
Submitted 20 July 2015
Accepted 28 February 2017
Published 27 March 2017

Corresponding authors
Gregory Burlet, gburlet@ualberta.ca
Abram Hindle,
abram.hindle@ualberta.ca

Academic editor
Eyke Hüllermeier

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.109

Copyright
2017 Burlet and Hindle

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Isolated guitar transcription using a deep
belief network
Gregory Burlet and Abram Hindle
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

ABSTRACT
Music transcription involves the transformation of an audio recording to common
music notation, colloquially referred to as sheet music. Manually transcribing audio
recordings is a difficult and time-consuming process, even for experienced musicians.
In response, several algorithms have been proposed to automatically analyze and
transcribe the notes sounding in an audio recording; however, these algorithms are
often general-purpose, attempting to process any number of instruments producing
any number of notes sounding simultaneously. This paper presents a polyphonic
transcription algorithm that is constrained to processing the audio output of a single
instrument, specifically an acoustic guitar. The transcription system consists of a novel
note pitch estimation algorithm that uses a deep belief network andmulti-label learning
techniques to generate multiple pitch estimates for each analysis frame of the input
audio signal. Using a compiled dataset of synthesized guitar recordings for evaluation,
the algorithm described in this work results in an 11% increase in the f-measure of note
transcriptions relative to Zhou et al.’s (2009) transcription algorithm in the literature.
This paper demonstrates the effectiveness of deep, multi-label learning for the task of
polyphonic transcription.

Subjects Data Mining and Machine Learning, Data Science
Keywords Deep learning, Music information retrieval, Instrument transcription

INTRODUCTION
Music transcription is the process of converting an audio signal into a music score that
informs a musician which notes to perform and how they are to be performed. This is
accomplished through the analysis of the pitch and rhythmic properties of an acoustical
waveform. In the composition or publishing process, manually transcribing each note
of a musical passage to create a music score for other musicians is a labour-intensive
procedure (Hainsworth & Macleod, 2003). Manual transcription is slow and error-prone:
even notationally fluent and experienced musicians make mistakes, require multiple passes
over the audio signal, and draw upon extensive prior knowledge tomake complex decisions
about the resulting transcription (Benetos et al., 2013).

In response to the time-consuming process of manually transcribing music, researchers
in the multidisciplinary field of music information retrieval (MIR) have summoned their
knowledge of computing science, electrical engineering, music theory, mathematics, and
statistics to develop algorithms that aim to automatically transcribe the notes sounding
in an audio recording. Although the automatic transcription of monophonic (one note
sounding at a time) music is considered a solved problem (Benetos et al., 2012), the

How to cite this article Burlet and Hindle (2017), Isolated guitar transcription using a deep belief network. PeerJ Comput. Sci. 3:e109;
DOI 10.7717/peerj-cs.109

https://peerj.com
mailto:gburlet@ualberta.ca
mailto:abram.hindle@ualberta.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.109

7
8

7

0 0

7
8

7
8

0

7
8

7
8

0

7
8

7
8

0

7
8

7

0 0

7
8

7
8

0

7
8

Figure 1 A system of modern guitar tablature for the song ‘‘Weird Fishes’’ by Radiohead, complete
with common western music notation above.

automatic transcription of polyphonic (multiple notes sounding simultaneously) music
‘‘falls clearly behind skilled human musicians in accuracy and flexibility’’ (Klapuri, 2004).
In an effort to reduce the complexity, the transcription problem can be constrained by
limiting the number of notes that sound simultaneously, the genre of music being analyzed,
or the number and type of instruments producing sound. A constrained domain allows the
transcription system to ‘‘exploit the structure’’ (Martin, 1996) by leveraging known priors
on observed distributions, and consequently reduce the difficulty of transcription. This
parallels systems in the more mature field of speech recognition where practical algorithms
are often language, gender, or speaker dependent (Huang, Acero & Hon, 2001).

Automatic guitar transcription is the problem of automatic music transcription with
the constraint that the audio signal being analyzed is produced by a single electric or
acoustic guitar. Though this problem is constrained, a guitar is capable of producing six
notes simultaneously, which still offers a multitude of challenges for modern transcription
algorithms. The most notable challenge is the estimation of the pitches of notes comprising
highly polyphonic chords, occurring when a guitarist strums several strings at once.

Yet another challenge presented to guitar transcription algorithms is that a large body
of guitarists publish and share transcriptions in the form of tablature rather than common
western music notation. Therefore, automatic guitar transcription algorithms should also
be capable of producing tablature. Guitar tablature is a symbolic music notation system
with a six-line staff representing the strings on a guitar. The top line of the system represents
the highest pitched (thinnest diameter) string and the bottom line represents the lowest
pitched (thickest diameter) string. A number on a line denotes the guitar fret that should be
depressed on the respective string. An example of guitar tablature below its corresponding
common western music notation is presented in Fig. 1.

A solution to the problem of isolated instrument transcription has substantial
commercial interest with applications in musical games, instrument learning software,
and music cataloguing. However, these applications seem far out of grasp given that the
MIR research community has collectively reached a plateau in the accuracy of automatic
music transcription systems (Benetos et al., 2012). In a paper addressing this issue,Benetos et
al. (2012) stress the importance of extracting expressive audio features andmoving towards
context-specific transcription systems. Also addressing this issue,Humphrey, Bello & LeCun
(2012) andHumphrey, Bello & LeCun (2013) propose that effort should be focused on audio
features generated by deep architectures including deep belief networks, autoencoders,
convolutional neural networks and other architectures instead of hand-engineered audio

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 2/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

1Timbre refers to several attributes of
an audio signal that allows humans to
attribute a sound to its source and to
differentiate between a trumpet and
a piano, for instance. Timbre is often
referred to as the ‘‘colour’’ of a sound.

features, due to the success of these methods in other fields such as computer vision (Lee
et al., 2009) and speech recognition (Hinton et al., 2012). The aforementioned literature
providesmotivation for applying deep belief networks to the problemof isolated instrument
transcription.

This paper presents a polyphonic transcription system containing a novel pitch
estimation algorithm that addresses two arguable shortcomings in modern pattern
recognition approaches to pitch estimation: first, the task of estimating multiple pitches
sounding simultaneously is often approached using multiple one-versus-all binary
classifiers (Poliner & Ellis, 2007; Nam et al., 2011) in lieu of estimating the presence of
multiple pitches using multinomial regression; second, there exists no standard method
to impose constraints on the polyphony of pitch estimates at any given time. In response
to these points, the pitch estimation algorithm described in this work uses a deep belief
network in conjunction with multi-label learning techniques to produce multiple pitch
estimates for each audio analysis frame.

After estimating the pitch content of the audio signal, existing algorithms in the literature
are used to track the temporal properties (onset time and duration) of each note event and
convert this information to guitar tablature notation.

RELATED WORK
The first polyphonic transcription system for duets imposed constraints on the frequency
range and timbre of the two input instruments as well as the intervals between
simultaneously performed notes (Moorer, 1975).1 This work provoked a significant amount
of research on this topic, which still aims to further the accuracy of transcriptions while
gradually eliminating domain constraints.

In the infancy of the problem, polyphonic transcription algorithms relied heavily on
digital signal processing techniques to uncover the fundamental frequencies present
in an input audio waveform. To this end, several different algorithms have been
proposed: perceptually motivated models that attempt to model human audition (Klapuri,
2005); salience methods, which transform the audio signal to accentuate the underlying
fundamental frequencies (Klapuri, 2006; Zhou et al., 2009); iterative estimation methods,
which iteratively select a predominant fundamental from the frequency spectrum and then
subtract an estimate of its harmonics from the residual spectrum until no fundamental
frequency candidates remain (Klapuri, 2006); and joint estimation, which holistically selects
fundamental frequency candidates that, together, best describe the observed frequency
domain of the input audio signal (Yeh, Roebel & Rodet, 2010).

The MIR research community is gradually adopting a machine-learning-centric
paradigm for many MIR tasks, including polyphonic transcription. Several innovative
applications of machine learning algorithms to the task of polyphonic transcription have
been proposed, including hidden Markov models (HMMs) (Raphael, 2002), non-negative
matrix factorization (Smaragdis & Brown, 2003; Dessein, Cont & Lemaitre, 2010), support
vector machines (Poliner & Ellis, 2007), artificial shallow neural networks (Marolt, 2004)
and recurrent neural networks (Boulanger-Lewandowski, 2014). Although each of these
algorithms operate differently, the underlying principle involves the formation of a model

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 3/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

that seeks to capture the harmonic, and perhaps temporal, structures of notes present
in a set of training audio signals. The trained model then predicts the harmonic and/or
temporal structures of notes present in a set of previously unseen audio signals.

Training a machine learning classifier for note pitch estimation involves extracting
meaningful features from the audio signal that reflect the harmonic structures of notes and
allow discrimination between different pitch classes. The obvious set of features exhibiting
this property is the short-time Fourier transform (STFT), which computes the discrete
Fourier transform (DFT) on a sliding analysis window over the audio signal. However,
somewhat recent advances in the field of deep learning have revealed that artificial neural
networks with many layers of neurons can be efficiently trained (Hinton, Osindero & Teh,
2006) and form a hierarchical, latent representation of the input features (Lee et al., 2009).

