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ABSTRACT

Bridge cranes and their craneways are incorporated into many building
structures. The dynamic loading upon these structures, resulting from the
hoisting of payloads, is examined in this thesis. Some of the standards which
deal with this loading case are reviewed. A computer program which may be
used to perform dynamic analyses is described. A finite element model of a
crane and craneway are developed and the results of several dynamic
analyses are presented. Difficulties associated with this approach are also
indicated. Those difficulties relate to the non-linear natures of the tension-
elongation relationship of the cable and the torque-velocity relationship of
the motor.

A simpler model, called the Three Degree-of-Freedom model, is then
proposed. For the Three Degree-of-Freedom model, the structure is treated as
a single degree-of-freedom system, and two hoisting scenarios, jerk-starting
and braking, are defined. These hoisting scenarios allow simplifying
assumption to be made about the motor and the cable.

The results from a testing program are compared with the results
predicted using the Three Degree-of-Freedom model. The Three Degree-of-
Freedom model provides very good predictions for the jerk-starting results,
but much poorer predictions for the braking results. Some aspects of the data
indicate reasons why the model is not as accurate in the case of braking, and
possible improvements to the model are suggested.
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CHAPTER 1
INTRODUCTION

Bridge cranes and craneways are common structures that engineers are
often asked to upgrade or design. While they have a fairly simple form, bridge
cranes and craneways, because of their application, carry some unique
dynamic loads which structural engineers generally are not trained to
analyze. Instead of analysis, the standard practice is to account for dynamic
loads by increasing static loads by some approved and accepted factor. For
example, the 1977 version of CSA standard S16.1, [ref. 7] clause 7.11 states that
"In the absence of a dynamic analysis ... live load which causes impact shall be
increased ... 25 percent"” for "Girders, and their connections, supporting power
operated cranes.” Designing to resist dynamic loads caused by cranes was seen
as requiring a dynamic analysis for each loading case. Because of the work
involved in solving that kind of problem {and it was much more of a task in
1977, when computers were not as accessible as they are in 1993) it was
considered reasonable and conservative to increase instead the live, static,
loads by one quarter.

Applying a factor to the results of a static analysis, to account for dynamic
loading, is a labour and time saving approach. The dissatisfying feature of
crane standards, and structural standards that deal with craneways, is that the
expressions they prescribe for such a dynamic factor do not take into account
the general parameters of the craneway structure which are normally
assumed to affect the dynamic behaviour of the structure. Especially in the
case of vertical hoist-induced dynamic loads, these expressions seem
incomplete. Neither the stiffnesses and masses of the craneway's
components, nor, in the Canadian standard to date, the properties of the
hoisting motor, are considered.

In this thesis some simple closed form solutions have been derived,
which describe the behaviour of a simple three degree-of-freedom bridge
crane model under idealized hoist-induced vertical dynamic loading. This
simple model approximates very closely the behaviour of more complicated
multi-degree-of-freedom models, (which do not have simple closed form
solutions for the same idealized loading cases). Tests conducted on the small
bridge crane in the I. F. Morrison Structures Laboratory suggest that, with

1



some modification, the closed-form solutions may be a good approximation
to real dynamic behaviour.

1.1  Parts and Functions of a Bridge Crane

Figure 1.1 shows the parts of a typical bridge crane and craneway system.
The parts of the bridge crane proper are shown in white, and the parts of the
craneway are shown shaded. The bridge crane moves horizontally along the
craneway; the trolley moves horizontally across the bridge; and the hoist
moves the hook vertically. These three motions give the hook, and any
payload attached to it, access to any point within the brick-shaped volume
roughly bounded by the two rows of craneway columns and the area the
bridge passes through as it travels from one end of the craneway to the other.
Any point within that volume is said to be "under the craneway". The
purpose of a bridge crane is to move payloads from one place under the
craneway to another. )

Figure 1.1 is schematic, indicating that within this format a wide range of
forms exist. The bridge, the structure that spans the space between the two
craneway halves, can be a single rolled section, a large welded wide flange
girder, a truss, or a pair of box girders. At the ends of the bridge are endtrucks
that house the wheels and drive mechanism for bridge travel. In general, the
bridge can be considered a simply supported member.

The trolley generally rides on top when the bridge is made of two
members, and is underslung for single girder bridges. The trolley houses
wheels and some form of drive mechanism for trolley travel, and it also
carries the hoist.

The hoist comprises the cable drum, the transmission, and the hoist
motor. The cable drum winds up or unwinds the cable, and that, respectively,
raises or lowers the hook and any attached payload.

The craneway is made up of two parallel rows of columns and the
supported girders and tracks on which the endtrucks of the bridge ride. The
columns may also be structural members of a building beside or over top of
the craneway. Connections between girders, and between columns and
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girders, vary from craneway to craneway. The girders may be cantilevered at
one or both ends. There may be a walkway beside the craneway, for service
access. There may also be an attached walkway along the span of the bridge.

All three motions (hoist, trolley, and bridge travel) are usually controlled
from a single control box, accessible from the ground, and attached, via
electric cable, to the bridge or trolley. If the crane is radio controlled, then the
control box is not physically attached to the crane. For larger cranes, the
control box may be in a cab mounted on the bridge, so that an operator riding
in the cab can control the crane, and can have a clear view of the hook's
motion.

There are usually at least seven buttons on the control box; one for each of
the two directions of each of the tlree motions of the crane, and an on-off
switch. There may be more buttons for other features specific to a crane, such
as opening doors to extend crane access, or for switching a magnet on and off,
or opening and closing jaws, or a bucket, when those accessories are used
instead of the hook.

1.2  Bridge Crane Loading Cases

There are a number of loading cases that bridge cranes and craneways
experience that are common to most building structures. There are the dead
loads of individual members, wind and snow loads on the bridge if it is
outside, and, if the craneway is incorporated as part of the structural support
of a building, there are the normal live and dead loads of the building, carried
by the craneway girders and columns.

Along with these, there are the loads peculiar to bridge cranes. Because the
purpose of the crane is to position a payload at any place under the craneway,
a large vertical live load can exist anywhere on the structure. With respect to
the bridge, this live load can be considered to be the weight of all the parts of
the trolley, and of the cable, plus the weight of the pavload the cable is
supporting. This live load can be applied at any position along the span of the
bridge. With respect to the craneway, the live load can be considered to be the
weight of the trolley, cable, and load on the hook, plus the weight of the



bridge and end trucks. The trolley can be at any point along the bridge span,
and the bridge can be at any position along the length of the craneway.

Because the purpose of the crane is to move a payload, there is a large
dynamic element to these live loads. There are several different dynamic
loads that bridge cranes and craneway structures are subject to. Vertical
unevenness in the tracks for the trolley and the endtrucks cause machinery
travelling horizontally along those tracks to vibrate vertically. Horizontal
unevenness of the tracks for the, and imperfect wheel alignment, cause
dynamic axial loads in the bridge and dynamic lateral loads on the craneway.
Starting and stopping the trolley causes the payload on the hook to swing in
the plane beneath the axis of the bridge, adding tension to the cable, axial load
to the bridge, and lateral load to the craneway. Starting and stopping the
bridge motion causes the payload to swing in a plane perpendicular to the
bridge, loading the bridge laterally and the craneway girders axially.

As the bridge changes velocity, its own mass creates inertial lateral load
that it must carry, and axial load on the craneway. Similarly, as the trolley
mass changes velocity the bridge must resist inertial loads acting along its
axis, and the craneway must resist the lateral reactions.

When the bridge or troliey move, the acceleration up to rated speed is less
than the deceleration when the brakes are applied. The mechanism of the two
actions is different. Braking is usually more abrupt than starting, so the
duration of the impulse and its maximum are different for the two load cases.
Either of these impulse loads can occur anywhere over the craneway. Far
more sudden is the deceleration when the bridge or trolley strike the
respective end-stops. The wide range of lateral dynamic service loads makes it
difficult to determine which case is critical. Most crane standards address this
issue and give a similar recommendation; live lateral load should be taken as
vertical load multiplied by some factor.

There are also less obvious dynamic loads. Moving a constant load along
the bridge (or any other simply supported flexible member) causes dynamic
deflection of the member, and that can produce internal forces larger than
those produced by the same load if it were stationary on the bridge [ref. 2]. If
the magnitude of the moving load is not constant, but varies over time, thes
the forces can be larger still.



All the dynamic loads mentioned above can be significant. The dynamic
loads that will be addressed in detail in this thesis are the vertical dynamic
loads due to hoist action only. During a hoisting event the trolley maintains a
fixed position on the bridge, and the bridge maintains 2 fixed position on th.e
craneway. There are two ways in which hoisting can induce vertical dynamic
loads on a crane structure. The hoist motor can begin winding or unwinding
cable, causing an initizlly stationary payload to move, or the already operating
motor can stop, causing an originally moving payload to stop moving. In
both cases the acceleration of the payload causes the tension in the cable to
vary. The crane structure resists the varying cable tension by deflecting. As its
mass accelerates, inertial loads are created which the structure must resist in
addition to the cable tension. These resisting forces within the structure vary
through the course of the hoisting event. The crane structure must be strong
enough to carry the maximum values of these varying forces. This set of
maximum forces can be called the maximum hoist-induced vertical dynamic
forces.

The hoisting event, as described above, is strongly influenced by the hoist
motor. It is the action of the motor that physically initiates the whole event.
Structural engineers are often not familiar with how motors develop force.
Nevertheless, it is apparent that this source of dynamic loading is repeatable
in a way that other dynamic load sources, such as earthquakes, wind, or track
unevenness, are not. Hoist-induced loading has some random aspects, and
these are described in Chapter 5, but the overall behaviour can be modelled,
and understood, as a repeatable dynamic event with quantitatively predictable
results.

Another feature of hoist-induced vertical dynamic loads is that most of
the loading action occurs at the start of the event. Once the motor reaches
rated speed, its acceleration is greatly reduced. The mechanism behind this
reduction is explained in Section 4.1.1. For the present, because there is no
resonance, an assumption of no damping is convenient for the purposes of
determining the maximum internal dynamic forces. In fact, cranes do have a
very low level of damping, so an assumption of no damping is conservative
and reasonable. Because damping is so low, the crane should be designed to



In undamped free vibration, the max'mum force is experienced
continually, but not continuously. A maximum dynamic force occurs each
period only for an instant. All building materials are sensitive to rate and
duration of loading [ref. 12]. Generally, the shorter the duration, and the
quicker the rate, the larger the stress that can be resisted. The consequences of
that increase will not be addressed in this thesis. The intent, instead, is to
develop simple formulae to predict the magnitudes of the maximum forces
in the crane and craneway structure, due to the actions of the hoist.

13  The Dynamic Factor

The weights of the trolley on the bridge, and of the bridge crane on the
craneway can be referred to as live load because they fit the description of
"movable equipment” as per the definition of live load given in clause 7.1.1
of CAN3-516.1-M89 1989 [ref. 6]. However, they could also be described as a
dead load. Live and dead loads are categorized as such, in Limit States Design
(L.S.D.), so that each may be multiplied by a different load factor. The live load
factor is generally larger, to reflect the uncertainty of the magnitude of the
mass that produces the live loads. It can be argued that the bridge's mass is as
certain as the mass of the craneway components, and that the dynamic effect,
since it is such an important aspect of bridge crane loading, should be dealt
with using a separate, dynamic factor. It can also be argued that the mass of
the craneway components accelerate, as well, and add to the dynamic effect,
but the craneway would generally be considered a source of dead load. For
these reasons, the weight of the structural elements of the crane may be
considered as a live load because it is present at some times and not at others,
is subject to the L.S.D. dead ioad factor because of the degree of certainty of the
magnitude of the mass, and is also subject to a dynamic factor because of the
motion of the crane.

A dynamic factor is a coefficient that is applied to a calculated static load.
The factor accounts for the effects upon the supporting structure of the
acceleration of the mass used to determine the static load. The definition of a
dynamic factor must, therefore, include a definition of the static load to which
it is to be applied. During a hoisting event, both the mass of the crane and the



mass of the payload accelerate. There are then two reasonable static loads to
which the dynamic factor conld be applied: the weight of the payload, or the
weight of the payload and the structure combined. In this thesis the dynamic
factor will be considered to apply only to the weight of the payload. This
definition for the dynamic factor will be used when crane design standards
are compared in Chapter 3 and when a dynamic factor formula is derived in
Chapter 5.

Because the magnitude of the payload mass and the stiffness and mass of
the supporting structure both influence the acceleration, they influence the
dynamic factor. Two non-dynamic examples of load factors influenced by the
support structure’s physical properties are the factor for ponding on flat roofs,
which is a function of the stiffness of the roof beams, as given in the AISC
specifications [ref. 1], and the amplification factors used in the design of beam
columns, as given in CAN3-516.1-M89 [ref.6).

A given payload can be hoisted from any location under the craneway. At
these different lifting locations the crane structure has different stiffnesses
and different arrangements of its most massive components. Therefore, the
dynamic factor varies with lifting location, even if the same payload is
hoisted at each location. This is similar to roof snow load drift factors, which
vary with location on the roof and are functions of the topography of the roof
and other factors, as given in the National Building Code of Canada [ref. 33].

There is a limitation in the practice of approximating a dynamic load with
a larger-than-applied static load. The limitation can be recognized when the
differences between the responses of a linear elastic structure to static and to
dynamic loading are examined. A structure subjected to a static load will
assume a particular deflected shape. Changing the static load by some factor
changes the deflections of all the parts of the structure by that same factor. The
shape of the deflected structure remains the same. Only the amplitude of the
deflection has changed. The deflection of the structure can be described by an
equation such as

F
yx= k(xf;") ’ (L.1)

In equation (1.1), yx is the deflection of the structure at location x, Fy is the
force, or group of forces, which comprise the static loading case, and which are

8



applied at location, or set of locations, x , and k(x,x) is the stiffness of the
structure. The stiffness is a function of both x and x . There is a linear
relationship between Fy and yx.

Dynamic loading of a linearly elastic structure, on the other hand, can
excite any or all of an infinite number of orthogonal mode shapes, as
disturbing inertial forces and restoring stiffness forces cause the structure to

vibrate. The characteristic equation for the displacement in the case of
dynamic loading is

o0

yx(t) = Z Pi(x} Zii) . (1.2)
i=1

In equation (1.2), yx(t) is the deflection at time t of the structure at location
x. Within the summation, @j(x} is the function, calculable at location X,
which describes the ith orthogonal mode shape, and Zj(t) is the function
which describes the relative change in amplitude of the ith mode shape with
respect to time. The function Zj(t) accounts for the effects of Fx(t), the time
dependent force, or group of forces, which comprise the dynamic loading case,
and which are applied at location, or set of locations, x .

Bridge cranes and craneways generally comprise long members loaded
transversely, and the shears and moments must be known in order to
properly design the members. The static and dynamic shears and moments
can be derived from equations (1.1} and (1.2), using

2 3
Mx=EI%;}2: ,and Vx=EIE;—x‘§ . (1.3)

Two relevant differences between static and dynamic behaviour limit the
number of cases in which an increased static load can adequately approximate
a dynamic load. First, at any one location on a structure responding to a
dynamic load in a multi-modal fashion, the ratio between displacement,
moment, and shear force will not bz constant over time, and the ratio of the
peak to static value of any one of these parameters is generally not the same

9



as the ratio for any other. Therefore, different dynamic factors could apply to
displacements, moments, and shears. The second difference is that the ratio of
displacements, moments, or shear forces between any two stations on a
dynamic structure are not constant over time, and the peak to static ratios for
any of those parameters are not constant from one location to another. The
peak dynamic moments, shears, and displacements do not have the same
relative distribution along the structure that the static moments, shears, and
displacements have. Therefore, for any one hoisting location different
dynamic factors could apply at different locations on the structure.

A dynamic load can only be reasonably approximated by a larger-than-
applied static load if equation (1.2), and its derivatives for moment and shear,
can be reasonably approximated by an equation of the form of equation (1.1)
and its respective derivatives. This can only happen when one of the terms in
the summation in equation (1.2) is dominant. This is the assumption made,
though rarely stated, when a dynamic factor is used.

10



CHAPTER 2
DESCRIPTION OF THE STRUCTURES LAB SHOP CRANE

In the I. F. Morrison Structures Laboratory at the University of Alberta
there is a 1.82-ton capacity overhead bridge crane servicing the shop area. In
this chapter the various features of the crane are described.

2.1  Structural Configuration

A diagram of the shop crane and the craneway structure is shown in
Figures 2.1 and 2.2. The section properties of the fabricated sections for the
bridge and for the craneway are shown in Figures 2.3 and 2.4 respectively.
Details of the end truck wheel connections are shown in Figures 6.4 and 6.5. A
photograph of the crane is shown in Figure 2.5.

22  Trolley

The trolley is underhung. The motor and drum are on the north side, and
the trolley electrical box and a box for ballast are on the south side. The ballast
box is empty, however, so the center of gravity of the unloaded trolley is
slightly inboard of the northern trolley wheels. The trolley is shown in
Figures 2.1 and 2.2.

The mass of the trolley was determined as follows. A small frame was
built which rested on a load cell on the top of the bridge rail top flange and
reached under the trolley with adjustable length arms, as shown in Figure 2.6.
The reading from the load cell gave the trolley weight. From the weight, its
mass was calculated to be 330 kg. A second technique was later used to
confirm this result. The trolley was positioned at the far east end of the bridge
and the bending strain was recorded using the strain gauges mounted at
centre span of the bridge. (See Section 6.2.4.) Then the crane was used to pick
up and suspend a payload of 1.46 tonne with the trolley at centre span. The
output from the gauges was recorded. Then the payload was placed on the
shop floor so that only the trolley weight was acting on the bridge, and the
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Figure 2.3 Crane Bridge Section Properties
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Bottom piece : rolled T bar section
304 Area of Beam section = 5660 mn?
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— 1_=74.4x10°mm’
70 9 Including Drive Shaft

: Total Area of Section = 6800 mnf
|-80—| Bottom Flange to Neutral Axis =197 mm
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Figure 2.4 Craneway Beam Section Properties
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Figure 2.5

Photographs of Shop Crane
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output signal was recorded again. Assuming the bridge to be linearly elastic,
an estimate of the trolley mass can be made as shown in Table 2.1. The two
trolley mass measurements are in reasonable agreement.

Table 2.1 Trolley Mass Calculation

Strain Gauge Output (unitless) Condition
+18 - trolley at far end of bridge
+1855 - loaded trolley at centre of bridge
+375 ~ unloaded trolley at centre of bridge

Payload = 1.46 tonnes

375-18
Estimated Trolley mass = "1855 - 375 X 145 tonnes = 0.352 tonnes

=352 kg

The values in the Strain Gauge Output column are strain gauge signals
amplified by a constant. They indicate only relative strain values.

2.3 Hoist Motor

The information marked on the hoist motor is as follows. It was made in
Norway by Munck Manufacturing Inc. It is a type 221-4428, serial number 31-
AF-616. Its electrical rating is 11.4 amps at 220 V and 60 Hz. The rated hoisting
capacity is recorded as 2 tons, which is 1.82 tonnes. The rated power is 3.8 HP,
which is 2.8 kN'm/s. The motor bas a lifting speed of 20 ft./min., which is
6.1 m/min. or 0-10 m/sec., and has a total lift of 12 feet, or 3.6 m.

24  Payload

Two sizes of payload were used in the tesiing program. One was a concrete
and steel assembly that had been built for an earlier, unrelated, program. This

17



assembly, referred to as the large payload, is shown in Figure 2.7, along with
the calculations done to estimate its mass.

The other was a wooden box holding nine 22.7 kg ballast blocks. The box
had a mass of 2 kg. Calculation of this smaller payload's weight is as follows,

(9x 22.7 kg + 2 kg, ) x 9.81 = 2.05 kN

Later the weights of both payloads were measured using a tension load cell
attached in line on the crane hook. (See Section 2.5.) The large payload was
found to weigh 14.35 kN, and the small payload was found to weigh 2.07 kN.
Both estimates were thus confirmed.

2.5 Cable and Load Cell Assembly and Slings

The hook and its pulley are secured to the trolley through four lines of the
cable, as shown in Figure 2.1 and 2.2. Therefore, the speed with which the
motor rolls up the cable is four times faster than the hoisting speed.

During the testing, a tension load cell was attached beneath the hook.
Several shackles were used to make this connection from the relatively small
load cell to the larger hook. Beneath the load cell was another group of
shackles for attaching chain or web slings. The group of lifting components,
comprising the load cell and the sets of shackles above and below it, is
referred to as the tension load cell assembly.

The term "sling" refers to any general purpose lifting component that
attaches a payload to a hook. To secure the payloads for this test program,
either 16 mm chain slings or synthetic webbing slings were used.

The elongations of the cable, tension load cell assembly, and the web or
chain slings used to secure the payload, were measured. A diagram of the test

setup is shown in Figure 2.8. The net stiffness of the cable, load cell assembly,
and slings will be referred to as the cable stiffness, k..

When the payload was hanging freely from the cable above, jacks below
the payload were raised, until they just touched the underside of the payload.
The jacks were then raised in increments, thus reducing the cable tension.
The displacements and tension were recorded at each step. When raising the

18



Figure 2.7 Large Payload

‘— — 2000 mm
-1—19 mm

10 mm Typ.————A

250 mm -l 4_/

480 mmi Y ' Y
i '

180 mm -E 200 mm i
i

Width =700 mm

Large Paylozd is a steel frame filled with concrete

Calculations for Mass of Large Payload
Concrete Density = 2.4 tonnes/cubic metre
Steel density = 7.85 tonnes/cubic metre

Concrete :

2 legs x 180 mm x 200 mm x 700 mm x 2.4 T/nf = 01217
250 mmx 2000 mmx 700 mm x 2.4 T/nt= 0.840T
Steel :

2 Outboard Piates x 19 mm x 480 mm x 700 mm x 7.85 t/n?= 0.100 T
7 Inner Panels x 1O0mm x 250 mm x 700 mm x 7.85 T/m’=  0.096 T
2 Plates x 10 mm x 2000 mm x 700 mm x 7.85 T/ = 0.220T
2 Base Plates x 25 mmx 260 mmx 700 mmx 7.85 T/m* =  0.071 T

Total Calculated Mass of Large Payload = 1.448 T
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Figure 2.8 Test Setup to Measure Cable Stiffnesses
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Slings = 1095mm

20



payload produced no further decrease in tension, the cable was assumed to be
completely slack. At that point the jacks were lowered incrementally,
increasing the cable tension, and the displacements and tension were
recorded. The graphs of the results are shown in Figures 2.9, 2.10, and 2.11. In
Figure 2.9 the graphs of the net cable elongation for the web and chain slings
with the small payload are shown. In Figures 2.10 and 2.11, the graphs of the
elongation of wire cable, the load cell assembly, and the slings, (chain and
web, respectively) with the large payload are shown. Figures 2.10 and 2.11 also
show the lines for the stiffnesses from Figure 2.9 for the smal’ payload data.
The points of zero elongation for the large and small payload tests were not
the same. In Figures 2.10 and 2.11, the location of the lines for the small
payload along the elongation axis are chosen to fit in with the data points
from the tests using the large payload.

It can be seen that there is significant hysteresis and non-linearity in the
load displacement response of the cable and sling assembly. During testing it
was also observed that there was a significant amount of time-dependent
behaviour exhibited by the slings. The test set up was not equipped to
measure this phenomenon, but some qualitative observations were made.

At the end of each step in which the payload was lowered, the measured
tension did not remain constant after jacking ceased, but decreased over time.
The rate of the tension reduction decreased with time. The lower dial gauge
indicated that the payload was stationary, and the other dial gauges indicated
upward movement at each of their respective locations. Similarly, at the end
of each step in which the payload was raised, the tension increased and the
upper three dial gauges indicated downward movement while the payload
remained stationary. The amounts by which the positions and tensions
changed were greater when the payload had just been lowered rather than
raised, when the tension was high rather than low, and when web slings
rather than chain slings were used. The time cependent behaviour for the
chains was so slight that it would not have been noticed but for the fact that
the author had been alerted to the possibility of that type of phencmenon
after having tested the web slings. A simple model that represents this
behaviour is shown in Figures 2.12 and 2.13. The cable and the slings can be
considered to act as a spring and damper in parallel, pulling against the crane
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structure which acts as an undamped spring. This Lehaviour is called delayed
elasticity.

To obtain the points for Figures 2.9, 2.10 and 2.11, discrete loading steps
were used. There was a short delay between the establishing of a load level
and the recording of displacements. For the type of dynamic loading the cable
and slings are subjected to during normal use, and were subjected to during
the test program, the tension varies continuously. It was assumed that the
values for k. from Figures 2.9, 2.10, and 2.11 were adequate approximations of
the actual stiffnesses that occurred during testing. This will be discussed in
detail in Chapters 4, 5, and 7.

The stiffness values determined near the maximum load will be used as
the stiffness for the cable assembly because most of the dynamic activity
occurs near that load. An estimate of the best fit line through the points near

the maximum load, on the tightening and on the slackening sides of each
total elongation curve is shows. on the graphs. The two slopes, k¢, ... and

K , were calculated. If a single value is required to describe cable
slacken

stiffness, then one rationally based definition which can be used is the

following. An effective stiffness, ke g ..o ., is the stiffness which results, with

a given payload mass, in the same frequency of free vibration that occurs
when kCtighten is used for the portion of each period during which the cable

tension increases, and ke, is used for the portion during which cable
tension decreases. The expression for k¢ ¢ .. - given ke, - and kctighten’

is shown in equation (2.1).

2

ke . = Y
Ceffective J 1 .J 1 J
T+ PA—
kestacken kctighten

Figure 2.14 shows the relationship between the three stiffness values and
the implied asc smption about the shape of the hysteresis loop. Table 2.2
shows the values of kce“ecﬁve . The advantages and disadvantages of using a
single value for effective cable stiffness, and for using the definition given in

equation (2.1) for that stiffness, is discussed in Chapter 7.

(2.1)
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Table 2.2 Summary of Cable Stiffness Values

kcsla cken kCtj ghten kcef fective
Small Pa?(load 589 kN/m 88 kKN/m 183 kN/m
Web Slings
Small Pa}tload 1060 kKN /m 493 kN/m 697 KN/m
Chain Slings
Large Payload 1840 kN/m 563 kN/m 934 kN/m
Web Slings
Large Payload 3130 kN/m 2330 kN/m 2690 kN/m

Chain Slings
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CHAPTER 3
A REVIEW OF PRESENT STANDARDS

In this chapter the ways in which several standards deal with hoist
induced dynamic loads are examined.

In the test program, described in Chapter 6 of this thesis, the shop crane in
the I. F. Morrison Structures Laboratory was subjected to hoisting loads and
the structural response recorded. Tests were done with the hoist at the
midspan of the bridge and as far to one end of the bridge as possible. Two
payloads were used. One weighed 14.35 kN, and the other weighed 2.07 kN.
As the various standards are reviewed in this chapter, their application to the
shop crane under those loads will be considered.

3.1  CSA Standard 516.1-1977 Steel Structures for Buildings

As the name implies, S16.1 deals with buildings and not specifically with
cranes. In the 1977 version of S16.1 [ref. 7], clause 7.11 reads as follows:
7.11 In the absence of a dynamic analysis, or if not already specified by

the authority having jurisdiction, live load which causes impact shall
be increased according to the following percentages:

(@) Elevator SUPPOIS ...cciiresrneresrerassessssiesanesesissssastsssesenns 100 per cent
(b) Girders, and their connections, supporting power-operated
CTAMIES wereunsnsssrssararsene st ssresssssesss s sesssessenstssasensassasnssrassesssrssssanes 25 per cent
(c} Girders, and their connections, supporting hand-operated cranes
.................................................................................................... 10 per cent
(d) Supports for light machinery, shaft or motor-driven
............................................................................... 20 per cent minimum
(e) Supports for reciprocating machinery or power-driven units
............................................................................... 50 per cent minimum
(f) Hangers supporting mezzanines and balconies.............. 33 per cent

The term "impact" is commonly used to describe an event where masses
collide. The way this clause is phrased, it could be incorrectly interpreted as
describing latera! impact factors, which would apply to the cases in which the
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trolley or the bridge drive into their respective endstops. However, factors for
lateral impact are dealt with clearly in the subsequent clause 7.12. In the some
codes not related to cranes, for example the Ontario Highway Bridge Design
Code [ref 39], the term impact is used to describe any dynamic loading event.
The reference to "girders and their connections” in part (b) of clause 7.11
therefore, can be assumed to indicate these are the items subjected to the
increased vertical load due to the hoisting. The "live load which causes
impact” probably refers to at least the payload weight. What is unclear is
whether the weight of the trolley also "causes impact" on the bridge girder,
and whether the crane weight "causes impact” on ti:e craneway girders, since
these components accelerate vertically during hoisting. It is assumed that the
intent of the clause is that the factor applies only to the weight of the payload.

Therefore, the hoisted load of 14.35 kN should be treated as a static load
of 1.25 x 14.35 kN = 17.94 kN, and the hoisted load of 2.07 kN should be treated
as a static load of 1.25 x 2.07 kN = 2.59 kN.

32 CSA Standard CAN3-516.1-M89 — Steel Structures for Buildings -
Limit States Design

The more recent version of 516.1 {ref. 6] does not include any equivalent to
the clause described in Section 3.1 preceding. The specifications for vertical
dynamic load factors for bridge cranes was removed from later versions of
$16.1, and placed in the National Building Code [ref 33), which is discussed in
Section 3.3 following. There remain only two references which apply to
cranes in CAN3-516.1-M89. Under "Section 6 Dynamic Effects", clause 6.2.3.1
states the following:

6.2.3.1 Suitable provision shall be made in the design for the effect of
live load, which induces impact or vibration, or both. In severe cases
such as structural supports for heavy machinery, which causes
substantial impact or vibration when in operation, the possibility of

harmonic resonance, fatigue, or unacceptable vibration shall be
investigated.

It is questionable whether this clause is actually intended to cover dynamic
loads due to hoisting. It is almost a direct quote from clause 7.10 of the earlier
version of 516.1, a clause which was not meant to deal with dynamic loads
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because that was handled in clause 7.11. The phrase "unacceptable vibration”
implies excessive deflections that may interfere with the performance of the
machinery or may damage wall or ceiling surfaces. Even if the clause is meant
to cover dynamic loads due to hoisting, and "unacceptable vibrations” is
intended to mear maximum dynamic stresses exceeding resisting strength,
the only guidance given is that such load cases should be investigated.

The other place in CAN3-516.1-M89 where the issue of crane loading is
considered is in "Appendix I - Recommended Maximum Values for
Deflections". There the suggestion is made that for industrial type buildings -
vertical deflections due to "Maximum wheel loads (no impact)" of simple
span crane runway girders should be less than 1/600 of the span for cranes
with capacity less than 225 kN, and less than 1/800 of the span for cranes with
capacity of 225 kN and over. The deflection limit is probably an empirically
derived check to ensure that the trough created in a girder by a fully loaded
crane is not so steep that the crane cannot climb out.

3.3 National Building Code of Cariada - 1992

In the National Building Code of Canada, Section 4.1.10.4. Vibrations and
Impact of Machinery and Equipment, deals with dynamic loads on bridge
cranes. Sentences (1) and (2) of section 4.1.10.4 states the following.

(1) Where vibration effects, such as resonance and fatigue resulting

from machinery or equipment, are likely to be significant, a dynamic
analysis shall be carried out.

(2) The minimum specified load due to equipment, machinery or
other objects that may produce impact shall be the sum of the weight of
the equipment or machinery and its maximum lifting capacity,
multiplied by an appropriate factor listed in Table 4.1.10.A.

Table 4.1.10.A gives factors of 1.25 and 1.10 for impact due to the operation
of motor driven and hand driven cranes respectively. It also gives a factor for
the “supports for light machinery which is shaft or motor driven”, of 1.20,
and a factor for the “supports for reciprocating machinery (e.g. compressors)

or power driven units (e.g. piston engines)” of 1.50. For elevators Table
4.1.10.A. refers to clauses in CAN/CSA-B44-M.
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It is clear from sentence (2) that the factor is to be applied to more than
just the payload weight. However, it is not clear. which components of the
crane “produce impact”. The weight of the hoist and trolley probably should
have the factor applied, but should the weight of the bridge crane also be
tactored? It is assumed that just the trolley weight is to be factored.

By applying a dynamic factor to the weight of not just the payload but the
parts of the crane as well, the authors of the National Building Code are
trying to take into account the inertial loads created by the motion of t.e
bridge during hoisting. While those inertial loads should be considered, the
procedure used here is not rational; the solution to a static problem should
not include an increase in loads due to dynamic effects. Consider the case of a
hoist lifting no payload. A dynamic factor of 1.25 would be applied to the
weight of the unloaded trolley, although the trolley would not be vibrating.
The method used in the National Building Code does not correctly address
the general relationship between the payload weight and the size of the
dynamic factor. Sentence (2) does require that the maximum lifting capacity
be used, and it is possible that the weight ratios of the bridge and the
maximum payload are often such that the National Building Code procedure

provides accurate results. However, this is not stated explicitly in the
National Building Code.

The weight of the trolley added to the weight of the large payload, and
factored, is (3.24 kN + 14.35 kN) x 1.25 = 22.0 kN. This exceeds the weight of
the unloaded trolley by 22.0 kN - 3.24 kN =18.75 kN.

The weight of the trolley added to the weight of the small payload, and
factored, is (3.24 kN + 2.07 kN) x 1.25 = 6.64 kN. This exceeds the weight of the
unloaded trolley by 22.0 kN - 3.24 kN =3.4 kN.

34 CSA Standard B167-1964 — General Purpose Electric Overhead
Travelling Cranes

This standard, which deals exclusively with cranes, addresses vertical
impact load in a more clear and perhaps more rational fashion than does
516.1. The crane is assigned to a class, based on the hours per year it is used,
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the proportion of loads that are above 50% of rated capacity, and the type of
service the crane experiences. Tables 1, 2, 3 and 4 of section 3.4 of B167 are
shown in Figures 3.1 and 3.2. There appears to be a typographical error in
Table 3. In the second category, "All Loads of Rated Capacity" should probably
read "Frequent Loads of Rated Capacity” to agree with the clarifying statement
“Majority of Loads greater than 50 per cent of Rated Capacity”. Clause 4.2.1
lists a set of seven design load descriptions, the second of which is "(b) Load
impact; included in service factor (see Table 10)." Table 10 and its prefacing
clause 4.2.2.1 are shown in Figure 3.3. The class system is used for several
other purposes later in the standard. That is why the service factor loads are
not directly placed in Table 1.

The statistical aspect of the classification system deserves some comment.
Assume a payload equal in mass to the rated capacity of a crane. There is a
maximum in-service, hoist-induced dynamic load to which the crane, lifting
that payload, can be subjected. The load is a function of the stiffnesses and
masses of the various components within the whole system, and a function
of the hoist motor properties. It is a maximum service load. There is some
chance involved in whether an individual hoisting event will produce the
potential maximum dynamic load, or some load less than that, but the crane
will not be subjected to more than that maximum, except by accident.
Hoisting a payload that is heavier than the rated load, or hooking the slings to
the ground or a fixed part of the craneway, for example, are accidental loading
cases. These events can produce loads greater than the maximum hoist-
induced load. If accidental loading could be avoided, then increasing the
frequency of near capacity loads (as described in Table 3) and increasing the
total number of loads per year (as described in Table 2) would not change the
maximum hoist-induced dynamic load the crane will be subjected to. What
increasing those two frequencies does is increase the chance of accidental
loading. That is why the factor that takes dynamic loading into account is
called the Service Factor, rather than the Vertical Impact, or Vertical Dynamic
Factor.

Using the service factor as described in the standard, the shop crane has a
"low" impact factor as per Table 4, a "low" relative impact factor as per Table
3, and a "short" operating factor as per Table 2. Thus it is designated as Class

34



Figure 3.1 Classification Table From CSA Standard B167-1964

TABLE 1
CLASSIFICATION
Relnilve Load
Class Ofierar® Factar Farvor
(See Table 1) {See Table 3) (See Table ¢)

A Short Low Low
Short Low High

B Short High L;EV
Long Low Low

Short High High

c Long Lo%v Hegh
Long High w

b Long High High

The above range of classes takes into account the number of hours per
year it is expected that the crane will be in service, the relative load and
impact as shown in Tables 2, 3, and 4 respectively. The appropriate factors
tobl?e applied to the crane under consideration shall be derived from -these
tables.

Class D is intended to be used only for special purpose and extremely
heavy continuous duty cranes.

With the permission of the Canadian Standards Association, this
material is reproduced from B167-1964 (General Purpose
Electric Overhead Travelling Cranes), which is copyrighted by
CSA, 178 Rexdale Boulevard, Rexdale, Ontario, Canada, M9W
1R3. This copy of CSA standard B167-1964 (General Purpose
Electric Overhead Travelling Cranes), as reproduced with CSA
permission, will not be updated to reflect ammendments made
to the original content of the CSA Standard after November
1966. For up-to-date information, see the current edition of the
CSA Catalogue of Standards.



Figure 3.2 Factor Tables From CSA Standard B167-1964

TABLE 2
OPERATING FACTOR
Annual Working Hours I Factor
1,500 or less ' Short
1,500 1o 6,000 | Long
TABLE 3

RELATIYE LOAD FACTOR

Relative Load Factor

Occasional Loads of Rated Capacity

Majority of Loads less than S0 per cent of Rated Capacity Low
All Loads of Rated Capacity

Majority of Loads greater than 50 per cent of Rated Cipacity High

TABLE 4
LOAD IMPACT FACTOR
Typical Crane Duty Factor

Standby, maintenance, powerhouse, medium duty, warehouss.
machine shop, assembly shop Low

Heavy duty, foundry, butket and magnet service High

With the permission of the Canadian Standards Association, this
material is reproduced from B167-1964 (General Purpose
Electric Overhead Travelling Cranes), which is copyrighted by
CSA, 178 Rexdale Boulevard, Rexdale, Ontario, Canada, MOW
1R3. This copy of CSA standard B167-1964 (General Purpose
Electric Overhead Travelling Cranes), as reproduced with CSA
permission, will not be updated to reflect ammendments made
to the original content of the CSA Standard after November
1966. For up-to-date information, see the current edition of the
CSA Catalogue of Standards.
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Figure 3.3 Service Factor Table From CSA Standard B167-1964

4.2.2.1 Forces resulting from live loads i.e. rated load plus weight
of trolley acting in a vertical direction shall be multiplied by the appropriate
service factor in accordance with classification of crane, see Table 10.

TABLE 10
SERVICE FACTOR

Clas» Factor
A 1.2
B 1.4
C 1.6
D 1.7

With the permission of the Canadian Standards Association, this
material is reproduced from B167-1964 (General Purpose
Electric Overhead Travelling Cranes), which is copyrighted by
CSA, 178 Rexdale Boulevard, Rexdale, Ontario, Canada, M9W
1R3. This copy of CSA standard B167-1964 (General Purpose
Electric Overhead Travelling Cranes), as reproduced with CSA
permission, will not be updated to reflect ammendments made
to the original content of the CSA Standard after November
1966. For up-to-date information, see the current edition of the
CSA Catalogue of Standards.
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A, with a service factor of 1.2 applied to payload and trolley weight, as per
Table 10.

For the large payload, The dynamic load is calculated as follows.
1.2 x (14.35 kN payload + 3.24 kN trolley weight) = 21.1 kN

This is 21.1 kN - 3.24 kN = 17.9 kN greater than the weight of the unloaded
trolley.

For the small payload, the increased load is the following,.
1.2 x (2.07 kN payload + 3.24 kN trolley weight) = 6.37 kN

This is 6.37 kN - 3.24 kN = 3.13 kN greater than the weight of the unloaded
trolley.

The statements of permission below the tables in Figures 3.1, 3.2, and 3.3,
include the comment that up-to-date information is listed in the current
edition of the CSA Catalogue of Standards. However, CSA Standard B167-1964
is presently the most up to date CSA standard dealing with design loads for
cranes.

3.5 DIN 15.018 part 1 - Cranes, Steel Structures, Verification and Analysis

The German standard uses a load spectrum factor ¥ to account for the
vertical dynamic load factor for hoisting. The load spectrum factor is a linear
function of the hoisting speed and is also a function of the lifting class of the
crane. Figure 3.4 shows a plot of ¥ versus hoisting speed.

Table 23 in DIN 15.018 gives a list of lifting classes and a description of the
applicable cranes. "Item No. 6 Workshop Cranes" has a designated lifting class
of Hj or H3. There is no guidance given about the difference between an H;
classification and an Hj classification. The hoisting speed of the structures lab
shop crane is 6.1 m/min. Substituting this value into the formula in Table 23
gives the following values for ¥:
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Nominal Load Spectrum Factor y from DIN 15018

and 1+(HLF) from CMAA#74

Figure 3.4
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¥ =1.2 +.0044 x 6.1 = 1.23 assuming H lifting class

¥ =1.3 +.0066 x 6.1 = 1.34 assuming Hj lifting class

Clause 4.1.4.2 states that ¥ should be applied to the payload weight. For the
larger payload, assuming the crane belongs in class Hy, the dynamic load is
1.23 x 14.35kN = 17.7 kN. Assuming the crane belongs in class Hg, the
dynamic load is 1.34 x 14.35 kN = 19.2 kN. Similarly for the smaller payload,
the dynamic load is 1.23 x 2.07 kN = 2.55kN or 1.34 x 2.07 kN = 2.77 kN,
depending on whether the crane belongs in class Hj or class Hj respectively.

A reasonable criticism of the formula for ¥ is that as the hoisting speed
approaches zero, the dynamic factor does not approach unity. It approaches
values greater than one. This is despite the fact that the case of zero hoisting
speed corresponds to a static situation and a dynamic factor of one would be
expected.

In Clause 4.1.4.2 the following statement is found.

"The softer the springing of the hoisting gear, the larger the elasticity
of the supporting structure, the smaller the actual hoisting speed at
the commencement of the hoisting of the useful load, the smaller
and steadier the acceleration and deceleration during changes in the

hoisting motion, the smaller the factor ¥."

In discussing some qualitative general trends about the dynamic factor D,
Barrett and Hrudey (1989) [ref. 3] stated,

"The largest D values occur when the structure is most stiff."

In Chapter 5 of this thesis, deductions are made from the mathematical
model of the crane which indicate that this is not always true, and that in fact
there are many real situations where decreasing the stiffness of the crane
structure will increase the dynamic load factor.
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3.6 DIN 4132 — Craneways, Steel Structures, Principles for Calculating
Design and Construction

The German standard, DIN 4132, deals specifically with craneway
structures. It refers to DIN 15.018 in several places, and the two were clearly
written in conjunction with one another.

Though DIN 4132 is very thorough in its description of the loads on the
craneway, it does not mention hoist-induced vertical loads. One must assume
that the authors of the two standards believed either that hoist-induced
vertical loads are not applied to the craneway structure, or that the factors and
analysis presented in DIN 15.018 are to be used to design the craneway
structure as well. The latter seems more plausible.

3.7 CMAA Specification #74 - 1987 — Specification for Top Running and
Under Running Single Girder Electric Overhead Travelling Cranes

The Crane Manufacturers Association of America publishes a specification
for cranes which includes a hoist load factor, (HLF), Clause 3.3.2.1.1.4.2
describes the factor.

3.3.2.1.1.4.2 Hoist Load Factor (HLF)} This factor applies to the
motion of the rated load in the vertical direction, and covers inertia
forces, the mass forces due to the sudden lifting of the hoist load and
the uncertainties in allowing for other influences. The hoist load
factor is 0.5 percent of the hoisting speed in feet per minute, but not
less than 15 percent or more than 50 percent, except for bucket and
magnet cranes for which the impact value shall be taken as 50 percent
of the rated capacity of the bucket or magnet hoist.

(HLF) =.15 <.005 x (hoist speed) <.5

The use of the term "factor” is misleading, since (HLF) is a number
smaller than one. It is assumed that the actual factor, the number to multiply
static weight by, is 1+ (HLF). The structures lab shop crane has a hoist speed of
20 ft./min., slow enough to require the minimum value for (HLF).
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1.15 x 14.35 kN = 16.5 kN for the large payload

1.15 x 2.07 kN = 2.38 kN for the small payload

Figure 3.4 shows the dynamic factor graph from DIN 15.018 and the
function 1+ (HLF) plotted so the two factors can be compared. It can be seen
that there is significant difference between the two approaches. At hoisting
speeds greater than 100 ft/min., the CMAA factor is constant at 1.5, which is
less conservative than ¥ for H3 and Hy lifting class cranes at these speeds.
With both formulae the static load case produces a factor greater than one, but
the sloping part of the CMAA curve, above 1.15, rises proportionally to the
hoisting speed. The minimum requirement of 1.15 is perhaps included
because of a feeling that the uncertainty of the payload mass was worth some
consideration, and it was most apparent that the uncertainty was not being
addressed at low hoisting speeds. In a letter from CMAA, the chairman of the
Engineering Committee suggested the formula for 1 + (HLF) was probably
determined empirically. (See Appendix E.)

The two standards, CMAA#74 and DIN 15.018, use imperial and metric
units for measuring hoisting velocity. In Figure 3.4 both ft/min and m/min

are used, respectively, to indicate the velocities at which the formulas for
1+ (HLF) and ¥ change.

3.8  AISC Specifications for the Design, Fabrication, and Erection of
Structural Steel for Buildings

The clause in the AISC specification that deals with dynamic load is
shown below.

1.3.3 Impact

For structures carrying live loads* which induce impact, the
assumed live load shall be increased sufficiently to provide for same.

If not otherwise specified, the increase shall be:
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For supports of elevators......ciiici e, 100 per cent

For cab operated travelling crane support girders and their

CONNECHONS wri b e 25 per cent
For pendant operated travelling crane support girders and their
CONNECHONS (et e 10 per cent
For supports of light machinery; shaft or motor-driven
NOt 1855 thaN . 20 per cent
For supports for reciprocating machinery or power-driven units,
NOt 1888 thaN...cece s 50 per cent
For hangers supporting floors and balconies.........ccce...... 33 per cent

* Live loads on crane support girders shall be taken as the maximum crane
wheel loads.

This seems almost identical to clause 7.11 in the early version of CSA
516.1, but it is different in three important ways. First, e footnote makes it
clear that for craneway girder design, the weight of the payload and the entire
crane should be increased by the specified amount. This is a more clearly
defined version of the procedure used in the National Building Code of
Canada, where a dynamic factor is applied to the weight, or part of the weight,
of the crane. The procedure does not correctly address the general relationship
between the payload weight and the dynamic factor. (See Section 3.3) The
same criticism can be made of CSA B167 (see clause 4.2.2.1 in Figure 3.3),
although it is a service factor greater than one which is being applied. The
service factor is intended to account for vertical hoist induced dynamic loads,
as well as other in-service loads.

The second difference between AISC and CSA is that cranes are grouped
into different classes; cab-operated and pendant-operated cranes in AISC,
rather than power-operated and hand-operated as was done in the CSA
specification. Hand-operated cranes tend to have lower hoisting accelerations
than power-operated cranes, and so there is reason for having different
dynamic factors for these two classes. Both cab and pendant-operated cranes
are power-operated. The only difference between the two types is that the
operator is either on the ground or in a cab on the bridge. Although not all
large cranes are cab-operated, generally all cab-operated cranes are large. The
extra mass of the operator and cab may increase the inertial loads, but that

43



mass is very small compared to the mass of the bridge or even of the trolley
and hoist motor. The AISC categories do not distinguish between cranes with
higher ar.d lower hoist accelerations, but do distinguish between cranes with
marginal differences in structure mass. The small difference in structure mass
does not seem to justify the fairly significant change in dynamic factor from
1.1 to 1.25, and it may be that operator safety was the primary consideration.
The majority of cranes are pendant-operated and motor-driven. The dynamic
factor used for this group of cranes is 1.25 by the CSA standard, but only 1.1 by
the AISC standard, although the factor may be applied to different weights, as
suggested above.

The third difference is that the AISC specifications do not include the
option of performing a dynamic analysis.

The trolley on the shop crane can come close enough to an endtruck that
one may assume the load of the trolley and payload is carried completely on
the side of the craneway it is closest to. The calculation of the dynamic load
using the AISC requirements is as follows.

