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Abstract

A finite element model to analyse incipient flow for
cohesionless materials in silos is presented. The model is
formulated on the principle of virtual work, and is based on
small displacement theory. Wall friction is included in the
formulation by the use of a thin layer interface element.
The effects of load history are simulated by layering the
bulk material in stages during filling and incrementally
releasing the outlet force during incipient flow. Since time
dependent constitutive parameters are not generally
available, an elastic perfectly plastic material is used as
a material model.

Model problems are analysea and the results for both
initial filling and incipient flow cases are compared with
classical theories. These model problems consist of a silo
geometry with differing sets of wall interface and bulk
matefial properties. In addition, recommendations for wall

design loads are made.
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1. INTRODUCTION

1.1 Background

The subject of mass flow pressures in silos has come
under increasing investigation by researchers in recent
years. Mass flow refers to the continuous movement of all
bulk solid in the silo during emptying. The problem lies
mainly with the development of overpressures, both in the
cylinder and in the hopper.

Steady state bulk solids flow has been extensively
researched. Many experimental investigators (Jenike et. al.
1973, Walker and Blanchard 1967, Moriyama and Jotaki 1980,
to name a few) confirm that a wall pressure reduction under
static loads occurs in the lower region of a hopper. In
addition, wall pressures were found to increase
substantially over static pressures in a localized region
near the transition from hopper to cylinder. It has been
suggested by Jenike et. al. (1959-1973), Walker (1966), and
Walters (1973), that these results are an equilibrium
consequence of a switch in pressure fields at the transition
from active to passive. Finite element results from Eibl and
Haussler (1984) are in agreement with the concept of an
arched passive field.

The subject of incipient flow has not drawn extensive
research. Walker and Blanchard (1967), and Smith and
Simmonds (1983), show limited experimental evidence of

overpressures that do not occur at the transition. Most



other experimental investigators do not report oOn pressures
other than those for steady state flow. Jenike (1968) and
Walters (1973) contend that overpressures of this nature are
due to a moving switch point, but so far no design practice
has adopted this concept. The finite element analysis of
Eibl and Haussler (1984) alsc shows a pressure increase in
the hopper during the beginning stages of flow.

Askari and Elwi (1986) analysed a number of silo
configurations using the finite element method. The results
indicated that a localized overpressure existed at the silo
outlet during flow. Unfortunately, it is possible that a
static arch may have formed over the outlet which prevented
flow. In addition, load and displacement convergence could
not be obtained for weaker materials.

This study is a finite element investigation of
incipient flow in silos, and is an attempt to model
incipient flow conditions using a static elastic plastic

incremental analysis.

1.2 Scope and Objectives of Thesis
The objectives of this thesis are as follows:

1. To provide an extensive review of the work of Jenike et.
al. (1959-1973), and Walker (1966), since their
approaches are the most commonly used in practice, and
to clarify any misconceptions.

2. To develop a finite element representation that models

the effects of nonlinear material behavior, wall



friction, and load history.

3. To run sample problems with different material
properties, and to compare stress history, magnitude,
and orientation to those predicted by classical theories
for both initial filling and incipient flow conditions.

4. To make recommendations for design and further study

based on observation of the finite element results.

1.3 Organization of Thesis

Chapter two is divided into three parts. The first part
is an extensive literature review of the work of Jenike and
Walker. The second part is a review of some of the research
done in the area of finite element analysis. The last part
of the chapter reviews some of the field measurements that
were done on full scale silos.

Chapter three is a discussion of the formulation of the
finite element problem. In Chapter four, the finite element
model of the wall - bulk solid interface is presented.
Chapter five is a discussion of granular material modelling.

Chapter six is divided into two parts. In the first
part, the modelling of load history and outlet release
procedures are described. Secondly, sample problems are run
using the models described in earlier chapters, and results
are4compared to classical theories. The third part is a
discussion of design situations involving incipient flow and
"lock in" stresses. Finally, the reasons for lack of

convergence of the silo problem are discussed.



Chapter seven contains the summary, recommendations for

further study, and conclusions.




2. LITERATURE REVIEW

2.1 Introduction

There is extensive literature regarding the design,
testing, and analysis of silo structures (Walli and
Schwaighofer 1979). In this chapter, some of the major work
done regarding silos and hoppers is examined. In the first
part of the chapter, the classical theories by Jenike et.
al. (1959-1973), Walker (1966), and Walters (1973) are
reviewed. The finite element work that has been done
regarding bulk solids flow is examined. Finally, the results
of two selected silo testing programs (Walker 1966 and Smith

and Simmonds 1983) are reviewed.

2.2 Radial Stress Fields - Jenike's Theories

In a series of papers, Jenike et. al. (1959-1973)
formulated a number of theories on bin loads and design of
axisymmetric and plane strain hoppers. Two distinct design
criteria were examined; wall loads and flowability. Both
initial filling and flow cases were considered in
determining wall loads. Flowability criteria were given
regarding outlet size to prevent the occurence of stable
arching or the formation of a small channel in the material,
known as piping. Only the design criteria regarding hopper

loads are discussed here.



2.2.1 Bin Loading

Equilibrium expressions for bin loads were derived

considering the stresses existing on a solid element in a

channel as shown in Fig. 2.1. In deriving these expressions,

Jenike (1961) makes the following assumptions:

1)

2)

3)

The bulk material is assumed compressible during initial
filling, and incompressible during flow.

For both initial and flow stress fields, a mean stress
o, is assumed which increases linearly from the apex of

the channel with coordinate ray, r, and is defined as

o = yrS;(8), [2.1]

m

for initial filling and

o = yrS,(8), | [2.2]

m

for flow conditions, where S,(6) and S (8) are
dimensionless stress parameters for initial fiiling and
flow conditions respectively. Equations 2.1 and 2.2 hold
in the hopper as long as equilibrium is maintained in
the physical system. This is discussed in more detail
subsequently.

For initial stress fields, the ratio of the

circumferential stress, o,, to the radial stress, o,, is
assumed to be constant

00

o = k,. [2.3]

The coefficient k, is analogous to Janssen's K factor,



and is dependent upon the compressibility and Poisson's
ratio of the bulk solid (Jenike and Johanson 1968).

4) For flow stress fields, the material is assumed plastic,
and the ratio of the major principal stress, o,, to the

minor principal stress, o¢,, is assumed to be of the form

9%  _ 1 + sin &

g, 1 - sin §’ [2.4]

where 6 is the effective angle of internal friction. A
Mohr's circle representation of the stress state at a
wall is shown in Fig. 2.2. The mean stress o, is the
consolidating stress which exists during flow. The
Mohr's circle is tangent to the actual yield locus (YL)
and the effective yield locus (EYL). The advantage of
using the effective yield locus is that material
behavior at yield can be modelled with one yield locus.
If the actual yield locus were used, a family of these
curves would result, since it expands and contracts with
changes in o, (Jenike and Shield 1959).

5) The material at the wall is assumed to slip, thereby

developing the full kinematic angle of wall friction ¢'.

The solution to the initial filling and flow stress
fields proceeds in a similar manner. From the assumed stress
relations and geometry, expressions are written for og,, 0,,
and the out of plane stress o¢,. These expressions are
inserted into the equilibfium equations for spherical

coordinates. The resulting expressions are solved



numerically for the stress parameters S;(8) and S.(8) for :
specified problem parameters (¢', k,, and hopper angle 6’

for initial filling; ¢', &, and 8' for flow).

2.2.2 Initial Filling

As mentioned previously, Egs. 2.1 and 2.2 are valid in
the hopper as long as equilibrium is maintained. In the case
of a hopper with no surcharge (Fig. 2.3a), the radial field
can only be maintained below a certain level, z;,. Above
that level, overall equilibrium warrants a reduction in wall
pressure, terminating in o, = 0 at z = z,. From 2z;, to 24, 3
linear distribution is assumed.

In an actual bin, a surcharge is present which is
equivalent to Janssen's vertical pressure in the cylinder at
the transition. If a surcharge is added, the hopper walls
above z, must carry the additional load (Fig. 2.3b).

Major principal stresses during filling line up close
to the vertical direction. This stress field is referred to
as active.

Since the determination of S,(6') is complex, Jenike
et. al. (1973) proposed a simplification. If a hydrostatic
pressure distribution is assumed, the pressure at the apex

can be derived as

- yB
%a = Z2(tan 6' + tan ¢')° [2.5]

For a hopper with a vertical surcharge pressure, 0,

the pressure at the transition, o, can be expressed as



[2.6]

ti

- [2 + m] tan 8'
s {1 + mJ tan 8' + tan ¢' '

where m is a geometry parameter which equals 0 for plane
strain, and 1 for axisymmetry. Between the top and the apex,
one can interpolate linearly for a pressure value (Fig.

2.4).

2.2,3 Flow Pressures

As flow is initiated, the major principal stresses
switch from a vertical to a horizontal direction, forming an
arched (passive) field, as shown in Fig. 2.5a for no
surcharge, and Fig. 2.5b with surcharge. In the case of no
surcharge, the flow wall pressures are obtained in the same
manner as initial filling pressures by considering overall
equilibrium of the system. The flow radial stress field is
substituted for the initial filling stress field.

As flow progresses; a plastic passive field is
developed below the switch point, and moves upwards'as the
switch point moves upward. Below the switch point, pressures
reduce from initial filling values in accordance with the
flow radial stress field bound. This causes a net loss in
equilibrium. If the bin is not to move, the unbalanced load
(equivalent to the shaded regions in Figs. 2.5a and 2.5b)
must be balanced in a region above the switch point. The
imbalance is treated as a concentrated compressive load
acting over an arbitrary distribution depth at the switch

point.
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It is generally assumed that the switch moves up the
hopper. Hence the switch forces are considered short lived.
Only the stable overpressure, which occurs as the switch
point arrests at the transition, is considered in design.
The solution for the transition overpressure, 0., is
arrived at (Jenike 1964) by consideration of vertical
equilibrium at the transition. The magnitude of the
unbalanced vertical force at the transition, AQ,, is
obtained as the difference between the force at filling
(assuming Janssen's stresses) and the force during flow, Q.

