region, while ωδ/U∞ = 8.0 is roughly one-third of the way

through the overlap region.

We now investigate the estimated phase between p and ui from the cross-spectral densities,

denoted as ∠Φpui(ω). These estimates are given in Figure 5.9 for the same domain shown for the

coherence estimates, and the demarcations for the LSP and VLSP bands are included for reference.

Here, a positive phase indicates that p leads ui, while a negative phase indicates that p lags ui.

The noisy region in the top right corner of both subfigures is due to the general lack of coherence

between p and ui at high frequencies and wall-normal locations as can be seen in Figure 5.8. A

cursory glance at Figure 5.9 makes it clear that ∠Φpu(ω) is always positive in the regions of non-zero

coherence, while ∠Φpv(ω) is always negative. This is in agreement with the space-time pressure-

velocity correlations of Figure 5.6, which show that the positive peak of Rpu always exists upstream

from the wall-pressure measurement location (i.e., p leads u), and that the positive peak of Rpv

always exists downstream (i.e., p lags v). Focusing now on the region of high coherence within

the LSP band of Figure 5.8, we can see that Figure 5.9(a) indicates a phase varying from roughly

0.25π to 0.35π between p and u, while Figure 5.9(b) indicates a phase of roughly −0.5π to −0.6π

between p and v. In contrast, the region of high coherence within the VLSP band of Figure 5.8

shows different behaviour. Here, we can see a phase of roughly 0.1π to 0.25π between p and u,

and a phase of roughly −0.7π to −0.8π between p and v. These results support the notion that

different mechanisms are responsible for the observed coupling in the LSP and VLSP bands.

We have further evaluated the characteristics of the LSP and VLSP fluctuations by applying

filters to isolate the associated frequencies. A lowpass filter with a cutoff frequency of ωδ/U∞ = 0.9

was used to isolate the VLSP fluctuations, and a bandpass filter with cutoffs of ωδ/U∞ = 0.9 and

8.0 was used to isolate the LSP fluctuations. These filters were designed as digital finite impulse

response filters with the cutoff frequencies placed at −6 dB attenuation. The filter slopes were

made as steep as possible while keeping the filters numerically tractable, and they were applied

such that the filter time delay was compensated. The filter responses are shown in Figure 5.10. We

refer to the two filtered wall-pressure signals as pLS and pVLS.

The probability density functions of pLS and pVLS are compared to that of the full spectrum

in Figure 5.11. The functions are displayed on linear and semi-logarithmic axes and are compared

to Gaussian fits for reference. The horizontal axes are normalized using prms of the full spectrum

in all cases. Figure 5.11(a) reveals that the peak probability density of pVLS is more than four

times that of the full spectrum, while the peak for pLS is not quite double. This indicates that

the wall-pressure fluctuations within these two frequency bands are lower in magnitude in general,

with the pVLS having the lowest magnitudes. More precisely, the root-mean-square value of pLS

and pVLS are 53% and 20% of prms, respectively. This is consistent with the results of Beresh et al.

(2013), who found that low-frequency wall-pressure fluctuations are weaker than high-frequency

wall-pressure fluctuations. Figure 5.11(a) also reveals that pLS deviates slightly from the Gaussian

fit at the peak, while pVLS does not. Figure 5.11(b) reveals some deviation from Gaussian at the
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Figure 5.9: Estimated phase between wall pressure and velocity fluctuation (∠Φ(ω)pui) as a
function of wall-normal distance for the (a) streamwise and (b) wall-normal velocity components.
Computed using the measurements from FOV2. A positive phase indicates that p leads ui while a
negative phase indicates that p lags ui.

extreme tails for pLS, but this is again not observed for pVLS, which appears to adhere to Gaussian

behaviour at all amplitudes. We therefore conclude that the VLSP fluctuations are Gaussian, while

the LSP fluctuations are nearly Gaussian.

5.3.2 Very-Large-Scale Coupling

In the previous section, the coherence function between wall pressure and fluctuating velocity re-

vealed two distinct frequency bands of high coherence which appear to be associated with structures

with lengths ranging from roughly 0.3δ to 3δ for one band and lengths greater than 3δ for the other.

We therefore refer to these bands as the LSP and VLSP fluctuations, respectively, and we denote

their pressure signals as pLS and pVLS. Within this section, we further investigate the pressure-

velocity coupling associated with the VLSP band. The coupling observed in the LSP band will be
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Figure 5.10: The filters used to isolate the (a) VLSP fluctuations and (b) LSP fluctuations. The
red and blue filter responses denote lowpass and highpass filters, respectively. The vertical dotted
lines denote the filter cutoff frequencies and coincide with the points of −6 dB attenuation.

investigated in Section 5.3.3.

We revisit the space-time pressure-velocity correlations computed in Section 5.2.2, but this

time using pVLS in place of p. By using only pVLS to compute the correlations, we are isolating the

motions that cause these fluctuations and therefore we are extracting the portion of Rpui associated

with the VLSP band. We define the space-time pressure-velocity correlation associated with the

VLSP band as RVLS
pui

= Rpui |p=pVLS following Equation (5.1) where pVLS has been isolated using

a lowpass filter as described in Section 5.3.1. We also consider the correlations computed using

only pVLS > 0 or pVLS < 0 to isolate the motions associated with each sign of fluctuation. These

conditional cases are denoted as RVLS+
pui

= RVLS
pui

|pVLS>0 and RVLS−
pui

= RVLS
pui

|pVLS<0.

We begin by considering the streamwise–wall-normal slices of RVLS
pui

, RVLS+
pui

, and RVLS−
pui

in

Figure 5.12. The streamwise and wall-normal components are plotted at z = 0, while the spanwise

component is plotted at z/δ = 0.2. Note that the colourbar scaling is reduced compared to that of

Rpui in Figure 5.6 because the correlation magnitudes are considerably weaker, especially for the

wall-normal and spanwise components. This is likely because the wall-pressure fluctuations in the

VLSP band are five times weaker than those of the full spectrum as was shown in Figure 5.11.

Figure 5.12 makes it immediately apparent that the motions most correlated with the VLSP

fluctuations are unlike those captured by the correlations computed using the full wall-pressure spec-

trum. The contours of RVLS
pu displayed in Figure 5.12(a) reveal that pVLS is positively correlated

with u over a large streamwise extent of −3.8 ≲ ∆tUc/δ ≲ 1.8 and reaching beyond y/δ = 0.8 in

height. A much smaller and weaker region of negative correlation exists upstream, and a somewhat

weaker but highly elongated region of negative correlation extends far downstream from the posi-

tively correlated region. The entirety of these regions are not shown in Figure 5.12(a) to keep the

figure manageable. However, we note that the upstream region of weak negative correlation exists

between −6.6 ≲ ∆tUc/δ ≲ −4.2, and the downstream region extends to upwards of ∆tUc/δ ≈ 12.
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Figure 5.11: Probability density of the full spectrum of wall-pressure fluctuations compared to
that of the LSP and VLSP fluctuations shown on (a) linear and (b) semi-logarithmic axes. The
dashed lines represent Gaussian fits to the same data.

This latter region of correlation seems to be the source of the highly elongated, wall-attached region

of negative correlation visible in the contours of Rpu and R+
pu shown in Figure 5.6(a). In contrast

to the correlations computed using the full wall-pressure spectrum, the contours of RVLS+
pu and

RVLS−
pu remain largely unchanged relative to RVLS

pu .

Figure 5.12(b) reveals a large region of negative correlation in the contours of RVLS
pv . This region

extends through the range −4.3 ≲ ∆tUc/δ ≲ 1.1, exceeds y/δ = 0.8, and has a different shape

overall when compared to that of RVLS
pu . Regions of weaker positive correlation with similar shapes

sit immediately upstream and downstream from this region of negative correlation, revealing a

clear alternating pattern. The coherence estimates of Figure 5.8 showed a much higher coherence

between pVLS and u than between pVLS and v. This is also apparent in the present correlations,

as RVLS
pv is approximately four times weaker than RVLS

pu . In addition, the contours of RVLS+
pv and

RVLS−
pv also appear to remain relatively unchanged compared to RVLS

pv , just as was the case for

the streamwise component. The regions of high correlation that overlap between RVLS
pu and RVLS

pv

reveal that the motions most correlated with pVLS feature u and v of opposite sign. However, these

motions are different from sweeps and ejections, which are typically more localized and intense.

Instead, these motions appear to be large-scale high- and low-speed streaks with relatively weak

wall-normal velocity components.

The wall-normal velocity visible in RVLS
pv is supported by the contours of RVLS

pw in Figure 5.12(c).

The near-wall region of strong positive correlation within the subfigure indicates that there is fluid

motion away from z = 0 beneath the high-speed streaks (splatting) and motion towards z = 0
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Figure 5.12: (a) Streamwise, (b) wall-normal, and (c) spanwise components of the space-time
pressure-velocity correlations computed using pressure filtered to isolate the VLSP fluctuations
(RVLS

pui
= Rpui |p=pVLS) following Equation (5.1). The superscripts ‘+’ and ‘−’ denote correlations

computed using only pVLS > 0 or pVLS < 0, respectively. The streamwise–wall-normal planes in
(a) and (b) are located at z = 0, while those in (c) are located at z = 0.2δ. The plots in (c) do not
cover as much of the wall-normal distance due to the limitations of FOV3.
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beneath the low-speed streaks (an influx to replace the fluid being lifted). Additionally, a region

of weaker negative correlation with a similar streamwise extent exists upstream from the region of

positive correlation. A large portion (∼3–4δ) of these two regions of opposite correlation overlap

in the streamwise direction, forming a region where the spanwise motion near the wall is opposite

to the spanwise motion above it. When considered along with RVLS
pv , which has a comparable

magnitude, it is straightforward to see that the large-scale streaks associated with the VLSP band

are accompanied by quasi-streamwise vortex pairs that are nearly horizontal. Finally, Figure 5.12(c)

reveals that the contours of RVLS
pw are also largely invariant when considering only positive or

negative VLSP fluctuations, just as was the case for the other two components of the correlation.

This suggests that the motions that are responsible for pVLS > 0 and pVLS < 0 are quite similar

but opposite to one another.

To conclude our analysis of the pressure-velocity coupling in the VLSP band, we form visual-

izations of the motions responsible for pVLS > 0 and pVLS < 0. The vector fields associated with

RVLS+
pui

and −RVLS−
pui

are presented in Figures 5.13(a–c) and 5.13(d–f), respectively. The latter

correlation has been multiplied by −1 to capture the correct flow direction of the associated ve-

locity fluctuations. Figures 5.13(a,d) show the streamwise–wall-normal plane of the corresponding

vector field at z = 0. These subfigures are marked with vertical lines which represent the loca-

tions of spanwise–wall-normal planes of the same vector field that are plotted directly below. To

improve the visualizations, the vector density has been decimated and the vector lengths in the

spanwise–wall-normal planes have been increased. The background colour denotes the streamwise

component of the correlations and has the same scaling as Figure 5.12(a).

The average motion associated with pVLS > 0 in Figures 5.13(a–c) is a region of positive

streamwise velocity fluctuation extending ∼5.6δ in the streamwise direction, spanning to z/δ ≈
±0.4, and reaching to at least y/δ = 0.8 in height. This motion is accompanied by a relatively weak

negative wall-normal component and is flanked by similar regions of low streamwise velocity. Quasi-

streamwise vortical motions with a slight angle with respect to the wall are found at the interfaces

between the primary high-speed region and the adjacent low-speed regions. This inclination is

apparent from the change in height of the vortical motions between Figures 5.13(b,c). The average

motion associated with pVLS < 0 in Figures 5.13(d–f) is similar to the one for pVLS > 0, but

with an opposite direction of velocity fluctuation. This low-speed region is also flanked by large

opposite motions and quasi-streamwise vortices. It also appears to be a bit narrower than the

motion associated with pVLS > 0.

The motions visualized in Figure 5.13 can clearly be associated with the VLSMs, as all visible

features are consistent with the statistical appearance of the VLSMs reported in the literature to

date. The observed streamwise extent of the correlations is greater than the minimum of 3δ defined

for the VLSMs (Balakumar and Adrian, 2007) and also closely matches the length of the VLSMs

as it appears in statistical measures (∼6δ) (Hutchins and Marusic, 2007a; Lee and Sung, 2011).

Additionally, the wall-normal and spanwise extents of the correlations capture the range of heights

and widths of the VLSMs measured in previous work (Dennis and Nickels, 2011a). The structure of
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Figure 5.13: Visualizations of the vector fields associated with (a–c) RVLS+
pui

and (d–f) −RVLS−
pui

.
The background colour represents the streamwise component of the correlations and has the same
scaling as Figure 5.12(a). The coloured lines in (a,d) show the locations of the spanwise–wall-
normal planes that are plotted directly below. The vector lengths in (b,c,e,f) have been altered
relative to those in (a,d) to improve the visualizations.
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the correlations also shows that low-speed VLSMs are flanked by high-speed VLSMs and vice versa,

and that the interfaces between these opposite motions feature counter-rotating streamwise vortical

motions. This exact structure has been observed in statistical representations of the VLSMs in past

investigations (Hutchins and Marusic, 2007b; Marusic and Hutchins, 2008; Chung and McKeon,

2010; Hutchins et al., 2012), where the counter-rotating vortical motions are often referred to as

“roll modes”. It is well accepted at this point that the low-speed VLSMs exist between the legs

of large hairpins (Kim and Adrian, 1999; Elsinga et al., 2010; Lee and Sung, 2011; Dennis and

Nickels, 2011b). These hairpins exist in packets which induce the elongated low-speed zones via

the ejection of near-wall fluid. The same hairpins also cause the formation of elongated high-speed

zones at the sides of the packets, as the outer regions of the hairpin legs sweep high-speed fluid

towards the wall. This process results in the observed spanwise staggering of opposite VLSMs. It

also explains the weak wall-normal components and “roll modes” in the correlations, which appear

as average motions due to the continuous presence of hairpins. We can therefore conclude that the

pressure-velocity coupling observed within the VLSP band of Figure 5.8 is a direct result of the

VLSMs.

5.3.3 Large-Scale Coupling

We now move on to investigating the pressure-velocity coupling observed within the LSP band of

Figure 5.8. We denote the wall-pressure fluctuations within the LSP band as pLS, and we have

isolated these fluctuations using a bandpass filter as described in Section 5.3.1. We compute space-

time pressure-velocity correlations using pLS to isolate the portion of Rpui associated with the

LSP fluctuations, and we define this correlation as RLS
pui

= Rpui |p=pLS following Equation (5.1).

The correlations computed using only pLS > 0 or pLS < 0 are also considered and are denoted as

RLS+
pui

= RLS
pui

|pLS>0 and RLS−
pui

= RLS
pui

|pLS<0.

Streamwise–wall-normal planes of RLS
pui

, RLS+
pui

, and RLS−
pui

are given in Figure 5.14. To remain

consistent with the previous analyses, the streamwise and wall-normal components are plotted at

z = 0, while the spanwise component is plotted at z/δ = 0.2. We note that the colourbar scaling

is the same as that used to show Rpui in Figure 5.6. When looking at Figure 5.14 as a whole, it is

clear that the overall structure of RLS
pui

is quite similar to that of Rpui . However, one change that

is immediately apparent is that the most elongated, wall-attached features of Rpui are no longer

present. These features can clearly be attributed to the lower frequencies of the VLSP band as was

shown in Section 5.3.2.

The contours of RLS
pu in Figure 5.14(a) feature a region of positive correlation that sits above the

pressure measurement location and reaches upstream to ∆tUc/δ ≈ −1.1 and to at least y/δ = 0.8

in height. A region of negative correlation begins just downstream from the pressure measurement

location, extending from the wall at an angle to reach ∆tUc/δ ≈ 2.3 and y/δ ≈ 0.8. An alternation

between positive and negative correlation in the streamwise direction is now visible, as two new

regions of weak correlation have emerged farther upstream and downstream with opposite sign

to the regions that are adjacent. When considering RLS+
pu , the contours closest to the pressure
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Figure 5.14: (a) Streamwise, (b) wall-normal, and (c) spanwise components of the space-time
pressure-velocity correlations computed using pressure filtered to isolate the LSP fluctuations
(RLS

pui
= Rpui |p=pLS) following Equation (5.1). The superscripts ‘+’ and ‘−’ denote correlations

computed using only pLS > 0 or pLS < 0, respectively. The streamwise–wall-normal planes in (a)
and (b) are located at z = 0, while those in (c) are located at z = 0.2δ. The plots in (c) do not
cover as much of the wall-normal distance due to the limitations of FOV3.
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measurement location enlarge, and the outer regions of weak correlation mostly disappear. For

RLS−
pu , the region of positive correlation immediately upstream from the pressure measurement

location becomes smaller, and the outer regions of weak correlation enlarge. These outer regions

of correlation have now become quite elongated with streamwise extents of ∼3–4δ.

The contours of RLS
pv in Figure 5.14(b) are nearly identical to those of Rpv in Figure 5.6(b). Some

small differences are found in the magnitudes, but the shapes and sizes do not change much when

only the LSP fluctuations are considered. This remains true when the correlations are computed

using only the positive or negative wall-pressure fluctuations. Similarly, RLS
pw, R

LS+
pw , and RLS−

pw

in Figure 5.14(c) are quite similar to their full-spectrum counterparts in Figure 5.6(c). We will

therefore not describe these contours in detail for the sake of brevity. However, we note that the

patterns of Figures 5.14(b,c) reveal that inclined counter-rotating vortex pairs exist downstream

from the wall-pressure measurement location in all cases. These downstream vortices were only

present for negative wall-pressure fluctuations in the full-spectrum correlations.

The strong similarities between RLS
pui

and Rpui indicate that the dominant pressure-velocity

coupling is primarily a result of the LSP band, even when the full spectrum of wall-pressure fluc-

tuations is considered. The differences between these two sets of correlations, which are primarily

found in the streamwise component, can be clearly attributed to the influence of the VLSP band

and therefore to the VLSMs. However, the similarities between RLS
pui

and Rpui also reveal that

isolating the space-time pressure-velocity correlations associated with the entire LSP band does

not bring us much closer to understanding the pressure-velocity coupling, as the motions associ-

ated with RLS+
pui

and RLS−
pui

are almost the same as those associated with R+
pui

and R−
pui

. Despite

this, the correlations of Figure 5.14 do provide us with a hint. RLS+
pui

indicates that positive wall-

pressure fluctuations are associated with a localized ejection followed by a localized sweep, and vice

versa for RLS−
pui

. When these motions are considered along with the inclined vortex pairs evident in

Figures 5.14(b,c), we can see that RLS
pui

provides evidence of large hairpin packets.

Hairpin packets are characterized as streamwise-aligned sequences of full or partial hairpins

(canes, legs, and heads) that increase in size with downstream distance. Packets of various sizes

exist, often superimposed to form a hierarchy (Adrian, 2007). The inner region of a hairpin forms

ejection motions, while the outer region forms sweeping motions, and so each advecting hairpin

results in a sweep followed by an ejection. It then follows that an advecting packet forms a longer

series of alternating sweeps and ejections. Recall from Figure 5.8 that the region of high coher-

ence associated with the LSP fluctuations is reminiscent of the attached-eddy hypothesis. Hairpin

vortices are indeed considered attached eddies because their sizes generally increase with wall-

normal distance. The region of high coherence in conjunction with RLS
pui

therefore suggests that the

pressure-velocity coupling in the LSP band may be caused by the passage of hairpin packets. To

test this notion, we further decompose RLS
pui

into smaller frequency bands in an attempt to expose

the hierarchical organization of the packets.

The frequencies associated with the LSP band have been split into quartiles, with each contain-

ing exactly one quarter of the frequency range. We denote the pressure fluctuations associated with
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these quartiles as pLSq , where the subscript q is used to index the qth quartile of the LSP band. The

frequency ranges associated with each quartile are given in Table 5.2. The quartiles are isolated

with the filters shown in Figure 5.15 which were designed using the same guidelines described in

Section 5.3.1, and then are used to decompose the correlations associated with the LSP band into

simpler parts. We define the space-time pressure-velocity correlations associated with each quartile

of the LSP band as R
LSq
pui = Rpui |p=pLSq

following Equation (5.1). The resulting correlations are

displayed using streamwise–wall-normal planes in Figure 5.16. The planes containing R
LSq
pu and

R
LSq
pv are located at z = 0, while those of R

LSq
pw are located at different spanwise locations depend-

ing on the size of the structures captured by the correlations. These locations are z/δ = 0.25, 0.2,

0.15, and 0.1 for increasing q. Finally, we note that the colourbar scaling is different than that of

RLS
pui

shown in Figure 5.14.

Figure 5.16 clearly shows that the application of Equation (5.1) to individual quartiles of the

LSP band has decomposed the correlations into a hierarchy of self-similar structures. The same

pattern is visible for each quartile, with the primary difference being its overall size, which decreases

with increasing q. These sizes appear to span roughly one order of magnitude. R
LSq
pu and R

LSq
pv in

Figures 5.16(a,b) reveal the presence of ejections and sweeps occurring immediately upstream and

downstream from the pressure measurement location, just as was the case for RLS
pui

in Figure 5.14.

Specifically, we have a sweep immediately upstream from the pressure measurement location and

an ejection immediately downstream for pLSq > 0, and vice versa for pLSq < 0. However, the

alternating pattern now extends farther upstream and downstream to produce a longer sequence of

ejections and sweeps. These motions are accompanied by inclined vortical structures as is evident

from the contours of R
LSq
pw in Figure 5.16(c). Since the LSP band is associated with the self-similar

flow pattern visible in Figure 5.16, it is evident that considering the entire LSP range at once

averages out much of the underlying pattern that forms the correlations. It is straightforward to

see by inspection how combining the correlations of each quartile would produce the patterns of

RLS
pui

shown in Figure 5.14.

We have further investigated R
LSq
pui by selecting one quartile of the LSP band and visualizing the

motions associated with pLSq > 0 and pLSq < 0 using vector fields constructed from the correlations.

We used the conditional correlations denoted as R
LSq+
pui = R

LSq
pui |pLSq>0 and R

LSq−
pui = R

LSq
pui |pLSq<0 for

this purpose to isolate the motions associated with each sign of fluctuation, and we have selected

ωδ/U∞ f [Hz]

q = 1 0.9–2.7 17.5–53.1
q = 2 2.7–4.4 53.1–88.8
q = 3 4.4–6.2 88.8–124.3
q = 4 6.2–8.0 124.3–160.0

Table 5.2: Frequency ranges associated with the quartiles of the LSP band.
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Figure 5.15: The filters used to isolate quartiles of the LSP band: (a) q = 1, (b) q = 2, (c) q = 3,
and (d) q = 4. The red and blue filter responses denote lowpass and highpass filters, respectively.
The vertical dotted lines denote the filter cutoff frequencies and coincide with the points of −6 dB
attenuation.

the quartile q = 3 (4.4 < ωδ/U∞ < 6.2) for the visualization. Given that the patterns of R
LSq
pui

are self-similar, the motions visible in the correlations for q = 3 represent the general behaviour of

all quartiles, just on a different scale. The visualizations associated with RLS3+
pui

and −RLS3−
pui

are

presented in Figures 5.17(a,b) and 5.17(c,d), respectively. The latter correlation was multiplied by

−1 to capture the correct flow direction of the associated velocity fluctuations. Figures 5.17(a,c)

show the vector fields in the streamwise–wall-normal plane at z = 0. The horizontal lines within

these subfigures show the location of the streamwise–spanwise planes plotted in Figures 5.17(b,d).

The wall-normal location of these latter planes (y/δ = 0.09) was selected to best show patterns of

the inclined vortical motions visible in the correlations of Figure 5.16.

The visualizations of RLS3+
pui

and −RLS3−
pui

in Figure 5.17 reveal a significant change within the

long series of sweeps and ejections visible in the correlations. The sweeping motions are now larger

and more intense, while the ejection motions are smaller and less intense. It is apparent that the

contours for both pLS3 > 0 and pLS3 < 0 reveal the same pattern with only a streamwise shift

between the two cases. In the streamwise–wall-normal planes of Figures 5.17(a,c), we see a series
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Figure 5.16: (a) Streamwise, (b) wall-normal, and (c) spanwise components of the space-time
pressure-velocity correlations computed using pressure filtered to isolate quartiles of the LSP band
(R

LSq
pui = Rpui |p=pLSq

; q = 1, 2, 3, 4) following Equation (5.1). The frequency range associated with

each quartile is given in Table 5.2. R
LSq
pu and R

LSq
pv are plotted at z = 0, while R

LSq
pw is plotted at

z/δ = 0.25, 0.2, 0.15, and 0.1 for increasing q.
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of spanwise vortices that are all rotating clockwise; the approximate locations of these vortices are

marked in the figure. The size and wall-normal location of these spanwise vortices increases with

downstream distance, and each is also associated with a pair of inclined vortices (also marked)

that can be seen in the portion of the vector fields shown in the streamwise–spanwise planes of

Figures 5.17(b,d). These patterns are consistent with hairpins, as each of these structures features

a head (spanwise vortex) rotating clockwise and legs (inclined vortex pairs) rotating to produce an

ejection between them. Since these structures align in the streamwise direction and increase in size

with downstream distance, the observed pattern can clearly be attributed to hairpin packets.

The vector field associated with pLS3 > 0 shown in Figures 5.17(a,b) reveals that positive wall-

pressure fluctuations occur between two hairpins where an upstream sweep opposes a downstream

ejection to form an inclined shear layer structure. Such inclined shear layers are known to exist

upstream from hairpins just as observed in the figure (Adrian, 2007). In contrast, the vector field

associated with pLS3 < 0 shown in Figures 5.17(c,d) reveals that negative wall-pressure fluctuations

occur when the head of a hairpin, which has a low-pressure core, exists directly over the pressure

measurement location. Thus, the advecting series of hairpins results in the alternation between

positive and negative wall-pressure fluctuation at a frequency that depends on the size and spacing

of the hairpins and the advection velocity of the packet.