Weight of bridge

alldpg?:: :fni;zglcsk 2 = %ﬁi = 1.22 kN /wheel assembly
‘!;;’?g&f&r}?elﬁz = % = 1.62 kN/wheel assembly
Weizg }I;;ﬁ‘fsl;;g‘:hiae};load = % = 7.18 kN/wheel assembly
weigl;ta?rfssé? i:,lhzgsl 2¢ . % = 1.04 kN/wheel assembly

The weight of the unloaded trolley on the loaded side of the craneway is
2 pairs of wheels x (1.22 + 1.62) = 5.68 kN.
For the large payload, the dynamic load on the loaded side of the craneway
is
2 pairs of wheels x (1.22 + 1.62 + 7.18) kN per pair of wheels x 1.1 = 22.0 kN,

The amount by which the dynamic load exceeds the weight of the unloaded
trolley is 22.0 kN - 5.68 kN = 16.3 kN.



For the small payload, the dynamic load on the loaded side of the
craneway is

2 pairs of wheels x (1.22 + 1.62 + 1.04) kN per pair of wheels x 1.1 = 8.54 kN,

and the amount by which the dynamic load exceeds the weight of the
unloaded trolley is 8.54 kN - 5.68 kN = 2.86 kN.

3.9 JIS B 8821 - 1976 — Electric Overhead Travelling Cranes

The Japanese Industrial Standard B8821 is clear about how vertical
dynamic loads are to be treated. Section 5.2.1; Impact Factors V¥, States in part:

5.2.1 The impact loads caused in the hoisting operation are different
in value according to the hoisting speed, deflection of the girder, rope
length, and may be given in the actual measurements, but, in general,

are to be given by multiplying the impact factors specified in Table 7,
to the hoisting loads.

The first part of the sentence, which states that the dynamic loads due to
hoisting are a function of motor speed, structure stiffness and cable stiffness,
reinforces the theme of this thesis. However, the ¥ factors in Table 7 are

assigned by class of crane, in similar format to that used in the German
standard, and the system is less precise than the CAN B167 class designation
system. Table 4, Examples of Classification of Cranes - O/H Travelling Cranes,
is a list of crane designations in Roman numerals with a brief description of

the type of crane. The structures lab workshop crane probably belongs in the
second designation,

"Il or III - Cranes for warehouse, stocking yard, machine and assembly
shops, and cranes for general use."

There is no further guidance as to which of the two groups the crane
belongs in.

Table 7 Impact Factors ¥ lists the impact factors that go with each of the
four designations. Specifically, ¥ has values of 1.1, 1.25, 1.4 and 1.6 for Groups

I, 11, 111, and 1V respectively. Assuming that the shop crane is Class 11, a factor
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of 1.25 should be applied to the payload. Assuming that the shop crane is
Class III, a factor of 1.4 should be applied to the payload. Therefore, the

dynamic load on the crane when it hoists the large payload is
1.25 x 14.35 kN = 17.9 kN if it is a Class II crane,
and 1.40 x 14.35 kN = 20.1 kN if it is a Class III crane.
With the small payload, the dynamic load is
1.25x 2.07 kN = 2.59 kN if it is a Class II crane,

and 1.40 x 2.07 kN = 2,90 kN if it belongs in Class III.

310 BS52573-1983

The British Standard BS 2573 - 1983 is very similar to the Japanese
Standard ]IS B8821 - 1976. In Table 4 Impact and Duty Factors According to
Crane Type and Application, crane duties are described and impact factors
from 1.1 to 2 are assigned. The factors are to be multiplied by the payload
weight. The greatest factor, 2, is to be used with forging cranes and there is a
note that "this factor may be modified when an overload protection device is
fitted." The remaining factors vary from 1.1 to 1.5, in increments of 0.1. The
use of the structures lab workshop crane would fit best in the category of
“light workshop duty (maintenance, repairs, assembly, etc.)" which has an
impact factor of 1.1. Therefore. the dynamic load on the crane when the large
payload is hoisted is 1.1 x 14.35kN =15.8 kN, and is 1.1 x 2.07 kN = 2.3 kN
when the small payload is hoisted.
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3.11 Other Appranches

Most texts recommend a vertical impact factor of 1.25. British texts [ref.
24.19) refer to a standard BS449, clause 7, where this value of 1.25 is
recommended. The author was unable to examine a copy of this specification.
The 1.25 factor is also used in AISC, Specification for Design, Fabrication, and
Erection of Structural Steel for Buildings [ref. 1] so that number is used in
American texts as well [ref. 13,26].

In a discussion of bridge design, Weaver [ref. 31] quotes the CMAA
specification, and then says the following.

"Actual tests have shown that impact on the crane girders rarely

exceeds 5% to 7% of static load, even for relatively fast hoist speeds,

. due to the cushioning effect resulting from the torsion spring action
of the ropes and the leaf spring action of the girders."”

There are two points being conveyed in this statement. The first is that the
dynamic factor tends to be less than 1.07. The tests performed for this thesis
produced dynamic loads significantly higher than 1.07 times static load. The
second point is that the dynramic factor increases with increased hoisting
speed, and increases with increase in the stiffnesses of the two components
which act as springs; the cable and the structure. In Chapter 5 of this thesis,
deductions are made from the mathematical model of the crane which
indicate that this is not always true, and that in fact there are many real
situations where decreasing the stiffness of the crane structure wiil increase
the dynamic load factor.

Later, in the section on craneway girders Weaver mentions the AISC
standard and its 1.25 factor, and makes the point that there are a number of
parameters that should influence that dynamic factor, but which are not used
in its determination. He and Goldman [ref. 14] recommend adjusting the
dynamic factor according to CMAA service class. Figure 3.5 shows Table 34,
Runway Design Factors, from Weaver.

The CMAA classification system is the most descriptive. It is much more
precise than the German, British, or Japanese standards, and is on par with
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Figure 3.5 Table of Runway Design Factors
from Whiting Crane Handbook

TABLE 34
RUNWAY DESIGN FACTORS
CMAA Vertical
Service Class impact Longitudinal Latera)
A 10% 5% 10%
B 10% ~ 15% 5% 10%
C 15% — 25% 5% — 10% 15% - 20%
D 25% 10% 20%
E 25% ~ 50% 10% ~ 15% 0% - 25%
F 25% — 50% 15% - 20% 20% - 30%

with the permission of
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the Canadian specification B167 - 1964. The structures lab workshop crane fits
in CMAA classification A2 .
Class A2 - (Infrequent Use) These cranes will be used in
installations such as; small maintenance shops, pumprooms, testing
laboratories, and similar operations where the loads are relatively
light, the speeds are slow, and a low degree of control accuracy is

required. The loads may vary anywhere from no load to full capacity
with a frequency of a few lifts per day or month.

For the Structures Lab shop crane the runway design factor from Table 34
from Weaver is 10%. As with CMAA, the use of the term "factor" is

misleading. It will be assumed that a factor of 1.10 is meant. The dynamic

loads using the large and small payloads are 1.10 x 14.35 kN = 15.8 kN, and
1.10 x 2.07 kN = 2.28 kN respectively

Although it seems a logical step, the CMAA classification system is not
used by CMAA to set vertical dynamic impact factors. A single formula is
used for all crane classes. (See Section 3.4.)

312 Summary of Standards

In all the standards, vertical dynamic loads are accounted for by increasing
a static load by som2 dynamic factor. That different dynamic factors are not
applied to moments and shear forces and deflections implies that all the
standards consider the response of the structure to hoist loading to be
dominated by ijust one mode. Only 5.16.1 - 1977 and the National Building

Code mention dynaamic analysis, implying that multi-modal behaviour may
be significant.

During a hoisting event the trolley and the payload directly below can be at
any location within the craneway. For design of the bridge in bending, the
critical loading case occurs when the payload and hoist are at the midspan.
For design of the craneway, the critical loading case occurs when the payload
and hoist are towards one end of the bridge. This is tr:a for static or dynamic
loading, but the rigidity of the structure at the point of loading has a large
effect on the deflection of the structure, and thus on the dynamic forces
developed. The dynamic factor used to determine the design load for the
bridge crane will be different from the dynamic factor used to determine the
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design load for the craneway girders and columns. As it happens, the
standards which are meant to be used to design the bridge are often different
from the standards used to design the craneway. The bridge is covered under
a specific standard for cranes, while the craneway is usually covered in a
general building code. Often different authorities write the different
specifications, and therefore different dynamic factor formulae are used for
the bridge and for the craneway.

In most textbook examples a factor of 1.25 is used to account for vertical
dynamic loading, without regard for crane properties. The stiffness of the
crane and of the cable are not considered explicitly in any of the standards. It is
possible that these two parameters are taken into account by grouping cranes
into categories. If this is the case, then all cranes in a given category
presumably have a similar structure stiffness and a similar cable stiffness, or a
similar relationship between structure and cable stiffness. For all the
standards but two (CSA B167 - 1964 and AISC), the categories may also group
cranes with similar structure mass, another parameter expected to have an
effect on dynamic behavior. No standard reviewed makes mention of such
rationales for its grouping criteria.

Grouping is also used to select dynamic factors based on load frequency.
This implies that there is not a specific maximum dynamic load but rather a
random chance for any size of load to develop, with loads progressively larger
than the mean becoming less and less likely to occur.

The German, British, and Japanese standards give category definitions
which are vague. It may be unclear in which category a particular crane
belongs, and what the appropriate dynamic factor is. In some cases it is not
clear to which weight -.ne-dynamic factor is to be applied.

Most of the standards reviewed do not account for hoisting speed. Those
two that do (DIN 15.018 and CMAA # 74), use hoisting speed differently. In
both cases, at zero velocity a dynamic factor greater than one is indicated.

Table 3.1 is a summary of the dynamic loads and factors recommended in
the standards reviewed in this chapter. The standards have been grouped
according to whether they were meant to be used in the design of the
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craneway girders, or the bridge, or both. All the factors given in Table 3.1 are
to be applied to the payload weight.

The dynamic factors used by the various standards range from 1.1 to 1.64.
Many standards use a constant factor of 1.25. This suggests that the dynamic
maximum load ratios do not vary greatly, and that 1.25 is a maximum that
covers the majority of the loading cases. Therefore a dynamic factor of 1.1 may
be applicable for a crane that would have a relatively light dynamic loading,
and a crane subject fo heavy dynamic loading would require a dynamic factor
greater than 1.25, in which case a factor of 1.less than or equal to 1.64 would be
adequate. By the criteria of some of the standards, the shop crane carries light
dynamic loads and by the criteria of others it carries heavy dynamic loads.
This applies to both the bridge and the craneway structure. The standards that
recommend low factors for the structures lab crane recommend higher factors
in other circumstances. Similarly, those that recommend high factors also
describe applications where lower factors can be applied. There is a lack of
agreement about which circumstances require relatively large dynamic
factors, and which require small ones.
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Table 3.1 Summary of Dynamic Loads and Factors from Various Standards
Applied to the Shop Crane Carrying the Large or Small Payload

Dynamic Load;
Load beyond that of

Dynamic Factor;
Dynamic Load

Standard unloaded trolley Payload Weight
using using using using
1435 kN | 207 kN | 1435 kN 2.07 kN
payload | payload | payload | payload
CSA B167 - 1964  [ref. 5] 17.9 313 1.25 1.51
CMAA #74 [ref. 10] 16.5 2.38 1.15 115
Standards JIS B8B21 - 1976 [ref. 16] 17.9 2.59 1.25 1.25
dealing only using Class I
with bridge { ]IS B8821 - 1976 [ref. 16] 20.1 2.90 14 14
using Class 111
BS 2573 - 1983 [ref. 36] 15.8 2.28 1.1 1.1
Standards DIN 15.018 and DIN 17.7 255 1.23 1.23
dealing with 4132
[ref. 35 and 34] using H2
bridge and DIN 15.018 and DIN 19.2 2.77 1.34 1.34
crancway 4132
[ref. 35 and 34] using H3
CSA S16.1 - 1977 [ref. 7} 17.9 2.59 1.25 1.25
Standards | CAN3-516.1-M89 [ref. 6] NA NA NA NA
dealing only | National Building Code 18.8 3.40 1.31 1.64
with craneway of Canada [ref 33]
AISC [ref. 1} 16.3 2.86 1.14 1.38
Weaver [ref. 30] 15.8 2.28 1.1 1.1
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CHAPTER 4
NUMERICAL DYNAMIC ANALYSIS

Clause 7.11 of CSA 516.1-1977 specifies dynamic factors that are to be used
“In the absence of a dynamic analysis...”. In this chapter the steps required to
perform a dynamic analysis are considered. The equations of motion for a
multi-degree-of-freedom system which govern the hoisting action and
structural response of the crane are developed. A computer program is
described which solves the equations of motion.

41 Modelling of Crane Components

In order to develop a realistic model of the crane, its various parts should
be examined and the behaviour of each part described by mathematical
statements. The expressions can then be assembled into a set of equations of
motion which can be solved for certain cases. There are four parts of the crane
that should be examined: the hoist motor, the crane and craneway structure,
the cable, and the payload.

Throughout the remainder of the thesis, certain variables and their
derivatives with respect to time will be defined. When a dot is shown above a
variable, it is the first derivative with respect to time which is being referred
to. Two dots above the variable indicate its second derivative with respect to
time.

411 Hoist Motor Model

Motors have two basic components; a stator which is stationary, and a
rotor which rotates within the stator on a fixed axis. Both have coils through
which electric current can pass. Induction motors produce torque between the
stator and rotor by creating a rotating magnetic field in the coils of the stator
and a corresponding magnetic field in the rotor's coils that is stationary with
respect to the rotor. The magnetic field of the stator instantly attains its
prescribed rate of rotation and remains at that constant angular velocity as
long as the motor is turned on. As the stator's magnetic field spins, the



rotor's magnetic field is compelled to follow, and it does this by spinning the
rotor. Because the rotor has mass, (and may also be connected with other
loads, as will be discussed later), it cannot instantly attain the constant angular
velocity of the stator’s field. Instead it accelerates towards that angular
velocity. The constant rate of rotation of the stator field is called the
synchronous speed of the motor and the symbol w, will be used to denote it.
The changing angular velocity of the rotor and its magnetic field will be
denoted by the symbol wy.

The difference between these two angular velocities is called slip and is
denoted by s. It is defined in equation (4.1).

§= =1-— (4'1)

Under certain idealized conditions the torque between the two magnetic
fields can be described as a function of slip by the following equation.

_ 2Tmax
p, 5
5 * Sp

(4.2

In equation (4.2) T is the torque between the two magnetic fields, Tmax is the
maximum torque that can be developed between the two fields, and sp, is the
pullout slip. The pullout slip is the slip at which Tmax occurs. These two
values are independent of one another and constant for any given electric
motor. Figure 4.1 shows & typical torque curve,

The maximum torque is often called the "pullout torque.” The term
"pullout” comes from the motor's behaviour when its torque is being
mechanically measured. The motor is allowed to reach and stabilize at full
speed of wg. Then a series of known resisting torques is applied. At each
increasing torque level, the motor slows down and stabilizes at a new specd,
which is recorded. When the applied torque exceeds the maximum torque,
the motor quickly slows to a stop. To the individual who coined the term, the
motor seemed to give up, or pullout.
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If a motor were constructed having a different value of sp, the shape of the
graph in Figure 4.1 would change. Figure 4.2 shows how the torque curve
changes with respect to sp. As the pullout slip gets smaller, and moves to the
right on the graph, the torque at wr = 0, called the starting torque, gets smaller,
and the slope of the curve between s = sp and s = 0 gets steeper. If s, is small,
then at speeds close to wy the motor can deliver a wide range of torque
without significantly changing speed. Figure 4.3 shows a wide range of
external torques superimposed on the torque versus speed curve of Figure 4.1,
and the corresponding narrow range of angular velocities. In crane
applications this feature is desirable. Motors built with low values of pullout
slip (sp<.2) are called "constant speed” motors.

The name is inaccurate but appropriate. At the instant the motor is turned
on the rotor is stationary, so wr = 0. It is assumed a mechanical brake is
released at that moment. Torque is immediately applied to the rotor by the
magnetic fields. There may also be initial external torque acting on the rotor
from outside sources because of the brake's release. If the motor's torque is
greater than the external torque then the rotor will begin to rotate and w, will
have a positive value. This will cause a further increase in induced torque,
the rotor will accelerate, and the motor's working point will advance to the
right along the curve. The torque available to accelerate the rotor is the
difference between the motor's torque and the resisting torque. This is true if
the resisting torque is constant or if it varies over time. Generally, after Tmax
is reached, the motor's torque approaches the resisting torque and wr
approaches asymptotically the speed corresponding to that torque. For the
majority of the running time the motor and resisting torque are nearly equal
and «r is close to wo. The price that is paid for constant speed behaviour is that
the starting torque is low compared to the maximum torque the motor is
actually able to deliver (see Figure 4.2). An applied torque greater than the
starting torque will prevent the rotor from moving forward.

Although Figures 4.1, 4.2, and 4.3, show the motor curve over the range of
1>5>0, equation (4.2) applies to values of s outside of this range. When
s> 1, oy < 0, and the rotor is actually turning in the opposite direction to

which the magnetic fields are trying to turn it. This happens when the
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resisting torque is greater than the torque the fields provide. The motor is in
"braking mode.” When s is negative and &y > w,, the motor torque becomes
negative and acts to slow down the rotor. This is called "generator mode". A
hoist motor goes into generator mode when it is used to lower a load. Figure
4.4 shows the torque versus speed curve from equation (4.2) for a wide range
of values of s.

There are two limitations to using equation (4.2) to describe real motor
behaviour. The first is that the equation represents a steady state. Voltage and
current in the motor’s coils are assumed to be constant, and in practice this is
not the case. Turning the motor on, or turning on or off other motors
connected to the same power supply, will cause voltage spikes and
fluctuations [ref. 37]. Any change in wr creates electric fluctuations, as the
motor demands different power at different speeds. Although mathematical
analyses exist for computing the torque versus speed curve under these
circumstances [ref. 18], they require information about the internal
construction of the motor that is not normally available to, or understood by,
the structural engineer. It is preferable, therefore, that a design procedure for
cranes not require this information. Generally these voltage changes are
either very small or of extremely short duration, and only small amounts of
energy are involved.

The other, and more severe, limitation on equation (4.2) is that it is for a
very simple induction motor. The pullout torque is a function of coil size,
and sp is a function of the space between the stator and rotor coils. This space
is called the "air gap.” The radius of the rotor can be defined as the inner
radius of the air gap. Equation (4.2) assumes that all the rotor’s coils are at the
rotor’'s radius. Motor manufacturers, however, can place some of the coils at
that radius, and some at smaller radii. This causes the total torque delivered
to be the sum of a set of smaller torques with different values of Trax and Sp-
Figure 4.5 shows a torque versus speed curve that is the average of the four
curves shown in Figure 4.2. Wound rotor motors are another variation. The
resistance in the rotor coils is adjusted as a function of speed, so the motor
moves through a series of torque curves with constant sp but varying pullout
torques.
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In theory the only limit on the shape of these altered torque curves is that at
s = 0, T = 0. In practice there is also the limitation of how much wire can be
fitted in at a particular radius and how expensive the motor is to make. The
torque versus speed curve is generally recorded as a graph, with the points
determined by making measurements of the performance of the motor.

The advantage gained by building a motor this way is significant. The
"constant speed" behaviour associated with low pullout slip can be
maintained while the starting torque can be made a much larger fraction of
the pullout torque. The disadvantage is that these motors cost more to build.
They are, nevertheless, used extensively in crane applications. Crane hoist -
motors are generally constant speed motors with high starting torques.

In the computer program the motor torque function is approximated as a
compound curve made of two parabolas, each having the form shown below.

Torque = g + ¢; O + CZQ)‘:' 4.3

The two sets-of coefficients, ¢y, ¢; and ¢, are used to define the two
parabolas. The coefficients are derived from five motor parameters: Pullout
torque, initial torque, sp, wo and the initial slope of the torque versus speed
curve at W, = 0. Figure 4.6 shows a graph of the compound curve
approximation. The derivation of the two sets of constants, ¢, ¢; and ¢, from
the five parameters is given in Appendix D.1.

All five parameters cannot be derived from the information generally
given on the motor nameplate (see Figure 2.1). To obtain values for these, the
motor manufacturer would need to be consulted or measurements of the
motor's performance would have to be made. If the motor were changed to a
different make, it is possible that all five parameters would change.

The motor is attached through a gearbox transmission to a cable drum.
The hoist motor produces torque as a function of the rotor's rotational
velocity. This torque causes angular acceleration of the motor's rotor, the
gears and the cable drum, all of which have inertia, and it also causes tension

to develop in the cable. Figure 4.7 is a diagram of the hoist's components. Let
Ym be the length of cable the motor winds onto the drum. The rotational
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velocities of each of the gears and of the drum are proportional for any motor

. . . Doear .
velocity w,. Let the velocity ratio o be denoted as pgear, for each gear in
T

Ddrum

the transmission, and the velocity ratio be denoted as pg;ym- The

equation of motion for this system can be written as follows.

all gears

Torque = Iyopor G + b Ipear ‘hgear Pgear * ldrum Odrum Pdrum

+ [ZEJ x Tension in one line of Cable (4.4)

Op

The I terms are the polar mass moments of inertia of the components named
in the subscripts and the o and @ are their rotational speeds and accelerations
respectively.

Let r, =[}§-1] The length, r, can be considered as an effective moment
T

arm that relates the motor torque to a force with a line of action along the
cable. Dividing the terms in equation (4.4) by r, puts the equation of motion

in terms of forces and masses rather than torques and moments of inertia.

Fo = myL¥,+ Tension in one line of cable (4.5)
Torque
Fo =
Te
all gears 2
I P 2
Tot > gearPgear 04
m, = rozor + 5 + drum2 mm (4.6)
le le : e
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I _
L?_'mrr . It is always the case that the

e

In equation (4.6) the largest term is

N ' Wy
rotor has a larger polar mome.t of inertia than any gear and that A s
Wy

always less than one. It is possible for the drum to have a larger moment of
Wdrum

inertia than the rotor, but is generally much smaller than one.

I
Therefore it will generally be the case that ﬁao—r will be the significant term
le

in equation (4.6).

To estimate the magnitude of r,, consider that constant speed motors

usually have a synchronous speed of 900 or 1800 rpm. The corresponding

hoisting speed will be very close to the rated hoisting speed, rarely more than
15 metres per minute. A reasonable value for r, can be calculated as follows.

_ 15 metres per minute
~ 2mx 900 rpm

Te =.00265 metres = 2.65 mm

The moment of inertia of the rotor varies considerably with the motor's

power, but even so, because of thz low value of r., m, calculated from

equation (4.6) can be expected to be quite large compared to other masses in
the system, such as the payload mass.

The term F,, represents the total force developed by the motor that would
act along the line of the cable. The force F, is proportional to the motor

torque, and just as the motor torque is a function of wy, so F, is a function of
Y
An approximate expression for F, in terms of )'rm can be derived which is
similar to equation (4.3).
Fo=bg +bj yp + b2y, 4.7)
o

C1 Cy
where b0=re, b1=;§, b2=;5
e e
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This expression is used in the computer programs listed in Appendix C.
The motor farcing function will be referred to as F (y, ), to indicate it is a

function of the motor's speed.

The model of the hoist and motor thus far developed can be represented
as shown in Figure 4.8. The motor mass m, is acted upon by two forces; the

motor force F (y), and the tension in one line of cable. The difference

between these two is the inertial force of —m_y ..

The axis of y,, is shown horizontal, and m_, is shown on wheels. This is

to indicate that there is no force due to gravity acting in the direction of y,,.
The mass mg, is not the true mass of the motor, which is subject to

gravitational load. It is the mass equivalent of the polar moments of inertia

of the rotor and hoist gears and drum. Table 4.1 shows the calculations
involved for determining m_, for the shop crane.

41.2  Crane and Craneway Structure Model

For a dynamic analysis, the structure is modelled as a multi-degree-of-
freedom system comprising an assembly of beam elements with distributed
mass and stiffness. The term "degree-of-freedom" will be used throughout
- the remainder of the thesis, and will be abbreviated to DoF. The plural,
"degrees-of-freedom”, will be abbreviated D'soF.

The beam elements used in this development are standard Hermitian,
4 DoF, elements, with local stiffress and mass matrices as shown in Figure
4.9. These beam elements do not include vertical shear deflections. Shear
. deflections are significant when short, thick, members are loaded at right
angles to their axis. The purpose of a crane is to allow free motion of a



%

9IqeD JO
i f 1 aur] suQ l

b | uolIsua],

SSEJA] I0J0IA 9A1}233)7 U0 Sundy sadI0g §°p N3

66



*puodas  Japun jsni ul Z5/W 11°0 18 S3UU0 | G $aie1aaddi NS

s fw 10 Jo paads Sunsioy yaear ued rojow Y} 205213y | NIG = Soull b - N 0L FREN )
(zs/w 186 ) sauuo) 7)
oLXBI'] = (udi geww goe
(sau) p)(s S ) 4 {uaur 1525 09)(s /W 1°0) iy
Ny 01~ gl x - - .
s [N 82 | =
‘st 2105 J010W s oG }{gw / 9y pgg)(tune L) wa gog)(wiwe QOEY ¥Z = WP
wnuixew a1o0ja1ay ] -anbioy nojnd ayy jo g /z inoqe jo
K1aarjap anbio) v o1 spucdsanod p awnssy -Afjuadyje Wit (| = WRIP JO SSIUNDNY} auInsse
150W SUNL JOJOW 3y} YHYym je Jamod ay) st Jamod pajey  XEL,
4
wdy g0 = — = 10j01
sauvo) gy = guaAso Ztww o) op) _
7 (W e 01%PTY) - wy 2y gp = ssew Jojo1 2uinsse
7 (p-01 X 81 DGWIA 1) + U3  01XG + U 80 “wnn gz = QO 40104 Jtunsse
W, QIXG = 0 O 1XbT = {(up)unu 3as go)wdn0s) . o,
ey orey (sauy p)(s /wir)
wdippg wdpps wdippe L suoje[naey
A%Em:.cv ¥ Nh E%wu * Eu‘.mvvu i To =
thuma leald; 7 S/WNY 8T = M18Z = dH g€ = Jamod pajes
a|qua Jo saul §
Youa NEw«_ 70 = o QGNNX o0 w avady 5 /w g = uiu fig gz s padds Junsioy
¢ we g9 = yifua) wnap
‘1223 yaea 20,4 wida gpg 1@ 51 2000w wut gg = J9jawrp wnap pue Juisnoy Jojeis
uaym wdi 1°g pue ‘z ‘G Jo spaads e 4oea
¥ 0} ssew puenw 9oz QO Jo sieald ¢ awnssy wdi gpg = Y UIAIY

10y 10j0y pue W 10) SUONEIND[E) 'Y dqe]

67



Figure 4.9 Beam Element

P1
M1

T
§=1

Mz

A
P2 P Pa
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Equations of Motion for an Element

£ n 6 3L 6L 3L Y
M1 ~ 2El p3L 217 -3L L2 8
P2 B J6L -3L 6 -3L 52
Mz 3L L? 3L 27 8,

156 22L 54L -13L 8

+ mL 220 aL2 131 312 8

420 | 54L  13L 156 -22L I
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E is the Young's medulus for the material

1is the moment of Inertia of the prismatic cross-section
i is the mass per unit length of the cross-section

& represents a linear displacement

@ represents an angular displacement

P represents a linear force

M represents a moment
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payload within a large, open space, so it is to be expected that the major
horizontal structural components are long and thin.

The beams of the structure are supported by columns. Hoist induced
vertical loading is a function of the vertical stiffness of the structure. If
vertical deflections of the columns are negligible compared to the vertical
deflections elsewhere on the structure, then the columns may be modelled as
rigid supports for the beam elements. If column bending stiffness and mass
contribute significantly to the degree of rotation of the connections between
columns and beams, then the columns may also be modelled as elements
subject to deflections. Elements similar to the 4 DoF Hermitian elements may
be used in this case. If vertical deflections are significant, then for non-slender
columns, axial stiffness may be included. The vertical stiffness of braced
slender columns is not constant. The stiffness decreases with increased
deflection, due to PA moment magnification. This may be accounted for by
using elements which relate axial loading with axial and lateral displacement
(Paz [ref. 21] page 251) .

Unbraced slender columns are subject to column sway. When vertical
load is applied mass is moved horizontally as well as vertically. The lateral
displacement of the column end causes a decrease in vertical stiffness, due to
PA moment magnification. The lateral motion is dynamic, and the inertial
effects of the horizontal acceleration of the mass which the column supports
must be taken into account. Therefore, the Hermitian 4 DoF elements cannot
be used for the beams of a crane which is subject to column sway, because
these elements do not incorporate lateral and axial D’soF. The lateral motion
of the payload should also be accouried for in the case of column sway.

In the model for the shop crane, the columns are assumed to be
vertically and laterally rigid, and their cornections to the beams are assumed
to carry no moment. The columns can therefore be considered as pin supports
for the beams.

All the element stiffness and mass matrices are assembled into their two:
respective global matrices, [Ks] and [Mgl, with the vertical deflection at the

position of the hoist as the first DoF. Two models are used. One, designated
as “E” , is for the structure when it is loaded at one end of the bridge. The
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other, designated “2”, is for the cases in which the structure is loaded at the
midspan of the bridge. These cases correspond to the two loading positions
used in the testing of the shop crane, described in Chapter 6. Figures 4.10 and
4.12 show the two multi-DoF models which are used. Figures 4.11 and 4.13
show the locations of the nodes and elements for “E” and “2” respectively, on
isometric views of the crane and building structure. In Figures 4.10 to 4.13,
node numbers are shown in circles and element numbers are underlined.

The models use transverse and axial symmetry where possible to reduce
the number of D’soF. Transverse symmetry is used to reduce to half the
‘number of elements within a member, and the number of elements needed
to model the complete structure. Using half the applied load, a simply
supported beam loaded symmetrically can be modelled as a beam with the
same section properties but half the length, supported at one end by a pin and
at the other end by a roller that allows displacement but no rotation. This
cantilever will develop the same deflections and all the symmetric mode
shapes which the original simply supported beam develops under symmetric
loading. The full vertical reaction from the craneway is carried on node 8 by

the divided element 12 in model “2”. In this instance, the values of I and m

for the original member are doubled and assigned to the cantilever, and this
provides consistent results.

When the axis of symmetry of the complete structure divides & member
axially, that member’s elements are assigned section properties with values
equal to half the values of the properties of the original member. Using axial
symmetry does not change the number of elements within a member but
does reduce the number of elements needed to model the complete structure.
The bridge and element 4 of the building structure are modelled in this way
in model “E”. '

The mass of the bridge drive motor and electrical box are assumed
negligible. Load is applied to the crane structure through the cable. The first
DoF of the first element is the displacement of the crane at the location of the
trolley and hoist. A lumped mass at node 1 represents the trolley and hoist.

The members of the building structure are W410x67 sections which are
integral with a cast 130 mm concrete floor slab above. Using the procedure
outlined in CSA-516.1-M89 [ref 6 ], the effective moment of inertia, I, of these
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Figurce 4.12 Mult Degree of Freedom Model for
Shop Crane Loaded at Midspan - Model "2"

H=Hinge : Extra Rotational DoF allowed

Number of Nodes = 12 P=Pin : Translational DoF not allowed

Number of Elements = 12 R=Roller : Rotational DoF not allowed

Number of D'soF = 23 F=Fixed : Kotation and Translation not
allowed

E =200 x 10°* KN/’

Elements Ixx m
':,I (mx10°9 (T/m x10°%
— Bridge 1,2,3 70.2 53.4
+ Endtrucks| 4,5 15.5 35.8
S Craneway| 6,7,8, 36.8 37.2
- 9,10,11
“‘ Building 12* 880 350
I~ Structure
-+
: * section properties have been doubled to

account for full loading on transversely
syraetric element

Il;

0.914 0.914 —1—0.914

Load applied
at Node 1

3.442
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composite sections can be estimated from Iy, the moment of inertia of the
steel section, and I, the moment of inertia of the transformed composite

section.

4
Te = Iy+ 0.85 Vp (Ii-Iy) (4.8)

The fraction of full shear connection between the concrete and the wide
flange beam is accounted for by p in the formula above. For the purposes of
this model, p will be assumed equal to one. The W410x67 section has a
moment of inertia Iy, of 246 x 108mm#. The effective width of concrete for the
north-south member is a tenth of its span of 6.88m, because the beam
supports the edge of the slab. The value of I; for this transformed section is
474 x 105mm#4, and the effective moment of inertia is

le= 246 x 105mm#* + 0.85(474 x 106mm4 - 246 x 106mm4) = 440 x 106mm#

The distributed mass of the member is taken as the distributed mass of the
wideflange and half the mass of the concrete assumed to act in the composite
section used to calculate Io. Concrete density is assumed to be 2400 kg/m3 .
These assumptions give the north-south building structure member a
distributed masses of 175 kg/m.

The program MAKEKAM.BAS is listed in Appendix C.1. This program
assembles the individual elements into stiffness and mass matrices. The
program GENJAC.BAS, listed in Appendix C.2, performs the general Jacobean
iteration on the two matrices from MAKEKAM.BAS and displays the natural
frequencies. The stiffness and mass matrices for “E” and “2” are shown in
Appendix B.1. The first seven natural frequencies are shown in Table 4.2.
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4,1.3 Cable Model

The cable connects the motor to the payload and the payload to the
structure. Compared to the masses of these three components, the mass of
the cable is small, and is assumed insignificant. This is a reasonable
assumption for most bridge cranes. A bridge crane can have a massive
attachment at the lifting end of the cable, such as a ladle in a foundry, or a
magnet in a junk yard. These masses can be counted as part of the payload
mass. A case where the cable mass might be significant is if the cable were
tremendously long, as might be the case for an elevator in a deep mine shaft.

One end of the cable is attached to the drum of the hoist and the other end
is attached to either the hook or the trolley, depending on how the cable is
reeved. The number of lines of cable between the hook and the structure will
be called n. Below the hook the payload is secured by slings. (See Figure 2.8.)
The net stiffness of the complete cable and sling arrangement is defined as k.
This is the weight of a payload, divided by the change in the distance between
that payload and the trolley, due to the application of that weight. Thus ke
comprises the stiffness of all the lines of cable between the hook and structure
acting in parallel and the stiffness of the slings that secure the payload to the
hook. Figure 4.14 is a schematic diagram of the cable system. It shows a single
spring of stiffness k¢ between the payload and the pulleys at the hook. The
cable is shown as being axially rigid. This diagram satisfies the mathematical
requirements of the model, but it should be remembered that the stiffness of
the real cable does contribute to k¢, and that it is only a convenience to
assume that the spring acts in the location indicated.

The stiffness of the cable and slings was discussed in Section 2.5. The
value of ke is not constant, and any model of the crane should take that into
account. The three features to contend with are the hysteresis, the delayed
elasticity, and the variability of the stiffness with respect to tension level. The
first two are friction related, and could be modelled using damping. The last
has to do with the changing orientation of the linear elastic members with
respect to the direction of the load. This occurs with all the components in
the cable and sling assembly. The cable is made of wound helical strands.
Under low tension, a significant portion of the force is carried through the
relatively flexible mechanism of bending moment within each wire. As the
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Figure 4.14 Model for Cable

Trolley To
Frame Hoist
Drum
Trolley ‘
Frame \

~—f=— Cable (4 lines) —— »)

Hook and Pulleys

Tension Load Cell

Payload
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tension increases in each strand, it tightens against its neighbours and no
further bending moment deflection is possible. By then, the more stiff
mechanism of axial elongation carries the major portion of the force. As
tension increases, the cab_?;“elongates and narrows. More and more strands
change from flexible bending members to stiff tension members and the net
cable stiffness rises. The web sling is very similar. The strands are not helical
wires but sinuous nylon fibers interwoven with one another. They must
straighten out before they can elongate. A chain behaves slightly differently.
Friction forces at the bearing surfaces between the links act to hold each link
slightly out of line with the axis of the chain. Therefore, while the links
elongate due to the chain tension, they also deflect due to shear and bending
moment. As the tension load increases individual friction forces are abruptly
overcome. The links slip against one another and rotate into closer alignment
with the direction of the tension.

There is also friction in the pulleys, on the hook and on the trolley. Pulley
friction changes the tension in each line of cable [ref. 10]. Each line of cable
could be modelled as an individual spring element, and the pulleys’ frictional
effects could be accounted for.

For the single spring system that will be used to derive the dynamic factor,
the model shown in Figure 4.14 will be used. The computer program
outlined in Appendix C allows for changes in k. with respect to tension, but
does not address the issue of damping and hysteresis and delayed elasticity.
The procedure used to vary k¢ is explained in Section 4.3.3.

414 Payload

In the tests done on the shop crane, the payload did not deflect
significantly. For the model developed in this chapter, the payload is
considered as a mass attached to the cable and sling system, as shown in
Figure 4.15b, If deflection is assumed significant, then the payload can be
modelled as a single DoF spring and mass system, and can easily be
incorporaied, as shown in Figure 4.15¢c. If a more complex model of the
payload is required, then a multi-DoF system could be devised.
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The support conditions of the payload and the arrangement of the cable
prior to hoisting affect the initial conditions and the dynamic factor. The
range of possible starting conditions can be grouped into two types: those in
which the cable has some initial iension, and those in which it does not. For
those in which there is cable tension, the tension can range from zero to mpg,
the weight of the payload. In the limiting case, when tension equals payload
weight, the payload is suspended completely by the cable. In all other cases of
this first type, the payload rests on some support and the cable is taut. Any
starting case of this type can be identified by specifying the initial support
reaction or the initial tension in the cable. In the starting cases of the other
type, the cable is slack. The tension in the cable is nominally zero, the self
weight of the cable and slings being the only load carried. When the motor is
turned on, there is at first no external load on it. At some time after this, the
slack is used up and tension develops in the cable. The speed which the

motor has reached at that moment will be between ym = 0 and ym = Vo. The

value of ym at the moment cable tension develops can be used to identify any
starting case of the scond type. In the border case between the two types the
initial tension is zero but at the moment the motor begins to move tension
begins to develop. The other limiting case for the second type is that where

there is enough slack for the motor to attain full speed (ym = Vo) before any
tension develops in the cable. Any further amount of slack in the cable will
result in a longer wind up time before tension develops. However, when the
tension does develop, V, will have been reached and the system behaviour
will be identical to the limiting case. In this limiting case, at the moment that
the cable becomes tight, the difference between the vertical velocity of the

structure, which equals zero, and jrm, which equals V, is greater than for any

other starting case. Because of the jerking action of the cable under this
loading pattern, this starting case is called jerk-starting.

Let the force R be the floor reaction force. Whenever R does not equal
zero, the payload is not moving and is in static equilibrium. Let T be the net
cable tension and let yp, be the upwards displacement of the trolley. For the
case in which the payload is moving, the dynamic equation of motion,
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applies, and R = 0. For the case in which payload is not moving,

R= mpg - Tc (410)

and 0 <R <mpg. The case in which equation (4.10) applies cannot be referred
to as the static case, although the payload is in static equilibrium. For the

special case in which equation (4.9) applies, and yp = 0, the payload is also in
static equilibrium.

4.2 Assembly of the Global Matrices

The stiffness and rn:ass terms associated with the two D’soF for the motor
and the payload must be assembled with the stiffness and mass matrices [Kg]
and [M;] for the structure, to create the global stiffness and mass mairices. The
models from Figures 4.8, 4.14, 4.15b, and one of 4.10 or 4.12, can all be brought
together to give the model shown in Figure 4.16. The first degree of freedom
of the structure is the vertical displacement at the node where the trolley is
located. Rollers are shown on the sides of the trolley mass to indicate that
only vertical displacement of the trolley is allowed. In the real system, the
motor acts upon the cable through the gear box and cable drum. The action of
the motor does not directly affect the structure. Therefore, the mass my, in
Figure 4.16 is assumed to be sufficiently far away from the first pulley on the
trolley such that the line of cable from mass my, to the first pulley on the
trolley is horizontal. The only vertical load that is transferred from my, to the

structure and payload is the tension in one line of cable.

D’ Alembert’s principle states that a body is in dynamic equilibrium when
the vector sum of the forces acting upon the body is equal and opposite to the
inertial force, where the inertial force is the product of the mass of the body
and its acceleration. Thus, the sum of the applied forces and the inertial force
upon a body equals zero. Consider each of the masses of the system shown in
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Figure 4.16
Assembled Multi-Degree of Freedom Model

Structure Model "2" or "E"
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product of the applied forces and their virtual displacements. Let fs, f}, and
fA denote the Spring, inertial, and applied forces respectively, and let § denote
the associated virtual displacements. The Principle of virtual work, expressed
a$ an equation, is shown below.

Zfsd + 18 = ZfAd
' &
kc(%n—'l- Yp+ }’SI) (—nh\- Syp + 5}’51) +<3Y> [K]{Ys)

+ mmj}mSym + mpj;PSyp + <8?5> [MS]{S?S}

=Fo 8y + Lay, (4.11)

Collecting together the terms which multiply 8y, and 8yp, equation (4.11)
can be rewritten as the following:

y k .
Sym (k;)’m_ %XE + cnzsl + Mg - Fo)
+ SYP (-k; 2y kCYp -keyst + mpj/'P -R+ mpg)
+3ys1 (kcn 2. kc)’p + chs])

+ <Y {[Ks] {Ye} + [Ms] {Ys}}

=0 for all values of 8Ym, 8yp and all 3ys. (4.12)
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The virtual displacement 8ys is the first term of the row matrix <8Y¢>. To
collect together all the terms in equation (4.12) that multiply 8ysi, the first

term in the column vector {[KS]{YS] + [Md] {Ys}} must be included with the
terms in the third addend in (4.12) which multiply 8ys1. This is done using
the following definitions.

Let the stiffness matrix [K;] without its first row and column be denoted by
[Ks-1]). Similarly, [Ms-1] is the structural mass matrix without its first row and
column. Let the vectors €<8Ys-1> and {Ys-1} be row and column vectors
containing all but the first virtual and real structural displacements,
respectively. Equation (4.12) is now rewritten.

ke ke kevsi -
8}’m( n);m_ riy’p_*_gn’s +mmYm'Fo)

-kC .

+8ys1 (ﬁr{—m - keyp + Keys + <Kg>{Ys} 4 <Mgp> (Yd )

+<8Ys-1> {[Ks-l]{Ys-l} + [Mg1] {?s-l}}

=0 for all values of 8ym, 8yp and all 3ys. (4.13)

To satisfy this requirement, the three bracketed expressions in (4.13) must
each equal zero, and each of the terms in the column matrix of the fourth
addend must equal zero. It can be seen that [Mg] will appear within the global
mass matrix. All but the first term of the stiffness matrix [K;] will appear in

the global stiffness matrix. The first term will be replaced by the value
[ ketks1y <Kgy-1>

ke + ks1,1. The matrix thus formed isl. J, where <K1-1> and

{Ka-1}  [Kg]
{Ks1-1} represent all but the first term of the first row or column, respectively,
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of [Ksl. The equations of motion for the system can be written in matrix form
as shown below.

> ¢ =c

n2 n n <«

k. Ym
'F kc -kC (0)

Yp

ke

o ke ketksi <KgirD> [ LHYS)

h— [0} [0} {Ksl"l} [Ks"l] -

m, 0 © ¥im Fo
+[ 0 mp O ¥ P =4R- Mpg
0 0 [M] VA {0}
(4.14)
Equation (4.14) can be written more concisely as
[KIY} + IMI(Y) = (F). 4.15)

Two approaches are followed at this stage. In Chapter 5, equation (4.15) is
modified. Simplifying assumptions are made which allow closed-form
solutions for the equations of motion to be found. The solutions give
expressions for the maximum displacement of the crane structure for specific
hoisting events. In the remainder of this chapter, the steps required to solve
equation (4.15) approximately using a time stepping technique are outlined.

The results from a computer program which performs these steps are
presented.
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4.3 Qutline of Numerical Time Stepping Procedure

Some of the terms in {F} and [K] are not constant. The approximation for

the motor force term Fy, in the vector {F} is the quadratic function in yp, given
in equation (4.18). Thus, some of the equations of motion of the system are
second order non-linear ordinary differential equations. The value of k.
varies with tension. A function for the variation of k. has not been
determined, but if k; is not considered a constant, then that adds another
level of complexity to the equations of motion. It will therefore be difficult to
find a closed-form solution for the equations in (4.15). A numerical time
stepping technique will be used to give an approximate solution. The time
stepping technique is described in this section.

4.3.1 Degrees of Freedom Approximatioa Procedures

A hoisting event begins when the motor is turned on and ends when a
steady state is reached in which the payload is fully suspended by the cable.
For the time stepping procedure, the duration of a hoisting event is divided
into discrete time steps of length At. Each DoF is approximated over the time
step by an appropriate approximation function. The values of y and at the
end of each time step are assumed to be linear functions of the value of y at
the end of the time step. The formis as follows.

yat = B— ( Yat-Y) (4.16)

. B2
Vat Atz(ym Yy (4.17)

In the derivations in this chapter, a variable subscripted “At” is the value of
that variable at the end of the time step; a variable subscripted “0” is the value
of that variable at the beginning of the time step; a variable subscripted “@t”
is the value of that variable at any time t within the time step. The terms B3
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and By are constants and y* and y** are functions of the value of v and its
derivatives at the start of the time step.

If acceleratior is assumed to be linear over the time step, and the
acceleration changes a total of Ay during At, then the following equation can
be written.

v . Oyt
= Yo + 4.

Yot = Yo + (4.18)
Integrating equation (4.18) twice gives the following expressions for ygy

and }"@t.

. . . AE" 2
yet = Yo + Yot + 2AL (4.19)
. ..otz A3
yet=VYst Yot + 5+ AL (4.20)

Equations (4.18), (4.19) and (4.20) are solved when t = At, and written as
three expressions for Ay.

Ay = YAt - Vo (4.21)

2y 2y
Ay = yar 2% .

At T oap o “22)

. 6 Yat 6 Yo 6 )'fo .
Ay = v 4.2
Y= Tae Tar T a T oF 4.23)

Equating the right sides of (4.22) and (4.23) and collecting like terms gives
and expression for yat in terms of ya¢.
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3 . At
2&__}19_2 _ 7oAt (4.24)

YAUE Tar T At T Yo 2

Equation (4.24) can be written in the form of equation (4.16),

yat = B—( yat-v) (4.16)

. 2VoAt At
where ;=3 and Yy = Yo+t }’g +y°6 . (4.25)

Similarly, equating the right sides of (4.21) and (4.23) and collecting like
terms gives an expression for yat.

. 6Y At 6 0 6'0 -
= At _2Vo Yo 42
MU= AR T AR T ar (4.26)

This can be written in the form of equation (4.17),

Jat = A%’( yae-y') 4.17)

. . VoAt?
where B2 =6 and = Yo+ VoAt + Yoot . (4.27)
Y y 3

Linear acceleration does not have to be assumed. Another approach is to
use the Newmark method. In the Newmark method, the displacement and
its derivatives are not defined as functions over th= time step At. Rather,
their values at the end of the time step are defined in terms of initial and
final values. The general form is as follows. '
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VAt = Yo + (1-8 )ipAt + 8Va At (4.28)

: 1
YAt = Yo + VoAt + (5~ )jo + otjiar) A2 (4.29)

The values of o and & are constants selected by the user, with the

. 1 . .
constraints that 0 € § < Tand 0 € <5 . These equations are rewritten to put

yat and Vat in terms of yar, Equation (4.29) is rearranged to give the following:

o _ YAt Yo Yo (1-200%

BEZ aar T oA aAt 20 (4.30)

This can be written in the form of equation (4.17),
Jat = *Etz—z(ym -y, (4.17)
where [ =é , and Y = yo+ VoAt + (%- a))'bAtz . (4.31)

Substituting the expression for yat from equation (4.32) into equation
(4.30) and simplifying, gives the following.

- Jm_é&_(é_ J _[._5__ )
VAT st T ast  \a 1o 2u 1%t #32)

Equaticn (4.32) can be written in the form of equation (4.16),
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. h .
yat = At(ym ), (4.16)

n|R

\; 13}0&2 . (433)

LY

When 6§ = %and o= 15 the Newmark method is equivalent to the linear

acceleration method. The most quickly converging result are achieved using

the Newmark method when &8 = 5 and o =1Z . With these wvalues the

acceleration coefficient of the y"term in (4.33) becomes zero. In this thesis

the Newmark method with & = 'l?: and o =% will be used.

43.2  Evaluating the Force Terms

The forces Fp and R, along with the D’soF of the system and their first two
derivatives with respect to time, are assumed to be known at the beginning of
each time step. The two force terms vary over the time step as functions of
the degrees of freedom. Specifically, Fy is parabolic in yp, and R is governed by
{Y}. If, over the time step, these two terms are approximated by some simple
functions of time, then, at the end of the time step, Fo and R will not
generally have values consistent with the final values of ym and {Y}. At this
point they may be updated to consistent values. Such a procedure is simple to
set up, but it is slow to converge. A procedure that maintains consistency
between the forces and the degrees of freedom throughout the time step is
outlined below.