The force Q, may be obtained as
o, = qyB™™. [2.7]

where B is the hopper diameter at the transition, and g is a
dimensionless parameter obtained by integrating the vertical
components of the radial stress field over the transition
'cross—sectionai area. Charts for q as a function of &' , 9,
and ¢' have been developed by Jenike (1961). The flow force
Q; is expressed in units of force for axisymmetric hoppers,
and force/metre for plane strain hoppers.

The unbalanced vertical force, AQ,, is equilibrated by
vertical components of wall normal and tangential transition

forces N and T respectively, where
T = N tan ¢'. [2.8]

These forces are assumed to act as a triangular pressure

distribution over a slant height of 0.3B (Jenike 1973). The



I

value of the peak transition pressure, o,,, is obtained as

. 3.3(0;, = (4/7)"qyB) [2.9]
P2 = % T 70,2 sin 6')"(sin 6' + cos 6'tan ¢') ' o

where o, is the vertical Janssen pressure at the transition,

and can be expressed as

_ R _ _-u'KH/R
g, = 1 e ), 2.9
o= [2.9a]

where R is the hydraulic radius of the silo cylinder, u' is
the coefficient of friction of the wall-material interface
(equivalent to tan ¢'), H is the height of solid in the
cylinder, and K is the Janssen lateral pressure coefficient.
The radial transition pressure, 0..r is determined by
the solution of the radial stress field at the transition.

Values for o, are expressed as

o = (¢'/yB)yB, [2.10]

tr

where ¢'/yB is a dimensionless stress parameter analogous to
S¢(8). Charts for this parameter have also been developed by
Jenike (1961),

The final design envelope for the hopper region is as
shown in Fig. 2.5c. Jenike et. al. (1973) compared pressure
measurements of a model silo to this design envelope and

found agreement,
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2.3 The Differential Slice Approaches by Walker and Walters
Walker (1966) obtained a solution to the steady state

flow in converging channels by considering equilibrium of a

differential slice of material, shown in Fig. 2.6. The

following assumptions were made:

1) Material yielding is governed by the Jenike effective
yield locus (EYL), shown in Fig. 2.2. The stress field
in the hopper is assumed passive during flow, and hence
the ratio of principal stresses is given by Eq. 2.4.

2) The shear stress at the vicinity of the wall, 7, is

related to the vertical stress at the wall, o,,, as

T, = A0, [2.11]

v

where A 1s a constant.

3) The vertical stress, o is related to the average

vw?

vertical stress o, by

[2.12]

where D is a stress distribution factor which takes into
account the variation in vertical stress across the
cross section. The parameter D is normally taken as 1.0

(Janssen's assumption)

Considering equilibrium of the slice dz under its own
weight, the vertical stress field o,, and the shear stresses

r  one can write a differential equation of equilibrium

[

only in terms of o,
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do 0

dz” - C z“ = -y, [2.13]

The solution is obtained as

c-1 c
5 = ——XZ _ 1z z_
%o 'C-1[1 [zo] ]+UJ[20]' [2.14]
where
_{m+ 1)D [ sin & sin 2(8' + B) J
c= tan 6' 1 - sin 8 cos 2(6' + B) |’ [2.15]
and
B = %[¢v + Arcsin[%%%r%%]}, [2.16]

The expression for the wall pressures o, is found by

transforming o, to local coordinates by using Eq. 2.16a

o = 1 + sin & cos 28 o
v ~ 1 - sin § cos 2(6'" + B) Yw-

[2.16a]

Walker and Blanchard (1967) performed some experimental
pressure measurements in full scale silos and hoppers and
concluded that pressures calculated with D = 1 gave a good
fit of data points. This method is relatively simple
compared to Jenike's (1964), which involves a rigorous
solution of the radial stress field.

Walters (1973) proposed a more rigorous solution of the
differential slice. Shear stresses acting on the slant
height of the wall were considered, as shown in Fig. 2.7. In
addition, an exact value of D was derived. The solution was
extended to accommodate both initial filling (active) and

flow (passive) stress states.
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The solution to the resulting differential eguation was
similar in form to that of Walker's (1966), and was
applicable to calculation of the switch stress at any switch
point z,. The author suggested that structural design should
proceed on the basis of an envelope of these switch
stresses.

An envelope of wall switch pressures were calculated
for a silo with & = 50°, ¢'.= 25°, and 6' = 4°, Switch
stresses were many times over the static pressures (the
ratio of switch to static pressure at the transition was
approximately 40), and were distributed over a relatively
small depth. These pressures are high compared to those of
Jenike and Walker, and design on the basis of the switch
pressure envelope is overly conservative.

In calculating initial pressures, the assumption was
made that the stress field in the hopper was plastic active.
This assumption is unjustified, since the bulk solid is
compreséed triaxially, and is likely elastic because of high

mean stresses and low shearing stresses.

2.4 Finite Element Studies

Although there.have been numerous papers (Jofriet et.
al. 1977, Chandrangsu and Bishara 1978) dealing with static
bin loads, there have been few papers which attempt a flow
solution.

Eibl and Haussler (1984) developed a nonlinear

incremental viscoplastic formulation in which material
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stress increments were divided into rate dependent and rate
independent cémponents. The formulation included both
inertial and viscous effects and was developed along
streamlines so that incompressibility was maintained during
flow. The rate independent component of stress was assumed
to be bounded by the yield surface proposed by Lade (1978),
which considered plastic contractive and expansive strain
components. The rate dependent stress component was assumed
to be of a form analogous to Newtonian flow, relating stress
increments to strain rates. Coulomb friction was assumed
along the walls except at the outlet, where a condition of
zero stress was enforced. The problem was formulated in an
Eulerian frame of reference, relating velocities to a fixed
spatial mesh.

Initial pressures were obtained for two silos of
differing hopper inclination, and results compared favorably
with experimental pressures obtained by Motzkus (1974). Flow
pressures were then obtained for a 6.5 ft. (1.98 m.) by 39
ft. (11.88 m) plane strain silo with an outlet diameter of
3.3 ft. (1.01 m.). The principal stress directions and wall
pressure distributions compared favorably with those
predicted by Jenike et. al. (1973), Walker (1966), and
Walters (1973), although the authors made no numerical
comparisons.

The silo that was analysed had é fairly large outlet
diameter in relation to the cylinder diameter. Such a silo

would not exist in practice. It would have been more
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convincing to analyse a silo with a more practical outlet
diameter, following the guidelines suggested by Jenike
(1961) or Walker (1966).

In addition, the outlet constraint of zero wall stress
does not exist. Figure 2.8 shows the conseguence of that
assumption. Instead of following the wall when leaving the
hopper, the material point is unrestrained, and falls
vertically. There is nothing to stop the material from
moving into the wall (having a nonzero velocity component
normal to the silo wall).

Askari and Elwi (1986) proposed using a double
iterative scheme to solve the silo problem. Initially, the
silo material displacements are obtained with all wall
tangential forces F, equal to zero. Then, tangential forces

are obtained as
{F,} = R, {Fyltan ¢', [2.17]

where {F,} are the wall normal forces, and R, is a
predetermined relaxation factor less thén 1.0 used to
maintaiﬁ solution stability. Equation 2.17 is transformed to
the global axes and added to the silo load vector. The
nonlinear iteration for material stresses represents the
first loop, and the iteration for frictional forces
represents the second loop of the iteration cycle. The
iterative cycle is continuea unﬁil specified load,
displacement, and friction force tolerances are met. The

Drucker-Prager yield criterion was used for material
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yielding.

In all, 12 silos with varying geometries and material
parameters were analysed in an attempt to perform a
parametric study. The silos were analysed using "single step
switch on" gravity loading instead of using layers of
material elements. The results indicated a good agreement
with Janssen cylinder pressures, but a substantial increase
over Jenike's maximum hopper pressures was observed. The
author attributed the increase in pressures to the
conservative strength characteristics and extreme dilatency
ratios of the Drucker-Prager yield surface. Large
overpressures existed at the outlet and transition regions.

Plots of plastified points seem to indicate an elastic
stress field in the hopper for all cases considered. The
increase in hopper pressures directly contradicts the
pressure decrease assumed in most flow pressure theories and
found in many experimental measurements. The overpressure at
the outlet may be the result of elastic arching occuring
there which would prevent flow. The results just described
are consistent with the formation of a stable static

pressure field, which means that flow is not taking place.

2.5 Experimental Studies

Walker and Blanchard (1967) performed a series of
pressure measurements during initial filling and flow
conditions on three steel hopper configurations shown in

Fig. 2.9. Load diaphragms mounted flush to the silo wall
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were used to record measurements. In addition, during some
tests a water filled pressure bladder was inserted into the
silo at various depths to record vertical pressures.

Although there was a substantial scatter in test
results, the results during flow showed a general pressure
decrease in the lower hopper region, and a pressure increase
in the upper hopper region over pressures at initial
filling. The flow pressure magnitudes and distribution were
found to be relatively independent of flow rate. Results
were close to the distributions predicted by Walker (1966).
In addition, flow pressures were observed to "lock in" if
flow was stopped,

Smith and Simmonds (1983) performed pressure
measurements on a full scale coal silo in Elkford, B.C. (See
Fig. 2.10). The silo was axially symmetric in the cylinder
region, converging into 2 pyramidal hoppers. Strain gauges
were mounted at the gauge locations shown in Fig. 2.10.
Cylindrical pressure vessel theory was used to relate normal
wall stresses to hoop strains.

) Overpressures were detected at gauge locations 3, ¢,
and 5 that were satisfactorily bounded by Jenike's minimum
strain energy field. At gauge 6, there were no observed
overpressures. In addition, there was evidence of "locked
in" overpressures once flow was terminated. The authors
recommended the use of overpressure factors (ratio of flow
switch pressures to static pressures) in design. In

addition, the authors further suggested that the larger
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stresses of Jenike's minimum strain energy distribution and

ACI 313-77 should be used to design the cylinder region.



Figure 2.1 Stress on an element of solid
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Figure 2.2 Mohr's circle representation
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3. PROBLEM FORMULATION

3.1 Introduction

Using the principle of virtual work, the structural
response of the ensiled material and the frictional
interface is formulated in an incremental sense, and is
based on small displacement fields. Material and frictional

nonlinearities can be readily included in the formulation.

