
U niversity of A lberta

I m p l e m e n t a t i o n o f S u b - 1 V A n a l o g D e c o d e r s

by

N han Due Nguyen

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
C anada

Your file Votre reference
ISBN: 0-612-95826-4
Our file Notre reference
ISBN: 0-612-95826-4

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nothing in life is to be feared.
It is only to be understood.

—Marie Curie

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my family and Yoko
for their love, encouragement, and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

I would like to say many thanks to Dr. Vincent Gaudet and Dr. Christian
Schlegel for their guidance, encouragement, funding, and in helping to make
this possible. I am indebted to Dr. Gaudet for always taking time out of his
busy schedule to deal with my questions and concerns whenever they come up.

I would like to thank Chris Winstead for coming up with the idea for this
thesis. His guidance and enthusiasm from day one helped me to understand
much about this research area.

I would like to thank the committee members Dr. Bruce Cockburn and
Dr. Ioanis Nikolaidis for their helpful comments and suggestions.

I would like to extend gratitude to my colleagues Edmund Fung and David
Li. Our various discussions about the universe and microcosmos created much
laughter. I would like to thank Siavash for answering questions related to com­
munications and his ever cheerful presence. I would like to thank the people in
the VLSI lab who helped me with various mundane questions about Cadence:
Tyler Brandon, John Koob, Craig Joly, Dan Leder, Raewadee Parmmukh, and
Sue Ann Ung.

I would like to acknowledge the computer guys Paul Greidanus and Ja­
cob Bresciani for keeping the network up and running. I would like to thank
Robert Hang from the HCDC lab for helping with Xilinx related questions.

Thank you to those on the fourth and fifth floor of this fine building for
putting up with my meddling and disturbance as I talk with the one sitting
next to you while you were busy trying to concentrate on an important dead­
line.

This project was made possible by Canadian Microelectronics Corporation
grants 0302CF-ICFAANN1 and 0304CF-ICFAANN2, NSERC, iCORE, and
the Mary Louise Imrie Graduate Student Award.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 M otivation... 1
1.2 Thesis O utline ... 3

2 Background on Channel Coding 5
2.1 C h a n n e l... 5

2.1.1 Additive White Gaussian N o is e .. 5
2.1.2 D em odulation.. 6

2.2 C o d e s .. 7
2.2.1 Hamming Codes .. 8
2.2.2 Convolutional Codes and Trellises..................................... 9
2.2.3 Low Density Parity Check codes.. 10
2.2.4 Turbo Codes .. 12

2.3 Decoding on a Trellis G r a p h ... 13
2.3.1 Maximum Likelihood... 13
2.3.2 Maximum a Priori .. 13

2.4 Decoding on a Factor G ra p h ... 15
2.5 Chapter Summary .. 17

3 Background on Analog D ecoding and Circuit Theory 19
3.1 Analog Decoding D e fin itio n ... 19
3.2 Previous and Related W o r k ... 21

3.2.1 Analog Viterbi D ecoding... 21
3.2.2 Analog N e tw o rk s ... 23

3.3 Low Voltage CMOS Transistor Behaviour................................... 32
3.3.1 Weak Inversion M odeling... 32
3.3.2 Current M ultip lication .. 33
3.3.3 Low Voltage A nalysis... 35

3.4 Low Voltage Sum Product M odu les.. 37
3.4.1 Product n fu n c tio n s ... 37
3.4.2 N orm alizing... 39
3.4.3 Factor Graph N o d e s ... 39

3.5 Analog Effects.. 44
3.6 Chapter Summary ... 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Im plem entation 49
4.1 An (8, 4) Hamming factor graph d eco d er.................................... 49
4.2 An (8, 4) Hamming trellis graph d e co d e r.................................... 59
4.3 Universal I/O in te rface ... 70
4.4 Design M eth o d o lo g y .. 72
4.5 SPICE Simulation ... 76
4.6 Chapter Summary ... 82

5 Testing 83
5.1 Test S e tu p ... 83

5.1.1 Test p ro g ra m ... 84
5.1.2 FPGA controller b o a rd .. 88
5.1.3 Test Support B oard .. 92
5.1.4 Device Under Test B oard ... 94

5.2 Test M ethodology.. 94
5.3 Measurement R esu lts .. 97

5.3.1 I/O Test L oop ... 97
5.3.2 Factor Graph D e c o d e r .. 100
5.3.3 Trellis Graph D e c o d e r .. 105

5.4 Chapter Summary ... 106

6 Conclusion 107
6.1 Summary of Completed W o r k ... 107
6.2 Future W ork .. 108

Bibliography 111

A I /O Interface schem atics 117

B Test R elated 123
B.l Top level VHDL c o d e .. 123
B.2 Controller VHDL c o d e ... 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Energy efficiency comparison between existing digital (top 2)
and analog decoders (bottom 4). ADC figures were not included
for digital decoders... 20

4.1 Source word to code word mapping of the factor graph decoder 51
4.2 Source word to code word mapping of the trellis graph decoder 59
4.3 Probabilities used for the simulation of the analog portion of

the factor graph d e c o d e r .. 76
4.4 Factor graph decoder simulation s u m m a ry 78
4.5 Trellis Decoder Sum m ary.. 80

5.1 CLK.DIV setting and test speed .. 96
5.2 Decoder Implementations S um m ary .. 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 A communication system from the coding perspective............ 5
2.2 Decoding and dmin: ri2 < drnin allowing y to be decoded as .x2 • 8
2.3 A simple R = 1/2, v — 2 convolutional encoder 10
2.4 A finite state machine describing possible state transitions and

input / o u tp u ts .. 11
2.5 Trellis representation of a convolutional code with n = 5 and

L = 2 .. 11
2.6 Parallel Turbo (a) encoder (b) d e c o d e r 12
2.7 A factor graph (a) is transformed into (b) for implementation 15

3.1 A comparison of (a) receiver structure using digital decoders
and (b) receiver structure using analog deco d ers 20

3.2 A trellis section mapped into circuits used for analog Viterbi
decoding shown by Acampora [2] 22

3.3 Generic decoder building block operating on LLR voltages [50] 24
3.4 LLR voltage to probability current co nversion 25
3.5 The basic decoder building block: (a) a sum-product module

[45] and (b) its implementation separated into functions 26
3.6 A Gilbert vector multiplier [26] ... 27
3.7 A Gilbert vector normalizer [28]... 27
3.8 The (a) MAX* and (b) a transconductor circuit are the building

blocks of a Max-Log-MAP decoder [24] 30
3.9 The mapping of an example trellis section using MAX* and

transconductor circuits [24].. 30
3.10 Using multiple input floating gate MOS transistors to imple­

ment a trellis section performing the Log-MAP algorithm [51] 31
3.11 A CMOS transistor defining terminals, voltages, and drain current 32
3.12 Gilbert current multiplier .. 33
3.13 Analysis of the low voltage multiplier [56].................................. 34
3.14 P-type low voltage current m u ltip lie r ... 34
3.15 Low voltage current vector multiplier with added transistors to

create constant denominator [71] 38
3.16 Factor graph node in one direction .. 40
3.17 The construction of an n-degree n o d e ... 41
3.18 An example bi-directional node used for characterizing differ­

ences between circuits and id e a l ... 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.19 Equality node A LL R (VDD = 0.7V, Iu = 0.5/j. A) 43
3.20 Check node A LL R (VDD = 0.7V, Iu = 0 .5 / /A) 44
3.21 Mismatch can be characterized as an error in the mirrored current 45
3.22 Mismatch analysis in the Gilbert vector multiplier [44] 46
3.23 Mismatch analysis in a CMOS 2x2 multiplier [7 3] 47

4.1 Belief propagation simulation of 8x8 and 8x4 H matrices of an
(8,4) Hamming code using three different programs (1), (2), and
(3) ... 50

4.2 The factor graph of an (8, 4) extended Hamming code 51
4.3 The (8, 4) Hamming factor graph d e c o d e r 52
4.4 CHECK1: unidirectional check node ... 54
4.5 CHECK3: bidirectional 3-port check n o d e 55
4.6 CHECK4: bidirectional 4-port check n o d e 55
4.7 EQUALITY1: unidirectional equality n o d e 56
4.8 EQUALITY3: bidirectional 3-port equality n o d e 57
4.9 EQUALITY5: bidirectional 5-port equality n o d e 57
4.10 EQUALITY1JOUT: unidirectional equality with current outputs 58
4.11 RESET: pass transistors used for equalizing probabilities . . . 58
4.12 Minimal tail-biting trellis for (8, 4) Hamming code 59
4.13 Block diagram of an (8, 4) Hamming trellis graph decoder . . 60
4.14 'J : channel metric calculation block ... 63
4.15 Oil : trellis section 2 forward m e tric 64
4.16 (32 : trellis section 2 backward m e tric 65
4.17 Ctl : trellis section 1 forward m e tric 66
4.18 (31 : trellis section 1 backward m e tric 67
4.19 A2: APP calculation over 2 s ta te s ... 68
4.20 A4 : APP calculation over 4 s t a t e s .. 69
4.21 Universal I/O in te rface .. 70
4.22 The input sample and hold (S/H) in terface............................... 71
4.23 The input S/H interface timing showing sampling signals SELi

and hold signal P I P E ... 71
4.24 The output serial interface showing comparators and parallel

load shift registers .. 72
4.25 The internals of the output comparator with built in SR latch 73
4.26 The output serial interface timing showing where comparator

latching LATCH and output shift register loading SEL7 occur 73
4.27 Layout of the EQUALITY5 b lo c k ... 75
4.28 The current outputs of the analog portion of the factor graph

decoder (VDD = 0.5V, Iu = lOnA) showing an error correction
on bit 3 ... 77

4.29 The simulated outputs of the full factor graph decoder (VDu =
0.8V, Iu — 1|uA) with 3 input codewords and their correspond­
ing decoded information b i t s .. 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.30 The current outputs of the analog portion of the trellis graph
decoder {Vdd — 0.517, Iu = lOnA) showing an error correction
on bit 1 ... 79

4.31 The simulated outputs of the full trellis graph decoder (Vdd —
0.817, Iu = In A) with 3 input codewords and their correspond­
ing decoded information b i t s .. 79

4.32 W ith reset in the factor graph decoder differential output cur­
rents have full s w i n g ... 81

4.33 Without reset in factor graph decoder differential output cur­
rents have only good swing for the higher of the two currents . 81

5.1 Picture of analog decoding test setup, clockwise from left side,
PC, Keithley unit, oscilloscope, multimeter, and three PCBs
(middle bottom) ... 84

5.2 An analog decoding test setup block diagram showing interac­
tion between b lo ck s .. 85

5.3 Picture of FPGA, Test Support, and DUT b o a rd s 85
5.4 Screen capture of test program .. 86
5.5 The FPGA controller consists of an FSM, RAM, and other sup­

port c i r c u i t ry .. 88
5.6 The FPGA controller FSM (simplified) showing 5 major states 89
5.7 FPGA controller timing diagram showing the transition of 5

major s ta t e s ... 90
5.8 Schematic of test support b o a r d .. 95
5.9 Die photo of chip ICFAANN1 showing (1) factor graph decoder

and (2) test loop ... 97
5.10 Die photo of chip ICFAANN2 showing (1) trellis graph decoder

and (2) factor graph decoder.. 98
5.11 Capacitor discharge through imperfect s w itc h e s 99
5.12 DC offset on a com parato r.. 99
5.13 Measurement of test loop using error probabilities on 2 out of

8 b i t s .. 100
5.14 Factor graph measurement results with varying test speed . . 101
5.15 Factor graph measurement results with varying Iu 101
5.16 Factor graph measurement results with varying Vd d 102
5.17 Factor graph measurements showing Vdd vs. test speed and

SNR loss (measured at the highest available S N R)................... 102
5.18 Trellis graph measurement results with varying Vd d 103
5.19 Trellis graph measurement showing Vdd vs. test speed and SNR

loss (measured at the highest available S N R)............................. 103
5.20 Trellis vs. factor graph decoder measurements at Vdd — 0.817 104
5.21 Trellis vs. factor graph decoder measurements at Vdd — 0.517 104

A .l Clock G enerator... 117
A.2 Digital G a t e s .. 117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3 LtoP : input LLR to probability c o n v e r te r 118
A.4 input mirror : unit current mirror for I/O and analog decoder 118
A.5 Shift Register SH : input shift register and S/H c h a in 119
A.6 selshifter : selectable s h i f t e r .. 119
A. 7 SH : sample and hold capacito rs ... 120
A.8 mux : m ultiplexer... 120
A.9 shiftreg : level sensitive shift r e g s i te r .. 120
A.10 shifter : output parallel load s h if te r ... 120
A.11 Comparator : output comparator with SR l a t c h 121
A. 12 Output Shifter : ouput shift register c h a i n 122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols

Acronyms
ACS Add Compare Select
ADC Analog-to-Digital Converter
APP A Priori Probability
AWGN Additive White Gaussian Noise
BCJR Bahl Cocke Jelinek Raviv
BER Bit Error Rate
BiCMOS Bipolar-Complementary Metal Oxide Semicondutor
BJT Bipolar Junction Transistor
BL Block Length
BPSK Binary Phase Shift Keying
BSC Binary Symmetric Channel
CC Convolutional Code
CCW Counterclockwise
CMOS Complementary Metal Oxide Semiconductor
CW Clockwise
DAC Digital-to-Analog Converter
DRC Design Rule Checking
DUT Device Under Test
FEC Forward Error Correction
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GUI Graphical User Interface
I/O Input Ouput
KCL Kirchoff’s Current Law
KVL Kirchoff’s Voltage Law
LDPC Low Density Parity Check
LLR Log-Likelihood Ratio
LVS Logic Versus Schematic
MAP Maximum a Posteriori
ML Maximum Likelihood
MPSK M-ary Phase Shift Keying
MUX Multiplexer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NMOS N-type Metal Oxide Semiconductor
PC Personal Computer
PMOS P-type Metal Oxide Semiconductor
QAM Quadrature Amplitude Modulation
RAM Random-Access Memory
RF Radio Frequency
SNR Signal-to-Noise Ratio
SR Set Reset
TL Translinear Loop
TS Test Support (board)
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language

Electrical
A V D D analog decoder supply voltage
D VD D digital I/O supply voltage
Id drain current
I f forward current component in weak inversion
It reverse current component in weak inversion
Iu unit current representing probability 1
Hva) square transistor current when Vgs = 0
P V D D pad supply voltage
UT thermal voltage kT/q, equal to 25.9mV at 300K
V d d supply voltage
vds drain-to-source voltage
v9d gate-to-drain voltage
V9s gate-to-source voltage
Vss zero potential, ground
VT threshold voltage
Vu unit voltage
W /L transistor width to length ratio or size ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Motivation

Demand for data transmission and storage over the years has spawned new

technologies for real time applications. Some of the well-known technologies

include the third generation (3G), IEEE 802.11, and Bluetooth wireless stan­

dards. Mobile and fixed devices that operate on these networks need reliable,

fast data pipes that are also power efficient.

Shannon [60] showed that, in a noisy environment, it is possible to pro­

vide protection for information bits by proper coding. A greater volume of

information bits can be transmitted by increasing the code complexity. This

complexity often grows quadratically or even exponentially as the Shannon

limit is approached, as observed by [44]. Powerful codes that approach the

limit are Turbo [7] and low density parity check (LDPC) [22, 47] type codes.

These belong to a field of coding known as probabilistic, in which soft informa­

tion processing techniques are used [43]. Decoders that operate on these types

of codes deal with soft information, which is best represented by real numbers.

In addition, the construction of the decoder has feedback loops where calcula­

tions are done in iterations. These two characteristics of probabilistic coding

make digital implementations challenging. Thus, researchers have been looking

into using analog circuits to perform such tasks [29, 42, 44, 50, 74, 69, 24, 3].

Analog decoding offers many advantages compared to its digital counter­

part. The circuits do not switch from rail to rail, which means they do not

dissipate as much dynamic power; however, static power due to leakage current

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is still present. There is continuous time processing—voltages and currents in

the decoder propagate throughout the network and come to some steady state.

Clocking is only needed for input-output (I/O) integration with digital blocks.

Decoding latency is largely determined by resistive-capacitive values in transis­

tors and is not expected to change significantly with increased block size. Since

signal processing is done in the current domain, sums are achieved by tying

wires together and products are performed by using less than ten transistors

(compare this to digital adders and multipliers). One only needs to replicate

a multiplier circuit many times to implement probability propagation or sum

product modules. These are placed in parallel to form the decoder network.

Factor graphs and trellises, which are graphical forms of code representation,

can be mapped directly into circuits. The growth of complexity with larger

codes becomes almost linear. The design philosophy is very much like a digital

design flow.

Currently, state-of-the-art analog decoders operate on small codes as proof

of concept designs. Larger size decoders are being implemented as part of

ongoing research. In order for analog decoders to gain industry acceptance,

there are challenges to address. Analog decoders that work on practical length

codes have to be designed. These codes and their bit rates have to meet current

industry standards. There is the desire for added programmability to provide

greater flexibility. Interfaces, which affect the ability to get bits into and out

of the decoder, need to be improved. As the design gets larger, the efficient

production of larger decoder chips will depend on their testability. Efficient

testing methods for the chip, which can include design for testability (DFT)

or built in self test (BIST), have still yet to be developed.

As manufacturing processes advance, designs have to operate at lower sup­

ply voltages to compensate for smaller transistor dimensions and lower gate

oxide thicknesses. This project focuses mainly on addressing the concerns

of lowering supply voltages so that current designs can be scaled to future

processes. An added effect of lowering the supply voltage is lower power con­

sumption. At the time of this writing, a paper on tackling power consumption

is the second most cited within the IEEE Journal of Solid State Circuits [11]

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

despite being published in 1992. Power consumption becomes an even greater

challenge as the industry moves to developing powerful radio handsets and im­

plantable devices. To address the above concerns, two small proof of concept

decoders are presented. These decoders operate at sub-IV supply voltages

and are capable of being manufactured using advanced processes. They also

dissipate very little power.

1.2 Thesis Outline

This thesis is presented in six chapters. Chapter 2 presents an overview of a

communication system by describing its general structure, channel models, and

types of codes, decoding algorithms, and codes on graphs. Chapter 3 describes

previous analog decoding work leading to our low voltage sum product circuit.

Chapter 4 presents the design of two small sub-lV analog decoders. Chapter

5 describes a test setup along with measurement results for the two decoders

mentioned in Chapter 4. The core innovations of this thesis are found in

Chapters 4 and 5. Chapter 6 concludes the thesis and presents future research

problems.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Background on Channel Coding

Channel coding is concerned with the protection of information bits to be

transmitted. From this perspective, a communication system can be described

as containing three parts: encoder, channel, and decoder as shown in Figure

2.1. The modulator, physical transmission medium, and demodulator are

contained within the channel. Information bits u from the source are encoded

to x which contains redundancy. Coded bits x are modulated for transmission,

and demodulated at the receiver to y. These steps inevitably distort the signal

of interest. The total distortion is often modeled by the addition of white

Gaussian noise N. The demodulated signal y is decoded to an estimate of the

original signal u.

• channel

sinksource
demodulatorm odulator physical

channel

channel
encoder

channel
decoder

u x y u

Figure 2.1: A communication system from the coding perspective

2.1 Channel

2.1.1 A dditive W h ite G aussian N oise

The total noise incurred in the channel N adds to the modulated symbols by

y = x + N (2.1)

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W ith zero mean and average power of Na within the transmission bandwidth,

its probability density function is given by

p W = ^ e x p (^) (2 ' 2)

where cr^ is the noise variance and is related to its power by

aN2 = ^ (2.3)

An individual received symbol y at the channel output has the function

(2 - 4)

2.1.2 D em odulation

The value of the received symbol is declared using a demodulator. In hard

decision demodulation, the probability of bit error due to AWGN is

= (2-5)

where R is the rate of the code (defined in the next Section), Eb is the source

bit energy, N 0 is the one-sided noise power spectral density, and erfc(-) is

the complimentary error function. The ratio Eb/N0 is the normalized signal

to noise ratio (SNR). When R — 1, (2.5) becomes the uncoded bit error

rate (BER) for binary phase shift keying (BPSK) and is used as the base for

comparisons to coded systems.

In soft decision demodulation, a decision and its reliability are given. The

output can be represented as a log likelihood ratio (LLR).

LLR. = f o / f a \x “ = °> (2.6)
' v{Vk\Xk = 1)

where yh and Xk are the kth received symbol and code symbol. Its decision

is sign(LLR) and its reliability \LLR \. Soft demodulation, when used with

coding, provides a BER improvement of approximately 2dB [61] over hard

demodulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Codes

The type of coding this thesis deals with is forward error correcting (FEC),

where, the receiver tries to identify and correct errors as it receives each code

word.

The rate of a code is defined as

R — ~ (2.7)
n

with n is the length of the codeword in bits, k is the number of information

bits, and n — k is the number of redundant parity bits.

The capacity represents the maximum amount of information that can flow

across a channel. An AWGN channel has a capacity of [60]

C = Wdog2 (l + (2.8)

where W is the bandwidth of the channel, S = R-Eb is the average signal

power, and N = N0-W is the total noise power.

Capacity, rate, and code length are related through Shannon’s Channel

Coding Theorem [60], which says: (i) for R < C, the error rate can be lowered

by increasing the code length n, and (ii) for R > C, the error rate cannot be

lowered.

A code which maps u to x such that u is visible in x is called systematic.

A systematic code word could have information Ui and parity bits pi organized

as

'Uk . . . 'ill P n—k • • * P i

An important indication of error control is the minimum distance drnin,

the minimum difference in bit positions between valid code words. A greater

distance increases the chance of decoding the correct transmitted word as

shown in Fig. 2.2. In this example, a noise corrupted received word y is

decoded to X2 because it is contained in D2. Linear block codes such as

Hamming codes (Section 2.2.1) are capable of correcting [(dmin — 1)/2J errors

and detecting up to (dmin — 1) errors but cannot do both simultaneously. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fact the BER for linear block codes can be approximated as [5]

(& W (
i =d mi n \ j = 1 / V

iR. E t

Nn
(2 .9)

u-min \ J — *

where (3itj is the input output enumerating function, indicating the number of

codewords of weight j generated by data words of weight i. This is referred to

as the dmin asymptote.

