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Kinetic theory of stimulated Raman sidescattering from magnetized plasmas

R. Rankin® and T. J. M. Boyd

Department of Physics, University College of North Wales, Bangor, Gwynedd LL57 2UW, Wales

(Received 10 October 1984; accepted 1 May 1985)

A theory of stimulated Raman sidescattering in magnetized plasmas is presented based on a
solution of the Vliasov—Maxwell equations. The incident laser light, in the form of extraordinary
mode radiation, decays into light waves which propagate along the uniform magnetic field as right
or left circularly polarized waves. The scattered plasma mode is an obliquely propagating
electron-Bernstein wave. The possible relevance of the theory to experiments in which structure is
observed in radiation at one-half of the laser frequency is discussed.

I. INTRODUCTION

Stimulated Raman scattering (SRS)'™ in laser target
plasmas can have potentially serious consequences as far as
the efficient coupling of radiation to laser produced plasmas
is concerned. This instability—a three-wave parametric pro-
cess in which the incident laser light decays into an electron
plasma wave and a scattered light wave—generates very
high energy electrons®® which can preheat the interior of
fusion targets. In addition, for reactor size targets a sizeable
fraction of the incident laser light may be scattered out of the
plasma by this process. Both of these effects run counter to
the aims of effective inertial confinement.

The recent resurgence of interest in stimulated Raman
scattering has been caused in no small measure by the switch
away from short-pulse high irradiance experiments (I,
~10%°-10'* W cm 2 with 7, in tens of picoseconds, where
I, represents the laser intensity and 7, the pulse length) to
the present preoccupation with long scale length plasmas®'¢
generated by relatively modest intensity laser pulses (I
510 W cm™?) of long duration (of the order of nanose-
conds). Plasmas generated in this way can extend over hun-
dreds of laser wavelengths and can result in SRS reflectivi-
ties of several percent.® Also, when the plasma is of sufficient
extent laterally, stimulated Raman sidescattering (SRSS) oc-
curs at a lower threshold intensity than backscatter. This has
potentially serious consequences in large volume plasmas
since the convective growth of the instability is not limited
by Landau damping of plasma waves (as occurs in the case of
backscatter) so that a substantial amplification may result.

In previously published work'® we drew attention to the
importance of magnetic fields on stimulated Raman scatter-
ing. In particular, it was shown that for backscatter the field
enhanced the instability and if sufficiently large enough
could change the usual red shift in the w,/2 scattered light
wave (@, is the laser frequency) to a blue shift. Using a fluid
model of the plasma we also studied the effects of magnetic
fields on Raman sidescatter. The decay examined was one
where the sidescattered light waves propagated along the
magnetic field lines as right and left circularly polarized light
waves. The motivation for this study was prompted by ex-
periments'®'? in which the Raman light exhibited a doublet
structure with red and blue wings with respect to the fre-
quency @y/2. It is obvious that when sufficiently large mag-
netic fields (on the megagauss scale) exist in the plasma, dou-
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ble-peaked emission becomes possible if right and left
circularly polarized waves can be driven unstable. To ac-
count for observations at laser wavelengths less than or equal
to one micron, this model requires fields approximately
twice the magnitude (i.e., 7 MG) of any thus far reported.
However, it is important to make an estimate of the splitting
which could be induced by magnetic fields alone.

There is now widespread evidence'¢?° for megagauss
fields in certain laser-generated plasmas. Work by Raven et
al.,'® for example, showed that fields can be large in the
neighborhood of the quarter-critical density of the plasma,
where the Raman decay takes place. Max*' has earlier
drawn attention to the variety of mechanisms in addition to
the VN X VT source by which large magnetic fields may be
generated. Possible sources include filamentation of the laser
light??; this process has a high gain in long scale length plas-
mas. Other sources that may give rise to small scale fields are
Weibel-type instabilities?; there is some evidence for micro-
magnetic fields of up to 5 MG in laser-produced plasmas.?*

