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Abstract

Reinforcement learning algorithms are conventionally divided into two

approaches: a model-based approach that builds a model of the environment

and then computes a value function from the model, and a model-free

approach that directly estimates the value function. The first contribution

of this thesis is to demonstrate that, with similar computational resources,

neither approach dominates the other. Explicitly, the model-based approach

achieves a better performance with fewer environmental interactions, while the

model-free approach reaches a more accurate solution asymptotically by using

a larger representation or eligibility traces. The strengths offered by each

approach are important for a reinforcement learning agent and, therefore,

it is desirable to search for a combination of the two approaches and get

the strengths of both. The main contribution of this thesis is to propose

a new architecture in which a model-based algorithm forms an initial value

function estimate and a model-free algorithm adds on to and improves the

initial value function estimate. Experiments show that our architecture, called

the Cascade Architecture, preserves the data efficiency of the model-based

algorithm. Moreover, we prove that the Cascade Architecture converges to

the original model-free solution and thus prevents any imperfect model from

impairing the asymptotic performance. These results strengthen the case for

combining model-based and model-free reinforcement learning.
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I learned the value of hard work by working hard.

– Margaret Mead.
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Chapter 1

Introduction

Reinforcement learning algorithms are conventionally divided into two

approaches (Sutton and Barto, 1998). The first approach builds an internal

model of the world from the agent’s experience and then estimates the value

function with the built model. This approach is referred to as the model-based

approach. The second conventional approach directly goes from experience to

a value function estimate. It does not construct a model and, therefore, is

called the model-free approach. Figure 1.1 illustrates the difference between

the internal structure of these two approaches.

model building

Experience Value function Policy

Model
planning

model-free approach

model-based approach

Figure 1.1: The structure of the two reinforcement learning approaches. The

model-based approach estimates the value function by taking the indirect path of

model construction followed by planning, while the model-free approach directly

estimates the value function from experience.

A classically known advantage of the indirect model-based approach is that

it often finds a good value function estimate with fewer environmental

interactions and provides better interim performance (Sutton, 1990; Moore

and Atkeson, 1993; Atkeson and Santamaria, 1997). This advantage, which
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is formally called data efficiency, is offered by thinking about the outcome of

the agent’s actions in the imaginary experience generated by a model. Data

efficiency is particularly valuable in settings where computational resources are

abundant, but agent’s actual experience is costly and should be used carefully.

The main benefit of the model-free approach is its computational efficiency.

Due to a cheap computational demand, a model-free algorithm can usually

support a representation larger than that of a model-based algorithm when

the two algorithms are given the same amount of computation. Moreover,

model-free algorithms can often use the idea of eligibility traces in a

straightforward fashion. With a larger representation and using the eligibility

traces, the model-free approach can perform better asymptotically.

The first contribution of this thesis is to establish that neither approach

can dominate the other. Implicitly, a trade-off between the interim and the

asymptotic advantages arises when choosing between these two approaches:

the model-based approach can rapidly improve its behaviour and provide a

better interim performance, while the model-free approach achieves a better

asymptotic performance by using a larger representation or eligibility traces.

This trade-off raises a natural and important question: How can we usefully

and flexibly combine these two approaches to exploit the strengths and to

eliminate the weaknesses of each individual approach? The reinforcement

learning literature has investigated this question and proposed a number of

combinations which will be covered later in this thesis. The combination of the

indirect model-based approach and the direct model-free approach has recently

become important for neuroscientists as well, mainly because of the evidence

suggesting that human and animal brains might employ a combination of the

two approaches for control of behaviour (Daw et al., 2005).

The main contribution of this thesis is to develop a new architecture that

flexibly and usefully combines the two approaches. In this architecture the

model-based approach estimates an initial value function oblivious to the

model-free approach. The model-free approach takes, in parallel, the initial
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value function estimate, adds to it a weight vector, and adapts the weight

vector from the agent’s actual experience to form an improved value function

estimate. This final value function estimate is then used to control the agent’s

behaviour. The idea behind our architecture, which we refer to it as the

Cascade Architecture, can be used more generally to combine any number of

parallel processes with a shared goal.

We assess the effectiveness of the Cascade Architecture by presenting

empirical results on three reinforcement learning domains. We show that the

Cascade combination of a model-based algorithm and a model-free algorithm

preserves the interim advantage of the model-based algorithm and achieves

an asymptotic performance similar to that of the model-free algorithm. We

also prove that, in general, Cascade Architecture’s asymptotic performance

is same as the original model-free algorithm. This property of the Cascade

Architecture sets the stage for using more extreme approximations to make

smaller models, with which planning is cheaper, without any negative impact

on the asymptotic solution.

The contributions of this thesis are:

• Showing the relative strengths and weaknesses of model-based and

model-free reinforcement learning.

• Developing the Cascade Architecture as a way of combining model-based

and model-free approaches.

• Assessing the effectiveness of the Cascade Architecture by presenting

empirical and theoretical results.

• Showing a general equivalence between the linear TD(λ) solution and

the linear β-model solution with a similar representation.
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Chapter 2

Background

This chapter introduces the notation and reinforcement learning algorithms

used in the rest of this thesis. The first four sections of this chapter, which

discuss our notation and the idea of building a linear model, are particularly

important because they only are discussed here and will be used in this

thesis frequently. The subsequent sections review the family of temporal

difference learning algorithms and Dyna-style planning with the linear model.

These algorithms will be covered briefly in the next chapter and, therefore,

are skippable for a reader familiar with them. For a more comprehensive

background, we encourage the reader to study the standard reinforcement

learning textbook (Sutton and Barto, 1998).

2.1 The Reinforcement Learning Problem

In the reinforcement learning problem an agent interacts with its environment

in order to achieve a certain goal. The goal is to find a behaviour that achieves

the highest cumulative reward in the environment.

Markov decision processes (MDP) is the standard mathematical formulation

used for the reinforcement learning problem. An MDP is specified by the tuple

〈S,A,R,P , γ〉. At each time step t the agent is in a state St ∈ S where S is

the set of all possible states and |S| = N is the total number of states. The

agent chooses an action At ∈ A which is responded by the environment with
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2.2 Value Functions

All of the reinforcement learning algorithms considered in this thesis involve

estimating value functions. Informally, value functions represent how good it

is for the agent to be in a particular situation. In order to formally define

value functions, we first need to define return. At each time step t we define

return Gt as the discounted sum of future rewards:

Gt =
∞∑

k=0

γkRt+k+1 . (2.3)

For a specified policy π, we can now define the state-value function vπ(s) as the

function that maps a state s to a scalar denoting the expected return starting

from state s and following policy π. More formally:

vπ(s) = Eπ

{

Gt

∣
∣
∣St = s

}

. (2.4)

State-value function can be written in a recursive form based on the value of

the successor states:

vπ(s) = Eπ

{ ∞∑

k=0

γkRt+k+1

∣
∣
∣St = s

}

= Eπ

{

Rt+1 + γ

∞∑

k=0

γkRt+k+2

∣
∣
∣St = s

}

=
∑

a∈A

π(a|s)