Using a deep belief network (DBN) to learn alternate feature representations of DFT
audio features, Nam et al. (2011) exported these audio features and injected them into 88
binary support vector machine classifiers: one for each possible piano pitch. Each classifier
outputs a binary class label denoting whether the pitch is present in a given audio analysis
frame. Using the same experimental set up as Poliner & Ellis (2007) and Nam et al. (2011)
noted that the learned features computed by the DBN yielded significant improvements in
the precision and recall of pitch estimates relative to standard DFT audio features. Sigtia,
Benetos & Dixon (2016) attempted to arrange and join piano notes by trying to generate
‘‘beams’’, continuous notes, all within a DBN. This makes Sigtia et al. work perhaps the
closest work to the algorithm presented here. Sigtia et al. encode note tracking and pitch
estimation into the same neural network.

Some models for chord and pitch estimation attempt to produce the fingering or chords
of a guitar rather than the notes themselves. Barbancho et al. (2012) applied hiddenMarkov
models (HMM) to pre-processed audio of isolated guitar recordings to extract fretboard
fingerings for guitar notes. This HMM fretboard model achieves between 87% and 95%
chord recognition accuracy on solo guitar recordings and is meant to output guitar
fingering rather than just chords. Humphrey & Bello (2014) applied deep convolutional
networks, instead of HMMs, to transcribe guitar chord tablature from audio. The dataset
used was different than Barbancho’s as Humphrey et al. used pop music recordings rather
than isolated guitar recordings. The Humphrey et al. model attempts to output string and
fretboard chord fingerings directly. Thus instead of outputting a series of pitches the model
estimates which strings are strummed and at what point are they pressed on the guitar
fretboard. This model attempts to recover fingering immediately rather than build it or
arrange fingering later. The authors report a frame-wise recognition rate of 77.42%.

After note pitch estimation it is necessary to perform note tracking, which involves the
detection of note onsets and offsets (Benetos & Weyde, 2013). Several techniques have been
proposed in the literature including a multitude of onset estimation algorithms (Bello et
al., 2005; Dixon, 2006), HMM note-duration modelling algorithms (Benetos et al., 2013;
Ryynänen & Klapuri, 2005), and an HMM frame-smoothing algorithm (Poliner & Ellis,
2007). The output of these note tracking algorithms are a sequence of note event estimates,
each having a pitch, onset time, and duration.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 4/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

These note events may then be digitally encoded in a symbolic music notation, such as
tablature notation, for cataloguing or publishing. Arranging tablature is challenging because
the guitar is capable of producing the same pitch in multiple ways. Therefore, a ‘‘good’’
arrangement is one that is biomechanically easy for the musician to perform, such that
transitions between notes do not require excessive hand movement and the performance
of chords require minimal stretching of the hand (Heijink & Meulenbroek, 2002). Solutions
to the problem of tablature arrangement include graph-search algorithms (Radicioni &
Lombardo, 2005; Radisavljevic & Driessen, 2004; Burlet & Fujinaga, 2013), neural networks
(Tuohy & Potter, 2006), and genetic algorithms (Tuohy & Potter, 2005; Burlet, 2013).

DEEP BELIEF NETWORKS
Before introducing the developed pitch estimation algorithm, it is worthwhile to review the
structure and training procedure of a deep belief network. The intent of deep architectures
for machine learning is to form a multi-layered and structured representation of sensory
input with which a classifier or regressor can use to make informed predictions about its
environment (Utgoff & Stracuzzi, 2002).

Recently, Hinton, Osindero & Teh (2006) proposed a specific formulation of a multi-
layered artificial neural network called a deep belief network (DBN), which addresses
the training and performance issues arising when many hidden network layers are used.
A preliminary unsupervised training algorithm aims to set the network weights to good
initial values in a layer-by-layer fashion, followed by a more holistic supervised fine-tuning
algorithm that considers the interaction of weights in different layers with respect to the
desired network output (Hinton, 2007).

Unsupervised pretraining
In order to pretrain the network weights in an unsupervised fashion, it is necessary to think
of the network as a generative model rather than a discriminative model. A generative
model aims to form an internal model of a set of observable data vectors, described using
latent variables; the latent variables then attempt to recreate the observable data vectors
with some degree of accuracy. On the other hand, a discriminative model aims to set the
value of its latent variables, typically used for the task of classification or regression, without
regard for recreating the input data vectors. A discriminative model does not explicitly care
how the observed data was generated, but rather focuses on producing correct values of its
latent variables.

Hinton, Osindero & Teh (2006) proposed that a deep neural network be composed of
several restricted Boltzmann machines (RBMs) stacked on top of each other, such that the
network can be viewed as both a generative model and a discriminative model. An RBM
is an undirected bipartite graph with m visible nodes and n hidden nodes, as depicted in
Fig. 2. Typically, the domain of the visible and hidden nodes are binary such that v∈ {0,1}m

and h∈ {0,1}n, respectively, such that

P(hj = 1|v)=
1

1+e−Wjv
and P(vi= 1|h)=

1

1+e−W
T
i h
, (1)

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

Figure 2 A restricted Boltzmannmachine withm visible nodes and n hidden nodes. Weights on the
undirected edges have been omitted for clarity.

where W ∈ Rn×m is the matrix of weights between the visible and hidden nodes. For
simplicity, Eq. (1) does not include bias nodes for v and h.

Each RBM in the DBN is trained sequentially from the bottom up, such that the hidden
nodes of the previous RBM are input to the subsequent RBM as an observable data vector.
The unsupervised training of a single RBM involves iteratively modifying themodel weights
according to a learning signal that measures how well the generative model reflects reality.
More specifically, the objective of the generative model is to maximize the log likelihood of
the training data vectors by calculating the gradient of this objective function with respect
to each edge weight.

Supervised fine-tuning
The unsupervised pretraining of the stacked RBMs is a relatively efficient method that sets
good initial values for the network weights. Moreover, in the case of a supervised learning
task such as classification or regression, the ground-truth labels for each training data
vector have not yet been considered. The supervised fine-tuning step of the DBN addresses
these issues.

One method of supervised fine-tuning is to add a layer of output nodes to the network
for the purposes of (logistic) regression and to perform standard back-propagation as if
the DBN was a multi-layered neural network (Bengio, 2009). Rather than creating features
from scratch, this fine-tuning method is responsible for modifying the latent features in
order to adjust the class boundaries (Hinton, 2007).

After fine-tuning the network, a feature vector can be fed forward through the network
and a result realized at the output layer. In the context of pitch estimation, the feature
vector represents the frequency content of an audio analysis frame and the output layer of
the network is responsible for classifying the pitches that are present.

ISOLATED INSTRUMENT TRANSCRIPTION
The workflow of the proposed polyphonic transcription algorithm is presented in Fig. 3.
The algorithm consists of an audio signal preprocessing step, followed by a novel DBN
pitch estimation algorithm. The note-tracking component of the polyphonic transcription
algorithm uses a combination of the existing frame-smoothing algorithm developed by

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 6/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

Figure 3 Workflow of the proposed polyphonic transcription algorithm, which converts the recording
of a single instrument to a sequence of MIDI note events that are then translated to tablature notation.

Poliner & Ellis (2007) and the existing spectral flux onset estimation algorithm described
by Dixon (2006) to produce a MIDI file. MIDI is a binary file format composed of tracks
holding a sequence of note events, which each have an integer pitch from 0 to 127, a velocity
value indicating the intensity of a note, and a tick number indicating when the note event
occurs. This sequence of note events is then translated to guitar tablature notation using
the graph-search algorithm developed by Burlet & Fujinaga (2013).

Audio signal preprocessing
The input audio signal is first preprocessed before feature extraction. If the audio signal is
stereo, the channels are averaged to produce a mono audio signal. Then the audio signal
is decimated to lower the sampling rate fs by an integer multiple, k ∈N+. Decimation
involves low-pass filtering with a cut-off frequency of fs/2k Hz to mitigate against aliasing,
followed by selecting every kth sample from the original signal.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 7/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

Figure 4 Structure of the deep belief network for note pitch estimation. Edge weights are omitted for
clarity.

Note pitch estimation
The structure of the DBN pitch estimation algorithm is presented in Fig. 4. The algorithm
extracts features from an analysis window that slides over the audio waveform. The audio
features are subsequently fed forward through the deep network, resulting in an array of
posterior probabilities used for pitch and polyphony estimation.

First, features are extracted from the input audio signal. The power spectrum of each
audio analysis frame is calculated using a Hamming window of size w samples and a hop
size of h samples. The power spectrum is calculated by squaring the magnitude of each

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 8/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

frequency component of the DFT. Since the power spectrum is mirrored about the Nyquist
frequency when processing an audio signal, half of the spectrum is retained, resulting in
m=bw/2c+1 features. The result is a matrix of normalized audio features 8∈ [0,1]n×m,
such that n is the number of analysis frames spanning the input signal.

The DBN consumes these normalized audio features; hence, the input layer consists
of m nodes. There can be any number of stochastic binary hidden layers, each consisting
of any number of nodes. The output layer of the network consists of k+p nodes, where
the first k nodes are allocated for pitch estimation and the final p nodes are allocated for
polyphony estimation. The network uses a sigmoid activation as the non-linear transfer
function.