Figure 2.2: Decoding and dmin: d2 < dmin allowing y to be decoded as X2

2.2.1 H am m ing Codes

Hamming developed the first error control code. It first appeared in [60] and

was formally published in a separate article [32]. The parity checking of an

(n, k, dmin) Hamming code is described by an H matrix. Its n columns are

constructed of 2n~k — 1 non-zero vectors of length n — k. Each row describes

one parity check equation, where the bits included in the check are marked

with T . The columns can be swapped in order to form

H = [P T | In_k] (2.10)

where P is the section of the matrix corresponding to parity checks, and I is

an identity matrix. W ith the H matrix in the above form, a generator matrix

G can be written as

G = [Ik | P] (2.11)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that G and H are orthogonal

G • H t = 0 (2 .12)

Now the generator matrix G can be used for encoding 2k source words of

length k to 2k systematic code words of length n:

x = u • G (2.13)

while the parity check matrix H can be used for decoding received word y

s = y • H2 (2.14)

When y contains one error, its syndrome s is non-zero giving the location of the

bit in error. If y is correct, its syndrome will be zero. In the case of multiple

errors, it is possible for y to turn into another valid codeword rendering the

error undetectable. Since there are 2fc — 1 valid codewords, there will also be

2k — 1 undetectable errors.

E x ten d in g th e C ode

The Hamming family of codes have dmin = 3, capable of correcting one hard

error. To simultaneously correct 1 error and detect 2 errors, the distance can

be increased to 4 by adding an extra parity to check all n bits in the G matrix:

P i

G ext —
Pk

(2.15)

where pi: i — {1,.., k} is added to maintain even parity - if there are an odd

number of Is in the row, then pt is also 1, otherwise pi is 0. Consequently, the

parity check matrix has to be extended from H to H ext by

0
H p v f —

H

1 1
(2.16)

2.2.2 C onvolutional Codes and Trellises

The mapping of source word to codeword can be done over time through the

use of memory elements. This type of mapping is called convolutional encoding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and was first developed by [19]. A new variable, the constraint length is, is used

to describe the total number of delay stages in the encoder. An R = 1/2, is = 2

encoder is shown in Fig. 2.3. Source bits u enter from the left into memory

elements which cause delay D. Modulo 2 addition is done to give coded bits,

which are multiplexed to form x .

It is easy to visualize this encoding using a finite state machine (FSM) with

2" states, as shown in Fig. 2.4. The states are given by the contents of the

delay elements. Unfolding the FSM in time will produce a trellis as shown in

Fig. 2.5. The trellis describes all possible code sequences that can be generated

by the encoder. Each node in the trellis represents a state (5 € {0, ..,3} in

this case). Each edge represents a valid state transition showing the input that

caused that transition along with the corresponding output bits. There are

two edges leaving each state. The upper and lower edges represent inputs of

‘O’ and ‘1’ respectively. The encoding process starts in the all zero state and

is brought back to the all zero state with L termina,tion bits.

It is important to note that Hamming codes can be encoded with a tail-

biting trellis [10]. Such a trellis is time variant and its ending states are con­

nected to its initial states. A valid codeword starts and ends in the same

state.

*0

Figure 2.3: A simple R = 1/2, is = 2 convolutional encoder

2 .2 .3 L ow D e n s ity P a r ity C h eck co d e s

An important class of codes called LDPC codes [22, 47] have gained much

interest due to their incredible BER performance. An LDPC code is described

by a very sparse m x n H matrix. It is regular if there are exactly j number

of ones in its columns and k number of ones in its rows. To get a sparse H

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0/00
(I input/output

Q)
1 / 1 1 / V o / 1 1

Figure 2.4: A finite state machine describing possible state transitions and
input / outputs

0/00 0/00 0/00 0/00 0/00 0/00 0/00
state 0

state 1

state 2

1/10 1/10 1 /1 0 1 /1 0 1 /1 0 1/10 1/10
state 3

Figure 2.5: Trellis representation of a convolutional code with n — 5 and L = 2

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix, conditions such as j < k , j. k <C n, and n > 1000 are imposed. To

get better performing codes, the H matrix is made irregular by varying the

number of ones in each row and column. The best currently existing code is

an R = 1/2, n = 107 irregular LDPC code reaching within 0.04 dB of the

Shannon limit [12].

2.2.4 Turbo Codes

It is also possible to concatenate [39] two codes to form a hybrid third. A

parallel concatenation encoding scheme is presented in Fig. 2.6(a). Information

bits u are encoded to x = { u ,p i ,p 2} using two convolutional encoders, CC,

separated by an interleaver 7r. The interleaver is used to randomize the order

of incoming bits, spreading potential burst errors across its whole frame length.

"5 u l
§ —

yj= _pi_ MAPI
CCl

MAP2

decoded bits

Figure 2.6: Parallel Turbo (a) encoder (b) decoder

A corresponding decoding architecture, called a Turbo decoder [7], is made

up of two decoders (running the MAP algorithm explained in the next Section),

interleaver, and de-interleaver are shown in Fig. 2.6(b). Intrinsic bits u and

Pi are used by MAPI to calculate extrinsic information for MAP2. This

information is combined with intrinsic bits p 2 to form extrinsic information

for MAPI. The exchange of information between the two MAP decoders

give rise to the term iterative decoding [31]. This powerful feedback technique

continues until convergence or until a given amount of iterations has passed.

The sharing of information results in BERs approaching the Shannon Limit.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 D eco d in g on a Trellis G raph

2 .3 .1 M axim um Likelihood

The maximum likelihood (ML) decision rule is based on choosing a word x

that will maximize the sequence probability p(y|x). The Viterbi Algorithm

[66, 40] performs such computations on a decoding trellis using add, compare,

and select (ACS) operations.

2 .3 .2 M axim um a Priori

To maximize the probability of individually choosing the correct coded bits

Xk, the maximum a priori (MAP) decision rule performs

x k = argmaxp(xfc|y) (2.17)
X

The BCJR algorithm [4] does such computation on a decoding trellis. It

is a soft input soft output [6] algorithm which can be described as a function

of states s.

The a posteriori probability (APP) of arriving in state q at time k is given

by

p(sk = q\y) = p (sk = q ,y)/p (y) (2.18)

The above joint probability can be rewritten as

h (q) = p(sk = q, y " ,y +) (2.19)

= p(sk = q,y~)p(y+\sk = q,y~) (2 .20)

= p(sk = q ,y ~)p (y +\sk = q) (2 .21)
' --------------v--------------,v------------- v--------------'

oik i 'i) P k (q)

where vector y is broken into y + and y~ meaning y~ = {y i , . . ,y k} and y + =

{yk+1, j / n } - Note that (2.19) changes to (2.20) by the property that if sk is

known, events after time k do not depend on y~. The forward metric through

the trellis is a k and the backward metric is i3k. These metrics depend on

previously accumulated values and are calculated recursively as

a k(q) = a k-l(phk(P: q) (2 .22)
(p .?)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and

Pk(p) = ^Pk+i{q)lk+x{v,q) (2.23)
(p ,q)

where the sum is taken over all states connecting p and q.

The channel metric 7k(p,q) is calculated as

7kip, q) = p(sk = q\sk- i = p)p(yk\sk- i = p , s k = q) (2.24)

where the transitional probability p(q\p) is the a priori information and is

usually assumed to be equal for all transitions coming out of state p. The

conditional probability p(yk\p, q) is actually (2.4) since the transition pair p, q

is weighted by x k.

The output APP of an information bit is calculated as

p(uk = 0|y) = J 2 x k(q)/p(y) (2.25)
50

p(uk = l |y) = 5 ^A fc(<7)/p(y) (2.26)
51

where S0 = {(s*, = p, = q) : uk = 0} is the set of state transitions from

p to q caused by an input of one and S\ = {sk = p ,sk+i = q) : uk = 1}

is the set of transitions caused by a zero. The output is decoded as ‘0’ if

p(uk = 0|y) > p(uk = l |y), otherwise it is ‘1’.

The algorithm is summarized as:

1. Initialize a 0(0) = 1, aQ(p) = 0 for p ^ 0, /3o(0) = 1, jdo(q) = 0 for q ^ 0.

2. For each yk received, compute 7k{p,q) and iterate a k increasing k.

3. When the whole code word y has been received, iterate (3k decreasing k.

4. Calculate Xk to decode information bits.

The MAP decision rule is different from ML because it can accommodate

different a priori probabilities p{q\p)- When all input code bits are equiprob-

able, MAP and ML are equivalent [4],

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 D eco d in g on a Factor G raph

Much has been mentioned about decoding on the trellis representation of a

code. Another form of representation, which is widespread due to LDPC

codes, are called factor graphs [62, 67, 41]. In a factor graph, larger global

functions which depend on many variables are broken down into products of

smaller local functions which depends only a subset of those variables. The

H matrix of a code can be translated into a factor graph with only variable

and check nodes, as shown in Fig. 2.7(a). This is because the rows describe

which variables are involved in parity checking while the columns indicates

how many parity checks one variable is involved in. An edge is drawn from

variable node i to check node j only if hij = 1.

x1 x2 x3 x4

(b)

cycle

(a)

Figure 2.7: A factor graph (a) is transformed into (b) for implementation

The function of variable nodes is easier explained using equality constraints.

This is because the output of a variable node depends on all its neighbors

agreeing to some value. Not only that, intrinsic information has to be included

to correctly arrive at a reliable decision. Both of these concerns are taken care

of when the variable node is transformed into two equality nodes as shown in

Fig. 2.7(b).

Now, given two input probability distributions px — {Px(0),px(l)} and

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P y — { P y (f y , P y { 1)} the equality function performs

Pz{ 0)
Pz{ 1)

= 7
Px(0)p3/(0)
P*(l)Py(l)

(2 .27)

where a constant factor 7 is used to ensure pz(0) + p2(l) = 1.

The check function imposes even parity by:

Pz(0) Px{0)P y{0) + p x(l)py{l)
. Pz{ 1) . Px(0)Py(l) + P * (l)P y (0) _

(2.28)

Decoding on the graph follows the sum product algorithm [41] which, in

essence, has one simple rule:

The message passed from node a to node b on edge e is a function

of the messages sent to a by its neighbors excluding b

Message passing from node to node can happen in discrete time and informa­

tion is exchanged similar to that of a Turbo decoder. A typical algorithmic

approach might be to:

1. Initialize the equality nodes with messages (intrinsic information)

2. Pass messages from equality nodes to check nodes (extrinsic information

1)

3. Calculate parity node information and pass messages from check nodes

to equality nodes (extrinsic information 2)

4. Calculate equality node information and include intrinsic information on

outgoing equality messages to arrive at decoded bits

5. Do the above for a fixed number of iterations or until there is convergence

Decoding performance on a factor graph is said to be optimal if the graph has

no cycles otherwise it is non-optimal since marginal probabilities cannot be

calculated [41],

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Chapter Summary

In this chapter, important aspects about channel coding were discussed. A

communication system from the coding perspective was presented and topics

such as AWGN, demodulation, codes, and decoding were discussed. Decod­

ing algorithms forming the basis of the implementations in Chapter 4 were

also described. We now proceed to a description of current state-of-the-art

implementations of decoders.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Background on Analog
D ecoding and Circuit Theory

This chapter begins with a brief survey of analog decoder implementations to

understand possible architectures, speeds, power dissipation, and robustness

of analog decoding. Then the subject is narrowed down to introduce the core

circuits used in the implementation of this thesis. Concerns such as minimum

supply voltage, comparison of ideal to realized, and analog effects will be

addressed.

3.1 Analog Decoding Definition

We first define analog decoding by using Fig. 3.1. In a traditional receiver

system, as shown in (a), demodulated channel outputs y are quantized using

an analog-to-digital converter (ADC). These bits are then decoded using a

digital decoder. We can instead perform sample and hold (S/H) of y values

and pass these analog values into an analog decoder where decoding operation

is determined by the transient response of the circuits. Analog outputs are

compared to arrive at digital decoded bits, as shown in (b). In (a) and (b),

both decoders perform the same decoding algorithm. The analog / digital

boundary in (b) is pushed further downstream.

The reasons why we might consider doing this includes smaller silicon area,

and the elimination of the ADC. Even when we compare the S/H units, ana­

log decoder, and comparators as a whole against the digital decoder, we still

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a)

from channel d eco d ed b its

d ig ita lanalog

from channel d eco d ed b its

ADC

S/H

d ig ita l

d eco d er

analog
d eco d er

(b)

Figure 3.1: A comparison of (a) receiver structure using digital decoders and
(b) receiver structure using analog decoders

Table 3.1: Energy efficiency comparison between existing digital (top 2) and
analog decoders (bottom 4). ADC figures were not included for digital de­
coders.

Who Technology Power Throughput Energy/
decoded bit

Blanksby
et al. [9]

0.16/jm
CMOS

690mW@1.5V 500 Mbps 1.26 n J/b
core

Bickerstaff
et al. [8]

0.18/rm
CMOS

292mW@1.8V 2.048 Mbps 142 n J /b core

Gaudet et
al. [25]

0.35|Um
CMOS

185mW@3.3V 13.3 Mbps 13.9 n J/b
core, IO, pads

Winstead
et al. [70]

0.5/rm
CMOS

45.2mW@3.3V 1 Mbps 45 n J /b core,
IO

Moerz et
al. [50]

0.25/nn
BiCMOS

20mW@3.3V 160 Mbps 0.125 n J/b
core

Amat et
al. [3]

0.35/xm
CMOS

10.3mW@3.3V 2 Mbps 5 n J /b core,
IO, pads

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potentially take up less space. The ADC adds extra area. It is power hungry

(consuming on the order of hundreds of mW) and is potentially a throughput

bottleneck.

It is hard to make a direct comparison between existing analog and digital

decoders since they are implemented with different technologies, have differ­

ent functionalities, and operate on different codes with different algorithms.

However, we are interested in making a rough comparison in terms of energy

efficiency. We use the metric energy per decoded bit. That is, the amount of

energy required to decode one information bit. Table 3.1 examines this metric

for existing decoders. The top two decoders are digital and the bottom four

are analog. The technology, power consumption, and throughput achieved

are shown for each decoder. The energy per decoded bit is simply the power

divided by the throughput. We observe that there is indication for analog

decoders to be more energy efficient. However, what really tips the scale in

analog’s favor is when ADC power consumption is included in digital decod­

ing schemes. It is predicted that analog decoders consume up to two orders of

magnitude less in power for the same throughput [44].

3.2 Previous and Related Work

3.2.1 A nalog V iterbi D ecoding

Pioneering work was done in the late 1970’s to build Viterbi decoders using

analog circuits. Acampora constructed an analog Viterbi decoder [2, 1] from

discrete components operating on a constraint length u = 3, R = 1/2 convo­

lutional code. As shown in Fig. 3.2, the decoder takes two analog matched

filter outputs and stores them by sample and hold. Each value gets converted

into a differential pair to represent branch metrics. These values were added

to existing path metrics (stored by capacitors), compared, and selected (ACS)

using analog circuits. Survivor paths are stored in digital memory. There was

a direct mapping from the time invariant trellis section into analog circuits.

The construction of the decoder made use of microwave devices available at

the time. The decoder was tested at 50Mbps with estimated speeds of upwards

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to 200Mbps. The error correcting capability was ldB from ML at a BER of

10- 7.

yi y2

M l ’

.. M l ”~ | d e la y S /H

S /H

d e la y

d e la y

M l

to d ig ita l

p a th m e m o ry
M 2 ’S /H

M 22

M 2 ”

d e la y

d e la y

Figure 3.2: A trellis section mapped into circuits used for analog Viterbi de­
coding shown by Acampora [2]

In the early 1990’s work was done to apply analog decoding to digital mag­

netic recording devices. An analog CMOS Viterbi detector was designed by

Matthews et al. [48] for decoding class-IV partial response analog inputs. A

partial response channel is one in which the output is a weighted sum of the

present and previous channel inputs. If the weighted sum is a polynomial with

two specific terms then it is called a dicode. A class-IV decoder is actually

made up of two time interleaved independent dicode decoders. The archi­

tecture of the detector features analog path metric update and digital path

survivor storage. There was use of differential signaling, master and slave

S/Hs, summers and comparator blocks. The design was fabricated in 2pm

CMOS and the chip was tested at over 40Mbps. Its performance when com­

pared to ideal (Viterbi Algorithm) is about 0.5dB off at a BER of ICC7. The

power drawn from a 5V supply was 89mW.

A few years later, Shakiba et al. [59, 58] extended the work done by

Matthews by incorporating dynamic threshold level adaptation to a BiCMOS

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class-IV partial response decoder. The threshold levels adjust based on the

history of the received signal minimizing the effects of noise. By eliminating

analog feedback and an intermediate S/H stage in the path update, speeds of

up to lOOMSps per dicode were achieved giving an overall decoding rate of

200Mbps. At this speed, the BER was ldB away from the Viterbi bound at a

BER of 1CT6. The decoder consumed 30mW from a supply of 3.3V.

3.2.2 A nalog N etworks

In the late 1990’s efforts were made to adapt analog circuits to a new gener­

ation of codes. These codes, which include LDPC and Turbo codes, relied on

iterative decoding algorithms.

Hagenauer [29] was one of the earliest to endorse the use of analog cir­

cuits for soft in soft out decoding. In such a decoder, messages can be LLRs

represented as differential voltages. Using the nodes of a factor graph as the

starting point, a parity check involving two LLRs is described by a ‘boxplus’

operation,

L(u\) EB L(u2) = 2 tanh 1 tanh (3.1)

where L(ui) is defined by (2.6) in Section 2.1 and Uj are statistically inde­

pendent random variables. A variable node on the other hand performs a

summation of two input LLRs. The variable node output (i.e. the decoded

bits) can include intrinsic information as

L(x\y) = Lcy + L{x) (3.2)

where Lc — 4ES/N 0 is the channel state information and L(x) is the extrin­

sic information provided by other bits. Note that these are just log domain

versions of (2.27) and (2.28) from Sec. 4.1.

Both of the above equations can be realized by the generic decoder building

block shown in Fig. 3.3, where the connectivity in the E block decides circuit

functionality. For example, the connectivity ‘sum’ will allow two LLRs to be

added, while connectivity ‘boxplus’ performs

&Vllr,3 = 2Ut3 tanh 1

23

(3.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Normalization of metrics is done by (1) diode loads and (2) voltage level shifters

as indicated in Fig. 3.3.

L L R 2

LLR1 L L R 3 boxplus

I ' - r £ I

A V ,LLR3

A V ,A V .

Figure 3.3: Generic decoder building block operating on LLR voltages [50]

A BiCMOS implementation of these ideas was reported in [50]. The analog

core operated on an R = 1/2, B L = 16 convolutional code with a predicted

parallel decoding speed of 160Mbps. The performance of the decoder was

almost identical to its MAP simulation down to BER of 4-10”5. The power-

drawn for the analog core is 20mW on a 3.3V supply.

Despite this, a possible limitation of this topology might be its LLR voltage

dependence on temperature. By comparing (3.1) to (3.3), observe that L(itj) =

AVLLRi/Un■ The term Ut is the thermal voltage and is equal to k T /q , where

T is the temperature. In a small decoder, A V u m and AV/ ^ 2 come from close

proximity and are more likely to have Uti = Ut2 giving an accurate result for

A F l l r 3- In a large decoder, however, the origins of input LLR voltages might

be separated by larger distances and Uti 7̂ Ut2 - Thus input LLR voltages are

scaled by different Uts according to A V h r / U t and the resulting A V llr z is

inaccurate.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VLLR+ -------

Figure 3.4: LLR voltage to probability current conversion

The alternative is to first, convert LLR voltages into probability currents

and then perform decoding using these currents. Loeliger et al. [42] was first to

endorse such an approach. The conversion circuit mostly used is a differential

transconductor [30] as shown in Fig. 3.4. Given an LLR as A V l l r = V l l r + —

V l lr - i the output probability currents are

< 3 - 4 >
1 + e ut

VJLUL
(3.5)

1 + e ut

These probability currents are related to actual probabilities by p (0) = I q / I u

and p{ 1) = h / I u, where Iu is the unit current used to represent probability 1.

They called the basic decoder building block a sum-product module [45].

Shown in Fig. 3.5(a), this module could for instance represent a factor graph

node or a trellis section in which two discrete probability masses p x , 'Py operate

to yield a third, p z ■ The operation within the box depends on the trellis

structure requiring sums and products (hence the name). Now, given a trellis

with input nodes x, output nodes z, and branch metric y, the module performs

Pz (z) = 7 EE P x { x) p Y (y) f (x , y , z) (3.6)
x £ X y £ Y

where f (x , y, z) is a {0,1} valued function which is equal to 1 only when x and

z are connected by an edge y. The factor 7 is a normalizing factor used to

ensure that the probabilities add up to 1.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

py(y,) pY(yn)

f (x , y , z)

(a)

P ,(Z l)

Pz(Zk)

m,n

normalization

(b)

Figure 3.5: The basic decoder building block: (a) a sum-product module [45]
and (b) its implementation separated into functions

This module is implemented as three functions: product II, sum E, and

normalization. The E function is realized by the connectivity between wires.

The II and normalization functions are realized using Gilbert vector multipliers

[26] and Gilbert vector normalizers [28], respectively. A vector multiplier using

bipolar junction transistors (BJTs) is shown in Fig. 3.6. The output currents

drawn from the top can be shown to be

r _ I x j l y j (o 7 \
2hj ~ J J

2 ^ i j = i y> j

The input current (or output current) distribution is normalized to Iu by using

the circuit shown in Fig. 3.7. This circuit is one section of the vector multiplier

and can be viewed as vector by scalar multiplication. For example, given input

vector Iw, the outputs Ix are scaled by Iu according to

Ix,i = (3.8)
Z ^ i= l *x,i

Such an operation is like current amplification. The application of such a

multiplier and normalizing circuit to decoding is discussed in great detail in

[34, 33]. The Gilbert multiplier architecture does not depend on temperature.

This architecture, while similar to the core of Fig. 3.3, was reported two years

earlier.

Loeliger’s research group then went on to build several decoders, as de­

scribed in [44]. The first working prototype featured a (5,2,3) trellis decoder

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.6: A Gilbert vector multiplier [26]

I 1 Ix ,l x ,m

w ,

Vref

w ,m

Vref

Figure 3.7: A Gilbert vector normalizer [28]

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

built using discrete transistors on a printed circuit board. The output is a

probability value indicated by one LED in a row of LEDs. This effort was

followed up by two 0.8pm BiCMOS implementations of a (18,9,5) tail biting

decoder and a (44,22,8) quasi cyclic repeat accumulate decoder, respectively.

The (18,9,5) tail biting decoder was estimated to decode at 100Mbps consum­

ing 50mW on 5V supply. Unfortunately both IC designs suffered problems due

to the on chip digital-to-analog converter (DAC) and other I/O s used for test

support. Although transient simulations would indicate correct analog decod­

ing behaviour, they could not get any measurement results. Years later, they

fabricated an (8,4) Hamming decoder in 0.25pm BiCMOS using only CMOS

transistors [21]. The measured BER was almost identical to the simulated

ideal down to a BER of 10~3. This performance held at a supply of 0.7V

albeit with much reduced speed. The power consumption was below 50pW at

a 1.8V supply.