[

Ra
s + γ

∑

s′∈S

Pa
ss′ Eπ

{ ∞∑

k=0

γkRt+k+2

∣
∣
∣St+1 = s′

}
]

=
∑

a∈A

π(a|s)
[

Ra
s + γ

∑

s′∈S

Pa
ss′ vπ(s

′)
]

. (2.5)

It is also useful to define the value of an action in a particular state. Concretely,

we define the action-value function qπ(s, a) as the function that maps a

state-action pair (s, a) to the expected return starting from state s, taking

action a, and following policy π afterwards:

qπ(s, a) = Eπ

{

Gt

∣
∣
∣St = s, At = a

}

. (2.6)

Similarly, it is possible to write the action-value function recursively:

qπ(s, a) = R
a
s + γ

∑

s′∈S

Pa
ss′

∑

a′∈A

qπ(s
′, a′) . (2.7)
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Bellman equations, such as the equations (2.5) and (2.7), are a core part of

most reinforcement learning algorithms.

2.3 Function Approximation

Algorithms that estimate the value functions using equations (2.5) and (2.7)

and with a table with one entry for each state are called tabular algorithms.

Such algorithms require O(N) memory to store an estimate of the state-value

function. This memory demand is impractical in an application with a large

state space. The second and the more critical issue with the tabular setting is

the lack of generalization. In a large-scale problem, the agent encounters a new

state most of the time and, without generalizing from previously experienced

states, it will be unable to behave well. Due to these issues, we move beyond

the tabular algorithms.

An appealing answer to the issues presented in the tabular setting is the idea

of function approximation. The idea is to approximate a target function by

selecting a function, among a specific class of functions, that best matches

the target function. In the approximate setting, a state s is represented by a

feature vector φ(s) with n features where the number of features is typically

much smaller than the number of states. In other words n� N . Similarly, a

state-action pair can be represented by a feature vector φ(s, a).

A particular class of functions offering a sound theoretical foundation is the

class of linear functions. As we will show in the next two sections, linear

function approximation is commonly used to approximate the underlying

dynamics of MDPs (P and R) and value functions.

2.4 Model Building with Linear Function

Approximation

Constructing a model of the environment can be an expensive process. For

instance, estimating {R,P} without using any form of approximation requires

O(N2|A|) of memory. Moreover, planning with such a model requires a

7



large amount of computational resources. We, therefore, use linear function

approximation for constructing an approximate model of the environment. In

this case a column vector and a matrix are learned for every possible action:

a vector ba called the reward model, and a matrix Fa called the transition

model. One way to construct this model is by solving for the minimum of the

two least-squares objective functions defined as:

ba = argmin
b

∑

s

dπ(s)
(

Ra
s − b>φ(s)

)2

∀a ∈ A and (2.8)

Fa = argmin
F

∑

s

dπ(s)
∥
∥
∥

∑

s′

Pa
ss′ φ(s

′)− Fφ(s)
∥
∥
∥

2

∀a ∈ A . (2.9)

In equations (2.8) and (2.9), dπ(s) is called the stationary distribution of the

state s under a policy π.

The set {ba,Fa| ∀a ∈ A} denotes the standard one-step linear model (Parr

et al., 2008; Sutton et al., 2008). In the scope of this thesis, this model is simply

referred to as the linear model. It is possible to incrementally construct the

linear model by a stochastic gradient descent method (Sutton et al., 2008)

using estimates of the gradient of the objective functions (2.8) and (2.9). This

leads to the updates:

ba
t+1 ← ba

t + α
(

Rt+1 − ba
t
>φ(St)

)

φ(St) for a = At and (2.10)

Fa
t+1 ← Fa

t + α
(

φ(St+1)− Fa
tφ(St)

)

φ(St)
> for a = At , (2.11)

where α is called the step-size parameter. For an easier analysis, it is useful

to write the minimization problems (2.8) and (2.9) in matrix format. Let Pa

be an N ×N matrix where Pa
ss′ = P

a
ss′ and let ra be a column vector with N

components where ras = R
a
s (treating the subscripts as their indices for vectors

and matrices). Assuming a uniform stationary distribution, the minimization

problems (2.8) and (2.9) can be written as:

ba = argmin
b

||Φb− ra||2 ∀a ∈ A and (2.12)

Fa = argmin
F

||ΦF> −PaΦ||2 ∀a ∈ A , (2.13)

8



where the thin matrix Φ ∈ RN×n is called the representation matrix. The

rows of the representation matrix correspond to the agent’s states, and the

columns of this matrix are the features.

There are many ways in which the linear model can be useful. In section 2.6

we focus on a particular style of planning with the linear model.

2.5 Model-free Reinforcement Learning with

Linear Function Approximation

In the linear setting, the state-value function is approximated by a linear

function of the features:

vπ(s) ≈ v̂(s) = θ>φ(s) =
n∑

i=1

θi φi(s) . (2.14)

Sometimes the goal is to estimate the state-value function for a fixed policy,

rather than finding a good policy. This is called the prediction setting. In the

prediction setting, the family of temporal difference learning (TD) algorithms

(Sutton, 1988) are often used to directly learn the weight vector θ from the

agent’s experience. Linear TD(0) is the simplest member of this family of

algorithms with the update:

θt+1 ← θt + α
(

Ut − θ>

t φ(St)
)

φ(St) , (2.15)

where Ut = Rt+1 + γθ>

t φ(St+1) ,

and where α is a step size parameter. Also, Ut is called the update target at

time step t.

TD algorithms are also used for the full reinforcement learning problem, the

control setting, in which the goal is to find the best policy. It is typical for

a model-free control algorithm to estimate the action-value function, rather

than the state-value function. In the linear setting, the action-value function

is approximated by:

qπ(s, a) ≈ q̂(s, a) = θ>φ(s, a) =
n∑

i=1

θi φi(s, a) . (2.16)

9



Linear Sarsa(0) (Rummery and Niranjan, 1994) is the simplest member of the

family of TD control algorithms with the update:

θt+1 ← θt + α
(

Ut − θ>

t φ(St, At)
)

φ(St, At) , (2.17)

where Ut = Rt+1 + γθ>

t φ(St+1, At+1) . (2.18)

Algorithm 1 gives a complete code for linear Sarsa(0) with a ε-greedy

exploration policy.

Algorithm 1: linear Sarsa(0) with ε-greedy policy

Initialize θ

Obtain initial state S

A← argmaxa

{

θ>φ(S, a)
}

with prob. (1− ε) else from A at random

Take action A

for each time step do
Receive next reward R and next state S ′

A′ ← argmaxa

{

θ>φ(S ′, a)
}

with Pr. (1− ε) else from A at

random
Take action A′

θ ← θ + α
(

R + γθ>φ(S ′, A′)− θ>φ(S,A)
)

φ(S,A)

S ← S ′

A← A′

end

Linear TD(0) and linear Sarsa(0) are considered to be computationally

efficient, as their per-time-step complexity scales linearly with the number

of features1.