The feature vectors8 are fed forward through the network with parameters2, resulting
in a matrix of probabilities P(Ŷ |8,2)∈ [0,1]k+p that is then split into a matrix of pitch
probabilities P(Ŷ (pitch)

|8,2) and polyphony probabilities P(Ŷ (poly)
|8,2). The polyphony

of the ith analysis frame is estimated by selecting the polyphony class with the highest
probability using the equation

ρi= argmax j
(
P(Ŷ (poly)

ij |8i,2)
)
. (2)

Pitch estimation is performed using a multi-label learning technique similar to the
MetaLabeler system (Tang, Rajan & Narayanan, 2009), which trains a multi-class classifier
for label cardinality estimation using the output values of the original label classifier
as features. Instead of using the matrix of pitch probabilities as features for a separate
polyphony classifier, increased recall was noted by training the polyphony classifier
alongside the pitch classifier using the original audio features. Formally, the pitches
sounding in the ith analysis frame are estimated by selecting the indices of the ρi highest
pitch probabilities produced by the DBN. With these estimates, the corresponding vector
of pitch probabilities is converted to a binary vector Ŷ (pitch)

i ∈ {0,1}k by turning on bits that
correspond to the ρi highest pitch probabilities.

For training and testing the algorithm, a set of pitch and polyphony labels are calculated
for each audio analysis frame using an accompanying ground-truth MIDI file. A matrix
of pitch annotations Y (pitch)

∈ {0,1}n×k , where k is the number of considered pitches, is
computed such that an enabled bit indicates the presence of a pitch. A matrix of polyphony
annotations Y (poly)

∈ {0,1}n×p, where p is the maximum frame-wise polyphony, is also
computed such that a row is a one-hot binary vector in which the enabled bit indicates the
polyphony of the frame. These matrices are horizontally concatenated to form the final
matrix Y ∈ {0,1}n×(k+p) of training and testing labels.

The deep belief network is trained using a modified version of the greedy layer-wise
algorithm described by Hinton, Osindero & Teh (2006). Pretraining is performed by
stacking a series of restricted Boltzmann machines and sequentially training each in
an unsupervised manner using 1-step contrastive divergence (Bengio, 2009). Instead
of using the ‘‘up-down’’ fine-tuning algorithm proposed by Hinton, Osindero & Teh
(2006), the layer of output nodes are treated as a set of logistic regressors and standard
backpropagation is conducted on the network. Rather than creating features from scratch,

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 9/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

this fine-tuning method is responsible for modifying the latent features in order to adjust
the class boundaries (Hinton, 2007).

The canonical error function to be minimized for a set of separate pitch and polyphony
binary classifications is the cross-entropy error function, which forms the training signal
used for backpropagation:

E(2)=−
n∑

i=1

k+p∑
j=1

Yij lnP(Ŷij |8i,2)+ (1−Yij)ln(1−P(Ŷij |8i,2)). (3)

The aim of this objective function is to adjust the network weights 2 to pull output node
probabilities closer to one for ground-truth label bits that are on and pull probabilities
closer to zero for bits that are off.

The described pitch estimation algorithm was implemented using the Theano numerical
computation library for Python (Bergstra et al., 2010). Computations for network training
and testing are parallelized on the graphics processing unit (GPU). Feature extraction and
audio signal preprocessing is performed using Marsyas, a software framework for audio
signal processing and analysis (Tzanetakis & Cook, 2000).

Note tracking
Although frame-level pitch estimates are essential for transcription, converting these
estimates into note events with an onset and duration is not a trivial task. The purpose of
note tracking is to process these pitch estimates and determine when a note onsets and
offsets.

Frame-level smoothing
The frame-smoothing algorithm developed by Poliner & Ellis (2007) is used to postprocess
theDBNpitch estimates Ŷ (pitch) for an input audio signal. The algorithmallows a frame-level
pitch estimate to be contextualized amongst its neighbours instead of solely trusting the
independent estimates made by a classification algorithm.

Formally, the frame-smoothing algorithm operates by training an HMM for each pitch.
Each HMM consists of two hidden states: ON and OFF. The transition probabilities are
computed by observing the frequency with which a pitch transitions between and within
the ON and OFF states across analysis frames. The emission distribution is a Bernoulli
distribution that models the certainty of each frame-level estimate and is represented using
the pitch probabilities P(Ŷ (pitch)

|8,2). The output of the Viterbi algorithm, which searches
for the optimal underlying state sequence, is a revised binary vector of activation estimates
for a single pitch. Concatenating the results of each HMM results in a revised matrix of
pitch estimates Ŷ (pitch).

Onset quantization
If the HMM frame-smoothing algorithm claims a pitch arises within an analysis frame,
it could onset at any time within the window. Arbitrarily setting the note onset time to
occur at the beginning of the window often results in ‘‘choppy’’ sounding transcriptions.
In response, the onset detection algorithm that uses spectral flux measurements between
analysis frames (Dixon, 2006) is run at a finer time resolution to pinpoint the exact note

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 10/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

0 1 2 3 4
Tim e (s)

0

500

1000

1500

2000

Fr
e

q
u

e
n

cy
 (

H
z)

Spect rogram

0 1 2 3 4
Tim e (s)

36

48

61

73

86

M
ID

I
N

o
te

 N
u

m
b

e
r

DBN Pitch Probabilit ies

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pi
tc

h
 P

ro
b

a
b

ili
ty

0 1 2 3 4
Tim e (s)

36

48

61

73

86

M
ID

I
N

o
te

 N
u

m
b

e
r

Note Tracking

O
FF

O
N

Figure 5 An overview of the transcription workflow on a four-second segment of a synthesized guitar
recording.

onset time. The onset detection algorithm is run on the original, undecimated audio signal
with a window size of 2,048 samples and a hop size of 512 samples. When writing the note
event estimates as a MIDI file, the onset times calculated by this algorithm are used. The
offset time is calculated by following the pitch estimate across consecutive analysis frames
until it transitions from ON to OFF, at which point the time stamp of the end of this analysis
frame is used. Note events spanning less than two audio analysis frames are removed from
the transcription to mitigate against spurious notes.

Output of the polyphonic transcription algorithm at each stage—from feature extraction
to DBN pitch estimation to frame smoothing and quantization (note tracking)—is
displayed in Fig. 5 for a four-second segment of a synthesized guitar recording. The
pitch probabilities output by the DBN show that the classifier is quite certain about its
estimates; there are few grey areas indicating indecision.

Music notation arrangement
The MIDI file output by the algorithm thus far contains the note event (pitch, onset,
and duration) transcriptions of an audio recording. However, a MIDI file lacks certain
information necessary to write sheet music in common western music notation such as
time signature, key signature, clef type, and the value (duration) of each note described in
divisions of a whole note.

There are several robust opensource programs that derive this missing information
from a MIDI file using logic and heuristics in order to generate common western
music notation that is digitally encoded in the MusicXML file format. MusicXML is a
standardized extensible markup language (XML) definition allowing digital symbolic
music notation to be universally encoded and parsed by music applications. In this work,
the command line tools shipped with the opensource application MuseScore are used to
convert MIDI to common western music notation encoded in the MusicXML file format
(http://musescore.org).

The graph-based guitar tablature arrangement algorithmdeveloped byBurlet & Fujinaga
(2013) is used to append a guitar string and fret combination to each note event encoded
in a MusicXML transcription file. The guitar tablature arrangement algorithm operates
by using Dijkstra’s algorithm to search for the shortest path through a directed weighted
graph, in which the vertices represent candidate string and fret combinations for a note or
chord, as displayed in Fig. 6.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 11/30

https://peerj.com
http://musescore.org
http://dx.doi.org/10.7717/peerj-cs.109

Figure 6 A directed acyclic graph of string and fret candidates for a note and chord followed by two
more notes.Weights have been omitted for clarity. The notation for each node is (string number, fret
number).

The edge weights between nodes in the graph indicate the biomechanical difficulty of
transitioning between fretting-hand positions. Three biomechanical complexity factors are
aggregated to form each edge weight: the fret-wise distance required to transition between
notes or chords, the fret-wise finger span required to perform chords, and a penalty of
one if the fretting hand surpasses the seventh fret. The value of this penalty and fret
threshold number were determined through subjective analysis of the resulting tablature
arrangements. In the event that a note is followed by a chord, the fret-wise distance is
calculated by the expression∣∣∣∣f −max(g)−min(g)

2

∣∣∣∣, (4)

such that f ∈N is the fret number used to perform the note and g is a vector of fret
numbers used to perform each note in the chord. For more detailed information regarding
the formulation of this graph, please refer to the conference proceeding ofBurlet & Fujinaga
(2013) or thesis of Burlet (2013).

Note pitch estimation metrics
Given the pitch estimates output by the DBN pitch estimation algorithm for n audio
analysis frames, Ŷ (pitch)

∈ {0,1}n×k , and the corresponding ground-truth pitch label matrix
for the corresponding audio analysis frames, Y (pitch)

∈ {0,1}n×k , the following metrics can
be computed:

Precision:

p=
1(Ŷ (pitch)&Y (pitch))1

1Ŷ (pitch)1
, (5)

such that the logical operator & denotes the element-wise AND of two binary matrices and
1 indicates a vector of ones. In other words, this equation calculates the number of correct

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 12/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

pitch estimates divided by the number of pitches the algorithm predicts are present across
the audio analysis frames.