The approximation procedures for the D’soF give any one derivative as a
linear function of any other derivative. With some algebraic manipulation of
the equations of motion, therefore, the force terms can be written as linear
functicuis of their governing D'soF at the end of a time step. The problem
reduces to solving two equations, (the now linear equations of motion and
the defining forcing function), in two unknowns, (the force term and its
governing degrees of freedom).
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4,3.2.1 Solving for the Fy Term

The F, force at the end of the time step must be expressed as a linear

function of ym.

Fo=ap+aiym (4.34)

In this section the steps are described which are required to derive an
expression for Fpin the form shown in equation (4.34). To achieve this result,
the first step is to uncouple the equations of motion in equation (4.15). The
stiffness and mass matrices are diagonalized (and the equations of motion are
uncoupled) through the use of a transformation matrix, [®] A
transformation matrix [@] will be defined as a matrix that produces diagonal
matrices when it is pre-multiplied by [K] or [M], and the result is pre-
multiplied by [®]7. The columns within [®] are the eigenvectors of the
system. Let the terms within [®] have the dimensions of mass'1/2. The
particular matrix [} which will be used is the one which transforms {M] into
the identity matrix [ I ], and transforms [K] into a diagonal matrix [w2] which
has the squares of the natural frequencies of the system for its non-zero terms.
Earlier @ was used in describing motor behaviour. This is not inconsistent. In
both cases w is a measure of rate of change of angle with respect to time. The
following equations therefore apply.

[@?] = {®)TK] [®) and [1]=[d]T[M][D] (4.35)

Let (W} be the set of modal degrees of freedom of the complete system.

{Y)=[0]{w} (4.36)

Let all the terms in equation (4.14) be pre-multipiied by [®]T and the
uncoupled equations of motion result.



[D)TKNY) + [®ITIMIY} = [®)T(F)
[@]T (K] [®HW) + [®ITIK] (@)W} = [®)T(F)

[2H{W) + (W) = [®]T(F) (4.37)

All but the first two terms of {F} are zero. Therefore

[@IT(F} = (@1} Fo + (@) R~mpg), (4.38)

where [@;} and {d,} are the first and second column of [@], respectively. The

approximation procedures relating y and y to y apply also to the modal
degrees of freedom. Therefore, at the end of the time step, the following
equation, based upon equation (4.17), applies.

(W)= A% {wW) - (W} (4.39)

Substituting the expressions for [®]T(F} and (W)} from equation (4.38) and (4.39)
into equation (4.37) gives

[1621+ 22 117w} = @ Fo + @IR - mpg) + £ e @i

To rewrite (4.40) as an equation for (W], the expression must be
premultiplied by a diagonal matrix, [[w?2] + *A{% [11]". The following

definitions are useful. Let
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(A) = [l + ff—zm]“{mn,

(8) = [(2] + ff—zm]‘lm,

B2

d [Cl=
and [C] At?

B2 1
2]+ —=[1 .
[CoRwitslNes
Equation (4.40) is now rewritten as an equation for {W).

{W} = {A}F, + (BR-mpg) + [Cl{W**} (4.41)

The matrix [C] is a dimensionless diagonal transformation matrix whose non-
zero terms are

1
CII 3 —————————————
i3] 2A12
A= 4
B2

(4.42)

The term wj is the j'" natural frequency of the system. As At becomes smaller
[C] approaches the identity matrix. If a similar derivation was performed, in
which the D'soF were not uncoupled, the counterpart for [C] would be a full
matrix. The tiine required for the calculation of {Y), rather than {W)}, in each

time step would increase proportionally with the number of degrees of
freedom.

From equation (4.35) the expression for yp, in terms of {W} is found.

Y = <D (W} (4.43)

From equation (4.16), an expression for ym in terms of ym, at the end of each
time step is found.
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At .
¥Ym = E“l"}’m +Vm (4.44)

Equating the right sides of equations (4.43) and (4.44) and substituting the
expression for (W} into the result gives the following.

A »
1
Let —° = k*, a stiffness term
<O (A} ’ ’
<D >(B
25;1;"% = {1, a dimensionless constant,
<
O>[C] — CKF
<OP{A}

Equation (4.45) can now be rewritten as an expression for Fo,

*At
E. =
? (kﬁl

The force R is zero when the payload is fully supported by the cable.

J}"m + (K'ym* - C1(R-mpg) - <KP> (W} ) (4.46)

Equation (4.46) then gives F; as a linear function in terms of yy, as required in
equation (4.34). When R = 0,

Fo =20+ a1ym (4.34)
where a9 =K'ym" + {1mpg - <KF> {W*¥)

and a;= BA
1

(4.47)
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If the procedure used the uncoupled D'soF, the term <XF» {W**} would be
replaced by some stiffness coefficient times ym*™, and equation (4.46) would be

solved more quickly. The saving in time here, however, is not as great as the
gain due to the diagonal [C] matrix in (4.41).

In Section 4.3.2.2 following, it is shown that when R is not zero it is still

the case that Fy can be written as a linear function in terms of Ym- Thus, the
value for Fo which is consistent with {Y} at the end of each time step is found
by solving two equations in two unknowns. The two equations are equation
(4.47) derived from the equations of motion, and the forcing function,
equation (4.7).

Fo =bg +b1 y + b2 y2, 4.7

Equations {4.7) and (4.47) are combined to give

byyZ + (b1-a1) ym + (by~ag) = 0 . (4.48)

The solution for yp, is the following.

~b) £V (b -ar)? - 4 -
. (a1~ by £V ( 12?312) ba( b - ap) (4.49)

Equation (4.49) is solved to give a value for y at the end of each time step,
which is substituted into (4.47) to give a consistent value for F, at the end of
each time step. The value for F, is substituted into equation (4.41), along with
the appropriate value for R, and the modal displacements are determined.

These are substituted into (4.35) to give the solutions for [Y] at the end of each
time step.
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4,3.2.2 Solving for the R Term

In this section a linear expression for Fy in terms of ym, is derived which
accounts for changing values of R. The force R is the reaction between the

payload and the floor. During the iterations in which the force R is not zero,
the payload is motionless. The acceleration ¥, is equal to zero. The second

equation of motion from equation (4.14) becomes the following,

R-mpg = <K2>{Y} (4-59)
where <K3?» is the second row of [K]. Substituting the expression for {Y} from

equation (4.36) and the expression for (W} from (4.41) into equation (4.50)
gives

R - mpg = <K>[P}{{A)F, + (B}(R - mpg) + [Cl{W**}} . (4.51)

The following two definitions are used to simplify equation (4.51). Let

<K2>[D]{A)

1-<kp[01E) - 2’
a dimensionless constant, and let
<K-»
KGIC) o ry

1 - <K»> [®]{B}

Equation (4.51) can now be rewritten as an expression for R.

R = {3Fy + <KR> {W**} + mpg (4.52)

This expression for R is substituted directly into (4.46), and the following
equation results.
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*At
F, =
° [kﬁl

Equation (4.53) is rewritten as an expression for Fo.

]}"m + (K'ym" - £182Fo - LICKRY W) - <KF> (W) (453)

KAt . K ym" - CL<KR> +<KF>) (W)
-G

Bl + 5182) 1+80 J (4.54)

Equation (4.54) is again a linear expression of Fy in terms of ym, as described by
equation (4.34). When R = — <K2>(Y) + mMpg,

Fo=ag+aiym, (4.34)

K*'ym' -€G<KL> +<KF> D> (W)
1+06102

where ag=

kK At
daj=—""—]/ 4.55
and a1 510+ Gl (4.55)

The point at which R changes from a variable to the constant zero, will
generally not fall at the end point of a time step. Within each time step R is
calculated using equation (4.52). The time step during which the payload lifts
off is the one that ends with the magnitude of R generated from (4.52) being
greater than zero. In the real system R cannot be greater than zero because the
reaction force between the payload and the floor cannot be tensile. Neither
(4.47) or (4.55) are appropriate for calculating F, for the time step in which
equation (4.52) provides a positive value for R. Equation (4.47) gives a value

too low for Fy, because R was not zero throughout the time step. Equation - o

(4.55) gives a value for Fo which is too high, because R cannot in reality be
positive. A simple solution is to recalculate Fg using (4.46) vsing the positive
R value from (4.52), which gives a result between the two.
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4.3.3  Solving for Variable Cable Stiffness

The preceding development in Section 4.3.2.1 gives a numeric solution for
the equations of motion in which at the end of each time step the forces F,
and R are consistent with the displacements and velocities. The cable
stiffness, ke, is treated as a constant. In this section a procedure is described
which treats k¢ as a function of cable tension Te. This development begins by
introducing a term for the elongation of the cable. An examination of the

stiffness matrix in equation (4.13) shows the net cable tension,

Te = k—cnlnl - keyp + kcysio If this expression for Te is divided by the net

cable stiffness ke, then the following expression results.

T,
ke = );—m “Yp+Ys1 = Ve (4.56)

Therefore, ye = kT, where the displacement y, is the cable elongation. The
expression for cable elongation in terms of the modal D'soF is

Let <dp =< %«Dp - <D +<DPD . (4.57)

If the expressions for cable tension are brought to the right side of the
equations of motion in (4.14), then the following matrix equation results.

4 TC A
F.-—
Ym mm 00 Ym °n
0 0 .
(0] K .
[YS} 0 0 [MS] [Ys} C
" {01 J
T (4s)
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Both sides of equation (4.58) are pre-multiplied by [®]7.

{{0] (0]

(W} + (W] = [@]"(F)
[0] [mil]

T
= (Fo-i2 Jiou) + R-mpg + TO@3) - Tlos) (4.59)

Substituting the expression for {W}, from equation (4.39), into equation (4.59)
gives the following.
(0] [0] B
2
+ (11 [ (W)
H [0] [ad) } ag ]
B2

T, .
- (Fo-ﬁ){cbl} + R-mpg + TYP2) ~ Tel@s) + 5 (W] (460

To write an equation for {W}, each of the addends in (4.60) must be pre-

() (017 5 T
) } + ‘—T[I]] .The following
[0] [of]

multiplied by a diagonal matrix” At

definitions are useful. Let

[0] [0] 8, -1
(Ad =H (0] [ } ' A_@m] (il

-1

(0] [0 |
{BS1=H ]+9—?—-[11 @),

0] [ | A
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-1

01 (017 4,
{DS]zH (0] (6] ] i ;;5“1] (@

[0] [0] -1
_ P B2
o {CS]'MZH[N [oﬁJWth} '

Equation (4.60) is now rewritten as an expression for (W}

T
(W} = (Fo—f)[As} + (R—mpg+Tc){le - Tc{Ds] + [Csl{W**} (4.61)

Let the jth natural frequency of the structure be Os;e The matrix [Cgl is a

dimensionless transformation matrix whose non-zero terms are

1
Cgi: = whenjz3 ,
W s AL
—— 41
B2
and cg. = 1 whenj<3 .

1]

As in the preceding development in which ke was considered constant,
the right sides of (4.43) and (4.44) are equated, and the expression for (W} from
{4.60) is substituted into the result.

Ym = <> {W} (4.43)
At .
¥m = '['3"1' Ym +¥m"* (4.44)
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Ag . T,
B—:ym+ym* = (Fo"ﬁg)“DP{As)

+ (R-mpg + TI<P>{Bs) — TLP>{Ds} +<D>[Cg){W**) (4.62)

The following definitions are used to simplify equation (4.62). Let

1
k= ——
> ((I)l){As]
v oo <(D]>{BS}
T copiag

oFy o SoICd
<(D1> [As] !

Equation (4.62) is then written as an expression for Fo.

At
Fo = B . Ym + k2yh + Gi(R-mpg) - (Cz - _)Tc +CKS 2 {W*)  (4.63)

The reaction force R is equal to either zero or -Tc Therefore, the

coefficient for T, in (4.63) is either - {3 + %, or - {2+ — —{;, depending on

whether the payload has lifted off or not. Equation (4.63) can be rewritten as

k*
Fo = E ym + keyh-Cimpg - (Cz— +§0)Tc+<1<5 (W), (4.64)

where (p = 0 whenTc2mpg, and {o = {3 whenTe<mypg.
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In this derivation, the tension T, is some non-linear function of cable
elongation. The heavy line in Figure 4.17 is a graph of the general form of
the assumed relationship between T¢ and y. which is to be approximated. Itis
difficult to find a closed-form solution for Fp in (4.64). If a simple exprassion

such as

Te = Cyc? (4.65)

is used (where C is a constant), then the expression for T, which would result
from substituting the expression for y. from equation (4.63) into (4.64) is a
quadratic in T, with constants and first and second order terms. The
expression for T, would be in the form of the formula for the roots of a
quadratic, with the term F, inside the discriminant. This expression for T,
substituted into equation (4.62) would not give a linear equation for F, in

terms of ym. It would give an expression containing first and second order

terms in both Fy and }'/m. To find a solution for )}m which satisfies this
expression and the quadratic in equation (4.8) would require finding the roots
of a fourth order equation.

A more simple solution is to assume some mathematical relationship
between T. and y. and, within each time step, solve for the two variables
using an iteration procedure. The mathematical relationship assumed is the
following,

-1|a

Tc = kC yc + Tf (1 -e ) (4-66)
The two forces Tf and T are constants. The forces Trand T are less than
zero. Figure 4.17 shows the graph of T versus y.. The values for (W} from

equation (4.60) are substituted into equation (4.63), and the resulting
expression for ye is substituted into equation (4.65).
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Figure 4.17
Assumed Cable Tension versus

Elongation Relationship
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T
Te = kDO {( F, —f ){Asl + (R-mpg + T){Bs} — T (Ds) + [Cql {W**}}

I_E.
+Te(1-e T) (4.67)

Equation (4.67) can be rewritten so that the only term on the right side
involving Tc is the exponential term. The expression becomes

Lc__
_ kc<¢c){Fo {As} - mpg [Bs} + [cs]{w“']} + Tf (1 - e T )

1+ k<O {-Il; (As} - z{Bs) + {Ds}}

(4.68)

where z = T when the payload is suspended by the cable, and z = 0 when there
is a reaction force between the floor and the payload. The right side of
equation (4.68) is substituted into equation (4.62). The F, terms are collected
and the following expression for Fy, results.

Te
Fo =ap+aiym+xoTe(l-e T ), (4.69)

where ag =

(2= + Lo)Kee0o [ mpg (B4) + [CIW)

kiysh ~ {impg - + <KE > {W**)

1+ kc«Dc){%{ {Ag) ~z{Bg} + {Ds}}

(-5 +Lo)keootag

1+ 3
1+ kc<d>c>{5 {Ag) - z{Bs) + {Ds]}
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kAt
B

and a; = 1 ,
(-7 + %) kecoo(Ad
1+ 1
T+ k@0 (Ad ~2(B4) + (Do}
and xo = 1
1+kc<cbc{ (s ~2(B9 + (D} + 12 N Go Jec02 (A4
\

Both aj and xq are constant for all time steps, except in that {g and z can
change values once during a hoisting event. The y# and {W**} terms in the
expression for ap are the only terms in that expression which must be
calculated for each time step.

The iteration within each time step can now proceed. For each time step,
an initial guess is made icr the value of T, based on the values of T, for the
immediately preceding time steps. The acceleration yi, is written in terms of

the velocity Vi Using equations (4.16) and (4.17), as shown in equation (4.70).

_Baym B2

]31At * e YRYR 470

Substituting the value of ¥y from equation (4.70), and the assumed value
for cable tension, into the equation of motion for the motor mass, gives a

linear expression for Fo in terms of ym.
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!

Tcguess
FO =

+ .
n Mm¥m

Te guess B2 X__ m B_Z % *%
N +mm{B1At * o YRUYH

. T ' :
= (Bé:;? )ym + (_C%efi + My, (—A% (yh -y D 4.71)

The right sides of equation (4.71) and the parabolic motor force equation
(4.7) are set equal to each other. The solution for the resulting quadratic

equation in yp, is found.

)

¥Ym = 2bs

B2 mim, Te guess
‘\/[bl-[“——;mt J}-czbz(bo—*———“gn +mm(£f5(}’ﬁm“}’?ﬁ)n

2b;

(4.72)

The right sides of equation (4.68) and the parabolic motor force equation
(4.7) are set equal to one another.

Te

Fo =ag+aj ym+X%oTs(1-e Ty = bg + by ym + b2 ¥, 4.73)

The value of y, from (4.73) is substituted into equation (4.66) and a new
value for T¢ is determined. If this new value for T, is not acceptably close to
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the previous value of T¢, then the new value of T, is substituted into

equation (4.71) and the process repeats itself. When the old and new values
of T¢ are acceptably close, the values for Te and Fy are used in (4.58) to solve

the modal D’soF. The procedure then follows the routine described at the end
of Section 4.3.2.1.

This iteration procedure works much of the time, but there are
circumstances in which the values of T, diverge rather than converge. In
these instances the iteration can be run backwards. That is, a guess for T¢ is
made and used in equation (4.69). The right sides of equations (4.7) and (4.69)
are set equal to each other, as shown in (4.73), and the solution to the

resulting quadratic equation in ym is found.

Te

_ _b+a_\/(b_a)2-4b(b-a- Te(1-e )
G = 1+ a1 1- a1 2b22 0= a0 =X T ( ) (4.74)

The resulting solution for Ym is used to calculate F, using (4.69), and ¥
using (4.70). A new value for T is determined from the equation of motion
for the motor mass,

Fo = + mm}’m B - i (4-75)

Te
n
If the value for T, from (4.75) is not acceptably close to the previous value
of Te, then the new value of T¢ is substituted into equation (4.69) and the
process repeats itself. When the old and new values of T, are acceptably close,
the values for T¢ and Fy are used in (4.58) to solve the modal D’soF. The
procedure then follows the routine described at the end of Section 4.3.2.1.
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4.4 Computer Program Results

Two computer programs are listed in Appendix C which perform the steps
described in the preceding sections. One, CRIMSIM.BAS, performs
simulations of hoisting events using a constant value for k.. The other,
CRIS5.BAS, performs simulations of hoisting events using varying cable
stiffness.

The results of eight computer simulations of hoisting events performed
with the shop crane are shown in Table 4.3. The results are for varied
hoisting position, sling type, and payload mass, and are all generated using
CRIS5.BAS. The ratio of maximum dynamic to static displacement of the
structure at the hoisting location is referred to as D. The D values from Table
4.3 are compared with values calculated for D closed-form solutions derived
in Chapter 5 and the results of tests peiformed on the shop crane outlined in
Chapter 6.

The motor values are as calculated in Table 4.1, or as assumed in Table 4.3,

and the assumed F, versus ym relationship is shown in Figure 4.6. The
values which determine the degree of non-linearity of the relationship
between cable tension and elongation are chosen such that the T, versus y.
curves used in the simulation approximately match the tension versus
elongation curves shown in Figures 2.9, 2.10, and 2.11. The tension versus
elongation graphs from these figures are shown in Figures 4.18, 4.19, and 4.20
along with graphs of the assumed tension versus elongation relationships
used in simulations.
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CHAPTER 5 |
DERIVATION OF DYNAMIC FACTOR FORMULA

In Chapter 4 a numerical model was described and a procedure outlined
with which to perform dynamic analyses of crane hoisting problems. One
drawback to using this kind of dynamic analysis is that a lot of detailed
information about the motor and cable is required for input. A structural
engineer, doing dynamic calculations for an existing craneway system, and
knowing the hoist motor to be used, could get information on the masses and
diameters of the rotor and the gears and drum (or could make reasonable
assumptions about those properties) and could derive the moments of inertia
for those components. However, an engineer designing a new facility would
generally not know the make or size of the hoist involved. Even if that
information was known, hoists may be changed and systems altered as the
needs of the facility change. It is dangerous to design for specific circumstances
that can be easily changed when the facility is in service. In developing a
procedure to determine the dynamic factor, the lack of control the designer
has over future events should be considered. The tension stiffness
relationships for cables, chains and web slings and motor torque versus speed
curves are generally not readily available from manufacturers. Without some
understanding of the sensitivity of the dynamic factor to the various input
parameters, it is not good engineering practice to assume values. In this
chapter a general solution will be developed for the hoisting and braking
crane problem. The importance of the various parameters will be examined.

Another drawback of using the computer program to calculate the
dynamic factor is that it takes time and effort to learn how the program uses
the input data, and it takes time and effort to understand the results. The
general solution developed in this chapter will be closed form and relatively
simple to use.

The model which is used to derive the dynamic factor is described as
follows. For a hoisting operation there are three D'soF. The effective mass of
the hoist motor moves, the payload may move, and the bridge and the

structure supporting the bridge move (deflect). These three D'soF are labeled
¥Ym for the motor, yp for the payload, and y, for the structure. Similarly, my,
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denotes the equivalent mass of the motor, mp the payload mass, and m, the

equivalent mass of the structure. (Section 4.1 contains a description of how
the motor's rotational properties can be viewed as translational properties).

51 Reduction of Crane and Craneway Model to 1 DoF

At its simplest, the crane and craneway structure can be considered as a
mass hanging on a spring, able to receive downward load through tension in
the cable. This single DoF system is shown in Figure 5.1. The stiffness, ks, of
the spring is equal to the stiffness of the structure at the poiut of application of
the load. The mass, m, however, is not the actual mass of the structure. The
value of mgis such that the behaviour of the single DoF system will be in
some quantitative way similar to the real system. For example, the first
natural frequency of the real system can be set equal to the natural frequency
of the single DoF model. If the first natural frequency of the real structure is
dominant in free vibration, then this model can provide acceptable results.

Consider the nature of mg with this requirement. Let the bridge be
modelled by a simply supported beam of the same span, having uniform
section properties which correspond to the section properties of the bridge.
The first natural frequency of the beam will be

Of-beam = n2 ﬁ . (5.1)

The terms E, I, m, and L are, respectively, Young’s modulus, the moment
of inertia, the distributed mass, and the span of the beam. At a particular
location a distance x along the span, the vertical stiffness of the beam is

3LEI
ky = AL - (5.2)

A single DoF system consisting of a mass suspended from a spring is used
to model the behaviour of the beam at location x. The stiffness of the spring is
kx, and the natural frequency of the single DoF system is the first natural
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frequency of the beam, ;. o, Therefore, the mass for the single DoF system

18

Kx 3L5m
= = - 5-3
™" A &

It can be seen that the mass, m, which in the single DoF model accounts for
the mass of the beam, is not the same magnitude as the mass of the actual
beam.

To model the case of the trolley at location x on the bridge, a concentrated
mass equal to the mass of the trolley is supported at location x on the beam.
The first natural frequency of the beam and mass system is different from the
first natural frequency of the beam alone. The difference can be approximately
accounted for by adding the mass of the trolley to m, the mass of the single
DoF system, because the displacements and accelerations associated with the
first mode shape of the beam at location x are the same as the displacements
and accelerations for the spring and mass system. The mass which accounts
for the mass of the whole structure is referred to as ms.

k
mg = —3—— + mass of trolley

W}-beam

The first natural frequency of the beam with the trolley mass is

P / kx
1-beam and trolley mass vmass of trolley 1 . (5.4)
+

2
1-beam

Figure 5.2 shows the relative values of stiffness and effective mass along
the span of a simply supported beam, and the associated natural frequencies
for the single DoF system. The values used in Figure 5.2 are calculated using
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Figure 5.2 Stiffness, Effective Mass, and
Natural Frequency on a Simply Supported Beam
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the section properties of the bridge beam of the shop crane (see Figure 2.2 and
2.3), and the mass of the trolley (see Table 2.1).

The preceding simple analogy does not account for the possibility of
bridges with varying cross section, nor does it account for the finite stiffness of
the craneway beams at each end of the simply supported bridge. However, the
analogy does give a general impression of the values of ks and mg. Additional
complexity in the structure does not necessarily limit the effectiveness of the
single DoF model. A multi-DoF system can be developed which models the
structure and accounts for craneway stiffness and other features. Stodola or
Holzer iteration can be applied to the stiffness and mass matrices of such a
multi-DoF system to quickly isolate a dominant first frequency [ref.9]. Table
5.1 lists the single stiffness and mass values for the two structures “E” and “2”,
using the first natural frequency.

Table 5.1 Effective Structure Mass from Models “2” and “E”

Model | Model
Ifzﬂ IIEJ‘I

Squared First Natural Frequency of Model, m% (sec.)? 7334 10016

Stiffness of Model at Point of loading, ks (kN/m) 3660 7524
k
Effective Structure mass, mg = —m—% (tonnes) 0.499 | 0.751

Figures 5.3 shows the results from the computer program for the cases
which uses the shop crane structure model “2”. The hoisting event, in which
the large payload is jerk-started using chain slings, is simulated. The values
of the midspan bending moment and deflection of the bridge, and the
reaction force of element 4 on node 5, are plotted versus time for a third of a
second after the motor has been started. The first two peaks for these
parameters is thus displayed. It can be seen that all the parameters are
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roughly proportional to one another over this time interval. This implies
that accurate results are obtainable when the shop crane is modelled as a
single DoF system. '

Let ys = 0 when the crane carries no payload. The dynamic factor derived

YSmax

in this chapter is defined as the ratio . The denominator, ys,,i.s is the

Sstatic
static deflection of the crane when it carries the payload of mass mp. The
numerator, ys, .., is the maximum downwards deflection experienced by the
crane during a particular hoisting event. Because the crane structure is
modelled as a single DoF system, this ratio of deflections will be the same as
the ratio of static and maximum tension in the spring representing the
structure stiffness.

52  The Ratios x and

Two dimensionless ratios, x and [, will be used in the discussion of
various features of dynamic behaviour. They are defined below.

For a given payload and cable arrangement, the magnitudes of these two
parameters vary depending on the lifting position of the trolley on the bridge
and of the crane on the craneway. Crane geometry affects the value of k. A
very rough approximation of these affects can be gained by using as a model
for a bridge crane, a simply supported beam on rigid supports, subject to a
point load from an attached cable in tension. The stiffness of the structure is

Esl
ks < 7¥ (5.5)

where E;s is Young’s modulus for the structure, I is the moment of inertia of

the cross section and L is the span. The cable has a stiffness roughly equal to

AE
“}“{E . where A is the total cross sectional area of all the lines of cable, E; is

Young’s modulus for the cable, and h is the length of the cable, or the height
of the crane. Cable and sling sizes are selected to carry the rated load for the
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crane. For the purposes of this discussion, the capacity of the cable, a function
of A, and the material strength &, can be considered proportional to the rated
load mpg .

Ao T8 4ng k. o mpgEe

o) ch
Under these assumptions
ks IO'hEs
ke = " Pmgh - (5.6)

This can be simplified further using the bending moment strength
equation. The resisting moment should be greater than, but approximately
proportional to, the sum of the dead and maximum live load moments. The
maximum live load bending moment occurs when the live load is the rated
capacity and is applied at midspan. For the level of this approximation, the
effective mass, ms, can be considered to be about half the actual mass of the
crane.

I
(mp +mg) gL ee C_’av__ , (5.7)

where d is the section depth and oy is the yield strength of the material.
Multiplying the right side of expression (5.2) for ¥ by the constant

(mE +mg) gL

Syl
d

, gives the following.

IohEs ) ((mp+mggl] dIE_I‘E;
" [L:"mngc][ o ] - ew(Elgle) oo
d

The strength ratio and modulus ratio in equation (5.4) are functions of

. , m
material properties. The term M is the ratio of —-ms . In general, larger cranes
P

have greater mass and therefore a greater equivalent mass ms, but they also
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have a greater rated load mp. Although p does vary with geometry, the
change is slight, and the expression (1+1) reduces the effect changes in 4 have
upon this approximation of x. With respect to crane geometry, it can be said
that the following approximate relationship holds.

Kee 77 (5.9

Large and small cranes tend to have similar ranges for values of k. Larger

bridge cranes are generally higher and have longer spans and deeper sections.
From Tables 2.2 and 5.1 the maximum and minimum values for x associated

with the tests on the shop crane are, respectively,

7890 kN /m 3680 KN/m
183kN/m_ - 963 and SegaiN/m = 143

The standard range for most cranes which can use chains and web slings is
probably from about 1 to 100.

The range for p can also be examined. Considering the 1.46 tonne payload
for the shop crane, the values for p are

499 tonnes .751 tonnes
146 tonnes — 0342, and 145 hnes = 0-514.

(See Table 5.1.) For most bridge cranes the structure mass my, at center span is
generally about half of the bridge's mass plus the trolley mass. The maximum
value of mgis between 1.5 and 5 times :hat. Small cranes with bridges
fabricated from rolled sections will generally be rated to lift the equivalent of
several times the bridge dead load, with this ratio decreasing as crane size
increases. Cranes with box girder spans are generally rated to lift a load equal
to about half their bridge dead loads. If mp is considered the mass associated
with the rated load, then p ranges between 0.1 and 2.

5.3  Assembly of 3DoF Model

The models from Figures 4.8, 4.14, 4.15b, and 5.1, are assembled to}g‘ive the
model shown in Figure 5.4. This process is similar to the process outlined in
Section 4.2, and Figure 5.4 is similar to Figure 4.16. The significant difference
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Figure 5.4
Assembled 3 Degree of Freedom Model
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is that the structure is now modelled as a single mass, m, attached to a single
spring, of stiffness k.. Rollers are included on the mass mg to show that iis

motion is vertical only.

As in Section 4.2, D'Alembert’s principle is invoked. Each of the three
masses of the system shown in Figure 5.4 is considered as a body in dynamic
equilibrium, and thus the vector sum of the inertial force and all the applied
forces acting upon each of the bodies is equal to zero. The principle of virtual
work is used to find the equations of motion of the system. The sum of the
product of the spring forces and their virtual displacements plus the sum of
the product of the inertial forces and their virtual displacements must equal
the sum of the product of the applied forces and their virtual displacements.
The derivation is shown below.

Tfgd + £ = Zfpd
ry 5

+ ms§55Ys + mm.};mSYm + mpipay p

= Fo 8ym - mpgdyp

keym keyp . ke .
Syl'n ( n);m - nyp + nys <+ mmyln - Fo)

ey .

+3ys (EI%IB - keyp + keys + ksys + msi;s)

=0 for arbitrary values of dym, dyp and dys. (5.10)



To satisfy this requirement, the three bracketed expressions must each
equal zero. This gives the equations of motion for the system, which can be
written in matrix form as shown below.

ke ke ke T

n? n n Ym My 0 0 ¥m J F,

k

7 ke ke ypp+| 9 mp O % =[“mpg

ke Ys 0 0 my | (% 0 J(.11)
| = ke kerks ]

The three equations in (5.11) are the equations of motion for the
individual masses in the 3 DoF system. It can be seen that the cable tension,
denoted as T, can be defined by the following expression.

k
Te = 3 Ym- Keyp + Keys (5.12)

A useful parameter is the cable elongation denoted as yc, which is defined
by the following expression.

Cable tension is related to the cable elongation through the cable st' fness
ke, and therefore

TC = kc}'c . (5-14)



54  Derivation of Natural Frequencies and Mode Shapes

To find ysgy,4 ANA Yspay for the dynamic factor, the system of equations in

(5.11) must be solved. This is done by finding the natural frequencies and
their eigenvecters and deriving the uncoupled modal D'soF. The solution
for the eigenvalues and natural frequencies proceeds as fcllows. The
expression

[[K] - o’M1] (6} = 0} (5.15)

has non-zero solutions for an eigenvector, {¢}, only if the determinant of
[[K] -mz[M]} is equal to zero. Thatis

ke 2 ﬁ .1.<£
n2 "9 Mm n n

-ke

= ke - @’my, ke = 0. (5.16)

k

;C -kc Ketkg - mzms

. 1 1 1
Let Q°=k —_— .
e c (nzmm + my + ms), (5.17)

X
and let the natural frequency of the structure, ‘\/ my ’ be denoted by ws. The

frequency '\/ mﬁ is denoted by @, and is the natural frequency of a single
P

DoF system consisting of the cable with one end attached to the payload and
the other end fixed. Equation (5.16) can be rewritten as a cubic in >,

2
,
0’ - 0! (@7 + 0d) + el (- -—:i )=0 (5.18)
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The three roots are the squares of the three natural frequencies.

©f =0 (5.19)

. k
o+ w?g—'\/(92+m§)2—4m§(m§ + ;gr;—)
@3 = 5 2 (5.20)

k
Qz+m§+ 'J(Qz+m§)2-4m§[m§ + —p_c_)
W = 3 (5.21)

With the frequencies determined, the non-trivial solutions to equation
(5.15) can be found. For each of the three values of coz, equation (5.22) must be
satisfied.

— ke 2 -Ke ke ]
nZ ~9 Mm n n ¢q 0
e Ke - ©0° & > =40
n lolin L mp 'kC 2 =
5.22)
k ¢3 0 (
L -ITC 'kF kC+kS - (l)zms — o

If kg # 0, then when w? = 0, there are two independent equations contained
in (5.22) (The first two rows in the matrix are proportional). For the case in

which ©? =0, let ¢1 = 1. The second column is the negative of n times the

first column. Therefore ¢, equals q%,or %, and ¢3 = 0.

The solutions for {¢} when »? is non-zero can be found, as well. Let

Mg . . . .
o = nm,, - Adding n times row 1 to row 2 gives an expression that can be

solved fer ¢5.
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- nmzmmq;; - mzmquz =0

'UB Img

o =— —% = 1 (5.23)

Subtracting n times row 1 from row 3 in equation (5.22) gives an
expression that can be solved for ¢3,

ncnzmmcpl + (kg — cozrns) d3 =0

0)2
= =1- 5.24
03 = 2 o2 Y (5.24)
1
where y=""" 2 (5.25)
1--3
W

The transformation matrix, [®], is a 3x3 matrix with columns comprising
the three eigenvectors that correspond to the three natural frequencies. In the
derivation in Chapter 4, the values of {®] are assigned dimensions of
mass 12, This was done so that the terms in [CD]T[M][d)] would be

dimensionless. For the derivation in this chapter such a requirement is not
advantageous. Instead, let the terms in [®] be dimensionless.

1 Mg mg
nmy, nmg,
— 1
(@] o (5.26)

l
L0 I-vp 1-y3

where ¥y, and Y3 are the values for Y when the second and third natural
frequencies, respectively, are substituted for ® in equation (5.25).
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The ratio of peak to static displacements for an undamped single DoF
system with a natural frequency w, subjected to a harmonic forcing function

of frequency @, is . The absolute values of v, and y3 can therefore be

a—JZ

1-
w?
seen to represent the dynamic ratios of the single DoF system of the structure,

which has a natural frequency wg, if it were subject to harmonic forcing
functions with frequencies of ©; and w3 respectively.

Each column in the [®] matrix, shown in equation (5.26), is associated with
a mode shape. The relative magnitudes of the first, second, and third term in
each column represent the relative displacements of yp,, yp and ys,
respectively, for that mode.

For the first mode shape, if the displacement of the effective motor mass is

. .1 . .
unity, then the payload displacement is Y, while the structure displacement

is zero. This combination of displacements occurs without either of the
springs in the system being stretched. The strain energy of the system is not
changed as it experiences this set of displacements and the first mode is,
therefore, a rigid body motion.

In Appendix D.2 it is shown that mzz < m25 < co23. Therefore

1-v2<0and1-v3>1 For the second mode shape the sense (positive or
negative) of the displacement of the effective motor mass is opposite to the
sense of the displacement of the payload and structure. The second mode
displacement of the model in Figure 5.4 has the displacement of the effective
motor mass to the right with downward displacement of the payload and
structure. The third mode has the payload displacement in the opposite sense
to the motor and structure displacements.

Both modes two and three require elongation of the two springs in the
system. The strain energy of the system changes as it undergoes displacements
of the second and the third modes, which are therefore vibrational modes.

In Appendix D.3 it is shown that y2-1 < y. Therefore the magnitude of the
second mode displacement of the payload is greater than the magnitude of
the second mode displacement of the structure. Therefore, in the second
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mode, the structure spring and the cable spring are either both in
compression or both in tension. In the third mode the sense of the
movement of the structure and the payload are opposite, and so one is in
compression whenever the other is in tension. The two springs are out of
phase when in third mode motion.

55 Assumptions Concerning Motor Behaviour

In this section two assumptions are made about the behaviour of the
motor. In the steady state case, the loaded motor runs at near synchronous
speed. The first assumption is that once the motor is in steady state it has
reached synchronous speed, and can develop the force required to put tension
in the cable without changing from that speed. Therefore, yu, is a linear
function of time. It follows that yn, is a constant velocity equal to re w,, which
will be called Vo . It also follows that iy, is zero. Figure 5.5 shows a typical F,

versus ym curve and the curve that results from this assumption.

There are two significant advantages in making this assumption. First,
the differential equations have simple closed form solutions. Second, of the
five parameters needed to describe the motor's forcing function, (see Section
4.1), only the hoisting speed is required, and it is the easiest to determine. The
rated hoisting speed will be called Hy. It can be seen that

Ho=7", (5.27)

where n is the number of lines of cable between the hook and the hoist.

The effective motor mass, my;, is usually very large compared to the other
masses, mp and mg. The second assumption, therefore, is that mp, approaches
infinity and i approaches zero. The advantage to using this limiting case

to derive a dynamic factor is that determining a value for m,, is no longer
necessary.

These two assumptions greatly simplify the derivation of the dynamic
factor, but they pose an apparent paradox. Consider the first equation of
motion for the 3 DoF system.
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L

7t Mm ¥m=F, (5.28)

The assumptions of constant motor speed and infinite motor mass leaves the
term mp, ¥im undefined. If, in equation (5.28), the term My, ¥m has no defined

value, then T, and F, would be undefined as well. T1..35 is not satisfactory, and
some definition of mpyim is required. Two limiting definitions are compared.
Figure 5.6 illustrates the two definitions which could apply to mupm¥m -

First, if a motor has an infinitely massive rotor, rotating at some rotational

velocity, then applying a finite load to the cable will not alter the rotor's
velocity. This defines mp, ¥m as being infinitely large. For finite values of T,

and F;, equation (5.28) cannot apply. The cable tension and motor force are
independert of one another.

However, in the real system, significantly increasing cable tension can

cause an insignificant reduction in motor velocity and a significant increase
in motor force. (See Figure 5.5) The second possible definition for my, yim is

based on the assumption that if the acceleration of the motor mass is defined
as being zero, then the effective motor mass is in static equilibrium. The sum

. . T .
of the forces acting upon it must total zero, and therefore F, equals f . This
seems the more rational view because the motor force, F,, is expected to

: : . 1 .
influence the cable tension, T.. By assuming that —— approaches zero while
m

G ) T
¥m equals zero, it is implied that my, yin equals zero, and that F, equals *ﬁg

Several useful mathematical simplifications follow from the assumption
that m,, approaches infinity. As my, approaches infinity, equation (5.17)

becomes the following.
2 1 2
Q =kc(——+5—) = 0 + =% (5.29)

The same substitution for my, into equations (5.20) and (5.21) results in
new expressions for the natural frequencies.
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Figure 5.6 Two Interpretations of
Infinite Mass and No Acceleration
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2 2 2 2,2 2 2
Q°+0e-V Q°+0)° - 407
3 = = T — (5.30)

5 Qz+co§+\/ (Qz+m§)2 - 4m§m§
w3 = 3 (5.31)

5.6  Solution for Modal Degrees of Freedom

Let the three modal D’'soF for the system be wy, wp, and w3, such that
[®]{W} = {Y}. Expressions for the modal D’soF can be derived in terms of y,,
yp: and ys. The three equations from (5.26) are as follows.

mg
wy + nm,, (wy+wz)=y (5.32)
wWq -
—ﬁ—_u(wz+w3)=yp (333)
(1-v)wy+(1=-y3)ws =y, (5.34)

Letting my, approach infinity in equation (5.32), and substituting the

resulting value for w into equation (5.33), provides a scivable equation
which can be used to de:ive expressions for the two unknowns, w» and w3,

H{wy+wy)= Xnm -¥p | (5.35)

In Appendix D.3 it is shown that when m,, approaches infinity,
(1 - ¥2)(1 - y3) approaches -u. Using this relationship, equations (5.35) and (5.34)
can be rewritten as expressions for the modal D'soF.

135



};_m -ypt (L-1)ys

(1-v) (3= 1)

wy = (5.36)

Y
4 'ﬁm -ypt (1-73)ys (537
o YT Ty v ok

The compatibility equation (5.13), y¢ = }'_nrp_ *¥p * ¥s, can be used to put

equations (5.36) and (5.37) into the following form.

Ye-Y2¥s

_ 5.38
Y2 1) () .
. Ye-13¥s
e (5.39)
T ) (- )

5.7  General Solution for the Uncoupled Equations of Motion

Uncoupling the equations of motion in (5.11) requires premultiplying
them by [1215]T as shown in equation (5.40) below.

) Fo
[10) (K1 [@]] (W) + [[@1T M) [@1] (W) = [cn}""{- napg} (5.40)

The expressions for the three modal masses are derived in Appendix D.5.
The modal mass matrix is shown in equation (5.41) below.
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[(e" M1 [@)] = 0 0 (5.41)

mg(1- 7)) (13- 72)

L 0 0 mg(1-v3) (2 - v3)

Dividing each row in equation (5.40) by its modal mass gives the following
set of uncoupled equations of motion.

r.—Tp&
0
W = ‘:n (5.42)
m,, + ;2‘2
mg _m F
~Fy+—m *
2 . nmp " " mp, Mp8 nmp, * 8 (5.43)
Wo + Wy = ) = '
27272 mg(i - 12) (Y3 - ¥2) (1-v) (13-v2)
ms oo Ms Yo
2 . N 0+ m, M8 nmpy *8
w3 wy+ vy = (5.44)

mg(1-v) (2-70)  (1-79) (1a-13)

In the limit as my, goes to infinity, equations (5.42), (5.43), and (5.44) take
the following form.

w1 =0 (5.45)

3 iy = ——— B 54
W5 wo + Wy a1 1) (5.46}

2 e oo —— B
W3 W3 + i3 -1 B19 (5.47)
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To find the dynamic factor requires the solution for y;. From equation
(5.:4), the solution for ys involves w; and wj only. The general solutions for
wy and wjy have the following form.

Wy = Ay sin(wyt + 8;5) + By w3 = Az sin{wst + 83) + By (5.48)

Wa = Ay 9 cos{mst + 65) W3 = Ag 003 cos(wst + 63) (5.49)

Wy =-4Aj co% sin(wyt + 65) Wy =-Aj co_% sin(wst + 83) (5.50)

Substituting the modal D’'soF and their second derivatives from equations

(5.48) and (5.50) into equations (5.46) and (5.47) respectively, gives the
following solutions for By and Bj_

_ g
@3 (1-%) (13- 1)

By (5.51)

_ g
@5 (1-72) (42 - 13)

B (5.52)

Expressions for the unknowns, A and 6, can be determined from the
initial conditions.

5.8 Initial Conditions

Two cases of hoist-induced dynamic loading are considered. The first is the
dynamic response due to the previously stationary payload accelerating
upwards. The second is the dynamic response due to the hoist motor
stopping. Dynamic factors for both cases will be derived. The problems that
arise in the derivations for each case are quite different.

In the starting scenario, initial conditions must be derived that can be used
in the steady state equations derived in Section 5.7. The steady state equations
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are based upon assumptions that do not apply between the time at which the
hoist motor is turned on and the time at which steady state is reached. In
particular:

1) In the steady state, it is assumed that k. is constant, but in Section 2.5 it
was shown that k. varies greatly with cable tension, and is near zero when

cable tension is near zero.

2) In steady state it is assumed that motor speed )}m is constant at V,, but
this clearly is not the case during the first moments of operation of the motor.

3) In the steady state situation, Fy has been defined as being equal to cable
tension. The value of F, does not really affect the behaviour of the steady state

model given that yp, is constant. However, before steady state is reached, Fy is

a function of )'fm, and the value of F, determines the amount of tension in the
cable and the acceleration of the motor mass.

4) The motor mass is assumed infinite in the steady state case. This
simplifying assumption is allowable during the steady state because yp is
assumed to be constant and ym is assumed equal to zero. Prior to the steady

state condition, yp, is not zero, and all the terms in the equation of motion for
the motor, equation (5.28), must be finite. A value for mp, must be chosen,
and the accuracy of that value will affect the accuracy of the dynamic factor.

The initial conditions should describe the most severe in service starting
conditions. For example, the stationary payload may be on the ground, or
partially or wholly suspended by the cable, and the starting cable tension will
be between zero and mpg.

Braking is the other case to be examined. Braking, in the present :ontext, is
not to be confused with the motor going into braking mode, which occurs
when the motor is powered but is turning backwards under the influence of
an external torque larger than the starting torque. (see Section 4.1.1). The
braking event that is dealt with here occurs when the motor is turned off, and
its electric field and the torque produ_s:ed ihstantly vanish. At that moment a
mechanical brake is activated which holds the rotor stationary with respect to
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the stator. Thus ym and F, very quickly become zero and the model becomes a

2 DoF system. The various features of the motor, its Fo(j/m) function and its
equivalent mass, mp, do not have to be dealt with. The dynamic factor due to
the action of braking must be derived from a different set of equations of
motion from those given in equation (5.11). It is the solution to the equations
of motion in (5.11) that gives the initial conditions for the braking equations
of motion. The amplitude of the vibrations of the structure which occur after
braking is initiated will be a function not only of the properties of the brake,
but also of the vibrations present prior to braking, and the phase of those
vibrations at the moment the brake was applied. The phase of the vibrations
at the instant of braking may be different each time the brakes are applied
during the service life of a crane. The braking event has this random aspect to
it and a dynamic factor for braking should take it into account.

5.8.1 Initial Conditions for Starting

In this section a variety of starting conditions are examined. Jerk-starting
is assumed to be the critical case. Assumptions are made about the behaviour
of the structure prior to payload lift off, and the initial values for the D’'soF are
determined for the jerk-starting case. These are substituted back into the

general differential equations and an expression for the dynamic factor is
derived.

5.8.1.1 Assumption that Jerk-Starting is the Critical Case

In the jerk-starting case the motor is started while the payload is on the
ground. There is enough slack in the cable to let the motor reach and stabilize
at its synchronous speed before any tension develops in the cable. At the

moment that the cable tightens the difference in speed between ys, which
equals zero, and ym, which equals V,, is greater than for any other starting
case. The assumption is made that jerk-starting is the critical starting case
which causes the greatest dynamic displacements of the structure. The
dynamic factor D is based upon this starting case.

Because in the jerk-starting case there is enough slack in the cable to let the
motor reach and stabilize at its synchronous speed before any tension
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develops in the cable, the assumptions of constant motor speed and infinite
mo‘or mass are applicable. These twc assumptions are only valid for the jerk-
starting case. For any other starting condition, the cable develops tension and

the structure deflects when }"m is less than V4 and §m is not zero.

For the case in which the payload is on the ground, the equations of
motion in (5.11), are simplified because Yp and its derivatives are all equal to

zero. That is to say, the payload is motionless. The number of D’soF of the
system is reduced from three to two and the equations of motion become

ke ke )
nZ n {}’m} f: My 0 ] {Ym} {Fo}
+ = ,
k 0 m y 0
,1_19 kC"'ks YS 5 YS (5.53)

Under the assumption of constant motor speed, the solution for y, is

Ym =Vot, (5.54)

and the equation of motion for y,, from equation (5.53), is

ctKs . ke Vot
[kms ) Ys*¥% = ~Thmg - (5.55)
5.8.1.2 Assumptions Concerning Cable Behaviour

There are two ways to proceed from this point. One is to assume that the
cable has a constant stiffness and is linearly elastic throughout the test. The
other is to account for the changing stiffness of the cable.

1) Consider first the development using a cable with constant ke . Let the
frequency of vibration of the structure prior to payload lift off be defined as w;,

such that
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ke +k
=5 (5.56)

3

Solving equation (5.55), the expressions for y, and its derivatives can be
written as functions of time.

. ke Ho t
= A sin{w;t +6) + —5—— 5.57
Vs in{w; ) 0112 me (5.57)
. k
¥s = A w; cos(w;t + 0) + —S—Ijg (5.58)
Wy Mg
¥ = -A 07 sin(e;t + 6) (5.59)

Whent = 0, y; = 0. Therefore, from equation (5.57), © = 0, and from
equation (5.58), the amplitude A is

_keHo
A = alg—r'n—s . (5.60)

Substituting for A and 6 in equations (5.57), (5.58), and (5.59) gives the
following.

