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ABSTRACT

Bounded influence M-estimators in the linear regression have been investi-
gated for many years. But bounded R-estimators were only studied recently by
Tableman in a special case which uses Wilcoxon rank scores. The object of this
thesis is to study the general form of bounded influence R-estimator. Using in-
fluence function as a tool, we study the asymptotic behaviors of the R-estimator
which include the asymptotic unigueness and the asymptotic covariance. Based
on spherical distribution of regressors X, optimality problems are raised according
to different constraints. Mainly Hampel type optimality problems and Huber type
minimax problem are solved here under certain assumptions on the error distri-
bution. Finally, the strategy of computing this R-estimator based on optimal
functions is discussed and a SAS program is developed . Some numerical results

are given to compare this R-estimator with other estimators.
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CHAPTER 1
INTRODUCTION

1.1 Linear Model
We consider the estimation for the unknown parameters 6y and 8 in the mul-

tiple linear regression model:
yi=0 +x70+¢,i=12,...,n, (1.1.1)

where y; € IR is the i** observation of the response variable; x; = (zi1, Ziz, . . - JZie)T
€ IR* is the i** observation of the independent variables; 6 € R is the unknown
constant term; 8 = (61,6;,... 0T € R’ is an unknown vector; and ¢; € R is
the i** error.

We assume (1) €,...,6q are independently identically distributed according
to some symmetric distribution G, (2) ¢1,...,&n are independent of xj,...,Xn.
The pairs (X;,¥) (i =1,...,n) are viewed as a random sample from some joint
distribution F(x,y). If H denotes the marginal distribution of x, then F(x;,¥;) =
H(xi)-G(yi—08o—xT8). Correspondingly, f,g and h denote the probability density
functions for (x,y), ¢ and x respectively.

If G is the normal distribution with mean zero, i.e. N(0,0?) with 02 > 0, then
the least squares estimator for 8 and @ in the model (1.1.1) is asymptotically
efficient. However, in the presence of heavy-tailed errors and/or anomalous data,
the efficiency of the least squares estimator is remarkably reduced.

Since 1960's several robust methods have been introduced and developed. Ro-
bust regression methods can be almost as efficient as the least squares method
when G is N(0,02). Under the situation of heavy-tailed errors, robust regression
methods are much better than the least squares method (see Montgomery and
Peck (1982)). In fgemeral, there are three types of robust methods: Maximum
likelihood type or M-estimation method, the rank-based or R-estimation method,

and linear combinations of order statistics type or L-estimation method.



Jaeckel (1972) introduced a class of rank-estimators to estimate 8 in the model
(1.1.1). First he defined a function of y — x70, given by

n

D,(y-x"0) =) a(Ri(y - x"0)(y: - x]0), (1.1.2)

=1

where R;(y — x70) is the rank of y, — xT0, an.: a(i) is a score function. Then

the solution to the minimization problem
in{D iy -x"0)}.QCR*
r.nexg{ Hy )}.QCR

is the R-estimator of 6.
In order to analyse the properties of Jaeckel’s R-estimator, we first discuss the
most useful heuristic tool of robust statistics - the influence curve ot the influence

function which was introduced by Hampel (1968, 1974).

Definition 1.1.1: Influence fun¢sion (Huber (1981))
Let's add one more observaticn, with value r to a very large sample. Its suit-
ably normed limiting influence on the value of an estimate 6(F,) can be expressed

as a function of z, given by

8((1 —=)F + €6;) — O(F)

&

F(z, F,6) = lim

where §; denotes the pointmass 1 at z. IF(z,F,0) is called influence function
for O(F).

If 6(F) is sufficiently regular, it can be linearized near F in terms of IF(z, F,f);

if G is near F, then the leading terms of a Taylor expansion are
6(G)=6(F) + /IF(:. F.6)[G(dz) - F(dz)]+ Rem.
We know (see Huber (1981))
/lF(z,F,G)F(dz) =0,

2



and if we substitute the empirical distribution F, for G in the above expansion.

we obtain
VR(B(Fa) ~8(F)) = i [ F(z,F.6)Fa(dz) + VARem

- .\% ; [F(z;, F,6) + /ARem.

From the central limit theorem. the leading term on the right-hand side is asymp-
totically normal with mean zero. if the r; are independent with common distribu-
tion F. Since it is often true (but not easy to prove) that the remaining terms
are asymptotically regligible. \/n[(F,) — §(F)] is then asymptotically normal

with mean 0 and variance
V(F.0) = / (F(z, F,0)]2 F(d).

Therefore the influence function has two main uses (From Huber (1981)).

First it allows us to assess the relative influence of individual observations
toward the value of an estimate. If it is unbounded, then an outlier might cause
trouble.

Second, the influence function allows an immediate and simple assessment of
the asymptotic properties of an estimate, since it allows us to guess an explicit

formula
V(F.0) = / (F(z. F,8) F(dz)

for the asymptotic variance.

Now let’s go back to Jaeckel's procedure. We find out that the influence func-
tion for Jaeckel's R-estimator is bounded only in the y-space but not in the
z-space, so a leverage point will have large effect on the estimate of 6. In or-
der to have influence function bounded both in the z-space and in the y-spase,
Tableman (1990) recently introduced a bounded-influence rank estimator based



on Wilcoxon scores. She let a weighted Wilcoxon signed rank statistic be a func-
tion of the form

<+ _ 1 = T Rf . T 1
S 0= ~ Zw(x.,y. -0 -x,0)- m— 1sxgn(y.- -8 - x; 0) (x.) ,

=1 .

here R} is the rank of |y; — 8, —x78|, and w is a scalar “weight” function. The
solution to ?(0) =0 is Tableman's estimator for 8 and 8. This estimator has
bounded influence function, but we don't know whether the asymptotic variance
for the estimator reaches minimum or not. So our interest is to obtain a gen-
eral form of bounded-influence rank estimators. Using influence function as our
tool, we derive the best estimator under certain assumptions (we will give these
assumptions in later chapter).

Next section, using Jaeckel's and Tableman's ideas, we will obtain a class of
bounded influence R-estimators (denoted by BRE). In Chapter 2, we develop
some asymptotic results which. include asymptotic equation for BRE and asymp-
totic uniqueness of BRE. Chapter 3 deals with the specific choice of the optimal
functions. This is our primary goal. We will discuss the optimality criteria, raise
the optimality problems corresponding to different requirements, and derive solu-
tions to those problems respectively. Chapter 4 discusses computation strategy.
A SAS program is given to computie estimate based on optimal functions. In
section 4.2 and 4.3 we do some comparison with other estimators. At the end

we will give conclusion.

1.2 Motivation of bounded influence R-estimators
Now we generalize Jaeckel (1972) and Tableman (1990) methods, for the model

yi=xX/0+¢,i=1,..,n. (1.2.1)



Denote

e = Yi — x,To,

R; = rank of e;,
and

RY = rank of |e).

Let p(x,e) satisfy the following conditions:

i) p(x,e) 20, for each x and e,

ii) p(x,e) is convex in e, for each x,

iii) p(x,e) is minimized at e = 0, for each x,

iv) p(x,e) is an even function of e, for each x,

v) p(x,€) is twice differentiable with respect to e almost everywhere.

Put n(x,e) = %p(x, e), so n is odd and nondecreasing function in e for each x.

In least squares method, we want to

m‘in Zl e2(0),

i.e.

m.in i ei(0) - €i(0) . (1.2.2)

Jaeckel replaced one ¢;(8) in (1.2.2) by a function a(i) of its rank, ie. a(i)=

a( R;), to get

n

D) = Z a(i)eq = Y_ a(Ri)ei, (12.3)

i=1
where the e(;) are the ordered residuals. Minimizing D(8), we get Jaeckel’s
rank-estimators.

We notice that if p(x,e) = €?/2 as in least squares, then

ey = sign(e(iy) - 2p(x.-,e(,-)). (1.2.4)

5



So we replace one e(;) by a(i) and another by (1.2.4) in (1.2.2), get

D(®) = Y a(isign(eqy) - /20(xi-&(i)

=1

= Za(Ri)sign(e,-) . m . (1.2.5)
=1

Let 5
wi(X,. €} = 3 2p(Xi,e)
= n(xi,€)/v2p(X;,€)

then

_ 0D

50)= -
~ Y a(RiYwi(xi, ei)sign(ei)x; , (1.2.6)
i=1

here this approximation is in the sense of equality except for 2 finite number of

points of 8. In (1.2.6), we can replace a(R;) by a(R;")sign(e,-), and put
w(X;, €;) = wy (X, €i) - sign(es)

to get

50) =Y a(Rf)-sign(e:) - w(xi, &i)xi - (1.2.7)

i=1

If @ minimizes D(@), it should satisfy
-D'(6) = S@0) =0.

In addition, we have to get some information about w(x,e) before we work
out the expression of S5(6). |

1. w(x,e)20.

