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Abstract— In this study, a loss-compensated microwave (MW)
planar sensor is used to characterize fluids at ∼1 GHz. The envi-
ronmental temperature is shown to adversely impact the recorded
resonance frequency of the MW sensor, leading to data mixing.
This issue is resolved using a feedforward artificial neural net-
work with two hidden layers. Various concentrations of methanol
in water (0%–100% with 10% increments) are measured at
temperatures ranging between 22 ◦C and 60 ◦C. This smart
sensor system exhibits a strong ability to discriminate the correct
data regardless of erroneous interfering factors up to 92%.

Index Terms— Artificial neural network (ANN), machine learn-
ing, microwave (MW) sensor, split-ring resonator (SRR), temper-
ature compensation.

I. INTRODUCTION

M ICROWAVE (MW) sensors have seen profound interest
in the past decade; the majority of them incorporate

split-ring resonators (SRRs) [1]–[4]. The main drivers to
use SRRs as the sensing elements are their compact size,
versatile design for fabrication, high sensitivity to capaci-
tive/resistive loading, and, most importantly, the ability of
noncontact sensing. Planar SRRs in the MW regime enable
noncontact detection and sensing for various applications,
including fluidic sensing, gas detection, and biological sample
analysis. Despite low maintenance costs and high sensor
endurance in noncontact sensors, any unwanted and uncon-
trolled temperature change in the environment impacts the
results [5], [6]. Analog temperature compensation techniques
have limited reliability since the values of compensation circuit
components also undergo uncertain variations and drift over
time. In addition, any hardware compensation is costly and
adds to the system complexity. Software compensation offers
a feasible alternative.

We propose to use an artificial neural network (ANN) to
model the behavior of the MW sensor and to eliminate the
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uncertainty caused by uncontrolled temperature variations on
the sensor response [7], [8]. Recently, ANNs have shown high
efficiency and accuracy as learning techniques for complex,
nonlinear, and dynamic variations [9]–[11]. Neural models
are fast and more accurate than empirical models. They are
adaptive by design and fault-tolerant because the failure of
a single link does not affect the model performance in a
noticeable way.

Temperature variant sensing condition is commonly present
in industrial applications. Conventionally, it is considered as
an undesired error source from the sensor only, compen-
sating which is presented in the literature with a reference
resonator [12], [13]. For this reason, in this study, we have
employed a compensation scheme using multilayer perceptron
ANN to consider both dielectric constant variation and the
active sensory element (transistor). Consequently, the pro-
posed ANN is used to restore sensor response for material
under test (MUT) regardless of the environment temperature
change. Therefore, this approach is highly effective to resolve
the overlap in dielectric constant of materials with varying
temperature. The effectiveness of the model is examined in
discerning methanol–water solutions.

II. PROBLEM STATEMENT

Material characterization in the MW regime is practiced
using SRRs as sensing elements with a gap sensitive to
capacitive changes. An SRR with the length of ((λg/2) =
11 cm half-wavelength) is designed according to the defined
expressions in [14] to resonate at ∼1 GHz on Rogers 5880 sub-
strate (εr = 2.2 and tan δ = 0.0009). Since various MUTs
have different dielectric constants, they impact the sensor
differently. Especially, when the MUT has high dielectric
loss, the sensor resonant profile degrades which limits the
sensor performance. To compensate for the generated loss,
a controlled positive feedback [1], [15]–[17] is applied to the
sensor as shown in Fig. 1. This loss compensation retrieves the
sensor’s capability and improves the quality factor. However,
the presence of an active device in the sensing platform adds
to the temperature drift of the output. The variation of sensor’s
resonance frequency is measured in an enclosed environment
with a heat source that raises the temperature from 22 ◦C to
∼60 ◦C (see Fig. 2).

Dielectric constants of materials, that represent their elec-
trical characteristics, are also a function of many other factors
such as frequency, temperature, molecular polarizability, etc.
This dependence is well-expressed, according to Kirkwood
theory for a pure fluid, as follows [18]:

(ε − 1)(2ε + 1)

9ε
= 4πρNA

3M

(
α + μ2g

3kBT

)
(1)
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Fig. 1. Temperature impact on MUT sensing.