2.6 Dyna-style Planning with the Linear

Model

The core of Dyna-style planning with the linear model (Sutton et al., 2008)

is to apply linear TD(0) to the imaginary experience generated by the linear

model. More precisely, this form of planning involves the update:

θ ← θ + α(UP − θ>φP )φP , (2.19)

where UP = ba>φP + γθ>FaφP .

1In the scope of this thesis, we assume that the number of action are relatively small.
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Here φP is an arbitrary feature vector chosen by the planner and a is an

action drawn from the agent’s policy. Moreover, UP is called the planning

update target. Notice the similarity between this update rule and that of linear

TD(0) presented by (2.15). There are, nevertheless, two distinctions between

Dyna-style planning with the linear model and linear TD(0). First and

foremost, the source of the experience used here to define the planning update

target UP is the linear model, as opposed to the agent’s actual experience.

Second, φP is an arbitrary feature vector chosen by a planner, as opposed

to the linear TD(0) update where the feature vector is related to the current

state. At each time-step, the planner can choose one or more feature vectors

arbitrarily and use them in the update rule (2.19).

It has been shown that choosing a good distribution for planning feature

vectors potentially increases the speed of convergence (Sutton et al., 2008).

As we will see in the next subsection, useful strategies have been proposed for

choosing the planning feature vector. But, we stick to a general and arbitrary

strategy at this point and introduce our own strategy in the upcoming chapter.

The particular model-based algorithm we regularly use in this thesis is the

one that continually adapts the linear model and uses Dyna-style planning

to estimate the state-value function. The complete code of this algorithm is

given by Algorithm 2. Throughout this thesis, we refer to this model-based

algorithm as control with the linear model.

11



Algorithm 2: control with the linear model and ε-greedy policy

Initialize θ and {Fa, ba| ∀a ∈ A}
Obtain initial state S

for each time step do

A← argmaxa{b
>
a φ(S) + γθ>Faφ(S)} with Pr. 1-ε, else from A

at random
Take action A, receive R and S ′

Fa ← Fa + α
(

φ(S ′)− Faφ(S)
)

φ(S)> for a = A

ba ← ba + α
(

R− ba>φ(S)
)

φ(S) for a = A

for p times for planning do
choose φP according to an arbitrary distribution µ

a← argmaxa{b
a>φP + γθ>FaφP} with Pr. 1-ε, else from A at

random
θ ← θ + α(ba>φP + γθ>FaφP − θ>φP )φP

end
S ← S ′

end

Notice that the per-time-step complexity of control with the linear model is

O(n2) where n is the number of features.

2.6.1 Prioritized Sweeping

The idea of prioritized sweeping is to frequently choose those planning feature

vectors that will result in a high change in the value function estimate. In the

tabular case, this can be achieved by a model and by going backwards from

the states that have recently changed in value to the states that potentially

lead to them (Moore and Atkeson, 1993; Peng and Williams, 1996). In the

function approximation setting, though, it is not possible to go backwards from

individual states, but going backwards feature by feature is indeed possible

(Sutton et al., 2008). More precisely, if there has been a large update in θi,

the component with index i of the weight vector θ, then a feature j for which

Fij is large can be a good candidate for planning. Thus, ej, the unit basis

vector of dimension j, will be selected as planning feature vector. Prior work

discussed the variations of this idea, as well as their implementations, and

showed its effectiveness in practice (Sutton et al., 2008).

12



2.7 Conclusion

This chapter covered the notation used in this thesis. It then introduced

the two families of algorithms: the model-free family of temporal difference

learning algorithms and the model-based family of algorithms that continually

learn and plan with the linear model. In the next chapter we compare these

two families of algorithms from a theoretical and empirical point of view.
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Chapter 3

Relative Strengths and
Weaknesses of Model-based and
Model-free Approaches

This chapter investigates the strengths and weaknesses of model-based and

model-free reinforcement learning as one of our main contributions. So far, this

thesis has highlighted the difference between the two approaches in terms of

their structure. Due to this difference, we naturally expect the two approaches

to perform differently as well. This chapter identifies the strengths and

weaknesses of each approach through an empirical and theoretical comparison.

Recognizing the strengths and weaknesses presented here is crucial for reading

the next chapters in which we combine the two approaches.

Model-based and model-free approaches are dissimilar in terms of their paths

to the value function. The model-based approach is indirect, in the sense that

it takes the indirect path of building a model and planning. In this context,

by a model we mean any entity employed to predict the outcome of actions in

various situations. Moreover, by planning we strictly mean going from a model

to a value function estimate. In contrast, the model-free approach directly uses

experience to update the value function estimate rather than going through

a model. Due to this difference, each approach has its own strengths and

weaknesses and has proven to be effective on different sets of applications.

The most prominent success of model-based reinforcement learning in recent

years is, perhaps, in the domain of autonomous helicopter flight (Ng et al.,

14



2004). In this work a pilot was asked to fly a helicopter in order to provide

sufficient experience for building a model of the environment. Having built

the model, the agent used a planning algorithm to accomplish four acrobatic

maneuvers. This work is regarded as the first one to autonomously complete

these maneuvers. In this work model building, planning, and decision making

happened sequentially, rather than simultaneously. Therefore, managing

computational resources was not considered an important issue.

Model-free reinforcement learning has recently been successful as well, most

notably in the framework of Atari 2600 games (Bellemare et al., 2012). In

a recent work (Mnih et al., 2015), a model-free algorithm with a non-linear

function approximator was used to play the games with a representation that

took as input raw pixels only. This work showed that the model-free algorithm

can outperform a human player on a subset of games. Unlike the autonomous

helicopter domain, in the Atari domain the agent had access to an extensive

amount of experience.

In this chapter, we will investigate the strengths and weaknesses of each

approach. We will show that, consistent with the classical view, the

model-based approach is data efficient and enables a better performance with

limited environmental interactions. We then show that, through using a larger

representation and eligibility traces, the model-free approach can provide

better asymptotic performance.

3.1 Representative Family of Algorithms

Reinforcement learning has recently become a popular field and, therefore,

various algorithms have been proposed lately. For the sake of an easier

comparison, though, we consider one family of algorithms from each of the

two approaches. The two representative families, while being simple, are

among the fundamental reinforcement learning algorithms and are commonly

used in practice. The next two sections proceed by presenting these

representative families which have already been presented thoroughly in the
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background chapter.

3.1.1 Representative Model-based Family

Our model-based representative uses experience to continually adapt the

linear model and simultaneously implements Dyna-style planning to go

from the linear model to a linear state-value function estimate. At each

time-step planning takes a number of steps. This is denoted by p and is

referred to as the number of planning steps. For the prediction setting,

the code for this model-based algorithm is shown by Algorithm 3. We

refer to this algorithm simply as prediction with the linear model.

