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Abstract: Laser scanning is routinely being used for the characterization and management of rockfall
hazards. A key component of many studies is the ability to use the high-resolution topographic
datasets for detailed volume estimates. 2.5-Dimensional (2.5D) approaches exist to estimate the
volume of rockfall events; however these approaches require rasterization of the point cloud. These
2.5D volume estimates are therefore sensitive to picking an appropriate cell size to preserve resolution
while minimizing interpolation, especially for lower volume rockfall events. To overcome the
limitations of working with 2.5D raster datasets, surface reconstruction methods originating from
the field of computational geometry can be implemented to assess the volume of rockfalls in 3D.
In this technical note, the authors address the methods and implications of how the surface of 3D
rockfall objects, derived from sequential terrestrial laser scans (TLS), are reconstructed for volumetric
analysis. The Power Crust, Convex Hull and Alpha-shape algorithms are implemented to reconstruct
a synthetic rockfall object generated in Houdini, a procedural modeling and animation software
package. The reconstruction algorithms are also implemented for a selection of three rockfall cases
studies which occurred in the White Canyon, British Columbia, Canada. The authors find that there
is a trade-off between accurate surface topology reconstruction and ensuring the mesh is watertight
manifold; which is required for accurate volumetric estimates. Power Crust is shown to be the most
robust algorithm, however, the iterative Alpha-shape approach introduced in the study is also shown
to find a balance between hole-filling and loss of detail.

Keywords: rockfall; surface reconstruction; LiDAR; point cloud; Alpha-shape; Power Crust; Convex
Hull; volume estimate

1. Introduction

Over the past decade, terrestrial laser scanning (TLS) has proven to be an efficient and effective
tool for slope stability assessment and monitoring. TLS systems have been used to investigate
fundamental rockfall processes. Multi-temporal TLS scans have been used to identify and characterize
patterns of precursor rockfall activity [1–3]; and to detect and analyze millimeter-scale pre-failure
deformation in rock slopes [4,5]. TLS systems have also been used for rock bridge characterization [6],
assessing cliff-talus interactions [7], and most commonly; the development of remotely sensed rockfall
databases [8–13].

Many of these studies have used detailed multi-temporal TLS point clouds or surface models
to derive a frequency-magnitude relationship for the study site. All of these studies are hindered
by the temporal longevity that is required to generate realistic frequency-magnitude relationships.
Work by Williams et al. [12] demonstrates the effects of temporal censoring by TLS acquisition rate
and its implications on frequency-magnitude relationships. Regardless of the time period the slope is

ISPRS Int. J. Geo-Inf. 2019, 8, 548; doi:10.3390/ijgi8120548 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0001-6783-4454
http://www.mdpi.com/2220-9964/8/12/548?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi8120548
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2019, 8, 548 2 of 19

being monitored and the data acquisition rate, these analyses rely on confidence in the volumetric
calculations to derive frequency-magnitude relationships.

Recent work by Olsen et al. [10] raises a key issue with many of these analyses. At many study
sites, complex slope geometry results in occlusions (i.e., holes) in the point cloud captured by the TLS
system. Additionally, the divergence and attenuation of the laser beam with increasing range can
result in non-uniform point density across the study slope. Both factors can present challenges for
change detection analyses and subsequently, volumetric analysis. To compute the volume of detected
topographical change between sequential scans, the areas of change are commonly converted from a
point cloud to a triangulated surface mesh. However, many surface reconstruction techniques were
not developed for natural environments. Some algorithms assume uniform point spacing and smooth
surface geometry which might not present in the natural environment [14]. As a result, the conversion
from a point cloud to a mesh can result in topological artifacts which inhibit accurate volumetric
calculations. For accurate volume calculations, the triangulated surface mesh must be watertight,
free of intersecting triangles and have consistent normal vector orientation. As noted by Olsen et
al. [10], ensuring that each mesh is topologically correct can require significant manual editing which is
time-consuming and subjective. Therefore there is a need to evaluate automated surface reconstruction
algorithms and their influence on resulting volumetric analyses, in order to improve methods used to
monitor and quantify geomorphological processes.

In this work, the authors address the 3-Dimensional (3D) surface reconstruction of rockfall point
clouds, here on denoted as rockfall objects, to assess the implications for volumetric analysis. Commonly
used surface reconstruction algorithms are implemented and compared using a synthetic rockfall
object and three natural rockfall events that occurred in the White Canyon, British Columbia, Canada.