In our previous treatment of stimulated Raman sides-
cattering’® we neglected finite Larmor radius effects; this
assumption is not generally valid with megagauss fields pres-
ent, since then kry ~ 1, where k is the wavenumber of elec-
tron plasma waves and r;_ is the electron Larmor radius. In
this paper we present a full kinetic treatment of the decay of
extraordinary mode laser light (with wavenumber k,, wave
magnetic field B, such that kLB, ||B,, where B, represents a
dc magnetic field) into scattered right and left circularly po-
larized electromagnetic waves together with electron-Bern-
stein waves directed obliquely to the magnetic field. The cou-
pled-mode equations for this process are developed in Sec.
IL. In Sec. I1I we describe results from a numerical solution
of the equations, and in Sec. I'V our conclusions are stated.

Il. COUPLED MODE EQUATIONS FOR RAMAN
SIDESCATTER

The coupled mode equations needed for a description of
Raman sidescattering are found from the set of Viasov-
Maxwell equations

L yvevf- e+ IXB).v,r—0, (1

Jt m c

V-E= — dmne j fdv, @)

vxE— — L9B (3)
at
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VXB=—"—+—J. (4)

In (1}~{4), E represents the electric field, B is the magnetic
field, e is the electron charge, m is its mass, n is the average
electron number density, J is the current density, f is the
electron distribution function, and ¢ is the speed of light; ion
motion is neglected.

The laser light (incident in the x direction} is in the form
of an extraordinary mode with electric field components E
and E,,,. As usual, for densities much less than the critical
density n. and magnetic field strengths such that the elec-
tron-cyclotron frequency is much less than w,, we may ig-
nore E,, compared to E,,; thus E, =1E, §exp [i (ko-x
— ot )] + complex conjugate. We consider the decay of the
incident light into right and left circularly polarized electro-
magnetic waves together with obliquely propagating elec-
tron Bernstein waves. Thus the scattered light waves have
both perpendicular, &, , and parallel, k;, wavenumber com-
ponents. Furthermore, for simplicity we shall make an elec-
trostatic approximation in describing the Bernstein waves.
As discussed elsewhere, '’ the effects we wish to describe are
not seriously affected by making use of these approxima-
tions.

The system is perturbed from its equilibrium state ac-
cording to

=13 +fo+f
E=0+E,+E,

B=BC+B0+BI,

where f3 represents the unperturbed electron distribution
function {taken to be Maxwellian), £, represents the contri-
bution from the laser light, and f; is produced as a result of
the coupling between the normal modes of the system. The
laser light electric (magnetic) field Ey(B,) gives rise to per-
turbed fields E,(B,), and B, represents the static magnetic
field. On substituting this set of variables into the Vlasov
equation we obtain an equation relating f; to E,, namely,

%+V’Vf1+(vxﬂ)‘vvfl
=1(E1+IX—Bl).V' o
m c

+ f—(Eo + "XB°)-V.f1 5)
m C

in which @ = — eB,/mi is the electron-cyclotron frequen-
cy.

The Vlasov equation is solved by integrating along the
unperturbed electron trajectories and to do this it is first
convenient to isolate that part of Eq. (5} which describes
coupling of the different waves to E,. Thus we express f; as
ST + /1" and consider the following two equations:

Lff=-;i—(E,+ "’ZBI)-v, 2, (62)

Lf‘l""=%(E1 + "’ZB‘)WJO

+ ~(Eo + v><B°) V., (6b)
m c
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in which L represents the Vlasov propagator 3/t 4+ v+ V