Ys = :é}rio (sin o;t - w;t) (5.61)
s
ke Hp

Vs = T’i‘i - (cosejt-1) (5.62)
S

% = - ::20 sin w;t (5.63)
itlls

When the payload is on the verge of lift off, the cable tension, T, equals
mpg, the payload weight. Using equations (5.13) and (5.14), and given that
yp =0, an expression for y. is obtained.

Ye = 2 4y, = Ekil& (5.64)
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Substituting the expression for yn, from equation (5.54) and for ys from

equation (5.51) into equation (5.64) gives an expression from which the value
of t at payload lift off can be determined.

keHy | | _ mpg
Hot + O—)Ig-];; (sinwit-wt) = I

k H m
Ho[l- — )H k‘_i, O sinyt = 25
o ms of Mg ke

My
HoX w;t + o sin it = ——ig—'
1+x 14+x c

3
Kot + sinoit = I-_{fc;c (1—;5)— (5.65)

If the constant k. analysis is continued, then equation (5.65) must be
solved iteratively, and the value for t substituted into equations (5.61), (5.62),
(5.63), and (5.54). The resulting values for ys and its derivatives and the
assumed values for ¥, and ¥, would then be used as the initial conditions for
the differential equations derived in Section 5.6 and 5.7.

A difficulty arising from this procedure is that there is no closed form
solution for t in equation (5.65). Also, the need to solve accurately for the
value of t at lift off can be questioned. The real cable is not linearly elastic. At
low tensions k. becomes very small (see Figures 2.9, 2.10, and 2.11). A small
starting value for k will give a small starting value for the amplitude A. A
small starting value for ke will also cause the frequency w;, defined in
equation (5.56), to be a minimum when the cable tension is lowest. If, in the
real system, both the amplitude and the frequency have been increasing as
cable tensior: approaches mpg, then the value for t from equation (5.65) is not
likely to be the actual time between motor actuation and payload lift off. The
calculated time, t, may vary from the actual time to lift off by a significant

2n
fraction of the period ; » where @; is the frequency used in equations (5.61),

(5.62), and (5.63). If the value of t from equation (5.65) is not related to the
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behaviour of the real system, then the accuracy of the values of Ys Vs and ¥y

which result from using t in equations (5.61), (5.62), and (5.63), must be
suspect, especially as these equations include periodic functions.

2.) Consider now the analysis incorporating a non-constant value for k.. If
some function for k. in terms of ys is substituted into equation (5.55), that
differential equation becomes difficult to solve. Furthermore, it is unlikely
that the correct values for the constants required in such a function for k.

would be known to, or available for, a design engineer.

The simplest way to accouut for the variation of k., and the approach
taken in the following development, is to assume that the motion of the
structure is quasi-static prior to the time of payload lift off. The trigonometric
terms in equations (5.61) (5.62) (5.63) are assumed to not contribute
significantly tc the values of yg, ¥, and ¥, and are set equal to zero. The

equations for the velocity and acceleration of the structure at the moment of
payload lift off become

_ kHo . H,
}’s - m}z ms = 1+ 7 (566)
and ¥ = 0 . (5.67)

The value of ke in equation (5.66) is assumed constant. The greatest
changes in cable stiffness occur when cable tension is low. Payload lift off
occurs when cable tension is equal to the weight of the cable. When the cable
tension is near that level changes in cable stiffness are minimized. (See
Figures 2.9, 2.10, and 2.11.)

The initial displacements, ys and y,, are determined as follows. When the

payload is on the verge of motion, the tension in the cable must be mpg, and,
m .
from equation (5.14), yc = Pg. Because yg is assumed equal to zero, all the
q Ye = ke y q

tension must be resisted by the stiffness of the structure. Therefore, from
m
P

equation (5.28), ys = - X
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The initial velocity, ¥., is also determined. Equation (5.13) can be

differentiated with respect to time. The payload is stationary and the
assumption has been made that the motor's velocity will be the constant V,,

and therefore

Yo = Xr.lfn_yp_*_ys =—59-_0+y5 = Hp+ys - 5.68)

Substituting the value of ys from equation (5.66) into (5.68) gives the solution

for the rate of elongation cf the cable.

Hpx
1+x

Yo = (5.69)

Since the accelerations of both the structure and the motor have been
assumed equal to zero, and the payload is not yet in motion, the cable
acceleration must also equal zero. Therefore, when the payload is on the
verge of lifting off, the values of ys and y. and their derivatives, using the
quasi-static analysis, are as follows.

__Mpg _Mmpg
Ys=- Ks Yc-‘g‘

. -Hp . Hpox
Ys =

T 1+x

ys=0 Ye=0 (5.70)

Figure 5.7 is a graph of the velocities ym, y,, ¥s, and yc which result from
the quasi-static approach. The curves are plotted from the time of activation

of the motor till just after the payload lifts off. The advantage of the quasi-
static approach over the constant ke approach is that the time of lift off does

not have to be calculated and a closed form solution for a dynamic factor can
be developed.

145



2K 30 s dwi] o
Ve peojAed NOBIS _
_ . _ 1010
ﬂ MA+1 _
o -
" H-
x+p !
o | M u
X H | w K . 0132 Ty S <
I Jeauy o
0o,
e JuRISUOD 51 3] g
_ “ Y £ _ . Loy
d £ ! | paads mso:o_suczmb*
. ! ! sayoeal Jojow
_
-
”A. 158y e peojhed
|

\ 4

SunIeIS-YIof 10J SOINIDOIIA JO SILIOISI] VUIL], PAWNSSY /G dIn3L]

146



5.8.1.2.1 Validity of the Assumption of Quasi-Static Behaviour

The validity of the assumption that the structure behaves in a quasi-static
manner is examined by comparing the vibrational amplitude, from equation

(5.60), with mksg’ the static displacement of the structure bearing the weight of

the payload. If the ratio of the amplitude to the static displacement is much
less than unity, then the assumption is valid.

ke ks Ho _ How, K'\[;l— .
@i Ms Mp & Na+w?

1 (5.71)

The condition in (5.71) is sufficient, but not necessary, in order that the
response of the structure prior to payload lift off be quasi-static. The value
from equation (5.60) is an upper limit on the magnitude of the vibrational
amplitude.

Table 5.2 shows the values of the left side of the inequality in (5.71) which
result from various combinations of payload mass, hoisting position, and
cable stiffness, for the structures lab shop crane. It can be seen that all the
values are smaller than unity. At least five of the eight, and perhaps six can
be considered small enough to satisfy the criterion in (5.71) above.

Values from sources other than the shop crane can also be used in (5.71) to
test the validity of the assumption of quasi-static behaviour. Consider an
undamped single DoF system comprising a cable of stiffness k¢ fixed at one
end and supporting a payload of mass mp. When this system is subject to a
free vibration in which the maximum velocity is Ho, the amplitude of the

displacement of the mass about its static position is o The static
S

displacement of the suspended payload is E}f_& . Therefore, the ratio of the
C

Hyw
amplitude to the static displacement is -igﬁ . Cable tension and payload

displacement are proportional because the system has only one DoF.
Therefore the dynamic ratio also applies to the cable tension, and to the force
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acting upon the rigid support to which the upper end of the cable is fixed.
This system corresponds approximately to the real system of a crane with a
hoisting speed of Hp and a high value of x. The maximum cable tension
acting upon the crane is greater than the static cable tension, mpg, by a factor

Hyo,

of 1+ . In the standards reviewed in Chapter 3, a hoisting situation of

this description would generally require a relatively high dynamic factor,
such as 1.5, for example. Therefore, a value of 0.5 can be substituted into
oW¢
g

Values of 100 and 2 can be substituted into expression (5.71) for x and y,

expression (5.71) for , for the case of cranes with high values of x.

respectively. Both these values are fairly high for the two parameters. A high
value for x is consistent with the conditions that lead to the assumption of a
How,
8
of the expression in (5.71). When these substitutions are made the left side of

(5.71) is equal to 0.14, which may be considered significantly less than unity.

value of 0.5 for . A high value for u gives a high value for the left side

The expression _-\[#____L_i___é_ in (5.71) is a maximum with respect to x when
(1+x)

How,

x = 2. For this value of x it is not generally the case that

—"—K\[—p— is 3.9 times greater
Va+o®

than the its value when k =100. If pis reduced by a factor greater than

3.9° = 15.2 when x is reduced by a factor of % = 50, then the condition set in

is equal to 0.5.

For the same value of g, the maximum value for

equation (5.71) is still met and the structure can be considered to behave in a
quasi-static manner prior to payload lift off.

The validity of the assumption of quasi-static behaviour can also be
considered based upon the results from computer simulations. In Figure 5.8
cable tension versus cable elongation for three jerk-starting simulations is
shown. The value of the parameter Tf varies (see Figure 4.17). In one
simulation the cable stiffness is the constant k¢, and in the other three, cable
stiffness increases as cable tension increases, assymptotically approaching a
line with slope kc. The hoisting of a 20 kN payload is simulated.

149



Tension in One Line of Cable (kN)

£.00

o
O
o

Figure 58 Comparison of One Linear and Three Non-Linear

Cable Tension versus Elongation Curves

:‘! Difference in maximum cable tension

! beteween simulations using linear elastic

! cable and simulation using Ty = -8 kN

l .._.__; R T Rttt LR R
H i ' [ S
A : / j
) | !

! 1
Ti=-8 kNi, Ti=-16 kNj Ti=-24 kN/

B Y = —— - e e t——————
- o -

f /

[P ST T U ST U0 S0 N U U0 OV U U0V W 0 S O W O 0 O R N B

4.00 !' /: /-'
] . . . *
f !
i .
2.00 — » N :
: i
H . !
. X
. L "Difference in maximum cable tension
. . - ' with succesive increases in Ty
D.Or 1 =| =i 1- =| };[.l.] | T Ft 0 17T T3 B T 1T F V1T 1 I T | --I L ]j, ] E,.
0.C00 0.205 3.010 0.013 0.CZC

Cable Elongation, yg (m)

150



It can be seen that only a small amount of non-linearity in the
relationship between T and yc significantly reduces the maximum cable
tension. This reinforces the argument that quasi-static behaviour of the
structure prior to lift off of the payload provides consistent results

5.8.1.3 Solution Using Starting Initial Conditions

If the assumption is made that the structure behaves in a quasi-static
manner prior to payload lift off, then the solution for the dynamic factor
proceeds as follows. The values in equations (5.70) for ys and y. and their
derivatives, for the instant at which the payload is on the verge of motion,
are substituted into equations (5.38) and (5.39) to get the initial values of the
second and third modal D’soF and their derivatives .

C“f)(“?ﬂ _li_g)(“h) (5.72)
Wa = Wa = .
27 -1y - 10) 3T -1
Hy Ho
. (1+K](K+’]’2) . (l~i—K)(K+‘Y3)
_ = 5.73
w2 (1-v2Xy3-72) ws (1-v3)12 - 72 57
w2 =0 w3 =0 (5.74)

The initial values, from equations (5.73) and (5.74) are substituted into the
general solutions for w2 and w3 given in equations (5.49) and (5.50), and
solutions for A and 6 are determined. Consider first the solution for the

Ho
&+ KJ(K+‘YZ)

(1-v2)y3- )

second mode.

= Ay 7 cos(wyt + 65) (5.75)

0=-A, w% sin(wyt + 05) (5.76)
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From equation (5.76), a non-trivial solution for A, requires that

sin (wat + 62) equal zero. Therefore cos (wzt + 82) = + 1. The positive value for
cos (wat + 6) generates a positive value for the amplitude A, from equation
(5.75).

Ho
(1 +K](K+72)
W (1-v2)(¥3 - y2)

(5.77)

A similar expression can be derived for the amplitude of the third mode

shape.
= (x+73)
1+x 3

03 (1-v)(2-1)

As (5.78)

The magnitudes Aj; and Aj are the amplitudes of the modal degrees of
freedom w3 and w3 respectively (at the frequencies of w2 and w3 respectively),
and Bz and B3 are their respective mean values. Equation (5.34) is the general

solution for ys. An upper bound expression for the largest possible
downwards deflection, ysmay, is as follows.

Ysmax = (1 - ¥2)Wapax + (1 - ¥3)W3max

= (Y2-DA+ (1 -12)By + (13- DAz + (1 - 13)B;3 (5.79)

The dynamic factor, Dyyj, is defined as the ratio of the maximum deflection
to the static deflection. The subscript “3” indicates that the dynamic factor is
derived from the 3DoF model. The “x” indicates that the exact solution is

used, and the “j” indicates that the dynamic factor is for the case of jerk-
starting.
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m
In Appendix D.6 it is shown that (1 - ¥2)B; + (1 - y3)B3 = - _Ep_?z' , which is the
S

static deflection of the crane under the weight of the payload. Dividing

m
equation (5.79) by T(EE gives the following expression for Dsy;.
-]

(1-v)A (1-v3)A
¥Ysmax -1 4 Y2 Az + Y3)A3 (5.80)

" Ysstatic (Mp8 mpg
5T

D3x

Substituting the values for Az and Az from (5.77) and (5.78) into equation
(5.80) gives the following expression for the dynamic factor.
Hek K+
Dy = 1+ (mo s) Y2
P8 [ [(1 + %) wa(y3-70)

K+ Y3
1+x)o3(n-v13)

X+ Y2 X + Y3
Hok W W3
= [ (5.81)
mpg (1+x) (vo-73)

The sign of v, is always positive. In Appendix D.7 it is proven that
k> | y3 | for all positive values of . Therefore the absolute value signs in
equation (5.81) may be omitted.

Hyk ,
The term Eop_gs can be factored as shown below.

._H._o..lf_s._ & ﬁ.x ﬁx &X ___rn_s _ I'Iomcms\lK}J, (5.82)
mg = g Vs *Nmp *Ne*Nmp == ¢ &
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Therefore, the dynamic factor can be written in a more convenient form as

Hooe

D3xi = 1 + _"g_ Sxi (5-83)

s Qs
(K +72) (sz + (x+ 73)(0)3]

(1 +%) (v2-73)

where ij = VKW

(5.84)

HOmC

g
natural frequency of the cable and payload system attached to a fixed rigid
support is @¢. For the limiting case of an infinitely stiff crane with a hoisting

For a given hoist, payload, and cable arrangement, is constant. The

speed of Hy, the ratio of the amplitude to the static displacement is , and,

0W¢
g

change in this limiting dynamic factor, due to different lifting positions on
the bridge crane, is accounted for by Syj, which is called the structure

H
therefore, the dynamic factor is 1+ . Equation (5.83) shows that the

coefficient. The subscript “x” indicates that the exact solution is used, and the
“j” indicates that the structure coefficient is derived for the case of jerk-
starting. Because Syjis a function in part of cable and payload properties,
changing these properties while maintaining a given lifting position on the
bridge will also change the value of Syj. The structure coefficient is discussed
in detail in Section 5.9.

5.8.2 Initial Conditions for Braking

An analysis similar to that for jerk-starting is followed for the case of
braking. The assumption is made that when braking is initiated the motor
instantly stops turning. As a result of this instant deceleration, the motor
displacement and its derivatives in the model are set equal t0 zero, and the
system is reduced to only two D'soF. The equations of motion for this system
are as follows.
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+ (= (5.85)
ke ketks §oLlys 0 mg | L¥% 0
The natural frequencies are found by setting the determinant of the matrix

[[K] - OJZ[M]] to zero and solving for the values of .

ke - cozmp ke
=0 (5.86)

ke ketkg - 02mg

Equation (5.86) is written below as a quadratic in @2,
of - 02 Q% +0F) + et =0 (5.87)

where Q2 is as defined in equation (5.29). The two solutions to equation
(5.87) are the natural frequencies for the 2 DoF system subject to braking.

2 Qz+m§—\l (Qz+m§)2 - 4m§ mg
wi = 2

(5.88)

%+ mﬁ + ‘\j Q%+ cng)2 - 4m§ cog
= 2 (5.89)

Ko

The two natural frequencies have the same formulae, given in equations
(5.30) and (5.31), as the vibrational natural frequencies for the 3 DoF system.
Similarly, the matrix [®] is the same as for the 3 DoF system, but without the
first row and column.
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b -p
[@] = (5.90)
1

h 1I-7m
1 1
where 1y = (021 and Yy = 6052 (5.91)
1- 1-
o o

5

The equations for yp and ys can be written in terms of the modal

displacements, w1 and wa.

Ms
- mp (wig + wa) = ¥p (5.92)

(1- w1 +(1 - )wa = ys (5.93)

The two equations relating the modal displacements in terms of yp and ys

are the following.

(1-7)ys—yp (1-v2lys-yp
(1-v3{v2-7) (1-¥2)v1 - 72)

The differential equations for the modal D'soF are of the same form as

equations (5.46) and (5.47) for the 3 DoF system.

2 e B 2 A S
® + = ® + = (5.95)
L - 1) 2W2 T = -1

Their general solution is of the same form as well.



wqi = A'l sin(mlt + 91) + Bl wy = Aj sin{wat + 62) + Bz (5.85)

Wl = Al O] COS(Cﬂlt + 61) Wz = Az ) COS(COzt + 62) (586)
Wy =-Aq m% sin(wyt + 8) Wy =-Ay m% sin{wst + 05) (5.87)
5.8.2.1 Solution for Braking with Static Initial Conditions

Consider first the case in which there is no vibration prior to the initiation
of braking. This is the case if the time which has elapsed since the hoist
motor was started is long enough for the vibrations due to hoisting to have
been completely damped out. Therefore, just before the brakes are applied, the
payload is moving at a constant velocity and the crane is stationary. There are
no inertial forces and the 3 DoF system is in static equilibrium.

Let t = 0 at the instant braking is initiated. Because the system is still static
at that time, 8, and 0, are both equal to zero. Therefore, cos {®¢t + 81) and

cos (ot + 82) equal unity in equation (5.97). The initial values for the first
derivatives of the modal D’soF w; and Wy in (5.97) are determined by

differentiating equation (5.94) with respect to time, and substituting the
values of zerc and Ho for y; and ), respectively.

-Hp . —H,
= SR < S
(1-7)02- 1) 27 - -w

The solutions for the amplitudes, A; and Aj, when t = 0, from equation
(5.97), are as follows.

= o A, = o (5.99)
@0 (1- 1)z - 71) 27 wp(1- 1) - ) '

A dynamic load factor, D3xp, similar to the dynamic factor in equation
(5.80), can be defined. The subscript “b” in the term Dayp indicates that this
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dynamic factor is based on an exact solution to the 3 DoF system experiencing
braking.

(1-v) A (1-v7) A
D3xb = ﬁfﬂai =1 + ._1]_.._.1_ + _.._‘Y.Z_)...._g. (5.100)
Ysstatic mpg mpg
kS kS

Substituting the values for A1 and A; from (5.99) into equation (5.100)
gives the following expression for the dynamic factor.

H.k
Dy = 14— (L 1
i-1mpg o7 @
H,wo
=1+ =84 (5.101)
g
W
where S;p = S| e + —s-‘) {(5.102)
-0 @)

The term Syp is the structure coefficient for the braking scenario. The
subscript “x” indicates the exact sclution was used for the derivation. As in
the jerk-starting case, the structure coefficient accounts for the change in
dynamic factor due to different lifting positions on the crane.

5.8.2.2 General Solution for Braking

The preceding derivation gives a dynamic factor for braking for the case in
which the system is in static equilibrium prior to the initiation of braking.
Now consider the braking scenario when there is some initial vibration of the
payload and structure. The vibrations that exist before braking are changes in
the amplitudes of the second and third mode shapes of the 3 DoF steady state
model. Consider the second mode first. The expression for the second modal
DoF of the steady state system in terms of the displacement of the masses is
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given in equaticn (5.36). Equation (5.36) can be differentiated with respect to
time, to obtain the first and second derivative of the second modal DoF in
terms of the velocities and accelerations of the masses.

'

g 1wy

) n Ho - o+ (1-72) ¥
" ( B 5.103
’ (1-v2) (y3-v2) (1-19) (¥3- 7o) (5.103)
¥m . .
o = Tt -1 ¥s Vet -1 ¥ 108
S S (1-72) (13- 72) :

The values of w3 and W, from equations (5.103) and (5.104) can be
substituted into equations (5.49) and (5.50) respectively.

Hp - Yp*’ (1- 72) ).’S
Ay r cOs(Wnrt +85) = 5.105
22 S (1-72) (3 - 72) (5109

Yot (1-v2) ¥
(T-%2 (-1

-As @3 sin{oqt + 8;) = (5.106)

Let the value for wyt + 0; be o at the instant the brakes are applied. The
amplitude Az is a function of whatever starting conditions initiated the

vibrations when the hoisting event began, and may also be affected by

damping. Let the amplitude A; in equations (5.105) and (5.106) be A.

Once the brakes have been 'applied, the 2 DoF system is used to describe the
crane’s behaviour. It has been shown that the second mode shape of the
3 DoF system is the same as the first mode shape of the 2 DoF system, and that
the second natural frequency of the 3 DoF system is the same as the first
natural frequency of the 2 DoF system. The expressions for the velocities and
accelerations of the second mode of the 3 DoF system, just before braking,
written in the terms of reference of the 2 DoF system, are as follows.
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- Ho -yp+ (1-1) s
Awjcosa = (5.107)
! (1-v) (r2-11)

) ot (o) ©
-A m‘?‘ sing = Yo (L-7) ¥
(1-v1) (2 -v1)

(5.108)

The expressions for the first and second modal DoF of the 2 DoF system in
terms of ys and yp are given in equation (5.94). If the expression for ihe first
mode is differentiated twice, the following equations for the first and second
derivative of the first after-braking mode result.

Y =')"p+ (1-v) Vs
LTy -

(5.109)

. - yp"' (1-v) Vs
te = (5.110
e 1-v) (-1 )

Combining equation (5.109) with (5.107), and (5.110) with (5.108),
expressions for the first and second derivatives of the first modal DoF can be
wrilfen which do not include the structure or payload velocities and
accelerations.

Ho

vp = A - — 1
w1 ] COS O A7 (70 (5.111)

W) = -Aws sino (5.112)

The values for wq and i in equations (5.111) and (5.112) are substituted

inte the differential equations (5.96) and (5.97). Let t = 0 at the moment
braking starts.
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H,

Ay 0080, = Aw;cosq - ———2—
e ! (T-7) (2= 72)

(5.113)

Aysin®; = Asina (5.114)

Dividing the quantities on the left and right sides of equation (5.114) by

those on the left and right side, respectively, of equation (5.113), gives an
expression for tan 8, that does not include A;.

sin o

tan 91 = O (5.115)
cos & — — °
Ay (1- 'Y]) (Yo - Y])
Using the trigonometric identity, sin x = —BRX_ ihe expression for
’ Vi+ tan2x
sin 81 is written.
sin o
sin 8y = (5.116)

H 2
sin2a+ cos @ — — =
Ao (1-v) (-

Substituting the value for sin 8; in equation (5.116) into equation (5.114)
gives an expression for Aj.

- H 2
Ap= A [sin’a + [cosa - = 0 (5.117)
Aoy (1-v) (p-vy)

To find the maximum value of A; with respect to @, let the derivative of

the expression under the root sign in (5.117) equal zero.
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2singcoso — 2sin o CoOs oL — Ho =0
Ao (1-v) (ra-1p)

. _Ho
sin o | — =0 (5.118)
(A aq (T-v) (12 - YI)J

Equation (5.118) is satisfied when sin a = 0, which is the case when « , in
radians, is zero or some integer multiple of n. The even integer roots
represent the case when the initial vibrations are in phase with the vibrations

caused by braking, and the odd integer roots represent the case where the two
vibrations are © radians out of phase. The maximum value for A,

corresponds to the in-phase condition, which occurs when cos a =+ 1. The
values of zero and positive one for sin « and cos o, respectively, can be
substituted into equation (5.117).

A]max = R 1- _ Ho
Ao (1-7) (va-vp)

H,

A -
w1 (1-1) (2-11)

(5.119)

The only difference between the first mode amplitude from equation

(5.119) and the first mode amplitude from equation (5.99) is the addition of A,
the first mode amplitude from before braking was initiated.

A similar expression is developed assuming an initial vibration of the

second mode with a modal amplitude of A.
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H,
- 5.12
0z (1 - y2)(y; - ¥2) (5:120

I 0l

AZ max =~

In this derivation of the dynamic factor, it is assumed that the vibrations
caused by braking are in phase with those due to some unspecified previous
loading event. The dynamic factor for this case is denoted by Daxp+ and is
given by

(1-yDA 1-v)A
Dby = YSrnai( =1 + Y1)A1 max . (1-%2)A7 max (5.121)
Ysstatic mpg myg

When Aj max and Az pa from equations (5.119) and (5.120) are

substituted into (5.121), the following expression for the dynamic factor
results.

S H @ a-v) A (1-7) A
Dasbs =1+ 2207 g° e, |[LwaA b |22 (5.122)

5 11

If it is assumed that the initial vibrations are due to jerk-starting, then

(1-y) A and (1-7v,) A are equal to (1 - y7)A, and (1 - y3) A3, respectively, in
equation (5.80). The dynamic factor Daxbj, for the combined effect of braking

and jerk-starting, can be written as follows.

SxpHge . ijHomc
g g

Daxbj = 1 + (5.123)

= 1+ =5 (S +5y)



5.9 Discussion of Structure Coefficients

In this section it is shown that the structure coefficients S,y and Sxj can be
written solely in terms of x and y. Once this is established, graphs of the
structure coefficients will serve to illusirate certain features of S. Sime of the
features of the multi-DoF system which determine the values of S are
discussed. The limiting case in which p approaches zero is examined. Some of

the less obvious ways in which features of S affect the dynamic factor will also
be discussed.

5.9.1 Dependence of Structure Coefficient on x and p

The only variables which are needed to obtain a value for the structure
coefficient S are x and . This is proved as follows. Equations (5.84) and
(5.102) for Sxp and Syj, respectively, are shown below.

s W
(X +72) (—(;;J + (k+ 73)((0—3)

1+ % ¢a-79)

(5.84)

ij = VKU

S, = [——””{J[—m-s- " %J (5.102)

- Yi-T2) 1

In each, the expréssion for S contains x and y, in addition to y terms and

the ratios of the modal and structural natural frequencies. The general form
of the equation for the y terms is given in (5.25).

It can be seen that y is also a function of the ratio of modal and structural
natural frequencies.
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This ratio of modal and structural natural frequencies can be expressed as a
function which has only x and p as its variables. This is shown as follows.
The form of the equations for the squares of the modal natural frequencies is
shown below.

2 2
2 32+m§i‘\j(9“+m§2—4mgm§

W = 3 5.124)

When Q2 + m% is divided by mg, the following expression, in terms of x
and p, results.

2 2
Q° + g ms)(kc ke ks) 14+u+x
( C'st J= (ks mp+ms+ms = X (5.125)

The discriminant which appears in equations (5.124) can be divided by

Q2+ w?.

‘\f (Qz+co§)2 - 4m§ mg 1.4 mg wg
Q* + w? B 0%+ ol | Q% + o

— 'J 1 __EEE,___. (5126)
- 1+ +x)° '

When the expressions of the right sides of equations (5.125) and (5.126) are
substituted into equation (5.124), the following equation fur modal natural
frequencies results.

2 2 1+|.L+K)[ 4K J
= —1l 1% - 127
@ =% [ 2% ! (1 +p+%° 5.127)
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It can be seen from equation (5.127) that the ratio of modal and structural
natural frequencies can be expressed using only x and | as variables. The only
variables in equations (5.84) and (5.102) for S, which do not involve xor 1

explicitly, can be expressed as the ratio of modal and structural natural
frequencies. Therefore, S can be expressed using only x and p as variables .

Figure 5.9 shows the structure coefficient, Sx]', from equation (5.84) plotted
against a wide range of values for x, with |t as a parameter. Figure 5.10 shows
S, for the same range of k¥ and p values.

The preceding argument proves that the ratios p and x are the only

variables needed to determine the structure coefficients. It might be expected
that Sxj and S, can also be expressed using only the frequencies ws and wc as

variables. However, this is not the case. Consider the following identities.

A particular value for wg and a particular value for o, define a value for
K o
the ratio —I-I , but do not determine individual values of x and u. However,

individual values for x and p are required to define a single value for the
structure coefficient. With two trivial exceptions, any one ratio of x to i, and
the particular values for wg and w, associated with that ratio, defines a line on

the S versus k graph which passes through all values of S. Figure 5.11
illustrates this by showing the locus of points for Sy, for which x = 2.

One of the trivial exceptions is the limiting case in which «x is zero. Under
that condition, S = 0. The other exception is the limiting case in which p is
zero. In this case k can zssume any value without altering the magnitude of

X
the ratio ; . The line associated with p = 0 on the S versus x graph passes

through all values of S < 1. ‘the limiting case of p approaching zero is
discussed further in Section 5.9.2.

The expression for Sy is long and complicated if expressed strictly in terms
of 4 and x. An approximation that gives acceptable results is the following.
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(5.128)

S - \}K(1+p+x)[l , 2 )

a) K+1 (1+p+x?

The subscript “a” indicates this value for the structure coefficient is an
approximation. The expression in (5.128) was {ound through trial-and-error,
and is not based on any derivation. Figure 5.12 shows a graph comparing the
approximate and exact solutions for Syj, and shows a graph of the ratio of the
approximate to exact values of Sy, plotted against x. The approximate value
stays reasonably close to the exact value for a practical range of x and p values.

Similarly, the equation for S, when written strictly in terms of « and , is

not convenient to use. It may be approximated by the following.

4 2ux K
S.p= |1+ .
ab L * (I+p+ x)? j \1 1+p+x (5.129)

This expression was also found through trial-and-error. Figure 5.13 shows .
the approximation S, from (5.129) plotted with the exact values of S}, from

equation (5.102). The graphs in Figure 5.13 compare the approximation to the
exact value of Sxp. The approximation stays acceptably close to the exact
value.

5.9.2 Solution for S when L Approaches Zero

In this section solutions for the equations for S are derived for the limiting
case in which p approaches zero. This corresponds to the case in which the

payload is mu.h more massive than the mass of the crane. Consider first the
solutions for Syj in this limiting case. Equation (5.84) for Sxjis shown below.

confs]oof3)
by} W3

1+x)(v2-v3)

ij = VKU (5.84)
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Figure 5.12 Approximation for Sy

Graph of S,j and S,j versus x
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Figure 5.13 Approximation for Sxb

Graph of Sxp and S,p versus x
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©

To solve for Sxj as L approaches zero, the values of m_s’ % , and ¥, - Y3 must be
2

evaluated as {1 approaches zero.

. Ws . .
From equation (5.127), an expression for f is written.

g |§

(5.130)

LN

’\/(14-“-[‘K ( ‘\/ (l+u+1<)}

o
The solution for as results when the sign of the discriminant in

equation (5.130) is positive. A direct substitution of & = 0 in equation (5.30)
gives the following.

S s (5.131)
w3

1+x

o)
The solution for 'j' results when the sign of the discriminant in
2
equation (5.130) is negative. From equation (5.130) it can be seen that when p
©
approaches zero, :}25 approaches infinity. Therefore, the expression for Syj in

035\/]-I
02

value for the undefined term can be found using the relationship that

equation (5.84), as | approaches zero, contains the undefined term . A

V1-x=1 -§ when x « 1, Applying this relationship to the discriminant in

equation (5.116), it can be seen that

2ux
V (1+I-1+K) = 1- m (5.132)
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2ux . v . e
when m « 1, which is the case as | approaches zero. Substituting
the expression for the discriminant from (5.132} into equation (5.130) gives

the following expression for m%.

ol _ . Vi

= lim = 1+x

H—0 @2 H—0 1+p+x 2ux )
1-~-1+ —‘_ll""'_ zJ
2x (1+u+x)

To solve the right side of equation (5.84) for Syj as yt approaches zero, a
solution is still required for ¥y, - y3. From equation (5.130) it can be seen that

(5.133)

®
when y approaches zero, "Ogs approaches infinity. Substituting zero for the

inverse of this frequency ratio into equation (5.25) gives the following for v.

1
Y=1; =m =1 (5.134)
o
Substituting the value irom equation (5.131) for the frequency ratio m—s
3

into equation (5.25) gives the following for ;.

Substituting the values from equations (5.131), (5.133), (5.134), and (5.133)

Ws ms'\lz

for -(;)3*, o Y2, and v3 , respectively, into equation (5.84) , the expression

for Syjas p approaches zero is found.

(x +72) (&J + (x+ Ys)(‘(?s“]
. . (5] 3
lim S = lim Vxp

=0 u—0 (1+%) (y2-73)
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(1+xQ+x)

) _\/;[(K-Pl)m*' OJ

K

= o1 (5.136)

The preceding development gives an expression for the jerk-starting
structure coefficient as p approaches zero. A similar development gives the
solution for the structure coefficient for braking, S, for the case in which p

approaches zero. Equation (5.102) for S is shown below.

Sy, = (——WJ[% . %J (5.102)

Y1-Y2 )| 0]

Ws W
To solve for S, as p approaches zero, the values of j , ;S , and ¥y - v,
1

must be evaluated as p approaches zero. The first and second natural
frequencies of the 2 DoF system developed for the braking scenario are equal
to the second and third natural frequencies of the 3 DoF steady state system
respectively. Therefore, wj, 3. Y,, and y3, in equation (5.84) are equal
respectively, to wy, @, 11, and v, in equation (5.102). Equations (5.131), (5.133),
(5.134), and (5.135) for the 3 DoF steady state case are rewritten below in the
terms of reference of the 2 DoF system.

4

’

!

-

§ 18

= (5.137)

1
+
e

lim ou _ Vi+x (5.138)

u-0 @

1

i =1-0 "~ 1 (5.139)
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Y2 = 1+x = =K (5.140)

g O
The values for (:f—, zo'\[;, Y1, and Yz in equations (5.137), (5.138), (5.139), and
w2 1

(5.140) are substituted into equation (5.102) to provide the solution for S, as p

approaches zero.

‘\f w
lim Syp = lim [——HE-J[% + —5]

n—0 u—0 \M-"2 {0
- [ ‘K](\hm +0)
1+x
K
= 1 (5.141)

Comparing equations (5.141) and (5.136), it can be seen that, for the case in
which p approaches zero, the structural coefficient for both braking and jerk-

o K . . .
starting is ’J e This expression approaches a maximum of one as x

approaches infinity. For small non-zero values of pu the maximum structure
coefficient occurs at large but finite values of x, and the smaller y is, the larger
the value of x at the structure coefficient peak.

The S versus Kk constant W curves shown in Figures 5.9 and 5.10 have
certain common features. When x approaches infinity, (ks » k¢), the value of
S approaches one. At some finite value of x, S rises to a maximum, and this
maximum is greater for larger values of p. That maximum exists, and is
greater than one, for all values of i greater than zero. Let the value of x when
S is a maximum, with respact to x, be called Kmax.
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Figures 5.14 and 5.15 show the locus of the maxima for each of the
structure coefficients. In the case of 5yj, an analytical solution for the maxima
was not found. For Figure 5.14 the points of maximum value of S with
respect to x were found for discrete values of 1. The points were plotted and a

curve was passed through them. An expression for the maximum values of

S.p was derived. The maximum value of S, = ‘\/u+1 occurs when
(p + 1)2

K=Kmax= .

i

It can be seen that for S, and ij the value of xmax varies widely with p.

The conditions that cause S to assume a maximum value can be understood
when the crane structure is considered as a single DoF system isolated from
the rest of the model. Consider the single DoF crane subject to a independent

and external forcing function comprising two harmonic frequencies of ©; and

oy, with respective amplitudes of Fy and F,. The particular solution for the
displacement of the structure would be

F _ F B
Ys = k_l sin (0t +68¢) + E-z- 1 " sin (@5t + 0,). (5.142)
5 e s —_
1 @5
1- 1-

The bracketed terms containing the frequency ratios are y terms, as defined
in equation (5.25). It can be seen that the response of the crane structure, when
subjected to two independent harmonic forcing functions, increases when
one or both the forcing frequencies approach w,, the natural frequency of the
crane structure. When either of the applied frequencies is equal to w, the
model is in resonance.

If the cable tension is considered to act upon the structure as an external
load comprising two harmonic forcing functions, then the two frequencies for
the forcing function are the two vibrational natural frequencies of the
complete system, (either the 3 DoF steady state system, or the 2 DoF system
derived for the braking scenario). The equation for the forcing function

177



ool

—
3

—

¥ 0} Joadsal Yyum
fXg 10) ewxew jo sN207

xg 50 SaNJEA WNUWIIXE] JO e H1°S 2In31g

'1uagomaof) aJnianng

Mxg

178



00

oL L

3 03] 10adsal yum
SanIEA WNWIXEW JO SN207

- 971

g1l

qxg 10§ SaN[EA UWMWIXEA JO e SI°G om3Irg

‘Jua1213)90)  3injonaig

qxg

179



acting upon the structure is obtained by substituting equations (5.28), (5.29j,
and (5.30) for ym, yp, and ys, into equation (5.12) for Te.

Mg

Wy + nm, ( wa + “’3) =¥m (5.32)
w1
T H(watwi) =y, (5.33)
(1-p)wy+(1-y3)wy =y, (5.34)
Ke
T, = T Ym- keyp + keys (5.12)

ke Mg
TC = ;[\V] + nMmp, ( Wo + W3 ))

w
_kc(-ﬁl —p.(w2+w3))

+ke ((1=ydwa +(1-y3)wy ) (5.143)

1 . . .
It is assumed that — approaches zero. Using the relationship, from
m

Appendix D.4, that (1 ~v,)(1-¥3) =- 1 when 'ml— approaches zero, equation
m

(5.143) can be rewritten as the following.

Te = ke{13(1- 12wz + ¥2( 1-y3)w3 ) (5.144)

The response of the structure to this loading is given in equation (5.34). A
comparison of equations (5.34) and (5.144) shows that for each mode there is a
difference between the coefficient used in the expression for T. and the

coefficient used in the expression for ys. The tension T, and the displacement
ys are not proportional to each other over time. A dynamic factor different

from the one derived in this chapter would be required for cable design.
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From equation (5.144) it can be seen that the cable tension, Te, is comprised
of two harmonic forcing functions, but they are not independent of the
properties of the structure. The frequencies and magnitudes are determined

by the properties of the complete multi-DoF system which includes the crane.
The crane structure, subjected to T, cannot go into resonance. However,

some insight into the mechanism which causes maximum values of S can be
gained by examining the cases in which one or both the natural frequencies of
the complete system approach the natural frequency of the crane structure.

Consider first the situation when the value of p is low. Equation (5.133)
indicates that w,, the lower of the two natural frequencies of the multi-DoF

system, approaches g™\ ’ ﬁ- . Thus, when p is low, ®; is small compared

to ws. Equation (5.131) shows that w3, the higher of the two natural

1+x

frequencies, approaches ms‘\/

approaches the natural frequency of the structure. For low values of i, the S
curves reach a maximum at high values of k, and the lower the value of g,
the higher the value of x at which the maximum value of S occurs.

when it is low. As x increases, w3

For higher values of y, the case exists in which the natural frequency of
the structure is approached by both of the natural frequencies of the complete

system, rather than just the higher of the two. The closer the two frequencies
are to g, the greater will be the dynamic response. In Appendix D.2 it is

proven that the lower natural frequency is always less than &g and w,, and the
upper natural frequency is always higher than wg and w.. The two natural
frequencies approach one another (and therefore @, which they bound), as

the discriminant in equation (5.130) approaches zero. This occurs when
4 4px

S L approaches one. The value of — is less than one for

(1+p+x)2 (1 +u +1)2

all positive values of u and x, and approaches one only when both g and x

dux

approach infinity. However, the value of x at which “‘“"“—(1 Y

is a
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4ux

maximum can be determined by taking the first derivative of ————
(1+p+x)2

with respect to x, and setting it equal to zero.

d 4ux - 0
dx ((1 ++ x)z) -

4u(1 + i + %)% - Buk(l + 1 + %)
=0

(1+pu+x)4

4p

Dividing both sides of equation (5.145) by A+ p+w3

gives
(I+p+x)-2x=0
K=1+p (5.146)

When equation (5.146) is satisfied, the two natural frequencies are as close

to each other as possible for a given value of u. That approaches

(1+p+x)2
unity only when both x and p approach infinity indicates that the action of
the cable tension cannot make the crane structure resonate.

Figures 5.16 and 5.17 are the graphs of the structure coefficients for jerk-
starting and for braking, respectively, plotted against x. In each of these
figures two of the curves are shown in a heavy line. The first is a plot of the
function

which applies for the case in which p approaches zero. For this case, as x

increases, the lower of the two natural frequencies of the multi-DoF system
becomes very small compared to s, while the higher of the two approaches
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ws. The second curve is the locus of values of S which satisfy the condition
that x = 1 + . This corresponds to the case of the closest convergence of the
two natural frequencies of the multi-DoF system, for a given value of y. The
locus of points of maximum values of S with respect to x is shown as a dotted
line. The curve representing the maxima is close to the curve for u
approaching zero when the value of y is low, and approaches the curve of
closest convergence when the value of p is not low.

If u is not low, the highest structural coefficients with respect to x occur
near where the two vibrational natural frequencies reach their closest
converge to one another. If | is low, then at large values of k the higher of the

two natural frequencies approaches the natural frequency of the structure and
cause the structural ccefficients to reach their maxima with respect to x.

5.9.4 Effects of Varying x on the Dynamic Factor

In this section some of the effects that varying x has on the dynamic factor
will be examined. A value of i for which the maximum value of Sis 1.1 or
less is referred to as a low value of u. For low values of y the curves
representing the locus of maximum values of § in Figures 5.9 and 5.10 are
nearly level and close to unity. A reduction in x when W is low will not
significantly increase the value of 5. It may reduce the value of S, or it may
leave it relatively unchanged at a value near unity. If the reduction in x is
accomplished by reducing only ks, then w.remains constant in the general
expression for the dynamic factor,

(5.147)

Therefore, under the condition that p is low, D either decreases or remains
roughly constant in response to the change in S as ks is reduced. This is the
situation described in DIN 15.018 [ref. 35] in clause 4.1.4.2 , where it is staied
that “ ... the larger the elasticity [flexibility] of the supporting structure, ... the
smaller the [dynamic] factor ¥.” It is also the situation described by Barrett
and Hrudey [ref. 3], where it was stated that “The largest D values occur when



the structure is most stiff.” Cranes are designed and built to lift and move
payloads which are too massive to be moved conveniently in some other
fashion. It is a natural simplification to focus on the payload mass, and to
assume that mp » mg, and that p is low, for the purposes of a dynamic
investigation. However, this is rnot always true. Any reduction in kg for which
x remains greater than xmax will cause an increase in the dynamic factor.
That increase occurs for all values of p greater than zero, and it can be
considered significant for values of yL which are not low. Reducing structure
stiffness does not always reduce the dynamic factor.

In the same clause in DIN 15.018 the statement is also made that “The
softer the springing of the hoisting gear...the smaller the {dynamic] factor ¥.”

The term hoisting gear is assumed to apply to slings and below hook
attachments. The claim is made that reducing the value of k. reduces the

dynamic factor. If this is so, then design engineers could always assume the
stiffest likely values for k. in their calculations without concern that this is

not the critical case. If, when the crane is in service, web slings are substituted
for chain slings, then k. is reduced, and the dynamic loads due to hoisting are

reduced. If the claim is not always true, then standards should give guidelines

- indicating the circumstances under which less than maximum k. values

should be investigated.

In the remainder of this section, the circumstances, if any, under which
reducing k¢ will reduce D, are determined. When k. is reduced, x is increased,
and the structure coefficient S is either increased or decreased. Reducing k.
also reduces ¢, which is a factor multiplied by S in the general formula

HywS
D=1+ s (5.147)

Reducing k. will increase D only for the case in which there is an increase

in 5, and only if that increase is great enough to compensate for the
corresponding decrease in w. The restriction on the rate of increase of S with

respect to k¢ is determined by first finding an expression for gTE)- .
C
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HowS

dD _ d__._g_,
dk, = ~ dk.
Homc ds Hos QC_DE

g dk T g dk

Howe d5 dx  HoS dvke
g dx dkc g\’mp dkc

(5.148)

k k
The ratio x is defined as T(—S , and therefore dx= *EE dk.
c C

(5.149)

dD  (Howck\dS _ HoS
dke =

= = T

Reducing k. will increase D when ad—l% <0.

(Hw k;.)@ HS .

3
gks Jdx Zg\]mpkc

Hos gkg ds

<
2gmp ke Hotcks  dx

s _ds

™ < r (5.150)

If the condition in (5.150) is satisfied, then a reduction in k. will cause an

increase in D.
: . S
Figures 5.18 and 5.19 show overlying graphs of values for e and

approximate values for 3—% plotted against the log of x. The curves are for

jerk-starting and braking respectively, with p set to a value of 1.5. The
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Figure 5,18 Example Case in Which Decreasing k¢ Increases Dynamic Factor
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. ds . .
approximate -d—- values are generated by calculating changes in rise over
K

changes in run of the appropriate S versus x curves over 60 evenly spaced
points.

In the graph for jerk-starting, it is never the case that S < d-ég and
K
therefore, when p = 1.5 it is never the case that jerk-stating with less stiff

slings will cause a higher dynamic factor. In the graph for braking, S < ds

2K dx
when ¥ < 1.7. If the 3DoF model is accurate, then there are some situations

in which the use of less stiff slings will cause increased dynamic loads.

510 Summary of Derived Dynamic Factors

Analysis of a simple 3 DoF model provides dynamic factor formulae. The
dynamic factors are applied to the weight of the payload. The dynamic effects
of starting are taken into account by the following formula.

SyviHom,
Diyj =1 + 20

s s
k+v) || + (x+73)|—
W]+ wern(F)

(1+%) (Yp-v3)

where Sy = Vxu (5.84)

The effects due to braking are taken into account by the expression below.

Dayp =1+ SxpHotdc
g
P
) @
where S,p = [Vuh\(__s + O (5.102)
71"!2JL031 w2
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Both dynamic factors approach 1 for the static case where hoisting speed is
zero. Both factors are greater than one by an amount proportional to the
hoisting speed. A number of assumptions were made in the derivations for
the dynamic factors. They are listed below.

1.

2.

7.

The crane structure acts as a single DoF spring and mass system.
The payload acts as a rigid mass.

The motor's mass is infinitely large compared to the other masses in
the system.

While the motor is operating and under load, it has a constant speed
of VQ.

Jerk-starting is the most severe starting case. Jerk-starting is defined as
the case in which the payload is initially stationary and there is
enough slack in the cable to allow the motor to achieve full speed
before any tension develops in the cable.

The crane structure behaves in a quasi-static manner prior to lift off
of the payload. Therefore, at the moment the payload lifts off, the
acceleration of the crane structure is zero, and the velocity of the

crane structure is downwards and equal to .
+X

When the brake is applied, the motor stops instantly.

The structure coefficients Sxj and Sxp depend upon k, the ratio of the
stiffnesses of the crane structure and the cable, and p, the ratio of the masses

of the crane and the payload. Generally, each structure coefficient reaches a
maximum at some finite value of x. In the limiting theoretical case in which

p approaches zero, the two structure coefficients approach the same value,

K
given by S = ‘% el The dynamic factor which accounts for the case

where the vibrations due to braking and the vibraticns due to jerk-starting act
in phase has the formula
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(SM + be)HD"OC
g .

Daxpj=1+ (5.123)

The formulas for of 5,; and Sxp when expressed in terms of i and x are

unwieldy, and more convenient approximate expressions have been found.
They are

(5.74)

1
Sy - Vx( +u+1c)[1 N 2UK )’

x+1 (‘1+;.1-4-1v:)§

2ux 3 ’ K
d Sap= |1+ . .
an ab ( * 1+p+x) ) 1+p+x (59M)

There are instances where decreasing the stiffness of the crane structure
will increase the dynamic factor. There are also situations in which decreasing

the stiffness of the cable or slings will also cause an increase in the dynamic
factor.

Tables 5.2 and 5.3 show the frequencies and dynamic factors predicted by
the 3DoF model for eight test setups. The derived values in Table 5.4 values
are calculated from the effective cable stiffness (see Section 2.5).
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CHAPTER 6
TESTING PROGRAM

Dynamic tests were performed on the shop crane in the 1. F. Morrison
Structures Laboratory. The dynamic response was measured during a number
of hoisting events. In this chapter the test procedure is described and the
resulting data are presented and discussed.

There are four physical properties of the crane and payload system which
affect the dynamic factors derived in Chapter 5. They are crane structure
stiffness, crane structure mass, payload mass, and cable stiffness. To examine
the effects these parameters have upon the dynamic response of a real crane,
the test setup was varied in three ways.