These observations are consistent with the findings of past studies. The earlier works of Kim

(1983), Thomas and Bull (1983), and Kobashi and Ichijo (1986) associated a negative-positive-

negative wall-pressure fluctuation pattern with the bursting cycle. According to the present results,

two hairpins in succession would cause this negative-positive-negative pattern. Of course, we now

know that the bursting process is simply a series of ejections and sweeps caused by hairpin packets

(Adrian, 2007). Kim (1983) and Kobashi and Ichijo (1986) also associated the pattern with inclined

vortex pairs, while Thomas and Bull (1983) associated it with shear layer and horseshoe structures,

thus providing even more support for our observations. Past studies of HAPPs at the wall have

also drawn conclusions that support the present results. Johansson et al. (1987) associated positive

and negative HAPPs with shear layer structures and sweep-type motions, respectively. Sweeps

are formed by the heads of hairpins, and so both of these conclusions match what is observed

here. Ghaemi and Scarano (2013) concluded that the HAPPs can be directly tied to hairpin

vortices. They found that positive HAPPs are caused when ejections formed by hairpins are

opposed by upstream sweeps to form a shear layer, and their visualization of this shows remarkable

agreement with the patterns of Figure 5.17. Their measurements of acceleration showed that the

lower region of this shear layer contains a stagnation point, which reveals the source of the increased

pressure. They also found that negative HAPPs are caused by the low-pressure cores of vortical

structures, including hairpin heads. The structures that they found to cause positive and negative

wall-pressure fluctuations are therefore consistent with the present observations. The excellent

agreement between the present results and the literature allows us to conclude that the pressure-

velocity coupling observed within the LSP band of Figure 5.8 is a direct result of advecting hairpin

packets of varying sizes.
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Figure 5.17: Visualizations of the vector fields associated with (a) RLS3+
pui

and (b) −RLS3−
pui

. These
visualizations represent the quartile within the LSP band defined by 4.4 < ωδ/U∞ < 6.2. The
background colour represents the streamwise component of the correlations and has the same scaling
as Figure 5.16(a). The horizontal lines in (a,c) show the location of the associated streamwise–
spanwise planes plotted directly below. The vector lengths in (b,d) have been altered relative to
those in (a,c) to improve the visualizations. Rotational markers have been added to clearly show
the locations of the vortical motions.
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5.4 Further Discussion

5.4.1 Decomposition of the Pressure-Velocity Correlations

Filters were used to isolate the LSP and VLSP fluctuations, and space-time pressure-velocity cor-

relations were computed using the filtered pressure signals. This analysis technique was found

to decompose the pressure-velocity correlations into simpler parts that were easy to interpret in

terms of the coherent motions that are known to exist within TBLs. This is in stark contrast to

the correlations computed using the full wall-pressure spectrum, which made it difficult for past

investigators to conclusively identify the sources of the wall-pressure fluctuations (Buchmann et al.,

2016; Naka et al., 2015). We believe this is because the full-spectrum correlations act to smear

the patterns caused by motions of varying types, sizes, and locations. This analysis was possible

because of the coherence estimates, which clearly showed which frequency bands were associated

with different coupling mechanisms and therefore informed the design of the filters. This technique

may be useful for identifying the pressure-velocity coupling mechanisms in other turbulent flows

that feature a large separation of scales and varying types of coherent motions.

5.4.2 Very-Large-Scale Motions and Wall Pressure

The analysis of Section 5.3.2 has shown that the pressure-velocity coupling observed within the

VLSP band of Figure 5.8 is caused by the VLSMs. Our results indicate that high-speed VLSMs

cause positive wall-pressure fluctuations, while low-speed VLSMs cause negative wall-pressure fluc-

tuations. This observation is the opposite of what one would expect when considering the conser-

vation of energy. It then seems that the wall-normal and spanwise velocity components of these

elongated structures are primarily responsible for the observed low-frequency pressure modulation.

This was also noted by Naka et al. (2015) for the relationship between field pressure and the VLSMs.

The observed weak splatting and lifting of fluid beneath these high- and low-speed structures ap-

pears to be the mechanism by which wall pressure is affected. The downward motions associated

with high-speed VLSMs transport fluid toward the wall, causing a positive pressure. Conversely,

the upward motions associated with low-speed VLSMs causes a suction near the wall and therefore

a negative pressure. The frequency at which this occurs then depends on the length, advection

velocity, and meandering of these structures. We emphasize that the wall-pressure fluctuations

associated with the VLSMs are five times weaker than those associated with the full wall-pressure

spectrum in the present investigation as was discussed in Section 5.3.1. This is likely because the

wall-normal component associated with the VLSMs is relatively weak. This also explains the lower

coherence between wall pressure and the wall-normal velocity component observed within the VLSP

band.

The correlations associated with the VLSMs indicate that their peak pressure effect is shifted

towards the front of the structure. This was also observed in the VLSP band of the phase plots

shown in Figure 5.9, which indicate that wall pressure leads streamwise velocity fluctuation. The

reason for this phase delay is not clear at the moment, but it is interesting to discuss this point in
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terms of the pressure gradients within the VLSMs. Since the peak wall pressure is shifted towards

the front of the structure, the streamwise pressure gradient at the wall is of the same sign over most

of the length of a VLSM. For a high-speed VLSM, there is an adverse pressure gradient at the wall

over most of the length because the highest wall pressure is observed near the front of the structure.

In contrast, there is a favourable pressure gradient at the wall over most of the length of a low-speed

VLSM because the minimum wall pressure is observed near the front of the structure. This may

explain the mechanism by which the VLSMs act to modulate the amplitude and frequency of the

near-wall motions as has been shown in previous studies (Mathis et al., 2009; Ganapathisubramani

et al., 2012). These works have shown that high-speed VLSMs amplify the near-wall turbulence,

while low-speed VLSMs suppress it. This is consistent with the pressure gradients observed here,

as adverse pressure gradients are known to increase turbulence, while favourable pressure gradients

are known to reduce it. It is also interesting to note that these studies have found the opposite

modulation effect farther away from the wall in the latter half of the logarithmic layer. When

looking at the results of Naka et al. (2015), who associated field pressure with the VLSMs, it

seems that the peak field pressure occurs near the back of the highly elongated structures visible in

their correlations. This suggests that the streamwise pressure gradient within the VLSMs changes

direction away from the wall, and would also explain the different modulation effects observed at

the wall and farther from it.

5.4.3 Hairpin Packets and Wall Pressure

In Section 5.3.3, we showed that the pressure-velocity coupling of the LSP band can be attributed

to advecting hairpin packets. The mechanism by which hairpin packets affect wall pressure found in

our results is not new to the community. However, there are a few novel insights to note. First, we

have shown that hairpin packets beyond the logarithmic layer (y/δ ≳ 0.2 here) affect wall pressure

by the same mechanism as the smallest hairpins very close to the wall (y/λ ≲ 60) by comparison

with the results of Ghaemi and Scarano (2013). However, the present results indicate that the

lower-frequency wall-pressure fluctuations associated with these larger hairpins are relatively weak,

while the results of Ghaemi and Scarano (2013) reveal that the smaller hairpins near the wall are

capable of causing HAPPs. It then seems to be the case that the smaller hairpins cause stronger

wall-pressure fluctuations, presumably because they are closer to the wall. The agreement between

the present results and those of Ghaemi and Scarano (2013) also implies that the region of high

coherence between wall pressure and velocity that is associated with the hairpin packets should

extend to frequencies that are higher than what is observed here. This would likely be the case

if the resolution of our velocity measurements was improved, as they currently limit the spatial

and temporal scales that can be resolved. In fact, there is evidence to support this within the

coherence plots of Figure 5.8, which show an extension of the region associated with the hairpins

to higher frequencies, but with a much lower magnitude. Second, we have shown that the lowest

frequency that can be associated with the hairpins in the present study coincides with the peak

of the wall-pressure spectrum. This suggests that the peak is a lower limit to the frequencies that
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are affected by hairpin packets, although it is likely that this is not a hard cutoff and that the

hairpins may have some diminishing influence at lower frequencies. This needs to be confirmed

over a range of Reynolds numbers and by other investigators. Despite this, both of these points

have implications for those looking to model the wall-pressure fluctuations by taking advantage of

the hairpin paradigm (eg., Ahn et al. (2010)).

5.4.4 Conceptual Model of the Low- and Mid-Frequency Wall-Pressure Sources

According to the present results, the low- and mid-frequency regions of the wall-pressure spectrum

shown in Figure 5.4 are captured by the VLSP band and the first two quartiles of the LSP band.

This indicates that the dominant wall-pressure sources contributing to these two regions are the

VLSMs and the largest hairpin packets which extend beyond the logarithmic layer. This agrees well

with previous works showing that the low- and mid-frequency regions of the spectrum scale with

outer-layer variables (Farabee and Casarella, 1991; Tsuji et al., 2007; Klewicki et al., 2008). It is

now accepted in the literature that the largest hairpin packets generally exist around the low-speed

VLSMs (Kim and Adrian, 1999; Elsinga et al., 2010; Lee and Sung, 2011; Dennis and Nickels,

2011b). We also know that the VLSMs are staggered in the spanwise direction and meander as

they advect downstream. These structural consistencies allow us to formulate a conceptual model

for the dominant low- and mid-frequency wall-pressure sources and their mechanisms. A schematic

of this conceptual model is presented in Figure 5.18. The schematic shows the VLSMs staggered in

the spanwise direction with the interfaces between adjacent structures featuring vortical motions,

which are a result of the continuous presence of hairpins (full and partial) around the elongated

low-speed structures. The inner ejections and outer sweeps of these hairpins induce the weak wall-

normal components of the VLSMs, which cause the low-frequency modulation of wall pressure via

splatting and lifting at the wall. The same hairpins feature low-pressure heads and form regions of

stagnation between one another, and therefore they influence wall pressure at a higher frequency

as they advect downstream. The superposition of these two mechanisms then leads to the wall-

pressure fluctuations of the low- and mid-frequency regions of the spectrum. We emphasize that

this conceptual model is meant to describe the predominant low- and mid-frequency wall-pressure

sources that originate from coherent motions. Since we are dealing with turbulence, we expect

some proportion of the fluctuations at these frequencies to originate from large motions that are

less coherent.

5.5 Summary

Simultaneous pressure and high-speed PIV measurements were employed to investigate the wall-

pressure fluctuations caused by the largest motions within a TBL at Reτ = 2600. The normalized

cross-spectra between wall pressure and velocity throughout the TBL was studied using an esti-

mate of the magnitude-squared coherence function. Two distinct regions of high coherence between

wall pressure and velocity were identified. The first region spanned from the lowest frequencies up

to the peak of the wall-pressure spectrum and reached to approximately y/λ = 1300 (∼0.5δ) in
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Figure 5.18: Simplified schematic showing the coherent structures that contribute to the low- and
mid-frequency regions of the wall-pressure spectrum (ωδ/U∞ ≲ 4 in the present work).
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the wall-normal direction. A much higher coherence was observed for the streamwise component

of velocity relative to the wall-normal component. The second region of high coherence spanned

from the peak of the wall-pressure spectrum to approximately one-third of the way into the overlap

region. A higher coherence was observed here for the wall-normal velocity component, although

the streamwise component was also quite strong. The region exceeded the wall-normal extent of

our measurements and was oriented at an angle, with lower frequencies being associated with dis-

tances farther from the wall, thus suggesting that attached eddies may be responsible for these

wall-pressure fluctuations. We termed the frequency bands containing the first and second regions

of high coherence the VLSP and LSP bands after estimating the streamwise extent of the motions

associated with the fluctuations. We applied filters to isolate each of these bands, and then com-

puted space-time pressure-velocity correlations using the filtered pressure signals to identify the

motions responsible for the observed pressure-velocity coupling.

The pressure-velocity correlations computed to isolate the LSP band revealed that the observed

pressure-velocity coupling is a result of advecting hairpin packets with sizes spanning at least an

order of magnitude to reach well beyond the end of the logarithmic layer. Positive wall-pressure

fluctuations were observed when the sweep from the head of an upstream hairpin opposes the

ejection from between the legs of the downstream hairpin. This process forms an inclined shear

layer and a region of stagnation, which leads to the positive pressure. Conversely, negative wall-

pressure fluctuations were observed when the low-pressure head of a hairpin exists directly over the

pressure measurement location. An advecting hairpin packet therefore results in the alternation

between positive and negative wall-pressure fluctuation, and the frequency at which this occurs

depends on the size and spacing of the hairpins and the advection velocity of the packet. The

lowest frequency that could be attributed to the hairpin packets seems to coincide with the peak

of the wall-pressure spectrum, although it is possible that the hairpins may have some diminishing

influence at lower frequencies.

The pressure-velocity correlations associated with the VLSP band reveal patterns that can be

easily attributed to the VLSMs. High-speed VLSMs were found to cause positive wall-pressure

fluctuations, while low-speed VLSMs were found to cause negative wall-pressure fluctuations. Al-

though the streamwise component of these structures is the dominant motion, it appears that the

weaker wall-normal component is responsible for the observed low-frequency wall-pressure modula-

tion. The weak downward motion of the high-speed VLSMs appears to push fluid into the wall to

cause a positive pressure as is evident from the splatting that occurs beneath these structures. In

contrast, the weak lifting motion of the low-speed VLSMs seems to cause a suction and therefore

a negative pressure as fluid is lifted away from the wall. This is accompanied by an influx of fluid

that occurs near the wall beneath these low-speed structures. The alternation between splatting

and lifting that occurs beneath the VLSMs as they advect downstream therefore appears to be

the mechanism by which they modulate low-frequency wall pressure. The correlations also reveal

that the local extrema of wall pressure occurs near the front of the VLSMs, indicating that the

streamwise pressure gradient at the wall is in the same direction over most of the structure length.
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These pressure gradients at the wall are consistent with the amplitude and frequency modulation

that has been observed to occur beneath the VLSMs (Mathis et al., 2009; Ganapathisubramani

et al., 2012).

The demarcation between the LSP and VLSP bands observed here coincides with the peak of

the wall-pressure power spectrum. It then follows that the change in behaviour of the spectrum

at this extremum may be caused by the transition between pressure sources that occurs at this

point in the frequency domain. Frequencies lower than that of the peak location are associated

primarily with the VLSMs, while higher frequencies (up to a point) are associated primarily with

hairpin packets. More experiments at various Reynolds numbers are needed to confirm whether

the demarcation between LSP and VLSP always occurs at the spectral peak, but this information

could be useful to those developing models for the low-frequency behaviour of the spectrum, which

remains unresolved at this point. Given what we have learned in the present investigation, it seems

that the roll-off of the low-frequency range of the wall-pressure spectrum could be caused by the

length distribution of the VLSMs populating the TBL, as the longest motions causing the lowest

frequencies would be more rare and would therefore contribute less to the PSD.
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Part III

Actuation
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Chapter 6

Development of the Active Surface

This chapter details the development of the active surface used for boundary layer forcing. The

following are covered: the actuation requirements, actuator selection, assembly design, surface

deformation characteristics, and tuning of the device. Note that the height of the active surface

deformation in the positive wall-normal direction is denoted as h.

6.1 Actuation Requirements

The primary use of the active surface is to determine whether active surface deformations can be

used to target the VLSMs for control purposes. The actuation requirements are therefore dictated

by the characteristics of the VLSMs in the present TBL. First, it is known that the VLSMs are a

logarithmic-layer phenomenon. It follows that the active surface deformations should be capable

of penetrating into this layer. The logarithmic layer of the present TBL begins at y/λ ≈ 30 and

ends at y/λ ≈ 400, which corresponds to 1.1 mm ≲ y ≲ 14.6 mm. It seems reasonable to require

penetration into the first 10% of the logarithmic layer, and so the active surface must be able to

deform at least 2.45 mm in both wall-normal directions. Second, the active surface should be able

to operate at the frequencies associated with the VLSMs. Chapter 5 revealed that the VLSMs in

the present TBL occupy frequencies of up to around 17.5 Hz. The active surface must therefore be

able to operate reliably at frequencies of up to at least 20 Hz. Third, the dimensions of the surface

deformations should be large enough to produce an effect on the scale of the VLSMs which have

widths of at most 0.5δ (Dennis and Nickels, 2011b). This corresponds to roughly 47 mm in the

present TBL and so the active surface must therefore be capable of producing surface deformations

that are around 47 mm wide. Finally, the active surface must be able to produce smooth surface

deformations while being embedded into the surrounding surface such that it does not disturb the

boundary layer flow when undeformed (h = 0).

6.2 Actuator Selection

The actuator used to operate the active surface must have specifications that are commensurate

with the above requirements. Piezoelectric actuators are one type of actuator commonly used to
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implement moving surfaces for the purposes of active flow control (e.g., Jacobson and Reynolds

(1998); Segawa et al. (2002); Gibeau et al. (2019)). However, these actuators are typically more

well-suited for small displacements and high frequencies. To satisfy both the amplitude and fre-

quency requirements described above, a linear voice coil (i.e., electromagnetic) actuator featuring an

integrated position sensor was selected (BEI Kimco LAS16-23-000A-P01-4E). This linear actuator

is capable of maximum displacements of ±3.04 mm at frequencies of up to 117 Hz (sinusoidal) with

a stall force of 17 N according to the manufacturer data sheet. Unfortunately, these frequencies are

not achieved here due to the actuator having to work against various forces (surface tension, grav-

ity, etc.). However, sufficient performance is achieved as will be described shortly. The actuator is

powered using an external power supply (GW Instek GPS-2303) and controlled using a servo drive

(Ingenia Pluto) that has been programmed using Ingenia MotionLab software. Once programmed,

the displacement of the actuator can be read from the integrated position sensor and the desired

displacement can be set using an external voltage signal. Both of these signals are managed using

the real-time system described in Section 3.3.

6.3 Active Surface Assembly

The active surface assembly was developed to be a circular insert that can be fastened flush to

various surfaces over which boundary layers form as is shown in the cross-sectional schematic

of Figure 6.1(a). The origin of the coordinate axes is placed at the centre of the undeformed

active surface as shown in the figure; the circular shape therefore produces deformations that are

axisymmetric about the associated y-axis. This geometry was selected for several reasons. First,

a simple geometry facilitates manufacturing. Second, the present work was concerned with local

surface deformations, and the circular geometry seems ideal for producing a localized deformation.

Third, a simpler geometry helps isolate the effect of the moving surface instead of, for example,

the effect of a complicated protrusion or depression. And finally, the geometry was to be easily

reproducible by future researchers who wish to contribute further advancements to the topic.

The primary feature of the assembly is a circular disk of smooth silicone rubber that can be

deformed in the wall-normal direction using the linear actuator. The rubber features a thickness

of 1.52 mm, a 50A Shore hardness, and is rated for high temperatures so that the high-speed PIV

laser does not heat and damage the surface during experiments. The portion of the flexible disk

that is free to deform has a diameter of D = 100 mm as is shown in Figure 6.1(a); the portion

of the disk beyond this diameter is attached to the insert using an adhesive while retaining some

tension in the material so that it does not sag where it is unsupported. The flexible disk is driven

from underneath by a smaller rigid disk with a diameter of d = 50 mm (selected by rounding the

required deformation width of 47 mm discussed previously). The rigid disk is attached to the linear

actuator on one end using threads and is attached to the flexible disk on the other end using an

adhesive. Levelling posts allow for fine adjustment of the actuator location with respect to the

flexible disk to ensure the surface is flat at zero displacement. With the exception of the silicone

rubber disk, all custom-made components (shown in yellow, red, and violet in Figure 6.1(a)) were
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Figure 6.1: Cross-sectional schematics of (a) the active surface assembly and (b) the upward
and downward surface deformation. Note that the assembly is axisymmetric and therefore the
deformation is as well.
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machined from aluminum. Photographs of the complete assembly are provided in Figure 6.2.

When actuated, the centre of the active surface moves up or down uniformly over an area that

is set by the small rigid disk. The maximum surface displacement therefore occurs over this area,

the diameter of which was selected to match the approximate width of the VLSMs. The remainder

of the surface experiences a displacement that changes radially as the surface transitions from the

displacement set by the small rigid disk to the fixed zero displacement of the boundary layer plate

as is shown schematically in Figure 6.1(b). Note that the ratio d/D is important for determining

the gradient of the radial change in displacement for radii between d and D. The ratio d/D = 0.5

was selected to produce a relatively gradual surface deformation while keeping the active surface a

reasonable size. Note that this also produces D ≈ δ as long as d is set to match the width of the

VLSMs.

6.4 Shape of the Surface Deformations

The shape of the active surface when it is deformed has been measured by imaging the surface

from the side. Since the deformation is axisymmetric, capturing the deformation in a plane passing

through the centre of the active surface is sufficient. A thin silver line was drawn through the

centre of the surface and illuminated. A camera (the same model used for PIV, see Section. 3.2.3)

fitted with a 200-mm lens featuring an aperture setting of fo/4 was used to image this line for

surface deformations of h = ±0.5 mm, ±1.0 mm, ±1.5 mm, ±2.0 mm, and ±2.5 mm. An edge

detection method was then used to extract the surface profiles from the images which were clearly

highlighted by the silver line. Note that it was possible to capture the downward deformations

using this technique due to the large aperture of the camera lens. A sample raw image of the

surface deformation is shown in Figure 6.3(a). The same image with the extracted surface profile

overlaid using a dotted line is shown in Figure 6.3(b) to confirm that the edge detection method

does a good job of extracting the surface profile from the image. Finally, Figure 6.3(c) shows the

surface profiles for all considered cases. In this subfigure the dotted lines are the same profiles as the

solid lines, but they have been flipped about x = 0 to highlight the symmetry of the deformation.

Figure 6.3(c) reveals that the shape of the upward deformation (h > 0) slightly differs from the

shape of the downward deformation (h < 0). More specifically, the portion of the surface that

remains flat is slightly larger for h < 0. This is likely a result of how the small rigid disk interacts

with the flexible disk during actuation.

6.5 Tuning and Performance

Tuning the active surface was accomplished by programming the servo drive using MotionLab

software. This software allows for tuning many parameters. However, only the position proportional

gain, position derivative gain, force proportional gain, and force integral gain were found to be

necessary to operate the active surface. All other tuning parameters were therefore set to zero. A

reasonable and stable starting point for these four respective gains were 4.000, 0.015, 4.000, and
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(a)

(b)
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Figure 6.2: Photographs of the (a) top, (b) side, and (c) bottom of the active surface assembly. The
thin threaded posts visible in (b,c) but not in the cross-sectional schematic (Figure 6.1) function
only to support the surface when the device is turned off so that the silicone rubber does not stretch.
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Figure 6.3: (a) Sample photograph showing the deformed surface at a displacement of 2.0 mm, (b)
the same photograph with the extracted profile overlaid using a dotted line, and (c) all measured
profiles of the deformed surface at displacements of ±0.5 mm, ±1.0 mm, ±1.5 mm, ±2.0 mm, and
±2.5 mm. In (c), the vertical axis has been stretched by a factor of four to better show the profiles
and the dotted lines are the same profiles flipped about x = 0 to highlight the symmetry of the
deformation.

0.150. These values were altered depending on the input signal being tracked to achieve optimal

performance.

The displacement of the active surface was read using the voltage output from the position sensor

within the voice coil actuator. This voltage was converted directly to the correct displacement in

millimeters by the MotionLab software which was configured for this particular actuator. However,

the conversion had to be identified if the real-time system was to be used to record the displacement

of the active surface during experiments. A brief experiment was conducted to record the voltage

output of the displacement sensor for various known actuator positions. A fourth-order polynomial

conversion from V to mm was then fit to the data. This conversion was implemented by the

real-time system to produce measurements of the active surface displacement. The uncertainty

associated with this conversion is discussed in Appendix A.

A sample time series of the active surface tracking a random input signal is shown in Figure 6.4.

In this case, the reference signal contains frequencies of up to 20 Hz which is the minimum frequency

that the active surface should be able to handle as was discussed previously. Sufficient tracking of

this signal is observed as is evident in the figure. The active surface was operated using a random

input signal such as this one for the investigation documented in Chapter 7. Furthermore, periodic

surface deformations at frequencies of up to 40 Hz were used for the investigations documented in

Chapters 7 and 8. The actuator was tuned on a case-by-case basis to achieve adequate tracking of
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Figure 6.4: Sample time series of the active surface tracking a random input signal containing
frequencies of up to 20 Hz.

some of the periodic signals, especially those at the higher frequencies.

Finally, it is important to note that the measured displacement only captures the motion of

the flat portion of the deformation as set by the small rigid disk that is directly fixed to the

linear actuator. The behaviour of the unsupported portion of the active surface should also be

considered, as high frequencies and amplitudes could cause this portion of the surface to experience

secondary oscillations depending on the properties of the material. To show that this is not a

significant concern for the present investigation, high-speed videos of the active surface operating

at an amplitude of 2 mm and actuation frequencies of 20 and 40 Hz have been recorded. These

recordings are shown in the supplementary material of Gibeau and Ghaemi (2022) and they reveal

that any secondary oscillation of the unsupported portion of the active surface is small in comparison

to the primary deformations and only occurs at the highest frequencies.
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Chapter 7

Laminar Boundary Layer Forcing
with Active Surface Deformations

Section 2.4.1 made it clear that the idea of using local wall-normal surface deformations as a means

of actuation for flow control has been around for a few decades. Although there is interest in the

topic, the actuation concept has received far less attention when compared to more popular options

such as fluidic and plasma actuation. As a result, the literature lacks the information necessary for

designing a suitable surface deformation for targeting a given flow feature in a control application.

More specifically, it is not clear how the frequency and amplitude of simple surface deformations

affect the motions that are produced. This information is critical for determining which features

of a flow can be effectively targeted using this actuation strategy. The active surface developed

in Chapter 6 has therefore been deployed beneath an LBL to expand upon the sparse literature

regarding how simple wall-normal surface deformations influence wall-bounded flows. The LBL

was selected for two reasons: i) it is the simplest wall-bounded flow and is therefore the logical

choice for an initial evaluation of a new actuator in a clean flow, and ii) it allows us to easily

evaluate models for the input-output dynamics of the actuated flow because the unactuated flow

is steady. This chapter first considers how periodic surface deformations influence the flow over a

range of actuation amplitudes and frequencies with an emphasis on the spatial structure, strength,

and stability of the resulting motions. Second, it is shown a simple linear model that is commonly

used to design controllers is capable of capturing the input-output dynamics of the actuated flow.

7.1 Experimental Setup

7.1.1 Laminar Boundary Layer Configuration

The LBL was generated using an LBL plate as was discussed in Section 3.1.3. The active surface

sat flush with the plate and the gaps between the two components were filled with a malleable

polymer clay to achieve a smooth transition. The centre of the active surface was located 17.5 cm

from the leading edge of the plate during experiments; the centre of the active surface is also where

the origin of the coordinate system is located for the following analyses as is shown in Figure 7.1.
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Figure 7.1: Schematic of the experiment showing the boundary layer plate, active surface, and
FOVs used for PIV.

7.1.2 Particle Image Velocimetry

The PIV system discussed in Section 3.2.3 was used to conduct two separate high-speed PIV

experiments for the purpose of capturing the performance of the active surface: a four-camera

planar measurement that was stitched together into a single FOV and a stereoscopic measurement.