1.1. Surface Reconstruction Background

Surface reconstruction aims to construct a complete surface model from a discrete point cloud
input. Triangular meshes are often used as surface models because they are the simplest of polygon
meshes, and therefore reduce the amount of computation used for their various computer graphical
and 3D modeling applications. A key requirement for many applications, including accurate volume
calculations, is that the constructed triangular mesh surface needs to be a watertight manifold surface
with correct topology. A mesh is watertight if the mesh does not have any missing triangles (i.e.,
surface holes). A mesh is a manifold if: (1) each edge is incident to only one or two faces and; (2) the
faces incident to a vertex form a closed or an open fan (Figure 1e,f).

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 2 of 19 

 

Recent work by Olsen et al. [10] raises a key issue with many of these analyses. At many study 
sites, complex slope geometry results in occlusions (i.e., holes) in the point cloud captured by the TLS 
system. Additionally, the divergence and attenuation of the laser beam with increasing range can 
result in non-uniform point density across the study slope. Both factors can present challenges for 
change detection analyses and subsequently, volumetric analysis. To compute the volume of detected 
topographical change between sequential scans, the areas of change are commonly converted from a 
point cloud to a triangulated surface mesh. However, many surface reconstruction techniques were 
not developed for natural environments. Some algorithms assume uniform point spacing and smooth 
surface geometry which might not present in the natural environment [14]. As a result, the conversion 
from a point cloud to a mesh can result in topological artifacts which inhibit accurate volumetric 
calculations. For accurate volume calculations, the triangulated surface mesh must be watertight, free 
of intersecting triangles and have consistent normal vector orientation. As noted by Olsen et al. [10], 
ensuring that each mesh is topologically correct can require significant manual editing which is time-
consuming and subjective. Therefore there is a need to evaluate automated surface reconstruction 
algorithms and their influence on resulting volumetric analyses, in order to improve methods used 
to monitor and quantify geomorphological processes. 

In this work, the authors address the 3-Dimensional (3D) surface reconstruction of rockfall point 
clouds, here on denoted as rockfall objects, to assess the implications for volumetric analysis. 
Commonly used surface reconstruction algorithms are implemented and compared using a synthetic 
rockfall object and three natural rockfall events that occurred in the White Canyon, British Columbia, 
Canada. 

1.1. Surface Reconstruction Background 

Surface reconstruction aims to construct a complete surface model from a discrete point cloud 
input. Triangular meshes are often used as surface models because they are the simplest of polygon 
meshes, and therefore reduce the amount of computation used for their various computer graphical 
and 3D modeling applications. A key requirement for many applications, including accurate volume 
calculations, is that the constructed triangular mesh surface needs to be a watertight manifold surface 
with correct topology. A mesh is watertight if the mesh does not have any missing triangles (i.e., 
surface holes). A mesh is a manifold if: (1) each edge is incident to only one or two faces and; (2) the 
faces incident to a vertex form a closed or an open fan (Figure 1e,f). 

A 2-manifold mesh must satisfy the following conditions: every point has a neighborhood 
homeomorphic to the open unit disk [15]. This neighbourhood can be continuously deformed to an 
open disk. Finally, every edge of a 2-manifold mesh is a manifold edge, with only two attached 
triangles (Figure 1b). If a mesh does not satisfy the aforementioned conditions (i.e. it is non-manifold), 
the mesh must be healed prior to computations. Healing the mesh involves hole-filling routines and 
manifold extraction.  

 
Figure 1. Manifold definitions: (a) A 3D triangular mesh of a sphere with 512 triangles; (b) Manifold
edge; (c) Non-manifold edge; (d) Non-manifold node; (e) Closed fan; (f) Open fan.



ISPRS Int. J. Geo-Inf. 2019, 8, 548 3 of 19

A 2-manifold mesh must satisfy the following conditions: every point has a neighborhood
homeomorphic to the open unit disk [15]. This neighbourhood can be continuously deformed to
an open disk. Finally, every edge of a 2-manifold mesh is a manifold edge, with only two attached
triangles (Figure 1b). If a mesh does not satisfy the aforementioned conditions (i.e. it is non-manifold),
the mesh must be healed prior to computations. Healing the mesh involves hole-filling routines and
manifold extraction.