1) The position of the hoist was a varied. In roughly half the tests, the
hoist was located at the midspan of the crane bridge beam with the northern
end truck wheels as near as possible to the craneway support column. This
position corresponds to the structure computer model “2” in Chapter 4. In the
other half of the tests, the trolley was positioned at the east end of the bridge,
and the bridge was located equidistant from the craneway support columns.
This position corresponds to the model “E” in Chapter 4. By varying the
trolley location, the effect of changing the structure stiffness k, could be
measured. Varying the trolley location also changes the natural frequencies of
the structure. The structure mass, as defined in Chapter 5, can be considered
to be the stiffness of the structure divided by the square of the dominant
frequency. In general, the rate at which kg changes with respect to position is
different from the rate at which the dominant frequency changes (see Figure
5.2). Therefore, varying the hoisting position between positions “2” and “E”
also changed the structure mass.

2) Two different payloads were hoisted; a large payload weighing 14.35 kN,
and a small payload weighing 2.07 kN. Changes in dynamic response due to
variation in payload mass could therefore be examined. The large payload
was chosen because its weight of 14.35 kN was near the crane's rated capacity

of 17.8 kN. The small payload was chosen to investigate dynamic behaviour
for higher values of p.
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3) Both web and chain slings were used for each hoisting location and for
each payload. The effects of variations in k¢, and in the ratio x, could thus be
observed. For the large payload, 100 mm wide web slings were used. These
slings were t00 bulky for the smaller payload, and 25 mm wide web slings
were used instead. For the tests in which chain slings were required, No. 16
chains were used to hoist both payloads.

The dynamic factor is dependent upon the physical attributes of the
structure, cable, and payload, and also upon the hoisting procedure. In
Chapter 5, two dynamic factors, D3xj and Ds,}, were derived, to account for
hoisting and braking behaviour respectively. The factor D3xj was derived
specifically for the jerk-starting case, which was assumed to be the most
severe starting case.

The test procedure was designed to verify the assumption that jerk-
starting was the most severe starting case. For each combination of payload,
sling, and hoisting position, three different starting conditions were tested.

1) The payload was suspended by the cable.

2) The payload rested upon the shop floor and the cable had some initial
tension in it.

3) The payload was fully supported by the shop floor, and the cable was
slack. For these tests the assumption was made that there was enough slack
that the hoist motor could reach synchronous speed before tension developed
in the cable. These tests are considered to represent the jerk-starting case.

For the three starting cases described above, the crane and payload were
static at the beginning of each test. The motor was turned on and allowed to
run for one to two seconds, and then turned off. Turning the motor off
automatically initiated braking. Therefore each test also provided a sample of
after-braking dynamic behaviour, and the accuracy of D3y could be examined.

Along with the three starting cases, a fourth variation of the test procedure
was performed.

4) With the cable initially taught, and the crane structure static, the motor
was turned on and off several times in quick succession. This procedure is
called “plugging”. It was performed to determine whether a random mix of
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starting and braking could produce a more severe dynamic effect than jerk-
starting.

A five symbol code was used to name, and to identify the features of each
test. The code is summarized in Table 6.1. The following convention is used.
Any group of tests with the same setup, as described by the first three symbols
of the test name, is referred to as a test set. Any group of tests with the same
starting condition, as indicated by the lower case fourth letter in the test
name, is referred to as a test series.

Several stations were established on the crane. At each a number of
parameters were recorded throughout the duration of each test. By comparing
the maximum to the static values in this data, the dynamic ratios could be
determined. Other aspects of the structure behaviour could also be examined
and compared with the behaviour predicted by the 3DoF model.

Because displacements, moments, and shears were measured at different
locations, the assumption that the structure can be considered as a single
mode system, could be tested. If the structure can be modelled by a single
mode system, then the ratios between displacements, moments, and shears
should remain constant, at any one location and between different locations
on the structure, throughout the testing time.

To test whether the motor delivers a constant hoisting speed, the payload
displacement was recorded. The cable tension was also measured so that the
assumptions relating to the variability of ke could be examined.

Often data was recorded after braking, and in the cases of “plugging”, after
the last time the brakes were applied. The rate of damping during the ensuing
free vibration of the crane and payload could be determined, and the
assumption, that damping was not significant, could therefore be tested.

Figure 6.1 shows the two hoisting locations and indicates the stations and
what parameters were recorded at each. Figure 6.2 is a diagram of the test set
up. Figure 6.3 is a schematic diagram of the data collection and analysis
system.

196



Table 6.1 Test Name Designations

Each test was assigned a five symbol code to
identify the features of that test. For example: EBCt3

First Symbol - indicates Hoisting Position.
E - trolley positioned at east end of bridge
2 - wolley positioned at midspan of bridge

Second Symbol - indicates Payload Size
B - large payload (14.35 kN) used
L - small payload (2.07 kN) used

Third Symbol - indicates Type of Slings
S - Web Slings used,
100 mm wide with large payload,
25 mm wide with small payload
C- No.16 Chain Slings used

Fourth Symbol - indicates Hoisting Process
h - payload hanging from slings when
motor started

t - payload on floor and cable and slings
tight when motor started

s - payload on floor with cable and slings
slack enough to allow motor to attain full
speed before significant tension develops

b - same as s but with improvements to
test setup

P - motor "plugged"; turned off and on in
quick, random spurts

Fifth Symbol - indicates Test Run Number
1 - First test in series

2 - Second test in series
3 - Third test in series
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Figure 6.1 Schematic Plan View of Shop Crane Showing
Locations of Data Collecting Stations
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Reaction Forces berween Crane and Craneway

LVDT under Craneway at Southeast End Truck Wheel Assembly to record
Craneway Displacement, and

Fabricated Load Cell on Southeast End Truck Wheel Assembly to record
Reaction Forces berween Crane and Craneway, and

Accelerometer at Southeast End Truck Wheel Assembly to record Accelerations

Fabricated Load Cell on Southwest End Truck Wheel Assembly to record
Reaction Forces berween Crane and Craneway

Fabricated Load Cell on Northwest End Truck Wheel Assembly to record
Reaction Forces between Crane and Craneway
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Figure 6.2 Typical Test Setup
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Figure 6.3 Processing and Data Analysis Steps
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6.1 Setup and Calibration

6.1.1 Acceleration Measurement

Bruel and Kjaer type 4370 accelerometers were used to monitor the
acceleration of the crane structure, and to provide frequency data that could be
compared with the data from the LVDT’s and strain gauges.

The accelerometers comprise a layer of piezoelectric material sandwiched
between two pieces of steel, one of which acts as a base, the other as a
cantilevered mass. The shear deflections of the layer of piezoelectric material
cause its capacitance to change [ref. 25]. Coaxial cables connected the
accelerometers to Bruel and Kjaer type 2635 charge amplifiers, referred to as
signal conditioners. The signal conditioners measured the capacitance of the
piezoelectric layer, and produced a corresponding voltage signal which was
recorded.

The accelerometers, conditioners, and cables were calibrated in tests for a
previous project [ref. 20]. The conditioners were set to deliver a signal of

1V/1m/s?, and to apply a 0.2 Hz high pass filter and a 0.1 kHz low pass filter
to the signal.

The filtered signal was passed to an FM tape recorder. The channels on the
tape recorder were set to cut off at 1.0 volts, corresponding to an acceleration
range of +1m/s2 This limit was determined by assuming that the dynamic

factor would be around 1.3, and so the largest displacement amplitude would
be

14.35 kN
mx 0.3=1.1mm.

The second natural frequency of the crane and payload system was expected to
be about 30 radians/sec. (see Table 5.2). Therefore, the maximum accelerations
were estimated to be

1.1 mm x (30 radians/second)?2 = Im/s2
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It was found that this limit was too restrictive and as a result the peaks of
some of the acceleration signals were not recorded. However, the acceleration
signals obtained were satisfactory for determining frequency.

6.1.2 Displacement Measurement

Linear Voltage Displacement Transducers (LVDT's), were used to measure
the displacements of the payload, the bridge directly above the payload, and
the U bracket directly under the southeast wheels of the end truck. Frames,
separate from the crane, were used to hold the LVDT’s in place during testing.
At first 2 x 4 wooden columns jacked against the ceiling were used. These
were light and easy to set up and rigid enough to hold the LVDT’s steady, but
it was found during testing that the ceiling near the crane deflected with the
crane. The wooden columns moved slightly, but enough to alter the LVDT
readings significantly. Once this was discovered, free standing steel posts with
base plates were used to hold the LVDT's. These posts were quite stable and so
massive that they were inconvenient to move. But once set up they provided
a rigid platform from which reliable displacement measurements could be
taken. All the “b” series tests and all the tests using the smaller payload were
conducted using the steel posts.

All the cores of the LVDT's were spring loaded, rather than being glued to
the structure. This was done to facilitate disassembly of the test apparatus, a
task which had to be done many times. Also, the movements of the crane
were not exclusively vertical. There was some lateral movement and some
rotation. Had the cores been glued to the structure, they would have been
subjected to bending forces that would have hindered their smooth
movement within their respective LVDT bodies, and this might have caused
them to be damaged. The springs for the two LVDT's on the structure had
stiffnesses of about 0.1 kN/m. The core had a mass of about 3 grams. The
natural frequency of the LVDT system was, therefore, 180 radians/second,
which is higher than the expected highest natural frequency of
118 radians/second for the EBC test set (see Table 5.2). The third LVDT was
used to measure payload motion, and required greater travel than did the
other LVDT's. The spring arrangement used was relatively flexible. The mass
of the core for the payload LVDT was about 8 grams but the stiffness of the
spring was about 0.02 kN/m. If damping due to friction between the core and
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body of the LVDT is ignored, then the natural frequency of the spring and
core system is 50 radians/second. This is lower than the third natural
frequencies, and some of the second natural frequencies, listed in Table 5.2.
However, the frequency of vibration of the payload was not of concern. This
data was intended to give approximate payload position and to be used to
confirm hoisting speed. The low stiffness of the LVDT spring did not interfere
with those purposes.

The core end of the LVDT at the end truck rested against a smooth piece of
sheet metal glued in place to the underside of the U bracket. The core end of
the LVDT at the paylcad rested on a smooth piece of sheet metal as well. A
dial gauge was mounted beside each LVDT. Its readings were used to verify
the initial and final displacements recorded by the LVDT.

The LVDT's were calibrated after all the testing was completed. During
calibration, all three LVDT's remained in the same electric circuit used during
testing. Each LVDT in turn was mounted on a frame that also held a
micrometer. The micrometer was situated in line with the LVDT so that
adjusting the micrometer would move the core of the LVDT. The calibration
signals were passed directly to the data logger. Appendix A.2 gives the
calibration curves and the resulting calibration factors.

6.1.3 Wheel Loads

Four identical endtruck wheel assemblies supported the crane upon the
craneway. A typical wheel assembly is shown in Figure 6.4. The two wheels of
each assembly rode on the upper surface of the lower flange of the craneway
rail, and were held in place by a stiff U shaped bracket that hung beneath the
craneway rail. A flame cut Y shaped plate rested in a ball and socket cradle at
the bottom of the U bracket. The Y plate was welded to the bottom flanges of
the two channels that made up the end truck.

The vertical reactions between the wheels and the bottom flange of the
crane rail could not be measured directly. Instead, signals generated by
bending strains in the Y plates were used to generate the wheel load data. An
assumption was made that during testing the bending strains in the Y plate
were proportional to the reactions at the wheels. This assumption implied
that the inertial forces acting upon the assembly were negligible. Figure 6.5

203



103 08ig [] JO MIIA Aeme-In)

MDA 93PT deld A

AN

d[peId

MIIA PU d¥eld A —~

P

w
/

193208 pue Jreq
I
(ponnpug Jad Z jo i) ~
UonI3S [puueys yonnpug \
O
199delg N /]
]
S[o2YM Monaipug paduelq
weay Aemouel)
UOneAd[q

A

U198

AIQUWIassy [99YM Yonnpuy +°9 21n8L

204



Figure 6.5 Free Body Diagram
of Endtruck Wheel Assembly
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shows a free body diagram of the wheel assembly. The mass of the whole
assembly was estimated to be less than 20 kg, and the accelerations were
estimated to be about ITm/s2. Therefore, the maximum anticipated inertial
loads were about 20 N. The static load held by one pair of wheels at one corner

of the crane under the weight of the small payload was

2.07 kN
4 pairs of wheels

inertial load was therefore considered insignificant.

= 520 N, which is 26 times the expected inertial load. The

Strain gauges were mounted on the upper and lower surfaces of the Y
plate, aligned to the estimated direction of principal strains, and iucated
where the strains were expected to be maximum. The gauges were wired in a
full Wheatstone bridge circuit, as shown in Figure 6.6.

Each wheel assembly Wheatstone bridge was individually calibrated using
the following procedure. A standard, pre-calibrated, load cell was fixed to one
end of a threaded piece of steel pipe, and a jack was fixed to the other. This
assembly was tall enough to reach from the floor to the underside of the U
bracket. The jack raised tiic pipe, which lifted the end truck wheels a few
millimeters off the crane rail. Then the 1.46 tonne payload was hoisted,
putting load onto the pipe and load cell. The signal from the load cell was
recorded, as was the signal received through the Wheatstone bridge by the
data logger. Three levels of loading were obtained by moving the loaded hoist
to different locations. The wheels of the assembly being calibrated were
examined to be sure they were not touching the crane rail, and that all load
transferred to that U bracket was being carried by the load cell and pipe (see
Figure 6.7).

The bridge drive wheels (see Figure 2.1) were spring loaded. They pushed
up on the underside of the crane rail bottom flange. This gave a high enough
normal load to develop a friction force sufficient to drive the crane. During
the calibration the wheel springs were slackened to the point where the drive
wheels did not touch the crane rail. During the testing, however, the springs
were tight and the drive wheels remained operational. This was done to
ensure in-service conditions when the crane's dynamic response was
measured.
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Figure 6.7 Wheel Assembly Load Cell Calibration
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Appendix A.3 contains the calibration graphs for these four load cells. As
with the other strain gauge measurements, the wheel load cell voltage was
passed through a multi-channel amplifier. An amplification factor of 1000
was used for each of the signals. |

The amplifier was set up at the west end of the craneway, and north of the
testing locations for the crane. Therefore, the input and output voltage wires
for both the wheel load cells on the east side had to run on top of the bridge
beam, parallel to the hoist and trolley power bars for the whole 5.5 m span.
The signals from both these wheel assemblies were subject to electrical
interference when the crane motor was operating. Therefore, on the amplifier
channel for the southeast wheel the amplifier's low pass filter was set to 10
Hz, or 63 radians per second. This was high enough to allow recording of
second mode vibration signals, but filter out third mode vibrations.

6.1.4 Bridge Bending Moment

The bridge bending strains were measured using a full Wheatstone bridge
with four active strain gauges, two mounted on the top surface, and two on
the bottom surface of the bridge beam at center span. Because the crane had to
available for other tasks between tests, all the lead wires for these strain
gauges had to traverse half the span of the crane bridge beam so as not to
interfere with the motion of the trolley, and to avoid being severed between
the irolley wheels and the top surface of the bottom flange of the bridge. The
leads were connected to form a Wheatstone bridge at the connection to the
amplifier. Figure 6.8 shows the wiring arrangement. The wires that ran along
the underside of the bridge beam were secured with 75x75 mm pads of ceiling
panel material glued to the bottom surface of the bottom flange.

The factor used to convert the data logger signal to bridge bending
moment was determined as follows. The expected bridge moment developed
under static weight of the large payload, 14.35 kN, was calculated.

M= (14.35 kN)(5.482 m bridge ipan -0.204 m trolley span) - 18.93 kKN-m

The strain gauge signal was set to zero with the unloaded trolley at midspan.

When the 14.35 kN payload was lifted, the signal returned by the data logger

was 1167. The factor, therefore, was 18931_____1217\]_:11 =16.20 x 103 kN'm.
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Figure 6.8 Wiring Arrangement for
Strain Gauges on Bridge Beam
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This figure is confirmed by calculating the amplification of the signal. The
sum of the strains at each of the four strain gauge locations on the bridge
section is

Ze= 8top south + 8tup north +Ebottom south +Ebottom north

_ 2Myop + 2Mybottom
- H El

_2Md
="E -

where yiop and ypottom are the distances from the centroid of the member to
the top and bottom surfaces respectively, and d is the member depth.

The member depth was 304 mm, Young's modulus is 200 GPa, the
moment of inertia, Ixx, for the member was 76.2 x 106 mm4, and M was the
bridge beam moment. Therefor?, the sum of the strains is

e o 2M(304 mm)
~ (200 GPa)(76.2 x 10-6 mm?%)

= (39.9x 106/kKN-m) M .

The gauge factor for these strain gauges was 2.07. The input voltage from
the amplifier (see Section 6.2.2) was 5V, and the amplification factor was set to
750. The amnplifier can be set to compensate for a full bridge, rather than half
bridge circuit. The data logger converts a 5V signal to the number 2048,
Therefore, the moment factor can be derived as follows.

M
data logger signal

(_2502118 data logger ratio)Z for Full Bridge Setting)
= (750 ampiification)(5 V input)(39.9 x 10-6 /kN-m)(2.07 gauge factor)

= 158 x 10"3 kN'm
The previously derived value of 16.2 x 10-3 kN-m is about 3% greater.

A check on the individual strain gauge readings revealed that when the
bridge was loaded at midspan, the southern strain gauges produced slightly
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lower signals than did the northern strain gauges. It was assumed this was
due to some axial rotation of the bridge, brought on by the influence of the
drive shaft on the location of the shear centre. This was not confirmed
through calculation. The moment of inertia used in the calculations above
includes the effect of the drive shaft. (See Figure 2.3)

6.1.5 Cable Tension

Cable tension was measured using an HBM USB 10 kip tension load cell,
attached through the amplifier to the data logger. The cell was first connected
to a Visnay Ellis-20 Dlgital Strain Indicator and calibrated on the MTS
machine in the I. F. Morrison Structures Lab. The load cell was then attached
to the shop crane and the large and small payloads were weighed (see Section
2.4). Then the cell was connected through the amplifier to the data logger. The
signal was zeroed when the cell was unloaded, and when the cell carried the
14.35 kN payload, the data logger produced a signal of 1055. Therefore the
calibration factor for the cable tension is

14.35 kN
055 = 13.6 x 103 kN.

A low pass filter of 10 Hz, or 63 radians/second was set on the amplifier
channel that carried the tension signal.

6.2 Recording and amplifying equipment
6.2.1 FM Tape Recorder

A four channel FM Tape Recorder received the craneway accelerometer
signal on channel one, the bridge accelerometer signal on channel two, and
the payload LVDT signal on channel three. Channels one and two had their
maximum ranges set at £1V. The maximum range for channel three was set

at £5V. Channel four was not used. A tape speed of 3 lgfpm was selected for

the testing. The tape position for each set of test data was recorded with the
position counter. Later, the tape signal was played back into the data logger for
analogue-to-digital conversion.
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6.2.2 Validyne Amplifier

The Validyne Amplifier was a ten channel amplifier. Each channel was
controlled by a removable cassette, called a CD19 carrier demodulator. Each
carrier demodulator sent an input potential of 5V AC to its connected
Wheatstone bridge and sent a DC output signal to the data logger. The output
signal was equal to the set ampilification factor times the output signal the
carrier demodulator received from the strain gauge bridge. The electrical
bridge was balanced by turning two adjustment screws on the front face of
each carrier demodulator unit.

The Validyne amplifier seemed suitable for this application because many
signals could be amplified using a single piece of equipment that was easy to
adjust and run. However, failure of some of its components due to age or
poor initial design caused problems during testing. On some channels
electrical bridge balance could not be maintained. The balance adjustment
screws were built in such a way that their connections to the carrier
demodulator control board broke during adjustment. The error did not
manifest itself in an obvious way, and unless a careful check was made on the
affected channel, the error could go unnoticed throughout the test. Some
remedial repairs were done on these connections, but results were never
satisfactory for many of the channels. Therefore, the zero points for the strain
gauge signals had to be adjusted when the data was reduced to Lotus files. (See
section 6.3.1.)

6.2.3 Dash 8 Data Logger

The Dash 8 data logger was a computer component which performed high
speed analogue to digital conversion and storage. A number of handling

subroutines were written by Dale Lathe of the Civil Engineering slectronics
lab.

For this testing program the data logger was set to take 20 000 readings per
test at a rate of 12 000 readings per second. The bridge bending moment, the
four wheel loads, the cable tension, and the displacements at the trolley and at
the southeast wheel were recorded by the data logger during testing,
Therefore eight channels were used, and the rate of data acquisition was
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12 000 readings per second
8 channels

= 1500 readings per second on each channel.

The duration of each test was

20 000 readings per test
12 000 readings per second

=1 %seconds per test.

Over the full duration of a test, each channel received

1 % sec/test x 1500 readings/sec/channel = 2500 readings/test/channel.

When this data was transferred to IBM Lotus files, oniy every third data
point was used. This made the Lotus files a more convenient size for data
manipulation. For each parameter, the time interval between adjacent data
points in the file was 0.002 seconds. The maximum frequency of vibration
that could be defined by the data on file was 250 radians per second, or 39 Hz,
which is much higher than any expected third natural frequency, from Table
5.2, Higher frequency signals will be subject to aliasing and their frequencies
will not be determinable with this data sampling rate.

6.3. Data Reduction
6.3.1 Setting Zero Points

It was intended that the data would be recorded such that zero
displacement, tension, moment, and reaction forces occurred for the static
case of the trolley positioned over the payload with the cable slack. Because of
the failure of the amplifier to maintain a balanced bridge, techniques had to
be developed after testing that would determine the zero points for the
amplified data. The techniques were required for signals from the reaction
forces at the four wheels, the bending moment at midspan, and the cable
tension.

It was assumed that the drift of the zero points was small over the
duration of one complete set of tests. Since all the sets included at least one
series of tests where the cable was initially slack, (“s” or both “b" and “s”), the
starting data values of these tests were assumed to be the zero points
applicable to all the tests in that set. All the data values for the test set would
be increased or decreased the same amount as the “slack” test series data
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values needed to be increased or decreased. The static load values from the
tests where the payload was initially suspended were compared to the mean
values recorded during free vibrations, and were found to be approximately
equal. The zeroing procedure was therefore assumed to give accurate results.

In a few cases, this simple procedure was not possible. In some instances
initial free vibrations having small but significant amplitude obscured the
static values of the signals affected. In these cases, the duration of a free
vibration period was estimated by examining the graph, and the data was
averaged over an integer number of periods. In other instances the zero point
was difficult to determine because the cable ‘ension was some small but
significant amount before data logging was started. Thus the first values
recorded would not in general be zero point values. Also, some of the data
collecting equipment was very sensitive to electrical interference from the
nearby power bars of the crane. That data was effectively masked during the
duration of the time that the crane power was on. (Section 6.3.2 describes this
problem further. ) In these cases, the average value of the free vibration phase
at the end the hoisting event was set equal to the static value. The static value
was determined from the “hanging” series test, in which the payload was
initially suspended. The procedure of averaging over integer numbers of
periods of free vibration was again used.

6.3.2 Electrical Interference and Filtering

Some of the wires carrying data signals ran near and parallel to the power
bars that serviced the trolley and hoist motors. When the hoist motor was
activated electric current ran through the power bars, in some cases causing
induced voltage in the parallel signal wires. The induced voltage interfered
with the voltage signals from the measuring devices.

Some of the electrical interference in the signals proved useful in one
sense. Many of the data records show momentary spikes which correspond
to the voltage peaks that occurred when the motor was turned on or off. In
the recorded data the activation of the motor and the initiation of braking
became events that were located temporally relative ta the crane response.
However, some of the recorded data was completely obscured by
superimposed high frequency signals of varying amplitude. This interference
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was at about 60 Hz, and was only recorded at the times when the hoist motor

was on.

The load data from the two wheel assemblies on the east side of the crane
were most affected. The wires carrying these signals travelled the length of
one endtruck and the length of the bridge parallel to the power bars. The
strain gauge signals from the bridge midspan were carried on wires right
beside those which carried the eastern wheel load signals, but were only
beside the power bars for half the distance. The signal wires from the
southwestern wheel assembly ran alongside power bars for only the span of
the western endtruck, and those for the northwestern assembly did not travel
any length parallel to power bars. The midspan signals and the signals from
the western wheel assemblies were not significantly affected by the
interference.

The wheel load data presented in Figure 6.9 illustrates electrical
interference and filtering. The signal for the southeast wheel load was passed
through a 10 Hz low pass filter. The filtered signal shows three interesting
features. First, frequencies greater than 10 Hz, (63 radians/second), are not part
of the signal. This frequency cut off is lower than the expected third natural
frequencies listed in Table 5.2. The third mode contribution to the magnitude
of the dynamic ratio is smaller than the contribution from the second mode.
In Chapter 7 dynamic ratios from filtered and unfiltered signals will be
compared.

Second, when compared with the other wheel load data, it can be seen that
the southeast signal has been shifted out of phase and lags behind the others
by approximately 0.015 seconds. The filtered signal voltage at any time t is a
function of the voltage levels that occurred on the input side of the filter
during the interval just prior to t. The lower the low pass frequency, the
longer the interval required to produce a filtered voltage signal.

This leads to the third interesting feature. There is often a change of value
in the southeast wheel load signal when the motor is switched on or off.
These dips are voltage spikes that have been filtered. They are of much
smaller magnitude and much greater duration than are the spikes the other
wheel load signals display at those times. Generally the dips begin at the same
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.:me as the spikes, and then fade out over about 0.03 seconds. This is another
example of filtering causing a signal lag.

The unfiltered signal from the northeast wheel assembly was masked by
electrical interference induced by the operation of the hoist motor. To get an
estimate of the true value of the dynamic wheel load, a moving average of
the unfiltered data was computed, and the results graphed. The data points
for a moving average are generated using the following formula.

i+n
xi=Z 3 6.1)
j=i

In equation (6.1) x; is the ith moving average data point, and xj is the jth
unfiltered data point. The number of unfiltered data points used to calculate a
single averaged point is n. The total number of moving average points that
can be generated, the maximum value for i, is n-1 less than the total number
of unfiltered data points available.

It was found that performing this moving average technique with the
unfiltered signals from the northeast wheel assembly, using a value of 15 for
n, generated curves which are similar to the unfiltered signals from the two
western wheel assemblies. Fifteen data points corresponds to a time span of
0.03 seconds, which is about twice as long as the period of the electrical
interference obscuring the northeast wheel assembly signal. If the moving
average data set is graphed such that each point, xj, is plotted with the same
apscissa as Xj+n, the graph displays all three of the qualities of the electronically
filtered signal which were described previously.

Figure 6.9 is a graph of the four wheel load signals for test 2BSb2, showing
the filtered south east signal and the unfiltered, masked, north east signal,
and the two relatively clean signals from the two western wheel loads. The
features described in the preceding discussion are indicated. Figure 6.10 shows
the northeast wheel load signal, as originally recorded, and when filtered
using an averaged band of 15 data points, with the averaged value plotted at
the end of the band.
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For the tests which used the smaller payload, the western signals were also
smoothed with numerical averaging using a 5 data point averaged band
width. Tables 7.2 to 7.10 are based upon the filtered signals.

6.3.3 Acceleration Signals

The accelerometer signals show intervals in which high frequency signals
mask the expected lower frequency structural response. Although the high
frequency signals were generated at times when the hoist motor was running,
and sometimes for short periocls after, this interference does not appear to be
due to induced voltage from the hoist motor. The interference does not have
defined spikes bounding the times of hoist motor operation, and the
interference is often present at times when the motor was not running. The
coaxial cables connecting the accelerometers to the signal conditioners are
resistant to induced voltages, and care was taken that those cables not travel
any distance parallel to the power bars on the bridge or the craneway. The
source of the interference is not known, but may be high frequency vibrations
carried by the crane structure, and due to play in the bearings or gears of the
transmission of the hoist.

Because the tape recorder channel was set to limit the signal at 1.0V, or
+1.0m/s2. and the acceleration amplitudes during hoisting were sometimes
greater than this, these sections of the accelerometer signals cannot be
numerically filtered to reveal the first and second mode accelerations.

6.3.4 Displacement Signals

All the tests conducted using the large payload, except for the “b” series,
have displacement graphs which are assumed to be invalid. It was this set of
tests for which the wooden columns were used to hold the LVDT's. That data
was not used in assembling the data summary charts that appear at the end of
this chapter.

With the introduction of the steel columns as a base for the LVDT's, the
displacement measurement system performed well. There are two exceptions
to this. Figure 6.11 and 6.12 show the displacement graph for ELSs1 and ELSs3
respectively. The displacement graphs for the two tests are very different. The
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signals from ELSs3 seem to be contaminated with some high frequency
interference which continues throughout the duration of the test, not just
when the mot.r is on. No explanation was found for this curious
phenomenon.

6.5 Data Presentation

For each test and for each parameter measured, the data was collected and
plotted versus time. Figures 6.14 to 6.23, at the end of this section, show the
graphs for one jerk-starting hoisting event from two of the eight test set, as
examples. The peak values and the natural frequencies and other salient
features have been determined from the graphical data from all the tests.
These are shown in Tables 6.2 to 6.24, which appear at the end of this chapter.

6.5.1 Natural Frequency Data

The symbols w; and w3 stand respectively for the first and second
vibrational frequency during free vibration, or when the motor was running
and the payload was not touching the shop floor. Because it was generally
dominant, it was usually possible to determine w, directly from the graphs.
The locations of the peaks and valleys were generally well defined and the
time lapse for an integer number of half periods was easily determined. The
second vibrational frequency was not always well defined and when it could
not be determired using the above procedure, a Fourier analysis was used to
analyze sections of the data from the free vibration stages of the test. The
Fourier analysis process produced graphs of amplitude versus frequency for
the sets of data points which were analyzed. From these graphs the dominant
frequencies within the data could be more easily determined. In some cases
even this process did not produce clear results, and the Fourier analysis
generated a cluster of similarly sized spikes. Table 6.2 shows the natural
frequencies measured from the test data. In the tests where ‘here was no clear
value for the natural frequency, a blank space was left on Table 6.2.

6.4.2 Peak Values

In Tables 6.3 to 6.24, the data for peak values is arranged by test set. For
each of the eight test sets (2BC, 2BS, EBC, EBS, 2LC, 2LS, ELC, ELS), the
designation for each individual test is listed and the peak values for
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Table 6.2 Measured Natural Frequencies

TFest | 02 | w3 Test | 02 | w3 Test | 02 | b Test | @2 | w3
2BC b1 | 321 2BS b1 EBC b1 | 363 | 183 | |[EBS b1 | 30.1 | 185
2BC b2} 318 | 130 2BS b2 | 272 EBC b2 | 363 | 182 EBS b2 | 309 ] 181
2BC b3 | 316 | 132 2BS B3| 272 | 150 EBC b3 | 36.9 EBS b3 | 309 | 184
2BC hl | 322 2BS hl 126 EBC h1 | 379 | 176 EBS hl | 322
2BC h2 | 325 | 137 28BS h2 | 297 | 126 EBC h2 | 38 EBS h2 | 325 | 185
2BC h3 | 329 | 135 2B5 h3 | 28.1 EBC h3§ 381 | 173 EBS h3 | 325
2BC pl | 1.9 2BS p1| 268 EBC p1| 37 EBS pl 32
2BC p2 28BS p2 126 EBC p3 | 374 EBS p2| 32
2BC p3 285 p3 EBC s1 | 376 | 184 | |EBS p3{ 321
2BC sl | 316 2BS si | 268 EBC s2 | 3563 EBS s1 32 184
2BC s2 2BS s2 | 266 | 127 EBC s3 | %3 | 181 EBS s2 | 32 | 183
2BC s3 | 314 2BS s3 | 274 EBC 1la EBS s3 | 304 | 181
2BC 11 | 319 2BS t1 | 273 | 125 EBC 11 | 378 EBS 11 A
2BC t3 | 328 2BS 2 EBC 2 | 376 EBS 2 | 314

285 13 126 EBC 13 | 386 | 175 EBS 3 | 317 | 178
Average | 32.1 § 1
G 04551 3.1 Average | 275 | 129 Average | 373 | 179 Average | 316 | 183
CofVar.| 2% | 2% o | 0949 9.09 o |[oms| 238 ¢ |073] 245
CofVar.| 3% | 7% CofVar.| 2% | 2% CofVar.l 2% | 1%
Excluding 2BSb3
Average | 275 | 126
o] 1.01 | 0.632
C.of Var.| 4% 1%

Test | w2} w3 Test | 02 | 3 Test | @2 | w3 Test | ©2 | w3
2LC s1 | 607 | 121 2lS s1 | 374 | 118 ELC si ELS sl 40 183
2LC s2 | 606 | 122 S s2 | 363 ] 126 ELC s2 | 785 ELS 3 | 398} 190
2LC s3 | 607 | 125 25 s3 | 374 | 132 ELC s3 | 65
2LC hl1 ] 602 | 123 | |2LS h1 | 39 | 138 Average | 39.9 | 187
2LC h2 | 594 ] 126 2LS h2 | 398 | 139 Average | 71.8 c 0.141] 4.95

2Is h3| 39 a 9355 C.of Var.| 0% | 3%
Average | 603 | 123 C.of Var.] 13%

o 0554 | 2.07 | [Average | 382 | 131

Cof Var.| 1% | 2% o 132 | 876
C.of Var.| 3% 7%
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displacements, moments, and wheel reactions, are shown. The corresponding
static values that apply to each group of tests are shown below that group.
The peak values are divided by the static values and the average and the
standard deviation of these ratios are recorded as D for each test. Also, two
measures of the coefficient of variation are given. The first is the standard
deviation of D divided by D and recorded as a percentage. The second is the
standard deviation of D divided by D-1 and recorded as a percentage. A peak,
by definition, must be greater than the static value, and therefore D always
exceeds unity. This second coefficient of variation gives a measure of the
predictability of the amount by which the ratio D exceeds unity.

For the test in which the large payl..d was used, all except the “b” series
do not have peak displacement measurements recorded (see Section 6.1.2).
For all the tests in which the payload and the trolley were at the east end of
the bridge, the reactions at the northwest and southwest wheel assemblics
were not shown in the charts because the loads were too small to be accurate:ly
recorded by the test equipment. The peak moments at the centre of the bridge
were considered too small to be of value in determining D. Graphs of the
midspan moment for the tests in which the load was not applied at midspan,
did not show the same cominant frequency displayed by the other
parameters. This is discussed further in Section 7.21 . Therefore, the midspan
mornent and the north and south west reaction peaks for EBC, EBS, ELC, and
ELS, are not shown in Tables 6.3 to 6.24.

Peak cable tension is not presented in Tables 6.3 to 6.24. Cable tension is
generally not proportional to crane displacements. This is shown by
comparing equation (5.34) for structure displacement and equation (5.144) for
cable tension.

For most of the test sets, three kinds of peaks were recorded, and are
displayed in different tables. The first type are the peaks due to jerk-starting.
This includes all the tests in the “b” and “s” series and some of the “p” series
tests. For the jerk-starting cases the average dynamic ratio, the standard
deviation, and the two coefficients of variation, are calculated for each
parameter. The average dynamic ratio, the average standard deviation, and
the averages of the two coefficients of variation, are calculated using all the
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jerk-starting tests in the set. These averages are displayed at the bottom right
side of the tables.

The second type comprise peaks for starting conditions other than jerk-
starting. This includes the “h” and “t” series and the remainder of the “p”
series tests. In these tables the initial cable tension has also been recorded.
For all the tests where the small payload was used, only the jerk-starting
condition was tested. Therefore, for test sets 2L.C, 21.S, ELC, and ELS, there is
no table for other than jerk-starting peaks

The third type of peak presented in the Tables in 6.3 to 6.24 is caused by
braking. Peaks which occurred after braking were recorded in some tests in
each of the test sets. Along with the magnitudes of the peaks, two time
measures are included in the tables which deal with braking. The time
between the last clear peak during which the motor was running and the first
clear free vibration peak after braking, is recorded as the parameter At,. The
time between the last clear peak during which the motor was running and
the data spike caused by the motor turning off, is recorded as the parameter
Atp. The spike is assumed to represent the initiation of braking. Both these
time measures will be used in the analysis of the braking data.

Test set 2LC is exceptional in that, for all the parameters, the peaks induced
by jerk-starting do not occur in the first period immediately following payload
lift off. They occur within the second or later periods. In no other test set is
this behaviour present. Figure 6.13 shows the midspan displacement,
bending moment, and cable tension, for 2LCs3, as an example. All the 2LC
jerk-starting test results show a similar pattern. Table 6.15 displays the values
of the first peaks after payload lift off, and Table 6.16 displays the values for
the largest peaks immediately following,.
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Figure 6.13
2LCs3 - Example Where Second Peak after Payload Liftoff is Greatest
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Figure 6.17 2BCb2 - Wheel Loads versus Time
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Figure 6.18 2BCb2 - Accelerations and Payload Displacement
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Figure 6.22 EBSb3 - Wheel Loads versus Time
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Figure 6.23 EBSb3 - A.ccelerations and Payload Displacement
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CHAPTER 7

COMPARISON OF TEST RESULTS AND PREDICTED BEHAVIOUR

In Chapter 7 the predicted and measured dynamic factors are compared for
the two cases: jerk-starting and braking. The predicted and measured natural
frequencies will also be compared, and the test results will be examined for
patterns that support or refute the various assumptions used in formulating
the 3 DoF model.

71  Dynamic Ratios

711 Comparison of Dj3xj with Measured Dynamic Ratios for Jerk-
Starting Tests

Table 7.1 shows the average jerk-starting dynamic ratio for each test set.
The test values used here for set 2LC are from Table 6.16 and are for the
largest dynamic factor occurring during the time the motor was running. The
praodicted-to-measured ratios for the dynamic factors for each test set are
shown in the third row of Table 7.1. All but two of the ratios are less than
1.15. The values of 1.32 and 1.65, for 2LC and ELC, respectively, are the two
highest predicted-to-measured ratios. These two test sets correspond to the

Homc K'J;

g (1+%)°

two cases, described in Section 5.8.1.2.1, which give values for

which do not satisfy the requirement given in (5.71).

The dynamic factor is the factor by which the maximum dynamic response
of the structure exceeds the static respnnse. The dynamic factor is, therefore,
always greater than one. The ratio of the amount by which the predicted and
measured values of D exceed unity are compared in the fourth row of Table
7.1. It can be seen that for all the test sets but ELC, this ratio is 2.01 or less. The

Dy -1
ratio of _IBDEET for ELC is three times greater than the next largest of these

ratios.

Figure 7.1 shows a graph of the predicted values for each test set plotted
against the measured dynamic ratio for jerk-starting. The best-fit line
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through all but the point for ELC very nearly passes through (1.0, 1.0). Again
omitting the data for ELC, the best-fit line constrained to pass through
(1.0, 1.0) has a slope of 1.822.

Table 7.1 Comparison of D3yj arnd Measured Dynamic Ratio

2BC | 2BS | EBC | EBS | 2LC | 2LS | ELC | ELS

D3y 138 | 1.25 | 143 126 | 1.86 | 1.34 | 1.87 | 1.33
Measured 124 | 112 | 127 | 115 | 143 | 121 | 114 | 1.21
Dynamic Ratio, D
Dy 111 | 111 { 113 | 110 | 1.30 | 1.11 | 1.64 | 1.10
D
Day-1 159 | 207 | 161 | 1.73 | 2.01 | 1.61 | 619 | 1.58
D-1
7.1.1.1 The Anomaly of the Results for Set ELC

The results displayed in Figure 7.1 and Table 7.1 show a reasonable
correspondence between predicted and measured values for all the test sets
except ELC. For ELC, the predicted dynamic ratio is greater than the measured

dynamic ratio by a factor of 1.65, which is the largest for 2li the test sets. The

Diaxj—1
ratio of %]—T for ELC is about three times greater than the next largest of

these ratios.

If it is assumed that the 3 DoF model can be used to predict real bridge
crane behaviour within acceptable limits, then some feature of the testing
procedure for the ELC test set did not conform to the conditions that were
assumed in the development of the 3 DoF model and the factor Daj One
explanation for these test results is suggested by examining the graph of the
cable »nsion versus time. The graphs for the three ELC tests are shown in
Figures 7.2, 7.3 and 7.4. In each, shortly after the motor has been actuated,
tension in the cable first starts rising and then remains constant at a value of
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approximately 0.1 kN for a duration of approximately 0.1 seconds. After,
tension rises to equal roughly the weight of the payload. In no other test in
any other test set is this constant tension observed.

The constant tension could have been caused by the payload teetering
before lift off. This happens when one side of one of the iwo slings is tighter
than the others and begins lifting first. Nothing in the graphs indicates that
the motor was not running continuously throughout the hoisting event, and
therefore the hook was rising continuously at the hoisting speed. That the
tension remained constant for some length of time implies that the cable was
not being stretched for the duration of the plateau. If the cable was not being
stretched, then the payload was moving upwards. If the payload was moving
before it was lifted right off the ground ( if it was teetering ), then the jerk-
starting assumptions are too conservative to describe the hoisting events that
occurred during the ELC tests.

7.1.2 Comparison of Measured Dynamic Ratios for Braking
Conditions and Day,

Figure 7.5 is a graph of the dynamic ratios before braking, plotted against
the dynamic ratios after braking. In the majority of tests, braking decreased
the dynamic ratio.

A distinction is made between the dynamic ratio due solely to braking, and
the dynamic ratio which results after braking has occurred. As a result of
hoisting, the crane and payload vibrate. At some arbitrary time during the
cycle of these vibrations, braking is initiated. The two vibrations, due to
hoisting and due to braking, are superimposed on each other and are not
generally in phase, although they are of the same frequency (see Section 7.2.3),
The dynamic ratio due solely to braking cannot be determined by the test
procedure. It is the ratio which Dsyp, is meant to account for.

Although it cannot be isolated from the data recorded after braking, there
is a technique for estimating the dynamic ratio due solely to braking. For this
technique, the gross assumption is made that the whole multi-DoF system
vibrates at the dominant frequency only. Therefore the initial structure
vibration can be described with the following equation.
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ys (before braking) = A sin et (7.1

where A is the vibration amplitude of the crane prior to braking, and ® is the
dominant frequency of the 3 DoF system.

After braking has occurred, the vibration is described as follows.

ys (after braking) = C sin(wt + A) (7.2)

The term A is the phase shift between the vibrations which were present
before braking, and those which occur after. The amplitude of the vibrations
present after the initiation of braking is C, and ® is the dominant frequency
for the 2 DoF system associated with braking. The frequencies in equations
(7.1) and (7.2) are assumed to be equal.

The vibrations, that occur after the braking event, can be considered as the
sum of two harmonic motions, as shown in equation (7.3).

ys (after braking) = A sin ot + B sin(ot+ §) (7.3)

where B is the amplitude of the vibrations due solely to braking, and B is the
phase shift between the initial vibrations and braking vibrations which are
added on. The amplitude A is as it was defined for equation (7.2). Figure 7.6
shows the assumed relationship between the vibrations.

The identity for the sine of the sum of two angles is applied in equations
(7.2) and (7.3), as shown below.

ys (after braking) = (C cos A)sin wt + (C sin A} cos wt (7.4)

ys (after braking) = A sin ot + (B cos B) sin wt + (Bsin B) cos ot {7.5)

The right sides of equations (7.4) and (7.5) must be equal for all values of ¢,
and therefore
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CcosA=A+Bcosf |, (7.6)

and CsinA=Bsinf . (7.7)

A solution for the two unknowns, B and B is found.

Csin A

= tanl ————— ,

p=tan Ccosh-A @.8)
Csin A

B= sin B 7.9)

Equation (7.9) is the solution for B, the amplitude due solely to braking. In
Figure 7.7 the value of 1 +

is compared with the values for Dayy for
S static

each test set. The amplitude, A, used in equation (7.8) for the points in Figure
7.7, is the initial amplitude which was recorded in Tables 6.3 0 6.24. It is not
the amplitude just before braking, which in general is slightly less than the
initial amplitude due to the small effects of damping. Values of A are
calculated by measuring the time between a peak before braking and a peak
after braking, and multiplying that time duration by the second natural
frequency for that test.

Figure 7.8 shows a graph of the average dynamic ratio due solely to
braking, calculated as outlined above, plotted against Dsyp for each test set.
This graph can be compared to the graph in Figure 7.1. The correlation
between the test results and the predicted values calculated for the braking
case in this fashion, is not as good as the correlation for the jerk-starting case.
There are several potential reasons why this is so. First, the procedure for
determining B is based upon a major simplification of the multi-DoF system,
and that introduces inaccuracies. Second, the assumption underlying the
derivation of Dsxp may not be appropriate. The assumption used to
determine the initial corditions for the braking scenario is that at the instant
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the brake is applied, the motor mass stops moving. This is a conservative
assumption, and the predicted dynamic factors based on that assumption are
much higher than the test results. Aside from the magnitude, some features
of the data from the tests indicates that slippage during braking affects the
dynamic ratio.

Consider the graph in Figure 7.9, which is a plot of the phase shiit, B,
versus B, the magnitude of the dynamic ratio due solely to braking. Because
the time at which braking was initiated was chosen without reference to the
phase of the vibrations of the structure or payload, the points in Figure 7.9

would be expected to have a uniform angular distribution, but clearly this is

3n
not the case. Of the 46 data points, 41 are betweeng and 5.

The distribution of the phase of the structure vibrations at the instant
when the motor power was turned off can be determined from the collected
data. The time between the last peak of the structure vibrations prior to
braking, and the data spike which marks the instant the motor was turned off,
is determined from the graphs and recorded as the variable Aty in Tables 6.5,
6.8, 6.11, 6.14, 6.18, 6.20, 6.22, and 6.24, which deal with braking. If, when the
motor power is turned off, the brake is applied and the rotor stops instantly,
and if the technique for finding B and B is valid, then the angle B should-

T
equal the angle At,® + 5 , as can be seen in Figure 7.5. If there is some

uniform delay between the time the power to the motor is shut off and the
instant the rotor suddenly stops turning, then the difference between angles §

1
and Aty would be greater than 5, and that difference would be the same for

each test within a test set.

T
Figure 7.10 is a graph of Atpw + 5 plotted against the angle B associated

with positive values for B. It can be seen that the difference between each
corresponding pair of angles § and Aty is not constant for each test set.
Therefore, there is not a constant delay between the time the power to the

motor is shut off and the instant the rotor suddenly stops turning. The

T
standard deviation of the angle Atyw + 5 about the mean of 1.02x is 0.498x. If
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3

Aty +5 had a uniform angular distribution, then it would have a standard
1c .

deviation of “\/_5 which is approximately 0.58x. Therefore the distribution of

the phase of the structure vibrations at the instants at which the motor power

was turned off are, as expected, roughly uniformly distributed. The standard
deviation of the angle B about the mean of .953x is 0.353%. The concentration

1t 3
of the values of B between 35 and —ZE may indicate that the brake slips before

the rotor completely ceases to turn, and that it slips more when activated at
one phase of the vibrations than at another. In developing the formula for
D3xp the assumption was made that the rotor stopped turning the instant the
brakes were applied. If the amount the brake slips has a significant effect upon

the dynamic factor, then this assumption is not valid. The slipping of the
brake may account for the less accurate predictions from Djyy, .

7.1.3 Comparison of Measured Dynamic Ratios and Dynamic Factors
from the Standards

In Figures 7.11 to 7.14 the measured dynamic ratios and dynamic factors
from the standards reviewed in Chapter 3, are compared. The standards
specify dynamic factors, but do not describe the type of hoisting event which
the dynamic factors are for. It is reasonable to assume that the factors from
the standards are meant to account for the largest dynamic responses of the
crane during in-service operation. Therefore, in Figures 7.11 to 7.14, it is the
largest dynamic ratio from each test, whether due to braking or starting
conditions, which is compared to the dynamic factors from Table 3.1. The
value of Djyj is also included in these figures as a reference, although Diyy was
derived specifically for jerk-starting hoisting events and not for combined
starting and braking scenarios. In Table 3.1, the first group of standards was
meant to apply to the bridge beam, and the later group was meant to apply to
the building structure that supports the craneway. In the test sets prefixed
with “2” the bridge beam was most severely loaded. The results from these
sets are compared to the factors specified in the first group of standards. In the
test sets prefixed with an “E”, the building members were most severely
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loaded, and the results from these sets are compared to the dynamic factors
from the latter group of standards.