Algorithm 3: prediction with the linear model

Initialize θ and {F, b}, and obtain initial S
for each time step do

Receive R, S ′

F← F+ α
(

φ(S ′)− Fφ(S)
)

φ(S)>

b← b+ α
(

R− b>φ(S)
)

φ(S)

for p times for planning do
for i from 1 to n do

φP ← ei
θ ← b>φP + γθ>FφP

end

end
S ← S ′

end

As mentioned in the background chapter, Dyna-style planning involves a

strategy for choosing the planning feature vector φP . For the empirical

results presented in this chapter, we choose φP in a specific manner. At

each time-step, we iterate over every dimension i ∈ {1, ..., n} and set φP to be

the unit basis vector ei of that dimension. Finally, we choose the number of

planning steps p to be 1, indicating that we iterate over every dimension once

at each time-step.

Prediction with the linear model can easily be extended to the control setting.

The control extension adapts a vector ba and a matrix Fa for each action,
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representing the approximate reward and transition model of the environment.

The algorithm uses this model, along with the state-value function estimate,

to find and then implement a policy. The complete algorithm, which we

refer to as control with the linear model, is presented by Algorithm 4.

Algorithm 4: control with the linear model and ε-greedy policy

Initialize θ and {Fa, ba| ∀a ∈ A}, and obtain initial S
for each time step do

A← argmaxa{b
a>φ(S) + γθ>Faφ(S)} with Pr. 1-ε, else from A at

random
Take action A, receive R, S ′

Fa ← Fa + α
(

φ(S ′)− Faφ(S)
)

φ(S)> for a = A

ba ← ba + α
(

R− ba>φ(S)
)

φ(S) for a = A

for p times for planning do
for i from 1 to n do

φP ← ei
a← argmaxa{b

a>φP + γθ>FaφP} with Pr. 1-ε, else from A
at random
θ ← ba>φP + γθ>FaφP

end

end
S ← S ′

end

The computational complexity of this family of algorithms is O(n2).

3.1.2 Representative Model-free Family

We use the family of TD algorithms as our representative model-free algorithm

(Sutton, 1988). TD algorithms are, perhaps, the most fundamental family of

reinforcement learning algorithms. Moreover, they are computationally cheap

as they scale linearly with the number of features. Linear TD(0) is the simplest

form of this family in the linear function approximation case. The code for

this algorithm is given by Algorithm 5.
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Algorithm 5: linear TD(0)

Initialize θ and obtain initial state S

for each time step do
Receive next reward R and next state S ′

θ ← θ + α
(

R + γθ>φ(S ′)− θ>φ(S)
)

φ(S)

S ← S ′

end

Linear Sarsa(0) is the extension of linear TD(0) to the control setting. The

main distinction is that linear Sarsa(0) estimates the action-value function,

rather than the state-value function. The code for linear Sarsa(0) is given by

Algorithm 6.

Algorithm 6: linear Sarsa(0) with ε-greedy policy

Initialize θ and obtain initial state S

A← argmaxa{θ
>φ(S, a)} with Pr. (1− ε) else from A at random

Take action A

for each time step do
Receive next reward R and next state S ′

A′ ← argmaxa{θ
>φ(S ′, a)} with Pr. (1− ε) else from A at random

Take action A′

θ ← θ + α
(

R + γθ>φ(S ′, A′)− θ>φ(S,A)
)

φ(S,A)

S ← S ′

A← A′

end

3.2 Model-based Approach is More

Data efficient

The main advantage of the model-based approach is thought to be data

efficiency. This approach is able to leverage experience by using it to build a

model of the environment, rather than discarding the experience. Interesting

theoretical results on the data efficiency of the two approaches have been

found by prior work (Kakade, 2003; Strehl et al., 2009; Szita and Szepesvári,

2010). The latest work (Szita and Szepesvári, 2010) has shown similar

upper bounds on the number of exploratory actions required for Q-learning, a

model-free algorithm, and R-MAX, a model-based algorithm, before they find
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a near-optimal policy. Yet the scope of all of those results are restricted to

the tabular case; and in the approximate setting many of their assumptions

are not true anymore. Also the unique result in the function approximation

setting (De Farias and Van Roy, 2004) is based on the assumption of knowing

a near optimal sampling policy, which is what we are interested to find in the

first place.

We rely on empirical results, rather than theoretical results, to perform the

comparison. Prior work on empirical comparison of the two approaches dates

back to the comparison in the tabular setting (Sutton, 1990; Moore and

Atkeson, 1993; Atkeson and Santamaria, 1997). One of the first comparisons in

the linear setting (Boyan, 2002), presented LSTD as a model-based algorithm

and showed its interim benefit over linear TD algorithms, though the scope

of this work was restricted to the prediction setting. The most recent work

in the linear setting (Sutton et al., 2008) performed a comparison between a

model-free algorithm and Dyna Architecture which could be thought of as a

combination of model-based and model-free approaches. The empirical results

presented in this work showed a weak advantage for the Dyna Architecture

over the linear TD algorithms. We aim to conduct more experiments in order

to reach to a stronger result.

We ran two control experiments on standard reinforcement learning domains,

namely mountain car and puddle world. The details of both domains are

explained in (Sutton, 1996). In the mountain car domain, the initial position

was chosen in an interval between -0.7 and -0.5 with a uniform distribution.

Also the initial velocity was zero. The representation consisted of 10 tilings

each with 100 features resulting in a representation with 1000 binary features.

In the puddle world domain the initial state was the tuple (0.25,0.6) and

the representation consisted of 8 tilings each with 64 features. Therefore,

the representation consisted of 512 features. We set ε to zero and, instead,

initialized the value function estimate optimistically and to vectors of zero in

order to handle the exploration problem. Step-sizes were optimized for the

best asymptotic performance over 500 independent runs.
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stationary distribution. We define a column vector v ∈ RN where:

vs = vπ(s) (3.3)

We finally define a thin matrix Φ ∈ RN×n where Φsi indicates the value of

feature i in the state s. We also assume that the columns of Φ are linearly

independent. With this notation and using linear function approximation, the

vector v can be approximated by v ≈ Φθ.