Recall:

r =
1(Ŷ (pitch)&Y (pitch))1

1Y (pitch)1
, (6)

such that the logical operator & denotes the element-wise AND of two binary matrices and
1 indicates a vector of ones. In other words, this equation calculates the number of correct
pitch estimates divided by the number of ground-truth pitches that are active across the
audio analysis frames.

f-measure:

f =
2pr
p+ r

, (7)

such that p and r is the precision and recall calculated using Eqs. (5) and (6), respectively.
The f -measure calculated in Eq. (7) is the balanced f -score, which is the harmonic mean
of precision and recall. In other words, precision and recall are weighted evenly.

Polyphony recall:

rpoly=
∑n

i=11{(Ŷ (pitch)1)i= (Y (pitch)1)i}
n

, (8)

such that 1{·} is an indicator function that returns 1 if the predicate is true, and n is the
number of audio analysis frames being evaluated. In other words, this equation calculates
the number of correct polyphony estimates across all audio analysis frames divided by the
number of analysis frames.

One error: given the matrix of pitch probabilities P(Ŷ (pitch)
|8,2)∈ [0,1]n×k output by the

DBN with model parameters 2 when processing the input audio analysis frame features
8, the predominant pitch of the ith audio analysis frame is calculated using the equation

j = argmax j
[
P(Ŷ (pitch)

ij |8i,2)
]
, (9)

which can then be used to calculate the one error:

one err =

∑n
i=11{Y (pitch)

ij 6= 1}

n
, (10)

such that 1{·} is an indicator function that maps to 1 if the predicate is true. The one error
calculates the fraction of analysis frames in which the top-ranked label is not present in the
ground-truth label set. In the context of pitch estimation, this metric provides insight into
the number of audio analysis frames where the predominant pitch—often referred to as
the melody—is estimated incorrectly.

Hamming loss:

hamming loss=
1(Ŷ (pitch)

⊕Y (pitch))1
nk

, (11)

such that n is the number of audio analysis frames, k is the cardinality of the label set for
each analysis frame, and the boolean operator ⊕ denotes the element-wise XOR of two
binary matrices. The hamming loss provides insight into the number of false positive and
false negative pitch estimates across the audio analysis frames.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 13/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

Polyphonic transcription metrics
Several information retrieval metrics are also used to evaluate the note event estimates
produced by the polyphonic transcription algorithm described in the previous chapter,
which consists of a note pitch estimation algorithm followed by a note temporal estimation
algorithm. Given an input audio recording, the polyphonic transcription algorithm outputs
a set of note event estimates in the form of a MIDI file. A corresponding ground-truth
MIDI file contains the set of true note events for the audio recording. Each note event
contains three pieces of information: pitch, onset time, and offset time.

The music information retrieval evaluation exchange (MIREX), an annual evaluation
of MIR algorithms, has a multiple fundamental frequency estimation and note tracking
category in which polyphonic transcription algorithms are evaluated. The MIREX metrics
used to evaluate polyphonic transcription algorithms are:
Precision:

p=
|N̂ ∩N |
|N̂ |

, (12)

such that N̂ is the set of estimated note events andN is the set of ground-truth note events.

Recall:

r =
|N̂ ∩N |
|N |

, (13)

such that N̂ is the set of estimated note events andN is the set of ground-truth note events.

f-measure:

f =
2pr
p+ r

, (14)

such that p and r are calculated using Eqs. (12) and (13), respectively.
The criteria for a note event being correct, as compared to a ground-truth note event,

are as follows:

• The pitch name and octave number of the note event estimate and ground-truth note
event must be equivalent.
• The note event estimate’s onset time is within±250 ms of the ground-truth note event’s
onset time.
• Only one ground-truth note event can be associated with each note event estimate.

The offset time of a note event is not considered in the evaluation process because
offset times exhibit less perceptual importance than note onset times Costantini, Perfetti &
Todisco (2009).

Each of these evaluation metrics can also be calculated under the condition that octave
errors are ignored. Octave errors occur when the algorithm predicts the correct pitch name
but incorrectly predicts the octave number. Octave errors are prevalent in digital signal
processing fundamental frequency estimation algorithms because high-energy harmonics
can be misconstrued as a fundamental frequency, resulting in an incorrect estimate of the
octave numberMaher & Beauchamp (1994). Reporting the evaluation metrics described in

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 14/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

this section under the condition that octave errors are ignored will reveal whether machine
learning transcription algorithms also succumb to a high number of octave errors.

EXPERIMENTAL METHOD AND EVALUATION
The polyphonic transcription algorithm described in this paper is evaluated on a new
dataset of synthesized guitar recordings. Before processing these guitar recordings, the
number of pitches k and maximum polyphony p of the instrument must first be calculated
in order to construct the DBN. Knowing that the input instrument is a guitar with six
strings, the pitch estimation algorithm considers the k = 51 pitches from C2–D6, which
spans the lowest note capable of being produced by a guitar inDrop C tuning to the highest
note capable of being produced by a 22-fret guitar in Standard tuning. Though a guitar
with six strings is only capable of producing six notes simultaneously, a chord transition
may occur within a frame and so the maximum polyphony may increase above this bound.
This is a technical side effect of a sliding-window analysis of the audio signal. Therefore, the
maximum frame-wise polyphony is calculated from the training dataset using the equation

p=max
i

((
Y (pitch)1

)
i

)
+1, (15)

where 1 is a vector of ones. The addition of one to the maximum polyphony is to
accommodate silence where no pitches sound in an analysis frame.

The experiments outlined in this section will evaluate the accuracy of pitch estimates
output by the DBN across each audio analysis frame as well as the accuracy of note events
output by the entire polyphonic transcription algorithm. A formal evaluation of the guitar
tablature arrangement algorithm used in this work has already been conducted (Burlet &
Fujinaga, 2013).

Ground-truth dataset
Ideally, the note pitch estimation algorithm proposed in this work should be trained and
tested using recordings of acoustic or electric guitars that are subsequently hand-annotated
with the note events being performed. In practice, however, it would be expensive to fund
the compilation of such a dataset and there is a risk of annotation error. Unlike polyphonic
piano transcription datasets that are often created using a mechanically controlled piano,
such as a Yamaha Disklavier, to generate acoustic recordings that are time aligned with
note events in a MIDI file, mechanized guitars are not widely available. Therefore, the
most feasible course of action for compiling a polyphonic guitar transcription dataset is to
synthesize a set of ground-truth note events using an acoustic model of a guitar.

Using the methodology proposed by Burlet & Fujinaga (2013), a ground-truth dataset
of 45 synthesized acoustic guitar recordings paired with MIDI note-event annotations
was compiled. The dataset was created by harvesting the abundance of crowdsourced
guitar transcriptions uploaded to http://www.ultimate-guitar.com as tablature files that
are manipulated by the Guitar Pro desktop application (http://www.guitar-pro.com). The
transcriptions in the ground-truth dataset were selected by searching for the keyword
‘‘acoustic’’, filtering results to those that have been rated by the community as 5 out of 5
stars, and selecting those that received the most numbers of ratings and views. The dataset

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 15/30

https://peerj.com
http://www.ultimate-guitar.com
http://www.guitar-pro.com
http://dx.doi.org/10.7717/peerj-cs.109

30 40 50 60 70 80 90

MIDI Note Number

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m
b
e
r
o
f
In
s
t
a
n
c
e
s

Figure 7 Distribution of note pitches in the ground-truth dataset.

consists of songs by artists ranging from The Beatles, Eric Clapton, and Neil Young to Led
Zeppelin, Metallica, and Radiohead.

Each Guitar Pro file was manually preprocessed to remove extraneous instrument tracks
other than guitar, remove repeated bars, trim recurring musical passages, and remove note
ornamentations such as dead notes, palm muting, harmonics, pitch bends, and vibrato.
The guitar models for note synthesis were set to the Martin & Co. acoustic guitar with steel
strings, nylon strings, and an electric guitarmodel. Finally, eachGuitar Pro file is synthesized
as a WAV file and also exported as a MIDI file, which captures the note events occurring
in the guitar track. The MIDI files in the ground-truth dataset are publicly available on
archive.org (https://archive.org/details/DeepLearningIsolatedGuitarTranscriptions). The
amount of time required to manually preprocess a Guitar Pro tablature transcription and
convert it into the necessary data format ranges from 30 min to 2.5 h, depending on the
complexity of the musical passage.

In total the dataset consists of approximately 104 min of audio, an average tempo of 101
beats per minute, 44,436 notes, and an average polyphony of 2.34. The average polyphony
is calculated by dividing the number of note events by the number of chords plus the
number of individual notes. The distribution of note pitches in the dataset is displayed in
Fig. 7.

Algorithm parameter selection
Before training and evaluating the described polyphonic transcription algorithm on the
ground-truth dataset, several preliminary experiments were conducted to select reasonable
parameters for the algorithm. Eachpreliminary experiment involved the following variables:
audio sampling rate (Hz), window size (samples), sliding window hop size (samples),
number of network hidden layers, number of nodes per hidden layer, and input features:
the power spectrum. Each preliminary experiment selected one independent variable,
while the other variables remained controlled. The dependent variable was the standard

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 16/30

https://peerj.com
http://archive.org
https://archive.org/details/DeepLearningIsolatedGuitarTranscriptions
http://dx.doi.org/10.7717/peerj-cs.109

information retrieval metric of f -measure, which gauges the accuracy of the pitch estimates
produced by the DBN over all audio analysis frames. For these preliminary experiments,
the ground-truth dataset was partitioned into two sets, such that roughly 80% of the guitar
recordings are allocated for training and 20% are allocated for model validation. The split
is done at the song level, so a song exists solely in the training set or the validation set. Only
the steel string guitar model was used in these preliminary experiments.