Point cloud artifacts challenge the ability of surface reconstruction algorithms to produce watertight
manifold meshes that approximate the surface topology of the object. Berger et al. [14] provide a
review of the state of the art and challenges in surface reconstruction algorithms. In their review,
they address common point cloud artifacts that impact on reconstruction algorithms. These artifacts
include sampling density, noise, outliers, misalignment, and missing data (Figure 2).
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1.2. Rockfall Objects

In this work, the authors make use of four rockfall objects as input for surface reconstruction.
These objects include a synthetic rockfall and three natural rockfalls derived from sequential TLS scans
in the White Canyon, British Columbia, Canada.

1.2.1. Houdini—Synthetic Rockfall Object

A synthetic rockfall object with a known volume was created to test the volumetric accuracy of the
surface reconstruction methods. Houdini [16], a procedural modeling and animation software package,
was used to create the rockfall object. The rockfall object was modeled from an initial ellipsoid with
dimensions of 1 by 1 by 2 meters. A portion of the ellipsoid was intersected with a rectangular prism and
then deleted to give the synthetic rockfall a hypothetical failure plane (Figure 3a–c). Surface topology
was added to the ellipsoid and intersecting prism to give the synthetic object surface detail, which
would challenge the surface reconstruction methods while representing realistic rockfall geometry.
A notable detail is the lobe protruding on the right side of the object (Figure 3d).
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Figure 3. Generation of the synthetic rockfall object: (a) Procedural geometry generation; (b) Segmented
rockfall geometry from a synthetic failure plane; (c) Surface mesh of the rockfall object; (d) Front view
of the 3D mesh and resulting subsampled point clouds ranging from 1 cm point spacing to 10 cm
point spacing.

The rockfall object has a volume of 4.68 m3. The volume was calculated by summing the signed
volumes of tetrahedra with a common apex based at individual surface triangles. The surface mesh
contains 642,573 faces, 632,010 vertices and is watertight manifold. The vertices were subsampled
within the open-source software package CloudCompare [17] to minimum point spacings of 1, 2, 5 and
10 cm (Figure 3d).

1.2.2. Natural Rockfalls—White Canyon Rockfall Cases

In this study, the authors utilize three rockfall case studies that occurred in the White Canyon,
British Columbia, Canada (50.266261◦, −121.538943◦). These events are a subset of the remotely sensed
rockfall database from Bonneau et al. [13]. The database is derived from sequential TLS scans taken
with an Optech Illris 3D-ER time-of-flight system. The three events correspond to events large enough
to be of potential impact on the railway infrastructure and were interpreted to be the result of discrete
individual events, based on fairly well constrained shape, relative to rockmass structure present at the
rockfall source location (Figure 4). For additional details on the rockfall database and its construction,
readers are referred to Bonneau et al. [13].
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radius, the Alpha-complex includes all the simplices in the Delaunay triangulation which have an 
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Figure 4. Overview of the three natural rockfall events used in the study: (a) Rockfall 1: occurred
between 2015-10-23 and 2016-02-15; (b) Rockfall 2: occurred between 2015-06-09 and 2015-08-24;
(c) Rockfall 3: occurred between 2016-02-15 and 2016-05-01. The black points correspond to the TLS
points for the front and back (left to right) of each of the rockfall objects. The colored points correspond
to the number of neighbors within a 50 cm diameter sphere. High number of neighbors correspond to
the warmer colors while low number of neighbors correspond to the cooler colors.

2. Methods

2.1. Surface Reconstruction Background

This section outlines the surface reconstruction approaches utilized within the study. The methods
include Convex Hull, Alpha-shape and Power Crust.

2.1.1. Convex Hull

A Convex Hull defines the smallest possible polygon that contains every point within a set.
More formally, the Convex Hull of a set of points S, in n-dimensions, is the intersection of all convex
sets containing S [15]. Figure 5 displays an 2D example of a convex hull for a given set of points. In this
work, the authors implement the Convex Hull algorithm in MATLAB [18].
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2.1.2. Alpha-shapes