Since p(X,e) is even and convex function of e, n(x, €) is odd and nondecreasing
fumction of e, i.e.

n(x,€) - sign(e) > 0.
6



Therefore

w(x,e) = —% -sign(e) 2 0.

2. w(x,e) will give less weight on both large residuals and x-outliers for some

particular choice of p. For example, we consider

p(x.e)=v 3(X)pe(—= (x) (1.2.8)

with
(t)_{:lz-tz. for |t| < ¢, 19
Pt = clt| - 3¢,  for |t| > ¢, (1-29)

and

x) = 1/d(x),

here d(x) is a “distance” function of x. Hopefully, we can find out some suitable

d(x) which gives large values for high leverage points. Then

0 ,
w(x,e) = 55\/2p(x, e) - sign(e)

1, for |555l < ¢
= cv(x) (1.2.10)
v(x)\/2cl 555 1-¢ * for lﬁﬂ >c,
and notice that when |5%5] > ¢,
cv(x) cv(x)
w(X,e —
)= v(x), /2 |555! - __ @ v(x)~/2c WXV c @
Thus ! for || <
. or <ec,
w(x, e) = o) (1.2.11)
<1, for|3yl>c.
3. Let’s consider the following function,
+
e?, for “"(i;_) <c,
(1.2.12)

1
b1
p(x.',c)= 2,2(s. 4
{%%,i(;(z-’i%ez, for Sy > ¢,



+
where a(R]) = =, so a( R} )sign(e;) is Wilcoxon score function. Then

w(x,€) = o /3703 2) - signle)

a(RY)
_{1, for“v(x)<c 12.13)
- cv(x;) a(R"') v
a(R:.-) ’ -—LTI’(X >cC.
These are Tableman’s weights.
If we use
ve(t) = min(t,c), t>0,
and put (1.2.13) into (1.2.7), we get
5(0) = Z o(x; )wc[ )] . sign(e;)x; . (1.2.14)

In (1.2.14), we now let ¥ be an arbitrary function ¥. Rather than using

Wilcoxon weights, we put

ali) = 6*(—).

where ¢* is an arbitrary function. Also we let v be another arbitrary function.
Further ¥, ¢t and v satisfy the following assumptions:

i) v(x;) > 0 for all x;,

ii) ¢*(u), (0 < u < 1), is nonnegative, nondecreasing and absolutely continuous,
iii) ¥(u), (u > 0), is nonnegative, bounded, nondecreasing and absolutely contin-
uous.

Finally, we define that our general bounded influence R-estimator is the solu-

tion to
5(8) =0, (1.2.15)
where . -
S@ =) ool (R:,(/S * D)) siga(y; - xT0)x; (1.2.16)
=1 '



with ¥, ¢t and v satisfying assumptions i)-iii).

For the particular choices of (v,%,$%), (1.2.16) produces Tableman’s estimator

and Jaeckel's estimator. In fact, if

p(t) =t,

o* (R} /n+1) =a(R),

where a(i) is a score function, then (1.2.16) gives

n

50) =Y a( R} )sign(yi — x]O)x,,

i=1

ie.
S@) = a(Ri)xi.
=1
5(0) =0 defines the Jaeckel's estimator.
13

¥(t) = Yc(t) = min(t,c), t >0, for given c,
*(R In+1) = a(RY),

(1.2.17)

here a(R})-sign(yi — x70) is Wilcoxon score function, then S(8) =0 gives Table-

man'’s estimator.



CHAPTER 2
SOME ASYMPTOTIC RESULTS

When we introduce a new estimator, we always want to know its asymptotic
behavior or properties such as: the limiting distribution of \/n(6(F,) — & F)),
asymptotic variance and asymptotic efficiency. For this reason, we have to get
an asymptotically equivalent equation for our bounded influence R-estimator.
Based on the asymptotic equation. some properties are obtained. In section one,
an equivalently asymptotic equation is derived and functional &(F) is defined.
Section ‘wo proves the asymptotic uniqueness of the estimator. In section three

we will get influence function and asymptotic variance for the estimator.

2.1 Asymptotic Equation for the Bounded Influence R-estimator
In the previous chapter, we derived the general form for the bounded influence
R-estimator which is the solution to (1.2.15), i.e. S(6) =0, where

ot (RF/(n+1))

v(X;) Jsign(yi — x] O)x; .

5@ =Y v(x)¥]

i=1
We try to express S(d) according to some empirical distributions.
Let G, be the empirical distribution of y; — x70,...,yn — x%0, then

R} = {nGa(yi — xT0) - nGa[~(yi — xT0)]} - sign(y — x76),

i=1,...,n, (2.1.1)
and
() 2 6+ ([ Gy — XT0)~—"~ Gl s + X78)} - sign(y;  xT8)),
n+1 n+l W n+1 ' !
i=1,...,n (2.1.2)

Let H, be the design measure, i.e. the distribution function defined by

g 3 k
Ho(v) = FoAXie i VCR (2.1.3)

10



then the empirical distribution of (x;,y;) is given by Fn(Xi,¥i) = (HaXGn)(Xi, yi—
x78). Now we put (2.1.2) and (2.1.3) in (1.2.15), get

50) = [ xe(x)l 0¥ (T Galy = x78) = T Galy +X70)
- sign(y — x70)]} - sign(y — xT)dF,(x,y) =0. (2.1.4)
If
/ #l55#(G(e) = Gl—e)) - siga(e)]} - sign(e)dG(e) =0 (2.05)

for all x, then (2.1.4) holds if Fy, is replaced by F, and we have

/ xv(X)1{ (x)¢*l(c<y — x76) - G(~y +x78)) - sign(y — x70)]}
- sign(y — xT8)dF(x,y) =0. (2.1.6)

Thus (2.1.6) defines the functional 6 F') that extends estimator (2.1.4) to general
distribution F, such an estimator will be Fisher consistent for @ provided (2.1.5)
holds. Under mild regularity conditions, & F) is weakly continuous, therefore
O(F) is consistent for 8 (see Huber (1981) for more details about consistency and
Fisher consistency).

If G is a symmetric distribution, then (2.1.5) and (2.1.6) become

[ #4106 - 1) signiell) - sigd6(©) =0, (217

and

[ ot 5g5#*126(5 - x70) - ) - sigaty = x"8))
-sign(y — xTO)dF(x,y) =0 (2.1.8)

respectively. For this case, (2.1.7) always holds, since (2G(e) — 1) - sign(e) is a
even function of e when G(e) is symmetric around 0 and sign(e) is odd. That
means &(F) is always Fisher consistent for @ as long as the error is distributed

symmetrically. This is a very good property.

11



Suppose G is not symmetric, then & F') might be biased, i.e.

[ [ oot 56 (Gle) - Gl-elsign(el) - sn(e)dGedH(x) %0

But if we can allow some bias in the intercept, then we can choose a such that

(not proved)

[ [xtoxi 50t (Gle + @) - Gle - ) -sgnte + )l
- sign(e + a)dG(e)dH(x) =0,

here a is independent of (z1,22,....2¢)T. This means that the root @ satisfies

y-x0=e+ x7(0. —0), (here 8, is the true value)
= e+ (Bos — 80) + 21(B14 —01) + - - + Z(Os — k)

=e+a;

ie. a=0ps —0g, 01. =0 = 0,...,0ka — 0 = 0, since a is independent of
(z1,T2,.-- ,zk)T. Therefore the bias is all in the intercept.
Further, let 8, be the true value of 4 in model (1.2.1) under the joint distri-

bution Fp of (x,e), i.e.

yi=x0,+e;, i=12,...n, (2.1.9)
and
0. =F). (2.1.10)
So
e xTB = . T ;=
vi-X;0=¢e;+x;(0.-0), i=1,...,n (2.1.11)

Combining (2.1.11) and (2.1.8), we get
50) = / xv(x)¢{;(-15¢+ (2G(e + %70, - 8)) - 1) - sign(e + xT (0, ~O))]}
. sign(e + x7 (0. —0))dF(x,e) =0. (2.1.12)

12



This is the asymptotic equation for the bounded influence R-estimator.
Write
o*(G(e) — G(-e)))
v(x)

then the asymptotic definition (2.1.12) may be written in a more compact form

ne(x,e) = v(x)y[ Jsign(e),

a8
S(8) = Erlxng(x.e +xT(8. —8))] =0.

From now on we always assume that G is a symmetric distribution.

2.2 Uniqueness

In this section we rewrite the linear model in this form
y=xT0+E=oo+91$1+02$2+"'+0ka +e, (2.2.1)

and true value of 8 in (2.2.1) under the joint distribution Fy of (x,y) is 8. =
(00.,01.,...05.)7. From previous section, we get that the asymptotic equation
for the bounded influence R-estimator is (2.1.12). It is obvious that 8 =6, is a
solution to (2.1.12) by (2.1.7). The question is whether the solution to (2.1.12)

is unique or not. The following theorem gives us the answer.