The results of the preliminary experiments with the proposed transcription system
revealed that a sampling rate of 22,050 Hz, a window size of 1,024 samples, a hop size of
768 samples, a network structure of 400 nodes in the first hidden layer followed by 300
nodes in the penultimate layer, and power spectrum input features yielded optimal results.
For network pretraining, 400 epochs were conducted with a learning rate of 0.05 using
1-step contrastive divergence with a batch size of 1,000 training instances. For network
fine-tuning, 30,000 epochs were conducted with a learning rate of 0.05 and a batch size
of 1,000 training instances. The convergence threshold, which ceases training if the value
of the objective function between epochs does not fluctuate more than the threshold, is
set to 1E−18 for both pretraining and fine-tuning. These algorithm parameters are used
in the experiments detailed in the following sections. The experiments conducted in this
paper were run on a machine with an Intel R© CoreTM i7 3.07 GHz quad core CPU, 24 GB
of RAM, and an Nvidia GeForce GTX 970 GPU with 1664 CUDA cores. For more details
regarding these preliminary experiments, consult the thesis of Burlet (2015).

Frame-level pitch estimation evaluation
Five-fold cross validation is used to split the songs in the compiled ground-truth dataset
into five sets of training and testing partitions. For each fold, the transcription algorithm
is trained using the parameters detailed in the previous section. After training, the frame-
level pitch estimates computed by the DBN are evaluated for each fold using the following
standard multi-label learning metrics (Zhang & Zhou, 2014): precision (p), recall (r),
f -measure (f), one error, and hamming loss. The precision calculates the number of
correct pitch estimates divided by the number of pitches the algorithm predicts are present
across the audio analysis frames. The recall calculates the number of correct pitch estimates
divided by the number of ground-truth pitches that are active across the audio analysis
frames. The f -measure refers to the balanced f -score, which is the harmonic mean of
precision and recall. The one error provides insight into the number of audio analysis
frames where the predominant pitch is estimated incorrectly. The hamming loss provides
insight into the number of false positive and false negative pitch estimates across the audio
analysis frames. In addition, the frame-level polyphony recall (rpoly) is calculated to evaluate
the accuracy of polyphony estimates made by the DBN.

Using the ground-truth dataset, pretraining the DBN took an average of 172 min while
fine-tuning took an average of 246 min across each fold. After training, the network
weights are saved so that they can be reused for future transcriptions. The DBN took an
average of 0.26 s across each fold to yield pitch estimates for the songs in the test partitions.
The results of the DBN pitch estimation algorithm are averaged across the 5 folds and
presented in Table 1 on multiple Guitar models. After HMM frame smoothing the results

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 17/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

Table 1 Five-fold cross validation results of the frame-level pitch estimation evaluationmetrics on
acoustic guitar with steel strings: rpoly denotes the polyphony recall, p denotes precision, r denotes re-
call, and f denotes f -measure.

rpoly p r f On error Hamming loss

Before HMM 0.55 0.73 0.70 0.71 0.13 0.03
After HMM 0.55 0.81 0.74 0.77 0.13 0.02

substantially improve with a precision of 0.81, a recall of 0.74, and an f -measure of 0.77.
Figure 5 provides visual evidence of the positive impact of HMM frame smoothing on the
frame-level DBN pitch estimates, showing the removal of several spurious note events.

The results reveal that the 55% polyphony estimation accuracy likely hinders the frame-
level f -measure of the pitch estimation algorithm. Investigating further, when using the
ground-truth polyphony for each audio analysis frame, an f -measure of 0.76 is noted before
HMM smoothing. The 5% increase in f -measure reveals that the polyphony estimates are
close to their ground-truth value. With respect to the one error, the results reveal that the
DBN’s belief of the predominant pitch—the label with the highest probability—is incorrect
in only 13% of the analysis frames.

Note event evaluation
Although evaluating the pitch estimates made by the algorithm for each audio analysis
frame provides vital insight into the performance of the algorithm, we can continue with
an evaluation of the final note events output by the algorithm. After HMM smoothing the
frame-level pitch estimates computed by the DBN, onset quantization is performed and a
MIDI file, which encodes the pitch, onset time, and duration of note events, is written. An
evaluation procedure similar to the MIREX note tracking task, a yearly competition that
evaluates polyphonic transcription algorithms developed by different research institutions
on the same dataset, is conducted using the metrics of precision, recall, and f -measure
(http://www.music-ir.org/mirex). Relative to a ground-truth note event, an estimate is
considered correct if its onset time is within 250 ms and its pitch is equivalent. The
accuracy of note offset times are not considered because offset times exhibit less perceptual
importance than note onset times (Costantini, Perfetti & Todisco, 2009). A ground-truth
note event can only be associated with a single note event estimate Given the long decay
of a guitar note we relied on the MIDI transcription as ground-truth and the threshold
to determine when a note had ended. Non-pitched transitions between notes and chords
were not explicitly addressed, and would depend on the song and the transcription quality.

These metrics of precision, recall, and f -measure are calculated on the test partition
within each of the 5 folds used for cross validation. Table 2 presents the results of the
polyphonic transcription algorithm averaged across each fold. The result of this evaluation
is an average f -measure of 0.67 when considering note octave errors and an average
f -measure of 0.69 when disregarding note octave errors. Octave errors occur when
the algorithm predicts the correct note pitch name but incorrectly predicts the note
octave number. An approximately 2% increase in f -measure when disregarding octave
errors provides evidence that the transcription algorithm does not often mislabel the

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 18/30

https://peerj.com
http://www.music-ir.org/mirex
http://dx.doi.org/10.7717/peerj-cs.109

Table 2 Five-fold cross validation results of the precision, recall, and f -measure evaluation of note
events transcribed using the DBN transcription algorithm compared to the Zhou et al. (2009) tran-
scription algorithm. The first row includes octave errors while the second row excludes octave errors.
Audio was generated from GuitarPro acoustic guitar with steel strings model.

Precision Recall f -measure Runtime (s)

; DBN Transcription
;Octave errors 0.81 0.60 0.67 48.33
;No octave errors 0.84 0.63 0.69 –

; Zhou et al. (2009)
;Octave errors 0.70 0.50 0.56 293.52
;No octave errors 0.78 0.56 0.62 –

octave number of note events, which is often a problem with digital signal processing
transcription algorithms (Maher & Beauchamp, 1994). Note that the frame-level pitch
estimation f -measure of 0.77, presented in Table 1, does not translate to an equivalently
high f -measure for note events because onset time is considered in the evaluation criteria
as well as pitch.

Another interesting property of the transcription algorithm is its conservativeness: the
precision of the note events transcribed by the algorithm is 0.81 while the recall is 0.60,
meaning that the algorithm favours false negatives over false positives. In other words, the
transcription algorithm includes a note event in the final transcription only if it is quite
certain of the note’s correctness, even if this hinders the recall of the algorithm. Another
cause of the high precision and low recall is that when several guitar strums occur quickly
in succession, the implemented transcription algorithm often transcribes only the first
chord and prescribes it a long duration. This is likely a result of the temporally ‘‘coarse’’
window size of 1,024 samples or a product of the HMM frame-smoothing algorithm,
which may extend the length of notes causing them to ‘‘bleed’’ into each other. A remedy
for this issue is to lower the window size to increase temporal resolution; however, this
has an undesirable side-effect of lowering the frequency resolution of the DFT which is
undesirable. A subjective, aural analysis of the guitar transcriptions reflects these results:
the predominant pitches and temporal structures of notes occurring in the input guitar
recordings are more or less maintained.

Additionally, the guitar recordings in the test set of each fold are transcribed by a digital
signal processing polyphonic transcription algorithm developed by Zhou et al. (2009),
which was evaluated in the 2008 MIREX and received an f -measure of 0.76 on a dataset
of 30 synthesized and real piano recordings (Zhou & Reiss, 2008). The Zhou et al. (2009)
polyphonic transcription algorithm processes audio signals at a sampling rate of 44,100
Hz. A window size of 441 samples and a hop size of 441 samples is set by the authors for
optimal transcription performance (Zhou & Reiss, 2008).

The transcription algorithm described in this paper resulted in an 11% increase, or a
20% relative increase, in f -measure compared to the transcription algorithm developed
by Zhou et al. (2009) when evaluated on the same dataset, and further, performed these
transcriptions in a sixth of the time. This result emphasizes a useful property of neural

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 19/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

Table 3 Five-fold cross validation results of the frame-level pitch estimation evaluationmetrics: p
denotes precision, r denotes recall, and f denotes f -measure. Synthesis models are from Guitar Pro:
acoustic guitar with steel, acoustic guitar with nylon, and clean electric guitar.

p r f Zhou p Zhou r Zhou f

Steel on Steel 0.80 0.59 0.66 0.71 0.50 0.56
Nylon on Nylon 0.77 0.65 0.69 0.80 0.61 0.67
Electric on Electric 0.80 0.64 0.69 0.74 0.54 0.60
Steel on Nylon 0.76 0.62 0.67 0.72 0.53 0.59
Steel on Electric 0.80 0.62 0.68 0.72 0.53 0.59
Nylon on Steel 0.81 0.64 0.70 0.80 0.61 0.67
Nylon on Electric 0.80 0.63 0.70 0.80 0.61 0.67
Electric on Steel 0.81 0.64 0.70 0.74 0.54 0.60
Electric on Nylon 0.78 0.66 0.70 0.74 0.54 0.60
Steel on Nylon & Electric 0.64 0.54 0.57 0.74 0.53 0.60
Nylon on Steel & Electric 0.80 0.65 0.70 0.80 0.61 0.67
Electric on Steel & Nylon 0.77 0.64 0.68 0.74 0.54 0.60

networks: after training, feeding the features forward through the network is accomplished
in a small amount of time.