The standards are applied to the cases in which the shop crane hoists
the large payload, and in which it hoists the small payload. The purpose of
using the jshop crane and the small payload, in the testing and in the
calculations with the standards, is to simulate the case of a relatively heavier
crane lifiing its rated load. Larger cranes tend to be heavier relative to their
rated loads. Therefore, their values of |, where my is the rated load, are
higher. Using the shop crane to hoist the small payload, which has a small
value for mp, provided hoisting events in which the value of mp was
relatively low, and the values for  were relatively high. In Figures 7.11 to
7.14 the results for the large and small payloads are compared to the
specifications from the standards for these two cases.

None of the standards take into account differences between chain slings
and web slings. Therefore, in Figures 7.11 to 7.14, the test results for both
types of slings are displayed together and compared with the specified
dynamic factors meant to apply to both.

In Figures 7.11 and 7.12, it can be seen that CMAA # 74 and BS 2573.1988
specify dynamic factors lower than those measured during tests. The same is
true of Weaver's values in Figures 7.13 and 7.14. This does not mean that a
design process that includes any of these three dynamic factors will
necessarily produce unconservative results. Other parts of the process may be
conservative enough to compensate adequately. It does mean that the factor
meant to account for dynamic loads is unconservative.

The H3 designation in the German standards DIN 15.018 and DIN 4132
gives dynamic factors slightly higher than the highest measured ratios for the
tests using the large payload. Therefore, the classification that would best fit
the shop crane is H3. In Figure 7.11, the Class II designation from
JIS B 8821. 1976 gives a dynamic factor slightly lower than the test results, and
the Class III factor is much higher than the test results. It is not clear which
Class should apply.

For the case of the small payloads, the Class IIl designation for
JIS B8821.1976 and the H3 designation from DIN 15.018 and DIN 4132 specify
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factors which are much less than the dynamic ratios for the 2LC tests. The
ELC test results are low, probably due to errors in the test procedure (see
Section 7.1.1.1). The values for D3xj from test sets 2LC and ELC are close to
each other, and it may be that, had the errors not occurred in the ELC tests, the
dynamic ratios for sets ELC and 2LC would have been similar. If the ELC tests
had provided dynamic ratios of similar magnitude to those from the 2LC
tests, then it would be seen that the H3 and Class III designations consistently
give factors that are too low. This may not mean that the two standards are
unconservative. The designation system in each is based on qualitative
descriptions of the crane and its uses. The purpose of using the small payload
was to simulate a different type of crane from the shop crane. Such a crane
would have a high value of p when lifting its rated load, and would, for
example, have a double box girder bridge. Each of the two standards might
place such a crane in a category which is different from that for the shop

crane. The different categories might be associated with higher dynamic
factors.

Both DIN 15.0183 and CMAA # 74 provide formulae that, for particular
ranges of hoisting speed, give the dynamic factor as a linear function of the
hoisting speed. The 3 DoF analysis provides formulae for Dsyj and D3xs which
also are linear functions of hoisting speed. However, the 3 DoF analysis
provides no limit for the range of positive hoisting speeds for which the
linear relationship holds. Figure 7.15 is a graph of dynamic factors versus
hoisting speed. The values for the dynamic factors from DIN 15.C18 and
CMAA # 74 are plotted. The test results from the eight test sets are also
plotted, at the shop crane hoisting speed of 6.1m/s. If it is assumed that the
dynamic factor is unity when the hoisting speed is zero, and that the
relationship between the factor and the hoisting speed is linear, then lines can
be drawn from the point (1.0 , 0.0) through the points representing the
measured dynamic ratios. The shaded area in Figure 7.15 indicates the range
through which those lines would pass. It can be seen that the lines would be
steeper than those proposed by either standard, although the lower dynamic
ratios do approach the rate recommended in CMAA # 74.

From Figures 7.13 and 7.14. it can be seen that the dynamic factor of 1.25
from CSA 5.16.1.1977 is adequate. As mentioned earlier, it may be that the
dynamic ratios from the test set ELC should be approximately equal to those
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from 2LC. If that is so, then 516.1.1977 is not adequate, because it specifies a
constant factor of 1.25 and does not account for changes in y and the
corresponding significant changes in value of D. The AISC factor and the
factor used in the National Building Code of Canada do change with respect
to i1, and that change can be seen between Figures 7.13 and 7.14.  Again, if it is
assumed that the ELC results should be between 1.4 and 1.5, then the AISC
specified factor is low by about 0.15 in each instance, and the National
Building Code factor is slightly high in each instance.

7.2 Evaluation of Assumptions Underlying 3 DoF Model

Some of the assumptions made in developing the 3 DoF model and the
D3yj and Dayxy, factors can be evaluated using the test results.

7.2.1 Single DoF System Structure Assumption

The crane structure can be considered to behave as a single DoF system if
all the moments, shears, and displacements are proportional over time. If
that is the case, then for any hoisting event, the time histories of all the
moments, shears, and displacements are in phase, and have the same
frequencies and the same relative amplitudes. An examination of Figures
6.14 to 6.23 shows that when the plotted parameters have significant
amplitude, their time histories are proportional. The wheel load graphs
show correlation from station to station. The displacements of the trolley and
the south east wheel are also proportionally related. The bending moment
and midspan downwards deflections are proportional, as are the south east
wheel displacements and the south east wheel reaction forces.

Figure 7.16 shows a plot of the jerk-starting dynamic ratios for all of the
tests, arranged by parameter type and station. The values are normalized
relative to the average dynamic ratios for each test. The spread in peak values
for different parameters is 30%, and the coefficient of variation is 5.01% from
a mean of 0.998. From these test results it is reasonable to conclude that the
structure behaves like a single DoF system.

Some of the test results indicate the limitations of the single DoF model of
the structure. For each of the test sets in which the crane was loaded at the
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east end, (those test sets prefixed with an “E” rather than an “2"”), the moment
recorded at the midspan of the bridge had a frequency much higher than the
dominant natural frequency. The dominant natural frequency for these tests
shows clearly in the displacements and reactions. It is also observed in
Figures 6.12 to 6.17 that the higher frequency content of the displacement time
histories is less than that of the moment or wheel load time histories. This is
expected for multi-DoF systems. Both the amplitude of the midspan moment
for the tests where the trolley was at the east end, and the differences between
the higher frequency amplitudes of different parameters, are small. They are
insignificant in magnitude compared with the magnitudes of the maximum
moments, displacements and shears which occurred in the same tests.

7.2.2 Assumption of No Damping

Damping was assumed to have an insignificant effect on the magnitudes
of the dynamic factors. An examination of the graphs shows a decay in the
amplitudes during free vibration. Calculations of the equivalent viscous
damping ratio &, were carried out, and the results are presented in Table 7.2.
The viscous damping ratio is assumed to be small if tan & is approximately
equal to §, which is the case in these tests.

Table 7.2 Measured Damping Ratios

2BC | 28s | EBC | EBS | 21 | 2LS | ELC | ELS

Equivalent Viscous
Damping Ratio, & 0.013 | 0.020]0.022 { 0.016 [ 0.033 { 0.025| - -

As shown in the Table 7.2, the damping is very small and can be
considered insignificant when peak amplitude ratios are considered. The
maximum dynamic responses occur shortly after loading, before the effects of
this low level of damping can become significant.

The cable system shows hysteresis, and delayed elasticity. These features
are caused by damping. Therefore, although damping does not produce
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significant rates of decay of amplitude, it does affect the value of k., which is
used to calculate the dynamic factor.

7.2.3 Assumption of Infinite Motor Mass and Constant Motor Speed

A comparison of the time histories, shown in Figures 6.14 to 6.23, of the
various parameters before and after braking has occurred, indicates that the
assumption of constant speed motor and infinite motor mass is valid. The
frequencies that occur when the motor is running, and the free vibration
frequencies after braking, are not measurably different. If the brake is not
faulty, then the changes in cable tension do not rotate the hoist drum once
the rotor has stopped moving, and the system has two D’soF. If the
frequencies associated with those two D’soF are nearly the same as the
frequencies that are active when the motor is running, then the changes in
the cable tension do not significantly alter the rate of rotation of the hoist,
which is the condition that follows from the assumption that V, is constant
and mg approaches infinity.

7.24 Assumption that Jerk-Starting is the Most Severe Starting Case

By definition, for this testing program any non-jerk-starting test began
with tension in the cable. Figure 7.17 shows a graph of the dynamic ratio
plotted against the initial cable tension for each test done using the large
payload. (Only jerk-starting tests were performed in test sets ELS and ELC, and
only jerk-starting and hanging tests were performed in test sets 2LC and 2LS.)
To compare the results from different test sets, the dynamic ratios for each test
were normalized relative tc the average dynamic ratio for their test set. The
following formula was used.

p= —i:ll +1 (7.12)

where d is the dynamic ratio for each test, a is the average dynarmnic ratio for
that test set, and p is the point which is plotted against the iritial cable
tension. Equation (7.12) generates values that are normalized witn respect to
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unity as well as with respect to the average dynamic ratio for that test set. For
the limiting case in which d equals one, the solution for p is one.

It can be seen from the graph in Figure 7.17 that the highest dynamic
ratios are attained with initial cable tension values that are low but greater
than zero. Jerk-starting is not the most severe starting case.

That jerk-starting is not the critical case can be explained as follows. For
the theoretical case of a linearly elastic cable, jerk-starting is the most severe
condition because any other starting condition involves loading the motor
before hoisting speed is reached. In general, that will cause lower cable
tension for longer durations, and that tends to produce smaller dynamic
ratios. However, the stiffness of the real cable is not constant. Consider a
hoisting event in which the amount of initial cable tension is exactly that
required to produce the maximum dynamic ratio. If the initial tension were
reduced, then the initial cable stiffness would be reduced. The acceleration of
the motor would be greater, but the crane structure would not be pulled as
quickly because the cable would stretch more. If the initial tension were
increased, then the initial cable stiffness would be increased. The acceleration
of the motor would be less because the initial load upon it is increased. The
velocity of the crane structure and the motor mass would more closely match,
but the velocity of the motor would be less. At some particular initial tension
a balance is reached, between the effect on the motor and the effect on the
structure, which causes the dynamic ratio to be a maximum.

In Chapter 5, the non-constant cable stiffness was accounted for by
assuming that at the instant of payload lift off the structure was at its static

deflection with no acceleration and a velocity of iI:I_I_—?(- downwards. These

assumptions are meant to describe the circumstances associated with jerk-
starting, but they do not explicitly preclude initial tension in the cable. They
do require that for some length of time before the payload lifts off, the motor
must maintain synchronous speed, and the cable must maintain the stiffness
associated with the tension mpg. Therefore, D3y can still be used to describe
the critical starting case.

None of the dynamic ratios from the test results was greater than the
values of Dy calculated for the test set.
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7.2.5 Assumptions Regarding the Values of k. and m;

In section 2.5 a procedure was introduced to deal with the significant

hysteresis of the cable. The slopes of the loading and unloading curves for
the cable tension versus elongation graphs were used to define key,civer the

effective stiffness assumed to apply during free vibration of the system.

The measured natural frequencies from Table 6.2 and the calculated
natural frequencies from Table 5.2. are compared in Table 7.3. There are
significant differences between the two sets of values. If the 3DoF model can

Table 7.3 Comparison of Measured and Predicted Natural Frequencies

2BC | 2BS | EBC | EBS | 2L.C | 2LS | ELC | ELS

Predicted Second
Natural Frequency,
(radians/second)
Measured Second
Natural Frequency,
(radians/second)
Ratio of Predicted
to Measured
Predicted Third
Natural Frequency,
(radians/second)
Measured Third

319 [ 225 ] 362 | 23.8 ] 509 | 28.7 | 54.1 | 29.1

320275373 | 316 | 60.3 | 382 | 71.8 | 40.0

0.99710.819 0.970 1 0.753 { 0.845 | 0.751 | 0.753 | 0.727

118 | 985 11¥ | 107 | 99.0 | 90.0 | 107 | 102

Natural Frequency, 134 | 129 { 179 | 183 | 123 | 131 - 187
(radians/second)
Ratio of Predicted
to Measured 0.8800.763 | 0.667 | 0.584 | 0.805 | 0.687 | - 0.545

provide results that accurately match the response of a real bridge crane, then
the discrepancies between the measured and calculated natural frequencies
can be explained in terms of incorrect data being used in the formula for w;
and w3. Of the four variabies used, ks, mg, k¢, and mp, two are not measured
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values. Both mg and k. are estimated on the basis of certain assumptions and

are not measured directly.

The test results can be used to check the assumed values of mg and k.. The
tests provide measured values of w2 and w3 . Thus there are four measured
variables: mp, ks, @2, and w3. These are sufficient in order to solve for the two
assumed variables, mg and k.. Expressions for mg and ke in terms of wp and w3
are derived for the 3 DoF model from equations (5.30) and (5.31). Adding
these two equations together gives the following.

k
co§+a)% = Qz+m§ = m§+m2+k—:
k k
—€-+—s+ﬁ-=m§+m% (7.10)

mp mg g

The difference between the squares of the two natural frequencies is also of
value.

-0} = \ @ - aolad

Q%+ r.og)2 - 4m§ o),‘:2

(w3 - m%)z

2 2 2 2
W3 = g W

2.2 kske
@®2 = memp
mgin

ke = 0}l ——1—5(5—2 | (7.11)

Substituting equation (7.11) into (7.10) leads to the following expression for
mg .

(0} +0d)ks) K2
mg + Mg imp - 7 2 + 33 =20
3 &) 3 )
(@3 + 3 ks (03 + o)k P 4K
- mp - mp - 7 2 a2
3 ) @3 @3 @3 0
mg = > (7.12)
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Using the measured values of ), 03, ks, and mp, the validity of the values
assumed for ke and mg can be judged. Table 7.4 shows the values calculated
for ke and mg from (7.11) and (7.12), and the values that have been assumed
till this point.

The cable stiffness, k¢, is affected by the choice of chain or web slings,
and by whether the large or small payload was hoisted. Thus, it is expected
that there are four distinct values of k¢ calculated from equation (7.11): one for
each of the pair of tests 2BC and EBC, 2BS and EBS, 2LC and ELC, and 2LS
ELS. It can be seen in Table 7.4 that this is the case. Similar results appear for
each pair of test sets in which the same payload and slings were used.

Only in the case of 2BC and EBC is the value k¢ from (7.11) close to the
value of Keggrecriver This results can be explained as follows. During the
measurement Of Keg,cpen aNA Keyopien the cable and sling assembly had time

between each load step to move to its steady state elongation. The much
higher loading rates that occurred during the dynamic testing did not ailow
time for changes in cable stiffness due to delayed elasticity to develop. During
the cable stiffness measurements, the chain slings holding the large payload
were only marginally subject to the effects of delayed elasticity at each load
step. The initial and final stiffness at each load step were nearly equal. The
change in loading rate, therefore, has little effect on the chain slings holding

the large payload. Therefore, for EBC and 2BC, the value of k. from equation
(7.11) is similar to the value of ke goiiver

The web slings did not have time to experience delayed elasticity during

the high loading rates they were subjected to in the dynamic tests. Thus, they
displayed a stiffness higher than keg¢oqye in the dynamic tests. In test sets 2LS

and ELS, the values of k. derived from the natural frequencies are roi.\g__hly
midway between Keyoive @04 Keglackens The values of k¢ derived from the
natural frequencies, for test sets 2BS and EBS, are approximately equal to

kcslacken *

All but the cable stiffness calculations for the test with the small payload
and chain slings, have been explained in the preceding discussion. In 2LC the
value of k¢ derived from the natural frequencies is slightly greater than
ke slacken - There does not seem to be a consistent way to explain these results
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given the information available. It may be that the data used to determine ke

has not been correctly interpreted, or it may mean that the 3DoF model is not
adequate.

It would be expected that the values of mg for the test sets 2BC, 2BS, 2LC,
and 2LS should be the same, since in these tests the loads were applied at the
same position, midspan on the bridge. Similarly, ms for EBC, EBS, ELC, and
ELS should be constant, because these tests were all performed with the
trolley at the east end of the bridge. However, the recalculated values for mg
given in Table 7.4 do not show this. Between the sets of tests prefixed with
“E” and those prefixed with “2”, the values of mg are not distinctly different.
In Section 2.2 the mass of the trolley alone was determined to be 0.35 tonnes.
The value for mg must be greater than the trolley mass because more than
the mass of the trolley moves when the crane deflects. Yet mg calculated from
the measured natural frequencies is less than the trolley mass for five of the
seven test sets in which the calculations were possible. This may be the result
of slight errors in the measurement of ks, mp, wy, and especially of w3, which
is the most difficult to measure accurately and to which ms, from equation
(7.12), is most sensitive. However, if the measurements are assumed to have
been done to a reasonable degree of accuracy, then the discrepancy calls into
question the validity of the 3 DoF model.

In retrospect, the testing program should have included a test in which the
unloaded crane was given a dynamic load. The resulting dominant natural
frequency would have served as the value of ws, and ms would have been
determinable from the two measured values, ks and ws.

7.2.6 Assumptions Relating to Structure Motion

In the development of D3y the assumptions were made that at the instant
m

of payload lift off y,=- -ﬁﬁ, Ys = - 1—4_91-(- sand ys = 0. Because the payload
displacement was recorded on tape rather than by the data logger, the
moment of payload lift off cannot be correlated with the crane displacement
or the cable tension. The accelerometer signals do not indicate zero
acceleration just prior to payload lift off (see Section 6.3.3) .
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Approximate values for the velocity of the structure ys, are generated by
numerical differentiation of the displacement data. Values for the

approximate cable stretch rate, yc, are generated in a similar fashion, using the
cable tension data divided by a constant value for k.. The velocity values,
calculated for all the jerk-starting tests in which reliable structure
displacement data was recorded, are plotted versus time in Figures 7.18 to
7.25, shown at the end of this chapter.

Certain features of the velocity curves can be compared with the assumed
velocity curves shown in Figure 5.7. Near t = 0, the y curves in Figures 7.18

to 7.25 and the curve for y. shown in Figure 5.7. do not match. The curves
generated from the test data start near zero and approach the maximum,

whereas in Figure 5.7, y.moves instantly to H, and then decreases to a
plateau. This is because the velocity represented in Figure 5.7 is that of a cable
which has a stiffness that varies from zero, at low cable tension, to k. when
cable tension is near mpg. The rate of elongation generated using the
measured data uses a constant value of k¢, Therefore, when the rate of change
of cable tension is zero, the rate of elongation is also zero.

Another feature of the curves in Figure 5.7 is the plateau that occurs at the
time during which ke becomes constant just prior to the payload lifting off. A
plateau is apparent in Figures 7.18 to 7.25 . The velocities from test sets 2LS,
ELS and ELC are too small in magnitude for conclusions about curve shape
to be drawn. For the remaining test sets, the only consistent pattern is that
there is a trough around the point of maximum downward velocity of the
structure and that the curves enter the trough less steeply from the left than
leaving it from the right. In most of the cases the presence of a plateau is
masked by vibrations that are smaller in amplitude and higher in frequency
than the dominant w; vibrations that occur after the payload lifts off. In
theory these vibrations before lift off have a frequency of w; (see Section 5.6.1),
but the frequency of the vibrations was not measured to confirm this. In
general, the tests in which web slings were used have troughs of longer
duration than do the tests in which chain slings were used.
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For the quasi-static model of the structure, downward velocity of the

structure just prior to the lift off of the payload is, from equation (5.70), 1H°

!

where Hp is the hoisting speed and x is the ratic of the stiffnesses of the cable

k
and structure, l—é . For the shop crane, the value of H, = 0.1m/sec, and kg is

as measured for the two different hoisting locations. Table 7.5 gives the
maximum downward velocity of the crane from the graphs in Figures 7. 18 to

H
7. 25. If it is assumed that this velocity represents - Ef;, then x and k¢ can be

calculated from this measurement. This new value for k. , which will be
referred 10 as cable stiffness calculated from structure velocity, is presented in
Table 7.5 along with the other values that have been assumed or calculated
for k.. The cable stiffness calculated from structure velocity gives results close
to kctighten for all the. test sets. Only with test set EBS is the value of k.
calculated from structure velocity closer to the value of Keygejve than

k“-‘tighten'

It is reasonable that the value of ys just before payload lift off should yield
a value of k. approximately equal to the value of k‘-‘tighten' The similarity

between keyopien and ke calculated from structure velocity would seem to
validate the use of Kooy, in the equations for the dynamic factor. However,
that seems conirary to the reasoning in Section 7.2.4 in which values of k. are
derived from the measured natural frequencies. In Section 7.2.4, the
observation is made that, for web slings, the values for k. derived from
frequencies is greater than the value of keygpyep, - The argument presented in
that section is that the measurements of Keygpye, Were done using 2 procedure
in which the effects of delayed elasticity were significant. Because the

dynamic tests involved quick reversals in cable tension rates, delayed
elasticity was not a factor, and the ke, values are therefore too low and

not appropriate in calculations for D. However, the k. values calculated from
the structure velocity are close to the key.py,, values. An examination of the
cable tension curves in Figures 7.18 to 7.25 reveals that before lift off there i a
length of time during which the cable is’steadily being tightened, and that this
length of time is long compared to the half period of the dominant vibrations
after lift off. If, before lift off, the tightening of the cable is of sufficient

Y

B
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duration that delayed elasticity will have significant effect on the value of the
cable stiffness, then the two arguments above do not contradict each other.

If there is no contradiction, then the question remains; What value of k.
should be used to calculate the dynamic factor for jerk-starting? During ierk-
starting, the cable tightens till the maximum load is reached, shortly after
payload liftoff. On that basis, kctighten should be used, because it gives the
correct structure velocity just prior to payload lift off. However, once the
payload has lifted off, and the structure reaches its maximum dynamic
deflection, using the values of k. derived from the natural frequencies seems

appropriate. The values for k. derived from the natural frequencies are
greater than Keyopien- Table 7.6 shows the calculation of the dynamic factor

Dixj using Keegrectiver Ketightens and Ke derived from the natural frequencies. It

can be seen that in general a reduction in k. causes a reduction in Dsy;.
Because the formula for Dsy; gives conservative resulis, lower values of k.
give values of D3y which are closer to the measured dynamic factors.
However, this does not mean that the lowest values of k. are the most
appropriate. The fact that the Dj3,; formula produces conservative results may
be due to corservative assumptions being used in deriving the model rather
than in inappropriate values being used in the formula.

The values of the rate of cable elongation in Figures 7.18 to 7.25 are
calculated from the following expression

. T.
Ye= ¥, - (713)

Up to the maximum value of the cable rate, the value of l~:Ctighten is used in
equation (7.13). After the maximum, the value of Key¢ociive 1S Used. The sum

of the absolute value of ys and y, is also shown in Figures 7.18 to 7.25. In
general, the sums are less than but close to the value of H,, which is 0.1 m/s.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS
8.1 Conclusions

(1.) The test results show that, subject to a variety of hoist-induced loads,
the multi-modal nature of the response from the structures lab shop crane
was insignificant. The crane can be considered to behave as a single DoF
structure. This suggests that other, and perhaps all, bridge cranes can be
considered as single DoF structures for the purpose of dynamic analysis.

(2.} The test results show that the dynamic response of the structure was
a function of the hoist’s location on the crane, the stiffness of the slings, and
the mass of the payload.

(3.) The test results show that the dynamic response was a function of
the conditions that existed prior to hoisting. Specifically, a small amount of
tension in the cable and slings before hoisting caused a greater dynamic
response from the crane than did any other initial condition. The dynamic
respoase from jerk-starting the crane was slightly less than the maximum
response. The smallest dynamic response occurred when the payload was
initially fully suspended by the cable.

(4.) The test results show that the dynamic response of the crane to
braking was a function of the amplitude of the vibrations of the crane prior to
braking, and of the displacement and velocity of the structure at the moment
braking was initiated.

(5.) The 3DoF model, and the formula for Daxj derived from it, predict the
dynamic response to jerk-starting more consistently and accurately than any
of the standards examined.

(6.) The 3DoF model, and the formula for D3xb derived from it, do not
predict the dynamic response to braking as well, because the formula for Daxb
does not take into account the displacement and velocity of the structure at
the moment braking is initiated.
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(7.) A standard based on the 3DoF model would include a formula with
the following form.

H,0.S5
g e
g

where g is the acceleration due to gravity, and D is the dynamic factor to be
applied to the forces, moments, and deflections, which occur for the static case
in which the payload is suspended by the cable of the crane.

(8.) The three variables which affect D are the hoisting velocity, H,; the
frequency @c; and the structure coefficient, S. The frequency @, is the square
root of the ratio of the net stiffness of cable and slings, k., to the mass of the
payload, mp. The structure coefficient S is a function of the ratio of structure
stiffness, ks, to net cable stiffness, k., and of the ratio of effective structure
mass, ms, to payload mass, mp. The structure coefficient S is also a function of
the type of hoisting event being considered.

(9.) The factor D is greater than one by an amount proportional to the
hoisting speed, and equals unity in the static case.

(10.) The 3DoF model predicts that, under certain conditions, decreasing
the stiffness of the crane structure will increase the dynamic factor.

(11.) The 3DoF model predicts that, under certain conditions, decreasing
the net stiffness of the cable and slings will increase the dynamic factor.

(12.) None of the standards reviewed present a dynamic factor that
explicitly accounts f-- effects due to the four parameters: structure stiffness k;,
net cable stiffness k., effective structure mass m,, and payload mass mp,

Furthermore, some do not explicitly account for the effects of hoisting speed,

H,.

(13.) Given the good agreement between the 3DoF model and the test
results, and the disagreement between the standards, and the relatively poor
predictions frcin them, further study on this topic is justified.
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8.2 Recommendations
8.2.1 Recommendations for Further Study

(1.) By using two payloads of different mass, the effect of varying the ratio
of effective structure mass to payload mass could be examined. Future testing
should be done with cranes that have high ratios of structure mass to payload
mass when payloads equal to the rated capacity of the ¢cranes are lifted. These
would be cranes with long spans and stiff cross sections. Box girder cranes,
when loaded to capacity, probably have the highest structure-to-payload mass
ratios. Tests on this type of crane could verify the presence of the structure
coefficient maximum with respect to the stiffness ratio of the structure and
cable, because the maximum is more pronounced with higher structure
Imasses.

(2.) Much work remains to be done on the dynamic behavior of cables,
especially relating to changes in stiffness. The 3DoF model uses the ratio of
stiffnesses of the structure to the cable as an important parameter, and any
design standard based on the 3DoF model will need to account for the cable
stiffness. Further study should be performed to answer the following
questions. In calculating the dynamic factor, should cable stiffness be taken as
some average of the static loading and unloading stiffnesses, or should it use
one or the other? Should the same value of cable stiffness be used for
starting and braking? How can a dynamic value for cable stiffness be
measured? How can the correct value for cable stiffness be presented in an
accessible form to a structural engineer designing a facility that includes a
bridge crane?

(3.) Again, relating to the net cable stiffness, none of the standards take
into account differences between chain and web slings. In the tests performed
there was only one case where using web slings produced higher dynamic
ratios than using chain slings, and that was between sets ELC and ELS. Itis
possible the test results for ELC are not valid, and that had this test been done
correctly much higher dynamic ratios would have resulted. If this is the case,
then is there any reason to design for web sling usage? In Section 5.9.4 it was
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shown that the derived dynamic factor for braking can be higher with less stiff
slings. This should be confirmed or refuted through some testing program.

(4.) The predictions using the formula for Ds,;, were not as accurate as
were the predictions using the formula for Dsy;. This may be due to the way
the dynamic braking ratio was determined from the test results, and it may
also be due to inappropriate assumptions made in the derivation of Ds,y.
Further testing and theoretical work should be done on the time history of
the braking force produced by bridge crane hoisting motors. Also, further
testing and theoretical work should be done on how to combine the effects of
braking and the effects of the vibrations that occur before braking. Adding the

two together, as was done in this thesis, seems to produce results that are too
conservative to be useful.

(5.) It is a common feature to have two hoists on a bridge crane. The
hoists can act independently or in unison. Further testing and theoretical
work should be done to determine how the 3 DoF system can be modified to
include more than one hoist.

(6.) The strength of a material generally increases when the material is
ioaded dynamically rather than statically. Further testing and theoretical
work should be done to determine how this increase in strength can be taken
into account in the case of dynamic loading of bridge cranes.

(7.) The effective structure mass values of 0.525 tonnes and 0.768 tonnes,
when the payload was at midspan and at the east end of the bridge
respectively, were derived by dividing the stiffness of the structure by the
square of the first natural frequency of the structure. The first natural
frequency was determined by building a finite element model of the structure,
and then finding the eigenvalues of the system. This process is rather long.
A standard formula could be developed for the single stiffness and single
mass of a simple multi-DoF system loaded at a distance x from one side, as
shown in Figure 8.1. Static condensation or the first frequen:y- approach
could be used. In many cases the stiffness and mass on the left and right side
of the crane would be the same, and that would simplify such a formula
further.
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Figure 8.1
Proposed Multi-DoF System With Which
to Derive Effective Structure Mass
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(8) In the German standard DIN 15.018 and in CMAA #74, upper limits
are specified for the dynamic factor, beyond which, increases in hoisting speed
will have no effect on the structure. The 3DcF model derived in Chapter 5
does not predict such a limit, but in the testing program the test set, ELC,
produced results much lower than predicted by the 3DoF model. In the
discussion of ELC in Section 7.1.1.1, and throughout Chapter 7, the
implication has been that the discrepancy between the test results and the
prediction from the 3DoF model was due to some mistake in preparing the
payload and slings before hoisting, and that greater care on the part of the
experimenter would have avoided the problem. It is, however, possible that
the test results indicate a consistent phenomenon which the authors of DIN
15.018 and CMAA #74 recognized. It may be that, under circumstances that
would be expected to produce the highest dynamic factors, a mechanism that
significantly reduces the dynamic factor becomes so likely to occur that it
becomes practically unavoidable. Teetering may be such a mechanism.
Further testing and theoretical work should be done to establish the upper
limit of the dynamic factor.

82,2 Recommendations Relating to Procedures for Numerical
Dynamic Analysis

The following recommendations relate to the design of the computer
programs used to perform dynamic analysis for this thesis.

(1) The computer program CRIS5.BAS uses a continuous function to
relate cable tension and cable elongation. This requires an iteration within
each time step to give values for the cable tension, motor force, and cable
elongation, that are consistent with each other at the end of the time step. As
mentioned in Section 4.4.4, using discrete changes in cable stiffness at
prescribed tensions would be a better approach. It would be faster than using
a continuous nonlinear stiffness tension function and an extra level of
iteration, and it would lend itself easily to the introduction of hysteresis.
Another approach that should be investigated is to include damping in the
model for the cable. Hysteresis and delayed elasticity could be accounted for
using a spring and damper in parallel, as shown in Figures 2.13 and 2.14. To
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Figure 8.2 Alternate Model for Cable
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account for the variation of cable stiffness with cable tension, a radial spring
attached to a lever could be used in series with the delayed elasticity
mechanism. The model for the cable would be as shown in Figure 8.2.

(2.) The program MAKEKAM.BAS is used for entering beam element
data and assembling the global stiffness and mass matrices. It has the
limitation that when a hinge is specified at one node of an element, the
rotational DoF of that end of the element is independent of the rotations of
the other elements which share that node. The connection between two
continuous members which are joined within their lengths, and which have
a common vertical displacement, but independent rotations, cannot be
modelled. The program MAKEKAM.BAS would be improved if it allowed

extra D’'soF between pairs of elements at a node, rather than just between
individual elements.

8.2.3 Recommendations Relating to Test Procedure
The following recommendations relate to the test procedure.

(1.) The cable stiffness and the structure mass are two important
parameters that were not precisely determined in the present testing program.
Two fairly simple procedures could and should have been performed to get
these two values.

The first procedure is to record the motion of the crane when it is
vibrating without a payload. This could be done by attaching the hook to
some quick-release mechanism fixed to the ground at a point directly below
the hoist. The motor would be turned on briefly to put the cable in tension
and load the structure. Then the hook could be released and the ensuing
vibrations recorded. The measured stiffness of the structure, k, , can be

divided by the square of the dominant frequency of these vibrations to give a
working value for the effective mass of the structure, m;.

To obtain a value for cable stiffness, a stiff support could be placed such
that it braces the unloaded bridge beam. The support should not interfere
with the lifting of the payload. When the payload is lifted, the support
prevents the beam from deflecting measurably. The case of an infinitely high
structural stiffness is approximated. The square of the vibration frequency of
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a crane with the payload on the cable, multiplied by the known payload mass,
gives the value for cable stiffness. Also, with this test set-up, the damping of
the cable, which is the major component of the damping of the complete
crane system, could be determined.

(2.) The assembly used for holding the LVDT’s must be very rigid and
self supporting; therefore, in general, such an assembly will be heavy. For
ease in setting up the tests, it would have been worthwhile to equip the
assembly with locking wheels so that it could be manually moved into
position then locked into place.

It would also have helped to have some kind of fine vertical adjustment
for the LVDT’s on the assembly, and a fixed spirit level with which to check
that the LVDT's were vertical.

At the beginning of the testing program, the use of lasers for measuring
displacements was considered. This idea was abandoned because it was felt
that the LVDT's would serve the purpose adequately, were readily available,
and would not require a holding assembly that was not too large to build.
However, for taller cranes which might require a holding assembly too large
and awkward to be practical, deflection measurements using a laser could be
considered.

(3.) The custom-built load cells on the wheel assemblies of the shop
crane worked very well. Because they were set up permanently, the crane
could move along the craneway without interfering with them. Time was
saved because the crane did not have to be jacked up and a load cell inserted
beneath each wheel for each test. It was fortunate that the shop crane had the
Y plate which supported the end trucks on the wheel assemblies. Most end
trucks are hollow sections with the wheel inside, and the axle mounted
spanning the two webs. The strains on this kind of endtruck are generally
very small. Even so, it is worth trying to measure a strain signal that
corzesponds to the reaction force acting on the wheel.

(4.) All the data should have been collected on one recording medium, |
either the tape recorder, or the data logger. Then all the different parameters
could be compared temporally. This would have helped with understanding
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the teetering that may have occurred with test set ELC. It would have helped

with calculating y. and }'rc , because the payload displacement data could then
be on the same graph as the rest of the displacement data,

(5.) Both the accelerometer signals and the north east wheel reaction
load signal should have been filtered, and the cable tension signal need not
have been. Having at least one unfiltered signal is useful because the times at
which the motor is switched on and off is then recorded.

(6.) It would be worthwhile to actually measure yp,, perhaps with a
tachometer attached to the drum. This would help with the measurement of

Y, it would confirm the constant speed assumption, and it would help with
understanding what happens during braking.

318



10.
11

12.

13.

REFERENCES

American Institute of Steel Construction, Specifications for the Design,
Fabrication and Erection of Structural Steel Buildings. 1973.

Agarwal, A.C., On the Applicability of Fatigue Laboratory Tests on
Moving Loads. CANCAM 89. Twelfth Canadian Congress of

Applied Mechanics, pg. 234.

Barrett, D.A., and Hrudey, TM., An Investigation of Hoist Induced
Dvnamm Loads on Bridge "Crane and Craneway _Structures.
CANCAM 89. Twelfth Canadian Congress of Applied Mechanics,
pg. 240.

Banford, Experimental Measurements: Precision, Error and Truth.
Second Edition. Imperial Coliege, London. John Wiley and Sons,

March 1986.

Canadian Standards Association, General Purpose Electric Overhead
Travelling Cranes. CSA Standard B167, 1964.

Canadian Standards Association, Steel Structures for Buildings —
Limit States Design. CAN 3-516.1-M89 , 1989.

Canadian Standards Association, Steel Structures for Buildings. CSA
Standard 516.1, 1974.

Chein and Ritchie, Design and Construction of Composite Floors.
Canadian Institute of Steel Construction, 1984,

Clough, R. and Penzien, J., Dynamics of Structures. McGraw-Hill, 1975.
Construction Safety Association of Ontario, Rigging Manual. June 1982.

Crane Manufacturers Association of America, Specification for top

running and under running single girder electric overhead
travelling cranes. Specification #74-1987.

Garlicki, A.M. and McCormack J.E., Dynamic Loads in Chains (An
Exploratory Study). NRC Canada Division of Mechanical
Engineering Vehicle Dynamics Laboratory. Controlled technical
report. May 1989.

Gaylord, Edwin H.Jr., and Gaylord, Charles V., Design of Steel
Structures. 2nd ed. McGraw-Hill, 1972.

319



14.

15.

16.
17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

Goldman, Carl, Design of Crane Runway Girders for Top Running and

Under Running Cranes and Monorails. Proceedings of 1988
Annual Conference, CSCE, pg. 425.

Gutkowski, Richard M., Structures — Fundamental Theory and
Behaviour. Van Nostrand Reinhold Co. Inc., 1981.

Hornbeck, Numerijcal Methods. Quantum Publishers Inc., 1975.

Japanese Standards Association, Electric Overhead Travelling Cranes.
JISB8821, 1976.

Kovécs, Pal, Transient Phenomena_in Electrical Machines. Elsevier,
1984.

MacGinley, T.J., Steel Structures — Practical Design Studies. E & FN
Spon, London, 1981.

Matthews and Montgomery and Murray, Designing Floor Systems for
Dynamic Response. Structural Engineering Report No. 106, Dept.
of Civil Eng. University of Alberta, Edmonton, Alberta, Oct. 1982.

Paz, Mario, Structural Dynamics — Théorg and Computation. Van
Nostrand Reinhold Co. Inc., 1980.

Pearson, Carl E., Numerical Methods in Engineering and Science. Van
Norstrand Reinhold Co. Inc., 1986.

Podolny, Walter, Construction and Design of Cable Stayed Bridges.
Copyright 1976 by John Wiley & Sons, Inc.

Robb, Ian, Steel Frame Design Examples, Macmillan, 1972.

Serridge and Licht, Plezoelectric Accelerometers and Vibration

Preamplifiers. Theory and Application Handbook. Bruel and
Kjaer Publication, Naerum, Denmark, Oct. 1986.

Shedd, T.C., Structural Design in Steel. John Wiley and Sons Inc,, 1“934.

Troitsky, M.S., Cable-Stayed Bridges — Theory and Design. Second
Edition. BSP professional Books, London, 1988.

Validyne Engineering Corporation, Instruction Manual 10/20 channel

Module Case Model MCI 10/20, 19414 Londelius St. Northridge,
Calif. 91324, Oct. 1975.

Validyne Engineering Corporation, Instruction Manual Model CD19

Carrier Demodulator. A unit of the MCI Module Case System.

19414 Londelius St. Northridge, Calif. 91324, Oct. 1975.

320



30.

31

32,

33.

34

35

36.
37.

38.

39.

Vaughan, Application of B & K Equipment to Strain Measurement.
Bruel and Kjaer Publicaticn. Naeruim, Denmark, Oct. 1975.

Weaver, Wm. M, Overhead Crane Handbook. Whiting Crane Corp.,
Harvey, Illinoise, 1985.

Canaaian Portland Cement Association, Concrete Design Handbook,

Part 1 _CSA Standard CAN3 - A23.3 - M84 “Design of Concrete

Structures for Buildings, with Explanatory Notes.” Canadian
Portland Cement Association,. 1985.

Canadian Commission on Building and Fire Codes, National Building
Code of Canada 1990, second revisions and errata 1992. National
Research Council of Canada, Ottawa, 1992.

Deutsche Norm, DIN 4132 Craneways, Steel Structures, Principles for

Calculation, Design and Construction. Beuth Verlag GmbH.
Berlin 30, Feb. 1981.

Deutsche Norm, DIN 15.018 Part 1 Cranes, Steel Structures,
Verification and Analysis. Beuth Verlag GmbH. Berlin 30, Nov.
1984.

British Standard, BS 2573 Partl. 1983.

Reuland Electric Company, Voltage Transients; the Unseen Assasin.
Technotes Issue No. 2. Nov 1973,

Levi, Enrico, Polyphase Motors; A Direct Approach to_their Design.
Wiley Interscience Library. John Wiley and Sons Inc. 1984.

Ontario Highway Engineering Division, Ontario Highway Bridge
Design Code 1983. 2nd edition. Ontaric Highway Engineering
Division, Downsview, 1983.

321



(kN)

Load

Load (kN)

APPENDIX A
CALIBRATIONS
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Appendix A.1 Calibration Curves for Wheel Assembly Load Cells

Figure A2
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Appendix A.2 Calibration Curves for LVDT's

Figure A.5
Calibration Curve for LVDT 24T 1010 at SE Wheel
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Figure A.6
Calibration Curve for LVDT 24T 2501 at Trolley
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Figure A.7
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APPENDIX A3
MEASURED STATIC DISPLACEMENT OF CRANE STRUCTURE

The following are measurements from dial gauges attached to the crane
structure. The gauges read positive downwards in units 0f.01 mm. The
craneway dial gauge was positioned directly under the SE end truck wheel.
The bridge dial gauge was positioned directly under the trolley.

Table A.1  Dial Gauge Readings from Jerk-Starting Tests in
which 2.11 kN Payload was Used
Test Craneway Dial Gauge Bridge Dial Gauge
Name
Unloaded | Loaded | Displ. Unloaded | Loaded | Displ.

ELC sl 910 920 10 2201 2228 27
ELCs2 910 920 10 2203 2228 25
ELCs3 910 920 10 2202 2228 26

ELC average -0.10 (mm, + up) ELC average -0.26 {mm, + up)
ELS sl 908 917 9 2080 2104 24
ELSs2 908 917 9 2080 2104 24
ELS s3 908 917 9 2079 2104 25

ELS average -0.09 (mm, + up) ELS average -0.24 {(mm, + up)
2LC sl 3641 3648 7 956 1013 5
2LCs2 3641 3648 7 962 1014 52
2LCs3 3641 3648 7 962 1016 54

2LC average -0.07 (mm, + up) 2LC average -0.54 (mm, + up)
2LS s1 3640 3646 6 966 1015 49
2LS s2 3640 3647 7 964 1016 52
2LS s3 3640 3647 7 964 1016 52

2LS average -0.07 (mm, + up)

2LS average -0.51 (mm, + up)
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Table A.2 Dial Gauge Readings from Jerk-Starting Tests in
which 14.35 kN Payload was Used

Test Craneway Dial Gauge Bridge Dial Gauge
Name _

Unloaded | Loaded | Displ. Unloaded | Loaded | Displ

EBC b1l 912 986 74 1595 1786 191
EBC b2 912 986 74 1595 1785 190
EBC b3 913 986 73 1595 1785 190
EBC average -0.74 (mm, + up) EBC average -1.90 (mm, + up)

} EBS bl 917 986 69 1599 1787 188
| EBS®2 917 989 72 1601 1788 187
EBS b3 917 989 72 1598 1788 190

“ EBS average -0.71 (mm, + up) EBS average -1.88 (mm, + up)
2BC bl 3643 3690 47 1462 1837 375
2BC b2 3644 3690 46 1460 1834 376
2BC b3 3645 3691 46 1460 1833 377
2BC average -0.46 (mm, + up) 2BC average -3.76 (mm, + up)

2BS b1 3645 3690 45 1465 1839 374
2BS b2 3644 3690 46 1460 1837 373

" 2BS b3 3645 3690 45 1464 1834 370
H 2BS average -0.45 (mm, + up) 2BS average -3.72 (mm, + up)

From ELC and ELS,
2.11kN

structure stiffness at craneway dial gauge = 5% 0.10mm = 11,000 kN/m

From ELC and ELS,
2.11kN

structure stiffness at trolley, corresponding to ks, = 025mm = 3400kN/m

From 2LC and 2LS,
2.11kN

structure stiffness at craneway dial gauge = Zx0.07mm = /200 kN/m
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From 2LC and 2LS,
14.35kN

structure stiffness at trolley, corresponding to ks, = 552mm = 4,100 kN/m

From EBC and EBS,
14.35kN

structure stiffness at craneway dial gauge = 5% 0.73mm = 10,000 kN/m

From EBC and EBS,

structure stiffness at trolley, corresponding to ks, 14.35kN

={89mm = 7590 kKN/m
From 2BC and 2BS,
14.35kN

structure stiffness at craneway dial gauge = 4 x0.46mm = /800 kN/m

From 2BC and 2BS,

structure stiffness at trolley, corresponding to kg, 14.35kN

=1.80mm = 3840 kN/m
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APPENDIX b

The following pages contain the stiffness and mass matrices for the
structural models “E” and “2” described.in Chapter 4. The file containing the
matrices for model “E” is called “ESTR4”, and the file containing the the

matrices for “2” is called “2STR".