THEOREM 1. (Uniqueness)

Assuming v(X) is an even function of every z;, i.e.
V(Z1ree1ZjyeeerZB)T) = 0((Z1ee ey =T n@)T) = Lok (2.22)

then the solution to (2.1.12) is unique, and equals 8, under the joint distribution
F, which satisfies the following assumptions: (Fo = Go x Hy)

a) The distribution Go of e is symmetric,

b) The probability density function ho((z1,...,2)T) of X is an even function

of every z;, ie.

ho(T1se+ ey Bjse ey 2h)T) = ho((E1y- - =Tjyeens 2k)T), G =1,k

13



We will prove this tkeorem later. First let’s discuss some properties about
A(x,u), here

A(x,u) = / w{—¢+[(°co e +u) - 1) -sigu(e + )]} - sign(e + u)dGo(e), (2.2.4)
with
u=x7(0. - 0). (2.2.5)

The solution to (2.1.12) satisfies

@) = / xe(x)4(x. xT (6. — 8))dHo(x) =0.

Property 1. A(x,—u)= —A(x,u).

PROOF:

Ax,=u) = [Vl {(2Go(e = w) = 1)-sigale ~ )]
- sign(e — u)dGo(e)
/ ¢[—¢+{("Go(—e — u) - 1) sign(—e - u)}]
s1gn(-e —~u)dGy(e) (by symmetry of Go)
= - [ ¥l #* (2Gote +4) = 1)-sgale + )]
- sign(e + u)dGo(e) (since Go(—e — u) =1 = Go(e + u))
= —A(x,u).

Property 2.
0, foru=0,

Alm.sjs 4 >0, foru>0,
l<0, for u<0.

14



PROOF: For u = 0,

A(x,0) = / gb[;%)(—)¢+{(260(e) ~1) - sign(e)}] - sign(e)dGo(e)

=0 (by (2.1.7)).
For u > 0, since ¢* and ¥ are all nondecreasing functions,

¢['!)—(1;')'¢+{(2G0\(€ +u)—1)-sign(e + u)}] - sign(e + )
> ¢[$°+{(200(€) ~1)-sign(e)}] - siga(e).

Hence A(x,u) > A(x,0) = 0 when u > 0. By Property 1 now we have A(x,u) <0
when u <0 . O

Propeity 3. If uy| > |uz), then |A(x,uy)| > |A(x, u2)l.
'This proof is similar to the proof of Property 2.

Now we can prove Theorem 1. The proof consists of two parts. Part 1 proves
the result in special cases that the linear response in (2.2.1) goes through the
origin, and Part 2 proves the general result.

Part 1 of the proof. Let's consider the linear model (2.2.1) without constant

term 6y, i.e.
y=nb+-+zbe+e, (2.2.8)
and true value
0. =(0.,...,00)" . (2.2.9)
From (2.2.5),
u=xT(0~0) =21(01s — 61) + - + Zk(Oke — O). (2:2.10)
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Using A(x,u), we can rewrite (2.1.12) as

S0) = / xv(x)A(x, u)dHy(x) (2.2.11)

I

I2

=/ . | v(x)A(x, u)dHo(x)

Tk

= (5:(0), $2(0).....5:,®))T , 2.2.12)
where

S{0) = / rr(x)A(x. u)dHo(x), i=1,....k. (2.2.13)

We will show, from S;(@) = 0. that §; is uniquely determined and equals 6.,
i=1,...,k
Let’s start with equation 5;(0) = 0.

Denote

a; =0,, — 6y,

az = 29(02. — 62) +- -+ + T(Oke — Ok). (2.2.14)
Using a; and ag, (2.2.10) can be rewritten as

u=a,z; +a;. (2.2.15)

We claim that
0, for a; =0,
5@ = >0, foray >0,
<0, for a; < 0.
This means, from S)(@) =0, that we must have a; =0, i.e. 0, = 60,,. Well, for

aQ > 0,
5,1(0) = / 210(X) A(x, u)dHo(x)

= / / { [_ :z,v(x)A(x,u)ho((x,,...,z,,)")dz,}dz,,...dz.

{2300y}

=T+L+715,
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where

o0
T, =// {/ 1 0(x)A(%, who((z1,..., z6)T)dz1 }dza, .. dzs, i=1,2,3.
with

c1 = {(£2,-..,zk)|az < 0},
¢z = {(z2,...,2x)laz > 0},

c3 = {(z2,...,zk)|az = 0}.

We want to show that each T; > 0,:=1,2,3. Then $i(0)=T1 +To+T3 >0
when a; > 0.

Now, in T3, a; > 0, a2 =0, so u = a;z; + a2 = a,7,, and

A((--‘Fl,l‘z,-o . ,.‘Bk)T, "'d]J.'l) = A((Il,':g,. .. 1zk)T’ —0131)

= -A((z1,22,. .- ,zg)T,alzl)
by Property 1. Thus A(x,u) is an odd function of z, in T3. So we have
00
/ 210(X)AX, Who((21,. . ., 24)T)dzs
-00

=2 /m zv(x)A(x, u)ho((Z1,- .- ,z,,)T)dzl >0,
(] (2.2.17)

since v and hq are even functions of z; by the assumptions of Theorem 1, and

A(x,u) >0 when u = a;z; > 0 by property 2. Hence
Ty = / / { /_ :zlv(x)A(x,u)ho((z,,...,zg)T)dzl}dzg...dz,,
> 0. c.(by (2.2.17))
Next we deal with T} and T;. After making transformation:

(21,22,...,Zk) = (=Z1,~22,. .., =Tk),

17



we find &1 = ¢ and T} = T; since —z, 4{(—x),-u) = —r1A(X,~u) = -1, -
(—A(x,u)) = z14(x,u).

Ian T3, let’s consider the integration

/ zlv(x)A(x. u)ho((.r;, - ,Ik)Td.‘L'l =L, 4+ L, + L3,

where
L= / e x)A(x, ulho((z1,.-- )7z,
y
Ly = / o re(x)A(x,u)ho((z1y. -+, .tk)T)d.‘t;,
-3
and

L3 = /,‘_z zlu(x).-l(x. u)ho((.‘tl, oy Zk)T)d.'tl.

41

For L;, u = z1a; + a3 <0, so A(x,u) < 0 by property 2. Then z; - A(x,u) >0
and L, > 0. For L3, u=z1a; + a2 >0, then A(x,u)> 9. So L3 >0. For Ly,

Ly = (/_:z +/o Xzy - v(x)A(x, u)ho((z1,--- ,:ck)T))d::,
=z'l

= /" o u(x)[A(x, u) = A(x,—11a + ag)lho((21, . - -, 2)T )dzy,
0

Since u = @12y + a2 > —ayzy +a2 >0 (for 0 < z; < %},al > 0 and a3 > 0),
A(x,u) > A(x,-z1a1 + az) > 0 {by Property 3). Thus Lz >0.
Therefore

T; =‘-Tz=/'”/(L1+L2+L3)d$z...d$k>0.
Ca

From what has been shown, we have 5,(8) > 0 when a; > 0. Similarly we can
get S1(0) < 0 when ay < 0. When a; =0, 5,(0) = 0 is obvious. In conclusion,
6, = 6, is uniquely determined by S5)() = 0. In a similar way, 6; = 6i, =
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2,...,k) is uniquely determined by S,(O) =0. On the whole 8 =@ is the unique
solution to S(8) =0, completing the proof of part 1.
Part 2 of the proof , we consider the general model (2.2.1) with constant terms.

5(8) in (2.2.12) can be written as

50(0)
S1(6)
= : (2.2.18)
Sk(0)
where
So(0) = / v(x)A(x, u)dHyp(x), (2.2.19)
and S;(@) (i =1,...,k) is the same as (2.2.13) with
u =0gs — 6o + .1‘1(91. - 01) S R :tk(ek. - ek) . (2220)

In the present case, we only have to show, from So(@) = 0, that 6p is uniquely
determined and equals to ., because all the S;(@) (i = 1,...,k) will be exactly
the same as in previous case if §p = 6p. and from part 1 of the proof 6; = 6. is
uniquely determined by S;(0) =0 (i = 1,...,k).

Now, let a3 = 8g. — 8o and a4 = z1(61s — 61) + - -+ + Zi(fks — Ok ),then

u =00 +0+21(01 — 1)+ + Zp(Oke — Ok)
=az+a4. (2.2.21)

Denote

a = {(1,...,Tk)|as <0},
e = {(z1,-..,%k)]ag > 0},

a = {(z1,...,2&)|as = 0} .
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Using c1,c2 and c3, So(@) can be expressed as

S50(0) = /1v(x)A(x,u)dHo(x)
=hL+L+]I, (2.2.22)

with
I; =/ v(x)A(x, u)dHo(x). (2.2.23)

We claim
>0, for a3 >0,

S50(0)=¢ <0, for a3 <0,
=0, for a3 =0. .