An Alpha-shape is a generalization of the convex hull of a point set [19]. For a given point set
S, a family of Alpha-shapes can be defined. To define the Alpha-shape, an Alpha-complex must
be defined, which is a subcomplex of the Delaunay triangulation approach. Therefore, for a given
Alpha-radius, the Alpha-complex includes all the simplices in the Delaunay triangulation which
have an empty circumscribing sphere with squared radius equal or smaller than the Alpha-radius.
Here “empty” means that the open sphere does not include any points of S. The Alpha-shape is then
simply the domain covered by the simplices of the Alpha-complex (Figure 6). Readers are referred
to Edelsbrunner and Mücke [20] for more details on 3D Alpha-shape formulation. In this work,
the authors implement the Alpha-shape algorithm in MATLAB [18].
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the Alpha-radius can pass internally thought the data points and the Alpha-shape breaks down into
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An iterative Alpha-shape approach is developed in this study. The approach iterates through
the list of possible Alpha-radii that produce unique shapes and finds the smallest Alpha-radius that
produces a watertight manifold surface mesh. This process is accomplished by assessing if each edge in
the mesh is attached with only two triangles, and therefore meets the definition of a 2-manifold mesh.

2.1.3. Power Crust

The Power Crust algorithm, originally developed by Amenta et al. [21] theoretically guarantees
that for a given set of input points, the output surface is the watertight boundary of a three-dimensional
polyhedral solid described by the approximate medial axis transform (MAT). A 2D illustrative example
of the algorithm is displayed in Figure 7.

The algorithm relies on the concept that a given surface can be expressed as an infinite union
of spheres centered on the inner medial axis by the MAT. The MAT is approximated by a subset of
the Voronoi vertices of the input point cloud. These vertices are referred to as poles and are located
near the medial axis. Polar balls are spheres surrounding the poles and touch the nearest input point
samples. The radius of each polar ball determines the weighting applied to each pole. A power
diagram of the weighted poles is used to determine the approximated inverse transform. The inverse
transform divides the space into polyhedral cells. A subset of the polyhedral cells is labeled as the
interior of the object. The Power Crust forms the surface that separates the inner cells from the
outer cells. Further details on the Power Crust algorithm can be found in Amenta et al. [21]. In this
work, the authors implemented the Power Crust algorithm in C++. The code is available from:
https://github.com/ialhashim/powercrust.

https://github.com/ialhashim/powercrust
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rockfall objects and the triangulated surface meshes. All distance computations were completed in 
CloudCompare. 

The distance from the point of interest to a triangle on a surface mesh in 3D, is defined as the 
point to the plane of the triangle if its projection onto the plane is inside the triangle. Otherwise, it is 
defined as the distance between the point and the closest edge of the triangle [22]. Figure 9 displays 
an example, where if P is the point of interest and ABC is a triangle included in the plane α, H is 
defined as the orthogonal projection of P onto the plane α. Therefore, there are two cases for the 
distance calculation:  
1. H is within the interior of the triangle ABC then the distance is:  

Figure 7. Overview of the Power Crust approach depicted in 2D: (a) A solid object with its medial axis
depicted in dark blue; one maximal interior ball is shown (green); (b) The Voronoi diagram of a input
point sample from the object surface, with the Voronoi ball surrounding one pole shown; (c) The inner
and outer polar balls; (d) The labeled inner and outer power diagram cells of the poles; (e) The Power
Crust and the power shape of its interior solid. (Adapted from [21]).

As noted by Amenta et al. [21], not all Power Crust faces are necessarily triangles (Figure 8b). As a
result, the authors implemented a triangulation scheme which checks each of the Power Crust faces
and triangulates polygonal faces (Figure 8c).
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2.2. Point to Mesh Comparisons

Point to mesh distance calculations were conducted between the input TLS point clouds of the
rockfall objects and the triangulated surface meshes. All distance computations were completed
in CloudCompare.

The distance from the point of interest to a triangle on a surface mesh in 3D, is defined as the point
to the plane of the triangle if its projection onto the plane is inside the triangle. Otherwise, it is defined
as the distance between the point and the closest edge of the triangle [22]. Figure 9 displays an example,
where if P is the point of interest and ABC is a triangle included in the plane α, H is defined as the
orthogonal projection of P onto the plane α. Therefore, there are two cases for the distance calculation:
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1. H is within the interior of the triangle ABC then the distance is:

d(P, ABC) =
∣∣∣∣∣∣∣∣∣∣ →HP
∣∣∣∣∣∣∣∣∣∣ (1)

2. H is within the interior of the triangle ABC then the distance is:

d(P, ABC) =
∣∣∣∣∣∣∣∣∣∣ →KP
∣∣∣∣∣∣∣∣∣∣ (2)

where, the point K is defined as the point on triangle ABC which minimizes the distance to H.
If the triangle ABC has an associated normal vector, as an additional product of the calculation,
the calculated distance can be signed (e.g., loss or gain). The normal vector of the triangle provides
information if the point is within the interior or exterior of the surface represented locally by
the triangle.
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3. Results

3.1. Houdini—Synthetic Rockfall Object

Each of the sub-sampled point clouds were meshed using each of the surface reconstruction
algorithms. The number of faces, vertices, and volume are displayed within Table 1. The volumetric
error reflects the comparison of the volume from Houdini to the calculated volume of each of the
triangulated surface meshes. The volume of each of the meshes was calculated using the divergence
theorem [23].