3.2 Variational Formulation

Consider a mechanical system at a certain load step in
equilibrium under a set of prescribed tractions T°, body
forces F°, and kinematic constraints g’. Let the body in
Fig. 3.1 be divided into "k" number of elements. Let V,
denote the element volume and S,,, S, be those portions of
element surfaces on which prescribed tractions and
displacements, respectively, are applied. Also, assume that
the frictional surface is approximated by a thin layer and
denote the volume of that layer on the element surfaces as
V.. The prescribed body forces and surface tractions are in
equilibrium with the internal stresses a% and the

£0

‘frictional stresses o;;. The displacement field q0 is

compatible with the strains e% and eg.
1f the structure is loaded with increments of traction
AT, body forces AF, and kinematic constraints Ag, the stress

and strain increments Aoy, Ae;; and Aa; are generated. This

load increment, or load step, is the case for which a

28
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solution is desired.

The principle of virtual work states that the sum of
all virtual work 8W done by the external and internal forces
in going through a set of infinitesimal arbitrary
displacements 8Ag; satisfying prescribed kinematic

constraints is zero ie. 8W = 0. Thus,

£
W = Zk: [JVAaijéAeijdV + J AoijéAeijdV

v
X £k

+ Jo?jéAeijdV + Jvof?5Aeijdv

v
k £k

- JV(F? + AF;)8Aq,dV - Js (T} + AT,)84q,dV| = O. [3.1]
k' ok

In this study, evaluation of the frictional work terms
is based on the assumption that the work done on a
frictional surface can be approximated by the work done on a
thin boundary layer if the normal stiffness of the thin

layer is large, i.e.

j 0,80q,dS ~ J (0% + acf))sae, av. [3.2]
s v

£k £k

Finite element matrices can now be generated from Eq.
3.1. The strain increment tensor is related to the

displacement field tensor by

Bej; = %(Ath + Agy ;). [3.3]
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The displacement field can be written in terms of nodal

guantities as
{aq} = [N]{ag}. [3.4]

where [N] is a matrix of shape functions. If Eg. 3.2 is
rewritten in matrix form, the incremental strain -

displacement relationship is obtained as
{ae} = [Bl{Ag}, [3.5]

where [B] is a displacement derivative operator matrix.
Within the bulk material, the stress increment tensor

is related to the strain increment tensor as

boyy = CijkiBeyys [3.6]
or, in matrix form
{ac} = [cl{ael. [3.7]

It is assumed that the concept of Eg. 3.6 holds true

for the friction layer as well, i.e.
{ac}" = [Clf{ae}. [3.8]

If Eqs. 3.3 to 3.8 are substituted into Eq. 3.1, and
the necessary variations are carried out, Eg. 3.1 is written

as
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z <6Ag>[[JV[B]T[C][B]dV ; JV[B]T[C]E[B]dV]{Aé}
k £k

+ j [B]"{c°}av + j [8]"{o°}av - j[m“{ﬁ%av
Vk v

v
£k k

- J [N]T{aF}aV - J [NI"{T%}ds - J [N]T{AT}dS| = 0. [3.9]
Vk Sok ok

Equation 3.9 can be reduced to the form

<5Ag>[x]{Ag} = <5Ag>{AQ}, [3.10]
where,
[K] = % [j [B]"[C][Blav + J [B17[clf[Blav], [3.11]
k \'4 v
k £k
{80} = {F} + {?} - {o}. [3.12]

The terms of Eg. 3.12 are defined as

(F} = [" INT"{F°} + J [N]T{AF}dv}, | [3.13]
Uy v
k k
(T} = ¢ [ [N]T{T°} + j [N]"{aT}av], [3.14]
k Hg S
ok ok
(0} = z [[ (817te"av + | 1317(0"1av]. [3.15]
* “Vk ka

The terms {F} and {T} refer to the work equivalent body
force and surface traction vectors, and {Q} is the

equilibrating load vector.



32
Since <8Ag> has arbitrary values, Eg. 3.10 becomes
[kl{ag} = {aQ}. [3.16]

Equatiom 3.16 represents the usual stiffness equations

resulting from a displacement formulation.

3.3 Non-Linear Solution Strategy

The finite element model described in the previous
section is a displacement model. It satisfies kinematic
compatiblility everywhere and approximately satisfies
equilibrium only on a global level. The set of linear
algebraic equations (Eg. 3.16) are considered a piecewise
linearization of a non-linear structural response, and are
solved for an increment of displacement, which yields an
increment of strain. Stress increments are calculated by
constitutive laws. Total stresses are updated either by
direct addition of the stress increments, or by satisfaction
of a governing stress condition (this method is necessary
for the friction interface, where the increment of interface
shear stress developed during slip is not constitutively
dependent). When integrated over the volume of the
structure, the total stresses yield the eguilibrating loads
{Q}.

The structural model is said to be in equilibrium if
the unbalanced load {AQ} vanishes. If {AQ} # 0, the stresses
which satisfy the constitutive laws and governing stress

conditions are not in equilibrium with the external loads.
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One way to arrive at a state of stress that satisfies
equilibrium is to eliminate the unbalanced load {AQ} through
an iterative scheme.

The iterative scheme used in this study is known as the
standard Newton Rhapson method, or tangential stiffness
method. Fig. 3.2 qualitatively illustrates the tangential
stiffness approach. The curved line represents the actual
load - displacement response of the structure. The stiffness
matrix K is first assembled as K,, and a displacement
increment Aq,-is calculated corresponding to K,. The
equilibrating load Q, at displacement g, is less than the
external load F + T. The stiffness matrix is reassembled as
K, # K,, and the structure is reloaded with an unbalanced
load AQ, = F + T - Q. This process is continued until
convergence is achieved. Euclidean norms are used to form
the criteria for convergence.

A pictorial description of Euclidean norm convergence
is shown in Fig. 3.2. The symbols A, and A, represent
relative absolute tolerances less than one, and are set
arbitrarily by the program user. The values AJdall and A |F +
T| represent the maximum allowed magnitudes of the errors in
displacements and loads respectively. Point 3 in Fig. 3.2
has passed both error limits, and has, therefore, converged.

Acceptable values of kq and A, are problem dependent.

In this study, a range of 0.01 to 0.03 was used for both

tolerances.
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The piecewise linearization of Eg. 3.16 requires that
the load increment be reasonably small. If the structural
response is path dependent, the resulting strain increment
may still be large enough to cause the solution to drift; If
the strain increment is divided into a number of smaller
subincrements, better control of the solution is achieved.
This is known as the subincrement method of updating

stresses (Elwi and Murray 1980).



Figure 3.1 Structural configuration
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Figure 3.2 Modified Newton-Rhapson solution strategy
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4., FRICTION MODEL

4.1 Introduction

Wall friction has a major influence on the magnitude of
bin pressures. Therefore, it is important to include the
frictional interface between material and wall in the
formulation of the structural problem. The solution to the
problem is both nonlinear and iterative in nature. In this
chapter, an intuitive and practical solution to the friction
problem is discussed. The element formulation is similar to
an approach taken by Desai et. al. (1984). This involves
using a thin interface element to describe interface
behavior under loading.

In this study, Coulomb friction is assumed. Coulomb
friction is a simple concept and requires only one parameter
to describe sliding frictional behavior. Kinetic and
adhesion effects are neglected, although the friction model
can be modified to accommodate both.

The limiting equation for the Coulomb friction law can

be expressed as
R, = R, tan ¢', [4.1]

where R, is compressive. Eg. 4.1 may be expressed in terms
of stresses as
Timie = 0 tan ¢', [4.2]

where ¢' refers to the angle of friction of the interface.

36
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It is assumed to remain constant under all loading
conditions, and has different values for different wall -
material combinations.

A simple model illustratés sliding frictional behavior.
Consider a block of incompressible material resting in
contact with a surface as shown in Fig. 4.1. The interface
has an angle of friction ¢'. The block is subjected to loads
Ry and R, acting in the normal and tangential directions
respectively. Three states may now be identified to govern

the relation between R, and R,

|IR,] < Ry tan ¢', [4.3]
R, = Ry tan ¢', (4.4]
R, = R, = 0. [4.5]

The three states are referred to as stick, slip, and debond
in that order. When an increment of shear AR, and an
increment of normal force AR, are added to the system, the
interface may pass between the three states in a manner
discussed in detail subsequently. In this case, (Ry + ARy)
is the independent variable and R, is determined
accordingly. The remainder of AR, and/or AR, beyond that
allowed by Egs. 4.3, 4.4, and 4.5 must be redistributed.
Equations 4.3 to 4.5 may be referred to as force type
constraints. Corresponding displacement constréints can be

derived in the form
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=0, g, =0 (stick) [4.6]
qQ # 0, g, =0 (slip) [4.7]
q, # 0, g, >0 (debond) [4.8]

where g, and q, refer to tangential and normal displacements
respectively.

Coulomb friction may be introduced in a finite element
program in many ways. The boundary integral approach
(Jofriet et. al. 1977) is rejected on the premise that the
resulting formulation is unsymmetric and requires special
equation solving programs. In addition, the method is based
on the assumption that the full frictional boundary 1is
slipped, which may not be the case. The iterative process
adopted by Askari and Elwi (1986) is also rejected. This
method also assumes full frictional boundary slippage. In
this study, a thin interface element with specific material

properties designed to satisfy Egs. 4.3 to 4.8 is adopted.
4.2 Model Description

4.2.1 Representatioq of Interface States

As described earlier, it is proposed to use a thin
interface element to model friction effects. This element
(shown in Figure 4.2) must have material properties that
enforce the necessary constraints for stick, slip, and

debond.
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Adopting an incremental approach based on displacement
formulation, an increment of stress is obtained in terms of

an increment of strain as
{Ac} = [Cl{Ae}. [4.9]

where [C] is the constitutive matrix.