This means, from So(f) = 0, that a3 =0, i.e. 6 = ..
Suppose a3 >0. In I3, u = a3 + a4 = a3 >0, then A(x,u) >0, so I3 > 0. For

I, and I;, we have
L+L= /; v(x)[A(x, u) + A(x, a3 — a4)]dEo(x), (2.2.24)
2
and on ¢, u = a3 + a4 > |az — a4}, since a; >0 and a4 > 0. So
A(x,u) > |A(x,a3 — a4)| , by Property 3.

Thus
A(x,u) + A(x,a3 — aq) >0,

when a3 > 0 consequently So(@) = i+ 1 + I3 > 0. Similarly we can show
So(@) < 0 when a3 < 0. Therefore a3 =0, i.e. 8y = 6., is uniquely determined
by So(@) =0. Combining 6 = 8o, with the result in part 1, we conclude thﬁt
@ = 0, is the unique solution to S(@) =0 in general case. This is the end of
proving Theorem 1.

Next section will calculate the influence function for the estimator.
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2.3 Influence function

In section 1.1, we gave the definition of influence function when 8, z € RR.
Here we will extend that definition when 0, z € IR*. Let 6z be the distribution
which puts mass 1 at the point z € X (where X is the sample space of z), then
the influence function for a functional & F) at a distribution Fj is given by

IF(z,0, Fy) = im {(8((1 - €) Fo + €62) — & Fo))/e}.

The above influence function usually can be obtained by simple calculation as

follows:
d
IF(Z,‘, Fp)= -d—_O((l - E)Fo + EG)I e=0 . (231)
> G=6s

Under some regularity conditions, we have

/ [F(z,0, Fy)dFo(z) = 0 (2.3.2)
and
VR@(Fa) - Fy)) = N(0,V(0, o)) , (2.3.3)
where
VO.R) = / IF(z,0, Fy) - F(z,0, F;)TdFo(z). (2.3.4)

In section 2.1, (2.1.12) defines the functional §(F). In order to get the influence
function for &(F) at Fy, we replace F' by Fy =(1—-A)Fp + AF} in (2.1.12), then
&(F)) =0, is defined implicitly. Accordingly, the influence function for 6(F) can
be derived by

IF(e,x,Go, Ho,v,¢%,¥) = io,q A= -
d\ 7' Gy=ée,Hi=6bx

For F\ we have

Fa(x,¢) = (1 - A)Ho(x)Go(e) + A(H1(x)G1(e).
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Let x — 400 (by which we mean each component of X goes to positive infinity)

on both side, i.e.

xli.ﬂx}w Fy\(x,e) = IETm(l — A)Ho(x)Go(e) + xli.rfm AH,(x)Gi(e).
Since
x_l_i&le,\(x,e) = G2x(¢e) and xliglco Hi(x)=1 (i=0,1)

we have that

Ga(e) = (1 = AN)Go(e) + AG(e).

Similarly, we ahve
Hy(x) = (1 - M) Ho(x) + AH(x).

Denote
{(e,x,G) = [2G(e + x7 (0. — 0)) — 1] - sign(e + xT(0, - 0)),

and

{e,x,Ga) = (1 = A)[2Go(e + x7 (0, —0))) - 1] - sign(e + x7 (0, —03))
+A[2G; (e + xT(8. —0y)) — 1] - sign(e + xT(0, — 6y)) ,

then
& fle, %, G )lama = ~[263(e) ~ 1] sgale) + [261(¢) - 1] sgafe)
+ 2go(e)(—x"B)sign(e)
= [2G1(e) — 2Go(e) — 2g0(€) - x76) - sign(e) (2.3.6)
here
b = ;XQ\L\:O.
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In (2.1.12) replacing F' by F), taking the derivative with respect to A and eval-
uating at A =0, we get

0= / oW [ (e, %, Gl - o™ (8, G
e(e,x,GA)h_o sign(e)dFa(x, €)
/ Xo()l s 6* (€ .G o - sign(e)(Fs = Folx, )
= [ ¥4 (2Gole) - 1) - sga(e)I6¥(2Gofe) - 1)-sig(e)
(2GI(e) 2Go(e) — 2g0(e)xT -8)dFy(x,¢)

/ xv(x)y[—— ( ) "Go(e)~1) sign(e))] - sign(e)dFi(x,e). 237)

In addition, we assume that the model (1.2.1) goes through the origin and v(x)

is an even function of every z; (: = 1,...,k). Then

/ ade )¢+((2G0(e) ~ 1) - sign(e))] - $¥'((2Go(e) - 1)sign(e))
: (2G1(e) 2Go(8))ng(x, e) =0. (238)

Combining (2.3.8) with (2.3.7), we come out
- [2x 6Bl 6¥(BCe) - so( TR, )
+ / xv(x)t,b[;(—lx-sé"'(B(e))] - sign(e)dFy(x,e) =0, (2.3.9)
where

B(e) = (2Go(e) — 1) - sign(e)
= |Go(e) - Go(—e)|. (2.3.10)
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For simplicity, we denote IF(e,x) = IF(e,x, G, Ho, v, ¢*,¥). From (2.3.9), solving
for @ and evaluating at G, = e and H; = 6x, we derive the influence function

for &(F) at distribution Fy, given by
Fe,x) =9 6,=se
=D {xv(x):p[-v—(lx—)w(a(e))] -siga(e)}, (23.11)
where
p= [ 2x¢'[-£x-)¢+(3<em  6*/(B(e))go(e)xT dFo(x, ). (23.12)
Correspondingly, we can verify (2.3.2), ie. [IF(e,x)dFy(x,e) =0. Well
[ Fte xRz, e) = D7 [ xu(xwo ¥ (Bl - sign(e)do(x, o

=D"1.0 (by (2.1.7))
=0.

The formal asymptotic covariance matrix V(Go, Ho,v,¢*,) (hereafter denoted
by V for the sake of simplicity) is given by

V= / IF(e,x) - IF(e, x)TdFy(x,€)

=D / vz(x)w[;(l;‘-;w(s(e))]x -xTdFy(x,¢)} - D!

= D~'MD"! (2.3.13)

with
M= / vz(x)zbz[-l%‘-)-«b*(B(e))]x-deFo(x, e). (2.3.14)
From the beginning of this section, we know that /n(0~8,) is asymptotically
normal with the covariance matrix V = D"!MD~!. Next chapter will discuss

some optimality problems such that V is minimum or minimax (the definitions

of minimum and minimax will be given in the next chapter.)
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CHAPTER 3
OPTIMAL FUNCTIONS

In this chapter, the spherically symmetric distribution and its properties are
discussed. Based on the spherically symmetric distribution, our optimality prob-
lems become much simpler. From section 2.3, we know that the asymptotic
covariance matrix ¥ depends on the distribution Fy as well as the functions
¥,¢% and v. If we fix a distribution Fp, then we can choose optimal functions
¥,¢* and v such that V is a minimum (which is defined in section 3.1) and the
influence function is bounded. This is called a Hampel-type optimality problem.
If the distribution F, varies in a class of distributions, we can choose functions
¥,¢% and v such that V is a minimax (defined in section 3.4). That is called
a Huber-type optimality problem. The above two problems are both solwd in
this chapter. In section one, the spherically symmetric distribution is introduced
and the definition of minimum matrix among a group of matrices is given. Op-
timal functions in general case are derived in section two. In section three, we
solve Hampel-type optimality problem. In section four we obtain the solution to
Huber-type optimality problem.