Figure 10 displays example triangulated surface meshes of the synthetic rockfall object. The Convex
Hull approach is shown to simplify and overestimate the surface geometry, while Power Crust is able
to capture many of the details of the surface. The default Alpha-shape seems to capture a fair amount
of detail, however produces boundary facets on the interior of the shape (Figure 10b), resulting in a
drastic underestimation of volume. The iterative Alpha-shape method captures some of the surface
details, while producing a hole-free shape.
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Table 1. Comparison of the surface reconstruction results for the four different subsampled point
clouds of the synthetic rockfall object.

Point
Spacing

Surface
Reconstruction

Method
Faces Vertices Volume (m3)

Volumetric
Error (%)

Alpha-Radius
(m)

1-cm

Default Alpha-shape 43,110 20,888 1.69 −63.90 0.3841
Iterative Alpha-shape 21,046 10,525 5.18 10.65 0.62619

Power Crust 954,648 464,855 4.68 −0.02 N/A
Convex Hull 1182 593 5.87 25.39 Inf.

2-cm

Default Alpha-shape 16,782 8063 2.08 −55.63 0.4307
Iterative Alpha-shape 10,500 5244 4.54 −2.93 0.56824

Power Crust 338,322 166,774 4.68 −0.01 N/A
Convex Hull 782 393 5.83 24.57 Inf.

5-cm

Default Alpha-shape 5940 2866 2.86 −38.82 0.493
Iterative Alpha-shape 4392 2198 5.06 8.09 0.59193

Power Crust 71,822 35,646 4.68 −0.09 N/A
Convex Hull 514 259 5.74 22.69 Inf.

10-cm

Default Alpha-shape 2354 1157 3.62 −22.73 0.5377
Iterative Alpha-shape 2070 1035 4.75 1.40 0.58245

Power Crust 18,644 9261 4.66 −0.40 N/A
Convex Hull 364 184 5.62 20.00 Inf.
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3.2. Natural Rockfalls – White Canyon Rockfall Cases 

Figure 10. Surface reconstruction for the synthetic rockfall object: (a) Triangulated surface meshes
for each surface reconstruction algorithm; (b) Cross sections through the triangulated surface meshes.
Note that the default Alpha-shape produces a reconstruction with boundary facets within the object.

3.2. Natural Rockfalls—White Canyon Rockfall Cases

Triangulated surface meshes were generated for each of the three rockfall case events using the
methods described in Section 2. The face count, number of vertices, holes, and volume are shown for
all three objects, using the four reconstruction methods, in Tables 2–4.
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Table 2. Surface reconstruction results for Rockfall 1.

Surface Reconstruction Method Faces Vertices Holes Volume (m3)

Default Alpha-shape 6746 2937 30 0.25
Iterative Alpha-shape 2922 1464 0 1.34

Power Crust 37,412 18,597 0 1.45
Convex Hull 310 157 0 1.82

Table 3. Surface reconstruction results for Rockfall 2.

Surface Reconstruction Method Faces Vertices Holes Volume (m3)

Default Alpha-shape 2848 1337 11 0.94
Iterative Alpha-shape 1668 836 0 1.63

Power Crust 28,704 14,076 0 1.39
Convex Hull 222 113 0 2.44

Table 4. Surface reconstruction results for Rockfall 3.

Surface Reconstruction Method Faces Vertices Holes Volume (m3)

Default Alpha-shape 21,640 10,492 46 57.20
Iterative Alpha-shape 13,368 6688 0 129.63

Power Crust 183,044 90,359 0 123.81
Convex Hull 226 115 0 211.77

The default Alpha-shape in all three cases produced surface reconstructions with holes in the
triangulated mesh. These holes result in smaller volumes being calculated for each of the rockfall
objects. The Convex Hull, by definition, encompasses all the input points and therefore overestimates
the volume of each of the rockfall objects. For all three cases, the Power Crust approach produced an
order of magnitude more faces than the other reconstruction methods. It should be noted that although
Power Crust interpolates the input point cloud, not all input points are vertices and not all vertices are
input points. In comparison to the Alpha-shape or Convex Hull approaches, the input points form the
vertices of the mesh.