We are now ready to look for the linear model solution achieved by prediction

with the linear model. The algorithm incrementally constructs the linear

model {b,F} by minimizing the objective functions:

b =argmin
b

||Φb− r||2 and (3.4)

F =argmin
F

||ΦF> −PΦ||
2
. (3.5)

The global minimum of these two minimization problems can be found by

taking the derivative of the objective functions with respect to the variables

and setting them to zero. This leads to the solutions:

b =(Φ>Φ)−1Φ>r and (3.6)

F =
(

(Φ>Φ)−1Φ>PΦ
)>

. (3.7)

Given the linear model, the algorithm looks for a θ that satisfies:

Φθ = Φb+ γΦF>θ . (3.8)

Since both sides of the equation are in the span of Φ, there exists a θ that

exactly satisfies equation (3.8):

Φθ = Φb+ γΦF>θ

θ = b+ γF>θ by linearly independent columns of Φ

θ = (I− γF>)−1b

θ =
(

I− γ(Φ>Φ)−1Φ>PΦ
)−1

(Φ>Φ)−1Φ>r by (3.6) and (3.7)

θ =
(

Φ>Φ− γΦ>PΦ
)−1

Φ>r by A−1B−1 = (BA)−1 (3.9)
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We next move to finding the asymptotic solution of linear TD(0). This

model-free algorithm directly looks for a θ that satisfies:

Φθ = ΠΦ(r+ γPΦθ) , (3.10)

where ΠΦ = Φ(Φ>Φ)−1Φ> is the least-squares projection into the span of

Φ. With a couple of clear steps shown below, the solution found by linear

TD(0) is:

Φθ = ΠΦ(r+ γPΦθ)

Φθ = Φ(Φ>Φ)−1Φ>r+Φ(Φ>Φ)−1Φ>γPΦθ by ΠΦ = Φ(Φ>Φ)−1Φ>

Φθ −Φ(Φ>Φ)−1Φ>γPΦθ = Φ(Φ>Φ)−1Φ>r

θ − (Φ>Φ)−1Φ>γPΦθ = (Φ>Φ)−1Φ>r by linearly independent columns of Φ
(

I− (Φ>Φ)−1Φ>γPΦ
)

θ = (Φ>Φ)−1Φ>r

θ =
(

I− (Φ>Φ)−1Φ>γPΦ
)−1

(Φ>Φ)−1Φ>r

θ = (Φ>Φ− γΦ>PΦ)−1Φ>r by A−1B−1 = (BA)−1 . (3.11)

Note that the solution (3.11) is equal to the solution (3.9), meaning that the

linear TD(0) solution is equivalent to the linear model solution. We consider

this a positive result for the model-based algorithm, because the design bias

of having the linear model will not yield an asymptotic solution worse than

that of linear TD(0).

The experimental results presented here supported the general view that

the model-based algorithm is more data-efficient. Moreover, we showed

that the model-based algorithm is as good as the model-free algorithm at

asymptote. Nevertheless, this analysis did not take into account the different

computational demands of the two algorithms, as if computation is not a

concern. In the next section we control for the computation and repeat the

experiments.
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3.3 Model-free Approach Performs Better at

Asymptote

The assumption of having an agent with infinite computational resources is

rather unrealistic. There, normally, is a bound on the agent’s computational

resources, specially in a large-scale application with a fast and high dimensional

stream of data. Ideally, the limited computational resources available to the

agent should influence the agent’s approach to a problem.

Model-based algorithms often require a larger amount of computation

compared to their model-free counterparts. Our representative model-based

algorithm have the per-time-step complexity of O(n2) where n denotes the

number of features. In contrast, typical model-free algorithms, such as linear

TD(0) and linear Sarsa(0), scale linearly with the number of features of

the representation. Due to this cheap computational demand, model-free

algorithms can support a relatively larger representation when the same

computational resources are available. As such, a more meaningful comparison

would be the one that gives the same amount of computation to both of the

algorithms.

We, therefore, repeat the two experiments presented in the previous section,

this time with a much smaller representation for the model-based algorithm. In

the mountain car domain, the model-free representation consists of 10 tilings

each with 225 features and the model-based representation uses only 2 tilings

with the same number of features. In the puddle world domain, the model-free

algorithm uses 10 tilings each with 64 features while the model-based algorithm

uses only 1 tiling with 64 features. These representations led the two

algorithms to take approximately the same amount of running time on our

machine. The results are shown in Figure 3.2 of this chapter.

In these results control with the linear model is still performing better on

the interim. But, linear Sarsa(0) is now able to use a richer representation

and search in a subspace that is closer to the actual value function. This

leads the model-free algorithm to achieve a superior asymptotic performance.
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It has been shown that there is a bound on the quality of the solution found

by linear TD(λ). Interestingly, the bound becomes tighter as λ gets closer to

1. (Bertsekas and Tsitsiklis, 1996) Previously, we showed that the solution of

prediction with the (one-step) linear model is equivalent to the linear TD(0)

solution. We aim to extend the theoretical equivalence to general λ.

We prove that the solution found by linear TD(λ) is identical to the linear

β-model solution. β-model (Sutton, 1995) is a mixture of multi-step models

in which the weighting falls off exponentially with time:

rβ =
∞∑

t=0

(γβP)t r = (I− γβP)−1r and (3.13)

Pβ = (1− β)
∞∑

t=0

(γβP)t P . (3.14)

Notice that, with β = 0, rβ and Pβ will reduce to r and P. A linear β-model

can be learned by minimizing the following objective functions:

bβ = argmin
b

||Φb− rβ|| = (Φ>Φ)−1Φ>rβ and (3.15)

Fβ = argmin
F

||ΦF> −PβΦ|| =
(

(Φ>Φ)−1Φ>PβΦ
)>

(3.16)

Given this model, linear β-model solution is found by finding a θ that satisfies

Φθ = Φbβ + γΦF>
β θ . This leads to the solution:

Φθ = Φbβ + γΦF>

β θ (3.17)

θ = bβ + γF>

β θ (3.18)

θ = (I− γF>

β )
−1bβ (3.19)

θ = (I− γ(Φ>Φ)−1Φ>PβΦ)−1(Φ>Φ)−1Φ>rβ by (3.15) and (3.16)
(3.20)

θ = (Φ>Φ− γΦ>PβΦ)−1Φ>rβ . by A−1B−1 = (BA)−1 (3.21)

We now look for the linear TD(λ) solution. The algorithm solves for the fixed

point of:

Φθ = ΠΦ

(

T λ(Φθ)
)

, (3.22)

where T λ(Φθ) = (I− γλP)−1r
︸ ︷︷ ︸

rλ

+γ (1− λ)
∞∑

t=0

(γλP)t P

︸ ︷︷ ︸

Pλ

Φθ . (3.23)
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Note that, with λ = 0, the operator T will reduce to r+ γPΦθ. The solution

can then be found with a couple of steps:

Φθ = ΠΦ(rλ + γPλΦθ) (3.24)

Φθ = Φ(Φ>Φ)−1Φ>(rλ + γPλΦθ) (3.25)

θ = (Φ>Φ)−1Φ>(rλ + γPλΦθ) (3.26)

θ − γ(Φ>Φ)−1Φ>PλΦθ = (Φ>Φ)−1Φ>rλ (3.27)

θ =
(

I− γ(Φ>Φ)−1Φ>PλΦ
)−1

(Φ>Φ)−1Φ>rλ (3.28)

θ = (Φ>Φ− γΦ>PλΦ)−1Φ>rλ by A−1B−1 = (BA)−1 (3.29)

Setting λ equal to β in this solution will make it identical to solution (3.21).

Thus, prediction with a linear β-model and linear TD(λ) yield the same

solution when λ = β and when the same representation is used. This result

makes a more general statement: with a similar representation, there is no

asymptotic benefit for linear TD(λ) compared to solving for the linear β-model.