3.1 Optimality criteria
Considering the distribution Hy of X is spherically symmetric, then the prob-
ability density function hy of X can be written as

ho(x) = ru(uxu)-xﬁ), ||| means norm. (3.1.1)

where I(u) is the uniform distribution density on Sy (S = {u| |ju}]|=1,u€ R*))
and h,(||x]|) is the probability density function of ||x||.
From Eaton (1981), we know Z = [|X|| and u = & are independent random
variables, so
dHy(x) = hy(z)I(u)dzdu, (3.1.2)
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with z = ||x|| and u = x/||x||.
We also assume that the weight function v(x) depends on x only through ||x||.

say
v(z) = v(x). (3.1.3)

In the remaining part of this chapter we confine our attention to the following
case:
a) the distribution Hy of X is spherically symmetric,
b) v(x) = v(z),
c) the density function go is absolutely continuous.
In this case, the influence function (2.3.11) and the covariance matrix (2.3.13)

become much simpler. -Let’s observe (2.3.12) and (2.3.14) first,
1 1 ! I3
D= [ 2x¥l5s6* (BleNI*(BleNgole)x dFuix,e)

/ / / 2 X X P e g (B(e))]- 67 (B(e))sole)
| TR o([IxID)
«zzi'(nxu)-I(I—;ﬂ)dco(ewzdu

- / u-uTI(u)du- / / w'[v(—lzias*w(e»w“(B(e))go(e)
- 22+ hy(2)dGy(e)dz. (3.1.4)

Denoting

D, = E(u-u7), (3.1.5)

and

K= / / 2¢'[v—(15¢+(3(e>)1  8*(Ble))gole) - 2*ha(2)dCole)dz,  (3.06)

(3.1.4) becomes
D= D1 . I\’l . (3.17)
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Similarly, from (2.3.14),

M= vztx)r.z'—q,-l’-‘—)ﬂo"*(B( ] aFy(x%,¢€)
=Dy -Ks . (3.0.8)
here
K; = //1,02{::;1:—)0*(3(6))] - 22 ot (2)dGo(e}dH (2). (3.1.9)

Combining (3.1.7) with (2.3.11), we have

X . aif L , .
IF(e,x) = D}’ {lml Ixilﬁ‘(-l»!x'ii)v{;mx—”)f¢+(31e)?} - sign(e)}
o srEeigset(Ble))] - sign(e)
lu.{ ! 9K1 }
=D 'u- "(Ii;l‘), {3.1.10)
with
n(e, z) = zv(:)¢'[;(—15 - ¢*(B(e))] - sign(e). (3.1.11)

Replacing D with (3.1.7) and M with (3.1.8) in (2.3.13), we get
1

V= 1)'-11\,4‘D‘-l = E-D,“Dle . DI_IT{';'
ﬁiu“‘ : (3.1.12)

It is important to notice that D; = E(u-uT) is independent of the density of x.

xxT
D, = E[H;”—z] =al; (by symmetry),

where
2

I .
a-E('I-i;“—z), l—l,...,k,

SO

ka = ZE(II ||2) s n*' =B =

i=1
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hence @ = 1/k and D, = Ii. In fact D; is a fixed positive definite matrix.
Thus the covariance matrix 1" varies only with K,/K}. Before discussing any

optimality problem, we give the optimality criterion for V".

Definition 3.1.1: Minimum matrix.

Let V(Go, Ho) be the group of matrices containing all V(Gy, Hy. v, v, 6%) for
all functions v,¥ and ¢*. Given any two matrices 1},V5 € V(Go, Hyp), we say
Vi < Va2 if V; = V] is positive semidefinite. V is said to be the minimum in
V(Go, Ho), if V < W for any W < V'(G,. Hp).

Since V(Gy, Ho,v,¢,0%) = %:}Dl' ! where D{! is a fixed positive definite ma-
trix and %? is a function of v.o™.r.Gy and Hy, minimum matrix V is obtained
by choosing ¥,¢* and v such that ;‘—‘:} is minimized. Consequently those 1, ¢+

and v are called optimal functions.

3.2. Optimal functions in general
In this section, the optimality problem without any constraints, i.e.
min V(Gy, Hy,v, ¥, ¢%), is studied. From previous section, min V(Gy, Hy, v, ¢, ¢*)

is equivalent to
. N
min —

l)
& (3.2.1)

-

or
K}
max E . (3.2.2)

K] - EP 2 |~_"(e’~)}, (3--03)
h ae

and

K= EC'Z{”Q(evz)}’ (3.2.4)

where n(e, z) = 2v(2)¥[556(B(e))] - sign(e).

28



Remark: E. . means expectation with respect to random variables e and =.
From (3.2.3),

K, =//z§e-q(e.:)dGo(e)dHl(z)
i}
= /z{/Er;(e.:)go(e)de}dHl(:)
= /z{/ —n(e,z)go(e\de}dH,(z) (integration by patts)

=/2{/_’l(e,:)g"(e)dGo(e)}dHl(-’)

€)
(e)

= Ee o {-n(e,z): 2=}, (3.2.3)
using Cauchy-Schwarz inequality, we have

K? < Ee{if(e.2)} - Ee {2228y

90 (e)
=I\"2°I(Go)'J(H1), (3.2.6)
where
!
I(Go) = / (M)z«iGo(e) is Fisher information,
go(e)
and
J(Hy) = / 2dH,(2).
Therefore _2
I—\.‘- < I(Go) - J(H)), (3.2.7)
R,

and furthermore, when 7(e,z) is in the form of -clzgé% for any ¢ # 0, -’,‘;-':-
reaches the maximum. Considering the case ¢; = 1, and by the definition of

n(e. z), we have

[v(z)¢+(B(e) ))zv(z)sign(e) = —zz"E:; (3.2.8)
Solving (3.2.8), we get
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i) ¥(t) =t, for t >0, (3.2.9)

and

it) o (B(e)) = E sign(e), (3.2.10)

e ¢t(u) = —L(Gy (). 0<u<l.
From (3.2.10), some of the common scores can be obtained by choosing different

distributions Gy. For instance, if Go = Exponential distribution,

go(e) = exp(—e),
go(e) = —exp(—e),

gole)

6*(Ble)) = -2 Ssign(e) = siga(e)

this is the sign scores.
If

Go = Logistic distribution ,
go(e) = exp(—e)/[1 + exp(—e)}?,
Go(e) = 1/[1 + exp[(—e)],

—go(e) _ _
20(©) 2Go(e) - 1,
go( e)

+ =
¢*(B(e)) = e

ie. ¢t (u)=u, 0<u<1, that is the Wilcoxon scores.

If Gy = Normal distribution,

- sign(e) = (2Go(e) — 1) - sign(e),

—go(e)
“gole)

¢*(B(e)) = e sign(e) = [e|,
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that is the normal score.

These fumctions in (3.2.9) and (3.2.10) are the optimal functions if Go is spec-
ified exactly, i.e. correctly, and no outlying x's. However, in this case we don't
have any information about v(z) and the influence function is unbounded. I we
define the gross error sensitivity v* (Huber (1981), p.14) to be the maximum

norm of the influence function., i.e.
v* = sup ||IF(e, x)|],
x.6

then the gross error sensitivity is infinite for the above case according te {3.1.10),
because n(e, z) is infinite in this case and K can always be assumed finite.

In another case, the optimality problem is a constrained minimization problem,
ie.

I\g ,subject to v* < b,
where b, is a given constant (v* < b, means that the gross error sensitivity is
finite). This is called a Hampel-type problem, and is going to be studied in
section 3.3.

The final case considers Huber-type minimax problem in which the distribu-
tion G, varies in a neighborhood of Gy , say F(Go). This case is going to be
solved in section 3.4 under the condition that Gy is normal and F(G,) is the
e-contaminated neighborhood F.(Go), i.e.

Fe(Go)={(1-c)Go+eH, 0<e<1},

here H is any symmetric distribution.

3.3 Optimal functions for Hampel-type optimality problem
Observe the influence function (3.1.10),

F(e,x) = D 'u "(;{'l’)
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where D! is a fixed matrix, ||u|| = il =1 and z = ||x||. The gross error

sensitivity (defined in section 3.2) is given by

v* = sup||F(e.x)]]
¢.X

-1 ’I(e z)
_..supllD % Il
= sup{| L2 107 )
—mwn“f'ﬁll 1) ull}
. ')(es-) i
= sup{| L2 kijull
_ k ;up|'7(e ")l .

Therefore, for a given b, v* < by is equivalent to

.-\

upl |_bz

for some constant b,.

Now Hampel-type optimality problem can be stated as follows: (For fixed Go
and Ho)

K
min I"‘;. (3.3.1)
s.t.- upl (e : > | < b, for a given b, . (3.3.2)
e,z I\

In order to solve i,¢* and v from (3.3.1) and (3.3.2), we standardize (e, z) by
(3.3.5) below , then the optimality problem becomes: (For fixed Go and Ho)

min K, = min E. . {n%(e, 2)}, (3.3.3)
s.t.sup|(n(e,z)| < b, for a given b, (3.3.4)
ez
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st.Ky=E, . {-nlez) z- go(e)} =S. (3.3.3)

For mathematical convenience we choose

S = // g"(e) )2dH\(z)dGo(e // g" (2)dGo(e) . (3.3.6)
= 1<t 32 1>t

Our next theorem gives the solution to optimality problem (3.3.3)-(3.3.5).

THEOREM 2. The optimal function (e, z) for (3.3.3)-(3.3.5) is

_gsle)
b. for — —°—-g°(¢) >b,
! = _~g.“_(ﬂ f Py (e 3.3.7
17(8,2)— St OI‘I..EgTaI__ ' ( . .l)
- — ,%(e) o _
h. for 235 < b.