These FOVs are numbered accordingly in Figure 7.1.

The planar PIV experiment was used to capture the flow field above and downstream from the

active surface in the streamwise–wall-normal plane at centre span (z = 0). Each camera was fitted

with a 2× teleconverter and a 200-mm lens featuring an aperture setting of fo/5.6. The combined

FOV, which is denoted as FOV4 within Figure 7.1, has dimensions of (∆x, ∆y) = 305 mm × 29 mm

and a resolution of 64.5 µm/pixel. FOV4 was stitched together from the sub-FOVs of four cameras

to capture a larger extent of the streamwise direction while retaining sufficient resolution. However,

the cameras viewing adjacent sub-FOVs could not be placed side-by-side while retaining FOV

overlap for stitching because of the large size of each camera. As a result, the cameras viewing the

first and third sub-FOVs were placed on one side of the test section and the cameras viewing the

second and fourth sub-FOVs were placed on the other side of the test section. This arrangement

required a transparent calibration target so that the cameras on opposite sides of the test section

could view the same plane during the calibration process. The target was made in-house by printing

a dotted grid of known dimensions onto a transparency film and adhering it to a flat piece of glass.

The entirety of FOV4 was illuminated with a 1-mm-thick laser sheet formed using a combination

of spherical and cylindrical lenses. The sheet was directed from downstream using a mirror that

was located within the test section behind the boundary layer plate.
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The parameters of the data acquisition for FOV4 were the same for all cases considered. Sets

of 4000 double-frame images were collected from each of the four cameras at an acquisition rate of

500 Hz, resulting in 8 seconds of time-resolved data for each case. The images were preprocessed

in two steps. The minimum of each ensemble was subtracted to reduce the background noise,

and then the images were divided by the background-subtracted ensemble average to normalize

the intensity counts. The preprocessed double-frame images were then cross-correlated using a

multi-pass algorithm. The final pass employed 24 × 24-pixel Gaussian-weighted interrogation

windows with 75% overlap. The resulting vector fields were stitched into a single FOV using the

information from the target calibration, and then a post-processing round was performed. This

included applying universal outlier detection (Westerweel and Scarano, 2005) to detect spurious

vectors, which were then replaced using polynomial interpolation in both space and time.

The stereoscopic PIV experiment was used to capture the spanwise variation of the flow field

downstream from the active surface in the spanwise–wall-normal plane. Two cameras were used,

each with Scheimpflug mounts, 2× teleconverters, and 200-mm lenses with aperture settings of

fo/16. Both cameras were placed at 45◦ to the imaging plane and were arranged in a forward-

scattering orientation with respect to the laser sheet. The stereoscopic FOV, which is denoted

as FOV5 within Figure 7.1, was located 11 cm downstream from the centre of the active surface

(x/D = 1.1). FOV5 had dimensions of (∆z, ∆y) = 122 mm × 28 mm and an effective resolution

of 70.1 µm/pixel. The stereoscopic calibration included a 3D target calibration followed by a self-

calibration using a small set of particle images (Wieneke, 2005). FOV5 was illuminated with a

thicker 2-mm laser sheet to improve the correlation between double-frame images since the mean

flow direction was normal to the imaging plane.

The same data acquisition parameters for FOV5 were used for all cases considered. Sets of 4000

double-frame images were collected from both cameras at an acquisition rate of 1 kHz, resulting in

4 seconds of time-resolved data for each case. A higher acquisition rate was used for stereoscopic

PIV compared to planar PIV to improve the temporal resolution of the measurements, as the flow

structures do not remain in FOV5 for long. The same image processing steps that were applied to

the planar PIV images were also applied to the stereoscopic images, with the only differences being

that the multi-pass cross correlation was the stereoscopic variant of the algorithm and 32 × 32-pixel

Gaussian-weighted interrogation windows were used.

Finally, trigger signals for the laser and cameras were recorded along with the actuator signals

during all PIV experiments. This was done so that the resulting vector fields could be synchronized

with the displacement of the active surface by using the procedure described in Section 3.3.2.

7.1.3 Base Flow

The mean velocity profiles at x/D = 0, 1, and 2 for the base flow (unactuated) are presented in

Figure 7.2. It is evident in the figure that the velocity profiles closely match the Blasius solution

at all three streamwise locations, confirming that the LBL plate produces the desired flow field.

The boundary layer thickness at 0.99U∞, displacement thickness, momentum thickness, and the
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Figure 7.2: Mean boundary layer profiles for the base flow measured at three streamwise locations
and compared to the Blasius solution.

Reynolds number computed using the displacement thickness at the same three streamwise locations

are given in Table 7.1. Note that Reδ∗ = 520 at x/D = 2 coincides exactly with the “indifference

point” for the Blasius profile (Schlichting and Gersten, 2017). This is the largest Reynolds number

that can be achieved before neutral disturbance waves, which are periodic in both space and time

(Maslowe, 1986), begin to amplify within the LBL according to linear stability analysis. The

present study was designed to place this point sufficiently downstream from the active surface to

decrease the chance that the forcing causes an immediate transition to turbulence. However, as we

will discuss later in Section 7.2.2, the periodic motions produced by the active surface can become

unstable prior to this point.

The mean flow has also been evaluated for static deformations up to h/D = ±0.02. This was

done to determine whether the active surface has an impact on the flow when the dynamic element

is removed. The mean streamwise velocity of the base flow over a portion of FOV4 is shown in

Figure 7.3(a) where the mean profiles (solid black lines) at several streamwise locations are overlaid

along with the boundary layer thickness based on 0.95U∞ (dashed black line). This subfigure acts

as the baseline for comparison of the flow fields that result from static deformation of the active

surface. Consequently, the mean profiles and the boundary layer thickness of the base flow are

included in the subsequent panels of Figure 7.3 with black lines to facilitate comparison. Note

that the mean velocity fields of the static deformation cases are sufficient to fully characterize the

behaviour of the downstream flow because no unsteadiness was observed.

106



x/D δ99 [mm] δ∗ [mm] θ [mm] Reδ∗

0 4.1 1.4 0.5 340

1 5.3 1.9 0.7 450

2 6.0 2.2 0.8 520

Table 7.1: Boundary layer parameters for the base flow at three streamwise locations: boundary
layer thickness at 0.99U∞, displacement thickness, momentum thickness, and the Reynolds number
computed using the displacement thickness.

Figure 7.3(b) shows the mean streamwise velocity resulting from static deformation at h/D =

−0.02. The boundary layer thickness (dashed red line) can be seen to decrease slightly above the

active surface when compared to that of the base flow (dashed black line), but these differences

recover by x/D = 0.7. We also see a near perfect overlap between the velocity profiles (solid red

and black lines) beyond this point. As was shown in Figure 7.2, the base flow adheres to the Blasius

solution. We can therefore conclude that the boundary layer downstream from static deformation

at h/D = −0.02 quickly recovers to the Blasius solution despite the upstream depression caused

by the active surface.

Figure 7.3(c) shows the mean streamwise velocity resulting from static deformation at h/D =

0.02. In contrast to the downward surface deformation, we can now see changes to the mean flow

throughout FOV4. More specifically, we see a thicker boundary layer (dashed red line) compared

to the base flow (dashed black line) caused by the protrusion of the active surface into the flow.

This effect is strongest immediately following the active surface in the region 0.5 < x/D < 1.0, but

some differences persist until the end of the FOV. As can be seen by the overlaid velocity profiles

(solid red lines), which are shown more clearly in the zoomed-in view of Figure 7.3(d), the profile

located at x/D = 0.75 no longer appears to adhere to the Blasius solution (solid black line) as the

portion of the profile near the wall now features a smaller velocity gradient. This velocity profile

includes a pronounced inflection point and appears similar to one near a separation point (e.g., Ma

et al. (2020)). We also see a very small region of flow separation on the downstream side of the

surface protrusion around x/D = 0.48. This region is only visible for h/D = 0.02 and is shown in

Figure 7.3(d) using the dotted red line that highlights the contour of ⟨U⟩ = 0. The results from

FOV5 are not shown here for brevity, but they reveal that the effect of the surface protrusion extends

to roughly z/D = ±0.3 in the spanwise direction at the location of the stereoscopic measurement

(x/D = 1.1). We can therefore consider the overall effect of static upward deformation to be an

elongated streak-like region of velocity deficit. A similar effect is seen for static deformations of

h/D = 0.015, 0.010, and 0.005, but with diminishing strength as the height of the deformation is

reduced.

The present results reveal that only static upward deformation of the active surface produces

meaningful changes to the flow downstream from the active surface, while static downward defor-
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Figure 7.3: Mean streamwise velocity within FOV4 (z = 0) for (a) the base flow, (b) static
deformation at h/D = −0.02, and (c–d) static deformation at h/D = 0.02. The solid lines are mean
profiles at selected streamwise locations and the dashed lines show the boundary layer thickness at
0.95U∞. In all panels, the black lines represent the base flow while the red lines represent the static
deformation cases. Note that (d) is a zoomed-in view of (c) to better show the change in velocity
profiles that occurs for static deformation at h/D = 0.02. The dotted red line in (d) is a contour of
⟨U⟩ = 0 that highlights the small separation region on the downstream side of the active surface.

mation has a negligible impact. In contrast, periodic actuation produces both high- and low-speed

motions with similar magnitudes as we will see in Section 7.2. It therefore seems to be the case that

the dynamic element of the active surface is important for successful actuation, especially when

producing downward deformations.

7.1.4 Actuation Cases

Two types of actuation were considered in the present investigation: periodic and random defor-

mation of the active surface. Periodic deformation was considered to investigate how the amplitude

and frequency of active surface deformations affect the flow field. We operated the actuator using
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the signal

hr(t) = Asin(2πfat), (7.1)

where A is the actuation amplitude, fa is the actuation frequency, t is time, and hr is the reference

signal in millimeters that is meant to be tracked by the actuator. We considered amplitudes of

0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm, which correspond to 12% to 49% of the local boundary

layer thickness, and frequencies ranging from 4 Hz to 40 Hz in increments of 4 Hz. The actuation

amplitudes and frequencies are normalized using the active surface diameter D = 100 mm and the

freestream velocity U∞ = 4.0 m/s throughout most of this paper. In the case of the normalized

frequency this produces the Strouhal number St = faD/U∞. The normalized values therefore range

from A/D = 0.005 to 0.02 and St = 0.1 to 1.0. Finally, we consider a randomized h(t) signal as

the second type of actuation. This was done for the purposes of system identification; more details

regarding this randomized signal and its use are discussed in Section 7.3.

The results from the periodic deformation cases constitute the primary data in this chapter.

The active surface was tuned on a case-by-case basis to have the amplitudes of the sinusoidal dis-

placement patterns be within a few percent of the desired values. The phase-averaged displacement

(more details on the phase-averaging process in the next section) of the active surface is shown for

all actuation cases in Figure 7.4. It is clear in the figure that the phased-averaged displacement

signals closely match the desired sinusoids.

7.1.5 Phase Averaging

A phase averaging technique was applied to the vector fields associated with the periodic defor-

mation cases to obtain improved representations of the resulting periodic flows. We found that

these phase-averaged velocity fields are an excellent representation of the instantaneous flow when

the motions downstream from the active surface remain periodically organized. However, phase

averages of the actuation cases that result in a transition to turbulence no longer provide a good

representation of the flow beyond the point of transition. This did not pose any issues for this

investigation since we are not interested in the flow downstream from a transition to turbulence.

Moreover, the phase-averaged flow fields of the cases featuring transition still provide useful infor-

mation. For example, they show the structure and strength of the motions leading up to transition

and also the streamwise location at which transition occurs (as indicated by abrupt changes in the

structure and strength). For these reasons we focus on the phase averages throughout the analysis

of the periodic deformation cases.

The phase of the active surface ϕ was extracted from the measurements of h using a Hilbert

transform as

ϕ = ∠(−iH{h}) + π, (7.2)
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Figure 7.4: Phase averages of the active surface displacement (⟨h⟩ϕ, dotted lines) compared to
the reference sinusoids that the surface is meant to track (solid lines) for all periodic deformation
cases. Note that ϕ is the phase of actuation.

where H{h} denotes the Hilbert transform of the active surface displacement. The manipulations

with i and π were used to shift the phase such that one full cycle extends from ϕ = 0 to 2π with

ϕ = 0 representing the active surface at h = 0 with a velocity in the positive wall-normal direction.

The velocity fields were averaged using phase bins with widths of 0.1π and 80% overlap. Since each

set contains 4000 measurements, each average was computed using roughly 200 vector fields.

7.2 Motions Produced by Periodic Forcing

In this section we evaluate how the active surface influences the LBL when operated according to

the periodic actuation cases discussed in Section 7.1.4. We focus on the spatial structure, strength,

and stability of the periodic motions that form as a result of the active surface deformations. We

consider only the streamwise velocity fluctuations, as we found that the phase averages of v are

roughly five to ten times weaker than the phase averages of u (prior to instability growth).

7.2.1 Spatial Structure

We begin by studying the spatial structure of the motions that result from operating the active sur-

face to produce periodic deformations. In general, the structure of the flow under these conditions

can be characterized as modes featuring repeating high- and low-speed motions that form above

the active surface and advect downstream. The high-speed motions form as the surface moves

downwards and suctions high-speed fluid towards the wall, while the low-speed motions form as

the surface moves upwards and pushes low-speed fluid away from the wall. The shape, dimensions,

intensity, and stability of the resulting modes depend heavily on the frequency and amplitude of
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actuation. To begin investigating these modes we consider the flow formed from actuation at an

amplitude of A/D = 0.005, which is the smallest amplitude considered in this chapter. The modes

formed at this small actuation amplitude are generally more organized and stable than those formed

using larger deformations of the active surface and therefore they allow us to more easily scrutinize

how the modes vary as function of frequency. In fact, it is the only actuation amplitude considered

here that produces modes that remain organized throughout the entirety of FOV4 for all actuation

frequencies. As a result, the phase averages of these cases are an excellent representation of the

instantaneous flow field.

Phase averages of the fluctuating streamwise velocity (⟨u⟩ϕ) are given in Figure 7.5 for all

actuation frequencies considered at an amplitude of A/D = 0.005. A phase of ϕ = 3π/2 is shown

in all cases, which corresponds to the surface being at the lowest position of the cycle with zero

velocity. All panels within the figure show a series of high- and low-speed motions that alternate in

the streamwise direction. The height of these motions remains relatively constant at around 0.05D

(∼δ99), but their wavelengths in the streamwise direction are a strong function of the actuation

frequency. As the frequency is increased from St = 0.1 to 0.3 (Figures 7.5(a–c)), we see a rather

drastic reduction in the length of the high- and low-speed motions while the mode shape remains

similar overall. When the actuation frequency reaches St = 0.4 (Figure 7.5(d)) we see a break in this

trend. The flow structures are now relatively weak, and the structure immediately downstream from

the active surface has a positive sign of fluctuation – the opposite of what is observed for St = 0.1

to 0.3. We then see a return to the original mode shape as the frequency is increased through the

range St = 0.5 to 0.9 (Figures 7.5(e–i)), where the streamwise wavelengths of the modes continue

to decrease as frequency is increased. Finally, we see a break in the trend once again for St = 1.0

(Figure 7.5(j)), which appears to generate the same mode shape that was observed at St = 0.4 but

with a reduced streamwise wavelength. Overall, it appears that there are alternating transitions

between two different mode types as St is increased. These mode types are maintained at the

higher actuation amplitudes, although they are more intense and therefore less stable; this will be

discussed in more detail in Section 7.2.2.

To further investigate the modes visible in Figure 7.5 we consider their streamwise wavelengths

(λx), i.e., the streamwise distance between motions with the same sign of fluctuation. These wave-

lengths were computed by applying an autocorrelation in the streamwise direction to an isolated

portion of the instantaneous snapshots of streamwise velocity fluctuation that contains the periodic

modes. The average of all 4000 autocorrelation curves for each case was used to extract the wave-

length by locating the point at which the autocorrelation curve reaches a minimum. This point is

half the wavelength because it occurs when the autocorrelation has been shifted such that adjacent

structures with opposite sign of fluctuation overlap. To isolate the modes for the autocorrelation,

we extracted the portion of each snapshot beyond x/D = 0.5. The height of the extracted portion

was limited to y/D = 0.1, and the length was limited to 0.75λ̂x where λ̂x is the streamwise wave-

length estimated from the phase averages of Figure 7.5. This was done to capture the streamwise

extent necessary for achieving the minimum of the autocorrelation function without including the

111



Figure 7.5: Phase averages of the fluctuating streamwise velocity (⟨u⟩ϕ) within FOV4 (z = 0)
resulting from periodic surface deformation at an amplitude of A/D = 0.005. The panels (a)-
(j) coincide with actuation frequencies of St = 0.1 though 1.0. The phase of the deformation is
ϕ = 3π/2 in all cases, i.e., the surface is at the lowest position of the cycle with zero velocity.
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breakdown of the modes that can occur downstream for some of the larger actuation amplitudes.

The streamwise wavelengths of the modes produced by periodic actuation are presented in

Figure 7.6(a), where the values can be seen to range from roughly λx/D = 2.3 at St = 0.1 to

λx/D = 0.5 at St = 1.0. The figure reveals that the wavelength follows a power law that is

proportional to St−0.7, thus confirming the strong dependence on the actuation frequency that is

visible in Figure 7.5. As a result of this power law, the wavelengths reduce quite quickly at the lower

frequencies and then level off to a more gradual decline as frequency is increased. The actuation

amplitude does not appear to have a large impact on the wavelength, with the exception being

actuation at St = 0.4 and 0.5, which reveals wavelengths that no longer agree with the power law

for a few actuation amplitudes. This seems to be associated with the emergence of the new mode

type at this actuation frequency, although the same behaviour is not observed for the wavelengths

at St = 1.0 where the new mode type is also found.

Since the actuation frequencies are known, we can use the wavelengths shown in Figure 7.6(a)

to estimate the advection velocity (Uc) of each mode using the relation Uc = faλx. These advection

velocities have been computed for all cases and are presented in Figure 7.6(b) along with the

associated power law. The advection velocity can be seen to increase with actuation frequency,

and the values range from roughly Uc/U∞ = 0.2 to 0.45. Since Uc/U∞ < 1 for all cases, the

modes feature a so-called “critical layer” centred upon the wall-normal location where the advection

velocity of the mode matches the local mean velocity (Maslowe, 1986). The analysis of these critical

layers originates from linear stability theory and will be discussed in more detail in Section 7.2.2.

The advection velocities can be used along with Taylor’s hypothesis to transform the time

domain of time-resolved measurements into a spatial domain in the streamwise direction. When

used with the stereoscopic measurements in the z–y plane of FOV5, this allows for estimating how

the motions shown in Figure 7.5 vary in the spanwise direction. This transformation has been

applied to the phase-averaged measurements from FOV5 at A/D = 0.005 while using the power

law relation shown in Figure 7.6(b) to compute Uc (the computed values for Uc agree well with the

power law for this actuation amplitude); the results are shown in Figure 7.7 for the streamwise–

spanwise plane at y/D = 0.02. Note that these visualizations lose accuracy with distance from

the location where the measurements were conducted. In the present case the measurements were

conducted within FOV5 at x/D = 1.1, and this location is marked using a dashed line in the panels

of Figure 7.7.

The visualizations of the motions in the streamwise–spanwise plane shown in Figure 7.7 reveal

interesting behaviour that is not observed within the streamwise–wall-normal plane of FOV4. More

specifically, we see a significant variation of the velocity fluctuations in the spanwise direction that

provides insight into the true structure of the flow field downstream from the active surface for

varying actuation frequencies. We can see that the different mode types really are quite distinct

from one another. Some modes, for example those produced at St = 0.4 and 1.0 (Figures 7.7(d,j)),

have split down the centreline of the active surface (z = 0) to produce two separate motions

displaced in the spanwise directions. This is clearly why these modes appear to be significantly
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Figure 7.6: (a) The streamwise wavelength (λx) of the modes produced by periodic deformation of
the active surface and (b) the associated advection velocities of the modes computed as Uc = faλx.

weaker in Figures 7.5(d,j). In contrast, other actuation frequencies produce modes featuring single

dominant motions concentrated along the centreline of the active surface, for example St = 0.1 and

0.6 (Figures 7.7(a,f)). Following these observations we define the type-1 modes as those featuring

high- and low-speed motions with single maximums and minimums along z = 0. In contrast,

we define the type-2 modes as those featuring high- and low-speed motions with double maxima

and minima displaced in the spanwise directions. Consequently, the mode types can be identified

by plotting a velocity profile across the span near the location of maximum or minimum velocity

fluctuation. Such profiles are shown in the subpanels of Figure 7.7, revealing that actuation at

St = 0.1, 0.2, 0.6, and 0.7 produces type-1 modes while the remaining St produce type-2 modes.

A benefit of using phase-averaged velocity fields in the present investigation is that they allow

for combining the results from both FOV4 and FOV5 into 3D visualizations to obtain a more

complete picture of the modes produced by the active surface. Figure 7.8 shows such visualizations

of the type-1 and type-2 modes and the transitions they go through with increasing St. These

visualizations make use of both sets of phase averages as well as Taylor’s hypothesis which was

applied in the same manner as for Figure 7.7. The location of the stereoscopic measurement plane

used to apply Taylor’s hypothesis is shown in Figure 7.8 using a dashed black line. Note that the

3D flow field constructed from the stereoscopic measurements is most accurate close to this plane.

The visualization of the type-1 mode generated at St = 0.2 is shown in Figure 7.8(a), revealing

structures that can be described as flattened sheets of high- and low-speed fluid that form above

the active surface and advect downstream. In contrast, Figure 7.8(b) shows the type-2 mode that

is generated at St = 0.3. Here, the extrema are now displaced in the spanwise directions as per

the definition of type 2. Indeed, the streamwise extent of each coherent motion in Figure 7.8(b) as

represented by the isosurfaces can be seen to shrink along z = 0 more drastically than it does farther
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Figure 7.7: Phase averages of the fluctuating streamwise velocity (⟨u⟩ϕ) at a height of y/D = 0.02
resulting from periodic actuation at A/D = 0.005. The panels (a) through (j) coincide with
actuation frequencies of St = 0.1 though 1.0. The phase of actuation is ϕ = 3π/2 in all cases, which
is the same phase shown in Figure 7.5. The streamwise axes have been formed by applying Taylor’s
hypothesis using the advection velocities computed from the power law shown in Figure 7.6(b). The
dashed lines at x/D = 1.1 show the location of the stereoscopic measurements (FOV5) that were
used to form these visualizations. The solid green lines show the location of the extracted velocity
profiles at the right of each panel.
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in the spanwise directions. At St = 0.4 (Figure 7.8(c)), the type-2 mode is very weak along z = 0

where the isosurfaces reveal a near complete splitting of the mode along the actuator centreline.

Finally, Figure 7.8(d) shows the type-2 mode that is generated at St = 0.5. The flattened sheets

along z = 0 are beginning to re-emerge, but the extrema of the type-2 mode still have a dominant

presence farther away from z = 0.

Figure 7.8 reveals that the application of Taylor’s hypothesis to the stereoscopic measurements

appears to work quite well, as there is good agreement between the isosurfaces and the contours

in the x–y plane obtained using planar PIV. The only exception here is the isosurface of the

downstream low-speed motion in Figure 7.8(a), which does not extend as far in the streamwise

direction as the contour in the x–y plane. This is likely because Taylor’s hypothesis is most accurate

close to the measurement location (x/D = 1.1 in this case), and this particular structure extends

quite far downstream. It is also interesting to note that the advection velocity was assumed to be

constant across the boundary layer for the application of Taylor’s hypothesis since the power law

from Figure 7.6(b) was used to compute Uc at each actuation frequency. The alternative approach

would be to use the mean velocity at each wall-normal location as the advection velocity as was done

in Chapter 5. However, we found that the isosurfaces no longer agreed with the measurements in

the x–y plane when this approach was applied. This suggests that these modes advect downstream

with minimal distortion from the mean shear and with advection velocities that differ from the

local mean velocity.

Considering the motions produced by periodic actuation, we can conclude that it is the type-

1 modes that are most desirable for flow control applications that rely on targeting individual

coherent motions. This is because these modes feature dominant motions that are concentrated

along z = 0. It is typical to place sensors and actuators aligned in the streamwise direction, and

so an actuator that produces its strongest effect along its own centreline is preferable. The present

active surface produces type-1 modes for St = 0.1 to 0.2 and St = 0.6 to 0.7. The former frequency

range produces velocity fluctuations that are nearly as wide as the active surface, while the latter

range produces fluctuations that are much narrower. The type-1 modes produced at low frequencies

are therefore a more efficient use of the space taken up by the active surface.

7.2.2 Strength and Stability

In the previous section we investigated the spatial structures of the modes produced by the active

surface for varying actuation frequencies. We will now explore the strength and stability of these

modes as a function of both actuation frequency and amplitude. The spatial structure of a mode

produced at a given actuation frequency does not change significantly as the actuation amplitude

is increased (prior to the breakdown of a mode via instabilities). Instead, the velocity fluctuations

become stronger, which results in the mode becoming less stable overall. To first illustrate this

qualitatively we consider instantaneous visualizations of the motions produced at St = 0.7 (type-

1 mode) for all amplitudes considered. These visualizations are shown in Figure 7.9 where the

actuation phase remains constant for all cases to facilitate comparison. Note that proper orthogonal
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Figure 7.8: Combined phase-averaged visualizations of the motions formed by the active surface
for (a) St = 0.2, (b) St = 0.3, (c) St = 0.4, and (d) St = 0.5. The isosurfaces are shown at ±0.01U∞
and the contours in the x–y plane have the same scaling as Figures 7.5 and 7.7. Taylor’s hypothesis
was used to transform the time-resolved stereoscopic measurements into three dimensions; the
location of the stereoscopic plane is shown in each panel using the dashed black lines.
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decomposition (POD) by the method of snapshots (Sirovich, 1987) was applied to reduce the PIV

noise for the purpose of improving these visualizations. The POD reconstructions retain a minimum

of 85% of the fluctuating energy.

The instantaneous visualization for A/D = 0.005 (Figure 7.9(a)) is consistent with the phase

averages shown in Figures 7.5(g) and 7.7(g). This is because this small actuation amplitude is not

large enough to cause the mode to break down within the FOV and therefore the periodicity is

retained. However, while the mode remains organized, we can see that the high- and low-speed

motions are increasing in strength with downstream distance. This suggests that the mode is

unstable and may grow to the point of decomposition at some point farther downstream. When

the actuation amplitude is increased to A/D = 0.01 (Figure 7.9(b)), we can see that the mode now

begins to break down within FOV4 as is evidenced by the high- and low-speed motions overlapping

with one another near x/D = 1.8. It seems that this may be the natural progression of these modes

when the strength of the fluctuations surpasses some threshold since high- and low-speed motions

that alternate in the streamwise direction would have a tendency to approach one another as a

result of their different advection velocities. Once the actuation amplitude is further increased to

A/D = 0.015 or 0.02 (Figures 7.9(c,d)) it is clear that the coherent structures have begun to break

down into smaller motions within the FOV.