In an axisymmetric formulation only four components of
the stress and strain tensors exist. Of these, the only
stress increments of concern are the stress component Ag,
normal to the interface and the corresponding shear —
component A7,,. All other stress increments are zero. This

relation may be described as

[Ag, ) [E, 0 0 0 ][Ae, ] [4.10]
Ao, 0 0 0 0 ||Ae,

Ao, i 0 0 0 O Ae,

AT, ] L0 0 0 G,,llay,,]

Physically, [C] represents the normal and tangential
stiffness of the interface. Strain (and displacement)
conditions are dependent upon the values in [C]. Also, it
can be said that the total stresses {o} represent the force
conditions that exist at the interface. If this is true,
then [C] and {0} can be used to describe the three
frictional states of slip, stick, and debond.

In the stick state (7,, < o, tan ¢'), no relative
movement occurs along or against the friction surface (Eq.

4.6). To enforce these two constraints, arbitrarily large
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values of E, and G,, are used. This ensures small movements
since the corresponding strains are small. There are no
force constraints because the interface can carry the full
stresses o, and 7,,.

As the slip state is initiated (r,, 2 o, tan ¢'), no
relative movement occurs in the normal direction (Eg. 4.7).
However, movement does occur in the tangential direction
because the limit condition is exceeded. If a stress -
strain plot of the interface is examined (Fig. 4.3), it can
be seen that once slip starts, the shear stiéfness G,, of
the interface reduces to zero. This means that G,, must be
set to zero. In addition, the force constraints specified in

Eqg. 4.4 must be enforced as

T2

Tiz = Tr,] lo,| tan ¢'. [4.11]

For debonding (¢, 2 0), the surfaces no longer remain
in contact. There is relative movement in both directions,
and the effective stiffness of the interface is zero. In

this case,
E, =G, =0, =17, = 0. [¢.12]

Table 4.1 shows the force constraints and the
corresponding constitutive matrices for the three cases

discussed above.
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4.2.2 Change in Interface State

As an interface is loaded, it is possible that the
interface state may change, e.qg. from a stick to a slip
condition. Normally, this is modelled by changing the force

- displacement constraints to those of the new state within

‘the load step. However, some state changes need to be given

special consideration due to model limitations.
It is convenient to show state changes in the form of a
decision matrix as shown in Table 4.2. The left column of

the matrix denotes the old state, and the top row denotes

‘the new state. The members of the matrix represent what

conditions must occur for the change and what corresponding
constraint changes need to be made. Most changes in the
table are fairly obvious. However, some changes in state
bear explanation.

If one surface has debonded from another, it means that
there is some gap or separation of the two surfaces.
Therefore, it is convenient to use the element normal strain
€, as an indicator of separation. If ¢, < 0 and the surface
was previously debonded, the gap no longer exists, and the
interface is under compression. At this point, the interface
stresses are set to zero.

The case of debond to slip is not allowed. This is
because thg conditions for this change are not clearly
defined, so it is assumed that a stepped path is taken to
achieve this change ie. debond to stick to slip. This method

is also used by Katona (1982).
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Also, the case of slip to stick is not allowed. Once
the interface has slipped in a given load step, it stays
slipped. The assumption is made that once slipped, the final
equilibrium position of the interface is at a limiting
condition shear stress (r,, = o, tan ¢'). This assumption is
used by many researchers for friction formulation (Ratona

1982, Eibl 1984, Askari 1985, and Bishara 1979).

4.2.3 Computational Algorithm

Given the background theory of the model, the
implementation of the model into a finite element program is
now explained. In each load step an initial frictional state
(usually stick) is assumed at selected sampling (Gauss)
points on the interface. The structure is then loaded.
Interface stresses and strains are calculated, and the
interface condition at the Gauss points is checked (Table
4.2). If the interface state changes, corresponding changes
are made to [C] and {0} from Table 4.2. The unbalanced load
{AQ} is calculated and the structure is relocaded with {aQ}
using the new interface stéte conditions. The process is
repeated until convergence of loads and displacements is
achieved.

Interface stresses are calculated using a simple
material model. The model's function is to assign
sfiffnesses (displacement constraints) and stresses.(force
constraints) that correspond to the state of the interface.

The flowchart for such a model is shown in Fig. 4.4.
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To understand the logic flow, it is necessary to
examine Fig. 4.4, step by step, noting that all calculations
are for one Gauss point. In Step 1, global stress increments
{0}, are calculated. Next, the global stress components are
transformed to the point local axes. The local axes are axes
which define directions normal and parallel to the
interface. The total local stresses {0}, and global strains
{e}g are updated in Step 3. As well, a global load step

is updated. The strain increment

strain increment {el

{e},s represents the sum of the strain increments
accumulated during the load step. The term {e},  refers to
the total strain from the previous load step. When {e}, is
transformed to the local strain increment {e},,., the load
step shear strain increment (y,,),,, determines the sign of
the interface shear stress (r,,), during slip. This is useful
in cases where the loading is reversed in subsequent load
steps.

In Step 5, the interface state is checked, and
appropriate stress (force) constraints are assigned. Also, a
condition flag is assigned to the Gauss point. This flag is
used to determine appropriate stiffness (displacement)
constraints for the Gauss point (Step 6). Finally, [C], and
{0}, are transformed to the global frame of reference (Step
7). These steps are repeated for all the Gauss points on the
interface.

To simulate the permanent deformation that occurs

during slip (see Fig. 4.3), the constitutive matrix [C], for
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each Gauss point is reset to [Cl,,. after each load step.
This has the effect of inducing a permanent "set" if the

interface is unloaded in a subsequent load step.

4,2.4 Limitations

The friction element described in this chapter has a
number of advantages. It is formulated just like any other
solid element, which makes it easy to implement in a finite
element program. Adhesion and non-linear friction laws can
be modelled fairly simply. The element converges rapidly for
problems without severe stress gradients. However, there are
some limitations as to its use.

In reality, the thickness of an interface is either
zero or very small. Therefore, it is necessary for the
interface element to be "thin", i.e. the element has a large
aspect ratio. It is well known that large aspect ratios
invite numerical trouble (Zienkiewicz 1977). In the silo
problem, this shows up in the form of stress oscillations
near the transition if the values of E, and G,, become too
large for a given aspeét ratio. To determine suitable
parameters of E, and G,,, it is necessary to perform
parametric studies with varying aspect ratios. This may only
amount to varying E, and G,, until the oscillations are small
or have disappeared, which is the approach followed here.
Alternatively, an error balancing method involving penalty

functions (Zienkiewicz 1977) may be used.
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In the model, the process of rebonding a debonded
element is not done entirely correctly. This can be °
illustrafed by examining Fig. 4.5. Assume that the element
started out in configuration C, with Gauss point #1
debonded. The interface would have zero stiffness and would
be free to increase or narrow the gap. If, in the subsequent
iterate, the element moved to configuration C,, Gauss poinp
#1 is rebonded. The interface would then have full
stiffness. Also, e, would be less than zero, with a possible
case of nodal penetration when e, < -1. The correction for
this would be to set e, = 0 if ¢, < 0 for a debonded
element, i.e. restore the displacement constraint q, = 0.
However, this correction requires another iterative cycle,
and is not done here.

For the silo problem, it is generally found that
debonding takes place at the top corners of material layers
during loading. Considerable tensile stresses are generated
there. Since final compressive stresses at the top corners
are relatively small, the error in rebonding is considered

inconsequential to the final results.



Table 4.1 Model description of interface states

State Constitutive Matrix
Stick _ [go0o00]
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0000
(T|2<O'| ton¢') 000 GIZJ
. _[Eoo0o0]
Slip [lsip = |00 00
0000
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(0000 |
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Table 4.2 Interface decision matrix

From 70| stick Slip Debond
=q, =0 =0 No Displacement
i [25=?é] . an Constraints
Stk No Forciﬂck [C]=[C]s“p | [c] = [Clgebond
Constraints 7= 0y tan }' = ?IZ =0
Not q.=0 No Displocemgnf
. Allowed n Constraints
Sl Within [cl=(Csiip . [€] = [ yepond
Load Step Y= tan ¢ 0= T|p=
=q,=0 No Displacement
= Not Constraints
Debond [c]= [C]sﬁck Allowed [€] = [Clgebond
7= 72% 0 =72 =0

47



48

—
R
TRN T

(a) Stick: RT<RNton¢'

‘1N
RT"‘RN f0n¢|
Ry
f R, tan¢'
an
Ry N
(b) Slip: RT 2Ry tan ¢’
Y
RNh:fRN
R Al
.
RIS -]

(c) Debond : Ry 20

Figure 4.1 Interface states



—

- ~
é
T
- 7
BMKSOH?[ % Wall
7
%
By
Figure 4.2 Interface element
leﬁ
Slip
o, tang ’
Ideal . Ideal
Stick T fsnck Urrlocd/ lUnlood
G2
I
>
2

Figure 4.3 Interface shear stress characteristics

49



(n

- [ starT {00 ), = (Cl {ael, xI/NT
g~ Ciglhely
)

{} ~{a)
(bodg-{ac), [

!

) [ Loop Over Strain Subincrements NXJ-—————‘
) (3) '
{0'}1 ={0'}, + {Acr}l
{elg={elg+{aelq
(elgte={eg~(}apls
(4)
{‘}gls_'{‘}lls
{e}g—. € V4
(5) I A
T limit = gjpton ¢'
a} Ty 2 T limit c) 0420
1’12_!=Tlimitxsign()’|2” s) 0p=0 Typg=0
State Flag =SLIP - State Flag = DEBOND
b) Tjp (Tlimit d) State Flag = SUIP
State Flag = STICK "Same as a)
Continue I
(6)
[C]L =0
a) State Flag = SUIP c) State Flag =DEBOND ¢,>0
[C]l =(C]slip €, = (Clgebond
b) State Flag = STICK d) State Flag = DEBOND € <0
[C]l = (Clstick €l = Clstick
n |}

S, - © - |
0 AR e B

Figure 4.4 Calculation of interface stresses and state -

flowchart

50



51

Debonded
Rebonded -
9~ --#<—Possible Nodal
ol // Penetration on
4 Rebonding
/
W4
/

Deformed Shape —

— Gauss Point

Figure 4.5 Rebonding and nodal penetration



5. MATERIAL MODEL

5.1 Introduction

Ensiled materials are mostly granular in nature, with
or without a certain amount of cohesion. Only cohesionless
materials are examined in this study. Granular materials
have certain behavioral characteristics under loading. These
characteristics are summarized as:

1) An increase in density with increased mean stress

Om-

2) A plastic volume decrease with increasing o,.