Fig. 2. (a) Sensing setup in controlled temperature varying environment.
(b) Sensor response with/without MUT to temperature rise and fall.

where M is molecular weight, ρ is density, α is molecular
polarizability, NA is Avogadro’s number, μ is dipole moment
of the molecule, kB is Boltzmann’s constant, and g is a
correlation factor that characterizes the relative orientation
between neighboring molecules.

This expression explains the inverse and nonlinear relation-
ship between temperature and the dielectric constant of fluids.
As an example of the permittivity variation, 10 ◦C increase in
temperature (from 283.15 to 293.15 K) reduces the permittivity
of common liquids as shown in Table I.

The sensor confirms this dependence with an upshift of
the resonance frequency, as shown in Fig. 2(b) for water,
methanol, isopropyl alcohol (IPA), and ethanol. Considering
the variation of the bare resonator to temperature is ∼5 MHz
from T1 = 22 ◦C to T2 = 60 ◦C (see Fig. 2), the sensor
with MUT responds to temperature much more [see Fig. 2(b)].
It can be inferred that the temperature increase reduces the
density of MUT, and thus the frequency shifts up. This shift
is more significant for higher permittivity materials. This
analysis highlights the significance of errors that can occur
in characterizing fluids based on a conventional method of
tracking the resonance frequency.

III. PROPOSED SOLUTION

To avoid the errors in characterizing fluids, we propose to
develop and train an ANN to discriminate the MUTs regardless
of temperature variation. The structure of the network and the
training data are shown in Fig. 3(a).

For each MUT, the values of forwarding transmission |S21|
are recorded at specific time intervals as the temperature
varies, and then used as one row of the training data set. Each
row is then augmented with a value representing the material
type. Each color in the data set signifies the sensor response
for one type of material at different temperatures. This forms
a bundle of |S21| values that belong to a single MUT. Other
similar bundles of |S21| are created for other existing MUTs

TABLE I

DIELECTRIC CONSTANT OF SELECTED MATERIALS
CALCULATED BY THE KIRKWOOD MODEL

covering the temperature range of interest. A stack of all
bundles constitutes the full data set, as presented in Fig. 3(a).
ANN trained with this data will map all |S21| profiles into
the correct material type, as the characterization data set
inherently, includes the temperature effect. It is expected that
after training, the algorithm can correlate any measured S21 to
its closest response and identify the material type regardless
of the temperature.

It should be noted that since the frequency of resonance does
not provide information sufficient for MUT discrimination,
more information on the resonance profile is required. There-
fore, the entire transmission profile (|S21|, magnitude only) is
used to cover all principal features of resonance, including
resonance frequency, amplitude, and quality factor.

Each column in the data set of Fig. 3(a) is assigned to
a neuron in the input layer of the ANN. The input neurons
only distribute (fan-out) the incoming values to the neurons of
the first hidden layer. All remaining neurons of the network
process their incoming signals as follows:

y j = f

(∑
i

wi j xi + b j

)
(2)

where xi and y j are neuron inputs and output, respectively,
wi j are weights, b j is a bias term, and f is a nonlinear
activation function. The goal of the training is to update
the weights to minimize the loss (approximation error). The
error is determined by comparing the actual output of the
network with the desired output (the MUT label obtained
from the training data set). While the size of the input and
output layer is given by the problem at hand, the number of
hidden layers and neurons is a design choice that needs to be
validated or optimized [19].