All motions shown in Figure 7.9 are quite similar to one another up to roughly x/D = 1.3.

Although the height of the surface deformation has increased fourfold across the cases considered,

the height of the high- and low-speed motions just downstream from the active surface does not

change much. Instead, increasing the amplitude of the surface deformation increases the strength of

the motions. This is most obvious when looking at the low-speed motion located around x/D = 1

in each panel of Figure 7.9, which can clearly be seen to increase in strength as the actuation

amplitude is increased. In fact, it appears that it is these low-speed motions that initiate the

breakdown of the mode, as they are observed to lift up and eventually participate in the emergence

of the turbulent motions as can be seen in Figures 7.9(c,d). These low-speed motions will produce

an inflection point within the instantaneous boundary layer profile; such an inflection point is well-

known to be associated with instability (Schlichting and Gersten, 2017; Schmid and Henningson,

2001).

The instantaneous visualizations shown in Figure 7.9 are generally representative of what hap-

pens to all modes when the actuation amplitude is increased. More specifically, increasing the

amplitude increases the strength and decreases the stability of the motions while the spatial struc-

ture of the mode at a given frequency is roughly retained until an instability beings to grow. At

the point of instability the high- and low-speed structures begin to overlap, leading to an eventual

breakdown into smaller turbulent motions. Despite this generally applicable observation, these

visualizations are essentially qualitative and are therefore limited in their ability to capture the

full extent of the present results. To better quantify the strength and stability of the motions for

all periodic actuation cases, we return to the phase averages. As described in Section 7.1.5, the

phase-averaged results are an excellent representation of the instantaneous motions when they re-
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Figure 7.9: Instantaneous visualizations of streamwise velocity fluctuation (u) produced at an
actuation frequency of St = 0.7 for actuation amplitudes of (a) A/D = 0.005, (b) A/D = 0.01, (c)
A/D = 0.015, and (d) A/D = 0.02. The phase of the actuator is roughly ϕ = π/2 in all cases, i.e.,
the surface is at the highest position of the cycle with zero velocity.

main organized and periodic, but they no longer accurately represent the instantaneous flow once a

mode begins to break down. This is not an issue for the present analysis because we are interested

in the strength of the periodic motions while they remain organized and whether this strength

decays (stable) or grows (unstable) with downstream distance. Both pieces of information can be

extracted from the phase averages and therefore they provide an excellent summary of the strength

and stability of the modes produced by the active surface as a function of actuation frequency and

amplitude.

The maximum absolute values of the phase-averaged streamwise velocity fluctuations (max(|⟨u⟩ϕ|))
are presented in Figure 7.10 as a function of streamwise distance for all periodic actuation cases.

The figure includes the measurements from both FOV4 (solid lines) and FOV5 (star symbols). The

results from FOV4 consider the maximum over the wall-normal and phase dimensions along z = 0,

while the results from FOV5 consider the maximum over the spanwise, wall-normal, and phase

dimensions at x/D = 1.1. When these two sets of results agree (the star symbol is close to the solid

line) it is because the maximum occurs near z = 0 (type-1 mode) and is captured by both FOVs.

When a significant discrepancy is observed it is because the maximum occurs away from z = 0

(type-2 mode) and is therefore only captured by the measurement in FOV5. The quantity plotted

in Figure 7.10 provides a measure of the average peak strength of the fluctuations produced by the
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Figure 7.10: Maximum absolute values of the phase-averaged streamwise velocity fluctuations (i.e.,
the strength of the modes) within z = 0 as a function of streamwise distance for all periodic defor-
mation cases. The panels (a) through (j) coincide with actuation frequencies of St = 0.1 though
1.0. The star symbols represent the same quantity extracted from the stereoscopic measurements
at x/D = 1.1.
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active surface and will simply be referred to as the strength of the modes to ease the discussion

moving forward.

First we consider the strength and stability of the flow downstream from the active surface

at the frequency and amplitude combinations that produce type-1 modes. As shown previously

(Figure 7.7) this occurs for St = 0.1, 0.2, 0.6, and 0.7. Since FOV4 is located at z = 0, the results

shown in Figure 7.10 are well-suited for quantifying the strength and stability of these type-1 modes.

The velocity fluctuations produced by periodic deformation at St = 0.1 (Figure 7.10(a)) appear to

remain stable for amplitudes ranging from A/D = 0.005 to 0.015 as is indicated by the observed

decay in strength with streamwise distance. In contrast, actuation at A/D = 0.02 produces a

mode with a strength that begins to grow substantially beyond x/D = 2, thus indicating that the

associated mode has become unstable. Similar behaviour is observed for St = 0.2 (Figure 7.10(b)),

but at this frequency both A/D = 0.015 and 0.02 produce an unstable mode. We can also see

that the points from FOV5 agree well with the curves from FOV4 for St = 0.1 and 0.2, indicating

that the maximum strength occurs near z = 0 and confirming that these are in fact type-1 modes.

This is also the case for St = 0.6 and 0.7 (Figures 7.10(f ,g)). However, these actuation frequencies

appear to produce type-1 modes that are unstable for all actuation amplitudes considered. This

is indicated by the strength either becoming erratic within FOV4 (A/D ≥ 0.01) or continuing to

grow with downstream distance (A/D = 0.005).

The strength of the type-1 modes produced at St = 0.1 and 0.2 for the same actuation am-

plitudes are quite similar if we only consider the portion of the curves prior to instability growth.

If we look at the strength at the edge of the active surface (x/D = 0.5) we can see that both

actuation frequencies produce a maximum strength that ranges from roughly 0.1U∞ to 0.35U∞

as the actuation amplitude is increased (Figures 7.10(a,b)). These values then decay at similar

rates with downstream distance for the cases that remain stable. Since the actuation frequency

has doubled between these two cases, so has the velocity of the surface. Despite this, the strength

remains similar. The same result is visible for the type-1 modes produced at St = 0.6 and 0.7 (Fig-

ures 7.10(f ,g)), i.e., the strength of the fluctuations produced at the edge of the active surface is

similar for both frequencies as long as we are considering the same actuation amplitude. However,

these fluctuations are weaker overall compared to those produced at St = 0.1 and 0.2.

Unfortunately, the present results do not allow us to quantify the strength of the type-2 modes

as well as we can quantify that of the type-1 modes. This is because the extrema have moved away

from z = 0 and therefore the strongest velocity fluctuations occur outside of FOV4 which is where

the results shown in Figure 7.10 are concentrated. Despite this, the results in Figure 7.10 indicate

that the modes produced at higher frequencies are generally unstable while the low frequencies

(St ≤ 0.2) have higher stability. Moreover, these low-frequency modes are stronger and of type

1. Together, these characteristics suggest that low-frequency operation of the active surface is the

best option for flow control.

We will now briefly consider the modes produced by the active surface in the framework of

linear stability analysis. Such an analysis considers neutral disturbance waves superimposed on a
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base flow (e.g., the Blasius profile) and their subsequent growth or decay according to a linearized

version of the Navier-Stokes equations (Schlichting and Gersten, 2017). In this context, a neutral

wave is one that is periodic in both space and time (Maslowe, 1986) and must have a magnitude

small enough to still be considered linear. These latter two points are where the present work

deviates from the requirements of the linear analysis. The motions produced by the active surface

are periodic in time but not in space since the actuator is finite in the spanwise direction. Moreover,

since we are concerned with flow control we are not interested in small disturbances. Instead, we

are interested in producing velocity fluctuations with large magnitudes that can potentially be

used to target various flow features. For these reasons we cannot expect our results to agree with

those of the linear stability analysis. This is likely why we see instability prior to x/D = 2 where

Reδ∗ = 520, i.e., the “indifference point” for the Blasius profile (Schlichting and Gersten, 2017).

However, there are still a few instances where we can make comparisons with the linear theory.

One characteristic of the linear theory is existence of a “critical layer” centred upon a critical

point where the advection velocity of the disturbance matches the local mean velocity. This point

causes a mathematical singularity in the inviscid analysis that can only be remedied by restoring the

effect of viscosity within the critical layer, thus indicating that viscous effects are important within

this layer. Similarly, the Stokes layer that forms adjacent to the wall as a result of the periodically-

fluctuating velocity field is a second region where viscous effects are important. Whether these

two layers overlap with one another or are separated is related to the neutral stability curve for

the Blasius profile (Schmid and Henningson, 2001); overlapping layers indicates a lower-branch

mode while separated layers indicate an upper-branch mode. Other characteristics of these modes

include the maximum u of the mode occurring somewhere within the critical layer and a 180-

degree phase shift in u occurring somewhere in the outer region of the boundary layer (Jacobi and

McKeon, 2011). We can consider these characteristics to determine whether the modes produced

by the present active surface are consistent with the critical-layer-type modes that arise from linear

stability analysis.

The type-1 modes at St = 0.2, 0.6 and the type-2 modes at St = 0.4, 1.0 are shown in

Figure 7.11 along with the estimated size and locations of the Stokes (solid magenta lines) and

critical (dotted black lines) layers. The type-1 modes (Figures 7.11(a,c)) are strongest along z = 0

and have therefore been plotted using the measurements from FOV4. In contrast, the type-2 modes

(Figures 7.11(b,d)) have been plotted from the measurements in FOV5 via Taylor’s hypothesis

since their strongest fluctuations are displaced in the spanwise directions; these latter two subplots

contain the same data as Figure 7.7 but shown in a different plane. We have estimated the thickness

of the Stokes layer as
√︁
ν/πfa (Schlichting and Gersten, 2017). The centre of the critical layer is

defined by the critical point (dashed black lines) where the advection velocity of the mode matches

the local mean velocity. The maximum streamwise velocity fluctuation occurs within the critical

layer and so we have used the location of the maxima to estimate the minimum thicknesses of the

critical layers. The maximum is always located above the critical point for the present modes (this

is typical of critical-layer-type modes (Jacobi and McKeon, 2017)), and so the upper bounds of
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Figure 7.11: Type-1 modes at (a) St = 0.2 and (c) St = 0.6 from FOV4 and type-2 modes at
(b) St = 0.4 and (d) St = 1.0 from FOV5 (via Taylor’s hypothesis) with the estimated location of
the Stokes layers (solid magenta lines) and critical layers (black dotted lines) overlaid. The critical
points (black dashed lines) are at the centre of the critical layer. The wall-normal dimension is
stretched here to better show the Stokes and critical layers. The colorbar scaling is the same as for
Figures 7.5 and 7.7.
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the estimated critical layers in Figure 7.11 have been set by the maxima locations while the lower

bounds are set by symmetry about the critical points.

The estimated Stokes and critical layers for St = 0.2 and 0.4 in Figures 7.11(a,b) show clear

overlap with one another, even with the critical layers being defined by a minimum thickness. This

indicates that the type-1 and type-2 modes produced by actuation at the lower frequencies have

structures in the streamwise–wall-normal plane that are consistent with lower-branch modes. In

contrast, the estimated Stokes and critical layers for St = 0.6 and 1.0 in Figures 7.11(c,d) are

separated, which indicates that the type-1 and type-2 modes at higher frequencies have upper-

branch structures. However, this particular observation is not absolute because the present critical

layers were estimated using a minimum thickness, and so it remains possible that they are actually

thick enough to produce overlap with the Stokes layers. Despite this, it seems likely that at least

the type-2 mode at St = 1.0 (Figure 7.11(d)) has an upper-branch structure because the estimated

Stokes and critical layers are quite far apart. Finally, we can see that there is a change in the

sign of streamwise velocity fluctuation somewhere in the range y/D = 0.04 to 0.05 for all cases

shown in Figure 7.11. This is characteristic of the 180-degree phase shift described earlier and is

therefore another indication that the motions produced by the active surface are consistent with

the critical-layer-type modes that arise from linear stability analysis.

Considered along with Figure 7.10, Figure 7.11 suggests that the type-1 modes with a lower-

branch structure are more stable than the type-1 modes with an upper-branch structure. Unfor-

tunately, it is difficult to comment on the stability of the type-2 modes in the context of their

critical-layer-type structures due to the spanwise location of FOV4, which does not allow for mon-

itoring the peak strength of the type-2 modes as a function of streamwise distance.

7.3 Data-Driven Modelling of the Actuated Flow

A important aspect of any active control strategy is the model that is used to develop the controller.

These models can take many forms and range from simple physics-informed heuristics to complex

mathematical representations of system dynamics. One model type that is commonly applied in

experimental campaigns to develop controllers for wall-bounded flows is the nonparametric linear

transfer function (NLTF) (e.g., the work of Rathnasingham and Breuer (2003), Juillet et al. (2014),

and Brito et al. (2021)). This type of model is used to describe the input-output behaviour of a

given system and can be identified using data-driven methods. In this section, we investigate how

well the input-output dynamics of the present active surface can be captured using a NLTF model.

7.3.1 Modelling with Nonparametric Linear Transfer Functions

The NLTF describes the input-output relationship between two variables in the frequency domain

to the extent that this relationship can be captured by linear dynamics. In the present work we

consider the input to our system to be the height of the active surface h(t) and the output of the

system to be the streamwise velocity fluctuation u(t) at some point downstream from the active
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surface. The relationship between these two variables according to the NLTF model is then

ũ(f) = Ghu(f)h̃(f), (7.3)

where Ghu(f) is the NLTF between h(t) and u(t) while h̃(f) = F {h(t)} and ũ(f) = F {u(t)} are

the Fourier transforms of the input and output, respectively. We can then employ the convolution

theorem for Fourier transforms to yield

u(t) = ghu(t) ∗ h(t), (7.4)

where the symbol ‘∗’ denotes a convolution and ghu(t) is the impulse response of the system. The

impulse response and NLTF are therefore equivalent representations of the system dynamics and

are related through the Fourier transform as Ghu(f) = F {ghu(t)}. As a result, either of these can

be identified to obtain the desired model of the system.

There are numerous ways to identify either the NLTF or the associated impulse response of

a system such that they are consistent with Equations (7.3) and (7.4). For example, the impulse

response can be measured directly using an impulse response experiment. This technique is not

typically used in experimental studies because it is often difficult to generate a true impulse response

with a physical actuator, and this is indeed the case for the present active surface. Instead, it is

typical to identify the dynamics by applying statistical approaches to randomized input-output

data. One common approach employs the cross spectral density between the input and output

to directly estimate the NLTF (Brito et al., 2021). Another approach utilizes Wiener filtering

to estimate the impulse response (Rathnasingham and Breuer, 2003) which can then be used to

obtain the NLTF via the Fourier transform. We have elected to use the Wiener filtering method

because we found that it outperforms the spectral estimation method when applied to the present

system. The application of the Wiener filter as outlined by Hayes (1996) has been implemented in

the present work and will be briefly detailed below.

The Wiener filter is used as an estimator whose coefficients represent the (finite) impulse re-

sponse of the associated system. When this impulse response is convolved with the input to the

system, it produces an optimal estimate of the output according to the minimum mean-square cri-

terion. Since the Wiener filter is a digital filter with discrete coefficients, it is applied using sampled

measurements. It should therefore be understood that h(t) and u(t) are considered discrete signals

for the implementation of the Wiener filter moving forward. Equations (7.3) and (7.4) are still

valid in discrete time and are related through the discrete Fourier transform.

The impulse response associated with the Wiener estimator is identified by solving the Wiener-

Hopf equations, which are expressed using the present nomenclature as

Rhc = rhu, (7.5)

where Rh is a Toeplitz matrix containing the autocorrelations of h(t), c is a vector containing the
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filter coefficients, and rhu is a vector containing the cross-correlations between h(t) and u(t). The

compact notation of Equation (7.5) can be expanded to yield⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rh(0) rh(1) . . . rh(m− 1)

rh(1) rh(0) . . . rh(m− 2)

rh(2) rh(1) . . . rh(m− 3)
...

...
...

rh(m− 1) rh(m− 2) . . . rh(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(0)

c(1)

c(2)
...

c(m− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rhu(0)

rhu(1)

rhu(2)
...

rhu(m− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.6)

where m is the selected order of the Wiener filter and therefore also the length of the identified

impulse response. Once a system identification experiment has been performed to obtain h(t) and

u(t), the above Wiener-Hopf equations can be solved to obtain the identified impulse response as

ĝhu(t) = c and therefore also the associated NLTF as Ĝhu(f) = F {ĝhu(t)} (the hat accents have

been added to denote that these are estimates). Note that an order of m = 250 has been used to

solve Equation (7.6) in all cases presented here. The MATLAB code used to perform the Wiener

system identification is provided in Appendix B.

The characteristics of the input signal used in the system identification experiment are critical

for achieving good results. The amplitude of the input must be large enough to elicit a response from

the system, and the frequency spectrum of the input must cover the range of frequencies relevant

to the application. The results from Section 7.2 indicate that large deformations of the present

active surface result in the production of highly unstable motions. They also indicate that the

lower range of the frequencies considered here seems most promising for flow control applications.

We have therefore performed our system identification experiment using an input signal that halves

both the frequency range and maximum deformation considered in Section 7.2. More specifically,

we have used an input signal that produces maximum surface deformations of h/D = ±0.01 and

covers frequencies up to St = 0.5. Note that this frequency range contains both the type-1 and

type-2 modes identified in Section 7.2.

Two sets of data were collected using two different input signals: one for the purpose of system

identification (i.e., model training) and one for model evaluation. These two input signals were

completely uncorrelated but featured nearly identical statistics. The PSD of these input signals

(Φh) and samples of the corresponding time series are shown in Figure 7.12. Figure 7.12(a) reveals

that the PSD of both signals have almost perfect overlap. The frequency response is flat for

frequencies up to St = 0.5, at which point a significant drop in the spectral power is observed.

Figure 7.12(b) shows the random nature of the input signals in the time domain and confirms that

the magnitudes do not exceed h/D = ±0.01 (note that only 25% of the total input signals are

shown).

The velocity fluctuations farther downstream from the active surface that are generated at

lower actuation amplitudes have magnitudes on the order of a few percent of U∞, which is similar

to the PIV noise in the present data sets. Although the system identification process discussed
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Figure 7.12: (a) The PSD of the input used for system identification and model evaluation (Φh)
and (b) samples of the corresponding time series.

above ignores the uncorrelated PIV noise, this noise can still pose a problem for evaluating the

performance of the NLTF model using the PIV measurements. We have therefore employed POD

to produce noise-reduced versions of the instantaneous velocity fields. The method of snapshots

(Sirovich, 1987) was applied to an isolated region within FOV4 defined by 0.5 ≤ x/D ≤ 2.5 and

0 ≤ y/D ≤ 0.2. This region was isolated because it reduces the computations required for POD

while retaining the entirety of the fluctuating velocity field downstream from the active surface.

These data were then reconstructed using varying numbers of POD modes to identify the point at

which the basis should be truncated to reduce the PIV noise. Figures 7.13(a,b) show the PSD of the

fluctuating velocity signals extracted from the evaluation data set at x/D = 1 and 2 (y/D = 0.03)

after being reconstructed using varying numbers of POD modes. The PSD of the random forcing

input is also shown (scaled) for reference to highlight the frequency at which a large drop in the

PSD of the velocity signal is expected. The frequencies up to this drop-off will be referred to as

the relevant frequency range.

The PSD of the raw signals at both x/D = 1 and 2 show a large spectral density at frequencies

beyond those of the forcing input. This noise floor is a result of the high-frequency PIV noise

and is therefore not physical. Figures 7.13(a,b) reveal that the noise floor drops significantly when

fewer POD modes are used to reconstruct the data. However, if the number of modes used for

reconstruction is too small, the spectral density reduces substantially in the relevant frequency

range as well, indicating that some physical variation within the data set is not being captured. We

must therefore reconstruct the data using a number of POD modes that maximizes the reduction

of the noise floor while minimizing the loss of spectral density in the relevant frequency range. This
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Figure 7.13: PSD and instantaneous samples of the streamwise velocity fluctuations from the
evaluation data set reconstructed using varying numbers of POD modes. The results are plotted
for (a,c) x/D = 1, y/D = 0.03 and (b,d) x/D = 2, y/D = 0.03. The PSD of the forcing input (Φh)
is shown (scaled) for reference.
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will result in a noise-reduced data set that still captures the physical variations within the velocity

field.

By inspection of Figures 7.13(a,b), we have elected to reconstruct the system identification data

sets using the first 80 PODmodes. As can be seen in the figure, this balances the two requirements of

noise reduction in the high-frequency range and spectral density retention in the relevant frequency

range. Instantaneous samples of the reconstructed streamwise velocity fluctuation compared to

the raw signal at x/D = 1 and 2 are shown in Figures 7.13(c,d). These results reveal that the

reconstructed data do a good job of capturing the variation of the velocity field while greatly

reducing the high-frequency PIV noise. This noise-reduced data has been used to both identify and

evaluate the NLTFs in the present work. The streamwise velocity fluctuations have been extracted

from the noise-reduced velocity fields at y/D = 0.03 for all cases, which is roughly the half-height

of the high- and low-speed structures generated by the active surface (see Figure 7.5).

The magnitude of the identified NLTFs that relate h with u at streamwise locations of x/D = 1

and 2 are presented in Figure 7.14(a). The training input from Figure 7.12(a) has been overlaid

using a grey dashed line to highlight the frequency range that received significant forcing during

the system identification experiment; the portions of the NLTFs that fall outside of this range will

be less reliable because these frequencies were not forced adequately. Both NLTFs are relatively

flat up to St = 0.3, at which point the magnitude begins to drop. The magnitude then starts to

recover around St = 0.5, peaks near St = 0.7, and then begins to drop once again. This observed

modulation of the magnitudes can be attributed to the switching between type-1 and type-2 modes

that occurs with increasing actuation frequency as was discussed in Section 7.2. The frequencies

at which the reductions in magnitude occur are consistent with the emergence of the type-2 modes

visible in Figure 7.7.

The Wiener filter coefficients that represent the impulse responses associated with the NLTFs

in Figure 7.14(a) are shown in Figure 7.14(b), where all m = 250 coefficients are displayed. Neither

of the two impulse responses look much like those that are typical of simple linear systems, which

usually oscillate and eventually damp out. Some low-frequency oscillatory behaviour is observed

prior to tU∞/D = 5 for both cases, but the remainder of the identified impulse responses appear

quite erratic. In general, these impulse responses are difficult to interpret in a meaningful way.

However, we must keep in mind that they are sets of filter coefficients meant to describe the

dynamics of a nonlinear system of high dimension.

7.3.2 Model Evaluation

We now move on to evaluating the estimates produced by the NLTF model. These estimates have

been obtained by convolving the identified impulse responses with the input to the evaluation data

set as

û(t) = ĝhu(t) ∗ h(t), (7.7)
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Figure 7.14: (a) The magnitude of the NLTFs relating h with u at two downstream locations
(extracted at y/D = 0.03) and (b) the associated Wiener filter coefficients which represent the
impulse responses. The grey dashed line in (a) is the training input from Figure 7.12(a) and is
shown here (scaled) to highlight the frequency range of the NLTFs that received adequate forcing
during the system identification experiment.

where û(t) is the estimated streamwise velocity fluctuation downstream from the active surface.

We then compare these estimates to the velocity fluctuations measured using the POD-filtered PIV

within FOV4 to determine how well the NLTF model captures the input-output dynamics of the

present system.

The comparison is first made using the correlation coefficient between u(t) and û(t) at all

locations downstream from the active surface. This coefficient is denoted as ruû and is presented

in Figure 7.15. The results show that the correlation coefficient is ruû = 0.95 at x/D = 0.5,

indicating that the NLTF model does a great job of estimating the streamwise velocity fluctuations

immediately downstream from the active surface. The coefficient then begins to decline with

increasing distance from the active surface, most likely due to the nonlinearity of the system. The

two streamwise locations for which the NLTF models are presented in Figure 7.14 are highlighted in

Figure 7.15, revealing correlation coefficients of ruû = 0.86 and 0.71 for x/D = 1 and 2, respectively.

Finally, the coefficient reaches a value of ruû = 0.70 at the end of FOV4 (x/D = 2.5). The decline

in ruû can be seen to slow beyond x/D = 2. However, it is unlikely that this trend is sustained

beyond the end of FOV4 because it only becomes more difficult for the NLTF model to capture

the input-output behaviour as nonlinearities grow with downstream distance. It is therefore more

likely that the correlation coefficient begins to drop drastically at some point beyond x/D = 2.5.
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Figure 7.15: The correlation coefficient between the measured (u) and estimated (û) streamwise
velocity fluctuations as a function of streamwise location. The two streamwise locations that are
highlighted are the same locations for which the NLTFs and impulse responses are plotted in
Figure 7.14.

The PSD and instantaneous signals of u and û at x/D = 1 and 2 are presented in Figure 7.16 to

further compare the characteristics of the estimated and measured streamwise velocity fluctuations.

The PSD of u and û at x/D = 1 in Figure 7.16(a) show excellent agreement over the majority of

the targeted frequency range, with the exception of some small differences at the lowest frequencies

(St < 0.1). Larger differences are observed at the highest frequencies (St > 0.8), but this range did

not receive adequate forcing during the system identification experiment and therefore falls outside

of the range of frequencies that was meant to be captured by the NLTF model. In addition, the

observation that St = 0.2 to 0.6 is well-captured indicates that the model is capable of accounting

for the emergence of the type-2 mode since this frequency range contains the transition from type

1 to type 2 and then back to type 1 (see Figure 7.7). The instantaneous signals of u and û at

x/D = 1 in Figure 7.16(b) also show good agreement. While there are some instances where û

shows larger differences from u (e.g., near tU∞/D = 2), the general behaviour of the output signal

is well-captured by the NLTF model at x/D = 1. There is also no clear phase shift between u and

û, indicating that the phase information is well-captured by the model. Instead, we can see that

the discrepancies lie mainly in the amplitude of the estimated fluctuations. The PSD of u and û

at x/D = 2 in Figure 7.16(c) reveals that the frequency content is not as well captured by the

NLTF model when it is applied to the velocity fluctuations farther downstream. We see similar

differences at the higher frequencies, but the discrepancy at the lowest frequencies is much larger

and now extends up to roughly St = 0.3. Despite this, the instantaneous signals of u and û at

x/D = 2 in Figure 7.16(d) reveal that the behaviour of the signal is still captured relatively well

by the NLTF model, although it is clear that there are instances where the discrepancy between u

and û becomes somewhat large (e.g., near tU∞/D = 65). Once again, there is no clear phase shift

between u and û; the discrepancies appear to be associated with the amplitudes.