+ (vX )« V,. The first equation simply leads to the linear
dispersion relation of each wave, whereas the second de-
scribes coupling between the different normal modes. The
linear dispersion relations are obtained on using (1}-{4) with
f* determined according to

fi=— %J‘oﬁ eV, fle— W X—amg. n

in which X =x — x', 7=t — t’, and w, (k,) is the frequency
(wavenumber) of the particular mode (extraordinary, right
or left circularly polarized or electron-Bernstein waves) un-
der investigation. The hat over a quantity indicates the ab-
sence of exp # (k, * X — w,¢). In what follows, the three-wave
interaction describing SRSS is assumed to satisfy phase-
matching conditions of the form w_ =0 —o, k_ =k
~— ko. The notation is chosen such that E_(w_,k_) repre-
sents the electric field of the scattered light waves, E(w,k)
that of the Bernstein waves, and Eq{wq,k,) that of the pump.
For future reference, the various linear distribution func-
tions are as follows:

X ¥ —— (8)

() Extraordinary waves, k| =0,

eE,, 9fy exp (ikou .
m Q

(ii) Right and left circularly polarized waves, k, = 0,

. leEx 3f3/v e~ "
k= , 9
2m (l)__“—ﬂ—-kuvn
Fro ieE, df3/dve*?®
E™ om a)_.+.(l~—k"v"’
where Ep =E, +iE, andE, =E,
(i#i) Electron-Bernstein waves k, = kg,

2ed 3

Kovy .
m A P(‘TW)

X w———ﬂ—mlnrw, 11

where ¢ (o,k) is the electrostatic potential of the Bernstein
waves.

In these expressions, v, , v are the usual velocity com-
ponents perpendicular and parallel to the magnetic field; the
argument of the Bessel functions is kv, /2. The nonlinear
dispersion relation to be found can be constructed symboli-
cally as follows. Since the Bernstein waves are coupled to
both right and left circularly polarized waves, the dispersion
relation which conventionally describes them will be modi-
fied so that we can write (with v, = eE ;, /ma,)

€p=(CrEg + CLE, v, (12)
Here € is the linear dispersion relation describing obliquely
propagating Bernstein waves and Cp; represent coupling

coefficients. Likewise E, and E; are both coupled to ¢ so
that

€rEr = Brovg,

(10)
—iE

y_*

Jo=
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(13)
€.E;, =B, $3,
where €5 ; is the dispersion relation corresponding to E, ; ,
respectively. On eliminating E; and E; from (13) and sub-
stituting into (12}, we obtain the nonlinear dispersion rela-
tion describing the instability in the form

B.C, B,C
e=( RVR L ‘)1:;0;2. (14)

€g €L

Thus, the problem is reduced to finding expressions for B
and C. Consider first of all the electrostatic waves described
by Poissons equation [Eq. (1) with E = — ik¢ ] which will be
written in the form

k¢ = —4amne|f, dv. (15)
Setting f, =f5 +f4 - as before (15) becomes

k26 + 4mne | f5 dv= —4mne|fi*dv.

With f; defined by {11) we can rewrite this equation in the
form

€p = —4mne | fit dv, (16)
with € given by
2 +
2 P
=kt 5
—nf2
1 VA i )] 17
[ + VZk,, (vzk,, v. )

In this expression @, is the plasma frequency, V., is the elec-
tron thermal velocity, I, is a modified Bessel function of the
first kind, 8 = k2V2/02? and Z is the plasma dispersion
(Fried—Conte) function. The nonlinear contribution to f, is
determined from Eq. (6b), i.e.,

}‘ﬁ'L(v) = —ﬁler exp — ik * X — w7)
SN (U SLAE S B
X{ av [(1 Wy )'+ wO] Eo

3}5 K - ) kv] B }
<H1— | E_t,
+3v’ @ + @y

(18)
J

where f© =f% +ff andk =Kok + k2.