The matrices are sparse. Most of the terms within each of the matrices are
zero. Only the non-zero terms for each matrix are listed, along with their
location within the matrix. As the matrices are symmetrical, only half the non-
diagonal terms are displayed. The other half can be generated by switching the

row and column numbers.
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The stiffness matrix for the file :estr4

K{(1 , 1 )= €5505.58

K(1, 2 )= 24359,32

K( 1 , 3 ) = ~-35561.05

K( 1, 4 )= 24359.32

K( %, 10 ) = -29944.53

K( 1, 12 ) = -16085.19

K( 2 , 2 )= 22248.18

K( 2 , 3 ) = -24359.32

K(2,4 )= 11124,09

K{ 3, 3)= 71122.1

Kt 3, 5 ) = -358561.056

K( 3,86 )} = 2a4359.32

K( 4 , 4 ) = 44496.35

K( 4 , 5 ) = -243589.32

K( 4 , 6 ) = 11124.09

K{5 ,5 )= 71122.1

K{( 5, 7 ) = =35561.05

K( 5§, 8 )= 2a4359.32 :
K( 6 , 6 ) = 44496.35 Ki 21 . 2% ) = 117057.4
K( 6 , 7 ) = -24359,132 K{ 21 , 23 ) = 33566.21
K{ 6 , 8 )= 11124.09 Ki 22 , 22 ) = 51323.92
K(C T, 7 )= 71122.1 K{ 22 , 23 ) = 12833.48
K( 7 , 98 )= 24359,32 Ki 23 , 23 ) = 25666.96
K( B8, 8 )= 44496.35

k(8,9 )= 11124.09

K({ 9 , 8 } = 22248.18

KO 10 , 10 ) = 154250

K( 10 , 11 ) = B711.987

¥4 10 , 12 ) = 16095.19

K{ 10 , 13 ) = -53211.32

Kt 0, 14 ) = =-31501.1

K( 10 , 17 § = =71094.11

FEO1Y L 11 ) = 52250.91

KO 11 , 13 ) = 31501.1

K{ 11 , 14 ) = 12432.43

K( 11 , 17 ) = -38213.08

KL 12 . 12 )} = 11534.88

K{ 13 , 13 ) = 106422.6

Kt 13 , 16 ) = =-31501.1

K( 14 , 14 ) = 49729.73

K({ 14 . 16 ) = 12432.43

K( 15 , 15 ) = 297297.3

K{ 15 , 18 ) = -376643.5

K( 15 , 19 ) = 148648.7

K{ 16 , 16 )} = 24864.87

K{ 17 , 17 ) = 921132.4

K( 17 , 20 ) = -850038.2

K( 17 , 21 ) = -456895.86

K( 18 , 18 } = 1272444

K( 18 , 20 ) = -636222.2

K 18 , 21 ) = 376643.5

K( 19 , 19 ) = 594594.6

K( 19 , 20 ) = ~376643.5

K( 19 , 21 ) = 148B648.7

K( 20 , 20 ) = 1486261

Ki 20 , Z9 ) = B80252.06

K{ 21 , 21 ) = 624739.1
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The mass matrix for the file :estri
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2.788092E-02
2.624978E-03
4.703014E-03
1.551124E~03
4.548072E-03
1.280543E-03
6.538583E-04
1.559124E-03
4,903937E-04
2.T17257E-02
4.703014E-03
1.551124E-03
1.307717E-03
1.551124E-03
4.903937&~04
2.717297E-02
4.703014E-03
1.551124E-03
1.307717E-03
1.551124E-03
4,.803937E-04
2.7117297g-02
1.551124E-03
1,307717E-03
4.8203937E-04
6.538583E~0C4
4.550736E-02
-4,797988E-D4
2.167073E-03
5.662903E-03
1.614137E-03
5.141572E-03
1.028171E-03
-1.614137E-03
-4.41032E-04
1.33062E-03
4.235€42E-04
3,271899E-02
1.614137E-03
1.176085E-03
-4.41032E-04
2.766329E-03
7.593387E-03
-2.074747E~03
5.880426E-04
8.472842E-02
.0241875
6.259636E-03
»15392
02664
-7.593387E-03
5.532659E-03
7.593387E~03
-2.07T4T747E~03
.146835
=2.25711TE-03
4.836825E-03
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-4.009638E~04

5.3461B4E-04



The stiffness matrix for the fi1le :2str

K(1, 1 )= 239512.2
K( 1, 2 )= -239512.2
K( 1, 3 )= 109457.1
K(2, 2 )= 479024.5
K( 2 , 4 ) = =-239512.2
K(2 , 5 )= 109457.1
K( 3, 3 )= 133391.,7
K( 3, 4 ) = =108457.1
K( 3 , 5 ) = 33347.92
K( 4 , 4 ) = 479024.5
K( 4 , 6 )= =-239512.2
K{ 4 . B ) = 108457.1
K( 5 , 5 )= 133381.7
K( 5 , 6 ) = =108457.1
K(S5 , 8 ) = 33347.92
K{ 6§ , 6 ) = 299401.3
K( & , 8 )} = =108457.1
K( & , 10 ) = -16095.19
K( 6 , 13 ) = -29944,53
K( & , 15 } = 16095.19
K(7 , 7 )= 23069.77
K{ 7 , 10 ) = 5767.442
K( 7 , 13 ) = -16085.19
K( 7 , 15 ) = 5767.442
K( 8 , 8 )= 666985,.85
Kt 9 .9 )= 27386.05
K( 8 4, 11 )} = -338213.08
Kt 9 , 12 } = 13693.02
K( 10 , 10 ) = 11534.88
K{ 11 , 11 ) = 1429%8B.2
Kt 11 , 13 ) = =71094.11
Ki 11 , 14 ) = 38213.0%
K 12 , 12 ) = 54772.53
ki 12 , 13 ) = -3821%.08
K({ 12 , 14 ) = 13693.02
Ki 13 . 13 ) = 1419%0.3
K( 13 , 14 ) = =11758.31
Wi 13 , 15 ) = =18095.19
K( 13 , 186 ) = -40951.66
K[ 13 , 17 ) = 26454.77
K( 14 , 14 ) = 50172.42
Ki 14 , 16 ) = -26454.77
K( 14 , 17 ) = 11393.19
K{ 16 , 15 ) = 11534.88
K( 16 , 16 ) = 151272.2
K[ 16 , 17 ) = 7111.436
K( 16 , 18 ) = -89133.75
K( 16 , 19 ) = -58528.7
K( 16 , 20 ) = 33566.21
Kl 17 , 17 ) = 48453,34
K( 17 , 19 ) = -33566.21
KU 17 , 20 ) = 12833.48
K( 18 , 18 )} = 20a48532,2
K( 19 , 19 } = 117057.4
K( 19 , 21 ) = ~-58528.7
K( 19 , 22 ) = 33566.21
K( 20 , 20 ) = 51333.92
Kt 20 , 21 ) = ~33566.21
K{( 20 , 22 } = 12833.48
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3.169653E~-02
5.485937E-03
-1.51483E-03
1.069237E-03
1.51483E-03
-4 ,009638E~D4

The mass matrix for the file :2str
M{ 1, 1 )= 1.812854E-02
M( % ,2 )= 6,275263E~03
M( 1, 3 )=-1.38079E-03
M( 2 , 2 )= 3.625707E-02
M{ 2 , 4 )= 6.275263E-03
M(2 .5 )= -1.38073E-03
M( 3, 3 )= 7.766413E-04
M( 3, 4 )= 1.38079E-03
M{ 3, 5 )= =-2.912405E-04
M{ 4 , 4 ) = 3.625707E-02
M{ 4 , 6 )= &,275263E-03
M( 4 , 8 )= ~1.38079E-03
M{ 5 , § )= 7.766413E~-04
M( 5, 6 )= 1,38079E-03
M( 5 , 8 ) = -2,912405E-04
M( 6, 6 )= .04E67174
Ml 6 , 8 )= -2,336722E-03
M{ 6, 10 ) = 1.280543E-03
Ml 6 , 13 ) = 4.948B072E-03
M 6, 15 ) = -1,280543E-03
Ml 7 , 7 )= B8.471283E-04
M{ 7 , 10 ) = =3.176731E-04
ML 7 , 13 ) = 1.280543E-03
M{ 7 , 158 ) = -3,176731E-04
M{ 8 , B )= 3.883207E-04
M( 9 , 8 )= 4.401281E-04
M{ 9 , 11 ) = 1.33062E-03
M{ 9 , 12 ) = -3.300361E-04
MI 10 , 10 ) = 4.235642E-D4
M( 11 , 11 ) = 2.9706B6E-Q2
M{ t1 , 13 ) = 6,141572€E-03
M( 11, 14 ) = =-1,33062E-03
M( 12 , 12 ) = §&.802562E-04
M{ 12 , 13 ) = 1.33062E-03
M( 12 , 14 ) = -3.300961E-04
M{ 13 , 13 ) = 4.699961E-02
M( 13, 14 ) = 1.000862E-03
M{ 13 , 15 ) = -2,167073E-03
M{ 13 , 16 ) = ©6.178452E-03
M{ 13 , 17 ) = -1.922039E~03
M 14 , 14 ) = 1.204212E-G3
M( 14 , 16 ) = 1.922039E-03
ML 14 , 17 ) = ~5.730632E-04
M( 15 , 15 ) = 4,235642E-04
M{ 16 , 16 ) = .48116
M( 16 , 17 ) = -6,B891226E-04
M({ 16 , 18 ) = -.2172017
M( 16 , 19 ) = 5.4B5937E-03
ML 186 , 20 ) = -1.51483E-03
M({ 17 , 17 ) = 1.288703E-03
M( 17 , 19 ) = 1.51483E-03
M{ 17 , 20 ) = -4.009638E-04
M{ 18 , 18 ) = ,1359288

’ } =

’ ) =

v ) =

* ) =

' ) =

’ J =
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APPENDIX C
COMPUTER PROGRAM LISTINGS

Appendix C contains the listing of the various computer programs written
for this thesis. The programs are written in Basic

Appendix C.1 Listing for MAKEKAM,BAS

The program MAKEKAM.BAS assembles the global stiffness and mass
matrices for a structure composed of beam elements, and enters each
assembled matrix into a file with the suffix “.1” and “.2” , respectively. It also
creates a file with the suffix “.P” which contains the locations of the degrees
of freedom of the individual elements within the global structure matrix.
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* MAKEKAM,BAS - make [K} and [M]

10
]
§g ' This programme makes a stiffness matrix {K]) and a mass matrix [M] for
40 'a structure made of beams and columns. Assumptions made to construct this
50 ‘model are :
60 °* A1l members exhibit only elastic behavior
70 °* A1 members have only flexural response
8o * A1l members exhibit only in plane behavior
en ? A1l columns are braced against latera] motion at their ends
100! Each member +is prismatic, having its own material end x-sectional
110 °* properties constant throughout its length
120 '
130 'Each member starts and ends at a numbered node,
140 'Free degrees of freedom are kept in the upper left corner of the metrices,
150 'and fixed degrees of freecom are stored in the remasnder. Another
160 'matrix [P] keeps track of which nodal D'sof are in which positions.
170 ‘[P] has dimensions {nn,4), where the 4 coiumns contain:
180 ' a1 the 5 DoF associated with that node
1%0 °' #2 the @ DoF associated with that node
200 °* 3 an extra & DoF for 1f thers 15 a s)ide at that node
210 ° #4 an extra @ DoF for 1f there is & hinge at that noge
220 'The structures assembled {K] and [M) matrices are stored
230 ' in filename.1 and filename.Z respectively.
240 *Each members properties and the global positions of 1ts & Dsof
260 'are stored seriaily in filename.L (for Local)
250 'From this oata another proaram Can recreate esch 4xé4 menbder
270 'stiffress matrix angd caiculate the member forces,
280 '
290 ° Variables list
pp !
310 ! N NDDE
3z’ M MEMBER
330 ' NN number of nodes
340 ° NH number of members
350 ' NFR number of free ['sof
360 ° NDOF total number of D'sof
370 ' NFIL noge for impact load
ago K{NDOF ,NDOF) stiffness matrix
390 ' W(NDDF ,NDUF) mass matrix ( m 18 used as integer for member )
400 ' P(NN,4) stores nocal DoF positions in [K] and [M)
410 ' NODE1(M) first noge of member M
420 ' NDDE2(M) last node of member M -
430 1END(m) end condition flag at first node of ‘member M
840 ° 11END(m) end condition flag at last node of membar M
450 °' L,E,DM,X(M) lergih,Young’s modulius, distributed mass, and Ixx
460 * respectively for member M
470 ° CsT Coefficient for element stiffness matrix
480 ' CHS Coefficient for element mass matrix
485 ' IsM(m) symatry factor for CET and CMS
450 ' SMALLK local stiffness entry
500 ' SKALLM local mass entry
510 °
:;g :3*3‘33'333l333tt3t Initiglize and Set Up SCreen ITLXSEEFSELILELETLLITESS
540 INPUT “Shall we do this 1n colour?(y,n)”,A$
550 SCREEN 0,1
560 KEY OFF
570 2%="¢a a"" """
580 DEFINT F,I,J,M,N,P,Q
590 IF A$="y" OR A$="Y" THEN ICLR=1
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600 BAR$=STRINGS(B0,CHRS$(220))

610 LIN$=STRING$(80,CHR$(219))

620 CLR$=STRINGS${60," ")

630 SUP$=" HSRPF"

640 KRUM$="D1234567B9"

650 Q(1)=20:0(2)=1:0(3)=15:Q(4)=3:0(5)=2:0(6)=5

660 ARD$=CHRS(17)+CHRS (186)+CHRS$( 196 )+CHRS${217)

670 1IF ICLR =1 THEN COLOR 2,6,2

680 CLS

650 LOCATE 25,1 :PRINT LINS

700 LOCATE 4,1 : PRINT BARS;

710 1F ICLR =1 THEN COLOR 15

T20 IF FINISH=Y GOTO BSOD

730 LOCATE %,1,1

740 INPUT;" Output Filename : ", SFN$

750 OPEN SFN$+".1" FOR OUTPUT AS #1

760 OPEN SFN$+".2" FOR OUTPUT AS #2

770 OPEN SFN$4".1" FOR QUTPUT AS #3

TT1 1F FLAG=1 GOTO 800

780 LOCATE 1,45 : INPUT " Number of noges : “, NN

760 DIM P(NN,4).PLACE(4)

BOD INPUT;™ Node for Impact Load : ", NFIL

810 PRINT

811 IF FLAG=1 GOTO 830

B20 INPUT " Rumber of Members : “,NM

830 PRINT #3, MKIS{NM):SFACES(14);

B35 IF FLAGE1 THEN SWAP PINFIL,1),P(NFILD,1):G0T0 2950

B40 DIM NODET(RM) NODE2{NM} NE(NM) LINM)  ELNM), DM{NM]) XINM),
IEND(NM ), ITEKD{NM) ,NWH(23NM)  NWS{2INM )}, JSM{NM)

850 *

B&0 "EAB3X3223353%31s ]nput LooD tor each HMamDer SrITIssEiEEISRIRITIXI233S

870 '

BBO FOR M=1 TO NM

880 LOCATE 6,1,1

900 PRINT " MEWEER NUMBER ":M

910 IF FINISH =1 THEN NMDOF=NMDOF=-NE(M)+1

820 PRINT

930 INPUT " Devided Member? (1 or 2)" 3ISM(M)

Q32 IF IEM(M)=D THEN ISM{M)=zISHM{M-1):LOCATE 8,27:PRINT 15M(M)

935 PRINT

940 PRINT " Beam or Column ?";

950 A$=1INKEY$ : IF A3="" GOTO 950

960 KEY(15) ON

970 IF AS=CHRS$(13) GOTO 1010

980 TP=INSTR{ "BoCc”,AS)

890 IF TP=D THEN KEY(15) OFF : GOTO 950

1000 TP={TP+1)\2-1

1010 LOCATE ,2,1

1020 IF TP=0 THEN PRINT “Beam -

1030 IF TP=1 THEN PRINT “Column -

1040 PRINT

1050 KEY(15) OFF

1060 INPUT:” Memter Length “,L(M)

1070 IF L{M)=0 THEN L({M)=L{M-1) : PRIKT L(M);

1080 PRINT :PRINT

1080 INPUT:" E ", E(M)

1100 IF E{M}=0 THEN E(M)=E(M=-1) : PRINT E(M):

1110 PRINT : PRINT = _"

1120 INPUT:" m ~,DM(M)

1130 IF DM(M)=0 THEN DM{M)=DM(M=~3) : PRINT DM(M):
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1140 PRINT :PRINT

1150 INPUT:™ Ixx “,X(M)

1160 IF X{(M)=D THEN X(M)=X({M=1) : PRINT X(M);

1170 PRINT:PRINT

1180 PRINT” Ends Supports”
1180 PRINT® hinge slide roller pin fixed”
1200 PRINT" from node “

1210 PRINT® to node

1220 LOCATE 22,12,1

1230 INPUT;"" ,NODE2(M)

1240 1F NODE2(M)<=0 GOTO 1230

1250 1F TP<>0 GOTO 1320

1260 LOCATE ,24,1%

1270 AS=INKEY$ : IF A$="" GOTO 1270

1280 IF A$<¢>CHR$(13) THEN JIEND(M)=1:PRINT “2"::GOTO 1500
1290 LOCATE ,31,1

1300 A$=INKEYS$ : 1F A$="" GOTO 1300

1310 IF AS<O>CHR$(13) THEN IIEND(M)=2:PRINT "x"::G0TO 1500
1320 LOCATE ,40,%

7330 AS-INKEYS : IF A%="" GOTO 1330

1340 IF A$<>CHR$(13) THEN IIEND(M)=3:PRINT "#";:GOTO 1440
1350 LOCATE ,46,1

1360 AS=INKEY$ : IF A$x™ " GOTO 1360

1370 IF A$<>CHRS$(13) THEN IIEND(M)=2:PRINT “&“::GDTO 1440
1380 LOCATE ,52,1

1390 A$=INKEYS : IF A$:="" GOTO 1390

1400 IF A$<>CHR$(13) THEN IIEND{M!=B:PRINT “#"::GOTO 1440
1410

1420 "saszzaxsxrssiasss Cojumn Special CaSe FEXTFEITTITLIITLITTISILLE
1430 '

1440 IF TP=0 GOTO 1500

1450 1F IIEND(M)=0 THEN TIEND(M)=4

1460 IF IIEND(M)=3 THEN IIENS(MI=5

1410

1480 "saszzszsassrisrsis Switch front to bDack #TI3332333333X33333333
1490 *

1500 IF NODE1(M)>0 GOTO 158D

1510 NODET(M)=NDDEZ(M) : NODEZ2(M)=D

1520 JEND(M)=IIEND(M) : IIEND(M}=0

1530 LOCATE 23,12,%

1540 GOTO 1230

1550 °

1560 'sszraxsssazassazs Option to Change Member Data 333%233333233235853%3%
1570 °

1580 LOCATE 25,1,0

1590 IF ICLR =1 THEN COLOR ,2

1600 PRINT " Data for Member “;M;” If OK press “;ARDS:
1610 A$=INKEYS : IF A$="" GOTO 1610

1620 LOCATE 25,1 : PRINT CLRS$;

1630 IF ICLR =1 THEN COLOR ,8

1640 LOCATE 23,12 : PRINT CLR$

1650 LOCATE 22,12 : PRINT CLR$

1660 FOR I=1 TO 6

1670 LOCATE 132+6,Q(1) : PRINT CLR$

1680 NEXT

1690 IF A$=CHR$(32) THEN NODE1{(M)=0 : IIEND(M)=0 : GOTO B%0
1700 1F FINISH=1 GOTO 1740

1710 NEXT

1720 FINISH=1

1730 *
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1740 "s3zessassxszssss Input Data Sumn.ary FESEEIERRETEIZRATRRSELIRY

1750 °*

1760 CLS

1770 LOCATE 25,1,0

1780 IF ICLR =1 THEN COLOR 2

1790 PRINT LINS

1800 IF ICLR =1 THEN COLOR 15,6

1810 LOCATE 1,1 : PRINT "INPUT DATA SUMMARY “1SFNS

1820 LOCATE 2,58 :PRINT “_":LOCATE 2,14 :PRINT “"nodes"

1830 LOCATE 3,1 : PRINT “member from to length E
m Ixx"

1840 1S8=0 : IH=D

1850 FOR M=t TO NM

1860 IF INT(M\5)%5=M THEN PRINT

1870 PRINT USING " a%#";M;

1880 PRINT USING SPACES$(4)+“ ann “+MID$ (SUPS, TEND(M)+1,1) ;NODE1(M):

1890 PRINT USING SPACES$(3)+" #sx "+HID$(SUP$,IIEND(H)+1.1);NODE2(H):

1900 PRINT USING SPACES(S)+"usn aa8";1L(M);

1910 PRINT USING SPACES(5)+"Na. 8""""":E(M);

1920 PRINT USING SPACES(S)+" 88, 808"~ """ DM(M);

1830 ?RINT USING SPACES(S)+" SN 88" """ X(M)

1940

1950 "sesizizssrszsss Check Hinges and S1ides ssazzessrasxs

1960 *

1870 1F IEND(M)=1 THEN IH=IH+1 : NWH(IH)=NODE1(M)

1580 1F ITEND(M)=Y THEN IH=IH+1 -« NWH{IH)=NODE2(M)

1990 IF IEND(M)=2 THEN IS=IS+1 : NWS{IS)=NODE1(M)

2000 1F ITEND(M)=2 THEN IS=IS41 : NWS(1S)=NODE2(M)

2010 NEXTY

2020 °

2030 FOR I=1 TO IH-1

2040 FOR J=1+1 TOD IH

2050 IF NWH(I)ONWH{S) GOTO 2080

2050 PRINT :PRINT "Node";NWHLI);"has Hinge specd twice!"

2070 GOTO 2260

2080 NEXT

2090 NEXT

2100 ?

2110 FOR I=1 TO 18-

€120 FOR J=141 TO 18

2130 IF NWS({I)<>NWS{J) GOTO 2160

2140 PRINT :PRINT “Node";NWS(1):;"nas Slice specd twice!” .

2150 GOTO 2260

2160 NEXT

2170 NEXT

2180

2190 'sasasaz322222333 ODtION to Change Data 3sstsésesssasssassssssnissense

2200 *

2210 LOCATE 25,1,0

2220 1F ICLR =9 THEN COLOR ,2

2230 PRINT “ Data Summary If OK press ";ARDS:

2240 A$=]NKEY$ : IF A$="" GDTO 2240

2250 IF A$=CHR3(13) GOTOD 2411

2260 LOCATE 25,1,0

2270 1F ICLR =1 THEN COLOR 15,2,2

2280 PRINT CLRS;

2250 LOCATE 2%5,1,0

2300 PRINT ~ Member Number to change *:

2310 J=27 : WNg=""

2320 AS=INPUTS$(1)
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2330 IF INSTR(NUMS,A$)=0 GOTO 2370

2340 MN$=KN$+AS

2350 LOCATE 25,1 : PRINT A$;: ¢ I=I+1

2360 GOTO 2320

2370 IF A$<>CHRS$(13) GOTO 2320

2380 McoVYAL(MNS)

2390 NODE1(M)=0 : IIEND(M)=0

2400 ERASE NwH, NNWS

2405 DIM NWH(23NM) ,NWS(23NM)

2410 GOTO €70

2411 LOCATE 25,1,0

2412 PRINT"PrtSc or any key to continue *s

2413 ASTINKEYS : IF A$="" GOTO 2413

2420 *

2430 'szsrzazssrzzss End of Input Loop * Begin Calcs stzssfsstxsazss
2440 ?

2450 NFR=0

2460 FOR Mz=1 TO NM

2470 N=NODE1(M)

2480 ON JEND(M) GOSUB 2530,2540,2550,2560,2570

2480 N=NDDEZ(M)

2500 ON I1END{M) G9SUB 2530,254D,2550,2560,2570

2510 NEXT

2520 GOTO 281D

2530 P(N,a)=1 NFR=NFR+1 RETURN

2540 P(N,3)=1 2 NFR=NFR+%1 : RETURN

2550 P(N,2)=-1 : NFR=NFR-1 : RETURN

2560 P(N,1)=-% : NFR=NFR-1 : RETURN

2570 P(N,1)==1 : P(N,2)s=1 : NFR=NFR-2 : RETURN

2580 '

2580 'sssaszarsyzaassrsrsas Assign Dof positions for [K] and [M] #s2xxess222
2600 '

2610 I=1 : J=1

2620 NFRz22NN+NFR

2630 FOR N=1 TO NN

2640 FOR H=1 7D 2

2650 IF P(N,H)==1 THEN P(N,H)=NFR+X : I=I+1 : ELSE PN, H)=J 1 J=Jd+1
2660 IF P(N,H+2)= 1 THEN P(N,H+2)=J ISR,

2670 NEXT

2680 NEXT

2693 NDOF=NFR+1-1

2o !

2710 "sssssazsiszassss Pyt DofF for Impact at start BT3RS EIIIILILLRLY
2120 ’ '

2730 IF P(NFIL,1)<>D OR P(NFIL,3)<>0 GOTO 2790

2740 LOCATE 25,1

2750 IF ICLR =% THEN COLOR 15,4,.4

£760 PRINT “No svailable DoF for Impact Load. If OK press “;ARO$:
2770 A$=3KPUTS(1)

2780 IF A$<>CHR$(13) THEN ERASE P : GDTO 2260

2790 IF P(NFIL,3)¢>0 AND P(NFIL,1)=0 THEN IDOF=3 : GOTO 2880
2800 IF P(NFIL,3)c0 AND P(NFIL,1)<>0 THEN 1DOF=1 : GOTO 2880
2810 LOCATE 25,1

2820 IF ICLR =1 THEK COLOR 15.,4.,4

2830 PRINT “Pui Impact on Node “;NFIL:" or $)ide at Node “+NFIL:;™? (N/8)"
2840 A$=INPUTS${1)

2850 IF INSTR("nN",A$)>0 THEN IDOF=1 : GODTO 288D

2660 IF INSTR("sS",A$)>0 THEN IDOF=3 : GOTOD 2880

2870 GOTO 2840

2880 I=1

(3]
L]
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2890 IF P(I,1)=1 THEN J=% : GOTO 2520

2800 1F P(I,2)=1 THEN J=2 : GOTO 2920

2910 I=I+1 : IF I¢=NN GOTO 2890

2920 P(I,J)=P{NFIL,1DOF)

2930 P(NFIL,IDOF)=1

2840 :

2950 :aa:t::ttttas:tttt DIMension [K] ang [®]) and S512iNG SSPEsLERRIINERLYY
2960

2970 DIM K(NDOF,NDOF)

2580 DIM W{NDOF,NDOF)

2550 °*

3000 :ttt:at:tt:ztit:ttts Calc Local stiffnesses and masses TEERLRARERERNLLLY
3010 .
3020 FOR M=1 TD NM

3030 L=L(M)

3040 CST=2+E(M)FX(M)/(L2L3L)/1SM(M)

3050 PRINT #3, MKSS$(CST#ISM(M));MKS$(L);

3060 CHS=DM(M)3L/420/ISM(M)

3070 GOTO 3190

3DBD SMALLK=6 SMALLM=158 sRETURN
3090 SMALLK=3%f tSMALLM=223 :RETURN
3100 SMALLK=-6§ tSMALLM=54 :RETURN

3110 SMALLK=33) SSMALLM==13%] tRETURN
3120 SMALLK=2%L#L  :SMALLM=4%L3| tRETURN
3130 SMALLK=-3%| ISMALLM=133L *RETURN

3140 SMALLK=L®L ISMALLM=-3#L$_  :RETURN
3150 SMALLK=-33L tSMALLM=-223| <RETURN
3160 '

3170 'sxxssaxsasasx Lozate local in global [K) and [M] ssssxssssssszass
3180 *

3150 J=0:N=NDDE1(M):IND=IEND(M)

3200 PLACE(1+4J)=P(N,1)

3210 PLACE({24J)=P(N,2)

3220 IF IND=1 THEN PLACE(24J)zP(N,4)

3230 IF IND=2 THEN PLACE(14J)zP(N,3)

304D PRINT 93, MKI$(PLACE(14J));MKIS${PLACE(2+J));
3259 {F J=D THEN J=2:N=NODEZ2(M):IND=11END(M):GOTO 3200

3260

3270 ’s323rsr3xrass Assemble global [K) and [HM) strsznaseassasas

3280 °*

3290 NZ=0

3300 FOR IR=1 70 4

3310 IF PLACE(IR) > NFR GOTOD 3400

3320 FOR IC=IR T0 4

3330 IF PLACE(IC) » NFR GOTO 3399

3340 ON N2+1C GOSUB 3080.3090.3100,3110.3120,3130.3140.3080.3150.3120
3350 PR=PLACE(IR):PC=PLACE{]C)

3360 IF PR>PC THEN SWAP PR,PC

3370 K(PR,PC}=K(PR,PC)+SMALLKSCST

3380 W{PR,PC)=W({PR,PC)+SMALLMSCHS

3390 NEXT IC

3400 NZ=NZ+4-IR

3410 NEXT IR

3420 ERASE PLACE

3430 NEXT M

3440 CLOSE #3

3450 ?

346D "srrsstsrsizsrrIRsredaLas Print [K] sssessastsasssssstsssssssasssns
3470 °

3480 IF ICLR =1 THEN COLOR 15,6
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3430 CLS

3500 LOCATE 1,1

3510 PRINT “ [K)":PRINT

3520 FOR I=1 TO NFR

3530 FOR J=1 TO 1-t

3540 IF ICLR =1 THEN IF INT(J/2)*2=J THEN COLOR ,2 ELSE COLOR ,6
3550 IF ICLR =1 THEN IF K(J,I)<»0 THEN COLOR 14

3560 PRINT USING 2% :K(J,1):; :IF ICLR =1 THEN COLOR 15

3570 NEXT J

3580 FOR J=1 TO WNFR

3590 IF ICLR =1 THEN IF INT(J\2)%2=J THEN COLOR ,2 ELSE COLOR ,6
3600 IF K{I,J)<>0 THEN NVK=NVK+1 :IF ICLR =1 THEN COLOR 14

3610 PRINT USING 28 ;K(I,J); :1F ICLR =1 THEN COLOR 15

3620 NEXT J

3630 PRINT

3640 NEXT 1

3650 COLOR 15:LOCATE 25,1:PRINT "Press any key to see [M]) “:

3660 AS-INKEYS : IF A$="" GOTO 3660

3670 LOCATE 25,1:FPRINT CLR$

3680 '

3650 TEERSIXTXTRIASILLALTRENS Pr1nt, [H] EEETITXLRIXLEILTATILTISILRILERSLES
3700 °*

3710 IF ICLR =1 THEK COLOR 15,6

3720 CLS

3730 LOCATE 1,4

3740 PRINT * [M)":PRINT

3750 FOR I=1 TO NFR

3760 FOR J=1 7O 1-1

3770 IF ICLR =1 THEN IF INT(J/2)*2:J) THEN COLOR ,2 ELSE COLOR ,6
3780 IF ICLR =1 THEN IF W(J,I)¢<>0 THEN COLOR 14

3790 PRINT USING 2% :W{J,1); :IF ICLR =1 THEN COLOR 15

3B00 NEXT J

3810 FOR J=I TO NFR

3820 IF ICLR =1 THEN IF INT(J\2)®2=J THEN COLOR ,2 ELSE COLOR ,&
3830 IF W(1,J)<>0 THEN NVM=NVM+1 :IF ICLR =1 THEN COLOR 14

3840 PRINT USING 2§ ;wW(I,.J); :IF ICLR =1 THEN COLOR 15

3850 NEXT J

3B60 PRINT

3870 NEXT 1

3880 IF ICLR =1 THEN CDLOR 55

3690 LOCATE 25,1:PRINT “Press any key to continue™:

3900 AS=INKEYS : IF A$=“" GDTO 3900

3910 LOCATE 25,1:PRINT CLRs

3sz20 '

3930 ::t:ssas:::atsz:t Store {K] and [M] on file ss:stsszzszazssesss
3940

3950 PRINT #1, MKS$(NFR) MKS$(NVK):: PRINT #2, HKSi[NFR);HKSS(NVH);
3960 FOR I=1 TO WNFR

3970 FOR J=@ 10 NFR

3980 IF K(I,J)<>0 THEN PRINT #1, MKSS$(K(I,J));MKI$(I);HKI$(J);:LPRINT USING “K(#
T ET DL TR 1T hiata) SN (§ )

3990 IF W(I,J)<>0 THEN PRINT #2, MKS$(W(I,J)):MKI$(I);MKI${J);:
4000 NEXT J

4010 NEXT 1

4011 FOR I=1 TO NFR

4912 FOR J=1 TO NFR

4013 IF W(J,J)<>0 THEN LPRINT USING L ACEL I T DET TN E T iaataaial SRE I 6 G D |
4014 NEXT J

4015 NEXT I

4020 CLOSE #1 : CLOSE #2
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4025 '

4030 133333333331 Y Option to gh;nge NFIL S¥sstassesassnsssny
4035 °

4037 LOCATE 25,1,0

4040 INPUT “Another Loaging Case? (y/n)",A$

4050 IF A$="n" DR A$z="N" THEN END

4050 FLAG=1 : FINISH=0 :ERASE X :ERASE W:NFILO=NFIL

4065 NVKz=D : NVM=D

4070 GOTO 670
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Appendix C.2 Listing for GENJAC.BAS

Appendix C.2 contains the listing for the basic program GENJAC.BAS.
Given a stiffness and mass matrix, this program performs a general jacobian
iteration and determines the eigenvalues and eigenvectors that generate modal
masses equal to unity and modal stiffnesses equal to the squared natural

frequencies of the system.
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10!
20
30 °

+H+btdtti44 Input [K] and [M] t4dbedbtttdtrttst

40 DEFDBL A-2

50 DEFINT H,I,J,N,S

60 CLS

70 INPUT “INPUT File name ":F$
80 OPEN F$+".K" AS #1 LEN=8

90 OPEN F$+".M" AS #2 LEN=8

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
as0
360
370
380
390
400
410
420
437
140

C AT

460
410
480
490
500
510
520
§30
540
550
560
570
SB0
590
500

FIELD #1, 4 AS NDOFKS$,4 AS NVK$

FIELD #2, 4 AS NDOFM$,4 AS KVM$

GET #1 : GET #2 -

IF NDOFK$ <> NDOFM$ THEN CLOSE #1:CLOSE #2:60T0 T0
NVK=CVS(NVKS) 1 NVM=CVS(NVM$)

N=CVS(NDOFK$) .. = -

?IH K{N,N) ,M{N,N},EVEC(N,N) ,EVAL(N),OLDEVAL(N)

:+++++++++++ Put [K] in Matrix Format +4+44+dttetd
FIELD #1, 4 AS K$,2 AS R$,2 AS C$

FOR 1=1 TO NvK

GET #1

K(CVI(RS),CVI{C$))=CVS(KS)

NEXT

FLOSE #1

Thbtbbtted Put [M] in Matrix FOrmat +++44ttdti444
]

FIELD %2, 4 AS M$.2 AS R$,2 AS C$

FOR 1=1 TO NvM '

GET %2

M(CVI(RS),CVI(CS)}=CVS(MS)

NEXT

CLOSE #2

‘444444 Initizlize <Eval> and [Evec] ang Limits ++++itt+44
1

FOR I=7 TO N
EVAL(I)=K(I,I1)/M{1,1)
EVEC (I,I)=1

NEXT

NSWMAX=20

LIM=1E-09
LMSzLIMILIM

Thbdtbbtt SLAPL SWeeD +++++tbbbtitit
]

FOR 8¥W=1 TO NSWMAX
LOCATE 3,1 : PRINT SW;
2

‘Hitttttttetiid Update OVDCEVATDD +44ttttdtittitstttsts

]

FOR I=1 TO N

OLDEVAL (I)=EVAL(I)

NEXT

1

'++++++ Check 1f M(1,3) and K(4,J) are Large Enough 1o Zers +++++4++
THR=10"(-2%5W)

FOR I=1 TO N-1
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605 IF K(1,I)=0 GOTO 1200

610 FOR J=I+1 TO N

615 1F K(J,J)=D GOTQ 1180

620 IF K(I,J)3K(I,JICKTHR*K(I,I)*K(J,J) AND

M(I,J)*MUI,J)<THR*MII,T)3M(J,J) GOTO 1190
630 °*
640 '+++++44+4+ Calc Rotation Matrix Values A and G ++++++++++4
650 '

660 KII=K(I, I)*M(I,J)-K(I,J)*M(1,I)}

670 KSJ=K(J,J)EM(I,I)~K(I,J)=M(J,J)

680 IF KII=0 AND KJJ=0 THEN A=0:G=-K(I,J}/K(J.,J):GOTC 750
690 KM=K{I,I)*M{J,J)-K(J,J)*M({I,I)

700 X=SQR{KMEKM/A+KII*KJSJ)+SGN(KM)EKM/2

710 IF KMOD THEN X=X*SGN(KM) '
720 AzKJJ/X @ G=-KII/X

730 *PRINT*(";1;7,":J:") ":A,G

740 '

750 *4+++4++44+ Zero Element 1, +++brdttddtitt++

760 °

770 FOR H=1 TO I-1

780 KI=K{H,I) : MI=M(H,I)

790 KJ=K(H,J) : MJ=M(H,J)

500 K{H,I1)=Ki+GsKJ : M(H,I)=MI+G*M)
810 K(H,J)=KJ+AsKI :  M{H,J)=MJ+AxM]
B20 NEXT

830 °'

840 FOR H=J+1 TO N
850 KI=K(I,H) : MI=M(I,H)
860 KJ=K(J,H) : MJ=M(J, H)

870 KII,H)=KI+G¥KJ : MI]1,H)=MI+G*M)
880 Ki{J,H)=KJ+A*KI © M(J,HIZMI+AFH]
B90 NEXT

900 '

910 FOR H=I+1 TO J-1
920 KI=K(I,H) : MI=M(I,H)
930 KJ=K(H,J) : MJz=M{H,J)

940 KII,K)=KI+G*KJ :© M{)I.H)=MI+G*MJ
950 KiH,JIzRJ+ASKI © M(H,J1=MJ+ARM]
960 NEXT

970 '

980 KJ=K(J,J) : MJ=M(J,J)

990 K(J,J)=KJ+23AsK(I,J)+ALASK(I,I)

1000 M(J,Jd)=MJI+23AM{] ,J)+A%AZM(],])

1010 K(I,I)}=K(1,1)+23G*K(I,J)+GxGeKJ

1020 M(I,I)=M{1,I1)+2*GsM(],d)+GxGEMS

1030 °’

1040 K(I,J)=0 : M(I,Jd)=0

1050 °*

1060 "FOR IR=1 TO N:FOR IC=1 TO N:PRINT USING “ ##.8""""";K{IR,IC);:NEXT :PRINT
sNEXT:PRINT

1070 'FOR IR=1 TO N:FOR IC=1 TO N:PRINT USING “##&.888":M(IR,3IC);:NEXT :PRINT :N
EXT:PRINT

1080 'STOP

1090 ¢!

1100 "++++++++ Update [Evec] ++++++t+tt444+

1110 °

1120 FOR H=1 TO N

1130 EI=EVEC{H,I)

1140 EJ=EVEC(H,J)

1150 EVEC(H,I)=El+G*Ey
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1160 EVEC(H,J)=EJ+A%E]

1170 NEXT

1180 '

1190 NEXT J

1200 NEXT 1

1210 '

1220 '+4++4++4+4 Update <Evaly ++ddddtdbitbit

1230 °

1240 FOR H=1 TO N

1250 EVAL(H)=K(H,H)/M(H,H)

1260 NEXT

1270 °*

1280 '+4+4++++++ First Convergence Check ++++ttttdttt

1280 *

1300 FOR I=1 TO N

1310 IF ABS(EVAL{I)-OLDEVAL(I))>ABS(LIMsDOLDEVAL(I)) GOTD 1460

1320 NEXT

1330 °

1340 '++++++++++ Second Convergence Check ++++++4+++4+

1350 °

1360 FOR I=1 TO WN-1

1370 FOR J=I+1 TO N

1380 IF K{I,J)*K{I,J)>ABS(LMS*K(1,1)*K(J.J)) OR
MIT,J)sM(T,J)>LMSEMIT, 1 )sM(U, ) GOTO 1460

1330 NEXT J

1400 NEXT 1

1410 PRINT “System Converged”

1420 GOTO 1500

1430 '

1440 T++++btbitd Next Sweep ++++4tetbdttiettts

1450 '

1460 NEXT SW

1470 PRINT “System did not converge after “;NSWMAX:" sweeps”

1480 END

1490 '

1500 '+++4+++44+ Normalize [M] ++++rddddbtisst

1505 °

1510 FOR I=1 TO K

1515 1F EVAL(I)<D THEN EVAL{I)=0

1520 FOR J=1 TO N

1530 EVEC(J,I1)=EVEC(J,T)/SQR(M(I, I})

1540 NEXT

1550 NEXT

1560 '

1570 '++444444++ Sort <Evaly smaliest to largest ++tdetstsdss

1580 * .

1590 FOR I=1 TO N-1

1610 FOR J=I TO N

1620 IF EVAL(I)}>EVAL(J) THEN GOSUB 1670

1630 NEXT

1640 NEXT

1650 GOTO 1730

1660 '

1670 SWAP EVAL(I),EVAL(J)

1680 FOR H=1 TO N

1690 SWAP EVEC(H,I),EVEC(H,J)

1700 NEXT

1710 RETURN

1720 °?

1730 "4#++++444 Print 10 Screen +d+tidititddts
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1740 °
1750 PRINT "mode w2 HZ Period"
1760 FOR I=t TO N
1770 FR=SGR{EVAL(I)})/2/3.14159274
1780 PRINT USING “## “;I; :
PRINT USING " S4.Sp#g”""" “: EVAL(1);FR;
1780 IF EVALII)=D THEN PRINT ° “+CHR$(236):G0OTD 1820
1800 PER=1/FR
1810 PRINT USING * ##.#8%" """ “;PER
1820 NEXT
1830 PRINT:PRINT:PRINT"If al) is OK, press ENTER “
1840 AS=INPUTS(1)
1850 IF A$<>CHR${13) GOTO 2070
1860 '
1870 FOR I=1 TO N
1880 FOR J=t TO N
1890 PRINT USING “&#. #&~~"" "; EVEC(I,J);
1900 NEXT :PRINT :NEXT
1910 PRINT:PRINT:PRINT"If a1l is OK, press ENTER "
1920 A$=INPUTS(1)
1930 1F A$<>CHR$(13) GOTO 2070
1540 '
1950 '+++++4++4+ Store Data +++ddddiddidbiedtt
1960 '
1970 CPEN F$+".N" FOR QUTPUT AS #%
1980 OPEN F$+".P" FOR OUTPUT AS #2
1990 PRINT #1, MKS$(N);MKS$(N);
2000 PRINT #2, MKSH(N);MKS$(N);
2010 FOR 1=1 TO N
2020 PRINT #1, MKDS({EVAL{I));
2030 FOR J=1 TO N
2045 FPINT %2, MKD$L{EVEC(I,d));
2050 NzXT
7060 NEXT
2070 END
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Appendix C.3 Listing for CRIMSIM.BAS

The program CRIMSIM.BAS is listed in Appendix C.3. This program

performs the time stepping numerical analysis described in Chapter 4, using a

constant cable stiffness.
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*CRIMSIM Crane Impact Simulation
20 '
30 'This programme simulates the dynamic behavicr of a craneway system
40 ‘sukject toc hoist motor loads,
50 'A structural stiffness matrix and a structural mass matrix are read
0 ‘ard sssenbled with cable and motor DsoF to form the overall (K] and
10 '[F] system of equations such that

T’

80

90 ' "

00 ' [KI{Y]+[MY{Yi=(F]}
110 !

120 'Position and mcceleration are made dependent over a small timestep DT
230 'such that [K] and {M) can be combined into a single effective stiffness
140 "matrix [Ke). This matrix is inverted and is useéd to solve for (Y}.

159 °*

160 ' "
170 ' (Yi=1/[Kel{{F}+IM1{Y*}])
iep !

185 'Because of the nature of {F] this can further be simplified to
200 !
210 {Y)={1/1Ke]}Fo+{Y*}
22c "
220 "The value Fo is a function of motory spead, By earlier assumptions,
240 ‘velocity is also dependent on position. Therefore there are two-
250 'equations relating Fo and motor speed;
2¢0 ' the one from the dynamic matrix equation aboveand
270 * the motor function -
282 "Trese two equations are solved for the end of the timestep and
2¢) "the predicted value of Fo is used in the dynamic matrix above to
227 'selve for the vector {Y). The procedure is theh repeated for
210 'nev “starting" conditions.
20 'This type of iteration is a lLeading Point Iteration
335 ' For a mere detailed description of the rrogramme and the theory
347 'behind it, see section of Hoist Induced Dynamic Load Facstorsz for
2EC 'Craneway Structures, a thesis required for completicn of the degree
2340 'cf MS:» in Civil Engineering at the University of Alberta
370 COLOR 15,1,2
IBL SLE
290 KEVY OFF
«05 DEFILEL A-2
20 DEFINT I,J,L,G,N,R,C,P
420 FRINT "press Ctrl-Print Screen for hardcopy of all screen in-anc-output.”
430 PRINT"Detailed output te screen=l, Data to file=2, Both=3"
44D INPUT "Type of Output™;1TO0P
450C IF ITOOP=1 GOTO 470
W€D INFUT “"file pame “;DATRFILES
L70 218=" 4+ pp"""" m .
LED 28" 4q g™ "
490 !
5GC
510
€20 PRINT"Newrarksl Constant RAcceleration=? Linear Acceleration=3
530 INRUT "Approximation methed";l
542 ON 1 GOSUB 3420,3540,3620
550 INPUT "Timespan to analive";TIMESPAN
$6C INPUT "Timestep deltaT";DT
7¢ INFUT "Filename with [K) in it ";FILEXS
282 INPUT "Filename with [M) in it ";FILEM3
590 OFEK FILEXS RS #1 LEN=8
600 OPEN FILEMS AS #2 LEN=§
€10 FIELD 01,4 RES K$,.4 RS NVKs
620 FIELD R2,4 RS M$,.4 RS KVMS
630 GET #2,1 : GET 2,1
64C IF K$4<>M$ THEN CLOSE €1 : CLOSE 42 : GOTO 570

| Input math data
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€50 NVReCVE(NVKS) : NVM=CVS{NVMS)

660 NDOF=CVS(KS)+2

670 DIN KE(NDOF.NDDF).ZINDOF.NDOF).YSTAR(NDOF).Y(NDOFJ.DY(NDOP).DDY!NDOF).

YSTATIC(NDOF) ,HI (NDOF ) ,H2 (NDOF }

6EC DIM KINVE+5), RK{NVK+5), CKINVK+5)

€50 '

700
10
120 FIELD 41,4 RS K$, 2 AS IKS, 2 RS JKS

720 FOR I=1 TO RVK

740 GET 91

750 K{I+5)=CVS(KS) @ RK(I+5)1=CVI(IKS)+2 CKII+5)=CVI(JKS)+2

760 NEXT

770 CLOSE 81

780 °

130 ° -

€00

610 INPUT "Cable stiffness, kc “;XC

BE20 FOR I=1 TO ¢

B30 KiI)=KC+X(I)

B4D RK(I)=IKTI1+I"2/13)

B50 CK!{I)=I-(RK(I)-1)%2

EEC IF I=6 THEK CKI(I)=3

E70 IF I=2 OR I=5 THEN K(])=-K(

8BC NEXT

gsn '
g0

LSc
20 W=l

930 GOSUB 3650

940 IJK=2 : GOSUE 3060

950 YSTARTIC(2)=3

- 6D N=2
70 GOSUE 2460

SEC FOR I=1 TO NDOF
990 PRINT YSTATICII);
iC00 NEXT

1C10 PRINT

1020 °
iE PR e N e O s A e Y Put [K] into [Ke) ]
s0s0C
1CEC ERASE KE

1060 WeSCR(BETA2)/DT
1070 GOSUT 3690

1GBD ITR=2 + GOSUE 3060

ipeQ

202 ¢

2130 FIZLD #2,4 AS MS$, 2 AS INS, 2 AS JMS

1120 FCR I=1 TO RVM

113C GET #2

1140 ZI(CVIIIME)+2,CVI{IME)}+2)20VS(MS ) *w '

12%0 IF IM$<>JM$ THEN Z(CUI(JH!)*Z.CVIIIMI)+2)-Z(CVI(IH‘)*2.CVIIJMS)+2)
11¢€¢ KE(CVIKIES)*Z.CVI(JMS)+2)-CVS(HS)'H+x£tCVIllnll42.CVIIJH8)+2)

1170 IF IMS<>JM$ THEN KE(CVI(IME)+2,CVI{INMS )+2)sKE(CVI{IME )42, CVI(IME)42)
1180 NEXT :
1190 CLOSE 42

1200 ¢

121C¢ 'R o=
220 ]

1230 INPUT "Apparent motor mass, mm "; MV

1240 INPUT "Mass of Load, ml “:ML

1250 212,2)%2(2,2)+ML*y

2260 Z(2,1)=2(1,1)+MM*y

1270 KE(2,2)=KE(2,2)+ML*¥

12BC KE(1,1)=KE(1,1)+MM*W

1290 IJK=1 : GOSUE 2060

Input (Ks) B

SVl N TR, VA D SRt T, RN AT e

Raserble [K) §}

IR e s

o Ry S

Invert [K) to get {(Ystatic) [ |

Input {Ms) and put into [Kes) ]

Bl Assemble M) and (Ke) J§
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1300 1JKe=2 : GOSUB 3ue0
210 ! ,
1320 :“ Calc [Z}=IM1/[Ke)l and {H1} and {H2) [ |
1330
1340 Nl
13%0 Hi(l)=1/W : H2(2)=-ML*9.810001/W
13€0 GOSUB 2460
370 FOR I=1 TO NDOF
+380 FCR J=1 TO NDOF
1390 2i1,J)=2(1,3)/(W W)
1420 NENT :NEXT
1410 JJK=1 : GOSUB 3060
1420 °
1630 'R
1460
1650 INPUT "Max Motor Force, Fp ";FP
1e¢€0 INPUT "Initial Motor Ferce, Fi “:FI
1470 INPUT "Pullout Slip, sp “;SP
180 INTUT "Hoisting speed, Vo “;VO
1490 IKNPUT;"Initial slope, mi ":MIs
1500 IF LEN(MIS$)=0 THEN HI‘Z'(FP-FI)'SP'(SP+1)/(l1-5P)'(SP'SP+1)):PRIHT MI1/VO
ELSE MISVAL(MIS)*VO
1510 AE‘((FI*MI)’(FP/(SP‘SPJ)-lFP/SP*HI/2)'2)/(2'PP/SP-FP/(SP‘SPJ-FI)

Input motor data and Calc parabola coefficients B

1520 ROP(1)=FP*(2*SP-1)/[SP*5SP) ¢ ROP({2)=F]

1530 R1PI1)=2%FP*{1-5P}/IVO*5P*SP) t RlP{2)=M1/V0

1540 A2P(1)=-FP/{VO*SP)"2 i AZP(2)=R2/{VO*VO}
150 VC=2*(ROF(1}-ROP(2))/(R1IP{2}-R1P(1)}

156C P=2

1870 !

ite0 ‘B
550
16CC AI=DI/(EETRA1'H1(1))
TE1Q MRY.ELOPE=2"FP* (1+VC/VO-5P)/ (VO*SpPrSP)
€20 1F R1<MRXSLOPE TMEN COLOR 0,4 : PRINT Al MAXELOPE : GOTO 2450
1630
1662 'R
1650
1660 INFUT "initial (Y] vector -Static?(y/ni";R$
1€70 FOF I=1 TO NDOF
1680 1F RA%="n" OR R$="K" THEN INPUT Y!(I)

ELSE Y{(I)=-ML*9,810001*YSTATIC(]):PRINT Yt(I)

Check step size adequate ']

Input initial conditions B

190 NEXT
17C0 PRINT "
1720 IKFUT "initial (Y) vector ~Stationary?{y/n)I":a8
1720 1F Re&="y" OR A$="Y" GOTO 1760
3730 FOR I=1 TO NDOF
17490 INPUT DYI(I)
1750 NEXT
1760 FO=F1
1770 FReKC*(Y(1)-Y{2)+Y(23))
176C 1F FA<O THEN FAsD
178C DDY(1)=(FI-FA)/M¥
1808 PRINT " ° ":CHRS(34) .
1810 FRINT "initial {Y)} vector. (";CHRE(152):"m already established}®;
1820 INPUT " -others Stationary?(y/n) ":A$
1830 IF AS*"y™ OR R$="Y" GOTO 1900
1840 FOR I=2 TO NDOF
1850 INPUT DDYI(1) -
860 NEXT
«B%0D !
1860 NS TR Ty sty
ie90 -
1500 1F ITOOP=1 GQTO 2000
1910 OPEMN DRTAFILES FOR OUTPUT AS #3
1920 RCLN=(NDOF+1)*12
1930 PRINT #3, MK1S(RCLN) ;SPACES (RCLN-2);

Print Data |
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1540
1550
1360
1970
1980
1950
2000

10
2020
2030
204
2050
2060
2070
2080
20580
210¢C
2110

1F ITOOP=1 GOTO 2000

FRINT#3, MKSS(T);MKSS (FR);MKSS{FQ);

FOR I=) TD NDOF

PRINT#3, MKS!(Y(I)I:HMSS(DYII)):HESSIDDY(IJ):

NEXT

IF 1TOOP=2 GOTC 2010

GOSUB 3200

%OCATE 25,1 : PRINT "t=";:PRINT USING PEE. Q8 TN T I PRINT ¢ step=":L;

Aspemble {Y*) vector |

ERKRSE YSTAR

FOR I=1 TO NDQF

FOR J=1+1 TO NDOF

YSTAR(I)=YETAR{I)+Z(1,J)*FNACCSTAR(J)

YSTAR(J)=YSTAR{J $+2(J,1)*FNACCSTAR(I)

NEXT

YSTAR(I}-YSTRRII)+HZ(IJ*ZfI.!)'FNhCCSTAR(I)
b

2120 NEX

21390
2147
2150
210
2170

2180
2.9¢
2200

2210

222

2236
2240
250
.26¢C
227C
229¢
2290

2305 ‘B8

23.¢
2328
2z22C
234C
2362
23¢0
237¢
2380
2380
2400
2410
2420
2430
2440

R N Calculate Fo |

AO=FNVELSTAR(1)%A1-YSTAR(1)/H1(1}

DYM=!N1-A1P(PJ-SORIIAI-AIP(PI)‘Ini-RIP[P))*k'AZP(P)‘(AOP(P)-RO)))
ZU2PR2PIP))
IF P=2 JND DYMSVC THEN Pe1 : GOTO 2170

+ GOTO 2170

IF P=1 AND DYMCVC THEK Pe2
FO=AQ+A22DYN
L]

Solve Y] vector [ |

FOE I=1 TO NDOF
DYSTAR=FNVELSTAR(I}
DOYSTAREFNACCSTAR(Y)
Y{I1=FOXH1(T)+YSTRRIT
$A=KC'IY!11-Y(2)+Y(3))

e e PN Solve [Y) and 1Y) vectors §

LY(1}eY(])3BETALI/DT-DYSTAR
IDY(I)=Y!I)*BETR2/(DT*DT}-DDYSTAR
NEXT 1

L

‘Iterate next step i
E=E+1

T=T+DT

IF ITOOP=2 GOTO 2420

E$=1NKEY$ : IF E$=CHRS$(13) GOTO 1940
GOTT 2410

IF T =¢ TIMESPAN GOTO 1540

CLOSE 43

2450 EXD

24€0
247C
24680
265G
2500
E3
252C
2520
254C
2850
2560
257

2580

et T I

A T :':'r‘ SN

Invert matrix subroutine .

