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ABSTRACT 

Snowmelt and groundwater-surface water (GW-SW) interactions are dominant 

controllers of hydrological cycles and water availability in northern latitudes that are 

characterized with ‘cold region hydrology’. Snowmelt is the main source of groundwater 

recharge and surface runoff, as snow accumulation holds the largest share of water resources in 

cold regions. However, reliability of snow depth and snowmelt modelling and projections of 

GW-SW response to snow dynamics under climate change are subjected to debate. To fill this 

gap, this study has been undertaken with the main objectives of (1) revisiting and characterizing 

the performance and uncertainty of using two commonly-used approaches for snowmelt 

modelling, namely Energy-Balance Modules (EBMs) and Temperature-Index Modules (TIMs), 

as well as two common Snow Density formulations (SNDs) that map snow water equivalent 

(SWE) to snow depth; and (2) assessing the response of GW-SW interactions to snowmelt 

dynamics under future climate change scenarios. For snowmelt analysis, we coupled the Soil and 

Water Assessment Tool (SWAT) model with EBM and TIM modules along with two SND 

formulations, by modifying its source code, in order to examine model representation of snow 

depth simulation. The Analysis of Variance (ANOVA) was used to assess spatio-temporal 

variation of uncertainty by decomposition of the total projected snow depth uncertainty to its 

generating sources due to the use of EBM, TIM, five Global Climate Models (GCMs), two 

emission scenarios (RCP2.6 and RCP8.5), and two downscaling methods (DS1 and DS2). The 

analyses were implemented in mountainous, foothills and plains regions of the North 

Saskatchewan River Basin (NSRB) as a large, snow-dominated watershed with high variability 

of climate, vegetation, and topography. Results showed that regardless of snowmelt approaches, 

i.e., EBMs, TIMs, and SND selection, modelling performance in mountainous regions is poor 
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due to low quality of input climate data. However SND selection plays an important part in 

performance and uncertainty of snow depth in foothills and plains regions, where more accurate 

and high resolution climate data are available to setup the initial models. The uncertainty 

decomposition results showed that model parameter uncertainty, due to the use of EBM or TIM, 

dominantly controlled snow depth projections, particularly in mountainous and foothills regions. 

However, in plains regions, the uncertainty contribution of model parameters becomes less 

dominant and more variable in different months of the year, and the contribution of climate 

change models and scenarios becomes more important. After comparison of performance and 

uncertainties associated with different snowmelt modules, the most reliable module was chosen 

for calibrating the SWAT model. Thus, to answer the second main objective, we developed the 

surface water and groundwater modelling through SWAT-MODFLOW model in order to assess 

the inter-relation of regional snowmelt and GW-SW interactions and their changes under climate 

change. Results predicted that under future climate change, earlier snowmelt is expected in 

mountainous regions, which directly affects the GW-SW interactions mainly in mountainous and 

foothills catchments. On the other hand, correlation analysis of regional snowmelt and GW-SW 

interactions showed a higher correlation (R2 =0.494) in mountainous regions, compared to very 

low correlation (R2 < 0.01) in foothill and plain regions. In foothills and plains regions, higher 

levels of evapotranspiration (ET), and the dominant effect of rainfall on groundwater recharge 

and surface water availability, are introduced as possible effects of low correlations between 

snowmelt and GW-SW dynamics. It was also discussed that due to underground aquifer 

connectivity, the mountainous regions may receive less influence from any adjacent aquifers, 

while those in foothills and plains areas are cumulatively influenced by incoming groundwater 

flows from neighboring aquifers. However, this requires more research when better aquifer 
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boundaries are delineated and available for the modelling study. Overall, it is shown that the 

hydro-climate variability, topography and land-use in different regions play an important role in 

(1) the reliability and performance of snowmelt modules in reproducing snow depth and 

streamflow; (2) the cascade of uncertainty of snow depth projections; and (3) the inter-relation of 

snowmelt and GW-SW dynamics and governing processes that control GW-SW interactions. 
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CHAPTER I – INTRODUCTION 

1.1 Overview 

Water is the essential and most important part of lives of every living creature. Despite 

the abundance of water in different forms throughout the world, the availability of freshwater to 

different geographical locations in different times is subject to many factors such as climate and 

topography, among other factors. Apart from natural factors that impact the uneven distribution 

of freshwater, the effect of human-induced factors such as economic expansion, population 

growth and industrial developments on water resources cannot be neglected (Faramarzi et al., 

2017). In recent decades, the concern of negative impacts of climate change on water resources 

has been widely increased. It is generally agreed that increased greenhouse gas concentrations in 

the atmosphere, in combination with natural climate variability, are causing long-term changes in 

the pattern of hydrological processes such as runoff, groundwater recharge, snowmelt and 

evapotranspiration (Huntington and Niswonger, 2012; Intergovernamental Panel on Climate 