The dispersion relations for the scattered electromag-
netic waves can be put in the form (13) on using {1)-{4) to
construct the quantity

@’
(- )

—i%hmefv +iv, )% dv

= ia:—z—44rne f (v, £ v, ) dv. (19)

+iE,_)

With £ defined by Egs. (9) and (10), the right-hand side of
the above equation gives the terms €, and €, so that we may
write

xEx = Zmne [ (o, +iv, " ay, (20)
¢

€E, = iw—z‘41rne f (v, — iv, ¥ dv, (21)
c

which is the required form (13). Standard expressions for €,
and €; are defined below:

o »_o? w_—
€r = —k? £ Z( = ), 22
S A T RN 22
o’ »_o? w_ +
& =—r—k? r_z(2=T2) 23
P “+v2ku v.c (vﬁk“V,) 2)

Again we use Eq. {6b) to determine the nonlinear contribu-
tionto f_:

F¥ ) = “err exp—ik._ - x—w_7)
-5

@
afo'.[( kv
av' @

')l+%]-ﬁ]. (24)

Equations (16), {20), and (21) with ¢, €z, and €, defined by
(17}, {22}, and {23) now combine to produce the form of Eq.
{14). The only task remaining is to evaluate f3~ and f*
according to(18) and (24). This is a straightforward if tedious
routine and is outlined in the Appendix; we simply state
below the expressions for the coupling coefficients:

coo _d @ e oy (Z—Zg{A(1—nlin—1)/B] +nQ/w} + A(1 — n+ 28 + BQ/wy)}
K 4 V2,2, ViV, \ @+ 0 —nQ
4 w_BAWZ, —Z)+BAL[VIKV, + (@ — n)Z ] N [nd, —(W*/BW, +3BA ;] [VZK, V. +(a)—nﬂ—-ﬂ)21])
w_(w, — nQY) o_{(w — nQ) ’
(25)
B __+Lw__w__ Z 1 [[(n© =, +BO, ][0l — Zg) + (0o — 2 + Q)Z, ]
BT T2 2y, =, vk, ¥, \ @y + 2 — nld
+ﬂmcﬂ' nZR +“’o[”’l:’ - (nz/ﬂ)ln + Zﬁll:,] [Vik" Ve + (w— - Q)ZR])' (26)
@g — nfd
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As discussed in the Appendix, the symmetry in the problem
issuchthat C,(2)=Cr(—R2)and B (2)=Bg(—2)s0
that it is unnecessary to express C, and B, explicitly. In (235)
and (26) the following definitions apply: Z =Z (w — nf2/
VIV, Zx=Zl_—-QNV,), Z =Zw-—n
-2V V), A,=IL,Blexp—pB, and A, =(3/3B)
[1,(8)exp — B 1. The coupling coefficients simplify consid-
erably in the limit that Landau damping becomes weak; gen-
erally the Bernstein waves are the only ones to experience
any significant damping.
Having derived expressions for the coupling terms we
turn next to a discussion of the results obtained by solving
Eq. (14) numerically.

Iil. DISCUSSION

Equation (14) has been solved numerically to determine
the real and imaginary parts of the complex frequency was a
function of the parallel wavenumber component, &, of the
scattered waves. Results are shown in Figs. 1-6 as plots of
the growth rate y of each Bernstein wave against k|, for a
variety of densities and magnetic field strengths. In the fig-
ures the harmonic index » indicates Bernstein waves with
frequencies lying within the range nf2 <w < (n + 142. The
numbers on the curves, at various positions in k; space, give
the frequencies of the waves and are normalized to w,. The
essential physics becomes transparent on inspection of the
form of Eq. (14).

When the magnetic field is small both the terms within
the parentheses of {14) contribute equally to the growth of
the instability; this is simply because the right and left circu-
larly polarized waves are indistinguishable when £2 — 0. For
larger fields, however, the two waves become sufficiently
distinct such that we can regard the decay into right and left
circularly polarized waves as being separate. In this param-
eter range one term within the parentheses generally domi-
nates and an approximate expression for the growth rate
may be derived from (14), valid in the fluid limit':

Var ~Yoll £ 382 /wo)/V2. (27)

This expression is accurate provided yo>2el/(0} + k§),
where ¥, is the field-free growth rate.