In the control setting, the story is different. We show that, in the control

setting, eligibility traces can provide substantial benefit for the model-free

algorithm, while it is not the case for the model-based algorithm. In the

control setting, building a useful multi-step model requires having some form

of sub-goal (Sutton et al., 1999); yet automatically finding useful subgoals

is an open question. On the other hand, model-free control algorithms can

use eligibility traces in a straightforward fashion. One of these algorithms is

linear Sarsa(λ) (Algorithm 7) which is the control extension of linear TD(λ).

Although we lack a concrete theory at this point, using a λ close to 1 often

leads to better empirical results. We move to a designed domain to show an

example of such a situation.

We created a domain, referred to as the hallway domain, with 19 states and

4 actions (Up, Right, Down, Left) in each state. To introduce stochasticity, a

chosen action will be executed only with probability 0.9, otherwise a random

action will be executed. The reward signal is 1 upon the transition to the

terminal state 18 and is 0 otherwise. There is also no discounting. The agent
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Algorithm 7: linear Sarsa(λ) with accumulating traces and
ε-greedy policy

Initialize θ and e, and obtain initial state S

A← argmaxa{θ
>φ(S, a)} with prob. (1− ε) else from A at random

Take action A

for each time step do
Receive next reward R and next state S ′

A′ ← argmaxa{θ
>φ(S ′, a)} with prob. (1− ε) else from A at

random
Take action A′

e← γλe+ φ(S,A)

θ ← θ + α
(

R + γθ>φ(S ′, A′)− θ>φ(S,A)
)

e

S ← S ′

A← A′

end

3.5 Conclusion

The results presented in this chapter established an implicit trade-off when

choosing between the indirect model-based approach and the direct model-free

approach. Concretely, the model-based approach leads to better performance

with limited environmental interactions, though it also is computationally

more expensive. On the other hand, the model-free approach can use a

larger representation when controlling for computational complexity and yields

a better asymptotic performance. Additionally, the model-free approach is

more compatible with eligibility traces, which is a powerful and useful idea in

reinforcement learning. The drawback to the model-free approach, however,

is that it requires more experience to reach a good performance.

In the next two chapters, our desire is to have the strengths of both approaches,

if possible, by looking for the combinations of the two approaches.
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Chapter 4

Existing Forms of Combination

We concluded the previous chapter by a desire to combine model-based and

model-free approaches in order to have the merits of both of them. In this

chapter we survey the prior work in reinforcement learning and neuroscience

on combining the two approaches. Moreover, we discuss the limitations and

advantages of the existing combinations. In light of the limitations presented

here, in the next chapter we develop a more useful and flexible combination,

the Cascade Architecture.

Previous work in reinforcement learning and neuroscience has explored ways

to combine the indirect path of model building and planning with the

direct path taken by model-free reinforcement learning. The goal of this

research ranges from flexible planning in reinforcement learning (Silver et al.,

2008) to understanding the mind in cognitive science and introducing the

computational models that can account for psychological experiments (Daw

et al., 2005; Gershman et al., 2014). From the computational point of view,

though, the primary reason to combine indirect and direct paths is to exploit

the strengths and to eliminate the weaknesses of each approach. In the

next couple of sections, we list three forms of combination and discuss their

advantages and limitations.

29



4.1 Dyna Architecture (Single Value Function

Estimate)

One of the natural ways to combine the two approaches is to allow them

to contribute to a single value function estimate. The Dyna Architecture

(Sutton, 1990) was, perhaps, the first attempt to implement this idea. One

of the fundamental elements of the Dyna Architecture is to characterize the

two approaches as identical in a radical sense. Dyna’s model-based process

uses a reinforcement learning algorithm applied to the imaginary experience

generated by a model, and Dyna’s model-free process applies the same

algorithm to the agent’s actual experience and updates the same value function

estimate. In other words, the only distinction between the two processes here

is in the sources of experience that each of them employs. Figure 4.1 diagrams

the Dyna Architecture.
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A
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t+1
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t+1
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S
t

R
t+1

q π
∧

Figure 4.1: An illustration of the Dyna architecture. Both planner and model-free

learner contribute to a single value function estimate.

A powerful attribute of the Dyna Architecture is to keep acting, learning, and

planning independent while operating as fast as they can. They all run in

parallel with none of them waiting for the other one. This flexibility is crucial

as it enables the designer to allocate computational resources according to the
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requirements. This flexibility has also allowed Dyna to explain psychological

studies on human and animal decision-making. For example, it has been

suggested (Gershman et al., 2014) that the brain uses, in a cooperative manner,

both a goal-directed (model-based) approach as well as a habitual (model-free)

approach to decision making and is able to flexibly allocate the computational

resources based on the situation.

The structure of Dyna’s value function estimate can be problematic for, at

least, two reasons. First, imagine a situation where one approach leads to

a better solution. Because both approaches contribute to the same value

function estimate, the net solution can be worse than the solution of the

preferred approach alone. In other words, there is no clear way to prevent the

propagation of error and the negative impact of one approach on the other.

Therefore, Dyna’s model-free process may slow down the model-based process

at the early stages of learning, while the model-based process may degrade the

asymptotic solution found by the model-free process.

A second issue with a single value function estimate is the inability to support

distinct representations, objective functions, and parameters. Recall that

the model-free approach is computationally cheaper than the model-based

approach when they both use the same representation. As such, model-free

approach can support a larger representation than the model-based approach

without increasing the computational complexity. The model-based process

of linear Dyna algorithm (Sutton et al., 2008), for example, requires O(n2)

computation per-time-step, while the computational complexity of linear

Dyna’s model-free process scales linearly with the number of features.

Therefore, the model-free process can support a representation with a

significantly larger number of features without increasing the per-time-step

complexity of linear Dyna. This flexibility is not offered by the Dyna

Architecture. Similarly, it is unclear how to use eligibility traces within the

Dyna Architecture, because the model-based and model-free processes will

then have different objective functions while contributing to the same value

function estimate.
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tabular case, which is mainly based on the uncertainty in the estimation of the

two value functions and choosing the one with a higher certainty. Nevertheless,

choosing a selector signal is not obvious from the outset and it is difficult to

find an effective selector signal for the general case. Moreover, adapting a

good selector signal may, itself, require a large amount of computation and

exacerbate the already challenging problem of resource allocation.

4.3 Weighted Average of Separate Value

Function Estimates

Another form of combination is to decouple the value function estimates, but

also to form a third value function estimate by taking a weighted average of

the value function estimates from the two approaches. Let us assume that

the direct model-free process forms its own value function estimate q̂MF(s, a)

and that the indirect model-based process estimates another value function

q̂MB(s, a). This form of combination computes a third value function estimate

by taking a weighted average over q̂MF(s, a) and q̂MB(s, a). More precisely:

q̂(s, a) =
wt

MB
q̂MB(s, a) + wt

MF
q̂MF(s, a)

wt
MB

+ wt
MF

. (4.1)

This form of combination is illustrated by Figure 4.3.