3) 1In the elastic range, an increase in elastic modulus
E with increasing o.

4) Elastic - plastic work hardening behavior.

5) Time dependent load - deformation behavior.

6) An increase in shear strength with increasing o,.

7) A plastic volume expansion when the shear strength
of the material is reached and plastic flow
commences.

The first three characteristics are consequences of
compressibility. Compressibility of granular materials under
load is due to deformation of the grains_(usually
negligible), compression of air in the voids which exist
between the grains, and sgueezing out of air and water from
the voids. For most granular materials, compressibility is
not a time dependent pbenomenon because granular materials

are usually highly permeable, which helps for water and air
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to squeeze out of the bulk mass relatively quickly.
Jenike (1964) has found that the material unit weight vy
can be expressed in terms of the mean stress o_ by the

expression
Y = yo{1 + Om)n. [5.1]

where y, is the unit weight intercept and n is a
compressibility parameter.

For most materials, n < 0.1, and the effect of
compressibility on unit weight is negligible. General
practice, in most design situations, assumes a maximum
expected unit weight value for y. Although this assumption
is conservative, it is the approach followed herein.
However, significant error may be introduced in the analysis
for highly compressible materials or a small head of
material (Smith and Simmonds 1983).

As a bulk mass compresses, prbgressive stiffening of
the material system occurs (Lade 1977). Lade relates the
average elastic modulus, E, to the confining stress in a

triaxial test, o,, as

g

21t .
E = Kmpa[g] . : [5.2]

where K, is a modulus number parameter, p, is the

atmospheric pressure, and t is an exponent parameter.
The values of K, and t are determined from triaxial

compression tests under various levels of the confining

stress o,. However, these parameters are not available in
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the literature for ensiled materials. Therefore, a constant
value of E is used herein for the purpose of analysis.

Figure 5.1 shows the variation of volumetric strain e,
with axial strain in a triaxial compression test e,. The
strain increment tensors are composed of three distinct
parts; elastic, plastic contractive, and plastic expansive
components. In most cases, the effects of compressibility
are negligible, and consequently the magnitude of the
plastic contractive strain is small. Therefore, in this
study only elastic and plastic expansive components of
stress and strain are considered.

Granular materials exhibit triaxial stress - strain
characteristics similar to those shown in Fig. 5.2. There is
a linear initial portion followed by a curved work hardening
region. Unloading is generally elastic with a small
hysteretic loop. Since, in most cases, the parameters needed
to describe the hardening process are not available, it is
proposed to use an elastic - perfectly plastic
approximation, neglecting both work hardening and
hysteresis.

Time dependent load deformation behavior
(viscoplasticity) is not considered here. There is very
little information regarding the flow properties of bulk
solids which can be used in a finite element analysis.
Viscoplastic formulations await future research, although
some attempts have been made (Eibl and Haussler 1984) to

solve the problem.
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To summarize the above discussion; if the effects of
compressibility are small, then density changes, plastic
volume contraction, and changes in bulk modulus are all
negligble. The stress - strain relation is approximated by
an elastic - perfectly plastic approach, while time
dependent behavior awaits further research. Finally, plastic
volume expansion and shear strength dependence on the mean
stress level have a major influence on material behavior,

and are discussed in the next section.

5.2 Model Description

It is desired to model the ensiled material as an
elastic perfectly plastié material which exhibits an
increase in shear strength with increasing mean stress Oy
In addition, once the material shear strength is reached, a

plastic volume expansion, known as dilatency, occurs. An

approach used extensively by geotechnical engineers to model

these characteristics is to adopt a Drucker-Prager failure
criterion (Drucker and Prager 1952). A more accurate
approach may use the failure surfacelproposed by Lade (1977)
or an adaptation of that proposed by Willam and Warnke
(1977). However, parameters for these surfaces are not
readily obtainable. The Drucker-Prager surface is simple,
requiring only two commonly obtained parameters to describe

it, and is discussed in subsequent sections.
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The theory of perfect plasticity is based on three

assumptions (Chen 1982):

1.

Existence of a yield surface - The material is elastic

until a certain function of the stress components

reaches a certain value. This function is known as the

yield function, and for perfect plasticity the value of

the function is zero i.e.

f(o,,) = 0. [5.3]

ij
1f £(o;;) < 0, the material is elastic. The condition
£(o;5) > 0 is not allowed for a perfectly plastic
material.

Once the yield surface has been reached, plastic
deformation takes place without limit. This means that
the state of stress must remain on the yield surface

i.e.

af ‘
aoijdaij = 0- [5.4]

df

The strain increment tensor de,; can be decomposed into
a recoverable, or elastic, component and a non

recoverable, or plastic, component such that
de,. = de.. + del.. [5.5]

The stress increment tensor is related to the elastic

strain increment tensor by Hooke's Law

do;; = Cij,dey. [5.6]
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3. Existence of plastic potential - It is assumed that

there exists a plastic potential function, g(o;;), such

d ]j = —g— x . l

where d\ is a positive scalar quantity.

If the function g(o;;) defines a plastic potential
surface, the surface gradient ag/aoij defines the direction
that the plastic strain increment must follow,

If EQqs. 5.5 to 5.7 are used in conjunction with the
assumptions of perfect plasticity (Eqg. 5.4), a constitutive

law relating the stress increment tensor to the strain

increment tensor is obtained (Chen 1982)

4o = [C _ Cijm 8£/00,, 39/30,, C,\, ]d (5.5]
%13 = [Miia 0f/80,, C,.., 09/00,, €ryr :

or, in matrix form

[Cc] {8f/30} <dg/30> [C]
{AO} = [[C] - <af/60> [C] {ag/aa} ]{AG}. [5.9]

With two different functions f(o;;) and g(o,;), the
elastic plastic constitutive matrix of Eq. 5.9 is
unsymmetric, and the flow rule of Eg. 5.6 is called a non
assoéiated flow rule. If g(o;;) is assumed to have the form
of f(0;;), an associated flow rule is established, and the
constitutive matrix is symmetric.

There is evidence related to dilatency to suggest that

cohesionless material behavior should be described with a
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non associated flow rule (Lade 1977). However, the
associated flow rule has found widespread use because of its

simplicity, and is adopted here for the same reason.

5.2.1 Drucker-Prager Surface

The Drucker-Prager surface is a right circular cone
with its axes equally inclined to the coordinate axes in
principal stress space, as shown in Fig. 5.3. The yield

function is expressed as
£(1,,/3,) = «al, +¢VJ, - k =0, [5.10]

where a and k are real material constants. The terms I, and
J, are the first stress invarient and second deviatoric
stress invarient respectively. These invarients can be
expressed in terms of the mean shear stress 7, and the mean

normal stress o, as

1, = 30, [5.11]

J, = 5/2r%, [5.12]

where o  is the average of the three principal stresses and

r, is given as

. = V5,875 . [5.13]

m

The deviatoric stress tensor S;; is expressed as

Si; = 045 ~ 0y,8;5/3. [5.14]
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If Eqs. 5.11 and 5.12 are substituted into Eg. 5.10 and
the expression is normalized with respect to uniaxial

compressive strength, £ an expression is obtained

cu’

relating the yield function to mean stress components

(Askari and Elwi 1986)

f(o;) T T 0
] m -
f =fT_ "

- 18
cu cu ‘/ 5 ¢ f cu ‘/

0. [5.15]

un |
=
I}

That form is suited for concrete materials for which
the application program FEPARCS was written., In the current
context, it is applied with the value £, = -1. The
representation of the yield surface in mean stress
coordinates is shown in Fig. 5.3c.

It is desirable to relate the Drucker - Prager strength
parameters a and k to the Mohr - Coulomb strength parameters
¢ and c. The terms ¢ and ¢ refer to the angle of internal
friction of the material and the cohesion intercept
respectively. For axisymmetry and plane strain, the

relationships are given as (Chen 1982)

o = tang , [5.16]

Y9 + 12 tan’s

kK = 3¢ . [5.17]

VY9 + 12 tan‘e

The mathematical description of the Drucker - Prager
surface is now complete. The yield surface description in
Eqgq. 5.15, with parameters from Egs. 5.16 and 5.17, can be

used in conjunction with Eg. 5.9 to model elastic perfectly
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plastic behavior of a granular material.

5.2.2 Computational Algorithm

The numerical implementation of the material model is
described in detail in Appendix A. To summarize, an elastic
stress increment is calculated, and a trial total stress
state is obtained. The total stress state is then checked
against yield criterion. If yielded, the stress and strain
increments are decomposed into two components; an elastic
stress (strain) increment, and a stress (strain) increment
after onset of yielding. To obtain this decomposition, the
intersection point of the stress increment with the yield
surface is computed. Elastic stress increments are

calculated using the matrix form of Eg. 5.6
{ac} = [Cl{Ae} ' [5.18]

Stréss increments after onset of yielding {Ac},, are
obtained using Eq. 5.9 and {Ae} = {Aé}w. Finally, the error
in the incremental approach is scaled to an acceptable
tolerance, and the total stress state lies near the yield
surface. If the stress increment is small, the assumption of
a iinear stress increment is a good approximation. Using a
linear stress increment with the point of intersection at o,
= 0 presents difficuities because the surface gradient
<3f/30> is not uniquely defined. It is proposed here to use
a stepwise stress path to move away from o, = 0 to a point

on the yield surface where the surface gradient is uniquely
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defined. In this process, the test stress increment {Ac},,,
is divided into a mean, {Ao},, and a deviatoric component

{ao},

{Ac0},.., = {Ac}, + {Ac},. [5.19]

The stepwise stress path is used for all increments of

mean stress Ao, < 0. The stress increment {Ac},. is applied
in two steps. First, {Ao}, 6 is applied which does not lead to

yield if {Ae}, < 0
{o} = {0}, + {40},. [5.20]
Then, the deviatori; component is added
{0}ese = {0} + {A0},. [5.21]

The rationale for using the stepwise stress path for
all mean stress increments less than zero can be seen by
examination of Fig. 5.4, If a linear stress path is
followed, the point of intersection with the yield surface
is at point a. If a stepwise stress path is used, the
intersection is at point b. The actual stress state is close
to point c. It can be seen that point b is closer to the
actual stress state than point a. This means that yield
surface drift is reduced because point b has a better

estimate of the surface gradient than point a.
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6. IMPLEMENTATION LEADING TO INCIPIENT FLOW

6.1 Introduction

In chapters three, four, and five, finite element
models were presented for wall interface and material
behavior. These models are now used along with special
provisions for loading history to determine wall pressures.
In this chapter, one axisymmetric silo geometry with three
sets of material properties is analysed using a modified
version of the program FEPARCS (Elwi and Murray 1980).