Change, 2013). These impacts are mostly due to the projected increase in global temperature and 

changes in precipitation patterns, which might ultimately lead to variations in the distribution of 

floods and droughts (Reshmidevi et al., 2018). The negative changes of water resources such as 

runoff decrease and increased evapotranspiration can also lead to changes in groundwater 

resources and their connectivity to surface water, altering groundwater recharge and water 

withdrawal from aquifers (Stoll et al., 2011). Such changes are, however, variable within 

different climate systems and geological formations throughout the world. In particular, the study 

of cold regions such as Canadian Prairies is of great interest in northern latitudes because of its 

singular properties in terms of land-cover, climate, topography and natural climate variability. 
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The hydrology of Canadian Prairies has been recognized as a semi-arid, cold region 

hydrology with different factors affecting runoff generation, water storage and the connectivity 

between ecosystem services (Dumanski, et al., 2015). The climate of this region has been widely 

variable, resulting in multiple extreme events (i.e., floods and droughts) to occur. The increase of 

extreme events affects the water availability and usage for different user sections such as 

industrial, agricultural, municipal, and environmental water users (Brimelow et al., 2014; 

Mahmood et al., 2017). Although snowmelt is the main contributor to both surface water flow 

and sub-surface flow in cold regions (Aygün et al., 2020), the changing patterns of hydrological 

processes in Canadian Prairies is subject to numerous factors, some of which are unique to cold 

regions. Apart from snowmelt, wetlands, seasonal freezing and thawing of top soils, and glaciers 

are among other factors that have turned Canadian Prairies hydrology into a complicated system, 

where identifying the sources and dynamics of related processes can be challenging (van der 

Kamp et al., 2003). Wetlands, which are dominant in the Prairies, significantly affect flood 

control, contaminant filtering and groundwater – surface water interactions (Shaw et al., 2012; 

Y. Liu et al., 2018). The seasonal freezing and thawing of top soils, which is a result of long-

term winters, controls the water infiltration and groundwater recharge (Zhang et al., 2010) during 

and after melting season. The evolution and melt of mountain glaciers, which are controlled by 

in-situ hydro-climate processes, contribute to runoff generation in headwaters and water flow 

movement in downstream rivers, which are variable in time and space (Schaner et al., 2012). 

However as mentioned before, among all driving forces affecting Canadian Prairie hydrology, 

snowmelt is one of the most important hydrological processes in snow-dominated basins as it has 

a notable influence on total water availability in warm seasons. Although snowfall accounts for 

only one-third of total precipitation in Canadian Prairies, snowmelt contributes to more than 80% 
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of the streamflow in this area (Dumanski et al., 2015). Therefore, simulation of snowmelt is one 

of the key aspects of hydrological modelling, especially in order to catch the hydrological 

dynamics in large regions for decision making purposes. 

In recent decades, hydrological models have been widely used as means to understand 

numerous hydrological processes and their inter-connections in large-scale (regional) studies. 

However, in snow-dominated areas such as Canadian Prairies, accurate simulation of snowmelt 

has been a major challenge in hydrological modelling. In general, two commonly-used methods 

of temperature index snowmelt modules (TIMs) and energy balance snowmelt modules (EBMs) 

are implemented in hydrological models to simulate the snowmelt processes (Debele et al., 

2010). TIMs typically simulate snowmelt as a function of air temperature, snowpack surface 

temperature, and an empirical constant representing the rate of snowmelt. On the other hand, 

EBMs demonstrate the dependence of rate and quantity of snowmelt to heat and energy 

exchange between the snowpack, ground surface and atmosphere (Valeo and Ho, 2004). While 

EBMs take into account the physical aspects of snowmelt in a more accurate way, they are also 

data-demanding and require numerous input data for snowmelt simulation including snow 

surface albedo, cloud cover fraction, leaf area index, relative humidity, incoming longwave and 

shortwave solar radiation, dew point temperature, and other parameters and datasets (Qi et al., 

2017). Acquiring a reliable set of such datasets in large regions is not feasible; therefore, some of 

them should be assigned to hydrological modelling as parameters, rather than input datasets. 

Adding numerous parameters to the hydrological models may increase the parameter uncertainty, 

which results in wider ranges of model responses when it comes to future projections and climate 

change impact assessments. Hence, it is important to quantify and assess the uncertainty 
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associated with TIMs and EBMs as two widely used approaches for snowmelt simulation and 

ultimately in water resources assessment and utilization in decision-making process.  