With a precision of 0.70 and a recall of 0.50 when considering octave errors, the Zhou
et al. (2009) transcription algorithm also exhibits a significantly higher precision than
recall; in this way, it is similar to the transcription algorithm described in this paper. When
disregarding octave errors, the f -measure of the Zhou et al. (2009) transcription algorithm
increases by approximately 6%. Therefore, this signal processing transcription algorithm
makes three times the number of note octave errors as the transcription algorithmdescribed
in this paper.

Multiple guitar model evaluation
This section explores the effect on performance of training and testing on different
synthesized guitar models. Table 3 depicts different test sets and different training sets.
Steel on Steel means that steel-string acoustic guitar audio is tested on a steel-string acoustic
guitar-trained DBN. Electric on Nylon is electric guitar audio tested against a DBN trained
on a nylon-stringed acoustic guitar model. Electric on Steel and Nylon is an electric guitar
tested on a DBN trained against both acoustic with steel string and acoustic with nylon
string models. The results shown are averages from five-fold cross validation splitting on
songs: per each fold songs used for evaluation were not in the training set.

In every single case, except one, the f -measure of the DBNmodel outperforms the Zhou
model, except in the case of Steel on Nylon & Electric. The difference for the steel samples
likely come from its timbral properties and its distinctiveness fromNylon or Electric, which
have similar timbres. One way to perhaps fix this difference is to spectral flatten the signal
(whitening), as suggested by Klapuri (2006), before transcription or training. Regardless,
the f -measure difference between the DBN model and the Zhou model is—0.03–0.10
with a mean difference in f -measure of 0.056, and a 95% confidence interval of 0.02–0.09
in f -measure difference. Wilcoxon rank sum test reports a p-value of 0.003, indicating

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 20/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

a statistically significant difference in performance between Zhou f -measure and DBN
f -measure.

Mixed networks, those trained on two guitar models seem to perform as well as models
trained on one guitar model, with the exception of the Nylon & Electric network tested
against Steel samples.

Surprisingly the performance of foreign samples on a network was not a large loss for
the DBN models. The range of difference in f -measure was between −0.09 and 0.02 with
a median of 0.01 and a mean of −0.002 with no significant difference in performance
between the classification performance of the differently trained networks—although this
could change given even more datasets.

Number of network hidden layers
This section explores the effect of changing the network architecture in terms of the number
of fully connected hidden layers.
Hypothesis: Increasing the number of hidden layers in the DBN will increase pitch
estimation f -measure.

Rationale:Hinton, Osindero & Teh (2006) also noted that increasing the number of network
layers is guaranteed to improve a lower bound on the log likelihood of the training data. In
other words, the worst-case performance of the DBN is theoretically guaranteed to improve
as hidden layers are added. Furthermore, taking a step above their shallow counterparts,
deep networks afford greater representational power to better model complex acoustic
signals therefore, the f -measure of the pitch estimation algorithm should increase.

Parameters: Table 4 describes the pitch estimation algorithm variables for Experiment
4. This experiment sets the number of hidden layers as the independent variable, while
keeping the number of nodes in each layer constant. Note that adding each consecutive
layer does make the number of parameters in the neural network larger—the number of
neural network parameters was not fixed, it grows per each layer added. Values of the
controlled variables were selected based on preliminary tests. The f -measure (Eq. (7))
over all analysis frames is the dependent variable, as well as the other evaluation metrics
described in Section ‘Note pitch estimation metrics’. The hypothesis is confirmed if the
f -measure increases as the number of hidden layers increases.

Results and Discussion: The hypothesis speculated that increasing the number of hidden
layers, and consequently the number of model parameters, would increase frame-level
pitch estimation f -measure. Given prior work in deep neural networks, the depth of the
network is often viewed as providing an advantage to the model over a shallow neural
network. Thus it is reasonable to assume that increasing the number of hidden layers in the
deep network will yield increasingly better results; however, the results presented in Table
5 provide evidence supporting the contrary.

The results invalidate the hypothesis and suggest that a more complex model, with more
layers and thus more parameters, does not correlate positively with model performance.
Rather, the results show that the number of hidden layers is negatively correlated with pitch
estimation f -measure. As the number of hidden network layers is increased, the precision

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 21/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

Table 4 Independent, controlled, and dependent variables for Hidden Layers Experiment

Variable Value

Audio sampling rate, fs (Hz) 22,050
Window size, w (samples) 2,048
Hop size, h (samples) 75% of window size
Number of hidden layers* 2, 3, 4
Number of nodes per layer 300
Guitar Model Acoustic with steel strings
Features DFT power spectrum
f -measure **

Notes.
*Denotes the independent variable.
**Denotes the dependent variable.

Table 5 Effect of number of hidden layers on transcription.

Layers p r f One error Hamming loss poly r

; 2 0.675 0.601 0.636 0.192 0.040 0.463
; 3 0.650 0.600 0.623 0.200 0.042 0.452
;
Before HMM

4 0.643 0.591 0.616 0.211 0.043 0.433
; 2 0.760 0.604 0.673 – 0.034 –
; 3 0.739 0.610 0.669 – 0.035 –
;
After HMM

4 0.728 0.602 0.659 – 0.036 –

and recall of the frame-level note pitch estimates decrease. However, the decrease in f -
measure is quite minimal: roughly −1% f -measure for each additional layer. Confirming
howminimal these changes are, a Tukey–Kramer honest significance test on the f -measure
of songs in the test dataset for each DBN trained in this experiment shows no significant
differences between the models. Though the f -measures of each model are not significantly
different, the trend of decreasing f -measure as the number of network layers increases
is still apparent. This performance could be due to overfitting the network to the small
amount of training examples, especially since we increase the parameter search space with
every layer we add.

There are several potential causes of this result. First, increasing the complexity of the
model could have resulted in overfitting the network to the training data. Second, the
issue of ‘‘vanishing gradients’’ Bengio, Simard & Frasconi (1994) could be occurring in the
network fine-tuning training procedure, whereby the training signal passed to lower layers
gets lost in the depth of the network. Yet another potential cause of this result is that the
pretraining procedure may have found insufficient initial edge weights for networks with
increasing numbers of hidden layers. Although, the evidence for overfitting is strong, we
found that while f -measure and precision decreased on the test-set per each layer added,
the f -measure and precision increased steadily when evaluated on the training. f -measures
on the training set ranged from 0.888 for two layers, 0.950 for three layers, and to 0.966,
for four layers. This is relatively clear evidence of the network being conditioned to the

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 22/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

training set. Thus to properly answer this question we would need more training and test
data or to change the number of neurons per layer.

DISCUSSION
Considering the results of the experiments outlined in the previous section, there are
several benefits of using the developed transcription algorithm. As previously mentioned,
the accuracy of transcriptions generated by the algorithm surpasses Zhou et al.’s (2009)
model and makes less octave errors. Moreover, the developed polyphonic transcription
algorithm can generate transcriptions for full-length guitar recordings in the order of
seconds, rather than minutes or hours. Given the speed of transcription, the proposed
polyphonic transcription algorithm could be adapted for almost real-time transcription
applications, where live performances of guitar are automatically transcribed. The DBN
can run in real-time while the HMM requires some seconds of buffer to run effectively.
Currently the system can annotate a recording in less time than it takes to play the recording.
This could be accomplished by buffering the input guitar signal into analysis frames as it
is performed. Another benefit of this algorithm is that the trained network weights can
be saved to disk such that future transcriptions do not require retraining the model. As
well, the size of the model is relatively small (less than 12 MB) and so the network weights
can fit on a portable device, such as smart-phone, or even a micro-controller. Perhaps
converting to binary weighted neural networks, as described by Courbariaux & Bengio
(2016), can enable deploying this work onto micro-controllers. Feeding forward audio
features through the DBN is a computationally inexpensive task and could also operate
on a portable device or microcontroller. Finally, the developed polyphonic transcription
algorithm could easily be adapted to accommodate the transcription of other instruments.
Of course one needs to address the difficulty of acquiring a set of audio files that have
accompanying MIDI annotations for supervised training.