In the first phase of the analysis, a typical silo is
filled in stages, and comparisons with the Jenike and
Janssen pressure distributions are made. In the second
phase, the silo outlet closure is removed in an incremental
manner, and the resulting stress field is examined. Finally,
failure to obtain a free flowing solution is examined, and

recommendations for design are made.

6.2 Procedure for Filling and Release

To obtain correct wall pressures, it is necessary to
know the load history of the silo. This is because the
constitutive behavior of both the ensiled material and wall
interface are path dependent. The load history of a silo
consists of two parts; filling and release.

Filling usually takes place continuously, but it is
sufficiently accurate to model the filling process as a

sequence of material layers. The material layers are placed
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in a series of load steps until the silo is filled. Analysis
in steps normally yields better results than "single step
switch on" gravity methods (Clough and Duncan 1969).

A simple method of stepwise filling is implemented in
program FEPARCS. Each material and interface element is
given a layer activation number. The number corresponds to
the layer the element belongs to. When a layer activation
number is specified in a load step, all elements that have
an activation number less than or equal to the specified
value are activated. In other words, stiffnesses and gravity
loads are calculated for these elements. Elements that are
not activated are assigned small elastic moduli, and their
gravity loads are not calculated.

In practice, when the ensiled material is required, the
outlet bottom is released, and the material flows freely or
flow is controlled by a feeder. For the purpose of analysis,
it is desirable to control the release procedure in order to
closely monitor material yielding. Full release is difficult
in a static analysis, since the material near the bottom of
the silo fails, causing numerical instability. Therefore,
the analysis is limited to incipient flow.

The boundary conditions of a closed outlet bottom can
be modelled by a series of stiff springs, as.shown in Fig.
6.1a. To control the release process, it is possible to
replace the springs with a series of equivalent nodal forces
(Fig. 6.1b). These forces can be incrementally removed from

the outlet until the material starts flowing. Flow is
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detected by a sudden increase in displacements at the
outlet, followed by convergence failure of the numerical

procedure.

6.3 Description of Silo Model

As described earlier, one axisymmetric silo geometry
under three different sets of interface and material
properties is analysed. These analyses are referred to,
hereinafter as Silo #1, Silo #2, and Silo #3. The finite
element discretization of the silo geometry is shown in Fig.
6.2. Because of symmetry, only one half of the total
cross-section is considered. To eliminate the effects of
wall flexibility on wall pressures, the nodes at the silo
wall are prevented from moving. The bulk material region is
characterized by eight node isoparametric elements. The
midside nodes along the top and bottom of the interface
elements have been eliminated because inclusion of these
nodes may caﬁse zero stiffness terms to appear on the main
diagonal of the stiffness matrix during slip. Thus,
isoparametric elements with six nodes are used to describe
the interface.

The outlet closure during filling is represented by a
series of stiff springs as shown in Fig 6.1a. The springs
are removed and replaced by a series of equivalent nodal
forces for release conditions as described in the previous

section,
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Silo #1 has an internal angle of friction ¢ of 35°, and
a wall friction angle ¢ of 20°. Silo #2 has ¢ and ¢' angles
of 25° and 15° respectively, and Silo #3 has values of ¢ and
¢ of 15° and 10° respectively. The unit weight of the
material is identical for all three silos, and is similar to
that of finely graded coal at 9.5 kN/ma. An average modulus
of elasticity E of 1.5x10° kPa is used. It was observed in
preliminary analyses with a hopper configuration, that a
substantial variation in E caused only a minor variation in
stresses.

As described in Chapter 4, values of E, and G,, for the
interface elements are determined by varying thgse
parameters until the stress oscillations near the transition
area are small or have disappeared. Generally, values for E,
and G,, of 1.0x10% kPa and 1.0x10° kPa respectively were
found suitable, although some oscillations of pressure

results were still present.
6.4 Discussion of Results

6.4.1 Initial Filling

Figures 6.3, 6.4, and 6.5 show the wall pressure
results for initial filling of Silos #1, #2, and #3
respectively. These are plotted as wall pressure vs. height
above the silo outlet. For the purpose of comparison, two
other curves are plotted. These curves are the prediction of

wall pressures using Janssen's theory for the cylinder and
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Jenike's initial pressure theory for the hopper region

. (Jenike et. al. 1973). The first curve. is obtained using a
lateral pressure coefficient, K, of 0.4. This is the value
recommended by Jenike et. al. (1973) based on experience and
test results. The second curve is derived using an "at rest"
value of K recommended by Jaky (1948). The "at rest"

coefficient, K, has been determined experimentally as
Ky = 1 - sin §, [6.1]

An examination of Figs. 6;3 to 6.5 shows that the
variation in wall pressures follow a similar pattern. In the
cylinder region, the wall pressures closely approximate a
Janssen distribution. The plot using K = K, gives a closer
estimate of finite element wall pressures than does the plot
using K = 0.4 in each case. In the hopper region, the finite
element results are close to the Jenike pressures in most
areas, and are slightly less than the Jenike pressures near
the outlet of Silos #1 and #2. As for the cylinder region,
the plot using K = K, provides a closer fit of the finite
element data than the plot using K = 0.4.

Oscillations and a large overpressure are evident near
the transition region for all three silo cases. Some of the
overpressure may be due to the existence of a stress
concentration at the sharp corner of the transition. More
likely, the oscillations and overpressure may be due to the
numerical instability discussed earlier in Chapter 4.

However, the oscillations and overpressure only occur near
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the transition, and their effects tend to be localized.

Figures 6.6 to 6.8 show the direction and magnitude of
principal stresses for Silos #1 to #3 respectively. In an
active state of stress, the major principal stresses are
aligned in more or less the vertical direction. Examination
of the principal stress directions confirms that the stress
field closely approximates an active field, which is
consistent with both the Janssen and Jenike theories.

Figures 6.9 to 6.11 show the nodal displacements of the
bulk material in the gilos. Since the silo wall is very
stiff, the displacements of the ensiled mass are mostly in
the vertical direction. The ensiled material in the cylinder
deforms rigidly, with most of the deformation occuring in
the weak material at the silo wall. Examination of Figs.
6.12, 6.13, and 6.14, which show the location of plastic
Gauss points in all three silos, indicates that the bulk
material in the cylinder is not rigid plastic as assumed by
Janssen (A plastic Gauss point is a material sampling point
which has yielded according to the yield criteria discussed
in Chapter 5.) Thus, the assumption of a figid moving system
seems valid, and the use of K,, an experimental parameter,
sidesteps the assumption of a fully plastic active field.

In Jenike's derivation of inital filling pressures in
hoppers, it was assumed that the hopper stress field was
elastic active. Examination of Figs. 6.12 to 6.14 tends to

confirm this assumption.
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From the above discussion, it is evident that the
finite element analysis closely represents the stress fields
proposed by Jenike and Janssen during filling. The finite
element analysis, therefore, gives a good estimate of an
initial stress field with which to study conditions of

incipient flow.

6.4.2 Incipient Flow

Plots of wall pressure vs. height above outlet are
shown in Figs. 6.15 to 6.17 for Silos #1 to #3 respectively.
The quantity U represents the cumulative proportion of
equivalent nodal force removed from the outlet; eg. if U =
-0.5, half of the static outlet load is removed. The largest
value of U is the point at which the problem fails to
converge. As described earlier, convergence failure was
characterized by a sudden large increase in displacements at
the outlet, indicating localized material failure.

As the release process was initiated, all three silos
experienced a sudden, localized overpressure near the
outlet. This overpressure continued to increase until
failure for the stronger material in Silo #1. However, as
release progressed for the weaker materials in Silos #2 and
#3, there was a sharp decrease in pressure at the outlet,
and a concommitant pressure increase in the material above
the outlet. In the case of Silo #3, the pressure increase

moved upward as release progressed.
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Plots of principal stress directions for selected U
values are shown in Figs. 6.18 to 6.22. In all cases, it is
evident that arching occurs in the hopper region.

Figures 6.23 to 6.27 show the yield status of the
material Gauss points in the silos during selected stages of
outlet release. All silos show localized plastification
regions near the silo outlet.

The yielding history of Silo #3 is examined in the
following, since this silo gives the best indication of
material flow. |

Yielding at the outlet began at U = -0.70. The plastic
arch extended to a height of 1 metre, with elastic arching
occuring from 1 to 2 metres (See Fig. 6.20). The upper
boundary of yielding coincided with the increase in wall
pressure (See Fig. 6.17). At U = -0.8, yielding progressed
to the 2.5 metre level, with elastic arching extending to 4
metres, and the upper yield boundary roughly coincided with
the increase in wall pressure. At U = -0.9, the level of
yielding had progressed to 4 metres, and the elastic arch
moved to 5.5 metres. The upward motion of the upper yield
boundary was consistent with the behavior of the previous
two load steps.