A point to mesh distance computation was conducted for all three of the objects. The input point
clouds were compared to the triangulated surface meshes generated using each of the four surface
reconstruction implementations. The results of these distance computations for each of the three
rockfall objects are depicted in Figures 11–13. The statistics for the distances are shown in Figures 14–16
and in Tables 5–7.

For all three cases, each of the surface reconstruction approaches over- or under-interpolates the
input point cloud. The default Alpha-shape approach not only interpolates in comparison to the input
point cloud, but also produces holes in the surface mesh. The holes corresponded to locations of
lower point density in comparison to the overall surface. The Power Crust and iterative Alpha-shape
approaches produced watertight meshes. Interestingly, the Power Crust and iterative Alpha-shape
approach produced similar volumes that differed between −17% to 8% of the Power Crust volume.
However, the iterative Alpha-shape approach had the second highest degree of interpolation of the
input point clouds in the reconstruction. The highest degree of interpolation was the with the Convex
Hull approach, which can be seen in the results of the distance computations (Figures 11–13). In all
three cases, Power Crust was the only algorithm that displayed under-interpolation (i.e., negative
change) when compared to the input point cloud in comparison to the other reconstruction methods.
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Figures 14–16 display histograms of the distance computations displayed in Figures 11–13 for each
rockfall object and surface reconstruction method. Tables 4–6 display the mean, standard deviation,
variance and skewness of the distance computation for each of the surface reconstruction methods.
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Figure 14. Histograms displaying deviation of the mesh from the input point cloud for each of the
surface reconstruction methods for Rockfall 1: (a) Regular Alpha-shape. (b) Iterative Alpha-shape. (c)
Power Crust. (d) Convex Hull.

Table 5. Descriptive statistics for the distance computations for each surface reconstruction method for
Rockfall 3.

Surface Reconstruction Method Mean (m) Standard
Deviation (m) Variance (m) Skewness

Default Alpha-shape 0.0017 0.0055 3.02 * 10−5 4.22
Iterative Alpha-shape 0.011 0.015 2.12 * 10−4 2.36

Power Crust 4.8 * 10−5 0.0047 2.22 * 10−5 0.10
Convex Hull 0.038 0.029 8.62 * 10−4 1.39
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Figure 15. Histograms displaying deviation of the mesh from the input point cloud for each of the
surface reconstruction methods for Rockfall 2: (a) Regular Alpha-shape. (b) Iterative Alpha-shape.
(c) Power Crust. (d) Convex Hull.

Table 6. Descriptive statistics for the distance computations for each surface reconstruction method for
Rockfall 2.

Surface Reconstruction Method Mean (m) Standard
Deviation (m) Variance (m) Skewness

Default Alpha-shape 0.013 0.023 5.3 * 10−4 2.32
Iterative Alpha-shape 0.025 0.036 0.0013 2.12

Power Crust −5.1 * 10−5 0.0060 3.6 * 10−5 −2.35
Convex Hull 0.078 0.072 0.0052 1.17

Table 7. Descriptive statistics for the distance computations for each surface reconstruction method for
Rockfall 3.

Surface Reconstruction Method Mean (m) Standard
Deviation (m) Variance (m) Skewness

Default Alpha-shape 0.024 0.048 0.0023 2.97
Iterative Alpha-shape 0.051 0.088 0.0078 2.74

Power Crust 0.0062 0.040 0.0016 6.0056
Convex Hull 0.35 0.19 0.036 0.52
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4. Discussion and Conclusions

Surface reconstruction remains a challenge for objects in natural environments. At present, there
is a trade-off between accurate surface topology reconstruction and ensuring the mesh is watertight
manifold. In natural environments point cloud artifacts will be present in many situations, however,
optimal survey design and post-processing techniques can help reduce these artifacts.