On the other hand, there are several detriments of the transcription algorithm. First, the
amount of time required to properly train the model is substantial and varies depending
on several parameters such as the audio sampling rate, window size, hop size, and network
structure. To make training time reasonable, the computations should be outsourced to
a GPU that is capable of performing many calculations in parallel. Using a GPU with less
CUDA cores, or just a CPU, significantly increases the amount of time required to train
the model. After training ceases, either by reaching the set number of training epochs
or when the objective function stops fluctuating, it is not guaranteed that the resulting
network weights are optimal because the training algorithm may have settled at a local
minima of the objective function. As a consequence of the amount of time required to
train the pitch estimation algorithm, it is difficult to search for good combinations of
algorithm parameters. Another arguable detriment of the transcription algorithm is that
the underlying DBN pitch estimation algorithm is essentially a black box. After training, it
is difficult to ascertain how the model reaches a solution. This issue is exacerbated as the
depth of the network increases. Finally, it is possible to overfit the model to the training
dataset. When running the fine-tuning process for another 30,000 epochs, the f -measure

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 23/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

of the transcription algorithm began to deteriorate due to overfitting. To mitigate against
overfitting, the learning rate could be dampened as the number of training epochs increase.
Another solution involves the creation of a validation dataset, such that the fine-tuning
process stops when the f -measure of the algorithm begins to decrease on the guitar
recordings in the validation dataset. The method used in this paper is fixed iterations, where
the fine-tuning process is limited to a certain number of epochs instead of allowing the
training procedure to continue indefinitely.

Limitations of synthesis
One of the most obvious limitations with this study is the dataset. It is quite difficult to
get high quality transcriptions and recordings of songs, in terms of time, labour, money
and licensing. We relied primarily upon transcriptions of songs and synthesized renderings
of the these transcriptions. Synthesis has many weaknesses as it is not a true acoustic
instrument; it is meant to model an instrument. Thus when we train on synthesized
models we potential overfit to a model of a guitar rather than a guitar playing. Furthermore
synthetic examples typically will be timed well with little clock slew or swing involved. Real
recordings of guitar music will start at different times, change tempo, and have far more
noise in the recording and the timing of events than a synthesized example. The exactness
of synthesized examples can pose a problem because one string pluck can be as predictable
as another where as string plucks on actual guitars will vary in terms of duration, decay,
energy, etc. Sample-based synthesizers might be too predictable and allow for neural nets to
over-fit to the samples relied upon—if sample-based synthesizers are used one might have
to add noise to the signal to improve robustness and avoid the learning of a ‘‘sound-font’’.
This predictability is the primary weakness of synthesis; the lack of range or randomness
in synthesized output should be a concern. Synthesis also makes assumptions in terms of
tuning and accuracy of each pitch produced which might not reflect real world tunings.
MIDI is also quite limited in terms of its timing and range of notes. A more accurate form
of transcription might be needed to improve model and transcription quality.

Future work should involve more real recordings of guitar music to enable better
transcription. Furthermore robotic guitars (Singer, Larke & Bianciardi, 2003), guitar
versions of the Yamaha Disklavier, might provide more range of inputs yet still suffer
from the issues regarding synthesis discussed earlier. Fundamentally synthesis is a cost
trade-off: it enables careful reproduction of transcriptions but it comes with its own costs
in terms of realism and applicability. When it’s possible to find, curate, or synthesize data,
this approach works well.

CONCLUSION
When applied to the problem of polyphonic guitar transcription, deep belief networks
outperform Zhou et al.’s (2009) general purpose transcription algorithms. Moreover, the
developed transcription algorithm is fast: the transcription of a full-length guitar recording
occurs in the order of seconds and is therefore suitable for real-time guitar transcription.
As well, the algorithm is adaptable for the transcription of other instruments, such as the

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 24/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

bass guitar or piano, as long as the pitch range of the instrument is provided and MIDI
annotated audio recordings are available for training.

The polyphonic transcription algorithm described in this paper is capable of forming
discriminative, latent audio features that are suitable for quickly transcribing guitar
recordings. The algorithm workflow consists of audio signal preprocessing, feature
extraction, a novel pitch estimation algorithm that uses deep learning and multi-label
learning techniques, frame smoothing, and onset quantization. The generated note event
transcriptions are digitally encoded as a MIDI file, that is processed further to create a
MusicXML file that encodes the corresponding guitar tablature notation.

An evaluation of the frame-level pitch estimates generated by the deep belief network
on a dataset of synthesized guitar recordings resulted in an f -measure of 0.77 after frame
smoothing. An evaluation of the note events output by the entire transcription algorithm
resulted in an f -measure of 0.67, which is 11% higher than the f -measure reported by
Zhou et al.’s single-instrument transcription algorithm (Zhou et al., 2009) on the same
dataset.

The results of this work encourage the use of deep architectures such as belief networks
to form alternative representations of industry-standard audio features for the purposes of
instrument transcription.Moreover, this work demonstrates the effectiveness ofmulti-label
learning for pitch estimation, specifically when an upper bound on polyphony exists.

Future work
There are several directions of future work to improve the accuracy of transcriptions.
First, there are substantial variations in the distribution of pitches across songs, and so
the compilation of more training data is expected to improve the accuracy of frame-level
pitch estimates made by the DBN. Second, alternate methods could be explored to raise
the accuracy of frame-level polyphony estimates, such as training a separate classifier
for predicting polyphony on potentially different audio features. Third, an alternate
frame-smoothing algorithm that jointly considers the probabilities of other pitch estimates
across analysis frames could further increase pitch estimation f -measure relative to the
HMM method proposed by Poliner & Ellis (2007), which smooths the estimates of one
pitch across the audio analysis frames. Finally, it would be beneficial to investigate whether
the latent audio features derived for transcribing one instrument are transferable to the
transcription of other instruments.

In the end, the big picture is a guitar tablature transcription algorithm that is capable
of improving its transcriptions when provided with more examples. There are many
guitarists that share manual tablature transcriptions online that would personally benefit
from having an automated system capable of generating transcriptions that are almost
correct and can subsequently be corrected manually. There is incentive to manually correct
the output transcriptions because this method is potentially faster than performing a
transcription from scratch, depending on the quality of the automated transcription and
the difficulty of the song. The result is a crowdsourcing model that is capable of producing
large ground-truth datasets for polyphonic transcription that can then be used to further
improve the polyphonic transcription algorithm. Not only would this improve the accuracy

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 25/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.109

of the developed polyphonic transcription algorithm, but it would also provide a centralized
repository of ground-truth guitar transcriptions forMIR researchers to train and test future
state-of-the-art transcription algorithms.

ACKNOWLEDGEMENTS
Special thanks are owed to Ruohua Zhou and Joshua Reiss for the open source
implementation of their transcription algorithm evaluated in this work, as well as the
individuals who uploaded manual tablature transcriptions to http://www.ultimate-
guitar.com.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was funded by an Alberta Innovates Technology Futures Graduate Student
Scholarship and an Alberta Innovation and Advanced Education Graduate Student
Scholarship. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Alberta Innovates Technology Futures Graduate Student Scholarship.
Alberta Innovation and Advanced Education Graduate Student Scholarship.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Gregory Burlet conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, performed the computation work, reviewed drafts
of the paper, algorithm design.
• Abram Hindle conceived and designed the experiments, performed the experiments,
analyzed the data, wrote the paper, prepared figures and/or tables, performed the
computation work, reviewed drafts of the paper, algorithm design.

Data Availability
The following information was supplied regarding data availability:

Deep learning guitar transcriptions:
https://archive.org/details/DeepLearningIsolatedGuitarTranscriptions.

REFERENCES
Barbancho AM, Klapuri A, Tardon LJ, Barbancho I. 2012. Automatic transcription

of guitar chords and fingering from audio. IEEE Transactions on Audio Speech and
Language Processing 20(3):915–921 DOI 10.1109/TASL.2011.2174227.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 26/30

https://peerj.com
http://www.ultimate-guitar.com
http://www.ultimate-guitar.com
https://archive.org/details/DeepLearningIsolatedGuitarTranscriptions
http://dx.doi.org/10.1109/TASL.2011.2174227
http://dx.doi.org/10.7717/peerj-cs.109

Bello JP, Daudet L, Abdallah S, Duxbury C, Davies M, Sandler MB. 2005. A tutorial on
onset detection in music signals. IEEE Transactions on Speech and Audio Processing
13(5):1035–1047 DOI 10.1109/TSA.2005.851998.

Benetos E, Dixon S, Giannoulis D, Kirchoff H, Klapuri A. 2012. Automatic music
transcription: breaking the glass ceiling. In: Proceedings of the international society
for music information retrieval conference. Porto, Portugal, 1002–1007.

Benetos E, Dixon S, Giannoulis D, Kirchhoff H, Klapuri A. 2013. Automatic music
transcription: challenges and future directions. Journal of Intelligent Information
Systems 41(3):407–434 DOI 10.1007/s10844-013-0258-3.

Benetos E, Weyde T. 2013. Explicit duration hidden Markov models for multiple-
instrument polyphonic music transcription. In: Proceedings of the international
conference on music information retrieval. Curitiba, Brazil, 269–274.

Bengio Y. 2009. Learning deep architectures for AI. Foundations and Trends in Machine
Learning 2(1):1–127 DOI 10.1561/2200000006.

Bengio Y, Simard P, Frasconi P. 1994. Learning long-term dependencies with gra-
dient descent is difficult. IEEE Transactions on Neural Networks 5(2):157–166
DOI 10.1109/72.279181.

Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J,
Warde-Farley D, Bengio Y. 2010. Theano: a CPU and GPU math expression
compiler. In: Proceedings of the python for scientific computing conference. Austin, TX,
3–10.