A control strategy applied in a wall-bounded flow would typically aim at manipulating the
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Figure 7.16: The PSD and instantaneous samples of the streamwise velocity fluctuations that were
measured (u) and estimated by the NLTF model (û) at (a,b) x/D = 1 and (c,d) x/D = 2.
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flow field just downstream from the actuator. The results discussed above suggest that the NLTF

model is quite capable of capturing the dynamics of the present actuated flow for the purpose of

developing such a control strategy. Although the performance of the present NLTF model reduces

when it is used to estimate the velocity fluctuations farther downstream, we have seen that the

estimates are reasonable even at x/D = 2. Moreover, this has been accomplished using a simple

linear model. It is likely that more complicated models would perform even better.

7.4 Further Discussion

7.4.1 Comparison with Past Results

Only a few other studies have considered how active axisymmetric surface deformations influence

wall-bounded flows locally, namely the work of Carlson and Lumley (1996), Kim et al. (2003), and

Dearing et al. (2007). By simulating a minimal flow unit, Carlson and Lumley (1996) showed that

an upward surface deformation that is Gaussian in shape can be used to target streaky structures by

pushing them away from the wall. The observed mechanism allowed for decreasing and increasing

drag by targeting the high- and low-speed streaks, respectively. The present results are partially

consistent with this mechanism in that an upward deformation of the active surface would produce

a low-speed motion that could potentially be used to weaken a high-speed streak and produce drag

reduction. However, it is not clear whether this same low-speed motion would produce a drag

increase if introduced below a low-speed streak.

Kim et al. (2003) studied actuation in a TBL using axisymmetric deformations that produced a

concave/convex geometry. They considered A/D = 0.1, which is five times the maximum amplitude

investigated here, and St = 0.1, 0.2, 0.3, and 1.0, with the latter frequency only being used

for a flow visualization. Considering the limited actuation cases investigated, they could only

determine the performance of their actuator as a function of a few frequencies and not at all as

a function of amplitude. Moreover, their measurements were made using a hotwire rake, which

is quite limited when compared to the high-speed PIV utilized here. Despite these drawbacks,

their results show similarities with ours that should be mentioned. More specifically, they found

that upward deformations produce low-speed motions while downward deformations produce high-

speed motions. These motions were concentrated along the centreline of the actuator for St = 0.1,

but produced what the authors referred to as an “M-shaped” velocity profile across the span at

St = 0.3. This observation is consistent with the type-2 mode that occurs at the same frequency

in the present results. Additionally, the motions produced by their actuator exhibited stability

characteristics that were similar to what was found here in two ways. First, the motions produced

at low frequencies persisted for longer distances downstream. Second, the overlap between high-

and low-speed motions, i.e., the break down of the mode, was found to occur more quickly at

high actuation frequencies. Both observations therefore suggest that actuation at low frequencies

produces motions that are more stable overall.

The flow visualization employed by Kim et al. (2003) at St = 1.0 was used to show that their
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active surface deformations can be used to produce streamwise vortices. These vortices are similar

to those observed by Dearing et al. (2007), who also employed concave/convex deformations at

A/D = 0.1 but at much higher frequencies of St = 6 to 58 (note that these St are different

than those reported by Dearing et al. (2007) because they employed a different definition of the

Strouhal number). While these vortices were not the focus of the present work, our results from

FOV5 reveal that streamwise vortices can indeed form at the higher actuation amplitudes and

frequencies. However, it is not clear whether they form at the active surface due to its motion or

if they form via instability of the modes downstream. This distinction cannot be known using the

present data since FOV5 was located at x/D = 1.1.

7.4.2 Linearity of the Actuated Flow

Linear systems theory forms the backbone of the available modern control techniques. As a result,

the ability to obtain an accurate linear model of a system is critical for designing a controller. Of

particular importance is the state-space representation of a linear system. If this type of model

can be obtained, and it accurately represents the dynamics of the system, then it becomes rela-

tively straightforward to implement Kalman filters, linear quadratic regulators, model predictive

controllers, and other powerful tools from the modern control systems arsenal. As was shown in

Section 7.3, the NLTF model was capable of capturing the input-output behaviour of the present

actuated flow with reasonable accuracy. This model provides access to the impulse response of

the system, the components of which are often referred to as the Markov parameters. The Markov

parameters can be used along with the eigensystem realization algorithm (Brunton and Kutz, 2019)

to obtain a linear state-space representation of the system dynamics, thus opening the door to the

tools discussed above. Since the dynamics of the present system are relatively well-captured by a

simple linear model, it seems likely that the use of wall-normal surface deformations as a form of

actuation is amenable to the powerful tools of modern control theory. Combining these tools with

active surfaces may therefore yield control systems that are capable of producing more desirable

outcomes in many fluid-dynamical systems.

7.5 Summary

The present chapter considered actuation of an LBL using the active surface developed in Chapter 6.

The investigation was conducted using an LBL to provide insight into how surface deformations

influence wall-bounded flows in general and to allow for the exploration of a linear modelling

technique, the performance of which cannot be easily evaluated in a turbulent flow. We considered

periodic and random operation of the active surface, with the latter being used for the purpose of

system identification. The resulting motions were captured using high-speed PIV.

Operating the active surface to produce periodic (sinusoidal) surface deformations allowed for

studying the resulting motions as a function of the frequency and amplitude of actuation. In

general, periodic actuation produces modes featuring a repeating series of high- and low-speed

motions with similar magnitudes. The high-speed motions form as the surface moves downwards
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and suctions high-speed fluid towards the wall, while the low-speed motions form as the surface

moves upwards and pushes low-speed fluid away from the wall. We found that the frequency of

actuation determines the spatial structure of the resulting modes, while the amplitude of actuation

determines their strength.

The spatial structures of the modes undergo two primary changes as the actuation frequency is

increased. First, the streamwise wavelength decreases proportionally to St−0.7. Second, the modes

experience an alternating series of transitions between two distinct mode types. We define the type-

1 modes as those featuring high- and low-speed motions with single maximums and minimums along

z = 0. In contrast, the type-2 modes are those featuring high- and low-speed motions with double

maxima and minima displaced in the spanwise directions. Type-1 modes were found for St = 0.1,

0.2, 0.6, and 0.7, while type-2 modes were found for the remaining St investigated here.

The spatial structure of the modes produced at a given frequency does not change much as the

amplitude of the periodic deformation is increased. Interestingly, this is also true when considering

the height of the resulting motions, which appears to remain similar despite the fourfold increase

in the magnitude of the surface deformations considered here. Instead, increasing the amplitude

increases the strength of the resulting velocity fluctuations, and this often leads to highly unstable

motions that eventually break down. The present results indicate that small amplitudes and low

frequencies generally produce modes that are more stable. Moreover, we found that the lowest

frequencies of St = 0.1 and 0.2 produce the strongest type-1 velocity fluctuations. Considering

the strength, stability, and type-1 structure of the motions produced at St = 0.1 and 0.2, we can

conclude that it is these low frequencies that offer the best performance for flow control purposes.

Finally, we employed a data-driven technique to identify a simple linear model for the input-

output dynamics of the actuated flow. A nonparametric linear transfer function was obtained using

a Wiener filter applied to a training data set with a randomized input. The characteristics of this

transfer function agree well with the previous results obtained using periodic forcing. Comparison

to the results from an evaluation data set indicates that the simple linear model is capable of

capturing the input-output dynamics of the actuated flow, especially in the region immediately

downstream from the active surface. This type of linear model provides access to many of the tools

from modern control theory, and so this result is promising for the future use of active surface

deformations as an actuation strategy for flow control applications.
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Chapter 8

Turbulent Boundary Layer Forcing
with Active Surface Deformations

Chapter 7 demonstrated that active surface deformations at St ≤ 0.2 are the most well-suited for

flow control in an LBL because, at these low frequencies, the resulting motions are stronger, more

stable, and concentrated along the centreline of the actuator. This is promising for the targeting of

VLSMs because the VLSMs occupy the lowest frequencies of the turbulence spectrum. However,

it is not clear how well the results of Chapter 7 obtained using an LBL will translate to a TBL

at a much higher Reynolds number. The primary objective of the present chapter is therefore to

evaluate the impact of active surface deformations applied locally beneath a TBL at Reτ = 2600,

i.e., the same TBL investigated in Chapter 5. The active surface is operated to generate surface

deformations sinusoidally at frequencies of St ≤ 0.2, which also covers the range of frequencies

occupied by the VLSMs. High-speed PIV is used to capture the velocity field, and phase averaging

is used to extract the periodic motions produced by the active surface. The analysis then focuses

on the characteristics of these periodic motions and the impact that they have on the surrounding

turbulence, with the latter being accomplished using a triple decomposition. Finally, an attempt

to implement feed-forward control using the upstream wall-pressure signal is discussed.

8.1 Experimental Setup

8.1.1 Turbulent Boundary Layer Configuration

The floor of the wind tunnel was again used to generate the TBL as discussed in Section 3.1.2. A

section of the floor at centre span was replaced by a flush-mounted acrylic plate with dimensions of

1.2 m × 0.6 m (streamwise-spanwise). The plate was modified to accommodate the wall-pressure

measurement system developed in Chapter 4 and the active surface developed in Chapter 6; any

gaps between these components and the plate were filled using a malleable polymer clay to ensure

a smooth surface for the TBL. The origin of the coordinate system (x, y, z) = (0, 0, 0) is at the

centre of the undeformed active surface which was located 7.6 m downstream from the boundary

layer tripping device. A schematic of the overall experimental setup is provided in Figure 8.1.
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Figure 8.1: Schematic of the experimental setup showing the active surface, wall-pressure mea-
surement locations, and FOVs used for PIV. Planar PIV was conducted within FOV6 and FOV7;
stereoscopic PIV was conducted within FOV8.

8.1.2 Wall-Pressure Measurements

Measurements of wall pressure were conducted at x/D = ±1.4 as is shown schematically in Fig-

ure 8.1. The real-time system described in Section 3.3 was used to collect these measurements at

an acquisition frequency of 20 kHz in all cases. The wall-pressure measurements were used only for

the design and implementation of the feed-forward control strategy. More details regarding these

measurements are provided later in Section 8.3.3.

8.1.3 Particle Image Velocimetry

Three high-speed PIV experiments were used to measure the flow downstream from the active

surface as is shown schematically in Figure 8.1 where the FOVs are numbered accordingly. The

PIV system discussed in Section 3.2.3 was used in all cases. Once again, the trigger signals for

the laser and cameras were recorded along with the actuator signals during all PIV experiments to

allow data synchronization via the procedure outlined in Section 3.3.2.

The FOVs denoted as FOV6 and FOV7 in Figure 8.1 were used to capture the velocity field in the

streamwise–wall-normal (x–y) plane along the centreline of the active surface (z = 0) using planar
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PIV. The high-speed cameras have limited onboard memory, and so these FOVs were cropped to

be tall and narrow to capture longer sequences of images for the purpose of statistical convergence.

This allowed for extracting high-speed measurements across the entire boundary layer thickness

at locations of x/D = 0.7 and 1.4. A 200-mm lens with an aperture setting of fo/5.6 was used

for imaging, resulting in FOV dimensions of (∆x, ∆y) = 13 mm × 114 mm at a resolution of

93.4 µm/pixel. Illumination for the measurements was provided by a 1-mm-thick laser sheet formed

by a series of spherical and cylindrical lenses. Sets of 15000 double-frame images were recorded at

1 kHz within both FOVs (asynchronously). Four sets were recorded when capturing the base flow

(no actuation), resulting in 60000 measurement instances over a total sampling time of 60 seconds

(7.50 × 103δ/U∞). Twelve sets were recorded for each actuation case to improve the convergence

of the phase-averaged statistics, resulting in 180000 measurement instances over a total sampling

time of 180 seconds (2.25 × 104δ/U∞). Ten sets were recorded for feed-forward operation of the

active surface, resulting in 150000 measurement instances over a total sampling time of 150 seconds

(1.88 × 104δ/U∞). All images were preprocessed by subtracting the minimum of the respective

ensemble to reduce background noise followed by dividing the images by the background-subtracted

ensemble average to normalize the intensity counts. A multi-pass cross-correlation algorithm was

used to compute the vector fields from the PIV images. The final pass employed 32 × 32-pixel

Gaussian-weighted interrogation windows with 75% overlap.

The stereoscopic FOV denoted as FOV8 in Figure 8.1 was used to capture the velocity field in

the spanwise–wall-normal (z–y) plane at x/D = 0.7. Two cameras featuring Scheimpflug mounts

and 200-mm lenses with aperture settings of fo/16 were placed at 45◦ to the imaging plane and

were arranged in a forward-scattering orientation with respect to the 2-mm-thick laser sheet used to

illuminate the FOV. FOV8 captured an area of (∆z, ∆y) = 120 mm × 31 mm and had an effective

resolution of 70.5 µm/pixel. The calibration processes included a 3D target calibration followed by

a self-calibration using a set of particle images (Wieneke, 2005). Sets of 4000 double-frame images

were collected at a frequency of 250 Hz. Four sets were recorded for the base flow, resulting in

16000 measurement instances over 64 seconds (8.00× 103δ/U∞). Eight sets were recorded for each

actuation case to improve the convergence of the phase averages, resulting in 32000 measurement

instances over 128 seconds (16.0 × 103δ/U∞). The same preprocessing steps that were applied to

the planar PIV images were also applied to the stereoscopic PIV images. A multi-pass stereoscopic

cross-correlation algorithm was then used to compute the vector fields. The final pass employed

48 × 48-pixel Gaussian-weighted interrogation windows with 75% overlap.

8.1.4 Base Flow

Here we present the statistical characteristics of the TBL used to investigate the performance of

the active surface. This is done to provide the various parameters used for data normalization and

to confirm that the desired TBL has been reproduced properly. The basic fluid properties and

boundary layer parameters computed from FOV6 at x/D = 0.7 are presented in Table 8.1. The

friction Reynolds number, freestream velocity, boundary layer thickness, and viscous lengthscale
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Kinematic viscosity ν 1.7×10−5 (m2/s)

Density ρ 1.1 (kg/m3)

Reynolds numbers
Reτ 2600

Reθ 6000

Freestream velocity U∞ 11.8 (m/s)

Boundary layer thickness δ 94.4×10−3 (m)

Displacement thickness δ∗ 12.2×10−3 (m)

Momentum thickness θ 9.0×10−3 (m)

Friction velocity Uτ 0.46 (m/s)

Viscous lengthscale λ 36.8×10−6 (m)

Shape factor H 1.36

Table 8.1: Fluid properties and boundary layer parameters at x/D = 0.7. The viscous lengthscale
was determined by fitting the mean velocity profile to the logarithmic law of the wall with κ = 0.41
and C = 5.0.

are all within 1% of what was presented Chapter 5, confirming that the desired TBL has been

successfully reproduced.

The mean velocity and Reynolds stresses computed from each FOV and compared to the data

of Chapter 5 are presented in Figure 8.2. The mean velocity profiles in Figure 8.2(a) agree well

with one another with the exception of the points nearest to the wall from FOV8. The small

deviations observed can likely be attributed to reflections at the wall within the PIV images and

the uncertainties associated with the stereoscopic calibration process. The logarithmic law of the

wall with κ = 0.41 and C = 5.0 is also shown in the figure, which confirms the expected behaviour

of the profile and indicates that the logarithmic region extends to roughly y/λ = 400 in the wall-

normal direction. The Reynolds stresses presented in Figure 8.2(b) reveal a similar story: excellent

agreement between the data from FOV6, FOV7, and Chapter 5 (FOV2), and some deviations

observed for the data from FOV8. These deviations are mostly observed for ⟨u2⟩, which makes sense

considering that the streamwise component of the stereoscopic measurements is the out-of-plane

component and therefore contains the largest measurement uncertainty. However, the data from

FOV8 is used qualitatively in the present work and therefore these small statistical discrepancies

do not pose an issue for our investigation. Overall, Figure 8.2 reveals that the mean velocity and

Reynolds stresses of the present TBL agree well with those of Chapter 5.

Finally, Figure 8.3 shows the pre-multiplied spectra of u computed at x/D = 0.7 where Φu is

the PSD of u, kx = 2πf/⟨U⟩ is the streamwise wavenumber, and Λx = ⟨U⟩/f is the streamwise

wavelength. The blue lines in the figure represent the actuation frequencies which will be discussed

in Section 8.1.5. The pre-multiplied spectra are shown here to highlight the expected behaviour of

the TBL that has been documented in a previous work at the same Reynolds number (Hutchins
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Figure 8.2: The (a) mean velocity profiles and (b) Reynolds stresses for the base flow from all
three PIV FOVs and compared to the data of Chapter 5 (FOV2).

and Marusic, 2007a): a high-energy “inner site” near the wall at y/λ ≈ 15 (not entirely captured

by the present measurements) and Λx/λ ≈ 1000 (Λx/δ ≈ 0.4) and a high-energy “outer site” in

the logarithmic region near Λx/δ ≈ 6 (marked using the white oval in Figure 8.3). The inner site

is attributable to the near-wall cycle that produces the large peak in ⟨u2⟩ while the outer site is

attributable to the VLSMs. The presence of the outer site in Figure 8.3 therefore confirms that

VLSMs occupy the present TBL.

8.1.5 Actuation Cases

We consider periodic operation of the active surface to determine how actuation affects the present

TBL as a function of frequency. The active surface was again operated using the signal

hr(t) = Asin(2πfat). (8.1)

We consider a constant actuation amplitude of A = 2.7 mm (= 73λ, 0.03δ) and four actuation

frequencies of fa = 6, 12, 18, and 24 Hz which correspond to Strouhal numbers of St = faD/U∞ =

0.05, 0.10, 0.15, and 0.20, therefore covering the range of normalized frequencies that appear

suitable for flow control according to the results from Chapter 7. These four St are laid over

the pre-multiplied spectra in Figure 8.3, revealing that St = 0.10 coincides with the center of the

outer site associated with the VLSMs. Moreover, Chapter 5 revealed that the VLSMs exist at

frequencies up to roughly 18 Hz in the present TBL, which coincides with actuation at St = 0.15.
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Figure 8.3: Pre-multiplied spectra of the streamwise velocity fluctuation computed using the data
from FOV6 (x/D = 0.7). The streamwise wavenumbers and wavelengths of u were computed as
kx = 2πf/⟨U⟩ and Λx = ⟨U⟩/f , respectively. The blue lines represent the four actuation frequencies
of St = 0.05, 0.10, 0.15, and 0.20 considered in the present investigation. The wavelength ranges
of the LSMs (1-3δ) and the VLSMs (> 3δ) are also shown, as is the approximate location of the
outer site (white oval).

We can therefore say that St = 0.05 and 0.10 represent actuation within the frequency range of

the VLSMs, St = 0.20 represents actuation within the range of the LSMs (1–3δ in length), and

St = 0.15 represents actuation at the transition between LSMs and VLSMs.

The active surface was once again tuned on a case-by-case basis to have the amplitudes of the

sinusoidal displacement patterns be within a few percent of the desired values. The phase-averaged

displacement of the active surface is shown for all actuation cases in Figure 8.4, where it is evident

that the phased-averaged displacement signals closely match the desired sinusoids.

8.1.6 Phase Averaging and Triple Decomposition

A phase averaging technique has been used to extract the periodic motions produced by the active

surface and to determine how the Reynolds stresses vary across the actuation cycles. The phase of
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Figure 8.4: Phase averages of the active surface displacement (⟨h⟩ϕ, dotted lines) compared to
the reference sinusoids that the surface is meant to track (solid lines) for all periodic deformation
cases.

the active surface was again computed using a Hilbert transform as

ϕ = ∠(−iH{h}) + π, (8.2)

where the manipulations with i and π were used to shift the phase such that one full cycle extends

from ϕ = 0 to 2π with ϕ = 0 representing the active surface at h = 0 with a velocity in the positive

wall-normal direction. The velocity measurements were averaged using two different protocols de-

pending on what the result would be used for. When computing phase averages for a quantitative

analysis, the velocity fields were averaged using phase bins with widths of 0.1π and 80% overlap,

resulting in 100 bins with 9000 measurement instances per bin for FOV6 and FOV7. When com-

puting phase averages for a qualitative analysis, the velocity fields were averaged using phase bins

with widths of 0.4π and 99.5% overlap, resulting in 1000 bins with 36000 measurement instances

per bin for FOV6/FOV7 and 6400 measurement instances per bin for FOV8. The latter protocol

produced smoother results for visualizations. However, the wider bins reduce the peak values of

the phase averages which is why a different phase averaging protocol was used for quantitative

analyses.

Following computation of the phase averages, a triple decomposition (Hussain and Reynolds,

1970) was conducted as

Ui = ⟨Ui⟩+ ⟨ui⟩ϕ + u′i, (8.3)

where u′i is what remains of the turbulent fluctuations. This decomposition allows for studying the

motions produced by actuation using ⟨ui⟩ϕ and studying the impact that these motions have on the

surrounding turbulence using u′i. The latter component was computed as u′i(t) = ui(t) − ⟨ui⟩ϕ(t)
where ⟨ui⟩ϕ(t) was interpolated from ⟨ui⟩ϕ using ϕ(t).
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8.2 Periodic Motions Produced by Actuation

This section focuses on characterizing the motions produced by the active surface when operated

beneath the TBL. We consider the spatial structure, advection velocity, and strength of the motions,

and we investigate normalizing the results to compare between the present TBL and the LBL of

Chapter 7. We then use what we have learned to create visualizations that show what the motions

produced by the active surface are likely to look like in 3D space. Note that the active surface

diameter D is used as a lengthscale for normalization of the spatial domain. This is done to retain

the lengthscale used by the present definition of the Strouhal number and to show the results

relative to the dimensions of the active surface. However, D is only 6% larger than δ in the present

TBL, and so D can be thought of as a proxy for δ when interpreting the normalized results.

8.2.1 Phase Averages

We begin by considering the raw phase averages since they form the core of the analyses performed in

this section. Phase averages of the fluctuating streamwise velocity (⟨u⟩ϕ) in the ϕ–y plane computed

using the data from FOV6 and FOV7 are presented in Figure 8.5. The left (Figures 8.5(a–d)) and

right (Figures 8.5(e–h)) columns in the figure contain the phase averages at x/D = 0.7 and 1.4,

respectively, for all actuation frequencies. The phase axis (or time axis) has been flipped in all

cases to display the motions as if they were moving from left to right to facilitate visualization in

a manner similar to that of Taylor’s hypothesis. The solid and dashed lines are outlines of the

high- and low-speed motions, respectively, while the dotted lines show the constant amplitude of

the active surface deformations.

The phase averages in the ϕ–y plane at x/D = 0.7 (Figure 8.5(a–d)) are shown with the overlaid

outlines representing ⟨u⟩ϕ/U∞ = ±0.02, which is roughly 40% of the peak strength. The strongest

fluctuations are contained within these outlines, but some weaker influence on the boundary layer

can be seen to extend well beyond the end of the logarithmic layer (y/λ ≈ 400). In all cases the phase

averages reveal high- and low-speed structures, with the latter occurring mostly within the first

half of the phase cycle (0 < ϕ < π). FOV6 is located just downstream from the edge of the active

surface, and the phase cycle begins with an upward motion. It therefore appears that the low-speed

motions form from upward surface deformations and the high-speed motions form from downward

surface deformations. This is consistent with the results of Kim et al. (2003) and Chapter 7. It is

also evident that the magnitudes of the high- and low-speed motions are similar to one another,

and that these magnitudes do not change much as St is increased. Instead, we see a change in the

shape of the motions that are produced. At St = 0.05 and 0.10 (Figure 8.5(a,b)) the motions are

relatively flat (i.e., they have negligible inclination) and extend to around y/D ≈ 0.05 (y/λ ≈ 150)

in the wall-normal direction according to the solid and dashed outlines, which is roughly twice that

of the surface deformation amplitude (dotted line). When the actuation frequency is increased to

St = 0.15 (Figure 8.5(c)), the motions begin to lift up at their fronts to form an inclined structure,

with the low-speed motion lifting up more than the high-speed motion. This occurs to an even

larger extent for St = 0.20 (Figure 8.5(d)), which produces a low-speed motion that extends to
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Figure 8.5: Phase averages of the streamwise velocity component (⟨u⟩ϕ) in the ϕ–y plane for all
actuation frequencies computed using (a–d) the data from FOV6 at x/D = 0.7 and (e–h) the data
from FOV7 at x/D = 1.4. The phase axis has been flipped to display the motions as if they were
moving from left to right. The solid and dashed lines represent positive and negative values of (a–d)
⟨u⟩ϕ/U∞ = ±0.02 and (e–h) ⟨u⟩ϕ/U∞ = ±0.005. The dotted lines show the constant amplitude of
the active surface deformations.
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y/D ≈ 0.09 (y/λ ≈ 250) according to the dashed outline in the subfigure. It is worth noting that

the flat motions are produced at St = 0.05 and 0.10, which correspond to frequencies associated

with the VLSMs in the present TBL as was discussed in Section 8.1.5. Similarly, the most inclined

motion is produced at St = 0.20, which corresponds to the frequency range of the LSMs.

The phase averages in the ϕ–y plane at x/D = 1.4 (Figure 8.5(e–h)) represent the same motions

discussed above after they have advected 0.7D downstream; this advection produces a phase shift

between the motions at x/D = 0.7 and 1.4 which is visible in the figure. The motions at x/D = 1.4

are now roughly five times weaker than they were at x/D = 0.7 and are therefore shown with

the overlaid outlines at ⟨u⟩ϕ/U∞ = ±0.005. This allows for a fairer comparison of the shapes of

the phase averages between x/D = 0.7 and 1.4 as represented by these outlines. In addition to

becoming weaker, the motions produced at St = 0.05 (Figure 8.5(e)) have lifted away from the wall

and increased in height to reach y/D ≈ 0.09 (y/λ ≈ 250). The high-speed motion (solid outline)

remains relatively flat while the low-speed motion (dashed outline) appears to now have some

inclination. Similar changes are observed for the motions produced at St = 0.10 (Figure 8.5(f)),

but with the low-speed motion appearing as a thinner wall-attached structure. At St = 0.15 and

0.20 (Figure 8.5(g,h)) the stronger inclination is once again evident for both the high- and low-

speed motions. The motions produced at St = 0.20 in particular are quite organized, inclined, and

relatively large, extending up to the end of the logarithmic region at y/D ≈ 0.14 (y/λ ≈ 390).