Previous studies that make use of Alpha-shape approach, such as van Veen et al. [11], Carrea et al. [9]
and others, do not address nor specify how they selected an appropriate Alpha-radius for surface
reconstruction. Selecting a constant Alpha-radius for a study slope is not appropriate in most situations
without significant manual post-processing. Manual post-processing is subjective and not practical at
highly active sites where many rockfall objects must be analyzed. As TLS acquisition and processing
workflows are becoming automated, practitioners require methods that are reliable and ensure that
the volumes being calculated are as accurate as possible. As demonstrated with the rockfall objects
analyzed in this study, picking too small of an Alpha-radius results in holes in the mesh. Holes in
the surface mesh result in underestimating the volume of the rockfall being analyzed. To overcome
the aforementioned issues, an optimized iterative Alpha-shape approach has been presented that
ensures watertight, manifold triangulated surface meshes that can be used to calculate the volume
of rockfall events. However, as demonstrated with all the rockfall objects in this study, the iterative
Alpha-shape approach interpolates the reconstruction. The volumetric error, for the synthetic shape,
as an example, ranged from −2.9% to 11%. However, the approach is robust, automated and will
ensure the reconstruction is watertight.
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Power Crust was shown to be a robust approach that eliminates the need for the hole-filling,
or post-processing steps for manifold extraction. In addition, in comparison to Alpha-shape approaches,
a unique Alpha-radius does not need to be defined. However, with Power Crust, the results of
reconstruction produce an order of magnitude more faces in comparison to other methods. These faces
and vertices could create microscale topology which is not present in the input point cloud. In addition,
there is no way to verify if these subtle topological artifacts exist since the algorithm is interpolating
between the sample inputs. Therefore, if the back scar of a rockfall is being reconstructed, there may be
topological artifacts induced as a result of the reconstruction. However, mesh simplification schemes
exist as mentioned in Amenta et al. [21], to reduce the number of faces while still preserving the detail
of the input point cloud.

All the surface reconstruction methods presented in the study will operate on any point cloud
input. The point clouds used in this study were based on TLS scans, however, Structure-from-Motion
Multi-View-Stereo photogrammetry (SfM-MVS) and aerial laser scanning (ALS) point clouds could also
be used. Each data acquisition method (e.g., TLS, ALS) has its respective challenges with generating
the most complete representation of the slope surface [24,25]. Data acquisition aside, the output of the
surface reconstruction is a direct function of the point cloud input. If there are significant point cloud
artifacts, such as occlusions in the input point cloud, each of the surface reconstruction algorithms will
require significant interpolation to fill in the areas where there are no points present. Further work is
required to test the application of other surface reconstruction algorithms (e.g., Berger et al. [14]) and
their applicability to generating triangulated surface meshes of rockfall objects.

In conclusion, surface reconstruction aims to build a triangulated surface mesh representation
based on an input point cloud. Point clouds may contain artifacts which present challenges for surface
reconstruction algorithms. In this work, four surface reconstruction algorithms were used to assess the
volumetric implications of surface reconstruction for rockfall back-analysis. From this analysis the
authors can draw the following general conclusions:

• The Convex Hull approach in all cases over-interpolates the input point cloud. The method will
generate the minimum smallest polygon that encapsulates all points. Therefore, as demonstrated
in all rockfall cases within this study, concave features on all objects are not captured. The volume,
using the Convex Hull method, in almost all cases will be an over-estimate.

• The Alpha-shape approach is sensitive to point density, especially when it is non-uniform. As a
result, it is difficult and sometimes impossible to choose an Alpha-radius to balance hole-filling
against loss of detail.

• The iterative Alpha-shape approach tries to find a balance between hole-filling and loss of detail.
It is a robust approach that can be integrated into automated TLS processing workflows. In all
cases, analyzed in this study the iterative Alpha-shape over-interpolated the surface in comparison
to the input point cloud.

• Power Crust appears to the optimal surface reconstruction algorithm that was tested in the present
study. The approach theoretically guarantees that the output surface will be watertight and
manifold. The staggering amount of faces in the output surface mesh may present problems for
some applications however simplification approaches exist.

• Each approach has its drawbacks, however, it is critical to ensure that the mesh is watertight and
manifold for accurate volumetric calculations. The volume of Rockfall 3 in this study rose from
approximately 57 m3 (e.g., default Alpha-shape) to around 125 m3 (e.g., iterative Alpha-shape &
Power Crust) once the object was watertight (e.g., holes were filled). That represents a gain in
68 m3 of volume attributed to the rockfall event. This case is an excellent example to show the
implications of method selection on frequency-magnitude analyses and using sequential TLS
datasets to help design mitigation measures. As more monitoring approaches become automated,
the importance of having quality control on the inputs to databases becomes paramount.
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