IV. RESULTS AND DISCUSSION

To verify the functionality of the proposed algorithm, dif-
ferent concentrations of methanol in water were prepared from
0% to 100%, with 10% increments (11 samples in total). This
choice of fluids allows analyzing a wide range of permittivity
values from εrmethanol = 30 to εrwater = 80 [20], [21], as shown
in Fig. 3(b). A predefined heating process is applied to all
MUTs with 20 initial recordings at the room temperature
(∼22 ◦C). During the heating process, the chamber’s tem-
perature increases up to ∼60 ◦C in ∼25 min. A commercial
temperature sensor with an accuracy of 0.5 ◦C also records
the chamber’s temperature. This all translates to 150 data
points (recorded transmission profiles) per concentration. The
recorded profiles are limited to the span shown in Fig. 3(c),
which captures the first (T = 22 ◦C) and the last (T = 60 ◦C)
profile of water and methanol. The resultant mixtures (con-
centrations of 10%–90% methanol-in-water) have transmission
profiles between these two extremes. The frequency span used
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Fig. 3. (a) ANN diagram for MUT discrimination. (b) Dielectric constant variation of water and methanol between low- and high-end temperature. (c)
Transmission profile of the sensor for methanol and water exposed to temperature ramp of 22 ◦C–60 ◦C. (d) Frequency shifts for various concentrations of
methanol in water with increment of 10%. (e) Confusion matrix from ANN.

in this analysis [1.1–1.15 GHz, as shown in Fig. 3(c)] contains
500 points in each |S21| Profile.

The recorded transmission profiles (500 columns for |S21|
with another last column for material type) comprise 150 rows
for each material. This is one building block in a large data
set of 1650 by 501 values, shown in Fig. 3(a), after combining
11 material types (classes) vertically. Two-thirds (100) of
input rows for each class are randomly selected to train the
ANN, and the remaining one-third is used as the test set.
The ANN consists of two hidden layers, with 100 and 40
neurons, respectively. Once the training is completed, the test
set is used to verify whether the ANN maps each input to its
corresponding class.

The performance of the algorithm can be visualized using
confusion matrix. It shows how well the classifier performs,
with respect to the individual material types. The confu-
sion matrix is populated based on the test set whose true
outputs (labels) are known. Each row of this matrix [see
Fig. 3(d)] represents how the data within a known class is
mapped to the correct class. For example, row 4 explains
48 out of 50 test cases are correctly predicted, while two are
mistakenly predicted as class 3 and 6. The color spectrum
shows how well each input test set is predicted: light color
means low accuracy and vice versa. Fully correct mapping
can be distinguished with zeros at all elements except the
one at the diagonal. In a close look at the confusion matrix,
it is clear that the lower concentrations (<30%) show lower
accuracy. This can be explained with respect to Fig. 3(c)
that showcases the resonance frequencies of the transmission
profiles, where, regardless of temperature, sensor frequency
response saturates as dielectric constant increases. This phe-
nomenon causes high cross correlation in the resonance fre-
quency curves of materials with higher values of dielectric
constant. Thus, the network has a poor performance for higher
dielectric constants (lower concentrations). The parameters of
the network, including number of layers/neurons, optimizers,
etc., should be optimized to resolve this issue. The total
accuracy for all test data of all classes is 92%, a considerably

TABLE II

COMPARISON TABLE BETWEEN MW PLANAR SENSORS

high value given the elimination of temperature impact on
sensing.

A comparison between this study and prevalent MW sensors
is given in Table II. The proposed sensor is highly potent
for use in harsh environments, including lossy material sens-
ing. The quality factor of the sensor, which is prominent
in characterizing lossy medium, is restored to Q ∼ 3700,
an order of magnitude higher than the recent planar sensors
to evade a flatten profile using the positive feedback circuit.
Moreover, the erroneous temperature effect is omitted from
both the sensor and MUT using ANN with a single resonator,
as opposed to [12], wherein temperature impact is removed
from only the sensor, not MUT, with two resonators.

V. CONCLUSION

A loss-compensated MW planar sensor is used for material
characterization, yet, environmental temperature is varied as
an extraneous parameter. The resonance profile of the system
is shown to drift due to the circuit and also changes in
the dielectric constant of the fluids. This erroneous variation
in sensory systems is removed with proper incorporation
of ANN with two hidden layers. Various concentrations of
methanol in water were classified with high accuracy of 92%
on testing data. This enables MW sensors to be employed
in variant environments when equipped with the adaptive
ANN system.
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