Overall, the motions produced by the active surface appear to reduce in strength and diffuse away

from the wall as they advect downstream.

The same phase averages at x/D = 0.7 from Figure 8.5(a–d) have been computed at y/D =

0.02 in the ϕ–z plane using the data from FOV8 and are shown in Figure 8.6 to reveal how the

motions produced by the active surface vary in the spanwise direction. The phase axis has once

again been flipped to show the motions as if they were advecting from left to right, and the

dotted lines represent the inner diameter of the active surface (see Figure 6.1) to show the region

that experiences the maximum surface deformation. The regions of maximum fluctuation and the

interfaces between high- and low-speed motions along z = 0 in Figure 8.6 occur at the same phase

when compared to Figure 8.5(a–d), confirming that the phase averages computed from FOV6 and

FOV8 are in good agreement with one another. All four phase averages in the ϕ–z plane show that

the maximum velocity fluctuations are concentrated along z = 0. This indicates that the active

surface is producing type-1 modes for St ≤ 0.2, which is what was observed within the LBL of

Chapter 7 at the same St. We also see that the strongest of the streamwise velocity fluctuations

are bounded by the dotted lines (z/D = ±0.25), which makes sense because this region experiences

the largest surface deformations. These dotted lines represent a width that is roughly equal to the

maximum width of the VLSMs. The strongest regions of the high- and low-speed motions therefore

cover widths that are similar to those of the VLSMs. Finally, we note that the patterns in the ϕ–z

plane observed for St = 0.05, 0.10, and 0.15 (Figure 8.6(a–c)) are quite similar. For these three St

we see that the interface between the high- and low-speed motions that is closest to ϕ = 0 is curved

while the interface that is closer to ϕ = π is relatively straight. The opposite is true for St = 0.20
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Figure 8.6: Phase averages of the streamwise velocity component (⟨u⟩ϕ) in the ϕ–z plane at
x/D = 0.7 and y/D = 0.02 computed using the data from FOV8 for (a) St = 0.05, (b) St = 0.10,
(c) St = 0.15, and (d) St = 0.20. The phase axis has been flipped to display the motions as if they
were moving from left to right. The dotted lines represent the inner diameter of the active surface,
i.e., the region that experiences the maximum surface deformation.

(Figure 8.6(d)) as we can see that the interface closest to ϕ = 0 is straight while the interface that

is closer to ϕ = π is curved.

The above discussion has considered only the phase averages of the streamwise velocity for two

reasons. First, the present investigation focuses on targeting the VLSMs which are a phenomenon

characterized primarily as long, meandering regions of streamwise velocity fluctuation. It therefore

makes sense to focus on producing streamwise velocity fluctuations that can be used to oppose the

VLSMs. Second, we have found that ⟨v⟩ϕ is an order of magnitude weaker than ⟨u⟩ϕ for all cases.

This was also observed in the LBL of Chapter 7.

8.2.2 Structure and Strength

We now work to further understand the structure and strength of the motions produced by the active

surface within the TBL. We begin by considering two important structural characteristics: the

advection velocity and streamwise wavelength, which are related through the actuation frequency
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as

Uc = faλx. (8.4)

The actuation frequencies are known, and so we only need to know one of these parameters to have

access to the other. Following a procedure similar to that of Hussain and Reynolds (1970), the

advection velocity of the motions produced at each actuation frequency has been estimated as

Uc = ωa
∆x

∆ϕ
, (8.5)

where ωa = 2πfa is the angular actuation frequency while ∆x and ∆ϕ are the streamwise dis-

tance and phase shift, respectively, between x/D = 0.7 and 1.4. We have estimated ∆ϕ by cross-

correlating ⟨u⟩ϕ obtained at x/D = 0.7 and 1.4. These cross-correlations were computed using

only the portion of the phase averages up to y/D = 0.08 to isolate the region that contains the

dominant structures produced by the active surface. Note that such cross-correlations are unable

to identify whether there are multiple wavelengths between x/D = 0.7 and 1.4. However, adding

2π to the denominator of Equation (8.5) produces values of Uc that are roughly one order of mag-

nitude smaller than the local mean velocity. It therefore seems unlikely that there are multiple

wavelengths present between x/D = 0.7 and 1.4.

The advection velocities estimated in the present work are plotted in Figure 8.7(a). The results

from the LBL of Chapter 7 at varying actuation amplitudes are also shown. The advection velocities

of Chapter 7 follow a single curve with the exception of a few points at St = 0.4 and 0.5 which seem

to be affected by the emergence of the type-2 modes; this collapse of the data is observed despite

the fourfold increase in actuation amplitude considered. Figure 8.7(a) indicates that the motions

produced by the active surface in the present TBL advect at velocities of around Uc/U∞ = 0.5

to 0.6, which is slightly slower than the mean velocity of 0.64U∞ across the portion of the TBL

that was cross-correlated to obtain ∆ϕ. These velocities are higher than those found in the LBL

(Uc/U∞ = 0.2 to 0.3 at the same St) but are not as high as those associated with the VLSMs,

which were estimated in Chapter 5 to advect at velocities closer to 0.8U∞ in the present TBL. Note

that this faster advection could be due to the VLSMs extending farther from the wall where they

experience a higher mean velocity.

It is reasonable to assume that the freestream velocity is an important parameter for deter-

mining the advection velocity because the freestream velocity is the primary source of momentum.

Similarly, the shape of the mean velocity profile should be an important contributor to the advec-

tion velocity as there is far more momentum close to the wall in the present TBL compared to its

laminar counterpart. Indeed, normalization with U∞ alone does not collapse the present results

with those of Chapter 7 as is clearly shown in Figure 8.7(a). We therefore consider the shape factor

H = δ∗/θ, which is a measure of this near-wall momentum. The advection velocities normalized

by both H and U∞ are shown in Figure 8.7(b). It is evident in the figure that the present results

147



Figure 8.7: Advection velocities (Uc) of the motions produced by the active surface normalized by
(a) the freestream velocity and (b) the freestream velocity and shape factor. Comparison is made
between the motions produced in the present TBL and those produced in the LBL of Chapter 7.

and those of Chapter 7 collapse on the same power-law curve under this normalization, confirming

that the shape of the boundary layer profile is part of what determines the advection velocity of

the motions produced by the active surface. Note that the shape factor was extracted at x/D = 0

when considering the LBL data of Chapter 7.

The wavelengths of the motions produced by the active surface have been computed using

Equation (8.4) and are shown normalized by the actuator diameter in Figure 8.8(a) along with the

results of Chapter 7. These wavelengths aid in determining how long the motions would be if they

persisted downstream. Figure 8.8(a) shows a significant increase in the wavelength of the motions

produced in the present TBL as St is reduced. More specifically, we see λx/D increase from roughly

3 to 12 as St is reduced from 0.2 to 0.05. The VLSMs are considered to be motions, either high- or

low-speed, that are 3δ or more in length (Balakumar and Adrian, 2007). Since the active surface

produces high- and low-speed motions in series, the smallest wavelength that occurs at the scale of

the VLSMs is 6δ. This cutoff is highlighted in Figure 8.8(a), revealing that the active surface only

produces motions at the scale of the VLSMs at the lowest actuation frequency of St = 0.05 in the

present TBL, although the wavelength produced at St = 0.10 is nearly at the cutoff.

Figure 8.8(a) shows that the wavelengths produced in the LBL of Chapter 7 are shorter than

those produced here for a given St. This is a result of the different advection velocities shown

in Figure 8.7(a), which were shown to agree once the shape factor of the boundary layer profile

was employed in the normalization of Figure 8.7(b). It then follows that the shape factor should

also be used in the normalization of wavelength. Indeed, Figure 8.8(b) shows that the wavelengths
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Figure 8.8: Wavelengths (λx) of the motions produced by the active surface normalized by (a) the
actuator diameter and (b) the actuator diameter and shape factor. Comparison is made between
the motions produced in the present TBL and those produced in the LBL of Chapter 7.

normalized using both D and H collapse along a single power-law curve. Together, Figures 8.7(b)

and 8.8(b) indicate that the advection velocity and wavelength of the motions produced by the

active surface are functions of U∞, fa, D, and H.

We now consider the strength of the high- and low-speed motions which we define as S+ =

max(⟨u⟩ϕ) and S− = −min(⟨u⟩ϕ), respectively, along z = 0. We only have access to the strength

values at two streamwise locations, and so we cannot fully characterize the decay in strength as

a function of streamwise distance. We have therefore modelled the spatial decay as exponential

following Hussain and Reynolds (1970), who also considered the periodic forcing of a turbulent

wall-bounded flow. The resulting curves have been extrapolated over 0.5 ≤ x/D ≤ 3.0 and are

plotted in Figures 8.9(a,b) along with the values extracted from the phase averages.

The extrapolated exponential fits allow for estimating the peak strength of the motions at

the edge of the active surface (x/D = 0.5), which can easily be read using the dashed lines in

Figures 8.9(a,b). The uncertainty associated with the peak strength values is roughly 0.007U∞;

this value was obtained by considering the maximum variation of the exponential fits at x/D = 0.5

when accounting for the uncertainty values estimated in Appendix A. We estimate that the high-

speed motions (Figure 8.9(a)) produced at St = 0.05, 0.10, and 0.15 reach a peak strength of roughly

0.07U∞ while the high-speed motion produced at St = 0.20 only reaches 0.05U∞. However, the

high-speed motion produced at St = 0.20 appears to decay more slowly, resulting in a higher

strength than the other three actuation frequencies for x/D > 1. Despite this, it seems that the

strength of all high-speed motions decays to less than 1% of U∞ before reaching x/D = 2. The
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Figure 8.9: Strength of the (a) high- and (b) low-speed motions produced by the active surface in
the present TBL as a function of streamwise distance. The markers represent the values extracted
from ⟨u⟩ϕ. The solid lines represent a fit to the extracted data assuming exponential spatial decay.
(c) The peak strength of the motions produced by the active surface in the present TBL compared
to the LBL results of Chapter 7.

peak strengths of the low-speed motions (Figure 8.9(b)) are estimated to be larger than those of

the high-speed motions, reaching 0.08U∞ for St = 0.05 and 0.10, 0.075U∞ for St = 0.15, and

0.07U∞ for St = 0.20. Despite the stronger motions, we still estimate a reduction to less than

1% of U∞ before reaching x/D = 2. Moreover, just like the high-speed motions, the low-speed

motion produced at St = 0.20 appears to decay more slowly than those produced at the other

three actuation frequencies.

The motions produced by active surface deformations in the present TBL are much weaker in

terms of U∞ and decay more quickly with downstream distance when compared to the LBL results

of Chapter 7 at the same St. In Chapter 7, we found that the strength of the motions produced by

the active surface depends primarily on the amplitude of the surface deformation. The amplitude

considered here is larger than all amplitudes considered in Chapter 7, but the LBL utilized is quite

different than the present TBL in terms of thickness, velocity gradients, etc. We have therefore

formulated a new normalization for the strength values by considering that they depend on both the

active surface and the boundary layer. We assume that the parameters relevant to the operation

of the active surface are D, fa, and A, while the parameters relevant to the boundary layer are

U∞, H, and ν. The inclusion of the shape factor, despite it being dimensionless, was inspired by

the normalization of the advection velocity and wavelength used in Figures 8.7 and 8.8. Various

combinations of these parameters were considered and tested in a trial-and-error manner. Only
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one normalization was found to collapse the data onto a single curve. The resulting normalization

is presented in Figure 8.9(c) along with the results from Chapter 7 for St ≤ 0.2, where Smax is the

estimated peak strength produced by the active surface (= max(|⟨u⟩ϕ|) at x/D = 0.5). It is clear in

the figure that the peak strength values collapse along the same power-law curve over this low-St

range. This suggests that the strength of the motions produced by the active surface at St ≤ 0.2

depends on far more parameters in comparison to the advection velocity and wavelength.

8.2.3 Visualization of the Induced Motions

The phase averages used throughout the previous sections capture the motions produced by the

active surface in the wall-normal, spanwise, and phase dimensions. However, it is difficult to know

what the motions produced by the active surface look like in 3D space when only considering the raw

phase averages because the phase axis represents a different time scale at each actuation frequency.

We have therefore constructed a model for visualizing what the average motions are likely to look

like in the three spatial dimensions. The model employs Taylor’s hypothesis to extend the phase

averages ⟨u⟩ϕ = f(ϕ, y, z) in the streamwise direction. The exponential curves of Figure 8.9(b) are

then applied to account for the spatial decay in strength. These strength curves have been applied

as shown in the subfigure including the constant portion marked by the dashed lines. That is,

the exponential was applied for x/D > 0.5 such that the magnitude of the phase averages at the

measurement location is unchanged while a constant multiplier was used for the region x/D ≤ 0.5.

The model ⟨u⟩mϕ was formed using the phase averages measured at x/D = 0.7 (FOV6 and FOV8)

and is expressed for x/D ≥ 0 as

⟨u⟩mϕ (ϕ, x, y, z) =

{︄
eb(0.5D−xm)⟨u⟩ϕ(ϕ′, y, z) 0 ≤ x/D ≤ 0.5

eb(x−xm)⟨u⟩ϕ(ϕ′, y, z) 0.5 < x/D,
(8.6)

ϕ′(ϕ, x) = ϕ+
ωa

Uc
(xm − x), (8.7)

where b < 0 captures the exponential decay according to the curves of Figure 8.9(b), xm is the

measurement location, and ϕ′ is the phase modified to account for both ϕ and x in the application

of Taylor’s hypothesis. Equation (8.6) perfectly represents the phase-averaged motions at the

measurement location xm but loses accuracy as we move farther from this streamwise location.

Nevertheless, it provides an estimate what the motions produced by the active surface look like in

the three spatial dimensions of the present TBL.

The models for all St are shown in the streamwise–wall-normal plane at z = 0 in Figure 8.10

where the dashed lines mark the measurement location of the phase averages (FOV6). The phase

of the active surface in the figure is ϕ = 4π/5, which corresponds to the surface having a downward

velocity just after having reached its peak deformation. This phase was selected to highlight the low-
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Figure 8.10: The model ⟨u⟩mϕ shown at z = 0 and ϕ = 4π/5 for actuation frequencies of (a)
St = 0.05, (b) St = 0.10, (c) St = 0.15, and (d) St = 0.20. The dashed lines show the measurement
location used to form the models (FOV6). The position of the active surface is displayed accurately.

speed motions formed by an upward motion of the active surface. Increasing the phase by π shows

very similar high-speed motions formed by a downward motion of the surface. The model for St =

0.05 in Figure 8.10(a) shows the long wavelength associated with the lowest actuation frequency

as the low-speed motion can be seen to extend to the end of the displayed FOV. The shrinking of

these wavelengths with increasing actuation frequency is clear throughout Figures 8.10(b–d), with

the latter even showing the adjacent high-speed motion downstream. It is interesting to note that

the low-speed motions appear quite similar for all St considered within the region x/D ≤ 1.0.

Figure 8.11 shows the models for all St in the streamwise–spanwise plane at y/D = 0.02 and

ϕ = 4π/5, which is the same phase shown in Figure 8.10. Once again, the dashed lines mark the

measurement location of the phase averages (FOV8). Just as before, the large change in wavelength

with St is clear. However, in contrast to the streamwise–wall-normal plane, visualizing the motions

in the streamwise-spanwise plane highlights the spanwise extent of the region that is most affected by
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Figure 8.11: The model ⟨u⟩mϕ shown at y/D = 0.02 and ϕ = 4π/5 for actuation frequencies of (a)
St = 0.05, (b) St = 0.10, (c) St = 0.15, and (d) St = 0.20. The dashed lines show the measurement
location used to form the models (FOV8).

the active surface. More specifically, we see a semi-elliptical region roughly occupying 0.5 ≤ x/D ≤
1.0 and −0.25 ≤ z/D ≤ 0.25 where the motions produced by the active surface are strongest. This

region is slightly shorter for St = 0.2 (Figure 8.11(d)), but is approximately invariant for St ≤ 0.15

(Figures 8.11(a–c)). These results indicate that the active surface can produce high- and low-speed

motions within this region over the range of frequencies associated with the VLSMs.

8.3 Manipulation of Turbulence

The previous section focused on characterizing the periodic motions produced by the active surface.

We will now investigate how these motions affect the mean flow and the surrounding turbulence.

The latter will be accomplished by considering the Reynolds stresses using the quantity u′i =

ui − ⟨ui⟩ϕ introduced in Section 8.1.6. Lastly, an attempt to implement feed-forward control will

be discussed.
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8.3.1 Mean Velocity and Reynolds Stresses

The mean velocity profiles at x/D = 0.7 and 1.4 for all St are shown in Figures 8.12(a,b). The

profiles for the actuated cases at x/D = 0.7 (Figure 8.12(a)) show almost no difference compared

to the base flow. The only exception is closer to the wall (y/λ ≲ 200) where a slight deficit on

the order of 2% is observed for all actuated cases (the uncertainty is estimated to be 0.2%). This

appears to be because the low-speed motions produced by the active surface are stronger than

the high-speed motions (see Figure 8.9) and so the average effect is a slight deficit. Indeed, the

phase averages of Figure 8.5 show that the strongest motions occupy the same wall-normal extent

as the affected region of the mean profiles. Conversely, we see no differences between the actuated

cases and base flow at x/D = 1.4 (Figure 8.12(b)). This is likely because of the large decay in the

strength of the high- and low-speed motions by this downstream location. Overall, it appears that

sinusoidal operation of the active surface does not significantly affect the mean velocity profile in

the present TBL. This is in contrast to oscillatory actuation with dynamic roughness (Jacobi and

McKeon, 2011; Gildersleeve et al., 2017) and piezoelectric cantilevers (Jeon and Blackwelder, 2000;

Bai et al., 2014; Tang et al., 2019) which produce stronger effects on the mean flow.

The Reynolds stresses computed using both ui and u′i at x/D = 0.7 and 1.4 for all St are

presented in Figures 8.12(c,d). At x/D = 0.7 (Figure 8.12(c)), there is a roughly 15% increase in

⟨u2⟩ over y/λ ≲ 200, which is the same region where differences in the mean profiles are visible

(Figure 8.12(a)); this increase is several times larger than the uncertainty associated with these

quantities. No differences are observed in ⟨v2⟩, confirming that the wall-normal velocity fluctuations

produced by the active surface are negligible. There are also no differences in ⟨uv⟩ despite the

clear increase in streamwise velocity fluctuations associated with the active surface deformations.

When considering ⟨u′iu′j⟩, which capture the structure of the turbulence less the average actuated

motions, it is clear that all three components show no clear differences when compared to the base

flow. Similarly, at x/D = 1.4 (Figure 8.12(d)), both ⟨uiuj⟩ and ⟨u′iu′j⟩ show no differences with the

base flow. The lack of a change in ⟨u2⟩ at x/D = 1.4 is again likely a result of the decay in strength

of the motions produced by the active surface.

In total, it appears that ⟨u′iu′j⟩ are unaffected by the active surface. However, we will show in

the next section that this is only true on average, as there is actually a strong phase-dependent

modulation of the turbulence statistics resulting from the motions produced by the active surface.

8.3.2 Phase-Averaged Reynolds Stresses

Computing ⟨u′iu′j⟩ using actuation phase bins reveals a phase-dependent modulation of the turbu-

lence statistics. This modulation has therefore been investigated using phase averaging applied in

the same way as for ⟨ui⟩ϕ (see Section 8.1.6). We define the phase-averaged Reynolds stresses as

⟨u′iu′j⟩ϕ and we facilitate their visualization using the difference

∆⟨u′iu′j⟩ϕ = ⟨u′iu′j⟩ϕ − ⟨u′iu′j⟩, (8.8)
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Figure 8.12: Mean velocity profiles and Reynolds stresses computed using both ui and u′i at all St
compared to the base flow at (a,c) x/D = 0.7 and (b,d) x/D = 1.4. The overlaid logarithmic law
in (a,b) is the same as in Figure 8.2(a).
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which shows the extent to which the Reynolds stresses are amplified or suppressed as a function of

ϕ. More precisely, Equation (8.8) is the difference between the phase-averaged and time-averaged

Reynolds stress curves, and it represents the change in the Reynolds stresses as a function of phase

with respect to the time-averaged Reynolds stresses. The resulting ∆⟨u′iu′j⟩ϕ computed in the ϕ–y

plane using the data from FOV6 and FOV7 are shown in Figures 8.13 through 8.15. The left

(panels (a–d)) and right (panels (e–h)) columns in each figure show the results at x/D = 0.7 and

1.4, respectively. The solid and dashed outlines show the locations of the high- and low-speed

motions, respectively, from Figure 8.5. The phase axis has been flipped to display the motions as

if they were moving from left to right.

The streamwise component ∆⟨u′2⟩ϕ is shown in Figure 8.13. A strong modulation pattern

that is associated with the high- and low-speed motions is visible at x/D = 0.7 (Figures 8.13(a–

d)). The high-speed motions (solid outlines) produce an amplification of ⟨u′2⟩ near the wall and

a suppression away from the wall. The opposite modulation pattern is visible for the low-speed

motions (dashed outlines), which suppress ⟨u′2⟩ near the wall and produce amplification away from

the wall. These amplitude modulation patterns appear similar to those that are imparted on the

small-scale turbulence by the VLSMs (Mathis et al., 2009; Ganapathisubramani et al., 2012). For

St = 0.05, the modulated regions are roughly centered with respect to the high- and low-speed

motions and are relatively flat. As St is increased, the modulated regions that are farthest from

the wall become more inclined and shift upstream with respect to the associated coherent motions.

Similar behaviour is visible at x/D = 1.4 (Figures 8.13(e–h)), but the regions of modulation are

weaker, more diffuse, and more inclined. This is likely because the associated high- and low-speed

motions are also weaker, more diffuse, and more inclined at x/D = 1.4 (Figure 8.5).

The modulation of the streamwise Reynolds stress visible in Figure 8.13 is quite strong. It also

does not change much as a function of St. The following values are therefore reported as averages

over the four St considered. The region of amplification associated with the high-speed motions

at x/D = 0.7 produces ⟨u′2⟩ϕ values that are up to 11% larger than the local ⟨u′2⟩. Similarly, the

region of suppression associated with the high-speed motions produces values that are up to 14%

smaller than the local ⟨u′2⟩. The amplification caused by the low-speed motions is even stronger,

producing values that are up to 22% larger than the local ⟨u′2⟩. The suppression caused by the

low-speed motions is similar to that produced by the high-speed motions, resulting in values that

are up to 15% smaller than the local ⟨u′2⟩. These extrema are 2 to 3 times weaker and are located

farther from the wall at x/D = 1.4.

The wall-normal component ∆⟨v′2⟩ϕ is shown in Figure 8.14. A strong modulation pattern

associated with the high- and low-speed motions at x/D = 0.7 (Figures 8.14(a–d)) is again visible.

The high-speed motions (solid outlines) produce a suppression of ⟨v′2⟩ across the entire length of

the coherent motion and a weaker amplification above the motion (y/λ ≳ 120). This weaker region

of modulation shifts upstream with respect to the associated coherent motion as St is increased. A

similar but opposite pattern is visible for the low-speed motions (dashed outlines), which amplify

⟨v′2⟩ within the coherent motion and cause a weaker suppression above it. Both the high- and

156



Figure 8.13: Modulation of the phase-averaged streamwise Reynolds stress (∆⟨u′2⟩ϕ) in the ϕ–y
plane for all actuation frequencies computed using (a–d) the data from FOV6 at x/D = 0.7 and (e–
h) the data from FOV7 at x/D = 1.4. The solid and dashed outlines show the high- and low-speed
motions, respectively, from Figure 8.5. The phase axis has been flipped to display the motions as
if they were moving from left to right.
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Figure 8.14: Modulation of the phase-averaged wall-normal Reynolds stress (∆⟨v′2⟩ϕ) in the ϕ–y
plane for all actuation frequencies computed using (a–d) the data from FOV6 at x/D = 0.7 and (e–
h) the data from FOV7 at x/D = 1.4. The solid and dashed outlines show the high- and low-speed
motions, respectively, from Figure 8.5. The phase axis has been flipped to display the motions as
if they were moving from left to right.
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low-speed motions appear to produce some weaker modulation very close to the wall opposite in

sign to that of the region above for St = 0.20; this is not visible for St = 0.05 to 0.15, again showing

that the motions produced at the frequencies of the LSMs are a bit different than those produced

at the frequencies of the VLSMs. The same patterns are visible at x/D = 1.4 (Figures 8.14(e–h))

but are again weaker and more diffuse in comparison to those at x/D = 0.7.

The percent modulation of the wall-normal Reynolds stress at x/D = 0.7 is even stronger than

what was observed for the streamwise component. The region of suppression associated with the

high-speed motions produces ⟨v′2⟩ϕ values that are up to 25% smaller than the local ⟨v′2⟩, while
the region of amplification associated with the low-speed motions produces values that are up to

39% larger than the local ⟨v′2⟩. These values are again averages over all four St. At x/D = 1.4, the

amplification is roughly 5 times weaker with respect to what was observed at x/D = 0.7. Similarly,

the suppression is nearly 4 times weaker. The modulation of ⟨v′2⟩ therefore shows a sharper decay

between x/D = 0.7 and 1.4 when compared to the modulation of ⟨u′2⟩.
Finally, the shear component −∆⟨u′v′⟩ϕ is shown in Figure 8.15 where the negative sign has

been added to have positive and negative values correspond to amplification and suppression of the

Reynolds shear stress, respectively. This also allows for interpreting these results in terms of the

phase-averaged turbulence production −⟨u′v′⟩ϕ∂⟨U⟩/∂y. Since ⟨U⟩ and ⟨u′v′⟩ are practically the

same between the base and actuated flows (Figure 8.12), the modulation captured by −∆⟨u′v′⟩ϕ
can be thought of as the modulation of turbulence production with respect to that of the base flow.

The modulation pattern of −∆⟨u′v′⟩ϕ at x/D = 0.7 (Figure 8.15(a–d)) looks similar to that

of ∆⟨v′2⟩ϕ at the same streamwise location. The whole area of each high-speed motion (solid

outlines) experiences a suppression, resulting in −⟨u′v′⟩ϕ values that are up to 30% smaller than

the local −⟨u′v′⟩. Similarly, the whole area of each low-speed motion (dashed outlines) experiences

an amplification, resulting in values that are up to 43% larger than the local −⟨u′v′⟩. These extrema

occur around y/λ ≈ 35 to 60 for both suppression and amplification. At x/D = 1.4 (Figure 8.15(e–

h)), the maximum amplification and suppression are 11% and 9% of the local −⟨u′v′⟩, respectively,
and occur around y/λ ≈ 150 to 190. These modulations of −⟨u′v′⟩ are quite strong, especially

when we consider that the motions at x/D = 0.7 and 1.4 have peak strengths of around 5% and

1% of U∞, respectively (Figure 8.9(a,b)).