PRoOF: For any 7(e, z) satisfying constraint (3.3.5), we have

/ / (n(es ) + 228 J2dGy(e)d (2)

go(e)
= / / n’(e,z)dGo(e)dH1(z) =2 Ky + / zz(%fdGo(e)dHl(z)
= Ko + I(Go)J(H)) -2 S, (K1 =S by (3.3.5) ). (3.3.8)

So minimizingK, is equivalent to
mlmmxzmg//(n e: -+-~ ole )) dGo(e)dH,(z), (3.3.9)

go(e)
since, for fixed Go and Hy, I(Go), J(H1) and S in (3.3.8) are constant. QObserve

/ / (ne,2) + 23‘;8 P dGo(e)dH:(2)
[] bies--2hrdcuen)
(-3 54)
[[ - 2ghracuoine)
(-2 )
v [ - L aGo(e e ),
I-= 520 <)

(3.3.10)
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with n(e,z) satisfving constraints (3.3.4) and (3.3.3), (3.3.10) is minimized by

n(e, z) in (3.3.7), since each term in (3.3.10) is minimized. Hence n(e. ) in (3.3.7)

is the optimal function for (3.3.3)-(3.3.5).

O

Replacing n(e, z) in (3.3.7) by its definition in terms of ¥, 6% and v in (3.1.11),

1 .
n(e,z) = :v(:)v[mé*'B(e))] - sign(e),

solving for ¥,¢% and v from (3.3.7), we obtain the optimal functions .ot and

v (given in following theorem) for Hampel-type problem.

THEOREM 3. The optimal functions v',o% and v for Hampel-type problem are

(8 = t. fort <b,
o )"{b. fort > b,

o*(Ble)) = -2 . ign(e),

gole)
ie. ¢t(u)=-8(GF'(*L).,  0susy,
1
l'(:) = ; .

PROOF: 1) When |z%8| < b, from (3.3.12) and (3.3.13), we have

o(e)
¢+ (B(e)) gole) _ 1. 9(e)
| == 2(z) ———|=l-: 70(2) Slgn(e)l—lzgo(e)lsb,
e +(Be)), _ o*(Ble)) _ __ah(e)
¢7(B(e)), _ o (B(e)) _ __gole)
%( o) )= T e - sign(e),
SO
n(e,z) = 2v(2) ,[-O—E-(B—-—] sign(e)
=+ 1 (-2 siga(e)) - simle)

—.98) (337} holds.
go(e)
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2) when -—z%é-}:—; > b, from (3.3.12) and (3.3.13) we have

S*(Ble)) ___gale) . )
v(z) "go(e)&gn(ep

by (3.3.11), .
0 e))

“
. v(s)

) = bsign(e),
so
n(e,z)==- %b- sign(e) - sign(e) = b,
(3.3.7) holds.
3) Similarly, when ~22{3 < b, (3.3.7) holds.
Therefore, on the whole, ¥, ¢* and v in (3.3.11)-(3.3.13) satisfy (3.3.7). O

3.4. Optimal functions in Huber-type minimax problem

Huber (1983) developed an exact finite-sample minimax theory of robust M-
estimation for regression and solved various finite-sample and asymptotic minimax
problems. Applying Huber’s idea, we will study minimax aspects of bounded in-
fluence R-estimator for regression. Similarly the finite-sample case is considered,
x; is fixed and at each x; we have m observations y;. Assume that (y; —07x;)’s

are distributed according to an ¢;-contaminated normal distribution F;, i.e
Feo={(1-€)®+¢;H,0<6 < 1},

where @ is the normal distribution and H is any arbitrary distribution. For Feis
the least informative density g; which minimizes Fisher information is (see Huber

1981)

exp(—€?/2), for |} < ki,
gi(e) = T 2 (3.4.1)
Vdezp(k /2= kile]), for |e] > ki,
here k; and ¢; are related by [gi(e)de =1, i.e.
,Ef‘) 28(-k) = 7o (34.2)
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where ¢ is the normal density function.

Now, for each fixed x;, we let

zi = {xill,
¢ = v(), (3.4.3)
and
ni(e) = v ——(—)—)]c‘.-.sxgn(e) (3.4.4)

From section 3.1, min V' (covariance matrix) is equivalent to

Here we focus on min L,g-:} at each fixed x; with a number of observations y;’s,
correspondingly K; and K are given by
. 0
K, = E,',{zggr;(e,z)} (from (3.2.3))

i
= E, {z, De ni(e }
since, at each fixed x;, z; is constant, e is distributed according to g(e), and
n(e,z) becomes ni(e). Integrating by parts, K} becomes

g'(e)

K, = E.{-ni(e)zi—— )

}- (3.4.6)
And similarly,

Koy = E. .{n*(e,z)} (from (3.24))
= E{nl(e)} - (3.4.7)

Minimizing problem (3.4.5), with (3.4.6) and (3.4.7) is called Huber-type opti-
mality problem. First, we find out the solution ni(e) to this problem when e
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is distributed as g;(e), then we will show that n;(e) is the minimax solution for

min-};‘.& over F,,.
1

THEOREM 4. Provided e has p.d.f. gi(e), the solution to (3.4.5) is

_ . gile)
me) = =i

_ { zie, for le] < ki,

z,k;sign(e),  for || > k; . (3.4.8)

x

-2
PROOF: min 3% is equivalent to max % Using Cauchy-Schwarz inequality, we
b

have

K2 = (Ecfzgon(D?
= (Eu{—ni(e): 23y
= (E{ ’7:(5)~xgi(e)})
9.( e)
< En}(e))- Ee{(=2i2 750"
= Ky -z} - I(Gi(e)):

Thus
K} Ay

= <G, (349)
with equality when 7;(e) is in the form of -—c:;%é{%, for any ¢ # 0. For example,
taking c =1, we get
I e)
ni(e) = —zi=— ‘Ee)
this is (3.4.8). Furthermore, from (3.4.1),
' %(—e)ezp(—ea/i’) for |e| < ki,
(e) =
5(¢) l7"5-‘;’i(--lt:.'sign(e))e:cp(k?/2 —kile]),  for le] > ki,

g (- sk,
gl(e) —k,-sign(e) ' for Iel > k., . (3-4.10)
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ni(e) can be written as

©={ for [e] < ;.
nile) = sikisign(e),  for |e| > k.

The proof is completed. O

The following theorem is our main result for minimax theory.

THEOREM 5. The ni(e) in Theorem 4 is also the minimax solution to min—:;}
1

over F., (i.e. the distribution G of € can also vary over F.;) provided H is also

symmetric.

PROOF: In order to prove that 75,(¢) in (3.4.8) is the minimax solution, two

things have to be shown.

1) Fox fixed g; € Fe, , ni(e) minimizes %? This is done in Theorem 4.

2) When this ni{e) in (3.4.8) is used, %? is maximized over F.;,, by g; in
(3.4.1).

By 1) and 2), we have
K, K, K,
220 a) < =2(ni. 9i) < —==(n,9;) ,
Kf(""g) = I\--l],(.'h.g ) Alz(" 9i)

for all g € F,; and any 7, then

I\'z _ 1{2 .
Sl;p T.lz'(nng) = I\--l; (nngl)
Kz
& e :
- I\.lg (r', gl)

K2
< — .

So n; is the minimax solution.
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To see 2), using the same method as in Jaeckel (1971), we recall the definition

of ni(e) in terms of 3 and o%, i.e.

0*( (e))

]Cx~n5180(6)
o'*'(("G\e) - 1)sign(e))

Ci

ni(e) = ¥[

=y Jeizisign(e),

and put

m(e)

F(e,x,) =

_ ni(e)
i [0, Zni(e)g(e)de’

Let u = (2G(e) — 1) - sign(e), then
e=G—l(l—:—u), fore>0,

e= G"(l%y-) , for e <0.

Denote
o+( u)

J(u) = ¥]

]C;bg [} fOI' e 2 0,
so, when ¢ 2 0,

’],‘(e) = J(u)7

and

ni(e) = J'(u) - %
= J'(u) - 29(e).

The influence function at e = G~'(15%) becomes
- liu J(u)
IF G ! » X¢
G0 = o T E i oerde
_ J(u)
2z [ J'(u) - 9(G~}(2§2))du
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Since J'(u) = 0 outside of the interval (0,2G(c;) - 1) (notice that ¢; = &; from
below) and in this interval

1. 14
AG(——»>MG% =)

a(

according to (3.4.1), fol J'(u)g(G~'(1%*))du is minimized by G;. So

1+u

(G- )mN>WW'( ) xi)l,
and ) )
%(m,gi) > }I-:.%(ns,g),for all g € F,,
because
R0 = E(FG (52 x07),
0
From (3.4.4) and (3.4.8), ¥,¢* and ¢; are obtained as
t, for0<t<l1,
¥() ={ 1, for t> 1. (3.4.11)
s =67 o gu sy, (3.4.12)
=k - (3.4.13)

Those are the optimal functions for Huber-type minimax problem.