As hinted above, it is possible to implement CMOS versions of Figs. 3.6

and 3.7. However, these transistors have to operate in weak inversion with

Vgs < Vth■ The first working all CMOS analog decoder was built by Winstead

et al. [69]. It mapped directly from an (8,4) Hamming tail biting trellis into

0.5pm CMOS. This design followed the philosophy outlined by Loeliger et

al. [42] using sum product modules constructed from Gilbert cell multipliers.

The multipliers, in this case, relied on CMOS transistors operating in weak

inversion. Another change in this design was the emphasis on moving the

troublesome DAC circuitry used for test support to outside the chip. The

analog-in-digital-out interface created [76] would go on to become the universal

analog decoding interface used by many other designs of the group. Recently,

the largest decoder known to date based on a (16,l l) 2 Turbo product code, has

been designed and manufactured in 0.18pm CMOS [68]. Preliminary testing

recorded promising results.

In light of the architecture presented by Loeliger and the success of its

CMOS counterpart, an Italian research team has worked to apply these circuits

to disk drive channels. A Turbo decoder was designed in 0.18pm CMOS

technology and presented in [74], The decoder is constructed with an R — 8/9,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

punctured outer convolutional encoder, a 540 bit interleaver, and a precoded

R — 1, extended PR-IV channel as an inner code. It was predicted that with

a decoding rate of 400Mbps, 500mW would be consumed on a supply of 1.8V.

It was not clear whether the decoder was manufactured since no measurement

results were reported. Instead, the group focused on another project which

used the same architecture to produce an R = 1/3, B L = 40 UMTS Turbo

decoder [3]. The decoder was measured to operate on channel data at 2Mbps.

The performance curve was 0.5dB away from ML over a BER range of 10-1

to 10~5. When biased on supply 3.3V, it consumed 10.3mW (6.8mW for the

analog core).

The decoders mentioned up to this point have implemented the Viterbi [66,

40], Turbo iterative decoding [31], sum product [41], and MAP [4] algorithms.

Efforts have also been made to directly translate the Log-MAP [55] algorithms

into circuits.

Gaudet, and Gulak [24] designed an R = 1/3, B L = 48, configurable in­

terleaver analog Turbo decoder in 3M1P 0.35/rm CMOS. The idea of a con­

figurable interleaver allows for accommodation of different standards at power

up. The interleaver is built by using networks of crossbars [23], One method

of building such interleavers is to decompose a length L interleaver into two

factors P and Q. A 3-level crossbar network can then be built using those

factors. The crossbar itself is decomposed into a chain of digital shift registers

which control a grid of pass transistors. The decoder contains 4-state MAP

modules which operate on the Log-MAP algorithm [55]. The basic building

blocks are two circuits which operate in weak inversion as shown in Fig. 3.8.

The state metric circuit performs the MAX*(.x, y) = ln(ex + ey) function of

the Log-MAP algorithm and the branch metric circuit is a transconductor

similar to Fig. 3.4. These blocks are used to map the trellis into circuits as

given by the example shown in Fig. 3.9. The a priori and branch metrics are

added to previous state metrics. Then a MAX* function is taken. The decoder

had a measured decoded throughput of 13.3Mbps limited by test equipment.

Its BER was l.ldB off of simulated MAP at BER of 4-10-5. Its total power

consumption including I/O and pads was 185mW on 3.3V supply.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.8: The (a) MAX* and (b) a transconductor circuit are the building
blocks of a Max-Log-MAP decoder[24]

x yl y2

differential
transconductor

channel values

normalization
& multiple copies

a priori / extrinsic
information

Figure 3.9: The mapping of an example trellis section using MAX* and
transconductor circuits [24]

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another way to implement the Log-MAP algorithm is to use weakly in­

verted multiple input floating gate MOS (MI-FGMOS) transistors [51]. Given

a trellis section such as shown on the left of Fig. 3.10, the algorithm needs to

calculate the following for the a metric

afc(0) = log[exp{ak-i(0) + 7U(0) + 7C(0)}

+exp{ak^ (l) + 7U(1) + 7C(1)}] (3-9)

where a is the forward metric, j u is the source and y c is the code value for

interval k all represented in log probabilities. Such an equation can be realized

with the circuit topology as shown on the right of Fig. 3.10. Metric terms are

represented as voltages and are connected to an MI-FGMOS which performs a

summation and then overall exponential function to yield an output current.

One MI-FGMOS is needed for each exponential term. Two currents are then

added and are mirrored into a diode connected MI-FGMOS to perform a log

operation. The resulting output voltage V a k(0) is

V a k(0) oc log[exp{Vak_ i(0) + V7“(0) + V7C(0)}

+exp{Vak- 1(1) + 1/7“(1) + ^ 7 C(1)}] (3-10)

f f

a k - l(°) V Jp * a k(0))

a k_!(0) a k(0)

Figure 3.10: Using multiple input floating gate MOS transistors to implement
a trellis section performing the Log-MAP algorithm [51]

A single cdma2k 8-state a stage was implemented in 0.5/mn CMOS. The

stage was tested by successively applying new log probability values while

saving the accumulated a metric. Normalization was provided off chip. A

measured speed of 7.8 Mbps was achieved. Power consumption was 4.35mW

on a 3.3V supply.

31

V f (0)
v f(0)

vakH(0)

current mirror

H
H
—\ v ak(0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above presented background to previous analog decoding research.

Additional work in the area can be found in [35, 36, 63, 37, 13, 64, 65]. A

quick literature review indicates that the architecture proposed by Loeliger et

al. is widely adopted. The implementations in this thesis will build on this

momentum by modifying the sum product module to operate at low supply

voltages. The next section will introduce these circuits and discuss effects such

as mismatch, supply voltage, and accuracy when compared to ideal.

3.3 Low Voltage CMOS Transistor Behaviour

The construction of sum product modules is easily done in current mode where

sums are achieved by tying wires together and products are done using BJTs

or CMOS transistors operating in weak inversion. We choose to use CMOS

because it is widely available and has a lower cost of manufacturing. Other

advantages in using CMOS include low power dissipation, scalability, and easy

integration with digital circuits. The drawbacks of CMOS in weak inversion

include slower operation and greater mismatch.

go- Vds
zd /

Figure 3.11: A CMOS transistor defining terminals, voltages, and drain current

3 .3 .1 W eak In v ersio n M o d e lin g

In our analysis, we shall use the transistor model developed by Seevinck et al.

[56]. Using Fig. 3.11 as a reference, CMOS weak inversion occurs when the

gate to source voltage of the transistor is less than its threshold voltage Vgs <

Vth• The drain current Id can be characterized by a forward I f and reverse Ir

component. When its drain to source voltage is Vds > 200mU, the transistor

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is in saturation and If dominates giving I,i = If. When Vas < 200m V , the

transistor is unsaturated and Id = If — Ir . The forward and reverse current

components are

W
I , = T - Ia(V3) • ev",ur

r = H V ,) ■ e 'W " T

(3.11)

(3.12)

where In(Vg) is the current for a square (W = L) transistor when Vgs = 0.

The specifics of In(Vg) are described in [56]; note that it represents the body

effect. Ut — 25m V is the thermal voltage and W /L is the transistor width to

length ratio or aspect ratio. Solving for Vgs and Vgd,

Vgs — Ut • In

Vgd — Ut ■ In

¥ • H v9)

¥ • H V g)

(3.13)

(3.14)

O70 0*i

0.,

M l M 3 M 5

M l M3

M 2

i r
-_L Vref

(a) w ith ideal bias current (b) w ith bias current transistor

Figure 3.12: Gilbert current multiplier

3 .3 .2 C u rren t M u lt ip lic a t io n

The voltage to current characteristics can be used to analyze a CMOS Gilbert

current multiplier [57] as shown in Fig. 3.12. Current inputs arrive through

diode connected pairs and are mirrored to internal transistors. The require­

ments for correct operation are that transistors M3 through M5 be in satura­

tion. Vref is needed to lift the common mode voltage of point A so that the

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Oz0 Qsl

M6Ml M3 M5

I'Ll

M4M2

(m)

Figure 3.13: Analysis of the low voltage multiplier [56]

11
M2

A
M4

I,

n
M l

1
M3 M5

J f
M 6

_ L
i.

Figure 3.14: P-type low voltage current multiplier

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

drain of M4 has enough voltage to remain in saturation. When the above re­

quirements are satisfied, a KVL loop can be drawn encircling the gate to source

voltages of M l, M3, M5, M6 to form a translinear loop (TL). A translinear

loop is crucial in allowing us to perform a linear analysis [27] on the voltage

and currents traversing that loop. The analysis are as follows

(315>
cw ccw

where clockwise (C W) and counterclockwise (C C W) indicates the direction

of voltage or current flow. With Vgs given as (3.13), a summation of logs

translates into a product of currents as

I P < = I I ' < ^ 16)
cw ccw

By exploiting this property, and by seeing that Iu = Ozo + Ozl, the output

current pair in a Gilbert multiplier (Fig. 3.12(b)) can be shown to be

(3.17)

This circuit is actually a CMOS implementation of the vector normalizer shown

earlier in Fig. 3.7 with two inputs and two outputs.

3 .3 .3 L ow V o lta g e A n a ly s is

To reduce the supply voltage, we can remove Vref and replace it with ground

to get the configuration shown in Fig. 3.13 [56]. In this case, M4 is going to

be unsaturated while M3 and M5 will remain in saturation.

Now to derive the output current relationship, let all transistors have the

same (W/L) ratio or size ratio with the exception of M3, M4, and M5 which

have ratios of n, n, and m respectively. Following (3.15), from translinear loop

1 (TL1) we get

Vgsl + Vgsh — VgsZ + VgsG (3.18)

-1 0 0

i

lu

1

O

1

1

O

__
1

+0

1

I1

Uti ■ in

Ut ?, ■ In

Iz 0

¥ ■ W l)

o zO

n - f - I a (V g3)

+ Uf5 • In

-F t/7’6 • In

35

Oz 1

h i

T ■
(3.19)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Assuming local temperature matching Uti = Uto — Uta = Uto,

ho Ozl _ OzQ h i
Ia(Vgi) n-Ia{Vg5) n-Ia (VgA) /□(Vrg6)

Since Vgi = Vg3 and Vg5 = Vg6,

Similarly, the same analysis for TL2 gives

H V g x) m-Ia(Vg4) Ia (Vg2) n-Ia(Vg3)

ho ' h i h'OzO
m n

Performing KCL into point A gives

(3.20)

ho'Ozi — OzQ-h (3-21)

^ O z i = ° M ' Ih (3.22)
ho

V g s 1 + Vgd 4 — V g s2 + VgsA (3.23)
ho h i h Ozo 2̂ V)

(3.25)

h i + Oz o + 0 2i — 7/4 — m-Iu (3.26)

h i = rn-Iu - (O*0 + 0*i) (3.27)

Combining (3.22), (3.27), (3.25) and solving algebraically, we get

O*o

where n is the size ratio of M3 and M4, and m is the size ratio M5. The

minimum required supply voltage in such a configuration is the sum of the

transistor threshold voltage and the drain source saturation voltage [56].

It must be stressed that in the above derivation, local temperature match­

ing results in a cancellation of the thermal voltage from (3.19) to (3.20). Fur­

thermore, IniVg) terms are cancelled in moving from (3.20) to (3.22) due to

common gate voltages thereby eliminating the body effect. The result is a

robust current multiplier having the same benefits as the regular Gilbert mul­

tiplier but with slightly different output currents.

36

mn-L
(“) h + 7*o + 7*i

ho
h i

(3.28)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

If all size ratios in Fig. 3.13 are made equal (i.e. m = n = 1), the difference

between (3.28) and (3.17) is the presence of an Iu term in the denominator.

Now, let Iz = {ho , h i} , Iu — { I,,, In} form the input probability distributions

to a sum product module, and Oz — {Ozq,O zi } be its output. When we

perform products on two probability masses, the denominator in (3.17) will

yield a constant, whereas in (3.28) the denominator will vary with Iu. To fix

this, an extra term needs to be added as shown

O z o In IzO
O z i Iu + {Iu) + IzO + Izl . .

(3.29)

This additional term will show up as extra transistors in the product circuit,

and will be dealt with in the next Section.

3.4 Low Voltage Sum Product Modules

3.4.1 P roduct II functions

The construction of a low voltage II function is an extension of the basic

low voltage current multiplier [71]. A low voltage vector multiplier is shown in

Fig. 3.15. Extra transistors are needed to keep the denominator of the product

constant. The number of extra transistors added depends on the number of

symbols used. Two input probability distributions of M symbols each would

require M (M — 1) extra transistors when compared to the vector multiplier

shown in Fig. 3.6. These extra transistors add negligible area when M is

small. Notice that mirrored input current Ix,m sources are shown to indicate

their connectivity to the newly needed redundant transistors. The current

output / j j in the low voltage vector multiplier is given by

h i = . Ixj " n j (3-30)
Z ^ i= i * x , i ~r 2L q=l 1 y J

These individual current branches are intermediate product terms which can

be summed by connecting them together. Any unused terms can be tied to

Vd d -

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1̂,1 ̂1 ,n ^m,l ^m,n

extra
transistors

x ,m -lx,m

x,m

x,m

Figure 3.15: Low voltage current vector multiplier with added transistors to
create constant denominator [71]

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 .4 .2 N o r m a liz in g

As discussed in Sec. 3.2.2, normalization is needed to ensure that the out­

put currents sum to Iu (a current which represents probability 1). In the

low voltage sum product module, normalization also needs to perform current

amplification since there is heavy attenuation on output currents. This is be­

cause the denominator of the product term contains the sum of two probability

distributions. We use a P-type low voltage multiplier shown in Fig. 3.14 to

perform both functions. Let us analyze its requirements.

The input-output current relationship is still represented by (3.28) where

m is the size ratio of M4, and n are the size ratios of M3 and M5. From this,

. to amplify input currents

m -L
(^) In + ho + h i

m lu

> 1

1 7 1 T> — h + ha + h i n

(3.31)

(3.32)

(3.33)

(3.34)

2(n — 1) (3'35)

Therefore, if we make m = n, then any m ,n > 1.5 will satisfy (3.35). Output

currents will be larger than input currents preventing currents from one module

to the next from sinking into the noise floor.

the sum of the input currents are at maximum Izo + h i = At/2

T ^ m T . Iu
W ^ M i ^ M l “ I " nn 2

m(1 — —) >
n 2

n
m >

3.4.3 Factor Graph N odes

The nodes of a factor graph can be implemented by using the circuit shown

in Fig. 3.16. The equality node has output currents,

ho
h i

k. ho ho
h l h l

and the check node has output currents,

ho
h i

= kr I-xoIyO + h l^y l
ho h i T h i ho

(3.36)

(3.37)

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

0

pi check

H

equality

Vo

yi

hcO

Izl

A
H U HI

f t
H U

'L

HI

f t .

Figure 3.16: Factor graph node in one direction

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

where ke and kc are constants which depends on normalizer transistor sizing.

Two biasing parameters are used to ensure transistors within the node

operate in weak inversion: the supply Vdd and the unit current A conser­

vative estimate of the minimum required supply Vdd for a node constructed

using the low voltage multiplier is [72]

VDD > 0.211 + VTH,F + (3.38)

where V t h , p is the threshold voltage of a PMOS device, I u is the unit current,

and k is a process dependent parameter. If a node is manufactured in a typical

0.18/rm process and is biased at Iu = 1/rA, a supply of Vdd > 0.741/ is needed

to ensure correct operation. It was determined that this supply is about 0.4V

less than a node constructed with a regular Gilbert multiplier.

In a factor graph decoder, messages are exchanged bidirectionally and

nodes often have degree larger than 2. To get bi-directional functionality,

3 uni-directional nodes are placed in parallel. Bi-directional n-degree nodes

are constructed by placing n — 2 degree 3 nodes in series. This is summarized

in Fig. 3.17 and and follows closely to the description provided by [30].

Figure 3.17: The construction of an n-degree node

We now examine the difference between the outputs of these circuits and

ideal outputs as specified by the sum product algorithm. Even after normal-

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ization, the outputs of these modules differ from ideal. This difference varies

depending on V d d and /„ assuming transistor sizes are fixed. We can use a 3

degree bi-directional node, as shown in Fig. 3.18, to sweep for current outputs.

Each thick line indicates two wires - one for probability 1 and the other for 0.

Now using SPICE BSIM v3.1 simulation, for every Ix0 = 0.01 •/„ to 0.99•/„ we

sweep Iy0 = 0.01-/„ to 0.99-/„ and vary ItA and 7yl accordingly. For every pos­

sible product the outputs Iz0 and Izi are recorded and the difference between

circuits and ideal is calculated as

A M * = „ * (£) - , , * (* < “>) (3.39)

where Iz are realized output currents and pz are ideal output probability values.

We plot this difference on a two-dimensional graph and call it the error surface.

Such surfaces are shown in Figs. 3.19 for the equality node and 3.20 for the

check node. These nodes were biased at Vdd = 0.7V, Iu = 0.5/rA The A LL R

for the equality node ranges from -1 to +1 and for the check node, from about

-0.3 to +0.3. Note that a 0 difference is slightly gray (it is not white) as

indicated by the bar on the right side of the graphs.

y<0:l>

x<0:l>

CHECK 1

z<0:1>

y<0:l>

x<0:l>

CHECK 1

z<0:l>

y<0:l>

x<0:l>

CHECK 1

z<0:1>

Figure 3.18: An example bi-directional node used for characterizing differences
between circuits and ideal

The difference is most pronounced at the edges where realized values cannot

keep up with their ideal counterparts (or vice versa). This effect is compa­

rable to digital quantization of soft values. More importantly, the difference

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is small in the middle region (where Px=0.5 and Py=0.5) where deviations

could potentially flip the decision.

E Q U A LITY N O D E , V D D -0 .7 V , IU =0.5uA

0.1 0 .2 0 .3 0.4 0.5 0.6 0 .7 0.8 0.9
P x(0) p ro b a b ility A LLR

Figure 3.19: Equality node A L L R (VDD - 0.7V, Iu = 0.5/iA)

Observe that the check and equality node have symmetry down both di­

agonal axes (from Px=0, Py=0 to P x = l, P y = l and from P x = l, Py=0 to

Px=0, P y = l). However, the equality node has negative symmetry for the axis

going from P x = l, Py=0 to Px=0, P y = l. By negative symmetry, we mean the

difference on one side of the axis is negative on the other. Now look at (3.36),

(3.37), and Fig. 3.16. The explanation for this might be that the check circuit

uses all intermediate current terms and that the combination of these terms

are inherently symmetric. The equality circuit, on the other hand, discards

some intermediate terms which are affected by the connection of transistors

shown in Fig. 3.16. This is only speculation, however, and more study is

needed to understand the causes of these differences.

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C H EC K NODE, V D D-0.7V , IU-0.5uA

0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 OS ^
P x(0) p ro b ab ility A LLR

Figure 3.20: Check node A L L R (VDD = 0.7V, Iu = 0.5/xA)

3.5 Analog Effects

Recall that the analysis used to arrive at the output equations in Sec. 3.3.3

assumes two things. First, assuming local temperature matching, the Ut terms

gets cancelled out in the process thereby eliminating thermal effects. Second,

the cancellation of Io(Vg) terms removes the body effect. These results apply

equally to the Gilbert multiplier and its modified low voltage counterpart.

Therefore, it might be safe to say that inaccurate sum product operation

observed from within the analog decoder is mainly due to LLR differences

mentioned in the previous section and device mismatch.

Device mismatch happens when two identically drawn transistors are slightly

different due to process variations. These differences affect values such as W,

L, Vth and Id- On the subject of mismatch, there has been much discussion.

The first argument follows the philosophy of Mead [49] in realizing that analog

decoders are very much like neural networks. While each sum product module

is less than perfect, overall system-level accuracy is still achieved through par-

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

allelism and high connectivity. Second, the decoding process can be thought

of as a non linear process where dirty bits from the channel get cleaned from

input to output [42], Finally, we can think of the decoder as a channel value

ADC which, no matter what happens in its intermediate stages, the output

will either be a 0 or 1. So unless mismatch is high, its effects will be masked.

In fact, when local matching is good and global matching is bad, the BER

performance is still nearly identical to the ideal simulated curve [44, 25, 20].

However, [25] indicated that poor local mismatch could be detrimental to

longer length Turbo decoders using that particular architecture.

A specific mismatch study related to decoders constructed with the low

voltage multiplier was not done. However, previous mismatch studies will be

discussed to give an idea of how mismatch affects BER. In this section, we will

give a brief overview of known mismatch studies.

Figure 3.21: Mismatch can be characterized as an error in the mirrored current

In general these studies involved modeling mismatch as an error in the

mirrored current as shown in Fig. 3.21. The mirrored current can be written

as

where e is a random variable used to represent mismatch.

A probability based analysis was done by [44] looking at the possible contri­

bution of errors inside the product function n of a sum product module. These

errors include (1) diode connected transistors, and (2) the internal transistors

of the Gilbert matrix column not including the bias current sources, as shown

in Fig. 3.22. The output current with mismatch / ^ • is

E

M2 M4

(3.40)

J ' = / g i - / y j - (l + e t j) (l + €j)

hj X)fc=i(i t Cij)(i + ek)iyk
(3.41)

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

where i = 1 , , m and j = 1, , n are the column and row locations in an

m x n multiplier, and each e are independent random variables with mean

0 and variance ae. W ith ae = 0.15, the worst simulated (44, 22, 8) decoder

deviated 1.75dB from ideal at B E R = 10 3 [46]. The best decoder performed

better than ideal indicating a wide variation.

(1) (2) j
x̂.l x̂.m

Figure 3.22: Mismatch analysis in the Gilbert vector multiplier [44]

A recent mismatch study done by [73], used similar analysis to that of [46]

applied to a 2 x 2 CMOS sum product module as shown in Fig. 3.23. Internal

transistor column (1) and current source (2) mismatch were included to derive

the output:
, , = I x t - I y j • (1 + i j) (l + e t j) p 42)

Ixi(l + eitj) + Ixi(l + £jj)

where i , j £ {0,1} and i , j are complements to i, j. Density evolution analysis

was then done to estimate the effects of mismatch on an arbitrarily large LDPC

decoder (n —> oo). W ith mismatch at = 0.2, the performance loss in a very

large decoder constructed with sum product modules is around O.ldB. This

loss grows without bound as at > 0.3.