One suggestion (Gläscher et al., 2010) for setting wt
MB

and wt
MF

is in a fixed

schedule:

wt
MB

= e−kt and (4.2)

wt
MF

= 1− e−kt , (4.3)

where k is a parameter by which the decay rate is tuned. In effect, this

combination will softly switch from the model-based value function estimate

to the model-free value function estimate. Choosing the weights in this way

is intuitive, because we expect the model-based approach to perform better

initially and the model-free approach to perform better asymptotically. But,

this combination is then not fully extendable to non-stationary environments.
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Figure 4.3: Weighted average of separate value function estimates.

In non-stationary domains, in which the benefits of planning are more

noticeable, we require continual planning to rapidly adapt to the changes in

the environment.

4.4 Conclusion

We presented three ideas for combining the two conventional approaches to

reinforcement learning. Unfortunately, these three combinations are unable

to have the strengths of both approaches: to offer the data efficiency of

the model-based approach, and to maintain the asymptotic accuracy of the

model-free approach. The Dyna architecture cannot prevent the negative

impacts of one approach on the other. The switching idea requires an

additional selector signal that is often difficult to find. Finally, the weighted

combination with the weights set in a fixed schedule is not applicable to

non-stationary environments. The Cascade Architecture, presented in the next

chapter, will overcome these limitations.
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Chapter 5

The Cascade Architecture

This chapter presents our main contribution, the Cascade Architecture for

combining model-based and model-free approaches to reinforcement learning,

and also shows Cascade Architecture’s effectiveness in preserving the strengths

of model-based and model-free reinforcement learning. Moreover, we prove

here that in the prediction setting, the Cascade Architecture achieves the

same asymptotic solution as the original model-free solution and, therefore,

prevents any imperfect model from impairing its asymptotic performance.

The Cascade Architecture flexibly and usefully combines the two approaches

in order to exploit their strengths and to eliminate their weaknesses. The

main idea behind the Cascade Architecture is to have a series of processes

improving the predictions of the previous ones. This idea has been pursued

by prior work (Fahlman and Lebiere, 1990; Silver et al., 2008). We review an

instance of this idea in the context of supervised learning, before moving to

the context of reinforcement learning.

5.1 Cascade-Correlation Algorithm

The Cascade-Correlation algorithm (Fahlman and Lebiere, 1990) is a

supervised learning algorithm for training a neural network. The algorithm

begins training the network without any hidden units until the algorithm is

no longer able to significantly reduce the error. At this point, if the error

on the entire training set is higher than a threshold, the algorithm adds a
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hidden unit that is highly correlated with the error. Once the unit is added,

its input weights are frozen. In the next iteration, the algorithm trains the

network using the input features as well as the newly added hidden unit.

Cascade-Correlation continues to iterate until the residual error is less than the

specified threshold. Figure 5.1 illustrates the Cascade-Correlation algorithm.

Inputs

Outputs

Inputs

Outputs

first added unit

Inputs

Outputs

second added unit

Figure 5.1: An illustration of the Cascade-Correlation algorithm. The neural

network starts with no hidden units and adds hidden units that are correlated with

the error until the error on the training set is less than a specified threshold.

5.2 Principles of the Cascade Architecture

Inspired by the Cascade-Correlation algorithm, we refer to the new

architecture as the Cascade Architecture. Here are the principles of the

Cascade Architecture:

• Cascade Architecture consists of a series of processes: each process

takes as input the net contribution of the previous processes while being

oblivious to the subsequent processes.

• The processes of the Cascade Architecture have a common goal and are

cooperating and working towards that common goal. The goal could be
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This value function estimate is learned by incrementally adapting the linear

model {ba,Fa| ∀a ∈ A} and planning with the linear model in a Dyna style.

Note that all the parameters (θ, b•, and F•) of the initial value function

estimate are learned by the model-based process.

The model-free process comes next by contributing to the final value function

estimate. It takes the initial value function estimate q̂p, adds its contribution

w, and adapts w to further reduce the error. Since the final value function

is the output of the entire algorithm, we also refer to it as the Cascade value

function estimate q̂c. The Cascade value function estimate takes the form:

q̂c(s, a) = q̂p(s, a) +w>ϕ(s, a) . (5.2)

It is only the model-free process that updates the weight vector w. In effect,

the model-free process adapts w to reduce the residual error of q̂p (which itself

could be thought of as a bias term for the model-free process), and to form a

more accurate value function estimate. To learn the weight vector w, we use

linear Sarsa(0) algorithm with the update:

wt+1 ← wt + αδtϕ(St, At) (5.3)

where δt = Rt+1 + γq̂c(St+1, At+1)− q̂c(St, At)

Notice that we have used different notations (φ and ϕ) for feature vectors

of the two processes to denote that they can be different. More generally,

within the Cascade Architecture each approach has the flexibility to employ

its own representation, parameters, and objective function. This flexibility is

desired and, as we will show later, yields a significant advantage. Figure 5.3

illustrates the internal structure of the linear Cascade and Algorithm 8 gives

the complete code for this algorithm.
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from S to S ′ with reward R, the TD error is:

δ = R + γ(b> + γθ>F)φ(S ′) + γw>ϕ(S ′)

− (b> + γθ>F)φ(S)−w>ϕ(S)

= R + (b> + γθ>F)
(

γφ(S ′)− φ(S)
)

+w>

(

γϕ(S ′)−ϕ(S)
)

We define the augmented reward signal, R̃, as the original reward signal plus

the contribution of the model-based process:

R̃ = R + (b> + γθ>F)
(

γφ(S ′)− φ(S)
)

.

Given this new reward, the temporal difference error used by the model-free

process is:

δ = R̃ + γw>ϕ(S ′)−w>ϕ(S) (5.4)

This signal could be thought of as a noisy approximation of a well-defined

reward signal in a standard Markov reward process after the convergence of θ.

For the algorithms used in the linear Cascade, both algorithms will converge

under standard conditions. We restrict our attention for convergence to the

setting where the state space is finite and the rewards are deterministic.