Figures 6.29 and 6.30 show the variation of horizontal
and vertical stresses with load history at two selected
Gauss integration points (shown in Fig. 6.28). Load steps #!
to #12 represent the 12 layers of elements used in filling

the silo. Load steps #13 to #16 are outlet unloading stages
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with U values -0.5, -0.7, -0.8, and -0.9 respectively. As
the silo is filled, it is evident from both figures that the
vertical stress, o,, is larger than the horizontal stress,
0y, indicating an active stress field. Both stresses
increase with increasing consolidating pressure (layers). As

outlet unloading progresses, o, decreases and o, continues

v
to increase, indicating a switch from an active to a passive
stress state. Finally, after both points have plastified, at
load step #15, both stresses decrease until failure.
Variation in K' vs. load history is plotted in Fig.
6.31 for the selected Gauss points. The parameter K' refers
to the ratio of minor principal stress to major principal
stress. Bounds for the active (K,) and passive (K,) are also

plotted for reference, where, Kd is as described by Eg. 6.1

and

*

K, = 1/Kp - 1l - sin § ' [6.2]1

1 + sin 6°

Initially there is a sharp variation in K'. As the load
steps continue, K’ for both points assumes a fairly constant
value close to K,. During load steps #13 and #14, when the
release process starts, the stresses switch direction,
causing an increase in K'. At load steps #15 and #16, the
points yield and closely approach K;.

Based on the above discussion, a model of incipient
flow can now be described. As outlet unloading progresses,
the material at the outlet forms a stable arch until the

material shear strength is reached. A loss of equilibrium at
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the outlet is balanced by an overpressure which exists in
the elastic arch. Once the material shear strength is
reached, subsequent unloading of the outlet (release of
outlgt pressures) causes a reduction in the mean stresses
and hence a decrease in the material shear strength.
Consequently, a reduction in wall pressures ensues. This
process moves upwards behind the front of elastic arching.

The effects of outlet pressure release are shown in
Fig. 6.32, which shows a projection of the stress state
history at a point on the o,-0, plane. For simplicity, the
state of stress is assumed to be on the axis of symmetry.
pPoint "1" represents the state of stress during filling. If
the outlet is slowly opened, increments Ao, are tensile. As
increments Ao, are removed, the material is drawn downward,
causing compression in the horizontal direction because of
the converging geometry of the hopper. The reduction in o,
and increase in o, imply a switch in pressure fields. Once
the yield surface is reached, further increase in o, is not
possible, since the state of stress must follow the yield
surface and ¢, must continue to reduce. Therefore, the
material strength decreases, and wall pressures reduce.

The upward propagation of the arching action is caused
by the decrease in vertical stresses of the underlying
material. The material above the outlet progressively arches
and yields, causing subsequent overpressures and pressure
reductions respectively. This arching may or may not arrest

at the transition. The behavior described above matches
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closely the process hypothesized by Jenike (1964). Further
insight can be achieved by the use of a simple illustration.
Consider the hopper configuration shown in Fig. 6.33.
Initially, the system is in equilibrium. If the outlet is
unloaded to the point just before material yield (Fig.
6.33b), there is a net loss in equilibrium which must be
balanced by the hopper walls. The overpressure force, N, is
carried mostly in the elastic arch. Let the outlet be
further unloaded so that the material yields (Fig. 6.33c)
The yielded material loses strength, and stresses are
reduced in the solid as described earlier. In order to
maintain vertical equilibrium, the walls above the yielded
material must carry the difference in initial outlet stress,
Ao,, and the difference in wall initial and flow forces.
According to Jenike et. al. (1973), a concentrated load
acting over a distribution depth of 0.3B provides the
equilibrium imbalance (shown in Fig. 6.33c). Acéording to
Walker (1966), a sharp pressure increase at the switch and
pressure decrease below the switch are equilibrium
éonsequences of the switch in pressure fields. Walker's
approach can be thought of as a "smoothed" approximation,
while Jenike's approach implies a sharp stress
discontinuity.

Table 6.1 shows a comparison of finite element maximum
pressures with pressures éalculated using the Jenike and
Walker approaches at the 6utlet region. The wall pressures

were calculated using expressions for the switch pressure,
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assuming the switch point can occur anywheré in the hopper.
The derivation of these expressions is given in Appendix B.

The finite element pressures agree more closely with
Walker's results than Jenike's at the outlet region.
However, Walker's results were calculated assuming
uniformity of vertical stress across the hopper
cross-section (D = 1 in Eqg. 2.12). Walters (1973) has shown
that D is always greater than 1 for flow pressures, and
Walker (1966) estimates D as between 1 and 2. Therefore,
Walker's switch pressures should be higher than the values
given in Table 6.1. If Walter's method of calculating D is
used, values of 1.3 to 1.6 are obtained for Silos #1 to #3.

It is evident that maximum outlet pressures obtained in
the finite element analysis are lower than both Jenike's and
Walker's predicitons. The discrepancy in results may be due
to the assumption of a switch point in the analytical
studies compared to the softer distribution of the elastic
arching in the finite element results. As discussed earlier,
elastic arching takes place over a finite height of hopper,
thereby reducing the stress intensities at the switch
location because the unbalanced load is distributed over the
arch height.

Generally, the orientation and propagation of the
plastic arched stress field for Silo 43 seems to be in
agreement with theories proposed by Jenike and Walker. It
was not possible.to develop an extensive plastic flow field

in Silos #2 and #3. Reasons for this are examined in Section
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6.6.

6.5 Design Situations Involving Incipient Flow and "Lock In"

Stresses

It has been postulated that the switch pressure,
although it exists everywhere in the hopper, is short lived.
Therefore, design practices for hoppers tend to ignore all
switch loading except that at the transition area. This may
be unwise, since switch loads can exist in the form of "lock
in" stresses. These stresses occur when flow is interrupted,
and the switch overpressure is trapped between the hopper
outlet and the transition, and exists as a static load.

Figures 6.34 and 6.35 are plots of wall pressure vs.
hopper height obtained by Walker and Blanchard (1967) for
15° pyramidal and conical hoppers respectively. Hopper
geometries are shown in Fig. 2.9. The first curve, labelled
"normal loading", represents filling by dropping coal from a
loading belt. The second curve, labelled "part low
pressure”, is an attempt to reduce stress buildup at the
outlet. The hopper was filled to the one-third level, then
100-200 lbs. (45.5-91.0 kg.) of coal was drawn off the base
of the hopper. Filling was then completed. The third curve,
labelled "extreme low pressure”, was achieved by filling for
30 seconds at a specified filling rate, followed by 30
seconds discharge at a rate lower than filling until the
hopper was finally filled. The straight line is a

hydrostatic pressure distribution for reference.



78

It is apparent that there is a pressure decrease at the
outlet for "part low pressure"” filling. There is a
cbrresponding pressure increase at higher levels in the
hopper. The switch appears to be "locked in" at the point of
greatest pressure for both hoppers. In the “extremeAlow
pressure" filling, the static loading curve is similar to
the flow pressure curve. The conditions described above are
similar to the results obtained from Silos #1 to #3 during
incipient flow.

Conditions of "lock in" stresses can occur if flow is
terminated. Any additional filling of the silo causes the
switch pressure to increase. This may cause problems not
only with loading, but with arching. If a cohesive material
is present in the'silo, high overpressures at the switch
point may cause a strength increase such that a stable arch
is formed. The collapse of this arch may induce additional
dynamic loads. This has been observed experimentally by
Smith and Simmonds (1983) in the cylinder region of a silo.

It has been suggested by both Jenike et. al. (1973) and
Walters (1973) that silos should be designed on the basis of
a pressure envelope which bounds all maximum pressures. This
seems overly conservative, considering that the switch at
any one time is at one location. It seems more rational to
investigate the effect of a concentrated load or stress
distribution on silo walls in order to determine design

parameters.
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Based on the limited results obtained by the finite
element analysis of Silos #1 to #3, it may be possible to
reduce the loads obtained by the theories of Jenike and
Walker, However, parametric studies are needed with a more
sophisticated model to determine a full envelope of design

pressures for hoppers.

6.6 Convergence Failure

As described earlier, convergence was measured as the
ability of the solution to achieve specified lcad and
displacement tolerances. Failure occurred if the solution
could not meet these tolerances within a specified number of
iterates. Convergence failure occurred in Silos #1, #2, and
#3 during outlet release U values of -0.98, -0.88, and -0.90
respectively. For each failure, there was evidence of a
localized solution instability. At failure, outlet
displacements increased substantially over those of previous
load steps, whereas other material displacements were
relatively unaffected.

In bin loading theories proposed by Jeﬁike (1961),
Walker (1966), and Walters (1973), the assumption is made.
that a plastic passive stress field exists in the hopper.
Pressure measurements in hoppers confirm that a pressure
reduction takes place during flow (Jenike et. al. 1973,
Walker and Blanchard 1967, Moriyama and Jotaki 1980). From
the preceeding discussion, this seems to indicate the

physical existence of a plastic passive stress field. In
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this study, it was not possible to develop an extensive
plastic field in the hoppers of Silos #1 and #2.

In an actual hopper, if the outlet is opened, bulk
material flows in a state of dynamic eguilibrium. Material
stresses in excess of yield are balanced by inertial and
viscous forces. These forces -were not included in the
analysis, and hence a net force imbalance at the outlet
results which may cause convergence failure before a full
plastic field can develop. It may be ultimately necessary to
use an Eulerian formulation for which velocities and
accelerations are measured relative to a fixed spatial mesh
(Eibl and Haussler 1984). Alternatively, a hardening
parameter may be introduced into the plasticity approach.
The hardening parameter would serve as an artificial means
of ensuring solution stability.

It may be possible to extend the solution in a
Lagrangian frame of reference by using a displacement
constraint strategy in which the outlet nodes are
constrained to move vertically once the hopper is vacated.
This is analogous to forming a vertical tube around the
outlet.

Problems also exist with the choice of yield surface.
The yield surface for actual materials is compared with the
Dfucker—Prager yield surface in Fig. 6.36. The state of
stress in the hopper material during yield follows the line
o, > 0, = 0, (Jenike 1961). The Drucker-Prager surface gives

a conservative estimate of yielding in this region. In
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addition, the rate of dilatency for the Drucker-Prager
surface in this region is high. Since plastic volume
increases are restrained in the hopper, the restraint forces
increase the material strength and retard yielding. It may
be advisable to adopt a yield surface similar to Lade
(1978), where the yield strength of a material is dependent

on the mix of stresses (See Fig. 6.36).