An interesting study was done by [20] to measure an (8,4) Hamming de­

coder constructed with discrete BiCMOS sum product components. Each chip

contained either a 3 degree equality or 3 degree check node. While each com­

ponent varied in performance, the overall decoder BER was almost identical to

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hoo hlO hoi h ll

V ref

V ref

Figure 3.23: Mismatch analysis in a CMOS 2x2 multiplier [73]

ideal down to B E R = 10“3. In fact, to mitigate mismatch effects, these sum

product modules were constructed using large transistor sizes (W = 144pm

and L = 5.6pm for both PMOS and NMOS devices). These results were later

replicated with a 0.18pm decoder chip [21] with smaller transistor sizes (W =

10pm, L = 1pm for NMOS) and (W = 30pm, L = 1pm for PMOS).

The effect of mismatch on BER can be summarized as being architecture

dependent. Mismatch effects on BER are less noticeable for small decoders

(short length codes) but could be performance limiting on longer length de­

coders.

Additional analysis done by [14] suggests that other analog effects, such

as thermal noise, flicker noise, and channel length modulation, are negligible

compared to device mismatch. These effects, however, might again become

large as the decoder length grows. We therefore say that implementation

losses are mainly due to device mismatch, strongly inverted transistors, and

I/Os.

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.6 Chapter Summary

In this chapter, a background on previous and related analog decoding work

was presented. That general description was then narrowed down to the spe­

cific architecture used in the implementations of this thesis. Then an example

of how to construct factor graph nodes using this particular multiplier were

presented. Its minimum supply voltage and comparison to ideal were quan­

tified wrapping up with a discussion of analog effects. We now proceed with

two (8,4) Hamming decoder designs.

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Im plem entation

This chapter describes the implementation of two sub-lV analog decoders.

The first section presents an (8,4) Hamming decoder based on a factor graph.

The second section presents an (8,4) Hamming decoder based on a tail biting

trellis. The third section describes the input-output (I/O) circuits used in both

of the above decoders. A final section presents SPICE simulations showing the

correct operation of both decoders.

4.1 An (8, 4) Hamming factor graph decoder

The G and H matrices of an (8,4) extended Hamming code are shown in (4.1).

Their corresponding source word to codeword mapping is shown in Table 4.1.

Extra rows in H (derived by summing existing rows) were added to increase

redundancy in the decoding algorithm. This extra redundancy is needed to

drive down the BER at high SNRs [44]. Fig. 4.1 shows simulation results using

three belief propagation programs. Programs (1) and (2) are llr.pearl.c and

pearl.c, both are from [52], Program (3) was created by our research group.

Programs (1) and (3) perform message passing using LLRs, while program

(2) passes actual probabilities. The BER for an 8x4 matrix using program

(1) performs worse than uncoded BPSK while the BER for the 8x8 matrices

closely follow the ML curve. There is a loss of 0.2dB for programs (1) and (2)

at high SNRs, and a loss of 0.4dB for program (3).

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Belief propagation simulation of (8,4) extended Hamming code

ML
uncoded BPSK
8x8 matrix (1)
8x8 matrix (2)
8x8 matrix (3)
8x4 matrix (1)

0.01

0.001

§w
a 0.0001

le -0 5

le -0 6

Figure 4.1: Belief propagation simulation of 8x8 and 8x4 H matrices of an
(8,4) Hamming code using three different programs (1), (2), and (3)

" 1 1 1 0 1 0 0 0 "
0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 1 ' 1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0 11 _ 0 0 0 1 0 1 1 1
0 0 1 0 1 1 0 1 11 — 0 1 0 1 1 0 0 1
0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1

1 0 1 0 0 1 1 0
0 0 1 1 1 0 1 0

The H matrix is translated to the factor graph of Fig. 4.2. Each row of the

H matrix is represented by a parity check node operating on values coming

from several equality nodes representing variables. Larger equality nodes are

used to calculate extrinsic information from check nodes, while smaller equal­

ity nodes include intrinsic information to calculate decoded outputs. The

connections between nodes are bidirectional unless indicated by arrows.

The factor graph is then mapped directly into circuits [53] as shown in Fig.

4.3. The realized decoder is made up of voltage in, voltage out modules or

blocks with the exception of EQUALITY1JOUT. Input differential voltages

(H j n (0) , Vin{ 1)) which represent probabilities enter EQUALITY5 and EQUAL-

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 4.1: Source word to code word mapping of the factor graph decoder

u X u X

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1

0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0

0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1

0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1

0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0

0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0

0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

u1 u2 u3 u4 x5 x6 x7 x8

© © © © © © © ©

Figure 4.2: The factor graph of an (8, 4) extended Hamming code

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

EQUALITY5
EQUALITY1

IOUT

Vm8<0:1>

CHECK4EQUAUTY5
EQUALITY1

IOUT

vin7<0:1>

CHECK4EQUALTY5
EQUALITY1

IOUT

Vin6<0:1>

CHECK4EQUALITY5

n
EQUALITY1

IOUT

v n5<0:1

EQUALITY5

Vin4<0:1>

CHECK4

EQUALITY1_
IOUT

EQUALITY1_
IOUT

EQUAUTY1_
IOUT

EQUALITY1_
IOUT

— EQUALITY5

Vin3<0:1>

EQUALITY5

Vin2<0:1>

EQUALITY5

Figure 4.3: The (8, 4) Hamming factor graph decoder

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IT Y 1J0U T . EQUALITY5 is a degree 5 bi-directional module. CHECK4 is a

degree 4 bi-directional module. Decoding takes place by voltage (or current)

exchange between EQUALITY5 and CHECK4 modules. Extrinsic values are

passed to EQUALITY1JOUT and included with intrinsic values to form the

decoder outputs (coming out of the top). The EQUALITY1JOUT module

is a unidirectional module with current outputs. These currents are fed into

output comparators for final bit decisions (see Sec. 4.3). After each codeword

has been processed, the interconnections between EQUALITY5 and CHECK4

are initialized by pass transistors inside of the RESET blocks.

We will take a top-down approach in describing the details of each block.

The EQUALITY5 node is constructed by placing three EQUALITY3 nodes in

parallel, as shown in Fig. 4.9. Each EQUALITY3 node is in turn made up of

three unidirectional nodes, EQUALITY1, as shown in Fig. 4.8. The EQUAL­

ITY!. node is shown at the transistor level in Fig. 4.7. This circuit is slightly

modified from the general structure of Fig. 3.16. The input diode connected

transistors are moved to the outputs turning the module into voltage in, volt­

age out to make connection between nodes easier. Similarly, the CHECK4 and

CHECK3 nodes follow the same design procedure and are shown in Figs. 4.6

and 4.5, respectively. The CHECK1 node is shown at the transistor level in

Fig. 4.4. The EQUALITY1JOUT node is simply an EQUALITY 1 node with­

out output diode connected transistors, as shown in Fig. 4.10. The RESET

block is made up of pass transistors as shown in Fig. 4.11.

Almost all transistors used in the decoding network were sized as W /L =

0.5/7,m/0.25/rm (slightly larger than the minimum allowable size ratio). An

exception to this rule occurs in the normalizers where the mirroring Iu transis­

tor and the two transistors directly beneath it were made 3.5/0.25 to meet the

requirement o fm ,n = 7 > 1 .5 . These transistor sizes were largely influenced

by the equality nodes. They have more attenuation due to intermediate cur­

rent terms being discarded. This is similar to trellis mappings, where larger

normalizing ratios are needed for modules which discard many current terms.

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Vu ^

VDDVDD

V out<0:

VSS VSS VSSVSS VSS VSS

,**500.0 If

V in1<0>

Vin1<1>

V in2<0:1> J}
V in2<1>

VSS

Figure 4.4: CHECK1: unidirectional check node

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

VIn 1 < 0 : 1 > ^ V o u t 3 < 0 : 1 >

V o u t 2 < 0 : 1 >

V i n 2 < 0 : 1 > V o u t 1 < 0 : 1 >

Vin 1 < 0 : 1 >
V i n 2 < 0 : 1 > c h e c k l

V o u t < 0 : 1 >

Vin 1 < 0 : 1 >
V i n 2 < 0 : 1 > c h e c k l

V o u t < 0 : 1 >

Vin 1 < 0 : 1 >

V i n 2 < 0 : 1 > c h e c k l
V o u t < 0 : 1 >

Figure 4.5: CHECK3: bidirectional 3-port check node

G e t r e s u l t s a f t e r 2 i t e r a t i o n s

■Voutl<0:1> Vin3<0:1>
■Vout2<0:1> Vin4<0:1>

Vin1<0:1>
Vin2<0:1 >

Figure 4.6: CHECK4: bidirectional 4-port check node

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Vin 1<0:1> ^

V in2<0:1> ^

VDD VDD

fo u t< t>

VSS VSSVSS VSS VSS VSS

V in1<0>

Vin 1< 1>

V in2<0>

V!n2< 1 >

VSS

Figure 4.7: EQUALITY1: unidirectional equality node

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Vin 1 < 0 : 1 >

V i n 3 < 0 : 1 >

V i n 2 < 0 : 1 >

V i n 1 < 0 : 1 > V o u t < 0 : 1 > --------V o u t 3 < 0 : 1 >
V i n 2 < 0 : l > e q u a l i t y 1

Vin 1 < 0 : 1 > V o u t < 0 : 1 > --------(► V o u t 2 < 0 : 1 >
V i n 2 < 0 : 1 > e q u a l i t y !

Vin 1 < 0 : 1 > V o u t < 0 : ! > --------^ V o u t ! < 0 : 1 >
V i n 2 < 0 : 1 > e q u a l i t y !

Figure 4.8: EQUALITY3: bidirectional 3-port equality node

V o u t 5 o f t e r 2 i t e r a t i o n s
V o u t l a f t e r 3 i t e r a t i o n s
V o u t 2 a f t e r 3 i t e r a t i o n s
V o u t 3 a f t e r 3 i t e r a t i o n s
V o u t 4 a f t e r 3 i t e r a t i o n s

3 4

: 1>
:1>

1 2 5

Figure 4.9: EQUALITY5: bidirectional 5-port equality node

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

If

■dRfiS

rQ r

ooT_̂ 5V

T*

si!

"L
s i !

T ,
e l l

T r

X .

1 1F"
J

J P
J

Figure 4.10: EQUALITY1JOUT: unidirectional equality with current outputs

(I

S3
S
s

Figure 4.11: RESET: pass transistors used for equalizing probabilities

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 An (8, 4) Hamming trellis graph decoder

The (8, 4) extended Hamming tail biting trellis is shown in Fig. 4.12. Its

trellis is time varying. The last trellis section connects to the first section. A

valid code word starts and ends in the same state. The generator matrix of

such a code is non systematic and therefore sourcewords might not show up

in codewords as seen in Table 4.2

G

1 1 1 1 0 0 0 0
0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1
0 1 1 0 0 0 1 1

(4.2)

Table 4.2: Source word to code word mapping of the trellis graph decoder

u X u X

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0

0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1

0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0

0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1

0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1

0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0

(a) trellis (b) sec­
tion 2

Figure 4.12: Minimal tail-biting trellis for (8, 4) Hamming code

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< <
3 3
cn a>

p p
v v

< <
3 3
~>J 00
A A
O O

V V

N>

A<0:1>A<0:1>

B<0:1> B<0:1>

a 2a 2

Figure 4.13: Block diagram of an (8, 4) Hamming trellis graph decoder

The construction of this decoder maps directly from trellis into circuits

implementing the BCJR algorithm [4]. However, the outputs from a tail biting

trellis are considered to be only approximate APPs [44].

An overall decoder block diagram is shown in Fig. 4.13. Each trellis section

is implemented as four modules (7 , O', (3, and A). Each module performs one

metric type calculation. Adjacent channel observations p(y\x) come into the

top 7 block and are combined into channel metrics. These channel metrics are

used in the recursive calculations of Oi and f3 values. The outputs of Ol and (3

blocks are then used to calculate approximate APPs. All blocks are voltage

in, voltage out with the exception of the A block, which has current out to

feed into output comparators.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on (2.24), the channel metric in each trellis section is calculated as

7k(p,q) = p{Yk\Xk) (4.3)

= P(yi\xi)p(yi+i\xi+l) i = 1 ,3 ,5 ,7 (4.4)

where the notation X and Y is used to indicate that the received word actually

consists of two bits (X = Xi,xi+x and Y = y%,yi+\) and they need to be

combined. The a priori probability is assumed to be equal for all bits and is

not included in the calculation. The implementation for this equation is shown

in Fig. 4.14. Two adjacent channel values L1<0:1> = p{yi\xi) and L2<0:1>

= p(yi+i\xi+i) are combined to get four distinct output combinations: Y <0>

= 7 (0, 0), Y <1> = 7 (0,1), Y <2> = 7 (1,0), and Y <3> = 7 (1,1).

The implementations of Ct and (3 blocks depend on the specific trellis sec­

tion. There are only two unique trellis sections and we label them as 1 and

2 since the first is the same as the third and the second is the same as the

fourth.

Now given trellis section 2 as shown in Fig. 4.12(b) and correspondingly in

Fig. 4.13, the forward recursive metrics, a k, are calculated using (2.22). The

resulting two a k equations for the second trellis section are

M O) = a/c-i(0)7fc(0,0) + a fc_i(l)7fc(l, 1)

+ a fc_1(2)7fc(l, 0) + a fe_1(3)7fc(0 ,1) (4.5)

a k{ 1) = a k- i (0)7fc(l) 1) + afc-i(l)7fc(0, 0)

+ajfc-i(2)7fc(0,1) + a fe_i(3)7fc(l,0) (4.6)

The circuit that implements the above equations is shown in Fig. 4.15.

The outputs are O ut< 0 :l> = M 0), M l) given inputs of Y<0:3> = 7*,(0, 0),

7fc(0,1), 7fc(lj0), 7fc(l, 1) and In<0:3> = a k- 1(0), a fc_ i(l), afe_i(2), a k- i (3) .

The connectivity is labeled on each transistor.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The backward recursive metrics, /?*,_1, are calculated using (2.23). The

resulting four fik-i equations for the second trellis section are

A - i (O) = /3fc(0)7fe(0,0) + /?fc(l)7*;(l, 1) (4.7)

^fc-i(l) = /3fc(0)7fc(l,l) + /3fc(l)7*(0 ,0) (4.8)

/?fc-r(2) = /?fc(0)7fc(l, 0) + /?fc(l)7fe(0,1) (4.9)

A - i (3) = /5fc(0)7fe(0,1) + /5fc(l)7fc(l, 0) (4.10)

These equations are realized using the circuit shown in Fig. 4.16. The outputs

are Out<0:3> = /3k-i(0), f3k-i(1), fik-i(2), (3k-i(3) given inputs of Y<0:3> =

7fc(0,0), 7fe(0 ,1), 7fc(l, 0), 7fc(l, 1) and In<0:3> = (3k{0), (3k{ 1), f3k{ 2), f3k(3).

Similar equations of a k and (3k- i metrics for trellis section 1 can be mapped

into Figs. 4.17 and 4.18 respectively.

Finally, the APPs are calculated according to (2.25) and (2.26). The com­

bined calculations over two states are

p(ui = 0|y) = ai(0)pi(0) (4.11)

p(ui = l |y) = ai(l)Pi(l) (4.12)

where i G {1,3}. The calculations over four states are

p(Uj = 0|y) - aj(0)(3j(Q) + atj(2)(3j(2) (4.13)

p(uj = l|y) - ^ (1) ^ (1) + ctj(3)Pj(3) (4.14)

where j G {2,4}. These equations are realized by the circuits in Figs. 4.19

and 4.20, respectively.

T ran s is to r sizing

All transistors in the multiplying matrix were sized to W /L = 0.5pm/0.25pm.

Many unused intermediate terms were needed to yield a constant denomina­

tor. Normalizing transistors were sized upwards to n — \0pm/0.25pm and

generally m ^ n .

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VDD VDD VDD VDD

Y<2> Y<3>

VSS VSS VSS VSSVSS VSS

I1 < 0 >

L1<0:1> ^

L2<0>

L 2 < 0 :1 > ^

L2< 1 >

VSS

Figure 4.14: 'y : channel metric calculation block

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<i:0>K>o4l

Figure 4.15: Oil : trellis section 2 forward metric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f a ,

Figure 4.16: (32 : trellis section 2 backward metric

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a t/>% s
iji . a ̂

aaA I _ - * .^ jlT-

 £35
a(i ‘yI r1w r

V i „ M
■51 3-~?

SSA

SSA

f o
sS

, 0
aaÂ i h -

F fi
Qg

vi n_~i

2 T lIJP
J - i 3 ^ ? !
fW —

*1
sS!

.SP4.

T_
if

\
T_
i.|

ig|!

~L

"L
sp

sP*l£l*-u
T.
si!

t i

A
<S>
V >- *
A
<S
V

+
A(O
V >-
+
A
(N
V

+
A

V

+
A
S
V >-
+
A
S
V

A
(Si
V

J

J

Figure 4.17: Ctl : trellis section 1 forward metric

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 p ;a i

2Pliii

CP|iu

CPjlu

< l :0 > lnO 4

Figure 4.18: (31 : trellis section 1 backward metric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VDD 4 ^

VSS 4 t

VDD VDO

VSS VSSVSS _ VSS i-35a.0fri * II* i=23? VSS VSS

Vin 1 <0:1 > ^

V in 2 < 0 >

V in 2 < 0 :1 > ^

Vin2<1>

VSS

F ig u re 4.19: A2: A P P ca lcu la tio n over 2 s ta te s

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GGA

3
>

0P(UJ QQA f 0P'UJ

0m O W 0PIUJ QQA * 0P'.w

CPJUJ

♦ ♦

Figure 4.20: A4 : APP calculation over 4 states

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

4.3 Universal I/O interface

Both analog decoders described in the previous sections used I/O interfaces

modified from [76, 75]. Shown in Fig. 4.21, the input is essentially an analog

serial-to-parallel converter. LLR voltages are sampled one-by-one until the

whole codeword is received. Then, these samples are transfered in parallel

into a second capacitor for holding. The held LLR voltages are converted to

probability currents and voltages for the decoding network to process. Outputs

are compared, latched, and shifted serially. These interfaces were designed to

be stackable and are used in other decoders designed by our group. To meet

the requirements an (8,4) Hamming decoder, two input S/H chains of length 8,

4 output comparators, along with a length 4 shift register chain were needed.
sam p le hold

VLLR+

sam p le hold

VLLR+

DOUT

SR

SR

Analog
Decoder

Figure 4.21: Universal I/O interface

The input S/H chain is shown in Fig. 4.22. Its timing is shown in Fig.

4.23. A high FRAME signal is needed only once at power up to reset the input

interface. This signal has to overlap the high clock pulse completely. Once

that is done, the input interface will enable SELi on every high clock pulse in

order to sample VL L Ri+ and V L L R i—, i = 1, .., 8. On SEL8, the holding

capacitor is discharged to clear out old samples. Then PIPE is used to transfer

in new samples. PIPE is also used as a decoder initialization/ reset signal if

reset is required. This process then repeats for the next codeword.

The output serial interface consists of a comparator and a parallel load

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SEL1B PIPEB

V
LLR+

or

V
LL R -

M1 = M4 = 480nm/180nm
S E L 8 B M2 = M5 = 440nm/180nm

M3 = M6 = 440nm/l 80nm

SEL8

~ T

r _r

M l M4 '

1 M2
, L M5

SELI

c ^
s ^ -X 90 fF M3 ’0’

PIPE

• tra n s is to r s ize s (W /L) ;

LLR to probability
conversion

“ T :
. 90 fF M6

_r
SEL8

LLR to probability
conversion

PIPE

~ r

_r
— SEL8

Figure 4.22: The input sample and hold (S/H) interface

Tronsient Response

♦: /e lk

>
- 100mln .

>
-100m

>
w - 1 0 0 m

^ 1.1

>
-100m

>
w -100m

>
w - 100m

□: / f ro m e (I/O reset)

▼: / s e l ln n n. _
a : / s e l2n n. . . n
» : / s e l8 [(hold capacitor reset)

. . n . . . n ..
i : /p ip e (decoder reset)

. . . n. . . . n ..
0.00 100u 2000 300u 400u 500u

time (s)

Figure 4.23: The input S/H interface timing showing sampling signals SELi
and hold signal PIPE

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shift register chain, as shown in Fig. 4.24. The internals of the comparator are

shown in Fig. 4.25. The comparator latches two current inputs representing

probability 1 and 0 into a bistable circuit. A decision in made and stored onto

a set-reset (SR) latch. This decision is then transfered into a shift register

when SEL7 is high. These decoded bits are then shifted out serially on the

falling edges of CLK after SEL7. The timing of the output interface is shown

in Fig. 4.26. This figure works in parallel with the input timing figure. The

first outputs arrive 2n cycles after the initial FRAME signal. After that, a

new set of decoded bits appear every n + 1 bits due to pipelining and decoder

reset.

Detailed schematics of the I/O interface are further shown in Appendix A.

Iin<l>
V I

— SEL7lin<0>
DOUT

LATCH

Iin<l>
V I

— SEL7lin<0>
DOUT

L ATC H

decoded bits

Figure 4.24: The output serial interface showing comparators and parallel load
shift registers

4.4 Design Methodology

In the beginning, belief propagation simulations were run using the parity

check matrix of the factor graph decoder to determine the approximate BER

for comparison purposes. Row operations were done on the parity check matrix

to produce an equal number of Is in the rows and columns. This introduces

regularity to make the design and layout process easier. Due to the time

constraints of the project, no analog decoder modeling in C or MATLAB

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M8 LATCHLATCH M7Ml M2

V - v +
M3 M9

LATCH
M4 M10

M6 M5 M il M12

transistor sizes (W/L)

M l = M7 = 0.6um/0.3um
M2 = M8 = 0.6um/0.3um
M3 = M9 = 1.0um/0.3um
M4=M 10 = 1.0ura/0.3um
M5=M11 = 1.5um/0.7um
M 6=M 12= 1.2um/0.7um

VI

VO

Figure 4.25: The internals of the output comparator with built in SR latch

Transient Response

1.0 Zj £!k
> 400m

-200mL

U 0 A .i /latch (comparator)

> 500m

- 100m

1.10 Z**17 (to outpiit reg)

5 0 0 m

- 100m

1.10 1: /dout
5 0 0 m

- 100m

D O N ’ T

100U

- valid output-

200U . 500U
time (s)

400u 500u

Figure 4.26: The output serial interface timing showing where comparator
latching LATCH and output shift register loading SEL7 occur

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was used. Similarly, an equivalent digital decoder was not designed. Instead,

each block starting from a basic unidirectional node was drawn in Virtuoso

and simulated mainly using Cadence Spectre. HSPICE was used to simulate

factor graph nodes for A L L R plots because it facilitated easier data collection

when used with Perl. These circuit simulators used the BSIM v3.1 model.