8.3.3 Feed-Forward of the Wall-Pressure Signal

Motivated by the pressure-driven compliant surfaces of Luhar et al. (2015), an attempt was made

to implement feed-forward control using the wall-pressure signal upstream from the active surface

(x/D = −1.4). This signal was filtered in real time to isolate the frequencies of the VLSMs. The

filtered signal was then fed forward to determine the motion of the active surface. Since the low-

frequency wall-pressure fluctuations were associated with the VLSMs in Chapter 5, the idea was

that this strategy could potentially allow for targeting the VLSMs with the active surface. This

attempt was largely unsuccessful but is documented here to highlight the lessons it reveals. The

real-time system described in Section 3.3 was used to implement the elements of the feed-forward

159



Figure 8.15: Modulation of the phase-averaged Reynolds shear stress (−∆⟨u′v′⟩ϕ) in the ϕ–y plane
for all actuation frequencies computed using (a–d) the data from FOV6 at x/D = 0.7 and (e–h)
the data from FOV7 at x/D = 1.4. The solid and dashed outlines show the high- and low-speed
motions, respectively, from Figure 8.5. The phase axis has been flipped to display the motions as
if they were moving from left to right.
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controller which are described next.

It was first necessary to have the capability to remove the wind tunnel background noise from the

wall-pressure signal in real time so that the noise does not drive the motion of the active surface.

A Wiener filter is used for removing background noise in the present thesis as was discussed in

Section 4.5. This filter was applied in post-processing to remove the noise from the wall-pressure

measurements used in the analyses of Chapter 5. However, it can also be applied in real time if

the filter coefficients are identified ahead of time and the noise statistics do not change between the

identification experiment and real-time implementation. An identification experiment was therefore

conducted immediately before each real-time application of the Wiener filter. The necessary signals

were recorded for 30 seconds and then used to identify the filter coefficients. These coefficients were

applied in real time via Equation 4.9 to estimate the background noise signal so that it could be

subtracted from the wall-pressure signal in real time.

Figure 8.16 shows the PSD of wall pressure beneath the present TBL compared to that of

Chapter 5 and that obtained using the Wiener noise-removal filter in real time. It is clear in the

figure that the wall-pressure fluctuations of the present TBL match those of the TBL studied in

Chapter 5. This confirms once again that the desired TBL has been reproduced and that the

conclusions of Chapter 5 regarding the pressure-velocity coupling can be used here. Similarly, the

PSD obtained during real-time background noise removal also closely matches, with the exception

of a portion of the high-frequency range. The deviation at the high frequencies is due to the

Helmholtz resonance produced by the microphone pinhole cavity, which is not corrected for in

real time. These high frequencies are filtered out of the wall-pressure signal during feed-forward

operation of the active surface and therefore are not an issue here.

The active surface is similar to a speaker in its construction and therefore it produces acoustic

noise when operated. This acoustic noise is also considered part of the background noise, and

it too must be removed from the wall-pressure signal so that the active surface does not drive

itself through acoustic feedback. The active surface was therefore operated using a pre-recorded

input signal during the experiments used to identify the Wiener filter coefficients for feed-forward

control. This pre-recorded signal had the same statistical characteristics as the signal being fed

to the active surface during feed-forward operation and therefore the noise produced by the active

surface during the identification experiments closely matched the noise produced in feed-forward

operation. This was meant to eliminate the acoustic feedback of the active surface. However, the

Wiener filter is not perfect; some actuator-generated noise influenced the movement of the active

surface during feed-forward operation, resulting in the actuation becoming unstable for some cases.

This instability was heavily dependent on the tuning parameters of the active surface, and so these

parameters were selected carefully to achieve sufficient tracking of the feed-forward signal without

the active surface becoming unstable.

After removal of the background noise, the wall-pressure signal was lowpass-filtered to isolate

the frequencies of the VLSMs. Such a lowpass filter applied in real time introduces a “group delay”

to the signal outputted by the filter, i.e., a frequency-dependent time delay (the Wiener filter does
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Figure 8.16: The PSD of wall pressure (Φp) beneath the present TBL at x/D = 1.4 compared to
that of Chapter 5 and that obtained using the Wiener noise-removal filter in real time. The PSD of
the present TBL was computed using 5 minutes of wall-pressure data while the PSD from real-time
background noise removal was computed using 4 minutes of wall-pressure data.

not introduce a time delay, despite it being named as a filter). Additionally, feed-forward operation

of the active surface requires a time delay because it takes time for the motions sensed upstream

to advect to the active surface. The lowpass filter used to isolate the low frequencies was therefore

designed to have a constant group delay that is less than the time delay required for feed-forward

operation of the active surface. A constant group delay is achieved using a filter with a linear phase

response.

The time delay was determined by cross-correlating the wall-pressure signals at x/D = ±1.4

after these signals had been filtered to isolate the low frequencies of interest. This produced an

estimated time delay of 30 ms between the two pressure measurement locations. This is equivalent

to an advection velocity of 0.78U∞ which closely matches the advection velocity estimated for

the VLSMs in Chapter 5. Assuming frozen advection of the pressure fluctuations (i.e., Taylor’s

hypothesis), a feed-forward time delay of 15 ms would have the active surface responding to the

pressure fluctuations at x/D = 0 if perfect tracking of the feed-forward signal was achieved. In

reality, there is an additional time delay added to the system due to imperfect tracking of the

active surface. This additional time delay could not be removed without tuning the active surface

to be more aggressive in its tracking, but this produced instability through acoustic feedback. This
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time delay could therefore not be removed. Nevertheless, a balance was struck which allowed

for reasonable tracking with an effective total time delay of 17.7 ms (equal to the filter group

delay plus the estimated tracking delay). More precisely, there is a time delay of around 17.7 ms

between the wall-pressure measurement at x/D = −1.4 and the response of the active surface

to this measurement. Considering the advection velocity of the pressure fluctuations along with

Taylor’s hypothesis, actuation with this time delay is as if the active surface was responding to the

low-frequency wall-pressure fluctuations at x/D = 0.24, which is still within the inner diameter of

the active surface that experiences the maximum surface deformations (see Figure 6.1).

The magnitude response of the real-time lowpass filter is shown in Figure 8.17 where the fre-

quency cutoff of the VLSMs (17.5 Hz) determined in Chapter 5 is also shown for reference. This

filter is not ideal. The roll-off is quite gradual and the attenuation is only -20 dB. However, im-

proving the filter performance would make the group delay too large, resulting in the active surface

responding to pressure fluctuations that had already advected far downstream. Since the atten-

uation is only -20 dB, the output of the filter is quite noisy as it still contains some signal from

the wall-pressure fluctuations at higher frequencies. This does not end up being an issue because

the active surface is incapable of tracking these high frequencies and therefore they are filtered out

mechanically by the limitations of the device.

After real-time background noise removal, the wall-pressure signal at x/D = −1.4 is passed

through the filter shown in Figure 8.17, a gain of +10 mm/Pa is applied, and then the resulting

signal is used to operate the active surface. A sample of this reference signal and the resulting

active surface displacement are shown in Figure 8.18. The reference signal (grey line) is shown

with the total estimated time delay of 17.7 ms applied. This reference can be seen in the figure to

saturate at h = ±2.5 mm. This saturation was added to stop the active surface from contacting

its displacement limits at ±3.04 mm (dashed lines). As is evident in Figure 8.18, the active surface

displacement (red line) still sometimes contacts both the upper and lower displacement limits of the

actuator. Regardless, reasonable tracking of the reference signal, which represents the low-frequency

wall-pressure fluctuations above the active surface, is observed.

The gain of +10 mm/Pa has the active surface responding to a positive wall-pressure fluctuation

with an upward motion. Similarly, a negative wall-pressure fluctuation is met with a downward

motion of the surface. This is an attempt to counter the VLSMs. In Chapter 5, the high- and low-

speed VLSMs were associated with positive and negative wall-pressure fluctuations, respectively.

In Chapter 7 and the present chapter, the active surface has been shown to produce high- and

low-speed motions with downward and upward surface deformations, respectively. The present

feed-forward configuration therefore has the active surface producing motions in opposition of the

VLSMs assuming that the low-frequency wall-pressure signal accurately represents the VLSMs in

real time.

The Reynolds stresses at x/D = 0.7 resulting from feed-forward operation of the active surface

are shown in comparison to those of the base flow in Figure 8.19(a). It is clear in the figure that

⟨v2⟩ and ⟨uv⟩ remain unchanged relative to the base flow. In contrast, ⟨u2⟩ increases over the wall-
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Figure 8.17: The magnitude response of the real-time filter used to isolate low-frequency wall-
pressure for feed-forward operation of the active surface.

normal range y/λ ≲ 200. This increase is similar to what was observed in Figure 8.12 for periodic

operation of the active surface. These results indicate that the present implementation of feed-

forward control is similar to open-loop operation of the active surface. However, the feed-forward

scheme was designed to target the VLSMs. The lowpass filter of Figure 5.10(a) was therefore

applied to isolate the very-large scales of the velocity field which are denoted using the subscript

VLS. The lowpass-filtered measurements were then used to re-compute the Reynolds stresses which

are shown in Figure 8.19(b). Once again, it is evident that ⟨v2⟩VLS and ⟨uv⟩VLS remain unchanged

relative to the base flow. The values of ⟨u2⟩VLS increase over y/λ ≲ 100 and decrease slightly over

the remainder of the logarithmic layer. The slight decrease in ⟨u2⟩VLS is within the measurement

uncertainty, which is much larger when dealing with the low-frequency component of a time-resolved

signal, and therefore may not be physical.

If the active surface was working to oppose the VLSMs as was desired, a reduction in ⟨u2⟩VLS

would have been observed for y/λ ≲ 200 which is where the active surface is most effective. There

are at least two reasons why the desired result was not achieved. First, it is possible that the

instantaneous, low-frequency wall-pressure signal at a single point is not a good identifier of the

VLSMs in real time. The filtered space-time pressure-velocity correlations of Chapter 5 revealed

a relationship between the low-frequency wall-pressure signal and the VLSMs. However, this was

a statistical relationship since it was revealed through correlations. It may be the case that more

sophistication is required to identify the VLSMs in real time using the low-frequency wall-pressure
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Figure 8.18: Sample tracking of the feed-forward signal: the active surface displacement (red)
compared to the reference signal (grey) representing the low-frequency wall-pressure signal with a
gain of +10 mm/Pa applied. The dashed lines represent the maximum possible displacement of
the active surface.

signal. For example, an array of wall-pressure sensors may be necessary. Second, the acoustic

feedback of the active surface could have dominated the actuation. The active surface was tuned to

be stable, but it is still possible that most of the movement of the active surface during feed-forward

operation was due to acoustic feedback and not due to the pressure fluctuations of the TBL. This

could be why the present results for feed-forward control appear similar to open-loop actuation.

Both possibilities discussed above are related to the sensing mechanism of the controller, thus

highlighting the need to further investigate the use of wall-pressure signals for active flow control.

8.4 Further Discussion

8.4.1 Potential for Flow Control

The primary objective of this chapter was to determine whether active surface deformations are a

feasible actuation strategy for targeting VLSMs. This targeting could potentially be implemented

by producing motions with the same characteristics as the VLSMs with the goal of achieving a

cancellation effect via a control scheme. Sections 8.2 and 8.3 revealed that the motions produced

by the active surface do in fact have characteristics that align with those of the naturally-occurring

VLSMs within the present TBL.

First, the high- and low-speed motions produced by the active surface are truly high and low

speed with respect to the base flow. That is, the active surface does not simply impose a velocity

deficit and then produce oscillations between the deficit state and base state; this is clear when

viewing the mean velocity profiles in Figures 8.12(a,b). The ability to produce motions that are

both high and low speed with respect to the base flow is due to the formation mechanism of these
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Figure 8.19: Reynolds stresses at x/D = 0.7 with and without feed-forward actuation applied for
(a) the full spectrum of velocity fluctuations and (b) the velocity fluctuations lowpass-filtered to
isolate the very-large scales.

motions, which appears to be the movement of existing streamwise momentum, or lack thereof, in

the wall-normal direction. Second, these motions can be produced within the frequency range of

the present VLSMs and with widths and lengths that match those of the VLSMs. However, the

motions are concentrated within y/δ ≲ 0.1, while the VLSMs can exist up to roughly y/δ = 0.5

(Dennis and Nickels, 2011a). They are therefore similar in structure to flattened VLSMs. Finally,

the modulation of the streamwise Reynolds stress produced by the high- and low-speed motions

matches the amplitude modulation produced by VLSMs (Mathis et al., 2009; Ganapathisubramani

et al., 2012). More specifically, the high-speed motions produce a turbulence amplification effect

near the wall and a suppression effect away from the wall. Similarly, the low-speed motions produce

a suppression of turbulent fluctuations near the wall and an amplification away from it.

Considering the above, it is reasonable to use the terminology of Jacobi and McKeon (2017) and

label the longest motions produced by the active surface in the present TBL as synthetic VLSMs.

However, unlike the synthetic VLSMs of Jacobi and McKeon (2017), the present motions decay

rapidly with downstream distance and are therefore more of a local actuation. This is clear in the

visualizations of Figures 8.10 and 8.11, which show that the strongest fluctuations produced by

the active surface exist in the region immediately downstream from the device. It follows that it

may be possible to target the VLSMs locally within the region immediately downstream from the

active surface by employing the device in a feed-forward control scheme. This was attempted in

Section 8.3.3 but was ultimately unsuccessful, likely due to the sensing mechanism. The effects of

suppressing the VLSMs within this region, and whether these effects persist downstream, should
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therefore be the topic of future work.

Alternatively, the active surface could potentially be used for flow control by leveraging the

turbulence-modulating effects displayed in Figures 8.13 through 8.15. The strong modulation of

−⟨u′v′⟩ is particularly interesting due to its link to the turbulence production term. The present

results show that the high-speed motions produced by downward deformations of the active surface

suppress the turbulence production in the logarithmic layer by up to 30% of the local value in

the base flow. Moreover, the motion that causes this effect is roughly 0.05U∞ in strength at the

streamwise location where the effect was measured. This suggests that relatively weak motions

produced by active surface deformations could be used to significantly manipulate the turbulence

production in TBLs. However, the same high-speed motion was also found to amplify ⟨u′2⟩ in

the near-wall region, and this may cause other unwanted effects such as extreme wall-shear events.

Additionally, returning the surface to zero displacement after generating a high-speed motion could

produce a low-speed motion, which would amplify turbulence production in the logarithmic layer.

Reducing turbulence production would therefore rely on operating the active surface in such a

way as to predominantly produce high-speed motions, which may be possible with asymmetric

input signals. Regardless, more work should be done to explore the turbulence-modulating effects

associated with active surface deformations and their potential for turbulence control.

8.4.2 Scaling Between Different Boundary Layers

The same active surface employed in the LBL of Chapter 7 has been used in the present TBL,

allowing for comparing how active surface deformations affect two very different boundary layers

(Reθ ≈ 100 vs. Reθ ≈ 6000). Both sets of results for St ≤ 0.2 show that the active surface can

produce high- and low-speed motions with similar widths and heights. However, the advection

velocity, wavelength, and strength of the motions produced are quite different between the LBL

and TBL. More specifically, active surface deformations in the LBL produce motions that are

shorter in the streamwise direction, advect slower, and are stronger relative to U∞ when compared

to the motions produced in the present TBL. This indicates that the boundary layer properties

are important for determining the nature of the motions that can be produced using active surface

deformations. It is therefore important to determine how the various characteristics of the actuated

motions depend on the boundary layer properties so that active surfaces can be designed for a given

flow control application.

In Section 8.2, we explored normalizations for the advection velocity, wavelength, and strength

of the motions produced by the active surface. It was shown that the advection velocity in the LBL

and TBL collapse along a power-law curve when the freestream velocity and shape factor are used

in the normalization. The freestream velocity is the primary source of momentum, and the shape

factor is inversely proportional to the amount of momentum near the wall. It therefore makes sense

intuitively that these parameters would dictate the advection velocity of motions produced at the

wall. By extension, the wavelengths measured in the LBL and TBL were also found to collapse on

a single power-law curve when the shape factor was used in the normalization. Since the power-
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law curves are functions of St = faD/U∞, we can see that the advection velocity and wavelength

appear to depend on the boundary layer parameters U∞ and H and the actuation parameters fa

and D. Normalization with these parameters appears to work well when using the present data

and that of Chapter 7. However, it is necessary to consider a wider variety of boundary layers

and active surfaces to make a more concrete conclusion regarding how the advection velocity and

wavelength of the motions produced by active surface deformations depend on the boundary layer

and actuation parameters.

The use of the shape factor for normalization was extended to the strength of the motions

produced by the active surface for St ≤ 0.2, resulting in the nondimensional relationship

SmaxU∞D

AfaHν
= c1St

−1.1, (8.9)

where c1 is the constant shown in Figure 8.9(c); this constant is likely unique to the present

active surface. If we divide Equation (8.9) by U∞, employ the approximation St−1.1 ≈ St−1, and

rearrange, we arrive at

Smax

U∞
≈ c1AH

ReDD
. (8.10)

This simplified relationship indicates that the peak strength as a percentage of U∞ and at actuation

frequencies of St ≤ 0.2 can be approximated as a function of the nondimensional parameters ReD =

U∞D/ν, H = δ∗/θ, and A/D. Once again, this approximate relationship holds for the presently

considered data but should be verified in the future using a wider variety of boundary layers

and active surfaces. Despite this caveat, Equation (8.10) provides insight regarding the situations

in which active surface deformations may have superior authority for flow control applications.

First, Smax/U∞ is inversely proportional to ReD. This is in direct conflict with the idea of using

active surface deformations to target VLSMs, which are a high-Reynolds-number phenomenon, but

supports the use of active surface deformation for flow control at lower Reynolds numbers. Second,

Smax/U∞ is proportional to H. This is again in conflict with the idea of targeting VLSMs since

H reduces with Reynolds number. However, it suggests that stronger motions can be generated in

situations with larger H, for example a TBL approaching trailing-edge separation over an airfoil

(Ma et al., 2020). Finally, Smax/U∞ is proportional to A/D. This particular observation clearly has

limits because it implies that A/D can be increased arbitrarily to obtain sufficient authority over the

flow. In reality, increasing A/D too much would result in cavity flows (h < 0) or blockages and flow

separation (h > 0). In the present TBL, A/D = 0.027 (∼3% of δ) has resulted in Smax/U∞ ≈ 0.08

at the St necessary for targeting VLSMs. By linear extrapolation, it follows that active surface

deformations at around 7% of δ (or roughly 9% of δ according to Equation (8.10)) would produce

high- and low-speed motions with Smax/U∞ ≈ 0.2 in the present TBL. This deformation amplitude

is not so large as to be impractical and would likely provide sufficient authority over the flow for

directly targeting the VLSMs.
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8.5 Summary

This chapter considers the use of active wall-normal surface deformations for controlling a TBL at

Reτ = 2600. We focus specifically on whether it is feasible to target the VLSMs locally with this

actuation strategy. We employ the active surface developed in Chapter 6, which has a diameter

roughly equal to the present boundary layer thickness. We operate the device periodically at a

constant amplitude of 0.03δ and frequencies of St = faD/U∞ = 0.05 to 0.20; this range contains the

frequencies associated with the naturally-occurring VLSMs. The resulting motions were captured

using high-speed PIV and evaluated using a triple decomposition.

Periodic operation of the active surface produces a series of high- and low-speed streamwise

velocity fluctuations concentrated within y/δ ≲ 0.1 and −0.25 ≲ z/δ ≲ 0.25. These motions are

truly high and low speed with respect to the unactuated base flow since the mean velocity profile

is essentially unchanged between the actuated and unactuated cases. The high- and low-speed

motions form from downward and upward surface deformations, respectively, and so the formation

mechanism appears to be the movement of streamwise momentum in the wall-normal direction.

The extrema of these motions are concentrated along z = 0, which indicates that the active surface

is generating type-1 modes according to the definition introduced in Chapter 7.

The length of the motions produced by the active surface is a function of the actuation frequency.

We found that St ≲ 0.1 produce motions with lengths comparable to the VLSMs in the present

TBL (≥ 3δ). We also found that these motions modulate turbulence in a manner similar to that

of the VLSMs. The high-speed motions were found to amplify the streamwise Reynolds stress near

the wall and suppress it away from the wall while the opposite pattern was observed for the low-

speed motions. Additionally, the high-speed motions produced a suppression of the wall-normal

Reynolds stress and turbulence production while the low-speed motions amplified these quantities.

Most notably, the high-speed motions with a strength of around 0.05U∞ suppress the turbulence

production in the logarithmic layer by up to 30% of the local value in the base flow.

Considering the dimensions and turbulence-modulating behaviour of the motions produced by

the active surface, it is reasonable to use the terminology of Jacobi and McKeon (2017) and label

these motions as synthetic VLSMs. However, unlike those of Jacobi and McKeon (2017), the

synthetic VLSMs generated here decay in strength rapidly with downstream distance and act like

a local actuation as a result. Moreover, the strength of this local actuation is largely invariant over

the frequency range of the VLSMs. These actuated motions therefore appear to be well-suited for

targeting the VLSMs locally via feed-forward control to produce a cancellation (or suppression)

of the naturally-occurring VLSMs. Feed-forward control was attempted here using the upstream

wall-pressure signal filtered to isolate the frequencies of the VLSMs. This attempt was ultimately

unsuccessful, likely because of issues related to the sensing mechanism. Alternatively, a flow control

strategy based around the turbulence-modulating characteristics of the synthetic VLSMs could also

prove effective.

Finally, we compared our results to those obtained using the LBL of Chapter 7. We find

that the motions produced by the active surface in the present TBL advect faster and are weaker
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when compared to the motions produced in the LBL at the same St if the advection velocity and

strength are normalized by U∞. Our results indicate that the shape factor of the boundary layer

may be part of what dictates the observed differences in advection velocity (and by extension the

wavelength). Similarly, the shape factor and Reynolds number may be part of what dictate the

observed differences in strength.
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Part IV

Closing
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Chapter 9

Conclusions

The primary results chapters contain discussions and summaries of the more technical aspects of

the present work. However, those discussions are not thorough in their consideration of the over-

arching goal of this thesis: to help enable the targeted control of VLSMs through the development

of sensing and actuation capabilities. Accordingly, this chapter synthesizes the present contribu-

tions in the context of the overarching goal, discusses the limitations of the results, and provides

recommendations for future work on the topic.

9.1 Sensing with Wall Pressure

The targeted control of VLSMs requires the ability to sense these motions in real time so that

the controller can then decide how to act. Pressure sensors were selected for this purpose in the

present work because they are the most practical for implementation into physical systems. In fact,

even velocity measurements are conducted via pressure sensors using pitot tubes in many industrial

applications. Despite their practicality, it is challenging to use pressure sensors to identify coherent

motions within TBLs. As will be described next, some of the associated challenges were tackled in

the present work while other challenges were highlighted by an attempt to implement feed-forward

control using the wall-pressure signal in Section 8.3.3.

First, it is not straightforward to obtain reliable pressure measurements in turbulent flows.

Before the pressure measurement system can be designed, it is necessary to acquire an initial

understanding of the flow of interest through estimations or preliminary measurements of some

kind. The measurement system must then be designed to be sensitive to the frequencies of interest,

avoid spatial filtering, remove acoustic background noise, and correct for Helmholtz resonance. The

latter two requirements are particularly important and are not well-explained in the fluid mechanics

literature, if at all. Consequently, the first major contribution of the present thesis was to fully

document the development of the pressure measurement system in Chapter 4. To the author’s

knowledge, the method used to correct for Helmholtz resonance is novel.

The background noise of the wind tunnel was removed from the pressure measurements using a

Wiener noise cancelling filter. This technique was found to be effective in the unactuated TBL and

was also shown to work when applied in real time. Nevertheless, there are problems when actuator
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noise is present as was highlighted by the attempt to implement feed-forward control. Despite the

actuator noise being accounted for in the identification of the Wiener filter coefficients, the removal

of the actuator noise from the wall-pressure signal was imperfect. This led to acoustic feedback

between the sensor and actuator, resulting in instability of the feed-forward system. Additionally,

the Wiener noise cancelling filter will act to remove all parts of the wall-pressure signal that are

correlated with the noise field signal. This is not an issue if the sensor is placed upstream of the

actuator. However, a sensor that is downstream from the actuator will measure pressure fluctuations

that are a result of the actuator noise but also a result of the actuation itself. The latter pressure

fluctuations will be correlated with the actuator noise and will therefore be unintentionally removed

from the pressure signal by the Wiener filter.

Another challenge is understanding the pressure-velocity relationship associated with the target

motions. This was tackled in Chapter 5 where the relationship between the VLSMs and wall

pressure was identified for the first time. The investigation revealed that low-frequency wall-pressure

fluctuations are caused by the wall-normal velocity component of the VLSMs. More specifically, the

downward motions of high-speed VLSMs cause a splatting at the wall, resulting in high pressure.

Conversely, the upward motions of low-speed VLSMs cause a suction at the wall to produce a low

pressure. The alternation between splatting and suction that occurs beneath the VLSMs as they

meander and advect downstream therefore appears to be the mechanism by which they modulate

wall pressure at the lowest frequencies of the turbulence spectrum. This result suggests that it is

possible to identify the VLSMs in real time by employing the low-frequency wall-pressure signal in

some way. However, the low coherence between wall pressure and the VLSMs indicates that simple

thresholding of a single wall-pressure signal is likely insufficient for this identification task.

Finally, a filter was used here to isolate the low-frequency pressure signal associated with the

VLSMs. The phase distortion associated with the filter has the potential to add additional chal-

lenges when identifying VLSMs in real time because it imposes a time delay on the filter output

which can be quite large depending on the characteristics of the filter. If this time delay is too large,

then the VLSMs that are to be identified will have advected far downstream before the filter has

outputted its result. Why this is an issue for real-time identification of the VLSMs is obvious. The

time delay can be reduced by relaxing the filter performance, but this may produce a result that is

no longer capable of representing the VLSMs. Once again, more sophistication may be necessary

to accomplish this task.