From Eq. (27) it is easily seen that the growth rate of the
left circularly polarized wave decreases with increasing mag-
netic field strength. The growth rate of the right circularly
polarized wave can be greater than the field-free growth rate
o provided 1 + 302 /w,> V2. We expect to observe similar
behavior from the kinetic model and, in addition, structure
on the two oppositely polarized scattered light waves caused
by the excitation of electron Bernstein waves.

A brief recap of the behavior of electrostatic waves in
magnetized plasmas will aid interpretation of the results.
For propagation parallel to the magnetic field the usual
Bohm-~Gross dispersion relation is obtained, modified by
the presence of Landau damping. For perpendicular propa-
gation the familiar Bernstein waves emerge propagating in
between harmonics of the electron-cyclotron frequency. In
oblique propagation, the nature of the waves is determined
by the relative magnitudes of k£, and k. Thus, for small
values of k|, we expect to see well separated (in frequency

3383 Phys. Fluids, Vol. 28, No. 11, November 1985

space) Bernstein modes, whereas as when k| increases we
would expect to observe the Bernstein modes merge to fre-
quencies lying on or near the Bohm—Gross dispersion curve;
we search for such behavior in the results.

Figure 1 shows the growth rates of Bernstein waves
which can be excited at a density corresponding to @,/
o = 0.36 and an electron temperature such that ¥, /¢ = 0.1
(in all cases v,, the electron quiver velocity, is set equal to
0.1c). When 2 /@, = 0.01 the growth curve is essentially the
field-free result for which y/w,~0.02. For 2 /o, = 0.2, on
the other hand, waves in the bands nf2 <w <{n 4 142,
n = 1,2 can be driven unstable. The large feature merging
with the smaller one in the figure corresponds to right-hand
circularly polarized waves (R }; the two smaller ones to left-
hand circularly polarized waves (L ). Note that the latter have
smaller growth rates than the main feature of the R branch
and thus the growth rates have broadly similar behavior to
that predicted by (27), which was derived in the fluid limit.
For k| = Othebranch of the Bernstein wave dispersion rela-
tion 202 < w < 342 contains the cold upper-hybrid frequency
and thus the wave excited in this frequency interval is ex-
pected, in certain parameter ranges, to have behavior broad-
ly similar to that predicted by a fluid treatment.

Moving to higher density (see Fig. 2) in which w,/
@y = 0.42, the R branch of the dispersion relation is located
at a smaller value of k| than that seen in Fig. 1 (k;, =0
corresponds to the reflection point of the scattered light
waves). Only the n = 2 mode in the R wave appears since the
n =1 branch has a vanishingly small growth rate at this
density. The L branch also moves to lower k; but now
growth of the n = 2 mode is larger than in Fig. 1. Note that
the separation of the two peaks in the L branch increases in
going from Fig. 1to Fig. 2, i.e., in moving to smaller values of
k. Thus, as we move to higher densities, and hence to
smaller & |, the discrete nature of the Bernstein waves begins
to manifest itself. This is further seen in Fig. 3, where the
n =1 and n = 2 modes excited in the L wave are well sepa-
rated at a higher density corresponding to w, /w, = 0.48. At
this density the R wave is absent since its reflection point
occurs at lower density, i.e., at @, /@, = 0.41 as shown in
Fig. 2. The solid line in Fig. 3 is for 2 /w, = 0.01 and again is

002}

o 0.415

0.0%. o o8

FIG. 1. Growth rates as functions of k for (a) R waves £2 /w, = 0.2 (hatched
line), (b) L waves 2 /w, = 0.2 (long dashed line), (c) £2 /w, = 0.01 (solid line),
@, /v, =0.36.
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TN 0.449

wg 0.01} [

0.6 0.8

FIG. 2. Growth rates as functions of k for (a) R waves 2 /w, = 0.2 (hatched
line), (b) L waves £2 /@, = 0.2 (long dashed line), (c) £2 /&, = 0.02 (solid line),
w,/wy = 0.41.

identical with the field-free growth rate. This wave is almost
at its reflection point at this particular density.