Once we were satisfied with simulation results, layout proceeded. There

was a direct mapping of transistor location into layout location to help us

identify transistors. The layout of each block was kept symmetric as possible

and differential signals were kept close to each other. Substrate contacts were

added wherever there was space. For example the layout of EQUALITY5

block in the factor graph decoder is shown in Fig. 4.27. The main goal at

this design stage was to minimize area. The layout was then extracted with

parasitic capacitance and were simulated and compared with schematic results.

If the results agree, then we proceed with integrating the smaller block into a

larger block. This process is repeated leading to the top-level decoder. Along

every step of the way, LVS and DRC was performed to ensure that the final

decoder matched the schematics. This methodology is suited to small designs

such as the two decoders built in this thesis, but might be inefficient for larger

length decoders because of the amount of manual routing required.

The simulation of individual blocks was done by looking at the impedance

of the next stage. Transistor sizes in the product circuit were made similar

for the ease of simulation. Normalizer widths were chosen to be multiples of

product transistor widths to aid in layout. Parametric analysis was used in

the beginning of the design cycle to sweep design variables. In theory, any

allowable size ratio used in the product circuit will create a working multiplier

and it is the sizing of the normalizer that matters most in this low voltage

topology. However, in simulation certain transistor ratios give better current

outputs and hence potentially faster speed. Once transistor sizes are chosen

and the overall decoder is put together, extracted simulations for functionality,

speed, and power can be done.

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.27: Layout of the EQUALITY5 block

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.5 SPICE Simulation

The analog portion of the factor graph decoder was simulated by injecting

probability currents and monitoring its output. To test the robustness of the

architecture, a supply of Vpp = 0.5 V and unit current bias of Iu = lOnA

were used. The probability values in Table 4.5 were injected into the input.

These probabilities represent a codeword of 00110111 where the error bit is

in bold. The output currents are displayed in Fig. 4.28. Even at such a low

supply voltage, the moderate error on bit 3 is corrected from ‘1’ to ‘0’ within

8 fis. Other current values are also shown. The legend is indicated on the

top portion of the graph. For example, 0 1< 1> indicates output probability

current of bit 1 being ‘1’. We should note that the settling time of the decoder

will depend on many factors including the noise dependent input probabilities,

error pattern, supply voltage, and unit current bias. Fig. 4.28 only gives us

an idea of what an error correction will look like; it is not accurate enough to

predict decoder operating speed.

Table 4.3: Probabilities used for the simulation of the analog portion of the
factor graph decoder

B i t# P(0) IQ (nA) h (nA)
1 0.7 7 3
2 0.6 6 4
3 0.3 3 7
4 0.2 2 8
5 0.8 8 2
6 0.3 3 7
7 0.2 2 8
8 0.1 1 9

The next step is to integrate the I/O s and simulate the overall factor graph

decoder, as shown in Fig. 4.29. In this simulation, both I/O s and decoder are

operating at a supply VDD = 0.8V. The input codewords are serially shifted

in as A V L L R = Vllr+ ~ V l l r - and this difference is represented through a

differential pair (V l l r + , V l l r -) - F °r convenience, we used a constant V l l r - —

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Tronsient Response

/0 1 < 1>
/03< 1>

/O1<0>
a: /O 3<0>

a: /02<1>
/ 0 4 < 1>

o: /O 2<0>
■ : /O 4< 0>14.0n

0.00
10u 20u0.0

time (s)

Figure 4.28: The current outputs of the analog portion of the factor graph
decoder (V d d = 0.5V, I u = 10nA) showing an error correction on bit 3

Tronsient Response

800m /dou t

400m

0.00

-INV \LID
, . i .

1010 00 11 111

800m /*rom e

400m

0.00

a : /V re fJn
800m /V |lr->"

> 400m

0.00

I I
_J0 iijo 1_1oxoc11111 ox11111 ooo

800m

400m

0.00
0.0 20u 30u

time (s)
40u

Figure 4.29: The simulated outputs of the full factor graph decoder (V d d —

0.8V, Iu = with 3 input codewords and their corresponding decoded
information bits

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 4.4: Factor graph decoder simulation summary

Supply VDD=0.8 V
Unit current Iu=lfiA
Power 283pW (simulated)
I/O elk 1 MHz (simulated)
Bit rate 444 kbps (simulated)
Energy per
decoded bit 0.64 n J /b (simulated)

0.4 V while varying Vl l r - between 0.08V and 0.72V giving A V L L R values of -

0.32V and 0.32V, respectively. This difference translates into probabilities very

close to 1 and 0 making input bits look like hard bits. When Vl l r - > V l l r + ,

the input bit is ‘1’ and ‘0’ vice versa.

It takes 8 clock cycles to shift in input values and another 8 cycles for

decoding. Outputs appear on the falling edge of the 16th cycle and are shifted

out on the falling edges of CLK. Only 4 information bits are shifted out and the

rest are set to ‘O’. Pipelining is achieved by shifting in a new codeword while

the present codeword is decoding. After the first 16 clock cycles, information

bits will appear every 9 cycles because 1 cycle is used for decoder reset. With

a bias current of lpA, a maximum clocking rate of 1 MHz was achieved giving

a decoding rate of 444 kbps since only 4 information output bits are recorded

every 9 clock cycles. Codewords of 10110110, 00111110, 11111000 were used.

Error bits are shown in bold. The corrected output information bits were 1011,

0011, and 1110, as shown in Fig. 4.29. The simulated power consumption for

this simulation setup was 275.2//W (analog) and 8.04//W (digital I/O) giving

a total of 283.2pW. These results are summarized in Table 4.4.

Similar figures were created for the trellis graph decoder. Simulation was

done on the analog portion of the trellis graph decoder to get Fig. 4.30. The

same supply of Vdd — 0.5V and unit bias current of /„ = 10nA were used.

The smooth curving current outputs resemble previous decoders using regular

Gilbert multipliers at higher supply voltages.

Fig. 4.31 shows the simulation for an overall trellis graph decoder. This

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Transient R esponse

•>; /Q2< 1 >/PLUS »: /O2<0>/PLUS A>4< t>/PLUS
7.0n

E r r o r c o r r e c t i o n o n b i t 1
5.0n

<
4 .0n

3.0n

2 .0 n 10u 20U0.0
tim e (s)

Figure 4.30: The current outputs of the analog portion of the trellis graph
decoder {Vdd = 0.5V, Iu = lOnT) showing an error correction on bit 1

T ro n s ie n t R e s p o n s e

8 0 0 m

4 0 0 m

0.00

8 0 0 m

4 0 0 m _ ,

. .
0.00 ;.

fIN V A L ID 0100 0100 1000

8 0 0 m

4 0 0 m

0.00

8 0 0 m

4 0 0 m

0.00

a: 'V'vf in /Vllr....in

r !. . 1. ; : :
1] o 11011 0X 001 1 1 1 1| 0X 1 1 1 1 J 0 0 0

1.0u 2 .0 u 3 .0 u
t im e (s)

Figure 4.31: The simulated outputs of the full trellis graph decoder {V d d =

0.8V, Iu = In A) with 3 input codewords and their corresponding decoded
information bits

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.5: Trellis Decoder Summary

Supply Vd d —0.8V
Unit current Iu- 1 j i k
Power 36/rW
I/O elk 10 MHz (simulated)
Bit rate 4.444 Mbps (simulated)
Energy per
decoded bit 0.0082 n J /b (simulated)

decoder was biased at a supply of Vdd — 0.81/ and a unit current Iu = lfiA

using the exact same simulation setup and I/O s as the factor graph decoder,

yet it is capable of faster clocking. The clock shown in the figure is running

at 10 MHz giving a decoding rate of 4.44 Mbps. Codewords of 10110110,

00111110, and 11111000 were decoded to 0100, 0100, and 1000, respectively.

The simulated power consumption for this setup was 24.14//W (analog) plus

12.26//W (digital I/O) giving a total of 36.4/TW. These results are summarized

in Table 4.5.

Simulations show that reset (or initialization) of the probability values is

critical in making the factor graph decoder work but not so for the trellis

decoder. A reason could be that the factor graph contains more processing

circuits which adds to its inertia while the trellis decoder has a simpler struc­

ture. In the trellis decoder, there are short feedback a and (5 loops which allow

it to grasp onto new values easily.

Minimum-sized pass transistors were used to equalize probabilities between

the connections of equality to parity check nodes, as discussed in Sec. 4.1. The

factor graph decoder simulations with and without reset are shown in Figs.

4.32 and 4.33. Output probability currents with reset have full swing for both

high and low currents whereas without reset, there is only good swing for the

higher of the two currents.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transient R esponse

d: /0ut31/PLUS
tt5u ▼: /Out30/PLUS

1.0u

500n

0.0
a ! /0ut41/PLUS

1-5u /Out40/PLUS

t e ■ :/RST

500m

30.0U 60.0U 90.0U
time (s)

Figure 4.32: With reset in the factor graph decoder differential output currents
have full swing

Tronsient Response

1.5u

1.0u

500n

0.0

1.5u

1.0U
500n

0.0
1.0

500m.

/Out30/PLUS
/0ut31/PLUS

0.00 30.0u

1
/Out40/PLUS

a : /Out41/PLUS

i

j

■: /RST

60.0u 90.0U
time (s)

120u 150u 180u

Figure 4.33: Without reset in factor graph decoder differential output currents
have only good swing for the higher of the two currents

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Chapter Summary

In this chapter, the low voltage multiplying architecture was applied to the

construction of two analog decoders operating at sub-lV supplies. The design

of an (8, 4) Hamming analog decoder based on the code’s factor graph and

the design of an (8, 4) Hamming analog decoder based on its tail biting trellis

graph were described. The I/O s used for both decoders were also included.

The design methodology and extracted SPICE simulation results were shown.

We now proceed to describing the BER test setup and BER measurement

results.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Testing

This chapter describes the testing of low voltage analog decoders. The first

section describes the test setup and equipment used in measuring BER. The

second section focuses on testing methodology. This is followed by measure­

ment results.

5.1 Test Setup

An analog decoder test setup is shown in Fig. 5.1. Describing clockwise from

the left side, a PC (silver box on top rack) is used to send test samples and

to record test results. A Keithley source/measure unit is used to generate a

bias current on the order of nA to jiA. A mixed-signal oscilloscope and multi­

meter are used for probing signals. The decoder is situated on a printed circuit

board (PCB) and is connected to two others, as shown in Fig. 5.3. We can

redraw the test setup as a block diagram (Fig. 5.2) to show the interaction

between main blocks: test program, FPGA board, test support board, and

device under test (DUT) board.

Channel observations, or samples, are sent from the PC via a USB interface

to the FPGA controller. The FPGA collects 16 bits to represent each sample.

This sample is applied to a DAC to form an analog channel observation. A

block length (BL) of 8 samples is needed for the (8, 4) decoder. Once 8

samples have been received by the FPGA, they are clocked into the decoder

chip situated on the DUT board. Time is given for decoding to take place.

Once decoding is finished, the results are captured by the FPGA board and

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—

Oscilloscope
eithle

Multimeter

Figure 5.1: Picture of analog decoding test setup, clockwise from left side, PC,
Keithley unit, oscilloscope, multimeter, and three PCBs (middle bottom)

sent back to the PC. Subsequently, new samples are applied. Test results

collected by the FPGA board do not have to be sent back to the PC in real

time. Instead, they can be stored until all information bits for one decoded

word have been received. The number of bits sent from the PC to the FPGA

will not be equal to the amount it receives back. In testing the (8, 4) decoder,

a total of 8 samples / BL x 16 bits / sample = 128 bits will be sent from the

PC to the FPGA. A total of 4 information bits will be sent from the FPGA

back to the PC. It is up to the test program on the PC to calculate the final

BER.

5 .1 .1 T est p rogram

The test program is a modified BER simulation program. It utilizes simi­

lar libraries but it also has communication routines to and from the FPGA

through the USB device. The program sends codewords corrupted by noise

and receives decoded bits. BER results are updated on a waterfall curve. The

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cSOX>
■dO
P .

§"
DAC

Decoder chip

Keithley 236 source

Mixed signal scope

RAM

FPGA

Other supplies

Multimeter

DUT board

Xilinx HE FPGA board

Power Supplies

USB

PC Program / GUI
- Start/Pause/Stop, BL
- BER curve
- errored bit
- sent word
- decoded word
- Monte Carlo
- Importance Sampling

Figure 5.2: An analog decoding test setup block diagram showing interaction
between blocks

FPGA Test
Support DUT

Figure 5.3: Picture of FPGA, Test Support, and DUT boards

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4: Screen capture of test program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

error probability of each bit is displayed on a graph. Just like in a regular

BER simulation, normal Monte Carlo analysis and importance sampling can

be used. A screen capture of the test program is shown in Fig. 5.4.

The test program goes through these steps:

1. Display ideal uncoded BPSK and Dmin asymptote bits

2. Send control data indicating start of test, testing speed, and block length

3. Randomly or deterministically generate a source word

4. Encode the source word to a code word using a generator matrix

5. Modulate code word to BPSK symbols {‘O’—>+1, ‘1’—>-1}

6. Add AWGN to modulated symbols according to SNR

7. Convert AWGN modulated bits to LLR values (3 scaleable options)

• Avg(a:) : scale LLRs so they average out to be x

• Receive(x) : scales LLRs to L L R = 4Es/N 0, N0 = x

• ReceiveScaled(a:) : scales LLRs so that the maximum LLR is x

8. Convert LLR values to DACCODE values (scaleable)

• Scale DACCODE using x where D A C C O D E = L L R ■ x + 8192

• The range for DACCODE is from 0 to 16383

9. Send DACCODE values to FPGA test controller and wait for specified

amount of time

10. Receive decoded bits from FPGA

11. Compare bit positions to determine bit errors

12. Update BER and individual bit error probability graphs

13. Repeat steps 3 to 12 until enough errors occur for each SNR

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.FROMDFC from DECODER
-TNT rivMUXMUX.

-M1IX_QUT<0:7>MUX
M U X _D A T A _ R < 7 :0 ^

to/from USB

ESI.

to DACDAC_C1 ,K

to USB
from USB

h a f ct

JNLCyC

to DAC
to DECODER
to DECODER

BUFGDLL

DOUT<7:0>

SR8RE

SLI

RST

WEB
ENB
ADDRB<7:0>
DIB<15:0>
CLKB
RSTB

WEA
ENA
ADDRA<8:0>
DIA<7:0>
CLKA
RSTA

RAMB4_S8_S16

DOB<15:0>

DOA<7:0>

RST
CLK

CONTROLLER

oo _ cq w tt- I5 eg q x * ><
DATA<7:0>
ADDRA<8:0>
ADDRB<7:0>
ENA
WEA

DAC_CLK
DEC_CLK
DACCLKB
FRAME

Figure 5.5: The FPGA controller consists of an FSM, RAM, and other support
circuitry

5.1.2 F P G A controller board

The Digilent D2E board contains a Xilinx Spartan HE FPGA chip with 200K

gates. The test controller, which is specified in VHDL, is made up of an FSM

and support blocks shown in Fig. 5.5.

We begin with a description of the support blocks. The SR8RE shift reg­

ister loads decoded bits serially and transfers its contents to RAM in parallel.

MUX is used to switch between samples applied to the DAC and decoded

bits from the decoder. IOBUF provides bus interface to the USB device.

BUFGDLL stabilizes the incoming clock for internal components. A dual port

memory component RAMB4_S8_S16 initially stores samples and later stores

decoded bits. The memory size of 4096 bits is adequate for storing up 256 x 16

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reset

receive control

from PC ,

receive samples

from PC

transmit results

to PC

apply samples

to decoder

receive results

from decoder

Figure 5.6: The FPGA controller FSM (simplified) showing 5 major states

bit DAC samples. We write to RAMB4_S8_S16 using port A only. Port B is

used to read out test samples during transfers to DAC.

The FPGA controller is an FSM as shown in Fig. 5.6. Its operation can be

grouped into five functions: receiving control values from PC, receiving test

samples from PC, applying test samples to decoder, receive test results from

decoder, and transmit test results back to PC. The operation of the FPGA

board (with the controller) is shown in Fig. 5.7. Its VHDL code is shown in

Appendix B.

The USB data path is limited to one byte which facilitates the need for

describing communication using one byte packets. Initially, the controller looks

for a start sequence that consists of 2 bytes as illustrated below,

11CC CCCC BBBB BBBB

where CC CCCC is a 6 bit number used to represent the clock divider (CLK_DIV),

BBBB BBBB is an 8 bit number which represents the block length (BL) in

bytes. CLK_DIV and BL are saved in hardware for later use. The above is

followed by 2n + 1 bytes of which 2n bytes are saved into RAM to represent

n code samples,

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ o

ts

o
x>

s3■o

Oh

•ohJCS

O
ex

Figure 5.7: FPGA controller timing diagram showing the transition of 5 major
states

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5
us

10
us

15
us

HHHH HHHH SSSS SSSSx XXSS SSSS2 XXSS s s s s 2„

where HHHH HHHH is a dummy byte which can be used to stop the test when

it is 0000 0000 otherwise testing proceeds normally. Two bytes are needed to

represent a 14-bit DAC sample. For instance, XXSS SSSS2 and SSSS SSSSi

are used to represent the first analog sample. X ’s are not used.

In non-pipelined testing, these samples are applied twice to the decoder.

The second application is only used for clocking purposes allowing the decoder

enough time to settle. Once 2n cycles have been clocked, decoded values are

shifted out and saved into RAM. These results are then sent back to the PC.

The process then repeats with the start sequence. This is the simplest, least

error prone approach and it is used in our test setup.

To speed up testing, a pipelining approach can be taken. In this case,

the start sequence can be sent once and then only samples are sent. Each n

samples are still represented by 2n + 1 bytes and HHHH HHHH is used as a

stopping mechanism. When one sample is being decoded another is shifted in

speeding up the testing process by almost a factor of 2. The test program on

the PC has to be modified accordingly adding more complexity.

There are four clocking mechanisms at work: INT_CLK, DAC-CLK, DEC.

CLK, and DEC.CLKB. The naming of these signals might be a source of

confusion since their roles have been changed in the course of debugging. An

on board 50 MHz clock enters the FPGA and passes through BUFGDLL

which consists of a DLL and buffer for clock skew management. The output

signal INT_CLK is a 50% duty cycle clock which is used by the controller,

RAMB4_S8_S16, RAM and SR8RE. DAC-CLK is used to read out new samples

from the RAM to the DAC. A slightly out of phase clock DEC.CLK is used to

latch samples into the DAC. Another slightly out of phase clock DEC-CLKB is

used to clock the analog decoder. The timing between three out of phase clocks

will vary based on CLK-DIV. For instance if CLK_DIV is 0, then DEC-CLK

will be one INT-CLK cycle out of phase with DAC-CLK. DEC-CLKB will

be one INT-CLK cycle out of phase with DEC-CLK. This is to ensure that

the DAC and the decoder has enough set up time to latch new values. The

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decoding clock is dependent on how fast INT-CLK can operate. Using the

standard 50 MHz input on the FPGA board for INT-CLK, the decoding clock

DEC_CLKB is capable of testing from approximately 155 kSps (CLK-DIV =

’11 1111’) to 8.333 MSps (CLK-DIV = ’00 0000’) at a 40% duty cycle. The

testing speed can be bumped up to 10 MSps if CLK-DIV operates on a 20%

cycle. DAC-CLK and DEC-CLK have 20% duty cycles. This is sufficient since

the RAM block is capable of operating at the FPGA speed of 50 MHz and

the DAC is capable of operating at 125 MSps [16]. DAC-CLK, DEC-CLK,

and DEC_CLKB only operate during decoding operation. The rest of the time

these signals are ‘O’.

5.1.3 Test Support Board

The test support (TS) board is an intermediate board that sits between the

FPGA controller and the device under test (DUT) board as shown in Fig. 5.3.

A schematic of TS board is shown Fig. 5.8. The purpose of this board is to

(1) provide digital to analog conversion (DAC) of samples, (2) provide voltage

supplies for the DUT, and (3) provide USB communications to the PC.

The AD9764 is a 14-bit Analog Devices DAC [16] which generates differen­

tial output currents which can be converted into voltage with resistive loads.

An output differential voltage is produced dependent on

.. 2 • D A C C O D E - 16383 32 ■ R l o a d „ ,r ^
Vd ,ff “ ------------ 16384 R ^ T ■ V™ F'° 0-1)

where D A C C O D E is a 14 bit input having the range of 0..16383, V r e f i o is

an internal 1.2V source, R l o a d is the resistive load, and R s e t is a 20 kfl

trimmer potentiometer used for setting the reference current. This voltage is

fed into a differential driver having a gain of [17]

VoUT,dm £ <»>V/w,dm

where R p and R g are feedback and input resistors respectively. The common

mode voltage V o c m of this differential buffer can be controlled via another

20kO trimmer potentiometer.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence, the swing of voltage samples are fully adjustable through D A C C O D E

and R s e t ■ For example, by choosing R l o a d — 10fJ, Rg — 10S7, R f — 20G,

lkfi < R s e t < 20kfi, we get

38A m V < \V0UT4m{max)\ < 768m V (5.3)

The upper limit of VouT,dm{max) can be extended by adjusting R s e t lower.

The maximum output differential swing was measured to be about 2V.

The board features variable voltage supply sources generated by an AD8544

part connected in voltage follower configuration. These sources can generate

voltages from 0.02 to 0.98 of Vdd with current levels depending on the output

voltage [18]. For example, with Vdd of 3.3V, the output voltage can range

approximately from 0.066V to 3.234V with output current levels of up to 18

mA when the output voltage is 2.3V. To support larger decoders or devices

consuming higher currents, an LM117 voltage regulator is also available. This

well known limiter produces voltages down to 1.2V with 1.5A of current.

These supplies will meet the needs of the low voltage decoder chip. The

chip needs analog supply voltages of approximately IV or less for its analog

portion. Its I/O s need a digital supply of 1.8V to be recognizable to the chip’s

standard library pads. The chip’s pads in turn need to be powered at 3.3V

to interface with the DAC and FPGA board. Hence, we need AVDD < IV,

DVDD = 1.8V, and PVDD = 3.3V for the decoder chip to function.

To ensure fast rise times for digital signals, digital buffers are used for

DAC_CLK, DEC-CLK, FRAME, and decoder output signals. Depending on

the testing speed desired, careful attention must be paid to phase delay times

tpd. This time will vary according to the supply voltage and capacitive load.