9.2 Actuation with Active Surface Deformations

In addition to adequate sensing, targeted control of the VLSMs requires an actuator that is ca-

pable of effectively manipulating these motions from the wall. Active surface deformations have

been largely overlooked as a viable actuation strategy in the flow control literature. However, the

available work on the topic suggests that it has potential. This actuation strategy was therefore

selected for further exploration in this thesis. The contributions described next are believed to have

advanced our understanding of actuation with active surface deformations more than any previous
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study on the topic, although the previous investigations were brief, few, and far between.

It should first be mentioned that there are endless surface deformation geometries to consider

when designing this type of actuator. The active surface developed in Chapter 6 produces one of

the simplest possible geometries, and the device was designed this way for a few reasons. First,

a simple geometry facilitates manufacturing. Second, the present work was concerned with local

surface deformations, and the circular geometry seems ideal for producing a localized deformation.

Third, a simpler geometry helps isolate the effect of the moving surface instead of, for example,

the effect of a complicated protrusion or depression. And finally, the geometry was to be easily

reproducible by future researchers who wish to contribute further advancements to the topic.

The active surface was first deployed beneath an LBL in Chapter 7. This was done to form a

baseline understanding of the actuation strategy in a steady flow and to allow for later comparison

with actuation in the TBL. The results indicate that the active surface is capable of producing

high- and low-speed streamwise velocity fluctuations with similar magnitudes which reach up to

roughly one-third of the freestream velocity. This is a fantastic result for an actuator given that

the objective is to be able to generate velocity fluctuations that can be used to influence the flow.

It is also remarkable that the active surface can produce both high- and low-speed motions, as

many actuator types are asymmetric in their impact. That being said, the spatial structure of

the actuated motions is highly dependent on the actuation frequency. Increasing the actuation

frequency produced alternating transitions between type-1 and type-2 modes, with the latter type

being undesirable for targeting coherent motions. It therefore may be the case that the active

surface is only viable for flow control within a narrow frequency band of a given application. The

LBL results indicate that it is the lowest frequencies that are the most suitable for flow control.

It then follows that active surface deformations may only be suitable for flow control in situations

where it is the low frequencies that are of interest.

Chapter 7 also included an application of a data-driven, linear modelling technique which was

shown to successfully capture the input-output dynamics of the actuated flow. This model was

identified using the LBL because the flow is steady and therefore evaluating the performance of

the model is straightforward. It is not known whether the success of the technique will extend

to actuation in the TBL. Nevertheless, this result is promising for the development of control

strategies that utilize active surface deformations because it suggests that the actuation strategy

is compatible with the tools of modern control theory which are largely limited to linear systems.

More specifically, the state-space model form of a linear system is required to implement these

tools, and such a model can be extracted via the eigensystem realization algorithm from the type

of linear model considered here. The resulting state-space model could then be used to design an

effective controller using theory and simulation.

The active surface was then deployed beneath a TBL in Chapter 8 where it was operated at the

frequencies associated with the VLSMs; these low frequencies happen to occupy the (normalized)

frequency range that was found to be most suitable for flow control in the LBL of Chapter 7.

Once again, the device was found to be capable of producing both high- and low-speed streamwise
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velocity fluctuations of type 1, i.e., the extrema of these fluctuations occur along the centreline of

the active surface. These actuated motions were similar to the VLSMs in terms of their dimensions

and ability to modulate the surrounding turbulence. However, their strength decays quickly with

streamwise distance and therefore they are more of a local actuation. These characteristics indicate

that active surface deformations are suitable for targeting VLSMs locally, although it is not known

whether any manipulation of the VLSMs would persist downstream. Alternatively, the turbulence-

modulating properties of the actuated motions may be suitable for turbulence control. In particular,

the suppression of turbulence production caused by the high-speed actuated motions is likely worth

further exploration.

Finally, the motions produced by the active surface at low frequencies were compared between

the LBL and TBL. These motions are quite similar overall but with two primary differences. First,

the motions produced in the TBL advect faster as a percentage of the freestream velocity compared

to those produced in the LBL. Second, the motions produced in the TBL are weaker as a percentage

of the freestream velocity compared to those produced in the LBL. These differences prompted the

consideration of normalizations that would collapse the data onto single curves. The resulting

normalizations suggest that the shape factor of the boundary layer is part of what determines the

advection velocity of the motions produced by the active surface. This makes sense intuitively

because the shape factor is inversely proportional to the amount of momentum near the wall where

the motions are being formed. Similarly, the shape factor and Reynolds number may both determine

the strength of the motions produced by the active surface. More specifically, high shape factors

and low Reynolds numbers appear to be associated with stronger actuation. This does not bode

well for the targeted control of VLSMs in high-Reynolds-number applications. However, there are

many applications at lower Reynolds numbers where active surface deformations may be a suitable

form of actuation for flow control.

9.3 Recommendations for Future Work

There are many directions that could be taken by those looking to extend the work done here. A

few recommendations are described below.

Real-Time Removal of Actuator Noise from Pressure Measurements

The use of pressure measurements in many flow control applications relies on the ability to distin-

guish between acoustic noise and hydrodynamic pressure fluctuations. The attempt to implement

feed-forward control revealed that the Wiener filter is not sufficient for removing acoustic actua-

tor noise from the wall-pressure measurements in real time. It would therefore be worthwhile to

develop this ability.
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Real-Time Identification of Very-Large-Scale Motions Using Wall Pressure

The relationship between wall pressure and the VLSMs was identified for the first time in Chapter 5.

Unfortunately, the low associated coherence suggests that simple thresholding of a single wall-

pressure signal is insufficient for identifying VLSMs in real time. It is recommended that this

identification task be explored to determine the number of sensors and the types of algorithms that

are necessary to successfully identify VLSMs using wall pressure alone.

Scaling and Prediction of the Motions Produced by Active Surface Deformations

The normalizations of the advection velocity, wavelength, and strength of the motions produced by

the active surface were formed using the results from two boundary layers. Further work should

be done to validate or improve these normalizations using the results from a variety of boundary

layers. This would enable the ability to predict how active surface deformations affect a variety of

flows for the purpose of control system design.

Linear Modelling of Active Surface Deformations in a Variety of Boundary Layers

The linear modelling efforts explored here should be extended to consider different boundary layers,

active surfaces, frequency ranges, deformation amplitudes, etc., to determine the extent to which

linear models can adequately capture the actuation dynamics. This should include the use of the

eigensystem realization algorithm for identifying a state-space model.

Effect of Active Surface Deformation Geometry on Actuation

The active surface deformation geometry considered here was made simple on purpose. However,

different geometries may offer better performance in terms of the strength or dimensions of the

motions produced by actuation. A study that considers the impact of deformation geometry on

the motions that are produced by actuation is therefore recommended.

Proper Implementation of Feed-Forward Control with Active Surface Deformations

Feed-forward control of the VLSMs using active surface deformations appears to have been thwarted

by the inadequacy of the sensing system used here. It is recommended that the issues be resolved,

either by using velocity sensors or by further developing the ability to use pressure sensors for flow

control, so that proper feed-forward control of the VLSMs using active surface deformations can

be explored.
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Experimental control of Tollmien-Schlichting waves using pressure sensors and plasma actuators.
Exp. Fluids, 62:32, 2021.

S. L. Brunton and J. N. Kutz. Data Driven Science and Engineering: Machine Learning, Dynamical
Systems, and Control. Cambridge University Press, 2019.

S. L. Brunton and B. R. Noack. Closed-loop turbulence control: progress and challenges. Appl.
Mech. Rev., 67:050801, 2015.
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Appendices

A Uncertainty Analysis

The uncertainties associated with quantities presented throughout this thesis are estimated in

this appendix. These quantities include instantaneous measurements, means, standard deviations,

variances, and covariances. Attempts to estimate the uncertainty of measures that are more compli-

cated, for example spectra or quantities extracted through the application of a tunable algorithm,

are not included. This is because these uncertainty estimations would require so much assumption

and error propagation that the results would be rendered essentially meaningless.

Approach

The total uncertainty of a quantity (E) is estimated by considering the percent bias uncertainty

(ϵ), random error (Er), and convergence uncertainty (Ec) resulting from computing statistics us-

ing a finite number of samples. The former two propagate through the statistics to produce the

propagation uncertainty (Ep). The latter is estimated using the methods outlined by Sciacchitano

and Wieneke (2016), which take into account the effective number of independent samples which

is defined as

Neff =
N

∞∑︂
n=−∞

r(n∆t)

, (A.1)

where N is the total number of samples collected and r(n∆t) is the autocorrelation function of

the measurements normalized such that r(0) = 1. When the measurements are uncorrelated,

the denominator of Equation (A.1) is 1 and so Neff = N . Otherwise, the correlation between

measurements reduces Neff . Note that the denominator of Equation (A.1) is only evaluated between

the first crossing of zero on either side of r(0) = 1, and Neff is only used when computing the

statistics of one variable (mean, standard deviation, and variance).

Consider as an example a set of measurements of the streamwise velocity U . Any given instan-

taneous measurement will have the form

Û = U(1 + ϵ) + Er, (A.2)
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where the hat notation indicates that the measurement Û is an estimate of the true value U .

The total uncertainty of this instantaneous measurement is found by subtracting U from Û while

considering the absolute value of the measurement:

EÛ = ϵ|U |+ Er ≈ ϵ|Û |+ Er. (A.3)

The random errors have zero mean by definition, and so taking the mean of Equation A.2 yields

⟨Û⟩ = ⟨U⟩(1 + ϵ). (A.4)

The uncertainty propagated through the mean is then

Ep,⟨Û⟩ = ϵ|⟨U⟩| ≈ ϵ|⟨Û⟩|. (A.5)

The convergence uncertainty of the mean is (Sciacchitano and Wieneke, 2016)

Ec,⟨Û⟩ =
σÛ√
Neff

, (A.6)

where σÛ is the standard deviation of the measurement ensemble. The estimated total uncertainty

of the mean is the sum of the propagated and convergence uncertainties:

E⟨Û⟩ = ϵ|⟨Û⟩|+
σÛ√
Neff

. (A.7)

Now consider the fluctuating component of the same set of streamwise velocity measurements:

û = u(1 + ϵ) + Er, (A.8)

where the error associated with subtracting the estimated mean value is neglected for simplicity.

Assuming that the measurements and random error are uncorrelated, taking the variance of û yields

⟨û2⟩ = ⟨u2⟩(1 + 2ϵ+ ϵ2) + E2
r . (A.9)

The uncertainty propagated through the variance is then

Ep,⟨û2⟩ = (2ϵ+ ϵ2)⟨u2⟩+ E2
r ≈ (2ϵ+ ϵ2)⟨û2⟩+ E2

r . (A.10)

The convergence uncertainty of the variance is (Sciacchitano and Wieneke, 2016)

Ec,⟨û2⟩ = ⟨û2⟩
√︃

2

Neff
, (A.11)
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and so the estimated total uncertainty of the variance is

E⟨û2⟩ =

(︃√︃
2

Neff
+ 2ϵ+ ϵ2

)︃
⟨û2⟩+ E2

r . (A.12)

Given the relationship between the variance and standard deviation, the square root of Equa-

tion (A.9) can be taken to obtain the standard deviation of û in terms of ϵ and Er:

σû = σu
√︁
(1 + ϵ)2 + ϵ′, (A.13)

where ϵ′ = E2
r /⟨u2⟩ ≈ E2

r /⟨û2⟩. The propagated uncertainty is then the difference between σû and

σu:

Ep,σû
= σu

√︁
(1 + ϵ)2 + ϵ′ − σu ≈ σû(

√︁
(1 + ϵ)2 + ϵ′ − 1). (A.14)

The convergence uncertainty of the standard deviation is (Sciacchitano and Wieneke, 2016)

Ec,σû
=

σû√︁
2(Neff − 1)

, (A.15)

and so the estimated total uncertainty of the standard deviation is

Eσû
= σû

(︄
1√︁

2(Neff − 1)
+
√︁

(1 + ϵ)2 + ϵ′ − 1

)︄
. (A.16)

Finally, the uncertainty of a covariance can be estimated by considering a second measurement, for

example the fluctuating pressure:

p̂ = p(1 + ϵ2) + Er,2, (A.17)

where ϵ2 and Er,2 are the bias uncertainty and random error, respectively, of p̂. Assuming that

the random errors are uncorrelated with one another and with the measurements, the covariance

between p̂ and û can be taken to yield

⟨p̂û⟩ = ⟨pu⟩(1 + ϵ+ ϵ2 + ϵϵ2). (A.18)

The uncertainty propagated through the covariance is then

Ep,⟨p̂û⟩ = |⟨pu⟩|(ϵ+ ϵ2 + ϵϵ2) ≈ |⟨p̂û⟩|(ϵ+ ϵ2 + ϵϵ2). (A.19)

189



The convergence uncertainty of the covariance is (Sciacchitano and Wieneke, 2016)

Ec,⟨p̂û⟩ = σp̂σû

√︄
1 + r2p̂û
N − 1

, (A.20)

where rp̂û is the cross-correlation coefficient between p̂ and û, i.e., a normalized form of the covari-

ance. The estimated total uncertainty of the covariance is

E⟨p̂û⟩ = |⟨p̂û⟩|(ϵ+ ϵ2 + ϵϵ2) + σp̂σû

√︄
1 + r2p̂û
N − 1

. (A.21)

The above estimated uncertainties of instantaneous measurements, means, standard deviations,

variances, and covariances were shown using Û , û, and p̂ as examples. However, all estimated

uncertainties presented here were computed in the same way.

Estimating the Random Error and Bias Uncertainty

The random error and bias uncertainty for the measurements of velocity, pressure, and active

surface displacement need to be known to employ the above equations. How these values have been

estimated is described below.

It is common to estimate the uncertainty associated with an instantaneous PIV measurement as

being a displacement of 0.1 pixels. As discussed by Sciacchitano (2019), this “universal constant”

for PIV uncertainty is likely overly simplistic, as uncertainty depends heavily on the characteristics

of each experiment. However, analyses dedicated to evaluating PIV uncertainty typically return

uncertainties of around 0.1 pixels (Raffel et al., 2018), and so this value has been used here for the

random error associated with the PIV processing algorithm. The 0.1 pixels has been propagated

through to the computation of velocity, resulting in the values for Er shown in Table A.1.

The bias uncertainties associated with particle time response and laser pulse timing have been

ignored because they are negligible at the flow speed considered in this thesis. The bias uncer-

tainty associated with planar calibration has been estimated as 1 pixel across the total calibration

distance. In contrast, the bias uncertainty associated with stereoscopic calibration is larger due to

the complexity of the calibration process. All stereoscopic measurements conducted for this work

were used to capture spanwise–wall-normal planes, and so the associated calibration uncertainties

FOV1 FOV2 FOV3 FOV4 FOV5 FOV6 FOV7 FOV8

ϵ [%] 0.11 0.09 2.80 0.10 2.63 0.09 0.09 1.77

Er [m/s] 0.13 0.05 0.10 0.02 0.06 0.08 0.08 0.12

Table A.1: Estimated bias uncertainty (ϵ) and random error (Er) associated with the PIV mea-
surements conducted in the various FOVs.
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were estimated by evaluating the change in the mean velocity profile across the span in comparison

to the more reliable planar PIV measurements. The estimated values of ϵ for the various PIV

measurements are shown in Table A.1.

To estimate the uncertainty of the instantaneous wall-pressure measurements, it was assumed

that the error in instantaneous pressure was due only to the calibration, as the random noise

associated with the hardware chain is negligible in comparison. According to the manufacturer

data, the uncertainty associated with the calibrator is ±0.2 dB. When considered with the nominal

calibration pressure of 94 dB, this leads to a calibration uncertainty of 2.3% for instantaneous

pressure. Similarly, the random error associated with the hardware chain for the active surface was

assumed to be negligible. The calibration uncertainty for the measured active surface displacements

was estimated to be 1% by comparing the displacement values read from MotionLab to those

generated by the real-time system via the polynomial conversion from V to mm (more details in

Chapter 6).

Estimated Uncertainties for Select Results Presented in Chapter 5

The estimated total uncertainty of prms was found to be 2.4% using Equation A.16. The esti-

mated total uncertainties associated with the mean velocity and Reynolds stresses of Figure 5.2 are

shown in Table A.2 as a percentage of the statistical quantity in question. Since the convergence

uncertainty depends on individual statistics, the estimated total uncertainties are a function of

wall-normal distance. Therefore, to arrive at the values displayed in Table A.2, the total uncer-

tainty values were averaged across a wall-normal range extending from y/δ = 0.02 to 0.5 (roughly

y/λ = 50 to 1300). The estimated total uncertainties associated with the pressure-velocity corre-

lations of Figures 5.6, 5.12, and 5.14 are presented in Table A.3. The values in the table represent

the average uncertainty across the entire FOV used to show each correlation and are given as a

percentage of the upper colourbar value used to display each correlation. For example, Rpu in

Figure 5.6(a) is displayed using a colourbar range of −2 × 10−5 to 2 × 10−5. Table A.3 indicates

that the average uncertainty of the correlations displayed in this contour plot is 4.7% of 2× 10−5.

The values are reported in this way because the correlations are zero in many places and would

therefore produce infinite error if computed as a percentage of the local correlation value.

⟨U⟩ ⟨u2⟩ ⟨v2⟩ ⟨uv⟩
FOV1 0.2% 4.2% 9.8% 2.8%

FOV2 0.2% 2.2% 2.0% 0.9%

FOV3 3.1% 11.2% 12.9% 7.5%

Table A.2: Estimated total uncertainties associated with the mean velocity and Reynolds stresses
shown in Figure 5.2.
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Rpu Rpv Rpw RLS
pu RLS

pv RLS
pw RVLS

pu RVLS
pv RVLS

pw

All p 4.7% 3.6% 16.4% 2.6% 2.1% 9.2% 2.5% 4.9% 17.7%

p > 0 4.7% 3.4% 15.4% 2.5% 1.9% 8.4% 2.4% 4.4% 16.0%

p < 0 4.1% 3.2% 14.8% 2.4% 1.8% 8.0% 2.2% 4.3% 14.9%

Table A.3: Estimated total uncertainties associated with the pressure-velocity correlations shown
in Figures 5.6, 5.12, and 5.14. These uncertainties are given as a percentage of the upper colourbar
value used to display each respective correlation.

Estimated Uncertainties for Select Results Presented in Chapter 7

Following Equation A.3, the estimated total uncertainty of the instantaneous streamwise velocity

fluctuation is 0.001|u| + 0.02 m/s (FOV4). Similarly, the estimated total uncertainty of the in-

stantaneous active surface displacement is 0.01|h|. The estimated total uncertainty of the mean

velocities presented in Figures 7.2 and 7.3 is 0.2%. This is an average across all of FOV4, although

the first vectors above the wall have uncertainties closer to 1%. The uncertainties associated with

the phase averages used in Figures 7.5, 7.7, 7.8, and 7.11 cannot easily be given as a percentage

because there are many places where the phase average is zero and therefore the percentage would

be infinite. However, the convergence uncertainty was found to be effectively constant across all

actuation frequencies and amplitudes because of the binning process of the phase averages. More

precisely, the standard deviation of the measurements, which dictates the convergence uncertainty

of a mean, is largely due to the bin width and measurement noise instead of the variance of the fluc-

tuating velocity over a full actuation cycle. The total uncertainty of the phase averages is therefore

most easily reported as a percentage (from the bias) plus the convergence uncertainty (averaged

over the FOV). The total uncertainty of the phase averages computed from FOV4 is then estimated

as 0.001⟨u⟩ϕ + 0.005 m/s. Similarly, the total uncertainty of the phase averages computed from

FOV5 is estimated as 0.026⟨u⟩ϕ + 0.01 m/s. Note that these uncertainties extend to the strength

values shown in Figure 7.10, which were extracted from the phase averages.

Estimated Uncertainties for Select Results Presented in Chapter 8

The estimated total uncertainties associated with the mean velocity and Reynolds stresses of Fig-

ures 8.2, 8.12, and 8.19 are shown in Tables A.4, A.5, and A.6, respectively, as a percentage of

the statistical quantity in question. Just as was done for the velocity statistics of Chapter 5, these

total uncertainty values were averaged across a wall-normal range extending from y/δ = 0.02 to 0.5

(except for FOV8 which only extends to y/δ ≈ 0.3). The total uncertainty of the phase averages in

Figure 8.5 is estimated as 0.001⟨u⟩ϕ + 0.02 m/s. Similarly, the total uncertainty of the phase aver-

ages in Figure 8.6 is estimated as 0.018⟨u⟩ϕ + 0.02 m/s. Finally, the estimated total uncertainties

of the phase-averaged Reynolds stresses are given in Table A.7; these values were averaged across

y/δ = 0.02 to 0.5 and all actuation frequencies.
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⟨U⟩ ⟨u2⟩ ⟨v2⟩ ⟨uv⟩
FOV6 0.3% 3.4% 4.0% 1.2%

FOV7 0.2% 3.3% 3.9% 1.2%

FOV8 1.8% 5.7% 10.7% 3.7%

Table A.4: Estimated total uncertainties associated with the mean velocity and Reynolds stresses
shown in Figure 8.2.

⟨U⟩ ⟨u2⟩ ⟨v2⟩ ⟨uv⟩ ⟨u′2⟩ ⟨v′2⟩ ⟨u′v′⟩
x/D = 0.7 0.2% 2.4% 3.5% 0.8% 2.4% 3.5% 0.8%

x/D = 1.4 0.2% 2.4% 3.5% 0.8% 2.4% 3.5% 0.8%

Table A.5: Estimated total uncertainties associated with the mean velocity and Reynolds stresses
shown in Figure 8.12. These values were averaged over the four actuation frequencies considered.

⟨u2⟩ ⟨v2⟩ ⟨uv⟩ ⟨u2⟩VLS ⟨v2⟩VLS ⟨uv⟩VLS

Base flow 3.4% 4.0% 1.2% 6.1% 37.0% 0.9%

Feed-forward 2.5% 3.6% 0.8% 4.8% 33.1% 0.7%

Table A.6: Estimated total uncertainties associated with the Reynolds stresses shown in Figure 8.19.

⟨u′2⟩ϕ ⟨v′2⟩ϕ ⟨u′v′⟩ϕ
x/D = 0.7 3.7% 4.9% 2.9%

x/D = 1.4 3.7% 5.1% 2.9%

Table A.7: Estimated total uncertainties associated with the phase-averaged Reynolds stresses used
to form Figures 8.13, 8.14, and 8.15.
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B MATLAB Code

Helmholtz Resonance Correction

1 % This function corrects Helmholtz resonance using a second-order model
2 %
3 % resonantFrequency: resonant frequency of the second-order model
4 % dampingRatio: damping ratio of the second-order model
5 % acqFrequency: signal acquisition frequency
6 % P: input pressure signal
7 %
8 % Pc: corrected pressure signal
9

10 function [Pc] = correctHelmholtz(P,acqFrequency,dampingRatio,resonantFrequency)
11

12 L = length(P);
13

14 % Applying a fast Fourier transform and extracting one side
15

16 FFT = fft(P,L); % applied to signal to be corrected
17 halfFFT = FFT(1:L/2+1); % extracting one side
18 f = 0:acqFrequency/L:acqFrequency/2; % creating frequency vector
19

20

21 % Calculating magnitudes and phases of second-order system
22

23 secondMags = 1./sqrt((1 - (f/resonantFrequency).ˆ2).ˆ2 + ...
(2*dampingRatio*f/resonantFrequency).ˆ2);

24 secondPhases = -1.0*atan2(2*dampingRatio*(f/resonantFrequency),(1 - ...
(f/resonantFrequency).ˆ2));

25

26

27 % Correcting magnitudes and phases in the frequency domain
28

29 for i = 1:length(f)
30

31 z = halfFFT(i,1);
32 mag = abs(z);
33 phase = angle(z);
34 newMag = mag/secondMags(1,i);
35 newPhase = phase - secondPhases(1,i);
36 [a,b] = pol2cart(newPhase,newMag);
37 halfFFT(i,1) = complex(a,b);
38

39 end
40

41

42 % Re-assembling full Fourier results for inversing
43

44 FFTleft = halfFFT; % left-hand complex
45 realsLeft = real(halfFFT); % left-hand reals
46 imagsLeft = imag(halfFFT); % left-hand imaginary
47 FFTright = complex(realsLeft,-1.0*imagsLeft); % right-hand complex
48 corrFFT = [FFTleft; flipud(FFTright(2:end-1))]; % corrected FFT
49 Pc = real(ifft(corrFFT,L)); % corrected signal
50

51 end
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Wiener Noise Estimation

1 % This function uses the measurements of a noise field signal to estimate
2 % the noise present in a signal that is to be noise reduced.
3 %
4 % signal 1: signal to be noise reduced
5 % signal 2: noise field signal (measured simultaneously with signal 1)
6 % order: filter order
7 %
8 % noise: noise present in signal 1 (subtract this off)
9

10 function [noise,w] = wienerNoiseCancel(signal 1,signal 2,order)
11

12 N = length(signal 1); % signal length
13

14 X = xcorr(signal 2)/N; % autocorrelation of signal 2
15 Rv2 = toeplitz(X(N:N+order-1)); % Toeplitz matrix of autocorrelations
16

17 X = xcorr(signal 1,signal 2)/N; % cross-correlation between signals
18 rxv2 = X(N:N+order-1); % cropped cross-correlation vector
19

20 w = Rv2\rxv2; % filter coefficients
21

22 noise = conv(w,signal 2); % applying filter to signal 2
23 noise = noise(1:end-order+1); % isolating the useful part
24

25 end
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Wiener System Identification

1 % This function applies the Wiener filter to identify the impulse
2 % response and transfer function for a single-input, single-output
3 % system that is assumed to be linear
4 %
5 % input: input to linear system
6 % output: output from linear system
7 % order: order of Wiener filter
8 % acqFreq: acquisition frequency of input and output
9 %

10 % g io: time domain impulse response
11 % G io: frequency domain transfer function
12 % f: frequencies associated with G io
13

14 function [g io, G io, f] = wienerSystemID(input,output,order,acqFreq)
15

16 N = length(input); % signal length
17

18 X = xcorr(input)/N; % autocorrelation of input
19 Rv2 = toeplitz(X(N:N+order-1)); % Toeplitz matrix of autocorrelations
20

21 X = xcorr(output,input)/N; % cross-correlation between signals
22 rxv2 = X(N:N+order-1); % cropped cross-correlation vector
23

24 g io = Rv2\rxv2; % impulse response
25 G io = fft(g io); % transfer function
26 G io = G io(2:order/2+1); % taking useful part
27

28 f = 0:acqFreq/order:acqFreq/2; % convert from bins to frequencies
29 f = f(2:end)'; % removing 0 Hz
30

31 end
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