:find largest value in column 3 of [Ke) for pivot

FOR J=N TO NDOF

MAX=KE(J,J) 5 ITOJ=J

FOR I=J+1 TQ WDOF

IF RBSIKE(I,J))>ABS(MAX} THEN MAXSKE(I,J) : ITOJ=1
NEXT

IF ITOJ=J GOTO 2650

FOR L=N TO NDOF

SWAP KE(J,L) ,KE(ITOJ,L:
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59U IF N®I THEN SWAF ZiJ,L),211000,0)

2600 KEXT

2610 IF N=2 THEN SWRP YSTRTIC(J),YSTATIC({ITOJ}

\ ELSE SWAP Hi1(J),H1(ITOJ) : SWAP H2(J) ,H2{ITOJ)

2€20
2630 'make values in cclumn § of [Ke) equal

2660

650 G=1

«£€0 FOR 1=N TO NDOF

2670 1F 1=J GOTO 2760

2680 KDENsFE(],J)

2690 IF KDENeD THEN OMIT(G)=I : G=G+1 : GOTO 2760

2700 KFRC=XE(J,J)/KDEN

2710 FOR L=N TO NDOF

2720 KE(I,L)=KE(I,L}*KFAC

2730 1F N=1 THEN 2(1,L)=2(1,L)SKFAC

2740 KEXT L

275C IF N=2 THEN YSTATIC(I)=YSTATIC(I)sKFAC

ELSE H2{I)=H1(I)*KFAC : H2(1)}=H2(1)*KFAC

2760 NEXT I

2770 ¢

2760 :subtract row J to get D's in column i of [Ke)

2790
2800 G=1
2810 FOR I=X TO NDOF

2B2C IF 1=J GOTO 2890
2830 IF OMITIG)=] THEN G=G+1 : GOTO 2890

2BLD FOR L=N TO NDOF

ZeE0 KE!(I,LIsKE{],L)-KE(J,L)

2860 IF N=1 THEN Z(I,L)=2(1,L)-2(J,L)

287C NEXT L

2BB0 IF N=22 TEEN YETATIC(I)=YSTATIC(I)-YSTATIC(J)

ELSE H1(1)=Hl(T1=H1tJ) ; H2(I)=H2(I)-H2(J}

298 NEXT 1

2900 ERARSE OMIT

2910 NEXT J

2%20 !

2530 'necrmalize

2940 ¢

295C FOR I=N TO NDOF

29€0 IF Re2 THEN YSTRTIC(I}=YSTATIC(I}/KE(I,I) : GOTD 3010
2970 FOR J=X T0 NDOF

2980 ZUI,JIv2{I,JI/KE(I,I)

2990 KEXT J

3000 HA(I=HI(I}/KE(T, I} ¢ H2{I)=H2(I)/KE(1,1)

3010 NEXT 1

3020
3c3o
3042
050
2060 FOE R=1 TO NDOF

3C7C FOR C=1 TO NIOF

3020 OR 1JK GOSUB 23150,3170

308D NEXT C

3100 PRINY

3110 NEXT R

3120 PRINT

3120 RE=INKEYS : IF RS <> CHR${13) GOTOD 3130
140 RETURN

-150 PRINT USING Z18;Z(R.C);

3160 RETURN

3170 PRINT USING Z18:KE(R,C);

3180 RETURN

3190 °
3200
320

int matris |

Step by step Qutput l
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3220
3230
3240
az2s0
3260
3270
3280

290
3300
3310
3320
3330
3340
2350
3360
3370
3380
3330
3400
3410
3420
3430
3640
3450
3460
3470
3480
2450
3500
asie
3520
3530
2540

550
2560
3570
3580
3550
3600
3e10
3g20
3€30
3€40
3€50
2660
3€70
3660
2650
3700
3710
3720
3730
3740
3750
3760

PRINT "Step ®"iE;" T=";T;" ";STRINGS(20,CHKS1219))"

PRINT

PRINT "ym ";Y{1);" dym “:D¥{in™ ddym ":DDY{1)
PRINT "yl ":Yi{2)"m dyl ";DY(2);:" ddyl ";DDY(2)
gﬁig% "ys  ";Y(3);M dys ":DY{(3):" ddys ";DDY(3)
PRINT "ddym*";FNACCSTARI(1); dym* ":FNVELSTAR{1)

PRINT "ddyl®";FNACCSTAR(2):
PRINT "ddys*";FNACCSTAR(3);
PRINT .
FPRINT “parabolat";Pp

PRINT AOP(P):" 4 ":A1P(P)i"w + ";R2P(P);"w"2"
PRINT “Slope= ";Al,"Intercept= ";AD

PRINT "Fox ";FD

"
" dyl®* ";FNVELSTAR{2)
" dya* ":FNVELSTAR{3)

PRINT “Fa= ":Fi

PRINT

RETURN

1]

: R P e Tt Avproximation Procedures |
'Newmark Method v

]

PRINT "In general o=.25 angd &=,5"

INPUT " a=";ALPHA

INPUT " 6=";DELTA

EETAl=DELTA/ALPHA

BETR2=1/RLPHA

BETA3=(1-2*RLPHR)}/(2*ALPHA)

DEF FNRTCSTAR{I}=BETA2* (Y(I)/{DT*DT)+DY(1)/DTI+EETAI*DDY(1)

DEF FNVELSTAR{I)=BETRI*Y(1)/DT+{BETA1-1)*DY(1)+(BETR1/2~1)%DDY{1)%DT
RETURN

1

'Constant Acceleration Method
"

BETAl=2

BETA2=2

DEF FNACCSTAR(I)=2*Y(I)/(DT*DT)+2%DY(1)/DT
DEF FNVELSTAR(I)=2%Y(I}/DT+D¥(I)

RETURN

L]

‘Linear Receleration Method

L]

BETA1=3

BETA2=6

DEF FRACCSTAR(I)=6*Y(1)/(DT*DT)+6%DY(1)/DT+2*DDY(1)
DEF FNVELSTAR(I)*3*Y(1)/DT+2*DY{I}+.5%DDY(])*DT

Put [K] into [Ke] subprogramme JJ

FOR I=1 TO NVK+$§

KE{RKI{I),CK(I))=K(I}/W

IF RKII14>CK(I) THEN KE(CK(I),RKiI) I=K(I)/W
NEXT

RETURN
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Appendix C.4 Listing for CRIS5.BAS

The program CRIS5.BAS is listed in Appendix C.4. This program performs
the time stepping numerical analysis described in Chapter 4, using a non-
constant cable stiffness. An iteration within each time step is used to determine

values for the forces acting on the system.
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600

'CRISS Crane Impact Simulation
1

'This programme simulates the dynamic behavior of a craneway system
'subject to hoist motor loads.

'Normal stiffness and mass matrices are read in

'The system of equations is

' [kn} {W}+[un){W}={F}

' {w} are the normal DsoF of the system.

‘Displacszinent, velocity and acceleration are made dependent

'over a smali timestep DT, so {F} can be expressed

’in terms of velocities.

'The motor forcing function 1n {F} is expressed in terms of

'motor velocity in a seperate equation,

'These two equations are solved for the end of the timestep an:

‘the predicted {F} is used in the dynamic matrix above to

'splve for the vector {W}. The procedure is then repeated for

‘new “"starting” conditions.

'This type of iteration is . Leading Point Iteration

' For a more getatted description of the progoramme ang the theory
'behind 1t, see section of Hoist Induceoc Dynamic Loag Factors for
'Cranexway Strugtures, a thesis reaguired tor completion ot the decree
'of MSc wn Civil Engineering a8t the Uriversity of AlLerts

L]

Prrszorarorrn: Inmitialeze sriiiiinisiioiiiiicoes:
’

DEFDBL A-2Z

DEFINT N,I1,J,Q,H

Zs="pd agg" " "

]

PRINT “press Ctrl-Print Screen for hardcopy of all screen in-ang-output.”
¥

Yrirsrriisaitiie: Input Structural Data :isriisisiciiic:

INPUT “"Input Test Name “,NTF$
INPUT "Structure filename “;NSF$
INPUT "Input Symetry Factor" ;ISF
H

'Get Masses
k]

T§=".M" :GOSUB §30
GET #1

MM=CYS(VS$)

GET #1
MLG=CVS(V$)*9,.810001
ML=CVS(VS)

CLOSE 1

) ]

:Gat [w?]

T$=".N" :GOSUB 630
DIM KN(NDOF)

FIELD #1, 8 AS V§
FOR I=1 TO NDOF
GET #1
KN{I)=CVD(VS)

NEXT

CLOSE #1
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610 GOTO 710

620 *

630 ’'Open Input Files Subroutine
640 '

650 OPEN NSF$+T$ AS ®#1 LEN=8

660 FIELD #1,4 AS V§,4 AS NV§

670 GET #1,1

650 NDOF=CVS(V$) 1 NV=CVS(NVS$)

650 RETURN

00 °

710 *Get {¢)

120 °?

730 T$=".P" : GOSUB 630

740 DIM P{NDOF ,KDOF)

750 FIELD #1, 8 A5 V§

760 FOR 1=1 TO NDOF

770 FOR J=1 TO NDOF

780 GET #1

780 P(1,J)=CVD{V$)

800 NEXT

o370 NEXT

820 CLOSE

830 °

RAD z:::zizix:: Open Test Output Files trsiesozorniise:
850 °

860 OPEN NTF$+".W" FOR OUTPUT AS #1
B70 OPEN NTF$+".S" FOR QUTPUT AS &2
880 OPEN NTF$+".I" FOR OUTPUT AS #3

890 PRINT #3, “Test Filename = “;NTF$

900 PRINT #3, “Structure Filename = ";NSF§

§10 PRINT #3, "Svmetry Factor =";ISF

920 °

g30 'st:izsiizzsisss Input Cable Data ::ii:xsisiccocozic:
040 '

950 LIM=.000001

960 CNV=MLG

970 ICKv=2

680 INPUT "Cable Maximum Stiffness, k¢ max ";KC

90 INPUT "Tension Offset, Tf “;TF

1000 IF TF>0 THEN TF=-TF

1010 INPUT “Tension Rate, Tbar ";TB

1020 IF TB»>Q THEN T=-TB

1030 INPUT "Number ot Lines ";NL .

1040 PRINT #3, "kc max=";KC,"Tf =";TF,"Tbar =";T8

1050 PRINT #3, "Number of Lines =";NL

1060 KC=KC/ISF/NL:TF=TF/1SF/NL:TB=TB/1SF/NL

1070 *

1080 ?:::::: Input motor data and Calc parabola coefficients :::ii:ii:

1080 °*

1100 INPUT “Max Motor Force, Fp ":FP

1110 INPUT “Initial Motor Force, Fi ";FI

1120 INPUT “"Pullout S1ip, sp ";SP

1130 INPUT "Hoisting speed, Vo ";VO

1140 PRINT #3,“Fp = ";FP,"Fi = “sFl,"sp = ":SP :
PRINT #3,"Vo = ";VO ;

1150 VO=VOSNL

1160 INPUT “Initial slope, mi “;MI$

1170 IF LEN(MI$)=0 THEN HI:Z*(FP-FI)'SP*(SP+1)/((1-SP)3(SP*SP+1))/VD:PRINT Ml

ELSE MI=VAL(MIS)

1180 PRINT #3,"mi = ";MI
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1180 FP=FP/1SF : FI=F1/ISF: MI=MI'I&F

1200 ACP(1)=FP%(235P~1)/(5Ps5EP) : ADP(2)=F1
1210 ATP(1)=2%FP*(1-5P)/(VO3SPISP) : AIP(2)=MI
1220 VC=23(AOP(2)-ADP(1}}/(ATP{1)~AIP(2))

1230 A2P{1}=-FP/(VO3SP)"2 : AZP{2)=(ATP{1)-A1P(2))/(22VC)+A2P(1)
1240 '

1250 *::::::2:::: Select Approximation Procedure :::z:izssizss:

1260 *

1270 PRINT"Newmark=1 Constant Acceleration=2 Linear Acceleration=3
1260 INPUT “Approximation method” ;1

12%0 ON 1 GOTO 1310,1430,1520

1300 °

1310 'Newmark Method

1320 °

1330 PRINT #3, "Newmark"

1340 PRINT "In general a=,25 and 5=.5"

1350 INPUT " a=";ALPHA

1360 INPUT " &=";DELTA

1370 BETAT1=DELTA/ALPHA

1350 BETA2=1/ALPHA

1390 DEF FNSSiD,V.A)=D+VADT+( ,5~A L PHA 12AS[T#DT

1400 [=F FNSI1D,V,A)=D+(1-1/BETAY1 )aVaDT+(.5-1/BETA1 )2 ADT2DT
1410 GOTO 1600

1420 '

143C 'Constant Acceleration Method

1480 '

1450 PRINT 3, “Constant”

1460 BETAY=2

1470 BETA2=2

1480 DEF FNSS(D,V,A)zD+VeDT

1490 DEF FNS{D,V,A)=D+VveDT/2

1500 GOTO 1600

1510 °?

1520 'Linear Acceleration Method

1530 '

1540 PRINT #3, “Linear”

1560 BETA1=3

1560 BETA2:=6

1570 DEF FNSS(D,V,A)=D+VaDT+AsDT2DT/3

1580 DEF FN3(D,V,A)=D+23VvsDT/3+A3DT3DT/6

1580 °

1600 ":z:z:ircze:: Input Time Data ::z::zszzcoose

1610

1620 INPUT “Input number of timesteps “;NTS

1630 INPUT “Timestep deltaT”;DT

1640

1650 *Select Reading step

1660 '

1670 PRINT “"Freguency of data saved.”

1680 INPUT "(Default = 1)",STPX

1680 IF STPX=0 THEN STPX=1

1100
1710 '::
1720 *
1730 FOR NEDOF=NDOF TO 1 STEP -1

1740 IF SQR(KN(NEDOF))<1/DT GOTO 1760

1750 NEXT

1760 IF NEDOF=NDCF GOTO 1780

1770 PRINT “Only the first”;NEDDF:" modal D’soF will be used !

1780 DIM W(REZDOF),A(NEDOF},B{NEDOF),C(NEDOF),D(NEDOF ), DW{NEDOF ), DDW{NEDOF), KO

sritizii: Filter Number of DsoF z:zsssssssessccees
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EDOF ), KG{NEDOF ) ,PC(NEDOF } , KPD{NEDOF )

1790 °

1800 *:s:i:rzzzizsss:: Calculate Constants Trlrzrrzeisees

1810 °

1820 PRINT" {A} {8} {c} [0} 1{ T30

1830 FOR I=1 TO NEDOF

1840 PC(I)=P(3,1)~-P(2,1)+P{1,I)/NL

1850 A(I)=P{1,1)/(¥N(1)+BETA2/(DT2DT))

1860 B(I)=P{2,1)/{KN(I)+BETA2/{DT*DT))

1870 C(I)=PC(I)/(KN(1)+BETA2/(DT*DT))

1860 D(I)=BETAZ/(BETA2+DT¥DTsKN(I))

1890 PRINT I;

1900 fRINT USING “ #8.#8#877"" “:A(1):B(I);C(1);D(1):PC(I)

1910

1920 Z1=PC(I)*C(I)+21

1930 NEXY

1940 Z2=21-PC{2)sC(2)

1950 ?

1960 Z1=1+NL*KCxZ1

1870 ZG=1-KC2DT3DT/(Z13BETA2*MMENL )

1580 FG=KC*G,B10D013DT*DT/(BETA2221225)

1930 PRINT

2000 PRINT™ z1 29 Fg "

2010 PRINT USING ™ s, sppa~""" "+21;2G:FG

2020 PRINT

2030 *

2040 22=1+NL*KC322

2050 ZO=1-KC*DT#DT/(Z2%BETA28MMINL )

2060 PRINT

2070 PRINT" 22 z0 *

2080 PRINT USING " ##.#k#s"""" “:.22:20

2090 PRINT

2100 *

2110 PRINT" kcesey D]

2120 FOR I=1 TO NEDOF

2130 KPD(I)=KC*PC(I)xD(I)

2140 PRINT I:

2150 PRINT USING " w8, 4##8°""" “:kPD(I)

2160 NEXT

2170 PRINT

2180 !

2190 PRINT "L=z-m2g al1=";

2200 A1F=MM*BETA2/(DTS8ETA1)

2210 KS=MMsBETA2/(DT=DT)

2220 PRINT USING " S8 .8888"""" “:AVF/2G

2230 PRINT USING “ Ks= #&,.8&88°""" “1KS$/2G

2240 PRINT “L=CT at=";

2250 PRINT USING " ##.#p8%"""" “":A1F/Z20

2260 PRINT USING ° ks= W8, #k#8"""" “:K$/20

2270 °

2280 ’:tizziiizziz: Check Slope seszzosszcsezes:

2290 °*

2300 AIMX=A1TF/2G : IF 2G>20 THEN A1MX=A1F/Z0

2310 MXS=22AZP(1)sVC+A1IP{1)

2320 IF AIMX<MXS THEN PRINT ATMX;"<¢";MXS;" Choose smaller timestep" :

GOTO 1600

2330 PRINT #3, "Number of time steps = “;NTS,
“Timestep = ":DT

2340 fRINT #1,MKIS(NEDOF+3) ;MKIS(NTS/STPX ) ;MY.S$(DTSSTPX) : SPACES ( (NEDOF+1)84);

2350
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2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
25170
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2120
2730
2740
2750
2760
2110
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2500
2910
2920
2930
2940
2950

PRINT "Case 1 - Load hanging in the air, all velsz0, all accs=0":PRINT

PRINT "Case 2 - Load on the groung, cable 1n tension,”

PRINT all vels=0, all accs=0":PRINT

PRINT “Case 3 - Load on the ground, cable slack,”

PRINT " ali vels=0, all accs=0":PRINT

PRINT "Case 4 - All disp, vels, accs, are prescribed.”:PRINT

INPUT "select a case number.”,ISC
PRINT #3, “Starting Case ";1SC;
ON ISC GOTO 2480,2580,2840,3040

1

*Case 1 - Load hanging
¥

PRINT #3, : CLOSE #3
CT=MLG/NL

bDY1=0

TO=MLG/NL

L==MLG

GOSuB 2700

GOTO 3070

‘case 2 - Load on around. cable in tension
¥

PRINT “Input cable tension, CT. O<CT<";MLG/NL&ISF;
INPUT €T

PRINT #3, " Csnle Tension = ";CT : CLOSE #3
CT=CT/ISF

Dy1=0

L==CT2NL

IF CT<=0 THEN CT=0:G0TO 2900

GOSUB 2700

GOTO 3070

'cable in Tension Subroutine
b ]

=TF&#(1-EXP(CT/TB})
Q=2 : Y3=0

FOR I=3 TO NEDOF
W(1)=-P(3,1)8CTsNL/KN(I)
Y3zY3+P(3,1)*K(I)
NEXT
YC=(ET-X)/KC
W(2)=(Y3-YC)/P(2,2)

FO=FI

GOSUB 2980

RETURN

]

‘Case 3 ~ Cable slack

'

PRINT “Input motor speed attained at which *
PRINT “all slack is used up. ( dy(1) synchronous =":V0;")}";
INPUT DY

PRINT #3, " dy1 at start = “;DY1: CLOSE #3
Q=2 :IF DY1>VC THEN Q=1

Dw(1)=Dv1/P(1,1)

FO=ADP{Q)+ATP(Q)*DY1+A2P(Q)*DY13DY

CT=0
t=0

GOSUB 2980
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2960
2970
2980
2990
3000
3010
3020
3030
3040
30L0
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3180
3200
3210
3z20
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3320
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3450
3500
3510
3520
3530
3540
3550

GOTO 3070
1

DDY1={rD~CT) /MM
DDM(1)=DDY1/P(1,1)
RETURN

¥

'Case 4 - Prescribed
?RINT “Case 4 is not written yet, Sorry” : GOTO 236D

CTB=CT : CTC=CT

BDY1(1)=A1P({ 1)-MM*BETA2/DT/BETAY
BDY1(2)=A1P(2)-MM*BETA2/DT/BETAI

PRINT #2, WKI$(3);MKI$(hZDOF4+1);MKS$(1);SPACES(4):
FOR 1=1 TO NEPOF

PRINT #2, MKS$(W(I));MKSS$(DW(I));MKSS$(DDW(I));
NEXT

PRINT #2, MKSS$(Y1);MKS$(DY1);MKS${DDY1):

CLOSE #2

FOR ITS=1 TO NTS

LGCATE 24,60 : PRINT ITS:

1]

Yirrrsiiiic Print Data riiiiiiieic::

IF FIX((ITS-1)/STPX)sSTPX<>ITS-1 GOTO 3310

FOR I=1 TO NEDOF

PRINT #1, MKSS(W(1));

NEXT

PRINT #1, MKS${CT);MKS${FO);MKS$(YC);
IT =0¢

)

'Calculate First Guess for CT

IF TF=0 THEN X=0 :GOTO 3430
CTA=CTE : CTB=CTC : CTC=CT
CT=CTA-3sCTB+33CTC

IF CT<0 THEN {T=0

ICNV=1

L}

LX)

ifizzze:s Cale yi1% and y18% sizzzszzssssce:
, )

Y18=FNS(Y¥1,DY1,DDY1)
Y18S8=FNSE(Y1,DY1,0DY1)
»

1sretsr Cale Koebe>[D]{wee) ::

KPDWSS=0

FOR I=1 TO NEDOF
KPDWSS=KPDWSS+KPD (I )}#FNSS{W(1),0W(1),00W(I))

NEXT

t1:: Check if Load is hanging z:zzsscsszzreess

IF TO=MLG/NL. GOTO 3780
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3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
37120
3730
3740
3180
3760
3710
37180
37190
asoo
3810
3820
3830
3840
3850
3560
3870
3880
38%0
3sod
3510
3920
3930
3940
3950
3960
3970
3980
3550
4000
4010
4026
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150

seiii: Colc o0 and &t :oozsisiizozizocinie
'Load Supported

A1=A1F/20
ADLX=KS/Z202(Y15-Y155)+KPDWSS/(Z2¢20)
22=22220

GOSUB 3880

L=-NL=*CT

IF CT<MLG/NL GOTO 4370

[]

’Load Changing from Supported to Hanging
]

TO=CT: TG=CT:FOV=FO: GOTO 3780

T4=CT
CT=(TO-MLG/NL)2(T4-T1)/(TO-T1)+MLG/NL
FO=FO14{FO-FO1)*(CT~T0)/(T4-TO)
L=-MLG

TO=MLG/NL

GOTO 4370

*Load Hanging
1

A1=A1F/26
ADLX=K5/ZG3(Y15-Y185)+FG+KPDOWSS/(21%2G)
22=2132G

GOSUB 3880

L=-MLG

IF TO>MLG/NL GDTO 3710

?OTO 4370

‘Constant K¢ case
’

IF TF=0 THEN X=0 : GOTO 4000
]

’ Iteration : Calc DY1 from equation of motion and
: CT from parabolic motor equation
COY1=A0P{Q)-MM*BETA22 (Y15-Y188) /DT 2-CT .
DY1=(-BOY1(Q)-SOR{BDY1(Q) " 2-4*A2P(Q)*CDY1))/2/A2P(Q)

IF Q=2 AND DY1>VC THEN Q=1 : GOTO 3980

IF Q=1 AND DY1<VC THEN Q=2 : GOTO 3980
AD=ADP(Q)~(A1-A1P(Q) )*DYI+A2P(Q)*DY1"2

X=(AD-AQLX)222 '

IF X<TF THEN ICNV=2 :G0TO 4120

CT2=CT

CT=TB*LOG(1~-X/TF)

GOTO 4240

FO=AD+A12DY1

DDY1=BETA2+(DY130T/BETA1+4Y12-Y158)/(DT*DT)

gETURN

*backwards {1teration
1

X=TFe{1-EXP(CT/TB))
AD=X/ZZ+ADLX
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4160 DY1=(A1-ATP(Q)-SQR{(A1-A1P{Q)})"2-42A2P(Q)* (ADP({Q)-AD) }})/2/A2P(Q)
4170 IF Q=2 AND DY1>VC THEN Q=1 : GOTO 4150
4180 IF Q=1 AND OY1<VC THEN Q=2 : GOTO 4150
4190 FOzAD+ATSDYY

4200 DDY1=BETA2*(DY1sDT/BETA1+Y1S-Y155)/(DT4DT)
4205 CT2=CT

4210 CT=FO-MM*DDYt

42ap !

4240 'Check for convergence

4250 '

4270 IF ABS{CT~CT2)<LIM THEN GOTD 4089

4280 IT=IT+1

4290 IF IT=1 THEN CTG=(CT24CT)/2 : GOTO 4310
4300 CTG=(CT2/(CT-LT2)+A/(A-B))/(1/(CT-CT2)+1/(A-B))
4310 A=CT2

4320 B=CT

4330 CNV=ABS(CT-CT2)

4340 CT=CTG

4350 ON ICNV GOTO 3550,4120

4360 °*

4370 ":z:zizz: Cale y1, {w}, {oW), {dow) and yc :::::::::
4380 '

4390 CNV=MLG

4400 YCOLD=YC

4410 Y1=DT*DY1/BETA1+Y15

4420 W(1)=Y1/P(1,1)

4430 DW(1}=DY1/P(1,1)

4440 DOW(1)=DDY1/P(1,1)

4450 YC=PC(1)*W(1)

4460 FOR I=2 TO NEDOF

4470 WS=FNS(W(I),DniI),DDW(I))

4480 WSS=FNSS{W(I},DW(I),DDW(I})

4490 W(I)=B(I)*L-NL*CT2C(1)+D(1)*WSS

4500 DW(I)=BETA1/DT#{W{I)-WS)

4510 DDW(I)=BETAZ/(DT#0T)*(W(I)-WSS)

4520 YC=YC+PC{I)3w(l1)

4530 NEXT

4540 NEXT ITS

4550 CLOSE

4560 '

4570 'w2y

4580 °

4590 'Thrs program calcs {¥} = [¢]{w}

4600 ' where {W} nas been generated from CRIS and [¢] 7rom GENJAC
4610 '

4620 ‘Get [¢]

4630 °*

4640 DEFSNG P,D,Y

4650 '

4660 OPEN NSF$+™.P" A5 #1 LEN=8

4670 FIELD #1, < AS V$ :

4680 GET ®1

4690 NDOF=CVS{V$)

4700 FIELD #1, 8 AS V§

4710 DIM P(NDOF,NDOF)

4720 FOR 1=1 TO NDOF

4730 FOR J=1 TO NDOF

4740 GET #1

4750 P{I,J)=CVD(V$)

4760 NEXT
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4770 NEXT

4780 CLOSE

4790 °

4B00 'Get (W]} size

4810 *'

4820 OPEN NTF$+“.W" AS #1 LEN = B

4830 FIELD #1, 2 AS N$, 2 AS NPTS, 4 AS DT

4840 GET #1

4850 N=CVI(N$)-3

4860 IF N<> NDOF THEN PRINT"{e¢) and {W} not the same size! ":PRINT“Extra {W}s as
sumed to be 0s.”

4870 NPTS=CVI(NPTS$)

4860 DT=CvS(DT$)

4390 CLOSE

4900 DIM WS$(N)}

4910 '

4920 'Set up {Y) output files

4930 '

4940 OPEN NTF$+".Y" FOR OUTPUT AS #2

4950 OPEN NTF$+"Y.DAT" FOR QUTPUT AS #3

4960 °

4970 'Order {W) data

4980 °*

4990 OPEN NTF$+".W" AS #1 LENz4sN+12

5000 FOR I=1 TO N

5010 FIELD #1, (I-1)*4 AS NULLS, 4 AS Ws(I)

5020 NEXT

5030 FIELD #1, N4 AS NULLS, 4 AS CT$, 4 AS FD$, 4 AS YC$

5040 GET m1

5050 PRINT #2, MKI$(NDOF);NPT$;DT$;SPACES((NDOF-2)%4):

5060 ?

5070 'Loop for each reading

5080 '

5050 FOR H=1 TO NPTS

£100 GET #1, H+1

5110 °*

5120 'Cale {yvi=[e]{w}

5130 °*

5140 PRINT #3, USING "al.tll“"““";DTt(H-1);
5150 FOR I=1 TD NDOF .
5160 ¥=0

5170 FOR J=1 TO N

5180 Y=P(I,J)SCVS(W${J))+Y

5190 NEXT

5200 '

£210 'Store {Y}

5220 '

5230 PRINT &2, MKS$(Y);

5240 IF I<d4 THEN PRINT #3, USING ", #4.488°""~"".y.
5250 NEXT

5260 PRINT ®3, USING ", BN BEETTTTUCISFECVS(CTS); ISFSCVS(FOS):CVS(YCS)
5270 NEXT

5280 °'

5290 CLOSE

5300 °*

5310 ' VMSES

5320 *

5330 'This program calcs shears,moments, and strasin energy
5340 'for beam members created by MAKEKAM and {Y} from
5350 'w2Y. Part of thesis for Doug Barrett. (me)
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£360 *

5370 'Open Member Datafile

5380 *

5390 DEFINT P

5400 DEFSNG V,M,5,D,A,T

5410 OPEN NSF$+".L" AS #2 LENz=1§

5420 FIELD %2, 2 AS NM$

5430 GET #2,1

5440 NM=CVI{NMS$)

5450 FIELD #2, 4 AS CSTS, 4 AS Ls,

AS P$(1), 2 AS P${2), 2 AS P$(3), 2 A

S Ps(4)

5460 °

5470 'Open Y data and get size

5480 °

5490 OPEN NTF$+".Y" AS #1 LEN=8

5500 FIELD #1,2 AS NDOF$, 2 AS NPTSS, 4 AS DT$
5510 GET #1,1

5520 NDOF=CVI(NDOFS$) : NPTS=CVI(NPTSS) : DT=CvS(DT$)
5530 CLOSE #1

5540 OPEN NTF$+".Y" AS %1 |ENz42(NDOF)

£550 °?

5560 'Loop for each member

5570 °

5580 OPEN NTF$+"MX.DAT" FOR OUTPUT AS #4

£590 FOR MX=1 TO NM

&600 '

5610 'Get Member Data

5620 '

5630 GET #2

5640 FOR I=1 TO 4 : P(I)=CVI(P${I)) : NEXY
5650 L=CVS(L$) : CST=CVYS(CST$)

5660 '

5670 ’Select Ys Required

5680 '

5690 FOR I=1TO 4

5700 IF P(I)+2>NDOF THEN Y$(I)=MKS$(0) : GOTD 5720
5710 FIELD #1, (P(I)+1)*4 AS NULLS, 4 AS Y$(I)
£120 NEXT

5730 °*

$740 ’Loop for Each Timestep

5750 °

5760 DPEN N?F$+RIGHT$(STR3(HX).(FIX(LOG(MX)/LDG(1D))+1))+".DAT” FOR OUTPUT AS #3
5770 FOR PT=1 TO NPTS-1 )
5780 °*

5790 'Get y values

5800 *

5810 GET #1,PT+1

5820 FOR I=1 70 4

5830 Y{I)=CVS(Y$(1))

5840 NEXT

5850 °

5860 'Calculate Forces and Energy

5870 *

S5B880 VI=CST2(63Y{1)+38Y(2)tL-62Y(3)+32.3Y(4))
5890 Mi=CSTaL#{3sY{1)+28Y(2)8L-33Y(3)+LsY(4))
5A00 M2=CSTHL¥(35Y{1)+Y(2)2L-33Y(3)+L222Y(4))
5310 SE=((Y(1)=Y(3))sVi+Y(2)*M14Y(4)8M2)/2
5520 ?1:?(1):A1=Y(2):02=Y(3):A2=Y(4)

5330

363



5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6020
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6150
6200
6210
6220
6230
6240

‘Check for Max

T=DT*(PT-1)

IF PT>1 GOTC 6060

VIMAX=ABS (V1)
MIMAX=ABS(M1)
M2ZMAX=ABS(M2)
SEMAX=ABS(SE)
DIMAX=ABS(D1)
ATMAX=ABS (A1)
D2MAX=ABS(D2)
A2MAX=ABS(A2)

IF ABS(Vi)>VIMAX
IF ABS({M1)>MIMAX
IF ABS{M2):M2MAX
IF ABS(SE)>SEMAX
IF ABS(D1)>DIMAX
IF ABS{A1)>ATMAX
IF ABS(D2)>D2MAX
IF ABS(AZ)>A2MAX

'Store Data
1

THEN VIMAX=ABS(V1)
THEN M1MAX=ABS(M1)
THEN M2MAXzABS(M2)
THEN SEMAXzABS(SE)
THEN D1MAX=ABS(D1)
THEN ATMAX=ABS(A1)
THEN D2MAX=ABS(D2)
THEN A2MAX=ABS(A2)

T TVIMAX=T
THIMAX=T
TM2ZHAX=T
TSERAX=T
TDIMAX=T
TAIMAX=T
TD2MAX=T
: TAZMAX=T

s sh wa s wa

PRINT #3,USING "#% #ap~""" - T,V1,M1,M2,8€,D1,A1,D2,A2
?

NEXT PT

‘print Max data

PRIKT #4, USING “###," ;MX;

PRINT ¥4, USING “#&.kpa""""

TSEMAX;

6250 PRINT #4, USING "##.8K8"""" “:DIMAX

TAZMAX

6260
6270
6280
£290
6300
6310
6320
6330

CLOSE #3
NEXT Mx

CLOSE

KILL MTF$+" . W"
KILL NTF$+",¥"
CLEAR

GOTO 290
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APPENDIX D
DERIVATIONS

Appendix D contains the mathematical derivations and proofs referred to in

Chapters 4 and 5

Appendix D.1  Derivaiion of Parabolic Compound Curve

Figure D.1 shows the compound parabolic curve used to approximate the
force versus motor speed relationship. Parabola #1 passes through F = 0 when
V = Vo, and passes through F = Fp when V = Vp = V(1 - Sp), with slope of

zero. By symetry,
F1 = C(Vo - V) (Vo(l -ZSP) - V) ’
where C is a constant. When V = Vp,

F1 =Fp = C(Vo - Vp)(2Vp -Vo -Vp) ,

Fp = -C(Vo - Vp)z ’

and therefore C= V;:Vp) .

The expression for C in (D.1.2) is substituted into equation (D.1.1).

-F
Fi = (o vp2 (Vo= VI2Vp-Vo-V)

F

- F
WV V2 * Woovp? @Vp-Vo+ VoIV

p)

F
= (VO - Vp) (V0(2Vp - VO))
The coefficients for the first parabola are the following.

Fp Vo Fp(2sp -1)
bopt = (Vo - V12 (Vo-2Vp) = - S
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bror = 2Fp Vp _ 2Fp Vp
1p1 = (Vo - Vp)?. T Voi- 5p2

Fp  __-Fp
-Vp)2 T Vp2-Vp?

bap1 = Vo

The subscript “p1” refers to the fact that these coefficients are for the first
parabola of the compound curve.
Parabola #2 passes through F = Fj when V = 0, with slope m;.

Fo=F +mjV + bng V2

The subscript “p2” refers to the fact that the coefficient is for the second
parabola of the compound curve.
Parabola #1 and #2 meet at V = V¢ with same slope.

dF»
qv atVe = mj+ 2bgp2 Ve (D.1.3)

dFy 2F,Vp,  2FpVe  2F
and gy atVe= V—Ogs—p% - WE?: _Lv02sp2 (Vp - Vo) (D.1.4)

From (D.1.3) and (D.1.4), the following expression for bap2 results.

2F
V_OZSPEZ (Vp - Ve) - mj

bapy = Ve (D.1.5)

When V = V¢,
Fi = gz (Ve - 2VpVe + Vo@Vp - Vo (D.16)
and Fz =Fj + mjVe¢ + bppa V2 . (D.1.7)

Equating the right sides of (D.1.6) and (D.1.7), and using the expression for
b2p2 from (D.1.5), gives the following.
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-F
m_—%ﬁ)—f (Ve2 - 2VpVe +2VoVp - Vo?)

F miVe
= Fj +mj V¢ +V£IJ—?(Vp- Vo)Ve -—3

2F,V . mj  FpV F 5 .
Vet sp2 TMi +vfzg§z)=v—oz§};(vo -2VoVp) - Fi  (D.1.8)
Equation (D.1.8) is rewritten as an expression for Ve.

F
;I% (2sp-1) - F

bop1 - Fi
Vogspz 2 2 2

Appendix D.2 Proof that coi and 0)% Bound m§ and co%

The expressions for the natural frequencies of the 3DoF system are given in
Equations (5.28) and (5.21).

k
Qz+m§—-\/(9.2+m§)2-4co§(m§+ 2c J

n‘mpy,

0)% = ) (5.20)

n Mg,

k
Qz+m§+V(Qz+m§)2-4m§(m§+ 2(: )
m% = 2 (5.21)

The product of the natural frequencies is the following.
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k
Q%+ (og)2 ~ (% + m§)2 + 4m§ (mg + ——g—c-—J

22 n mpy,
W3 = 4
2
2 2 wske
= Wom. + D.2.1
5 0c n:mm ( )

When mm approaches infinity, equation (D.2.1) becomes

m%oa% = co%cog . (D.2.2)

The sum of the natural frequencies is the following.

2 2 2. 2 2 » ke ke
+ 03 = Q°4+0; = 05 + W + T+ D.2.3
(")2 3 S C 2 ms nmm ( )

Because the sum of m% and m% is greater than the sum of w3 and (og , it must
be the case that m% > @} and mg, and that m% < @} and cog .

Appendix D.3 Proof that (1-%)(1-7v;) = -

The following is a proof that when mp, approaches infinity, (1 -v,)(1 - y3)
approaches -u. From equations (D.2.1) and (D.2.3) of Appendix D.2, the
product and sum of the natural frequencies is the following.

2 2 2 2 wlke
= W0, + D.3.1
L]0 2) s W¢ I,Ime ( )]
o2+ 0l = QP ral =0l + o+ ke +—2———-kc (D.3.2)
s S ms  nmp,

The product of (1 - ;) and (1 - y3) is written in terms of frequencies.

2 2
(1-v2)1-73) = [ 2(02 zJ( 20)3 QJ (D.3.3)

i ~ W
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The denominator in equation (D.3.3) is expanded and simplified using
equations (D.3.1) and (D.3.2).

(@5 - oD@} - d) = 0fed - Wi} + o)) + o

: 2

2 2 0ske 2( 2 2 ke ke 4
= WWe + - ;| We + ©; + + +

5% 2 s| Y% S T mg " p? s

= ~ e (D.3.4)
Therefore, the product of (1-7,) and (1 -7y3) is

k

mg + 2C
n“mpy,

ke

Mg

(1T-7X1-73) =

mg Mg
mp njmnn '

When mm approaches infinity, the following equation holds.

(1-%)1 -12) =-§—;~ =-u (D.3.5)
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Appendix D.4  Proofthatpu>vy,-1

Equation (D.3.5) from Appendix D.3 is the following.

(1-1)1-v3)=-pn (D.3.5)
This can be rewritten as shown below.
7

1-v3 = —— (D.4.1)
3 Y2-1

If u>v,-1 , then from (D.4.1) it follows that

1-v3>1, or y3 <0 .

The expression for 3 from (5.25), is

1
Y3= "7 .
1.3
o

Because 0)% > wg , it must be that y3 < 0, and therefore u >y, - 1.
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Appendix D.5 Modal Masses

The modal masses arc derived by finding the solution to [®]T [M] [®]. The

product of the first two factors [®]T [M] follows.

1 m
— i 23
' an © m, O O Mm  Tn ©

mg m

nmg, -u 1 - Y2 O mp O = TS - mg (1 -'Yz)ms
O O m

mg S mg

. nm, M 1-7 | o cms (Q-vmg

_ m S , -
mn om0 tox O
m mg
‘?l_s_ -mg  (1-Y)mg nmg, M 1-% =
myg Mg
. & oms A-wmg L Fm. * 1B
i m mg My ms_ms i
mm+?}2 n n n n
ms Mg mg mg 2 mg2  mg?
T m+mp+(1-“fz) mg m+mp+(1-72)(1-y3)m5
2 2 2 2
mg mg mZ2 mg m?  mg 2
L 3 m-&-mp-t-(l-}'z)(l-yg,)ms m+mp+(l-'y3) nig |
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In Appendix D.4 it was shown that

Mg

m
A=) -y == - o

Therefore, the solutions to the expressions in positions (2,3) and (3,2) of the
matrix [@]T [M] [®] are zero. It can be seen that all the other non-diagonal
terms also solve to zero. Using the relationship

5 Mg

m
-0 -%) =y mp,

the second diagonal term can be simplified.

mg2  mg2 )
Ezm_m+ m,, + (1 - y2)°mg

=-(1- )1 -7v3) mg 4(1- 12)2mg

= mg(1 - )(y3-72)

Similarly, the third diagonal term can be rewritten as follows.

mg?2 +n152
n’mp, © mp

+ (1 - 73)2my

ms(1 - ¥3)(Y2 - ¥3)

The resulting modal mass matrix is the following.

373



_ 2
mm+~ng— O O

O mg(1 - Y2)(¥3 - Y2 O

0 O mg(1 - v3)(¥3 - ¥2) _

m
Appendix D.6  Proof that (1- y,)Ba + (1 -y5)Bs = —kl:-&

Expressions for By and B3 are given in Equations (5.51) and (5.52)

_ g
@3 (1-p) (13-72)

B,

_ g
@3 (1-73) (Y2 - 13)

Bj

The proof proceeds as follows.

SR -
m(3-1) w3(2-13)

(1- v)By+(1-13)B3 =
@3- g

" 0503 (13-1)

The term (y3 - ¥2) can be expressed as a function of frequencies.
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(cn% - co%) mg
D.6.2
(@2 - &) (f — 02) (D62)

The expression for ¥3 - 7; in equation (D.6.2) is substituted into equation
(D.6.1).

2 2
g( wz)( co3)(coq 07y
(1- v,)B +(1"Y)B =
Y2)b2 3/D3 ] 2( )ms

g(mg - cn%) (cog - w%)

) (D.6.3)
w; of &
The expression for the product (mg - co%) (mg - 0)%) is simplified as follows.
(@ - 03 (@5 - o) = of - wdf - whed + ofu}

wF - 0@} + 0d) + o3

From equations (D.1.1) and (D.1.3) in Appendix D.2
2 2 2

3 = @l s e

(D.6.5)
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k
oo% + m%: m% + cn% + -m—cs (D.6.6)

Using equations (D.6.5) and (D.6.6), equation (D.6.3) can be simplified.
4 2 2 .2

2 2.2 2 2 ke
(05 - w3 )of - @3) = w - ms(a)g + W5 + Eg) + W5

2,2 2 2 ke 9
=ms(m5-(oc-ms-m—s+ W)

=- W5 o (C.6.7)

“gWg
(1- v)B2 +(1-v3)B3 = T

ke mgm -Mpg
T8 mekake T ks
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Appendix D.7 Proof that x > |y,

The proof that x > 31 is done by proving that the statement x < ly31 is false.
The expression for y; is given in equation (5.25).

2 (5.25)

Because co% > wg, Y3 1s negative. The absolute value for v; is as follows.

fyal :
= 2
Y3 0_)3_1
w2
If x> Iy;l,then
i
R S
5 ~1
02
2
1+K w3
and > . D.7.1
< 7ol ®7.

From Equation (5.127)

LN

%2_(1:&:._“)[1+ 1 ﬂ_J
@ 2k A+p+x° )"

S

This expression for the frequency ratio can be substituted into (D.7.1) and the

following inequality results.
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1+x 1+p+xi 1 _ 4dpx ]
K 1+p+x

2(1+x)

1+u+lc (1+u+1c)
1-p+x

1+p+k 0+p+@
(1-p+x)2 4ux

(1+p+x)2 g 1-(1+|1+1c)§
(I-p+x)2 > (1+p+x)2-4ux

T+p2+k2-2u-2ux+2x > T +p2+x2 + 24 + 2Kk -2ux

-20 > +24

Therefore, if x < 1731, then —21 > +2p . For positive values of |, this cannot
be, and therefore x> Iyl.
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APPENDIX E
LETTER FROM CMAA
Appendix E contains a copy of a letter from the Chair of the Engineering

Committee of the CMAA, regarding thoughts on how the factor HLF was
~ derived.

Excellence in Material Handling
P.O. Bax 40400 » Houston, Texas 77240 « 10543 Fisher Road = (713} 466-7541 « B0-527-3748

February 5, 1990

University of Albeita
220, Civil/Electrical Building
Edmonton, Alberta T6G 2G7

Attn: Doug Barrett
Dear Mr. Barrett,

The equation you referenced in your letter to MHI on January
16, 1990 is the result of many years of study and committee
discussion and may very well be empirical.

I can only direct you to other speciflcations which are
sometimes referenced for you to compare and irav your own
conclusions.

AISE Standard #6 (tentative) - May 1, 1969

ANSI B30.24 - 1988

Federatlion Europeenne De La Hanutention
(FEM) 2nd edition - Dec. 1970

ASME NOG - 1 - 1989

These may be of some assistance. Your local technical
publication book store of library as vour best source for

locating the above.
Ver Ws,

.J. Kroll
Chalrman
CMAA Englneering Committee

RJIK/mv

cc: Bill Capps
MHI
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