For example at Vdd of 3.3V and Cl = 50pF, the SN74LV125A [38] buffer will

delay the input phase by 13ns.

A USB module by DLP Design [15] is used by the FPGA controller for

communication to and from the PC. This device acts like a serial port when

connected to the PC. Data can be written to and read from the port using

a library available from the DLP’s website or other sources available on the

Internet. The FPGA controller uses four handshaking signals to communicate

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the USB device. The module features a 384 byte FIFO transmit buffer

and a 128 byte FIFO receive buffer. The module is capable of transferring

up to 8 Mbps (1 MBps) if data is transfered using these buffers. If individual

bytes are transfered, the speed of transfer is severely limited to 1ms per byte.

The module is bus powered meaning that it uses power from the PC. Its I/O

interface to the FPGA is separately maintained at 3.3V. The current test

setup will transfer and receive one byte at a time limiting measurement speed

to about 50 kSps since 2 bytes are needed to represent one test sample. Note

that this does not affect decoder testing speed since samples are applied to the

analog decoder according to CLK.DIV.

5.1.4 D evice U nder Test Board

Generally, chips will have different packaging and pin outs thereby necessitat­

ing a need for separate DUT boards. The DUT board holds the decoder chip

and contains switches if needed to test a multi decoder chip. Power supply

lines are routed to the test support board. Posts are used to attach a bias

unit current. Test points and probes can be added to make test tracking and

voltage probing easier.

5.2 Test Methodology

A number of variables needs to be tweaked in order to find the best operating

point for the decoder. These include supply voltage AVDD, bias current Iu,

and V d i f f on the test support board. It also includes LLR scaling, DAC

scaling factor DAC_SCALE, and decoder testing speed CLK_DIV in the PC

test program. A good starting point is to:

1. A d ju s t all su p p ly vo ltages AVDD, D V D D , an d P V D D m ak in g su re th e re

is voltage going into the chip and proper grounding.

2. Adjust Vocm °n the differential buffer equal to AVDD since this com­

mon voltage will be divided equally between the input sample and hold

capacitors.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

to FPGA board C/D expansion connector
C/D will provide the m ost direct path to
the FPGA

pins 1, 2, 3 are fo rG N D , Vu, and VDD=3.3V respectively,
Vu is unregulated 5V to 10V

CO
Cn

oq'£
a>
Cn
00
COocr
ct>

o
o
a>U)
COC0xsol-s
<ri“

ero
pI-Sa-

C 40 pin DIP header D 40 pin DIP header
Vu

14 data bits used to represent a
channel observation
11.. 1 —> p (l) = 1 - > IOUTA is maxed
00..0 - > p(0) = 1 - > IOUTB min 3.3V

24..17 16 15 14 13
D0..D7 ------------

DLP-U SII245M
AD9764 14-bit DAC SN74LV125A

15 16 17 18 19 20 21 22 23 24 25 26 27 28

■sj?

* V : :
caps = 0.1 uF USB device is self powered 5 V

I/Os are 3.3V

20k :
RSET' = 10 ohm + -0 .1 %LOAD

3.3V CLM 117

variable voltage sources

1 _ , _ H N
- I N 17

H ADJ
-IN +IN 240

lu t
20k: NC + IN 20k

20kHDUT -O U T - I N _ =IN

Jl
O +3.3V

probe point

3. Adjust R s e t to its minimum to give the input LLR V d i f f maximum

swing

4. Set DAC-SCALE to 4096 in software (a higher value will increase the

resolution for LLR values close to 0)

5. Set maximum CLK_DIV = 63 in software to get the slowest decoder

testing speed of 155 kSps. See Table 5.1 for other testing speeds.

6. Allow all decoded bit probabilities to be counted towards BER

Table 5.1: CLK_DIV setting and test speed

CLK-DIV Test Speed (Sps) (8,4) decoded bit rate (bps)
0 8.33 M 3.702 M
1 4.54 M 2.018 M
2 3.12 M 1.387 M
4 1.92 M 0.853 M
8 1.087 M 0.483 M
16 581 k 258 k
32 301 k 133.8 k
63 155 k 68.9 k

It is hard to describe a systematic test strategy since there are so many

variables at work to finding the sweet spot. Hence we can start from the above

and check its BER curve. Due to the poor performance of I/O interfaces used

in this design (as will be explained in the next section), there might only be a

few good performing bits. BER can still be calculated using these bits since

the statistics of one bit are independent from the next. The best performing

bit can be used as a best performance indicator. By adjusting Vo c m and R s e t

we can control the common mode and differential input swing, respectively.

We can also limit the swing of the DAC through controlling its upper and

lower bound in software while maintaining resolution through DAC-SCALE.

When these adjustments improve the BER, testing speed can be increased by

lowering CLK_DIV. To obtain good BER at faster speed, Iu and AVDD can

also be increased.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Measurement Results

Two chips were designed and manufactured in a 1P6M TSMC 0.18/im process.

The first chip, ICFAANN1, contains a factor graph decoder and an I/O test

loop, as shown in Fig. 5.9. The factor graph decoder was found to be defective,

but the I/O test loop was functional. The second chip, ICFAANN2, contains

a corrected factor graph decoder and a trellis graph decoder, as shown in Fig.

5.10. These two decoders share the same die but their I/O s and pads are

completely separated from each other. We describe the measurements for the

I/O test loop in ICFAANN1 and both decoders in ICFAANN2.

f a c t o r a r a p h
decoder 1'

Figure 5.9: Die photo of chip ICFAANN1 showing (1) factor graph decoder
and (2) test loop

5 .3 .1 I /O T est L oop

The test loop was constructed by feeding two sets of eight S/H chains into eight

comparators. The loop is tested by injecting A V im voltages and reading the

comparator output. Ideally as discussed previously, if V n a + > Vllr- , then a

‘0’ will be output by the comparator and otherwise, a T . However, problems

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.10: Die photo of chip ICFAANN2 showing (1) trellis graph decoder
and (2) factor graph decoder

such as charge leakage on S/H capacitors and comparator DC offset decrease

accuracy.

Capacitor charge leakage occurs mainly because an extra pass transistor is

added in parallel for discharging before holding a new voltage. Even when the

pass transistor is off, there will be leakage since the transistor is not a perfect

switch, as shown in Fig. 5.11. If this leakage is equal for both Vllr+ and

V l l r - , then it should not introduce overall errors. However, when too much

time is taken between sampling and transfer to hold, a significant amount of

leakage can occur reducing signal strength. This is more of a problem in larger

S/H chains. To lessen the effects of leakage, a larger capacitor can be used as

well as a smaller discharge transistor, leading to a slower chain.

Comparator DC offsets occur because of mismatch and can be defined as an

input voltage bias needed to bring the output differential voltage to 0 [54]. As

shown in Fig. 5.12, an offset on one input introduces errors when this input is

compared to the other. For example, if Vin{0) = 0.45H and V in (l) = 0.55F,

the output should be T since V in(0) < Vin(l). If there is an additional DC

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SELiB PIPEB

discharge

; \
/ \

SELi Iff PIPE 1
SEL8

Figure 5.11: Capacitor discharge through imperfect switches

offset of 0.2 V on Vin(0) then Vin(0) > Vin{ 1) and the output is ‘0:

V
OS, in

' V M ^ O r -
o u t

Figure 5.12: DC offset on a comparator

Capacitor discharge could potentially degrade input SNR for long block

lengths while comparator offset could give wrong bit decisions. Therefore

comparator offset is considered to be more serious. In fact, when the test loop

is characterized, only a few bits out of 8 perform according to uncoded BPSK

as shown in Fig. 5.13. In that figure two bits perform as expected and fall

almost on the uncoded BPSK curve while the others had BER rates which

were almost flat averaging around 0.5.

The implemented decoders using these interfaces will suffer similar prob­

lems at the input and output. In the factor graph decoder chip, 2 out of 4

output information bits were used to measure the BER. In the trellis decoder

chip, 1 out of 4 outputs were used. The unused bits appear to suffer from

comparator offset errors. They raised BER significantly when included in the

calculation.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

- 210

- 310

- 410a:
LU
CD - 510

- 610

- 710

10
10 120 2 4 6 8

E-b/N-0 (dB)

Figure 5.13: Measurement of test loop using error probabilities on 2 out of 8
bits

5.3.2 Factor Graph D ecoder

We first characterize BER results according to varying test speed (or I/O CLK)

and unit currents Iu while holding other variables constant. The measured

curves for varying test speed with Vdd = 0.8F and /„ = 10/i/i are shown in

Fig. 5.14. A slower I/O clock speed allows the curve to move closer to ML. The

reason is tha t it allows the decoder more time to settle and arrive at a correct

result. Now, if Iu is varied while keeping VDD = 0.8F and test speed=155

kSps, then we get the set of curves shown in Fig. 5.15. The results seem to

indicate that a larger Iu value is better for BER. This is because a larger Iu

value contributes to faster settling time. Recall that the maximum allowable

Iu value depends on the supply and has an approximate upper bound dictated

by (3.38) in Section 3.2.2. The relationship between V d d , I u , and test speed

can be summarized by Fig. 5.16. To get the same BER curve at different

Vd d , both Iu and test speed need adjusting. A decoder with Vpp = 0.8E and

current bias Iu — 10jiA can operate at almost an order of magnitude higher

speed than a decoder with Vd d — 0.5K and Iu — 0.5/xA.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Varying Test Speed with (VDD=0.8V, Iu=10uA)
0.01

ML
uncoded BPSK

speed=8.33MSps
speed=1.087MSps

0.001

_ 0.0001

t
Oh

1hO
W le-05
m

le -06

le-07
6.55.5 7.5

Eb/No fdB)

Figure 5.14: Factor graph measurement results with varying test speed

Varying Iu with (VDD=0.8V, Test speed=155kSps)
0.01

ML -
uncoded BPSK —

Iu=750nA -
Iu=luA

Iu=1.5uA -
0.001

0.0001
•sx>o

le-05

le-06

le-07
5 5.5 6 6.5 7 7.5 8 8.5 9

Eb/No IdBl

Figure 5.15: Factor graph measurement results with varying Iu

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Varying VDD with varying Iu and test speed (TS)
0.01

ML
uncoded BPSK

VDD=0.5V, Iu=0.5uA,TS= 155kSps
VDD=0.8V, Iu=10uA, T&=1.087MSps

0.001

0.0001

X>
B

OhUO
M le-05
m

le -06

le-07
5.5 6 85 6.5 7 7.5 8.5 9

Eb/No IdBl

Figure 5.16: Factor graph measurement results with varying Vdd

0.9

0.8

0.7

>
Q
£

0.6

0.5

0.4
0.1 1 10

Test Speed (MSps)

Figure 5.17: Factor graph measurements showing V d d v s . test speed and SNR
loss (measured at the highest available SNR)

102

Eb/No loss vs. VDD and Test Speed

x x
0 63dB 0.69dB 0.82dB

x
0.8 ldB 0.94dB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Varying VDD with varying Iu and test speed (TS)
0.01

ML — h
uncoded BPSK —

v i- 'J - z t-z .u v , i . u i u u n , i l>— i

VDD=0.8V, Iu=10uA, TS=8.33MSps
0.001

g 0.0001

le-05

le -06

le-07
5 5.5 6 6.5 7 8.57.5 8 9

Eb/No tdBl

Figure 5.18: Trellis graph measurement results with varying Vdd

Eb/No loss vs. VDD and Test Speed

>
Q

0 .43dB 0 .69dB

0.95dB

Test Speed (MSps)

Figure 5.19: Trellis graph measurement showing Vdd v s . test speed and SNR
loss (measured at the highest available SNR)

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Comparison of FG and TR decoders (VDD=0.8V, Iu=10uA, TS=8.333MSps)
0.01

ML — I-
uncodedBPSK —A

0.001

a 0.0001

W 1 e-05

e-06

le-07
5 5.5 6 6.5 7 7.5 8 8.5 9

Eb/No IdB)

Figure 5.20: Trellis vs. factor graph decoder measurements at V d d = 0.81/

Comparison of FG and TR decoders (VDD=0.5V, Iu=0.5uA, TS=155kSps)
0.01

ML — *-
uncodedBPSK — &

0.001

a 0.0001

W 1e-05

le-06

le-07
5 5.5 6 6.5 7 7.5 8 8.5 9

Eb/No I'dB'l

Figure 5.21: Trellis vs. factor graph decoder measurements at Vdd — 0.51/

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The measured BER curves are 0.6dB to ldB off of ML decoding. The losses

are larger at lower Vdd and higher test speed as shown in Fig. 5.17. The x-

axis used to indicate test speed is in log scale. At low V d d , the allowable test

speeds are significantly lower. For example, if the speed is increased beyond

500 kSps with V d d — 0.5V, the BER starts to approach uncoded BPSK.

From this crude observation, it can be said that valid measurements can only

be recorded in the top half triangle of the graph.

5.3.3 Trellis Graph D ecoder

The trellis graph decoder can be characterized in the same way as the factor

graph decoder. A slower testing speed and higher Iu will improve BER since

they will allow the decoder more time to settle. The interplay between these

variables are shown in Fig. 5.18. A small drop in Vdd needs a larger drop in

Iu and test speed to get the same BER curve.

Available measurement results are shown on Fig. 5.19. We can compare

these results to the factor graph decoder’s results in Fig. 5.17. At Vdd — 0.8V

and test speed = 8.333 MSps, the trellis decoder has a loss of 0.69dB while the

factor graph decoder incurs 0.82dB. This is better shown when we plot both

their measured results on one graph as shown in Fig. 5.20. The preliminary

results suggest better performance for the trellis decoder at higher supply

voltages (accompanied with higher test speeds). This reinforces the SPICE

simulation results mentioned in the previous chapter where the trellis decoder

was simulated using a clock speed of up to 10 MHz. A comparison can also

be done at Vdd = 0.5V and test speed = 155 kSps shown in Fig. 5.21. In

this case both curves look comparable up to SNR = 7dB. The factor graph

curve performs better at SNR — 8dB. However, these comparisons might not

be reliable due to the small number of measurements that we have. More

results are needed to solidify these observations.

A summary of both decoders is given in Table 5.2. The power consumption

of the analog portion, digital I/Os, and pads cannot be measured with the

equipment we currently have. The Keithley source/current measure unit is

already used to bias the unit current. Another Keithley is needed to measure

105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

currents less than 1mA accurately. When a regular power supply is used, the

current recorded is less than ‘0.000A’ indicating that it less than 1mA. The

analog portion, digital I/Os, and pads measured ‘0.000A’ each. Prom Spectre

simulation results, the factor graph analog portion and digital I/O s consumed

less than 300/iW. The trellis graph analog portion and digital I/O s consumed

less than 40/j W. Using these simulated results and the fact that measured

current consumption of each component was less than 1mA, we conclude that

power consumption is less than lmW for each decoder (with I/O s and pads

included).

Table 5.2: Decoder Implementations Summary

Factor graph Trellis graph
Code (8,4,4) Hamming (8,4,4) Hamming
Application areas LDPC codes Turbo codes
Technology TSMC 0.18/mi 1P6M TSMC 0.18yum 1P6M
Analog Area 100 x 275 fim 2 (1336

nfets, 640 pfets)
50 x 50 fim 2 (328 nfets,
184 pfets)

I/O Area 58 x 275 /rm2 (468 nfets,
443 pfets, 32 mimcaps)

58 x 275 /im2 (468 nfets,
443 pfets, 32 mimcaps)

VDD 0.5V to 0.8V (tested) 0.5V to 0.8V (tested)
Power < lmW < lmW
Clock speed up to 8.3 MSps up to 8.3 MSps
Information rate up to 3.7 Mbps up to 3.7 Mbps

5.4 Chapter Summary

In this chapter, we described the low voltage analog decoding test setup by

breaking it up into individual submodules and explaining its operation. We

described the test methodology used to make BER measurements. Then BER,

measurement results were presented for two implemented decoders operating

at below 0.8V. We proceed now with the conclusion of this work.

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusion

6.1 Summary of Completed Work

We have presented analysis and IC test results for a low voltage sum product

circuit with extra transistors added to produce a constant denominator. The

minimum allowable supply voltage using this circuit is dependent on the bias

unit current and specific process parameters. The number of extra transistors

added depends on the number of symbols used (they add negligible area when

the number of symbols is small). These sum product circuits eliminate the need

for reference voltages. The bias of the decoder comes down to just simply the

supply and unit bias current.

We used the low voltage sum product circuit to construct two (8,4,4) Ham­

ming analog decoders capable of operating below 0.8V. These decoders operate

on small codes and are used as proof of concept. The structures implemented

can be applied to larger sized decoders operating on LDPC and Turbo style

codes. We have shown that these decoders can operate down to Vdd — 0.5V.

The reduction in voltage needs a larger reduction in unit bias current and

much reduced speed to get similar performance. More measurement results

are needed to back up this claim. When operated at Vdd — 0.8V, however,

both decoders are capable of decoding up to 3.703 Mbps.

The power consumption cannot be measured with the equipment we have.

This is because the current drawn on all power supplies (pads, I/O , and analog

decoder) were all less than 1mA. Hence we estimated the power consumption

to be less than lm W but it could actually be less than 0.5mW.

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

We have also designed an implemented an inexpensive low voltage analog

decoding test bench using off the shelf components. This test bench is capable

of testing up to 8.333 MSps (coded). Tests are controlled by a computer

program which displays BER measurements in real time.

We have further proven the robustness of analog decoding against analog

effects. The reason is threefold. First, we are operating in CMOS using a

sub-IV supply where analog effects run amuck. Second, unlike many other

previously designed decoders, we used transistor sizes only slightly larger than

minimum. These smaller sized transistors are more prone to mismatch. Third,

the emphasis in layout was to get the smallest possible die area by packing

transistors as close as possible. The result is that adjacent signals couple

more easily to each other adding further interference. Despite this however,

the decoder was still able to perform with only 0.5dB to ldB SNR loss when

compared to ML decoding.

6.2 Future Work

More needs to be done to better understand low voltage sum product cir­

cuits and analog decoding in general. This section looks at some problems

starting with the ones we encountered and working outward to a big picture

perspective.

First, there were problems with the I/O interface which gave incorrect

output bits. More design and characterization needs to be done to this end

to find reliable I/O circuits. It is critical to get comparators working properly

since they can give incorrect decisions. More effort can also be spent on the

input S/H to mitigate effects such as charge leakage on longer length chains.

We used a supply of 1.8V for the I/O s to interface with 3.3V pads. Perhaps

lower supply I/O s operating at below IV could be designed to work on the

same voltage as the analog decoder. Now imagine if this decoder exists in a

system-on-chip environment. Is it possible for digital decoders to operate at

below IV as well? Can they use the same voltage?

Providing a supply voltage might be easy, but what about the bias current?

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

How can we get an accurate, standalone current on the order of fiA l The

current is even more crucial when the supply voltage is lowered since only a

limited amount is allowed before the sum product module ceases to operate.

Now let us look at the low voltage sum product circuit. A question that was

raised is what is causing the negative symmetry in the equality node. What

happens when so many current terms are discarded? It might be helpful

to model this in a simulation to see what effect it has on the BER. It was

also observed that in the middle regions, where probabilities are 0.5, there

is almost no difference between the implemented and ideal LLR. Perhaps a

simple simulation study can be done to find out where bit flipping occur.

A similar probability-based mismatch study can be done on decoders built

with low voltage sum product circuits to find out how mismatch affects the

BER. The mismatch can be modeled as a difference in mirrored current as men­

tioned in Sec. 3.5 (modeling methods which looks at actual SPICE parameters

might be too detailed and cumbersome for simulation). It is also possible to

add a few extra transistors outside of the decoder during manufacturing runs

as was done by [21]. Measurements can be made on these transistors to get

an idea of mismatch levels specific to that process. The transistor behaviour

can also be used to further fine tune SPICE models.

This all ties into finding the reason for SNR losses when compared to ML.

Studies can be done to quantify how much loss is attributed to each aspect

of analog decoding. They include transistor sizing, I/O interface, test setup,

implementation (algorithm), and floating point losses (analog metrics do not

have floating point precision).

Having demonstrated that low voltage analog decoders are feasible, their

attractiveness to mobile devices becomes apparent. The characterization of

these decoders must use practical channel models to get an idea of real world

conditions.

One of the overlooked areas is the testing of analog decoders. To this end, a

few researchers have been looking into how to test such decoders with efficiency

and accuracy. Currently, efforts are made to add extra circuitry to test regular

analog decoders that use higher supply voltages. These extra circuits should

109

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

not add significant overhead since that will undermine the advantages of analog

decoding, namely, the principle that simple transistor arrays are used for signal

processing and these arrays take up minimal area. If there is enough interest

in regular voltage analog decoders then similar steps should be taken to test

low voltage analog decoders.

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] A. S. Acampora. United States Patent 4,087,787, 1978.

[2] A. S. Acampora and R. P. Gilmore. Analog Viterbi decoding for
high speed digital satellite channels. IEEE Trans, on Communications,
26:1463-1470, Oct. 1978.

[3] A. G. Amat, G. Montorsi, S. Benedetto, D. Vogrig, A. Neviani, and
A. Gerosa. An analog Turbo decoder for the UMTS standard. In IEEE
Int. Symp. on Information Theory, page 296, Chicago, IL, June 2004.

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimizing symbol error rate. IEEE Trans, on Information
Theory, 20:284-287, Mar. 1974.

[5] S. Benedetto and E. Biglieri. Principles of Digital Transmission: With
Wireless Applications. Plenum/Kluwer, New York, NY, 1999.

[6] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. A soft-input soft-
output APP module for iterative decoding of concatenated codes. IEEE
Communications Letters, 1:22-24, Jan. 1997.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: Turbo codes. In IEEE Int. Conf. on
Communications, pages 1064-1070, Geneva, Switzerland, May 1993.

[8] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup,
G. Zhou, L. M. Davis, G. Woodward, C. Nicol, and R.-H. Yan. A uni­
fied Turbo/Viterbi channel decoder for 3GPP mobile wireless in 0.18-/J
CMOS. IEEE J. of Solid State Circuits, 37(11): 1555-1564, Nov. 2002.

[9] A. J. Blanksby and C. J. Howland. A 690 mW 1-Gb/s 1024-b, Rate-1/2
Low-Density Parity-Check Code decoder. IEEE J. of Solid State Circuits,
37(3):404-412, Mar. 2002.

[10] A. R. Calderbank, G. D. Forney Jr., and A. Vardy. Minimal tail-biting
trellises: the Golay code and more. IEEE Trans, on Information Theory,
45(5):1435-1455, Jul. 1999.