Consider now a still higher density, at which w,/
@, = 0.51, i.e., beyond the quarter-critical density, as shown
in Fig. 4. Only L waves can be driven unstable at this density
and choice of magnetic field, i.e., 2 /@, = 0.1,0.2. When 22 /
@y = 0.2, the n = 1 and n = 2 modes are well separated for
the reasons discussed above. Note that the effect of the mag-
netic field is to extend growth of the L waves to densities
greater than quarter-critical. Thus at £2 /w, = 0.1 the main
feature in the L wave is near its reflection point, whereas at
{2 /o, = 0.2 the mirror point is at a higher density corre-
sponding to w, /@w,~0.53. The growth rate in the case £/
o = 0.1 differs little from that predicted by (27), except that
it has a tail which is modulated at frequencies corresponding
to excitation of lower order Bernstein waves; these waves
have y/w, < 10~* and are consequently of no significance.

Figure 5 illustrates results obtained for a parameter
choice such that w,/w, = 0.45, 2 /w,=0.01, 0.10, and
0.20. The R branch is again absent at this density when 2 /
o = 0.2, whereas when £2 /w,=0.10 it is beginning to
emerge. By comparing Fig. 5 with Fig. 2 it can be seen that
growth of the main branch of the R wave is larger at {2 /

0.505

0.02+

X
wg 001
n=1
0.380
.00 s
0% ! 04 0.6 0.8
cky
@o

FIG. 3. Growth rates as functions of k¥ for (a) L waves 2 /w,=0.2 (long
dashed line), (b) £2 /w, = 0.01 (solid line), w, /@, = 0.48.
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0.02}
0.540
X 0.01F .,
Yo
0.558
/N
A
i \|n-2
1 =
RN 0.376
0.00 1 Lt L
0.0 0.2 0.4 0.6 0.8
s

FIG. 4. Growth rates as functions of k for L waves 2 /w, = 0.1 (short
dashed line), 2 — @, = 0.2 (long dashed line), @, /0, = 0.51.

@, = 0.2 than at 2 /o, = 0.1. This behavior is again essen-
tially that predicted by Eq. (27) so there is little difference
between the two descriptions for these parameters.

For the R waves the most interesting parameter range
occurs when 2 /w,, is of the order of 0.15-0.17 as illustrated
in Fig. 6. Under these circumstances the R branch separates
into two features with almost equal growth rates. These cor-
respond to the excitation of n = 2, 3 Bernstein waves as the
frequencies shown would indicate. The L branch broadens
in k| space to encompass the » = 1-3 harmonic frequency
range but no distinct structure emerges. As the R wave sepa-
rates in k| space with increasing magnetic field, the growth
rate decreases below that predicted by (27) and thus signifi-
cant departures from the results of fluid theory can arise in
this parameter range.

IV. CONCLUSIONS

The effects of a dc magnetic field on stimulated Raman
sidescattering have been studied using a kinetic model. The
scattered light waves are in the form of right and left circu-
larly polarized waves with a frequency separation propor-
tional to the magnitude of the field. The growth rates of the
left circularly polarized waves decrease with increasing mag-

0.481

0.02+

wg 001}

0.00
0.0

0.6 0.8

FIG. 5. Growth rates as functions of k¥ for (a) R waves £2 /w, = 0.1 (hatched
line), (b) L waves 2 /@, = 0.1 (short dashed line), 2 /o, = 0.2 (long dashed
line), w, /@, = 0.45,
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0.02+ 0.442