We assume that (i) the Markov chain induced by the policy is aperiodic

and irreducible, (ii) that both sets of features are linearly independent, (iii)

that the linear transition model F has a numerical radius less than one, and

(iv) the step-sizes are decreasing at a rate that satisfies
∑

∞

k=1
αk = ∞ and

∑
∞

k=1
α2
k < ∞. The convergence of prediction with the linear model to the

LSTD(0) solution under these conditions is described by the prior work (Sutton

et al., 2008). The convergence of linear TD algorithms with probability one

under these conditions is also proved (Tsitsiklis and Van Roy, 1997). For

the convergence of linear TD algorithms in the linear Cascade, note that the

weights are effectively updated with R̃. As linear TD algorithms converge with

a noisy reward signal, the model-free process of the linear Cascade converges

as well.
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Algorithm 9: linear Cascade for prediction

Initialize θ, w, and {b,F} and obtain initial state S

for each time step do
Receive next reward R and receive next state S ′

F← F+ αp

(

φ(S ′)− Fφ(S)
)

φ(S)>

b← b+ αp

(

R− b>φ(S)
)

φ(S)

for p times for planning do
for i in range 1 to n do

φP ← ei
θi ← b>φP + γθ>FφP

end

end
δ ← R + γv̂c(S

′)− v̂c(S)
w← w + αcδϕ(S)
S ← S ′

A← A′

end
define v̂c(s) :

return v̂p(s) +w>ϕ(s)
define v̂p(s) :

return b>φ(s) + γθ>Fφ(s)

A more important question is related to the convergence point of the Cascade

Architecture. We next show that the Cascade Architecture achieves an

asymptotic performance equivalent to using a model-free algorithm alone,

when the model-free process of the Cascade Architecture finds a globally

optimum for the weights for an objective J , both processes use linear function

approximation, and the features used for the model-based process can be

represented as a linear function of the features used for the model-free process.

Theorem: Asymptotic equivalence of the solutions found by the Cascade

Architecture and the model-free process alone: Consider two adaptive

processes P and L combined in the Cascade Architecture where both use linear

function approximation over states, both converge on the original problem, and

they also converge in the Cascade. Suppose that the second process L adapts

the weight vector to converge to a global minimum of an objective function

J . Suppose also that the feature vector φ used by P is representable by the

feature vector ϕ used by L, so there is a matrix M such that for all states s,
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process. The MRP enters the states s1 and s2 with equal probability and

transitions immediately to termination. First notice that the pure model-free

process will estimate the values exactly with a weight of one. The model-based

process of the Cascade will converge to a weight of one as well, but will have

a residual error of 0 for s1 and -1 for s2. As the model-free process of the

Cascade can not represent this difference, the Cascade Architecture will not

have a zero error, and cannot achieve the exact values.

5.6 Compatibility with the Eligibility Traces

One of the strengths of the model-free approach, presented in chapter 3, was

the compatibility with the eligibility traces. The flexibility offered by the

Cascade Architecture allows us to use eligibility traces in the linear Cascade.

The model-free process of the linear Cascade can use linear Sarsa(λ) with the

following update1:

wt+1 ← wt + α
(

Rt+1 + γq̂c(St+1, At+1)− q̂c(St, At)
)

zt , (5.5)

zt ← γλzt−1 +ϕ(St, At) (5.6)

We revisit the hallway experiment discussed in the previous chapter where the

eligibility traces were essential for reaching the optimal solution. This time we

also ran the linear Cascade with λ = 0.9. The results are shown in Figure 5.7.

1The update is shown for the accumulating trace. In general other forms can be used

as well.
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the model-based process improvs the permanent value function estimate by

learning a transient weight vector that is reinitialized at each time step. Also,

the two processes are given the same set of features.

5.8 Conclusion

This chapter presented the Cascade Architecture for combining model-based

and model-free approaches. We showed that the Cascade Architecture

enables fast adaptation with limited environmental interactions. The Cascade

Architecture guarantees convergence to the original model-free solution and,

finally, it is compatible with eligibility traces. The results presented here open

up the possibility for using more extreme approximations in model building

without asymptotic harm. More generally, these results strengthen the case

for combining model-based and model-free reinforcement learning.
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Chapter 6

Conclusion and Future Work

This final chapter is a chance to review our contributions, to discuss the

limitations of our work, and to present ideas for future work.

6.1 Contributions

This thesis took important steps towards understanding the longstanding

debate between model-based and model-free reinforcement learning. Our

important finding was that neither approach can dominate the other. The

Model-based approach performs better with fewer environmental interactions,

whereas the model-free approach can perform better asymptotically by using

a larger representation or the eligibility traces. This trade-off was the primary

reason for us to search for an architecture that combines the two approaches.

The most important contribution of this thesis was to develop the Cascade

Architecture as an effective way of combining model-based and model-free

approaches. To establish Cascade’s effectiveness, we showed its data efficient

performance in our experimental results. We also showed that the Cascade

Architecture is able to reach the original model-free solution and, therefore,

prevent the model-based approach to degrade the asymptotic performance.

The idea behind the Cascade Architecture is also generally useful for combining

parallel processes with a common goal.

Another contribution presented here was to extend the prior work and show a

more general equivalence between the linear TD(λ) solution and the linear
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β-model solution when they both use an identical representation. While

this thesis frequently mentioned and investigated the differences between

model-based and model-free approaches, this general equivalence showed the

value of looking for potential similarities between the two approaches.

6.2 Limitations

The main limitation of this thesis, in our view, is the lack of theoretical

results on data efficiency of the Cascade Architecture. While we made

statements regarding Cascade’s asymptotic performance, we relied on

empirical evaluations to assess Cascade’s data efficiency. Having results of this

form seems unlikely at this point, because the field of reinforcement learning

lacks theoretical results related to data efficiency of even simpler algorithms in

the approximate case. Finding data efficiency results will, unfortunately, get

even harder when we move beyond the linear function approximation setting.

A second limitation of this work was to consider only a single family of

algorithms from each conventional approach. Due to the recent popularity

of the field of reinforcement learning, many model-based and model-free

algorithms have been proposed. But, we considered only a small number

of algorithms for the sake of an easier analysis. Nevertheless, the algorithms

considered her are fundamental and also widely used.

6.3 Future Work

The first idea for future work is to go beyond the linear function approximation

case and to the more general case of non-linear function approximation. This

future work is partly motivated by the recent success of the field of deep

learning, and partly by the desire to extend the results to a more general case.

This direction will, of course, bring its own challenges and questions that are

beyond the scope of this thesis.

Another idea is to go beyond one-step models to the more general case of

multi-step models. This thesis mentioned β-model as a form of multi-step
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models and explained its benefit. The scope of this thesis was, however,

restricted to single-step models. Planning with multi-step models can even

be more useful and, therefore, we generally want to be able to model the

environment on multiple time-scales.

As shown in chapter 5, the Cascade Architecture supports planning with

smaller models while reaching to the solution found by the model-free process.

In other words, Cascade prevents any imperfect model from degrading the

asymptotic performance. Another promising idea for future work would then

be to exploit this property by pushing for models that are smaller in size and

reduce the costs of planning.

Finally, the Cascade Architecture can be used in future to combine

multiple algorithms from each individual approach. For example, a Cascade

combination of multiple model-based algorithms each with different models

can provide benefits. Cascade can also be used to combine multiple model-free

algorithms with eligibility traces where each processes uses a different value

of λ.
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Szita, I., Szepesvári, C. (2010). Model-based reinforcement learning with
nearly tight exploration complexity bounds. In Proceedings of the 27th
International Conference on Machine Learning, pp. 1031–1038.

Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-difference
learning with function approximation. IEEE Transactions on Automatic
Control 42 :674–690.

52