Boulanger-Lewandowski N. 2014.Modeling high-dimensional audio sequences with
recurrent neural networks. PhD thesis, Université de Montréal.

Burlet G. 2013. Automatic guitar tablature transcription online. Master’s thesis, McGill
University.

Burlet G. 2015. Guitar tablature transcription using a deep belief network. Master’s
thesis, McGill University.

Burlet G, Fujinaga I. 2013. Robotaba guitar tablature transcription framework. In:
Proceedings of the international society for music information retrieval. Curitiba, Brazil,
421–426.

Costantini G, Perfetti R, TodiscoM. 2009. Event based transcription system for
polyphonic piano music. Signal Processing 89(9):1798–1811
DOI 10.1016/j.sigpro.2009.03.024.

CourbariauxM, Bengio Y. 2016. Binarynet: training deep neural networks with weights
and activations constrained to +1 or -1. ArXiv preprint. arXiv:1602.02830.

Dessein A, Cont A, Lemaitre G. 2010. Real-time polyphonic music transcription with
non-negative matrix factorization and beta-divergence. In: Proceedings of the
international society for music information retrieval conference. Utrecht, Netherlands.

Dixon S. 2006. Onset detection revisited. In: Proceedings of the international conference on
digital audio effects. Montréal, QC, 133–137.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 27/30

https://peerj.com
http://dx.doi.org/10.1109/TSA.2005.851998
http://dx.doi.org/10.1007/s10844-013-0258-3
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1016/j.sigpro.2009.03.024
http://arXiv.org/abs/1602.02830
http://dx.doi.org/10.7717/peerj-cs.109

Hainsworth SW,MacleodMD. 2003. The automated music transcription problem.
Technical report. Department of Engineering, University of Cambridge, 1–23.

Heijink H, Meulenbroek RGJ. 2002. On the complexity of classical guitar playing:
functional adaptations to task constraints. Journal of Motor Behavior 34(4):339–351
DOI 10.1080/00222890209601952.

Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V,
Nguyen P, Sainath TN, Kingsbury B. 2012. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal Processing Magazine 29(6):82–97.

Hinton GE. 2007. Learning multiple layers of representation. Trends in Cognitive Sciences
11(10):428–434 DOI 10.1016/j.tics.2007.09.004.

Hinton GE, Osindero S, Teh Y. 2006. A fast learning algorithm for deep belief nets.
Neural Computation 18(7):1527–1554 DOI 10.1162/neco.2006.18.7.1527.

Huang X, Acero A, Hon H. 2001. Spoken language processing: a guide to theory,
algorithm, and system development. Upper Saddle River: Prentice Hall.

Humphrey E, Bello J, LeCun Y. 2012.Moving beyond feature design: deep architectures
and automatic feature learning in music informatics. In: Proceedings of the interna-
tional society for music information retrieval. Porto, Portugal, 403–408.

Humphrey E, Bello J, LeCun Y. 2013. Feature learning and deep architectures: new
directions for music informatics. Journal of Intelligent Systems 41(3):461–481.

Humphrey EJ, Bello JP. 2014. From music audio to chord tablature: teaching deep con-
volutional networks toplay guitar. In: 2014 IEEE international conference on acoustics,
speech and signal processing (ICASSP). 6974–6978 DOI 10.1109/ICASSP.2014.6854952.

Klapuri A. 2004. Automatic music transcription as we know it today. Journal of New
Music Research 33(3):269–282 DOI 10.1080/0929821042000317840.

Klapuri A. 2005. A perceptually motivated multiple-F0 estimation method. In: Proceed-
ings of the IEEE workshop on applications of signal processing to audio and acoustics.
New Paltz, NY, 291–294.

Klapuri A. 2006.Multiple fundamental frequency estimation by summing harmonic
amplitudes. In: Proceedings of the international society for music information retrieval
conference. Victoria, BC, 216–221.

Lee H, Grosse R, Ranganath R, Ng A. 2009. Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. In: Proceedings of the
international conference on machine learning. Montréal, QC, 609–616.

Maher RC, Beauchamp JW. 1994. Fundamental frequency estimation of musical signals
using a two-way mismatch procedure. Journal of the Acoustical Society of America
95(4):2254–2263 DOI 10.1121/1.408685.

Marolt M. 2004. A connectionist approach to automatic transcription of polyphonic
piano music. IEEE Transactions on Multimedia 6(3):439–449
DOI 10.1109/TMM.2004.827507.

Martin KD. 1996. A blackboard system for automatic transcription of simple polyphonic
music. Technical report 385. Massachusetts Institute of Technology, Cambridge.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 28/30

https://peerj.com
http://dx.doi.org/10.1080/00222890209601952
http://dx.doi.org/10.1016/j.tics.2007.09.004
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1109/ICASSP.2014.6854952
http://dx.doi.org/10.1080/0929821042000317840
http://dx.doi.org/10.1121/1.408685
http://dx.doi.org/10.1109/TMM.2004.827507
http://dx.doi.org/10.7717/peerj-cs.109

Moorer JA. 1975. On the segmentation and analysis of continuous musical sound by
digital computer. PhD thesis, Department of Music, Stanford University, Stanford,
CA.

Nam J, Ngiam J, Lee H, SlaneyM. 2011. A classification-based polyphonic piano
transcription approach using learned feature representations. In: Proceedings of the
international society for music information retrieval. Miami, FL, 175–180.

Poliner GE, Ellis DPW. 2007. Improving generalization for polyphonic piano transcrip-
tion. In: Proceedings of the IEEE workshop on applications of signal processing to audio
and acoustics. Piscataway: IEEE, 86–89.

Radicioni DP, Lombardo V. 2005. Computational modeling of chord fingering for string
instruments. In: Proceedings of the international conference of the cognitive science
society. Stresa, Italy, 1791–1796.

Radisavljevic A, Driessen P. 2004. Path difference learning for guitar fingering problem.
In: Proceedings of the international computer music conference. Miami, FL.

Raphael C. 2002. Automatic transcription of piano music. In: Proceedings of the interna-
tional society for music information retrieval conference. Paris, France, 1–5.

RyynänenM, Klapuri A. 2005. Polyphonic music transcription using note event
modeling. In: Proceedings of the IEEE workshop on applications of signal processing to
audio and acoustics. Piscataway: IEEE, 319–322.

Sigtia S, Benetos E, Dixon S. 2016. An end-to-end neural network for polyphonic piano
music transcription. IEEE Transactions on Audio Speech and Language Processing
24(5):927–939 DOI 10.1109/TASLP.2016.2533858.

Singer E, Larke K, Bianciardi D. 2003. LEMUR GuitarBot: MIDI robotic string instru-
ment. In: Proceedings of the 2003 conference on new interfaces for musical expression.
Singapore: National University of Singapore, 188–191.

Smaragdis P, Brown JC. 2003. Non-negative matrix factorization for polyphonic music
transcription. In: Proceedings of the IEEE workshop on applications of signal processing
to audio and acoustics. Piscataway: IEEE, 177–180.

Tang L, Rajan S, Narayanan VK. 2009. Large scale multi-label classification via metal-
abeler. In: Proceedings of the international conference on world wide web. New York,
NY, 211–220.

Tuohy DR, PotterWD. 2005. A genetic algorithm for the automatic generation of
playable guitar tablature. In: Proceedings of the international computer music confer-
ence. Barcelona, Spain, 499–502.

Tuohy DR, PotterWD. 2006. An evolved neural network/HC hybrid for tablature
creation in ga-based guitar arranging. In: Proceedings of the international computer
music conference. New Orleans, LA, 576–579.

Tzanetakis G, Cook P. 2000.MARSYAS: a framework for audio analysis. Organised
Sound 4(3):169–175 DOI 10.1017/S1355771800003071.

Utgoff PE, Stracuzzi DJ. 2002.Many-layered learning. Neural Computation 14:2497–2539
DOI 10.1162/08997660260293319.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 29/30

https://peerj.com
http://dx.doi.org/10.1109/TASLP.2016.2533858
http://dx.doi.org/10.1017/S1355771800003071
http://dx.doi.org/10.1162/08997660260293319
http://dx.doi.org/10.7717/peerj-cs.109

Yeh C, Roebel A, Rodet X. 2010.Multiple fundamental frequency estimation and
polyphony inference of polyphonic music signals. IEEE Transactions on Audio,
Speech, and Language Processing 18(6):1116–1126 DOI 10.1109/TASL.2009.2030006.

ZhangM, Zhou Z. 2014. A review on multi-label learning algorithms. IEEE Transactions
on Knowledge and Data Engineering 26(8):1819–1837 DOI 10.1109/TKDE.2013.39.

Zhou R, Reiss JD. 2008. A real-time polyphonic music transcription system. In:
Proceedings of the 4th music information retrieval evaluation eX- change (MIREX).
Philadelphia: Drexel University.

Zhou R, Reiss JD, Mattavelli M, Zoia G. 2009. A computationally efficient method for
polyphonic pitch estimation. EURASIP Journal on Advances in Signal Processing
2009(729494):1–11 DOI 10.1155/2009/729494.

Burlet and Hindle (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.109 30/30

https://peerj.com
http://dx.doi.org/10.1109/TASL.2009.2030006
http://dx.doi.org/10.1109/TKDE.2013.39
http://dx.doi.org/10.1155/2009/729494
http://dx.doi.org/10.7717/peerj-cs.109