——0.01r

0.00

08

FIG. 6. Growth rates asfunctionsof k for (a) R waves 2 /w, = 0.16 (hatched
line), (b} L waves 2 /o, == 0.16 {long dashed line}, {c) 2 /0, =001, @,/
@y = 0.40. )

netic field, and for sufficiently strong fields, structure is in-
duced in the frequency spectrum as a result of coupling to
electron Bernstein waves. For 2 /w,<0.1, no additional
structure appears in either the R or the L wave; the field only
results in a broadening of the frequency spectrum. The right-
hand circularly polarized wave has enhanced growth in cer-
tain parameter ranges, ¢.g., at 2 /o, = 0.2and 0, /o, = 0.4.
At intermediate field values, notably at 2 /o, = 0.15, the R
wave has two components with almost equal growth rates;
the growth rates are also lower than those predicted by fluid
theory. The fields required to induce these modes in experi-
ments using one micron light are larger than any so far ob-
served. For small magnetic fields the results differ very little
from our earlier work. This theory offers a possible explana-

J
. eE + oo + oo o
CR = ‘;—’ﬂ'w ’:y . Z_ . dv"J; de

x{{«wi i’-(-ﬁ-)( s+ )-2»113, fﬁ +

a; ko,
X [(@— — kyyy — Q)@ — kypy —n)] ™

k
+ {ku (3f° )( 5 __J;z) _ (1 Ky vy
@_ 3011 é’vl kovl w_

P(1- )k
w_ o,

i

Q

,’,] [(@o — nQ)w — kyvy — Q)] “].

tion of results from recent experiments on @,/2 emission, but
because of the large fields required it is doubtful that it would
be the dominant effect.

APPENDIX: INTEGRATION OF COUPLING
COEFFICIENTS

Toevaluate the integrals in Egs. (7), {18}, and (24}, we use
the unperturbed electron trajectories determined by

These equations are solved routinely for r and v in cylindri-
cal coordinates. In the text the differential operator d /dv is
given by

a d ~. .4 ad
— =% cos 6— + y sin 6— 4 F—
v v, Y% T,

1. o d
+ vl(ycosﬂ xs1n¢9)30.
With the set of quantities {r,v,r’,v'(3 /3v}, (3 /3V')} evaluat-
ed, and the linear distribution functions given by (8)—{11),
F3F and ¥ can be computed straightforwardly from (18)
and (24). To obtain the coupling coefficients B and C of Eq.
(14), the expressions for /3 and " are substituted into the
right-hand sides of Eqgs. (16}, (20}, and {21}. Notice that the
integral over v in these expressions is of the form

2T + o o
f dﬂf dv, J v, (expression)dv,.
O — = 0

The integral over & presents no problem and the coupling
terms then appear as integrals over the two remaining varia-
bles v, and y, i.e.,

0
ZkLUZ‘LJan —1 afﬂ 1
@Dy o
ko, 9%

. —a;l—J J! ] {(@o — nQw — kyvy — [n + 11Q)}

(A1)

Having found Cx no further effort is required to obtain C,, since inspection of Eq. (14) shows that a symmetry between the
various coefficients must exist. This is most easily seen when considering what happens when Q — 0, for which it is obvious

that C; — C,; with a finite magnetic field the symmetry is such that Cg ( — ) =

and B, , i.e., Bg( — ) = B, (Q) with By defined by
Eoy +

e. L ] + o0
2 > j dv"f dv,
m ) o

By = irw,

a

C. (Q). A similar symmetry exists for B,

x[[kovl(gfvg)J,,J,’,-—-k"vzavu(afo).l J,,H] [(@o — nfYw_ — kyv, — 2)]

1

s ( @

+

301 \a)—k"U“ —nfd — —‘k"v"
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Ji — kv, /) T, Jn—l)}
- l)( ~a . (A2}
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On defining the plasma dispersion function as

1 (e *d
zin == x (A3)
0 x_
making use of the integral formulas
f v J2e” YV dy, = V2L B)e 7, (A4)
0
—Rn2v? V:ko —
2J.J ", “dv, I, 4 A5
[ 2L @B, (A
o _ 2 a
[T 1% Y dv =V:(”——2ﬂ—-)1,, e~ 5,
[ita L= V(G- 286

(A6)

and using standard recurrence relations between the Bessel
functions, the coupling coefficients can be expressed in the
form given by Eqs. (25) and (26) in Sec. II of the text.
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