[11] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power CMOS
digital design. IEEE J. of Solid State Circuits, 27(4):473-484, Apr. 1992.

[12] S.-Y Chung, G. D. Forney Jr., T. J. Richardson, and R. Urbanke. On the
design of low-density parity-check codes within 0.0045 dB of the Shannon
limit. IEEE Communications Letters, 5:58-60, Feb. 2001.

I l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[13] N. S. Correal, J. Heck, and M. C. Valenti. An analog Turbo decoder for
an (8,4) product code. In IEEE Midwest Symp. on Circuits and Sys.,
Tulsa, OK, Aug. 2002.

[14] J. Dai. Design methodology for analog VLSI implementations of error
control decoders. PhD thesis, University of Utah, Salt Lake City, Dec.
2002 .

[15] DLP Design. DLP-USB245 User Manual: USB to FIFO Parallel Interface
Module, 2002.

[16] Analog Devices. AD9764 Data Sheet: 14-bit, 125 MSPS TxDAC D/A
Converter, 1999.

[17] Analog Devices. AD8138 Data Sheet: Low Distortion Differential ADC
Driver, 2003.

[18] Analog Devices. AD8541/AD8542/AD8544 Data Sheet: General-Purpose
CMOS Rail-to-Rail Amplifiers, 2003.

[191 P. Elias. Coding for noisy channels. In IRE Conv. Rec., volume 4, pages
37-46, Mar. 1955.

[20] M. Frey, H.-A. Loeliger, F. Lustenberger, P. Merkli, and P. Strebel. Ana­
log decoder experiments with subthreshold CMOS soft-gates. In IEEE
Int. Symp. on Circuits and Systems, Bangkok, Thailand, May 2003.

[21] M. Frey, H.-A. Loeliger, F. Lustenberger, P. Merkli, and P. Strebel. Mea­
surements on an analog (8,4,4) Hamming code decoder chip. Techni­
cal Report 200402, Signal and Information Processing Laboratory, ETH
Zurich, Jan. 2004.

[22] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, 1963.

[23] V. Gaudet, R. Gaudet, and G. Gulak. Programmable interleaver design
for analog iterative decoders. IEEE Trans, on Circuits and Systems II,
49(7):457-464, July 2002.

[24] V. Gaudet and G. Gulak. A 13.3Mbps 0.35um CMOS analog turbo de­
coder IC with a configurable interleaver. In IEEE Int. Solid State Circuits
Conference, pages 148-149, 484, Feb. 2003.

[25] V. Gaudet and G. Gulak. A 13.3Mbps 0.35um CMOS analog Turbo
decoder IC with a configurable interleaver. IEEE J. of Solid State Circuits,
38(11):2010—2015, Nov. 2003.

[26] B. Gilbert. A precise four-quadrant multiplier with subnanosecond re­
sponse. IEEE J. of Solid State Circuits, 3(4):365-373, 1968.

[27] B. Gilbert. Translinear circuits: a proposed classification. Electronics
Letters, 11(1):14—16, 1975.

[28] B. Gilbert. A monolithic 16-channel analog array normalizer. IEEE J. of
Solid State Circuits, 19(6) :956—963, 1984.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] J. Hagenauer. Decoding of binary codes with analog networks. In Proc.
1998 Information Theory Workshop, pages 13-14, San Diego, CA, Feb.
1998.

[30] J. Hagenauer, M. Moerz, and E. Offer. Analog turbo networks in VLSI:
The next step in turbo decoding and equalization. In Proc. Int. Symp.
on Turbo Codes, pages 209-218, Bretangne, France, Sept. 2000.

[31] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block
and convolutional codes. IEEE Trans, on Information Theory, 42:429-
445, Mar. 1996.

[32] R. W. Hamming. Error detecting and error correcting codes. Bell Sys.
Tech. J., 29:147-160, Apr. 1950.

[33] M. Helfenstein, H.-A. Loeliger, F. Lustenberger, and F. Tarkoy. United
States Patent 6,282,559, 2001.

[34] M. Helfenstein, H.-A. Loeliger, F. Lustenberger, and F. Tarkoy. United
States Patent 6,584,486, 2003.

[35] S. Hemati and A. H. Banihashemi. Iterative decoding in analog CMOS.
In Great Lakes Symposium on VLSI, pages 15-20, Apr. 2003.

[36] Z.-Q. Hu, W. H. Mow, and W.-H. Ki. Analog integrated circuit design of
a hypertrellis decoder. In Fourth Int. Conf. on Parallel and Distributed
Computing, Applications and Technologies (PD CAT’2003), pages 552-
556, Aug. 2003.

[37] W. Huang, V. Igure, G. Rose, Y. Zhang, and M. Stan. Analog Turbo
decoder implemented in SiGe BiCMOS technology. In 40th Design Au­
tomation Conference Student Contest, June 2003.

[38] Texas Instruments. SN74LV125A Data Sheet: Quadruple Bus Buffer
Gates with 3-State Outputs, 2003.

[39] G. D. Forney Jr. Concatenated codes. PhD thesis, Massachusetts of
Technology (MIT), Cambridge, MA, 1965.

[40] G. D. Forney Jr. The Viterbi algorithm. In Proc. of the IEEE, volume
61, no. 3, pages 268-278, Mar. 1973.

[41] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Trans, on Information Theory, 47:498-519,
Feb. 2001.

[42] H.-A. Loeliger, M. Helfenstein, F. Lustenberger, and F. Tarkoy. Proba­
bility propagation and decoding in analog VLSI. In IEEE Int. Symp. on
Information Theory, page 146, Cambridge, MA, Aug 1998.

[43] H.-A. Loeliger, F. Tarkoy, F. Lustenberger, and M. Helfenstein. Decoding
in analog VLSI. IEEE Communications Magazine, pages 99-101, April
1999.

[44] F. Lustenberger. On the design of analog VLSI iterative decoders. PhD
thesis, Swiss Federal Institute of Technology (ETH), Zurich, Nov. 2000.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[45] F. Lustenberger, M. Helfenstein, H.-A. Loeliger, F. Tarkoy, and G. S.
Moschytz. An analog VLSI decoding technique for digital codes. In IEEE
Int. Symp. on Circuits and Systems, pages 428-431, Orlando, FL, June
1999.

[46] F. Lustenberger and H.-A. Loeliger. On mismatch errors in analog-VLSI
error correcting decoders. In IEEE Int. Symp. on Circuits and Systems,
pages 198-201, Sydney, Australia, May 2001.

[47] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse ma­
trices. In Cryptography and Coding. 5th IMA Conference (ed. C. Boyd),
no. 1025 in Lecture Notes in Computer Science, pages 100-111. Springer,
1995.

[48] T. W. Matthews and R. R. Spencer. An integrated analog CMOS Viterbi
detector for digital magnetic recording. IEEE J. of Solid State Circuits,
28(12):1294-1302, Dec. 1993.

[49] C. A. Mead. Analog VLSI and neural systems. Addison Wesley Compu­
tation and Neural Systems Series, Addison Wesley, Reading, MA, 1989.

[50] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer. An analog 0.25um
BiCMOS tailbiting MAP decoder. In IEEE Int. Solid State Circuits Con­
ference, pages 356-357, San Francisco, CA, Feb. 2000.

[51] A. F. Mondragon-Torres, E. Sanchez-Sinecio, and K. R. Narayanan.
Floating-gate analog implementation of the additive soft-input soft-
output decoding algorithm. IEEE Trans, on Circuits and Systems I,
50(10):1256-1269, Oct. 2003.

[52] R. H. Morelos-Zaragoza. The Art of Error Correcting Coding. John Wiley
& Sons, 2002.

[53] N. Nguyen, C. Winstead, V. C. Gaudet, and C. Schlegel. A 0.8v CMOS
analog decoder for an (8,4,4) extended Hamming code. In IEEE Int.
Symp. on Circuits and Systems, volume I, pages 1116-1119, May 2004.

[54] B. Razavi. Design of analog CMOS integrated circuits. McGraw-Hill, New
York, NY, 2001.

[55] P. Robertson, E. Villebrun, and P. Hoeher. A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain. In
IEEE Int. Conf. on Communications, volume 2, pages 1009-1013, Seattle,
WA, 1995.

[56] E. Seevinck, E. A. Vittoz, M. du Plessis, T-H. Joubert, and W. Beetge.
CMOS translinear circuits for minimum supply voltage. IEEE Trans, on
Circuits and Systems II, 47(12):1560—1564, Dec. 2000.

[57] T. Serrano-Gotarredano, B. Linares-Barranco, and A. G. Andreou. A
general translinear principle for subthreshold MOS transistors. IEEE
Trans, on Circuits and Systems I, 46(5):607-616, May 1999.

[58] M. H. Shakiba, D. A. Johns, and K.W. Martin. BiCMOS circuits
for analog Viterbi decoders. IEEE Trans, on Circuits and Systems II,
45(12): 1527—1537, Dec. 1998.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[59] M. H. Shakiba, D. A. Johns, and K.W. Martin. An integrated 200 MHz
3.3V BiCMOS class-IV partial response analog Viterbi decoder. IEEE J.
of Solid State Circuits, 33(1) :61—75, Jan. 1998.

[60] C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379-423 (part I), 623-656 (part II), July 1948.

[61] Peter Sweeney. Error Control Codinq. John Wiley & Sons, West Sussex,
England, 2002.

[62] R. Tanner. A recursive approach to low complexity codes. IEEE Trans,
on Information Theory, IT-27:533-547, Sept. 1981.

[63] B. Tomatsopoulos and A. Demosthenous. A low-power, hard-decision
analogue convolutional decoder using the modified feedback decoding al­
gorithm. In IEEE Int. Symp. on Circuits and Systems, volume IV, pages
181-184, May 2004.

[64] Various. 2nd analog decoding workshop. In www.isi.ee. ethz.ch/adw,
Zurich, Switzerland, 2003.

[651 Various. 3rd analog decoding workshop. In www. a,naloqdecoding.org,
Banff, Canada, 2004.

[66] A. J. Viterbi. Error bounds for convolutional codes and an asymptoti­
cally optimum decoding algorithm. IEEE Trans, on Information Theory,
13:260-269, April 1967.

[67] N. Wiberg, H.-A. Loeliger, and R. Hotter. Codes and iterative decoding-
on general graphs. Eur. Trans. Telecomm., 6:513-525, Sep./Oct. 1995.

[68] C. Winstead. Analog Implementation of a Product Decoder. PhD thesis,
University of Alberta, Edmonton, AB, Aug. 2004.

[69] C. Winstead, J. Dai, W. J. Kim, S. Little, Y.-B. Kim, C. Myers, and
C. Schlegel. Analog MAP decoder for (8,4) Hamming code in subthreshold
CMOS. In Proc. Advanced Research in VLSI Conference, pages 132-147,
Salt Lake City, UT, March 2001.

[70] C. Winstead, J. Dai, S. Yu, C. Myers, R. R. Harrison, and C. Schlegel.
CMOS analog MAP decoder for (8,4) Hamming code. IEEE J. of Solid
State Circuits, 39(1): 122—131, Jan. 2004.

[71] C. Winstead, N. Nguyen, V. Gaudet, and C. Schlegel. Low-voltage CMOS
translinear circuits for analog decoders. In Proc. Int. Symp. on Turbo
Codes and Related Topics, B rest, P rance, Sept. 2003.

[72] C. Winstead, N. Nguyen, V. Gaudet, and C. Schlegel. Low-voltage CMOS
circuits for analog iterative decoders, submitted to IEEE Trans, on Cir­
cuits and Systems II, May 2004.

[73] C. Winstead and C. Schlegel. Density evolution analysis of device mis­
match in analog decoders. In IEEE Int. Symp. on Information Theory,
page 293, Chicago, IL, June 2004.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isi.ee

[74] A. Xotta, D. Vogrig, A. Gerosa, A. Neviani, A. Graell-Amat, G. Montorsi,
M. Bruccoleri, and G. Betti. An all-analog CMOS implementation of a
turbo decoder for hard-disk drive read channels. In IEEE Int. Symp. on
Circuits and Systems, pages 69-72, 2002.

[75] S. Yu. Design and test of error control decoders in analog CMOS. PhD
thesis, University of Utah, Salt Lake City, Dec. 2003.

[76] S. Yu, C. Winstead, C. Myers, C. Schlegel, and R. R. Harrison. An analog
decoder for (8,4) Hamming code with serial input interface. University of
Utah, March 2002.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

I/O Interface schem atics

NAND2(clkin ^

poutbNAND20ML

Figure A.l: Clock Generator

VDD

A

VSS

VDD ^

1:180.00n
w=520.0n

O utIn

1 30.00n
’= 420.0n

VSS

(a) Inverter (b) NAND2

Figure A.2: Digital Gates

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DVOD ^

VSS^

DVDD VilrV ref ^ l = 250n
w = 700n

'o u t< 1 >V o u t< 0 :
^ V o u t< 0 :1 >

l = 25 |
i= 500 .0

T=j>50n w= 500.00n

VSS

Figure A.3: LtoP : input LLR to probability converter

DVDDVD D

V u DVu
DV ul=250n

= 500.00n l = 250nw = 500.i

50n
00n

Figure A.4: input mirror : unit current mirror for I/O and analog decoder

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t
p̂ip1»)el(«̂«i:

»i«f
s t i.* h i(t« r M i.t,

« II |

il

1“

• s 3*b
jI*

Figure A.5: Shift Register SH : input shift register and S/H chain

Figure A.6: selshifter : selectable shifter

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SEL

SEL_B
VoutVout

S ®Vout > b * Vout
VDD

~SEI I

Vout

C0

rs t
SEL ^

VSS

Figure A.7: SH : sample and hold capacitors

IVDD ^

Sel
l :1 8 0 .0 0 n

■520.0n

Out

Sei

Figure A.8: mux : multiplexer

din ^

o
a

Figure A.9: shiftreg : level sensitive shift regsiter

pinb I
pout I

poutb I

din dout
p.n
pm _bor sh ;f(reg
pout
pouL bor

Figure A. 10: shifter : output parallel load shifter

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VDD ^

vo u tpvo u tp

^midp).0n v m idn

< •—^ v o u tm
vm idmVSSvm idp

vo u tp

VSS
VSS

VDD

'm id p

v o u tp

VSS

Figure A .ll: Comparator : output comparator with SR latch

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparator

lotch
VDO <
VSS<

pin
pinb
pout

poutb
from e

shifter
Comparator

D0
new _sto te

"n|fcomporotc ^ ------ unm vo

shifter
Comporafor

W

Figure A. 12: Output Shifter : ouput shift register chain

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Test R elated

B .l Top level VHDL code
l i b r a r y IEEE;
u s e IEEE. STD.LOGIC.1164 .ALL;
us e IEEE.STDXOGIOARITH.ALL;
u s e IEEE. STD_LOGIC.UNSIGNED .ALL;

— i n s t a n t i a t e X i l i n x p r i m i t i v e co m p o n en t s .
l i b r a r y UNISIM;
u s e UNISIM. VComponents . a l l ;

e n t i t y t e s t i n o d u l e l 6 1 1 i s
P o r t (d a t a ; i n o u t s t d . l o g i c . v e c t o r (7 do wnt o 0) ;

r s t : i n s t d . l o g i c ;
e l k : in s t d . l o g i c ;
fromdec : i n s t d . l o g i c ;

r xf b : i n s t d . l o g i c ;
t x e b : i n s t d . l o g i c ;

t o d a c : o u t s t d . l o g i c . v e c t o r (15 downt o 0) ;
l e d : o u t s t d . l o g i c ;
wr : o u t s t d . l o g i c ;
rdb : o u t s t d . l o g i c ;
frame : o u t s t d . l o g i c ;
d a c . c l k : o u t s t d . l o g i c ;
d e c . e l k : o u t s t d . l o g i c ;
d a c . c l k . b : o u t s t d . l o g i c

) ;
e nd t e s t m o d u l e l 6 11 ;

a r c h i t e c t u r e mixed o f t e s t m o d u l e l 6 1 1 i s

s i g n a l i n t . e l k , i n t . d a c . c l k , i n t . r e s e t , i n t . d a c . c l k . b : s t d . l o g i c ;
s i g n a l o u t . d a t a : s t d .1 o g i c . v e c t o r (7 d ow nt o 0) ;
s i g n a l i n . d a t a : s t d . l o g i c . v e c t o r (7 downt o 0) ;

s i g n a l r x . t x b : s t d . l o g i c ;
s i g n a l Q J N T , m u x . d a t a . a , m u x . d a t a . b , m u x . o u t : s t d . l o g i c . v e c t o r (7 d o w n t o 0) ;
s i g n a l addra : s t d . l o g i c . v e c t o r (8 d ow nt o 0) ;
s i g n a l addrb : s t d - l o g i c _v e c t o r (7 do wnto 0) ;
s i g n a l ena , wea ; s t d . l o g i c ;
s i g n a l muxcon : s t d . l o g i c ;

s i g n a l g n d . v e c t o r : s t d . l o g i c . v e c t o r (15 do wnt o 0) ;
s i g n a l l ogicO , l o g i c l : s t d . l o g i c ;

c ompo ne nt BUFGDLL
p o r t (O : o u t STD.ULOGIC; I : in STD.ULOGIC);

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e nd c o m p o n e n t ;
c om po ne nt BUFG

p o r t (O : o u t STD.ULOGIC; I : i n STD.ULOGIC);
end co mpo ne nt ;
c o mpo ne nt IOBUF

p o r t (O : o u t STD.ULOGIC; IO : i n o u t STD.ULOGIC;
I : i n STD.ULOGIC; T : in STD.ULOGIC);

e nd c o m p o n e n t ;

COVIPCMHNr c o n t r o l l e r 16 11
POKT(

elk : IN s t d . l o g i c ;
re se t : IN s t d . l o g i c ;
dusb : IN s t d . l o g i c . v e c t o r (7 do wnt o 0) ;
t x e b : IN s t d . l o g i c ;
r xf b : IN s t d . l o g i c ;
wr : OUT s t d . l o g i c ;
rdb : OUT s t d . l o g i c ;
r x . t x b : OUT s t d . l o g i c ;
frame : OUT s t d . l o g i c ;
d a c . c l k : OUT s t d . l o g i c ;
d e c . c l k : OUT s t d . l o g i c ;
d a c . c l k . b : OUT s t d . l o g i c ;
addra : OUT s t d . l o g i c . v e c t o r (8 do wnt o 0) ;
d a t a a : OUT s t d .1 o g i c . v e c t o r (7 downt o 0) ;
addrb : OUT s t d . l o g i c . v e c t o r (7 d ow nt o 0) ;
wea : OUT s t d . l o g i c ;
ena : OUT s t d . l o g i c ;
muxcon : OUT s t d . l o g i c ;
l ed : OUT s t d . l o g i c
) ;

END GCMFQNENT;

— Component D e c la r a t i o n f o r RAMBf -SmSn
— Should be p laced a f t e r a r c h i t e c t u r e s t a t e m e n t but be fore begin keyword
c ompone nt RAMB4.S8.S16
p o r t (DOA : o u t STD-LOGIC.VECTOR (7 downt o 0) ;

DOB : o u t STD-LOGIC.VECTOR (15 d ow nt o 0) ;
ADDRA : i n STD-LOGIC.VECTOR (8 do wnto 0) ;
ADDRB : i n STD-LOGIC.VECTOR (7 do wnto 0) ;
CLKA : in STD.ULOGIC;
CLKB : i n STD.ULOGIC;
DIA : i n STD-LOGIC.VECTOR (7 d ow nt o 0) ;
DIB : i n STD.LOGIC.VECTOR (15 d ow nt o 0) ;
ENA : i n STD.ULOGIC;
ENB : in STD.ULOGIC;
RSTA : i n STD.ULOGIC;
RSTB ; i n STD.ULOGIC;
WEA : i n STD.ULOGIC;
WEB : in STD.ULOGIC);

e nd c o m p o n e n t ;
— Component A t t r i b u t e S p e c i f i c a t i o n f o r RAMBi-StmSn
— Shou ld be p la ce d a f t e r a r c h i t e c t u r e d e c l a r a t i o n but be fo re the begin keywo
— Put a t t r i b u t e s , i f n e ce s s a ry

b e g i n

1 o g i c 0 < = ’O ’ ;
l o g i c l < = ’ 1 ’ ;
g n d . v e c t o r < = (o t h e r s => ’O ’);
d a c . c l k < = i n t . d a c . c l k ;
d a c . c l k . b < = i n t . d a c . c l k . b ;

BUFGDLLJNSTANCE : BUFGDLL p o r t m a p(0 => i n t . e l k , I => e l k) ;
BUFGJNSTANCE : BUFG p o r t m a p (0 => i n t . r e s e t , I = > r s t) ;

i o b u f 4 1 : f o r i i n 7 do wnt o 0 g e n e r a t e
i o b u f . i n s t a n c e : IOBUF p o r t map (O => o u t . d a t a (i) , IO => d a t a (i) ,

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I => i n . d a t a (i) , T => r x . t x b) ;
e nd g e n e r a t e ;

I n s t . c o n t r o l l e r : c o n t r o l l e r l O l l PORT MAP(
e lk => i n t - d k ,
r e s e t => i n t . r e s e t ,
dusb => o u t . d a t a ,
t x e b => t x e b ,
rxfb => rxfb ,
wr => w r ,
rdb => rdb ,
r x . t x b => r x . t x b ,
frame => frame ,
d a c . c l k => i n t _ d a c _ c l k ,
d e c - c l k => d e c . c l k ,
d a c . c l k . b => i n t - d a c . c l k . b ,
addra => a d d r a ,
d at a a => m u x . d a t a . b ,
addrb => a d d r b ,
wea —> wea ,
ena => e n a ,
muxcon => mux c on ,
1e d => 1e d
);

RAMB4-S8-S16JNSTANCE-NAME
p o r t map (
DOA => i n . d a t a ,
DOB => t o da c ,
ADDRA => addra ,
ADDRB => a d d r b ,
CLKA => i n t . c l k ,
CLKB => i n t . d a c . c l k ,
DIA => mux-out ,
DIB => g n d . v e c t o r ,
ENA => e n a ,
ENB => l o g i c l , —
RSTA => i n t . r e s e t ,
RSTB => i n t . r e s e t ,
WEA => w e a ,
WEB => 1o g i c 0); -