Remark: The only special property of the normal distribution used here is
strong unimodality - i.e. that --z-é(e) is increasing. The results then extend to

any strongly unimodal distribution G,.
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CHAPTER 4
COMPUTATION

After studying the bounded influence R-estimator theoretically in the previous
two chapters, we want to investigate some numerical aspects in this chapter.
In order to compute this R-estimator, iterative methods should be used. In
particular, if we have a good starting value for the estimator, then the one-step
method can be used and is effective. Usually k-step (k > 2) iteration should be
done before a satisfactory estimate is obtained. In section 4.1, one-step method is
explained, and a SAS program is developed for the R-estimator which is based on
optimal functions obtained in section 3.3. In section 4.2, an example is given to
compare the bounded influence R-estimator with other estimators (Huber (1973),
Krasker and Welsch (1982) and Tableman (1990)) numerically. Simulation is done
in section 4.3. The results show that the bounded influence R-estimator is very

effective to deal with large leverage points and easy to apply in practice.

4.1 A SAS program to compute the bounded influence R-estimator
From the previous chapter, the optimal functions for Hampel-type optimality

problem were derived and given by

fi b,
¥(t) = { i f:: :'E b, (4.1.1)
¢*(B(e)) = g°8 sign(e) , (4.1.2)

o(z) = (4.1.3)

Nlt—'

Assuming go(e) is the normal density in this chapter, so (4.1.2) is simplified as
¢*(B(e)) = |e|, also we notice that B(e) = (2Go(e) — 1) - sign(e), then function
¢t can be written as

#(0) = G H(E)
t+1

= @"(—) , 0<t<], (4.1.4)
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here & is the standard normal distribution. Back to Chapter 1, (1.2.16) gives

n

50) = Zv(ri)lﬁ'[

i=1

o* (R} /(n+1))
v(X;)

] - sign(yi — xT0)x;.

While doing computation, we also assume X;'s are observed values and valued
from spherical distribution. If x;'s are not centered at the origin, a transforma-
tion should be made before applying the following procedure. A transformation
could be like this: x} = (x; — median(x))/Std(x;), where Std(x;) is standard
deviation. After transformation. it is reasonable to use v(z;) = v(x;), where

z; = ||xil|. Now S(@) can be expressed as

i +
0= Y- oy 8 ey 3 SO, (419)

with R} = rank of |y; — x76]. Our estimate 0 is the solution to $(8) =0. The
asymptotic equation for (4.1.5) is

5@ =n / v(x)w(;'(%) . sign(e)xdGo(e)dHo(x) . (4.1.6)

In (4.1.6), taking derivative with respect to 8, we have

95 _n / xxTdGo(e)dHo(x) , (4.1.7)
o9 le|<bv(x)

here the approximation is in the sense of equality except for a finite number of
points of §. Now, let

B = diag dGo(e)} , (4.1.8)
le|<bu(x;)

and



being (n x k) design matrix, then —X 'BX is the method of moments estimate
of (4.1.7).

One-step method was introduced by Bickel (1975) to calculate Huber's M-
estimator in the linear model, and also used by Tableman (1990) to compute
R-estimator. It uses initial estimate 8 to do one iteration according to some
equations. The result, say 8;, is called a one-step estimate. The initial estimator
8, should be consistent for the true parameter 0, and satisfy ||fo —0.|| = ﬂ,(n“%).

Here, one-step method can be developed as following:

0S5(0
=05 ~ (255 oear] ' S(8)

~0 +(X'BX) o=0,5@) , (4.1.9)

where 0 is an initial estimate of true value 0, and satisfies |lfo —0.|| = O,,(n“*).

The covariance matrix of 8, is then given by

V=(X'BX)""(X'MX)(X'BX)™, (4.1.10)
with
M= diag{E,(vz(x;)zbz[;(-%‘-i—qS“‘(B(e))]}. (4.1.11)
The motivation behind this method is expanding S(0) at S(f), i.e.
S(05(00) + (250 Jout (0~ 00),

set 5(6) =0, solve for @ from the above equation and get

aS (0)

0=0 - Jo=a,) "' S(80),

this is (4.1.9). And the asymptotic covariance matrix for 8 is

E[(X'BX)"'S(0)[S@)T(X'BX)™}) = (X'BX)™(X'MX)(X'BX)™.
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Remark: While applying the one-step method, we have to be very careful. If
[|S(8:1)}] is not smaller than ||S(8)|], then a proper multiplier A should be used,
usually A = 0.5, and iteration step (4.1.9) becomes

0, =0, + A(.Y'BX)"I.:.OS(OO) .

In practice, the true value 0, is unknown, so there is no good method to check
|60 — 0.1} = Op(n'i). In this case, we recommend to use iterative method, when

0 is computed, k > 1,
Ocs1 =0k + MX'BX) " |o=n, S@k),

until ||($(@k+1)|] is small. Generally, three to four iterations will give pretty good
results regardless of the starting value. This gives us more confidence to apply
the R-estimnator to real problems.

The main steps to compute R-estimator iteratively,

1. Choose an initial estimate §y,

2. Calculate

i = ||xill,

v(zi) =

St

1

where X;’s are standardized.
3. Compute R} = rank of |y; - x76y),

4, Calculate
Rf +n+1

¢+(_) =75 2An+1)

)

where ® is the normal distribution.
5. Weights computation
L 1f¢"'( ) < bu(zi),
" { O ST P
4



where b is determined by average weights, say 2 YT w; = .95.

6. Compute
" . R
S60) = Y wit* (s

)sign(e;)x;,

=1
7. Let B be a consistent estimate of B, computed by

B=dig{( Y. 1/n)}

lej |<bu(x:)
8. Estimate M by M

1 RT

v(x.-)¢+(n-;1)])}’

M = diag{(}_ vi(xi ¥’
J

9. 6, =0 +(X'BX)"'5(6),

10. V = (X'BX)"\(X'MX)(X'BX)™,

11. If ||S(8)|] € a (“a”" a small number), then stop, else 6 =8, and go to
step 2. a

The program is written in SAS.

4.2. An Example

We use the same mortality data described in Henderson and Velleman (1981)
as in Krasker and Welsch (1982). The original data (McDonald and Ayers 1973)
consist of age-adjusted mortality in 60 United States standard metropolitan sta-
tistical area (the response) and 15 variables measuring socioeconomic, climato-
logical, and air pollution features. After considerable analysis, Henderson and
Velleman settle on four nonpollution explanatory variables (percent nonwhite,
average years of education, population per square mile and precipitation) and
a pollution variable related to sulfur dioxide and oxides of nitrogen. Based on
an analysis of partial regression plots we choose to use as our fifth explanatory
variable just the logarithm of sulfur dioxide potential. We also omit the four
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dummy variables on Lancaster, York, and Miami and New Orleans that they
used. We feel that a good bounded-influence regression method would probably
give less weight to these observations since they appear to be overly influential
in the Henderson-Velleman analysis.

For the above data set, the linear regression model is

MORT =6y + 6, RAIN + 6, EDUC + 63 POPDEN +8,NONW +6sLOGSO; +¢

(4.2.1)
where

MORT = mortality rate,
"RAIN = percipitation,
EDUC = education,
POPDEN = population/mile?,
NONW = % non-white,
LOGSO; = logarithm of SO; potential.

Since the data are not centered at the origin, a transformation is made to stan-
dardize these variables. The transformation is z = (z; - median (z))/std(z),
here z can be any one of MORT, RAIN, EDUC, POPDEN, NONW and
LOGSO0,, median (z) is the median of z for the sample, Std is the deviation of
z for the sample, and z; is the ith observation. Then the iteration program (in
the previous section) is executed based on transformed data.

Two starting values are chosen to run the iteration program. One is the least
squares estimate (hereafter denoted as LS), another is the Wilcoxon rank esti-

mate (denoted by W* hereafter) which can be obtained using the rank-regression
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procedure RREGRESS in Minitab. These two starting values are i.so trans-

formed according to the standardized data, i.e.

! = 0, - Std(RAIN)/Std(MORT),
8, = 6, - Std(EDUC))/Std(MORT),
8, = 65 - Std(POPDEN)/Std(MORT),
6, = 0, - Std(NONW)/Std(MORT),
8. = 65 - Std(LOGSO,)/Std(MORT),
8, = (~Med(MORT) + 8y + 6, - Med(RAIN) + 6, - Med(EDUC)
+0y - Med(POPDEN) + 85 - Med(NONW) + 85 - Med(LOGSO,))/Std(MORT),

here Med and Std stand for the sample median and standard deviation respec-
tively. After we get the final estimate from the iteration program, the reverse
transformation should be used in order to get the 6;’s in the original linear model.