Table 6.1 Comparison of maximum outlet pressures with

Jenike's and Walker's pressures

SILO OUTLET PRESSURE (kPa)

1. ¢' = 20°  Jenike 248.2
§ = 35° Walker 119.6
F.E. 86.6

2. ¢' = 15° Jenike 278.6
§ = 25° Walker 119.2
F.E 88.4

3. ¢' = 10° Jenike 332.4

§ = 15° Walker 113.8

F.E. 111.3
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Figure 6.3 Initial filling wall pressures - Silo #1
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Figure 6.6 Principal stress directions
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Figure 6.8 Principal stress directions - Silo #3
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Figure 6.10 Nodal displacements - Silo #2
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Figure 6.11 Nodal displacements - Silo #3
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Figure 6.12 Plastic Gauss points - Silo #1
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Figure 6.13 Plastic Gauss points - Silo #2°
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Figure 6.14 Plastic Gauss points - Silo #3
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Figure 6.23 Plastic Gauss points U = -0.98 Silo #1
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Figure 6.32 Stress path of material during outlet release
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Figure 6.34 Pressure curves for 15° pyramidal hoppers

(Adapted from Walker and Blanchard 1967)
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Figure 6.36 Comparison of Drucker-Prager yield surface with

actual yield surface



7. SUMMARY AND CONCLUSIONS

A nonlinear incremental static finite element
formulation of the silo problem is presented. The analysis
includes the effects of nonlinear material behavior, load
history, and wall friction on silo wall pressures.

Nonlinear material behavior is idealized by using a
Drucker-Prager yield surface. Previous numerical
difficulties encountered by Askari (1986) are avoided by
using a stepwise stress increment to intersect the yield
surface. The effects of léad history are modelled using a
layering technique in which layers of elements were placed
as filling proceeded. Wall friction is modelled with a thin
layer interface element. The interface element is capable of
simulating the interface state of stick, slip, and debond.
In addition, the element has rebonding capabilities.

The finite element results of three analyses carried
out on an axisymmetric silo using different material and
wall friction properties are presented and compared with the
classical theories of Jenike, Walker, and Janssen. The
analyses simulate initial filling and opening of the outlet
to the initiation of incipient flow. The wall pressures
during initial filling gave good agreement with solutions
obtained by Jenike and Janssen. The assumption of an active
stress field made by Jenike and Janssen was justifed based
on inspection of the principal stress directions.

The stress field during incipient flow was similar in

orientation to the arched field assumed by Jenike. Results
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indicated the initial formation of an elastic arch at the
outlet, followed by a stress reduction due to yield and
subsequent upward movement of the elastic arch. This is in
partial agreement with Jenike's assumption of a moving
switch point. Switch pressures obtained at the outlet are
greater than static pressures, but smaller than those
obtained using Jenike's and Walker's solutions. It is
suggested that the switch "point" has a finite thickness,
and distribution of the unbalanced load over this thickness
has the effect of reducing wall pressures. Thus, design
pressures may be between the static pressure and those
pressures predicted by Jenike and Walker.

Current design procedures do not recognize theA
existence of incipient flow overpressures in hoppers, even
though there is evidence, both experimental and theoretical,
as to their existence. Ignoring these overpressures is
unconservative,_since these pressures can be "locked in",
and act as static loads. The author suggests the use of an
influence type analysis, instead of a pressure envelope, to
determine load effects on the silo structure. Since switch
pressures are found to be in between static pressures and
those obtained by classical flow pressure theories, it is
suggested that Jenike's and Walker's solutions can be used
to obtain a conservative estimate of wall pressures.

It was not possible to develop an extensive plastic
hopper stress field (assumed by Jenike during flow

conditions) in the stronger materials. Possible reasons
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include the conservative strength characteristics and high
dilatency ratio of the Drucker-Prager yield surface, and the
exclusion of viscous and inertial effects.

It is recommended that a viscoplastic analysis be the
next step in research. Determination of flow parameters
(analogous to viscosity) may not be important, éince there
is some evidence (Eibl and Haussler 1984) that a significant
viscosity change causes only a small change in material
stresses. In addition, a more realistic yield surface
similar to Lade's (1977) should be used.

It is believed that the new interface element developed
in this work may be of significant value in small
displacement problems. However, further work is needed to

investigate the numerical stability of its use.
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APPENDIX A - Numerical Implementation of the Material

Constitutive Model

The numerical implementation of the elastic perfectly
plastic material model used in this study can be described
as follows:

1)  an elastic stress increment {Ac},, 1s calculated from
the strain increment {Ae¢} as a trial stress path. A
trial total stress state {o},, is obtained as the sum
of the stress state from the previous load step {o}, and

the trial stress increment.

{80} . = [Cl{Ael, (A.1]

{o} {0}y + {80} eq- (a.2]

2) The total stress state is tested against the yield

criteria

a) f(o ) £ 0

test

0 <3f/30>{A0} <0

test

B) £(0ye0,)
c) £(0,eq) 20 <3f/30>{A0},, > O

3) If conditions a) or b) are satisfied, then the test path
is elastic and we can now proceed to the next strain
increment. Tf condition ¢) is obtained, then the strain
increment {Ae} includes plastic flow., If the original
stress state, {o}, in Eg. A.2, was plastic, then one can
proceed directly to Step 4. If it was elastic then it is

necessary that the stress increment {Ac}., be divided
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into two parts (See Fig A.1); an elastic part {Ac},, and

a part after onset of yield {Ac},

{ac}

test

= {Aac}, + {b0},,. [A.3]

Dividing the stress increment in this way requires
determination of the intersection point A in Fig. A.1.
There is a variety of methods available to do this, and
the approach chosen here is an interval halving

technique. The total stress state is updated as
{o} = {0}, + {A0},. (A.4]

The total stress is represented by Point "A" in Figq.
A.1. Note that {o} now lies on the yield surface.
The strain increment {Ae}, corresponding to {Ac}, is

calculated as
{ae}, = (J[{ao} |/){ac}]) {2e}, [a.5]

and the strain increment after onset of yield is

computed as
{ae}l,, = {Bde} - {Ael,. [a.6]

The stress increment after onset of yielding is
calculated using {Ae},, and the constitutive

relationship in Eg. 5.9

[C] {8f/d0} <dg/d0> [C]
{AG}OY = [[C] - <0f/305> [C] {ag/ao} {Ae}oy. [Aa.7]

The calculation is illustrated in Fig. A.1. The total
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stress state is updated to the state of stress at point
"B". The stress increment {Ac},, is projected in a
direction tangent to the yield surface at the point of
intersection.
As shown by Fig. A.1, the total stress vector is not on
the yield surface, point B. This is because the
incremental stress - strain relationship is, in theory,
continuous. This means that the surface gradient {d0f/d0}
should be evaluated on a continuous basis. Equation A.7
implies a piecewise linear approximation of {Aa}w.
Since {Ac}, moves linearly in a direction tangent to
the yield surface, Point B is not on the curved yield
surface.

Point B must be scaled onto the yield surface. An
approach used by Chen (1982) is to assume the correction

is normal to the yield surface, i.e.
{60} = af{df/d0}, . [a.8]

where a is a scaling factor The expression for the
correction stress can then be derived using the

normality condition, Eqg. 5.4, as

{3f/d0}f(0)
<df/de>{3f/d0}"

{6a}= - [A.9]

The total stress state is then updated from Point B to a
point close to the yield surface. The scaling procedure
may have to be repeated several times to obtain an

acceptable error tolerance in regions of high surface
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curvature,.
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Figure A.1 Illustrative representation of numerical

implementation of material model
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APPENDIX B - Derivation of the Jenike and Walker

Overpressure Envelopes

It is relatively simpie to obtain a Jenike envelope of
switch stresses. Consider a hopper configuration as shown in
Fig. B.1. The position of the switch is at level B,z,, where
B; = 2z,/2,. Above the switch point, the stress field is
active, and a vertical force, Q,, acts on the cross section
at z,. Below the switch point, the field is passive, and a
reduced flow force Q, reacts. In order to maintain
equilibrium at the switch point, the wall must develop an
overpressure or concentrated force. To obtain a Jenike
envelope, the equation of eqguilibrium is written from

examination of Fig. B.2.
N(sin 6' + cos 6' tan ¢') = Q, - Q [B.1]

Jenike et. al. (1973) obtained an expression for the
overpressure at the transition based on Eg. B.1. This
expression, Eg. 1.9, can be extended to obtain the solution
for the switch envelope (assuming a distribution depth of
0.38;B).

. 3.3(o,; - (4/7)"qy(B;B))
si ri (2 - 0.4 sin 6')™(sin 8' + cos 6'tan ¢') '

[B.2]

where ¢, is the vertical initial filling stress at the
switch point. The flow radial stress at the switch point,

g is obtained as a modification of Eg. 2.10

ri?

o,;, = (o'/yB)B;YB. [B.3]
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Charts for (o'/yB) as a function of 6', &, and ¢' have been
developed by Jenike (1961). The stress parameter q is
obtained by integrating the vertical components of the
radial stress field over the cross sectional area, and
charts for g have also been developed by Jenike (1961).
Examination of Fig. B.1 yields the expression for the
vertical stress o, using Jenike's approximation (discussed

in Section 2.2.2).
o, = vzo(1 = By) + Biog, [B.4]

where o, is the Janssen pressure at the transition (Eg.
2.9a).

It is also simple to obtain a Walker envelope. The
expression of Eg. 2.15 can be modified to calculate vertical
stresses below a variable switch point

ool ED

i

C
. a[-zz—] , [B.5]

where o, is the vertical stress at the switch point z;. The
dimensionless stress parameter C is obtained from Eg. 2.15.
If the switch occurs at z = z., the above expression

1

reduces to
. [B.6]

To transform the vertical stress into wall pressure, Walker

(1966) derived the expression

o - 1 + sin & cos 28
si 1 - sin & cos 2(8' + B)

o [B.7]

vi?
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where

B = % ' + Arcsin[giﬂ—QL]]. [B.8]

sin 6

Switch stresses may be obtained directly from Eg. B.7.
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