— a s h i f t r e g i s t e r macro m od i f i ed to e xc lude CE
p r o c e s s (i n t . r e s e t , i n t . d a c . c l k . b)
b e g i n

i f (i n t . r e s e t = ’1 ’) t h e n
Q.INT < = (o t h e r s => ’O ’);

e l s i f (i n t . d a c . c l k . b ’ e v e n t) and (i n t . d a c . c l k . b = ’ 1 ’) t h e n
Q.INT < = Q_INT(6 do wnt o 0) & fromdec ;

e l s e
Q.INT < = Q- INT;

e nd i f ;
end p r o c e s s ;
m u x . d a t a . a < — Q.INT;

 a m u x m a c r o --
p r o c e s s (m u x . d a t a . a , m u x . d a t a . b , muxcon) — m u x . d a ta . b is f rom c o n t r o l l e
b e g i n

c a s e muxcon i s
when ’O’ => mux . out < = m u x . d a t a . a ;
when ’ 1 ’ => m ux . out < = m u x . d a t a . b ;
when o t h e r s => NULL;

e nd c a s e ;
e nd p r o c e s s ;

125

: RAMB4.S8.S16

— unused

— always enable

— can ne ve r w r i t e u s ing B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e nd m i x e d ;

B.2 Controller VHDL code
— *

— c o n t r o l l e r 1 611 . vhd
— A p r i l —June , 2004
— This t e s t bench c o n t r o l l e r o p er a t e s in 6 phase s :
— 1. D e t e c t i o n o f s t a r t command, sav i ng o f c l oc k d i v i d e r (6 b i t s)
— and block l en g t h (1 byte which w i l l be m u l t i p l i e d by 2)
— 2. S t o r i n g o f maximum 512 8 b i t samples i n t o Por t A o f dual por t RAM
— 3. A p p l i c a t i o n o f maximum 256 — 16 b i t samp le s us ing Port B in
— dual p o r t RAM
— 4. C lock ing BL t i m es f o r t r a n s i e n t decoding
— 5. C lock ing BL t im es f o r s h i f i n g out r e s u l t s (i n i n c r e m e n t s o f 8
— to l a t c h b i t s i n to RAM)
— 6. Send BL decoded b i t s f rom RAM via USB
 * * *

l i b r a r y IEEE;
u s e IEEE.STD-LOGIC-1164.ALL;
u s e IEEE. STD-LOGIC-ARITH. A I L ;
u s e IEEE. STDLOGIC.UNSIGNED. ALL;

e n t i t y c o n t r o l l e r l 611 i s
p o r t (

e lk : in s t d . l o g i c ;
r e s e t : in s t d . l o g i c ;
— USB s i g n a l s

i n s t d -1 o g i c - V e c t o r (7 do wnt o 0) ; — USB data l i n e s
i n s t d . l o g i c ; — USB tx handshak ing
i n s t d . l o g i c ; — USB rx handshak ing

o u t s t d . l o g i c ; — USB wr i t e
- USB read

— d i r e c t i o n a l c o n t r o l f o r da ta l i n e s

— decoder r e s e t
— DAC and decoder I / O c lock

dusb
t x e b
rxfb
wr :
rdb : o u t s t d . l o g i c ;
r x . t x b : o u t s t d . l o g i c ;

— DAC and dec oder s i g n a l s
frame : o u t s t d . l o g i c ;
d a c . c l k : o u t s t d . l o g i c ;
d e c . e l k : o u t s t d . l o g i c ;
d a c . c l k . b : o u t s t d . l o g i c ;
— dual p or t RAM s i g n a l s
addra
da t a a
addrb
wea
ena
muxcon

o u t s t d . l o g i c . v e c t o r (8 do wnt o 0)
o u t s t d . l o g i c . v e c t o r (7 do wnt o 0)
o u t s t d . l o g i c . v e c t o r (7 do wnt o 0)

— RAM addre s s A
— RAM data A
— RAM addre s s B

o u t s t d . l o g i c ;
o u t s t d . l o g i c ;
: o u t s t d . l o g i c ;

— LED ou tp u t
l ed : o u t s t d . l o g i c

);
e nd c o n t r o l l e r l 6 1 1 ;

— w r i t e enable
- (r ea d) enab le A
— DIA mux c o n t r o l

- v i s u a l f e e d b a c k

a r c h i t e c t u r e RTL o f c o nt , r o i l e r 1611 i s
— s i gn a l s , v a r i a b l e s , e t c .

t y p e c o n t r o 11 e r . s t a t e _ t y p e i s (

READ-PREP ARE, TOGGLE-RD.ON, READJ3YTE, TOGGLE-RD.OFF,
ANALYZE.BYTE, APPLY.SAMPLES .WAIT, APPLY SAMPLES PREPARE,
DAC.CLKL1, DAC.CLK.H1, DAC.CLK_H15, DAC.CLK_H2, DAC.CLKL2, DAC.CLK.CHECK,
WRJTE.PREPARE, TOGGLE.WR.ON, TOGGLE.WR.OFF,
WRITE INCREMENT

) ;
s i g n a l c o n t r o l l e r - s t a t e : c o n t r o l l e r - s t a t e . t y p e ;

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ty p e b y t e . s t a t e . t y p e is (

BYTE-0, BYTE-1, BYTE.2, BYTE-3

) ;
s i g n a l b y t e . s t a t e : b y t e _ s t a t e - t y p e ;

b e g i n

s t a t e - m a c h i n e : p r o c e s s (e l k)

v a r i a b l e c l o c k - d i v i d e r : s t d . l o g i c . v e c t o r (5 do wnto 0) ;
v a r i a b l e b l o c k . l e n g t h : s t d .1 o g i c - v e c . t or (11 do wnt o 0) ;
v a r i a b l e a d d r e s s a : s t d . l o g i c . v e c t o r (8 d ow nt o 0) ;
v a r i a b l e a d d r e s s b s t d . l o g i c . v e c t o r (7 d ow nt o 0) ;

v a r i a b l e b l o c k . l e n g t h . c o u n t : i n t e g e r r a n g e 0 t o 4095;
v a r i a b l e c l o c k . d i v i d e r . c o u n t : i n t e g e r r a n g e 0 t o 63;

v a r i a b l e b l o c k . l e n g t h . m o d 8 : s t d . l o g i c _v e c t o r (2 do wnto 0) ;

v a r i a b l e d e l a y . r d : i n t e g e r r a ng e 0 t o 2;
v a r i a b l e d e l a y : i n t e g e r r a n g e 0 t o 2;
v a r i a b l e d e l a y . w r : i n t e g e r r a n g e 0 t o 2;

v a r i a b l e temp : s t d - l o g i c . v e c t o r (7 d ow nt o 0) ; — temp b u f f e r

b e g i n

addra < = a d d r e s s a ;
addrb < = a d d r e s s b ;

i f (e l k ’ e v e n t and e lk = ’1 ’) t h e n
i f (r e s e t = ’1 ’) t h e n — i n i t i a l i z e s y s t em

— i n i t i a l i z e o u t p u t s
wr < = ’O ’ ; — d i s a b l e USB wr i t e
rdb < = ’ 1 ’ ; — d i s a b l e USB read
r x . t x b < = ’O ’; — t r a n s m i t f o r check ing

frame < = ’O ’; — pu l l FRAME 0
d a c . c l k < = ’O ’ ; — p u l l DAC CLK 0
d e c . c l k < = ’O ’;
d a c . c l k . b < = ' O ’;

d a t a a < = (o t h e r s => ’O ’);
wea < = ’O’ ; — d i s a b l e RAM po r t A wr i t e
ena < = ’O ’; — d i s a b l e RAM p o r t A

muxcon < = ’ 1 ’ ; — s e t DIA to r e c e i v e c o n t r o l l e r

l ed < = ’ 1 ’ ;

— i n i t i a l i z e v a r i a b l e s

a d d r e s s a := (o t h e r s => ’ 1 ’); — w i l l be i n c r e m en t ed r i g h t away
a d d r e s s b := (o t h e r s => ’O ’);

c l o c k . d i v i d e r := (o t h e r s => ’O ’);
b l o c k . l e n g t h := (o t h e r s => ’O ’);

temp := (o t h e r s => ’O ’);

b l o c k . l e n g t h . c o u n t := 0;
c l o c k . d i v i d e r . c o u n t := 0;
b l o c k . l e n g t h . m o d 8 := (o t h e r s => ’ 1 ’);

d e l a y . r d := 0;

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d e l a y := 0;
d e l a y . w r := 0;

b y t e . s t a t e < = BYTE.0;
c o n t r o l l e r . s t a t e < = READ .PREPARE;

e l s e

c a s e c o n t r o l l e r . s t a t e i s

— USB read s equence DO NOT MODIFY--------------
when READJPREPARE =>

rdb < = ’ 1 — d i s a b l e USB read
wr < = ’O ’ ; — d i s a b l e USB wr i t e
l ed < = ’O ’; — t u rn LED o f f
r x . t x b < = ’ 1 ’ ; — r e c e i v e mode

i f (d e l a y . r d = 2) t h e n
d e l a y . r d := 0;
c o n t r o l l e r - s t a t e < = TOGGLE-RD.ON;

e l s i f (r x f b = ’O ’) t h e n
d e l a y . r d := d e l a y . r d + 1;
c o n t r o l l e r - s t a t e < = READ.PREPARE;

e l s e
c o n t r o l l e r . s t a t e < = READJREPARE;

e nd i f ;

when TOGGLE-RD.ON =>
rdb < = ’O ’; — TOGGLE RD ON
wr < = ’O ’;
l e d < = ’O ’;
r x . t x b < = ’ 1 ’ ;

— added t h i s pa r t to t u rn o f f RAM
— whi l e making sure t h a t a w r i t e occurs

wea < = ’O ’;
ena < = ’O ’ ;

i f (d e l a y . r d = 1) t h e n — wai t f o r 40 ns
d e l a y . r d : = 0;
c o n t r o l l e r . s t a t e < = READ_BYTE;

e l s e
d e l a y . r d := d e l a y . r d + 1;
c o n t r o l l e r . s t a t e < = TOGGLE_RD_ON;

e nd i f ;

when READ.BYTE =>
rdb < = ’O ’; — wait f o r an o t h e r 20 ns
wr < = ’O ’;
l ed < = ’O ’;
r x . t x b < = ’ 1 ’ ;

temp := d u s b ; — READ BYTE
c o n t r o l l e r - s t a t e < = TOGGLE-RD.OFF;

when TOGGLEJID.OFF =>
r d b < = ’ 1 ’ ; — TOGGLE R.D OFF
wr < = ' O ’ ; — d i s a b l e USB wr i t e
l ed < = ’O ’ ; — t u rn LED o f f
r x . t x b < = ’ 1 ’ ;

i f (d e l a y . r d = 1) t h e n
d e l a y . r d := 0;
c o n t r o l l e r - s t a t e < = ANALYZEJ3YTE;

e l s i f (r x f b = ’ 1 ’) t h e n
d e l a y . r d := d e l a y . r d + 1;
c o n t r o l l e r . s t a t e < = TOGGLE.RD.OFP;

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l s e
c o n t r o l l e r - s t a t e < = TOGGLE-RD.OFF;

e nd i f ;
— USB read s equence DO NOT MODIFY---------

when ANALYZEJ3YTE =>
c a s e b y t e . s t a t e i s

when BYTE-0 —>
i f (t e m p (7 d ow nt o 6) = ” 11”) t h e n

b y t e . s t a t e < = B Y T E . l ;
c l o c k . d i v i d e r := temp (5 d ow nt o 0) ;
c o n t r o l l e r . s t a t e < = READ-PREP ARE;

e l s e
c o n t r o l l e r - s t a t e < = READ-PREPAEE;

e nd i f ;

when BYTE. l =>
b y t e . s t a t e < = BYTE.2;
b l o c k . l e n g t h (11 downt o 4) := t emp (7 do wnt o 0) ;
b l o c k . l e n g t l i . c o u n t , := 1; — have to pu t i t here because XST w i l l r e s e t t
c o n t r o l l e r . s t a t e < = READ.PREPARE;

when BYTE.2 =>
i f (t e m p (7 downt o 6) = ” 0 0 ”) t h e n

b y t e . s t a t e < = BYTE.0;
c o n t r o l 1 e r _ s t a t e < = READ.PREPARE;

e l s e
b y t e . s t a t e < = BYTE.3;
c o n t r o 11 e r _ s t a t e < = READJ-’REPARE;

e nd i f ;

when BYTE.3 —>

ena < = ’ 1 — enable RAM p or t A
wea < = ’ 1 — w r i t e RAM p o r t A
d a t a a < = temp;
a d d r e s s a := a d d r e s s a + 1;

i f (b l o c k . l e n g t h . c o u n t = b l o c k . l e n g t h) t h e n

— m o d i f i e d t h i s f o r Chris ' t e s t program to go back to beg in n in g
b y t e . s t a t e < = BYTE.0; — l ook f o r a s t op byte ne x t

b l o c k . l e n g t h . c o u n t := 0; — to accoun t f o r FRAME
c o n t r o l l e r - s t a t e < = APPLY_SAMPLES_WAIT;

e l s e
b l o c k . l e n g t h . c o u n t := b l o c k . l e n g t h . c o u n t + 1;
c o n t r o l l e r . s t a t e < = READ.PREPARE;

e nd i f ;

when o t h e r s => NULL;
— i f u s i ng READ-PREPARE, t hen w o n ’ t have ex t r a FFDs

e n d c a s e ;

when APPLY_SAMPLES_WAIT =>

i f (d e l a y = 2) t h e n
d e l a y := 0;
c o n t r o l l e r . s t a t e < = APPLY.SAMPLES-PREPARE;

e l s e
d e l a y := d e l a y + 1;
c o n t r o l l e r - s t a t e < = APPLY-SAMPLES-WAIT;

e n d i f ;

when APPLY.SAMPLES.PREPARE =>

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ena < = ’O ’ ; — d i s a b l e RAM po r t A
wea < = ’O ’; — d i s a b l e RAM po r t A wr i t e
frame < = ’ 1 ’ ; — can p o s s i b l y make t h i s ’1 ’ to s t a r t wi t h
a d d r e s s a := (o t h e r s => ’ 1 ’);
a d d r e s s b := (o t h e r s => ’ 1 ’);
b l o c k . l e n g t h := ’0 ’ & b l o c k . l e n g t h (XI d ow nt o 1) ; — r ea l b lock l en g t h
muxcon < = ’O ’ ; — get DIA ready to r e c e i v e SR8 o u t p u t s
c o n t r o l l e r . s t a t e < = DAC.CLK_L1;

when DAC-CLK-L1 =>
d a c . c l k < = ’ 1 ’ ;
d ec . e l k < = ’O ’ ;
d a c . c l k . b < = ' O ’;

i f (c l o c k . d i v i d e r . c o u n t = c l o c k . d i v i d e r) t h e n
c o n t r o l l e r . s t a t e < = DAC.CLKJi l ;
c l o c k . d i v i d e r . c o u n t := 0;

e l s e
c o n t r o l l e r . s t a t e < = DAC.CLKX1;
c l o c k . d i v i d e r . c o u n t := c l o c k . d i v i d e r . c o u n t + 1;

e nd i f ;

when DAC.CLKJH1 =>
d a c . c l k < = ’O ’ ;
d e c . e l k < = ’ 1 ’ ;
d a c . c l k . b < = ’O ’;

i f (c l o c k . d i v i d e r . c o u n t = c l o c k . d i v i d e r) t h e n
c o n t r o l l e r . s t a t e < = DAC.CLK_H15;
c l o c k . d i v i d e r . c o u n t := 0;

e l s e
c o n t r o l l e r . s t a t e < = DAC.CLK J i l ;
c l o c k . d i v i d e r . c o u n t := c l o c k . d i v i d e r . c o u n t + 1;

e nd i f ;

when DAC.CLK.H15 =>
d a c . c l k < = ’O ’ ;
d e c . e l k < = ’O ’;
d a c . c l k . b < = ’ 1 ’ ;

i f (c l o c k . d i v i d e r . c o u n t = c l o c k . d i v i d e r) t h e n

i f (d e l a y = 2 and b l o c k . l e n g t h . m o d 8 = 7) t h e n
c o n t r o l l e r . s t a t e < = DAC.CLKJf2;
a d d r e s s a := a d d r e s s a 4- 1;
wea < = ’ 1 ’ ;
ena < = ’ 1 ’ ;

e l s e
c o n t r o l l e r . s t a t e < = D AC.CLK.H2 ;
c l o c k . d i v i d e r . c o u n t := 0;

e nd i f ;

e l s e
c o n t r o l l e r . s t a t e < = DAC.CLKJX15;
c l o c k . d i v i d e r . c o u n t := c l o c k . d i v i d e r . c o u n t + 1;

e nd i f ;

when DAC.CLK.H2 =>
d a c . c l k < = ’O ’ ;
d e c . c 1 k < = ’O ’;
d a c . c l k . b < = ’ 1 ’ ;

i f (c l o c k . d i v i d e r . c o u n t = c l o c k . d i v i d e r) t h e n
c o n t r o l l e r . s t a t e < = DAC.CLKJj2 ;
c l o c k . d i v i d e r . c o u n t := 0;

e l s e
c o n t r o l l e r . s t a t e < = DAC.CLK.H2;
c l o c k . d i v i d e r . c o u n t := c l o c k . d i v i d e r . c o u n t + 1;

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e n d i f ;

when DAC-CLK.L2 =>
d a c . c l k < = ’O ’ ;
d e c . c l k < = ’0
d a c . c l k . b < = ’O ’ ;

i f (c l o c k . d i v i d e r . c o u n t = c l o c k . d i v i d e r) t h e n
c o n t r o l l e r - s t a t e < = DAC.CLK.CHECK;
c l o c k . d i v i d e r . c o u n t := 0;

e l s e
c o n t r o l l e r . s t a t e < = DAC.CLK.L2;
c l o c k . d i v i d e r . c o u n t := c l o c k . d i v i d e r . c o u n t + 1;

e nd i f ;

when DAC.CLK.CHECK =>
frame < = ’O ’ ; — p u l l f rame e s p e c i a l l y im p o r t a n t f o r f i r s t c yc l e
d a c . c l k < = ’O ’ ;
d e c . c 1 k < = ’O ’;
d a c . c l k . b < = ’O ’;

wea < = ’O ’ ;
ena < = ’O ’ ;
b l o c k . l e n g t h . m o d 8 . = b l o c k . l e n g t h . m o d 8 + 1; — assum e mod8 co u n t i n g

i f (b l o c k . l e n g t h . c o u n t = b l o c k . l e n g t h) t h e n
b l o c k . l e n g t h . c o u n t := 1;
a d d r e s s b := (o t h e r s => ’O ’);

i f (d e l a y = 2) t h e n
c o n t r o l l e r . s t a t e < = WRlTIiPREPARE;
d e l a y := 0;
a d d r e s s a := (o t h e r s => ’O ’);
b l o c k . l e n g t h := ” 0 0 0 0 ” & b l o c k . l e n g t h (10 do wnto 3) ;

e l s e
c o n t r o l l e r . s t a t e < = DAC.CLK.L1;
d e l a y := d e l a y + 1;

e n d i f ;

e l s e
c o n t r o l l e r . s t a t e < = DAC.CLKX1;
b l o c k . l e n g t h . c o u n t := b l o c k . l e n g t h . c o u n t + 1;
a d d r e s s b := a d d r e s s b + 1;

e nd i f ;

— USB w r i t e s equence DO NOT MODIFY------------
when WRTTEPREPARE =>

rdb < = ’ 1 ’ ; — d i s a b l e USB read
wr < = ’O ’; — d i s a b l e USB wr i t e
l ed < = ’O ’ ; — t u rn LED on
r x . t x b < = ’ 1 ’ ;

— added t h i s pa r t to t u r n o f f BAM wr i t e
ena < = ’ 1 ’ ;
wea < = ’O ’;

i f (d e l a y . w r = 2) t h e n
d e l a y . w r := 0;
c o n t r o l l e r . s t a t e < = TOGGLELWR.ON;

e l s i f (t x e b = ’O ’) t h e n
d e l a y . w r := d e l a y . w r + 1;
c o n t r o l l e r . s t a t e < = WIUTEJPREPARE;

e l s e
c o n t r o l l e r . s t a t e < = WRTTELPREPARE;

end i f ;

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w hen TOGGLE.WR.ON =>
rdb < = ’ 1 ’ ; — d i s a b l e USB read
wr < = ’ 1 ’ ; — TOGGLE WR ON
l ed < = ’O ’ ;
r x . t x b < = ’O ’ ;

— i n - d a t a <= temp;

i f (d e l a y . w r = 2) t h e n
d e l a y . w r := 0;
c o n t r o l l e r . s t a t e < = TOGGLE.WR.OFF;

e l s e
d e l a y . w r := d e l a y . w r + 1;
c o n t r o l l e r . s t a t e < = TOGGLE.WR.ON;

en d i f ;

when TOGGLE.WR.OFF =>
rdb < = ’ 1 ’; — d i s a b l e USB read
wr < = ’0 ’ ; — TOGGLE WR OFF
1 e d < = ’O ’ ;
r x . t x b < = ’O ’ ;

i f (d e l a y . w r — 1) t h e n
d e l a y . w r := 0;
c o n t r o l l e r . s t a t e < = WRTTEJNCREMENT;

e l s i f (t x e b = ’ 1 ’) t h e n
d e l a y . w r := d e l a y . w r + 1;
c o n t r o l l e r . s t a t e < = TOGGLE.WR.OFF;

e l s e
c o n t r o l l e r . s t a t e < = TOGGLE.WR.OFF;

en d i f ;
— USB w r i t e s equence DO NOT MODIFY-----------

w hen WRTTEJNCREMENT =>
rdb < = ’ 1 ’ ;
wr < = ’O ’;
l e d < = ’O ’ ;
r x . t x b < = ’ 1 ’ ;

i f (b l o c k . l e n g t h . c o u n t = b l o c k . l e n g t h) t h e n — b lock l e n g t h here is in by t e s
c o n t r o l l e r . s t a t e < = READ PREPARE;
a d d r e s s a := (o t h e r s => ’ 1 ’);
b l o c k . l e n g t h := (o t h e r s => ’O ’);
b l o c k . l e n g t h . c o u n t := 1;
b l o c k . l e n g t h . m o d 8 := (o t h e r s => ’ 1 ’);
muxcon < = ’ 1 ’ ;

e l s e
c o n t r o l l e r . s t a t e < = WRTTETPREPARE;
a d d r e s s a := a d d r e s s a + 1;
b l o c k . l e n g t h . c o u n t := b l o c k . l e n g t h . c o u n t + 1;

e nd i f ;

w hen o t h e r s => NULL;

en d c a s e ;
e nd i f ; — r e s e t
e nd i f ; — elk ’ even t

end p r o c e s s s t a t e . m a c h i n e ;

end RTL;

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