For this example, b = 3.5 yields average weights of .951 —.955 in the following
steps, LS —1,L§ -2, LS -3, W* -1, W* —2 and W* —3. Where LS -1
(2, or 3) stands for 1st (2nd or 3rd) iteration using LS as initial value, and
W* -1 (2, or 3) stands for 1st (2nd or 3rd) iteration using W* as initial value.
Table 1 gives the estimated coefficients and standard errors to compare with
other procedures: Huber (1973) (M-estimator), Krasker and Welsch (KW) (1982)
(Bounded influence M-estimator), and Tableman (1990) (Bounded influence R-
estimator based on Wilcoxon scores). T1 and T3 stand for Tableman’s one-
step and three-step using LS as initial value respectively, and TW*1 stands for

Tableman’s one-step using W* as initial value.
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Table 1

Coefficient estimates

NONW | EDUC | POPDEN | RAIN [ LOGSO, | CONST
LS 335 |-13.206 | .00283 | 1.637 | 13.778 | 930.28
(.59) | (6.97) | (.00376) | ( .62) | (3.82) | (96.15)

Huber | 2.84 |-12.932| .00395 | 1.868 | 14.902 | 915.657
(48) | (5.72) | (.00308) | ( .51) | (3.13) | (78.87)

Kw | 2601 | -13.67 | .00713 201 | 13.611 | 915.229
(67) | (6.12) | (00468) | ( .44) | (4.10) | (80.97)
w* | (293) | 1335 | .0043 1.807 | 146 919.74
(.506) | (5.99) | (.0032) | (.53) | (3.28) | (82.73)

T1 2.88 | -12.427 |  .006 2.16 | 14.534¢ | 891.674
(54) | (6.44) | (.0036) | (.57) | (3.53) | (88.66)

T3 2.905 |-13.918|  .007 2.027 | 13.569 | 913.676 |
| (4946) | (5.01) | (.0033) | (.53) | (3.24) | (81.38)
TW*1 | 2.887 | -13.05 .007 2.045 | 1416 | 902.62
(495) | (5.92) | (.0033) | (.52) | (3.25) | (81.47)
LS-1| 294 | -12.29 0048 1.996 | 14.804 | 900.39
(446) | (5.40) | (.0028) | ( 47) | (2.85) | (80.23)
Ls-2| 28 | -13.03 0057 1.958 | 14.450 | 909.00
(.448) | (5.43) | (0028) | ( 47) | (2.88) | (80.56)
LS-3| 280 | -13.15 0060 1.964 | 14.172 | 910.77
(448) | (5.42) | (.0028) | (.47) | (287) | (79.80)
We-1| 284 | -12.78 .0057 1.055 | 14.497 | 906.34
(448) | (5.42) | (.0028) | (47| (287) | (79.79)
we-2| 280 | -13.14 .0060 1.954 | 14.152 | 910.96
(448) | (542) | (0028) | (47| (287) | (79.80)
w*-3| 279 | -1346 0063 1.945 | 1401 | 914.43
(449) | (542) | (.0028) | (.47) | (287) | (79.85)
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From Table 1, we find that LS estimate is not close to true value, therefore

iterative method is used. A = 0.5 yields quick convergence, let’s observe S(6),

-3.69 -1.36 -0.84

-2.29 -0.69 -0.08

_| 635 _| v | 066
SO0)=| g4y |:5@)=] _g49 |-5C@)=| 57
3.65 0.14 0.43

1.92 -0.12 -0.66

1S(@)|| is decreasing. Coefficient estimates from first three iterations are in Ta-
ble 1. Two-step and three-step give very good estimates with smaller estimated
standard error than other procedures. Although W* is near true value 8., we
don't know if it satisfies |fp —0.|| = Op(n"‘}) or not. So one-step is not enough

to give good estimate. Three steps are done. S(6) from each step is

—-0.49 ~0.47 —-0.18
0.01 -0.42 —0.41
3.54 0.67 0.54
50)=| _9.26 S@) =1 504 5@) = | 405
0.65 -0.48 0.06
2.18 0.68 -0.08

These two procedures (one with initial value = LS and another with initial value
= W*) perform very well, results are almost the same (comparing LS — 3 with
w* =3).

Final weight on obgemtions (cities) where at least one method give a weight
less than 1 are reported in Table 2.

Table 2 shows that our procedure does put less weight on Lancaster, Miami,

New Orleans and York as we expected in the beginning of this example.
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Table 2  Final Weights

Gity method | Huber | KW | T1 | T3 | TW*1|LS—1]| LS 3| W° 1
Albany 54 | 1.00 | 1.00] 1000 100 | 100 | 1.00 | 1.00
Birmingham | 100 | 89 | 67| 68| .70 | 63 | .68 | .68
Buffalo 0 | 99 | 83| 92| 87 | 88 | 96 | .88
Lancaster 41 38 | .18 | .78 .79 1 .71 .
Los Angeles 1.00 {100 | 85 | .87 | .93 92 1.00 1.00
Memphis | 100 | 95 | 13 | 73| 76 | 68 | 13 | .13
Miami 56 | 0 | 50| 50| 50 | 55 | .55 | .58
Nashville 97 | 1.00 | 1.00]1.00| 1.00 | 1.00 | 1.00 | 1.00
New Orleans | 35 | 22 | 49| 50| 50 | 35 | .35 | .35
St. Lows | 1.00 | 1.00|1.00] 90 | 99 | 100 | 100 | 106
San Jose | 1.00 | 1.00 | 85 |1.00| 1.00 | .94 | 1.00 | 1.00
Toledo 85 | 1.00 | 1.00|1.00| 1.00 | 1.00 | 1.00 | 1.00
Washington 8 100} .79 | .73 | .75 1.00 1.00 1.00
York 55 | 19 | 37| 37| 37 | 40 | 35 | .35

4.3 Simulation

In this section, the linear model is
y=pRo+hz+e (4.3.1)

Random observations are generated as following:

. Total number of observations is 40,

. z is distributed as (1—-¢€) N(3,2%)+¢- H, ¢ = 0.05,
where H is any distribution. Then 38 observations are generated from IV (5,2%)
and 2 observations from other distribution H,

. True relation between y and z is y = 1 — z +¢, here error ¢ is distributed as
N(0,1).
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Two situations are considered here. 1) observations include outliers in Y'-space,
2) observations include high leverage points. For the two situations, some esti-
mates react differently.

Comparing Huber's M-estimator (1973) with Bounded influence R-estimator

(BRE) which uses optimal score functions, we have results in Table 3.

Table 3 Simulation result

Case 1 Case 2

est. se | MSE | est s.e | MSE
LS (8)] 0.578 | 0.487 | 0.415 | -2.248 | 0.26 | 10.26
(6,) | -0.748 | 0.089 | 0.072 | -0.250 | 0.04 | 0.564

Huber (8p) | 0.912 | 0.496 | 0.253 | -2.193 | 0.25 | 10.26
(6,) | -0.950 | 0.094 | 0.011 | -0.260 | 0.04 | 0.549

BRE ()| 0.932 | 0.491 | 0.246 | 0.957 | 0.275 | 0.078
(6,) | -0.952 | 0.095 | 0.011 | -0.967 | 0.068 | 0.0046

In Table 3, est. is estimate of (6p,8;) which is obtained by

where 55 and 5} are the estimate on the i** run (letting error ¢ be generated by

different normal seeds). s.c. is calculated by

N

1 -~ 3 s

s.e.(6;) = \l N1 Z(G; -6;2, j=0,1
i=1

And MSE is the mean squared error, given by

MSE(8,) = [s.e.(8;)]* + (85 - 65, §=0.1,

here 8, = (1, -1) is the true value. N =35.
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Case 1: 38 observations of z from N(5,2?), e from N(0,1) and y =1~z +e.
2 observations from z = 5.5, e is N(0,1) and y =10+e. So y is outlier for last
two points. However z is not leverage point.

Case 2: 38 observations of z from N(5,2%), e from V(0,1) and y =1~z +e.
2 observations from £ =18, e is V(0,1) and y = —4 +e. Therefore z is leverage
point for the last two observations. Iterative method is used for both estimators
(Hub#» and BRE).

Conclusion: 1) BRE and Huber’s estimate are reacting very well on Case 1,
they are very close to true value.

2) BRE is also good on Case 2, it gives true value and has small MSE. But
Huber’s estimate is far away from true value.

In Section 4.2, the data set from that example doesn’t have large leverage
points since least squares estimate is not too bad and Huber's estimate is close
to true value, so all those methods in Table 1 have good results. When there are
large leverage points in data set, BRE will give good estimate. Tableman's one-
step estimate is also good provided starting value satisfying ||@p —0.|| = O,,(n"‘}).
However when starting value is not close to true value, Tableman’s one-step

method is not effective, and three-step iteration converges very slowly.

Remark:

1) Since Bounded influence R-estimator is not invariant under linear transfor-
mations, standardized transformation is used before applying iterative program.
‘We require the transformation be robust.

2. How do we choose A in the iterative method? First we can try A =1, if
[1S@+1)]] 2 115(0:)|| then A = 0.5. I ||S(@k+i)l| 2 ||S(0)|| when A = 0.5, then

A = 0.25 and so on. This method will guarantee the convergence of the estimate.
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