On the other aspect of this research, the relations between snowmelt and groundwater-

surface water interactions were argued in regional-scale studies, the scale of which is important 

for policy and planning. In general, the relation between surface water and groundwater is close 

and complex, which requires more assessment of both components in order to establish effective 

strategies for integrated water resources management (Intergovernamental Panel on Climate 

Change, 2013; Qi et al., 2019; Lewandowski et al., 2020). The interaction of groundwater and 

surface water (GW-SW) within a region governs the availability and dynamics of both 

groundwater and surface water (Allen et al., 2010). Also, it is argued that runoff generation is 

effectively controlled by hydrology connectivity of landscapes, hillslopes, or soil components 

(Brannen et al., 2015), and GW-SW interactions dominate the timing and magnitude of 

streamflow at the catchment scale (Jencso et al., 2009). The mechanisms that cause the changing 

patterns of GW-SW interactions under changing climate are poorly understood, particularly in 

mountainous regions (Huntington and Niswonger, 2012). Furthermore, the regional changes of 

GW-SW interactions and their potential reasons require more attention, especially when 

considering their spatio-temporal variability (Barthel and Banzhaf, 2016) and changes under 

climate change scenarios. It is argued that snowmelt and runoff are main drivers of GW-SW 

interactions (Scibek et al., 2007; Mantua et al., 2010; Maurer et al., 2010); however, additional 

explanation is needed to address how directly snowmelt and runoff impact GW-SW interactions, 

since the relation between surface water and groundwater is complex and other factors also play 

important roles in the formation of GW-SW (Huntington and Niswonger, 2012). Because the 

mechanisms related to the formation of snowmelt and runoff are different in various topography 
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and climate settings, it is necessary to incorporate factors such as climate, topography, and land 

cover, among other factors, in analyzing the significance of snowmelt runoff on GW-SW 

interactions. On the Canadian Prairies, where snowmelt is the main component of streamflow, a 

regional analysis of snowmelt and its relations with GW-SW interactions within mountainous, 

foothills and plains regions can give insights into the relation between these two factors in 

different spatial and temporal settings. This can be especially helpful in analyzing how other 

hydrological processes and climate factors might affect GW-SW interactions in current and 

future climate scenarios.   

1.2 Research Objective 

Given this context, the goal of this research was to elaborate on the performance and 

uncertainties associated with using widely-used snowmelt simulation approaches of TIM and 

EBM in regional hydrological modelling, followed by analysis of regional snowmelt and GW-

SW interactions, and their control on each other’s dynamics. This was done through simulating 

and projecting snowmelt and snow depth in regions with different climate and topography. After 

choosing the proper snowmelt module in hydrological modelling, the GW-SW interactions and 

their changes under future climate scenarios were analyzed, after which the effect of snowmelt 

on GW-SW interaction dynamics was assessed in mountainous, foothill and plain regions. The 

North Saskatchewan River Basin (NSRB) of central Alberta was chosen as the study area 

because of its hydrological and hydrogeological complexity, variety in climate, landscape, 

elevation and land-cover. In addition, the NSRB is one of the main providers of surface runoff to 

Saskatchewan River, and is the main source of drinking water to many areas in the region, 

including the city of Edmonton. Therefore, we evaluated TIM and EBM through implementing 

those modules in the SWAT model, followed by uncertainty analysis of snow depth projections. 



6 

 

After that, the best performing snowmelt module was chosen in the SWAT model, and the 

relations between snowmelt and GW-SW interactions were analyzed through an integrated GW-

SW model developed using SWAT-MODFLOW. In summary, the following objectives were 

defined to attain the research goals of this study: 

1. Analyzing the performance of EBM and TIMs, through examining spatio-temporal 

variability of snow depth and streamflow simulations in mountainous, foothill and 

plain areas; 

2. Assessing the spatio-temporal changes in the cascade of uncertainty associated with 

snow depth projections using EBMs and TIMs as snowmelt modules under different 

climate change models, RCP scenarios, and downscaling methods; 

3. Modelling the effect of snow density formulation on the simulations and its impact on 

the projected cascade of uncertainty of snow depth; 

4. Regional assessment of impacts of climate change on seasonal and decadal changes 

of snowmelt and GW-SW interaction patterns;  

5. Assessment of how spatio-temporal variation of groundwater-surface water is 

associated with snowmelt patterns; 

6. Analyzing the interactions and correlations of snowmelt and GW-SW interactions in 

different hydroclimate regions such as mountainous, foothill and plain regions. 

To achieve objective 1 to 3 of this research, we embedded TIM and EBM snowmelt 

approaches (namely SWAT-TIM and SWAT-EBM, respectively) as well as two snow density 

(SND) approaches in SWAT model. SWAT is a process-based, semi-distributed, eco-

hydrological model which simulates various physical processes and their inter-connections on a 

daily basis. Such processes include snowmelt, soil moisture, surface runoff, evapotranspiration 
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and groundwater recharge, among others (Arnold et al. 1998, 2012). SWAT uses a simple TIM 

for snowmelt and snow depth simulations. Therefore, in this study SWAT-EBM and SND 

approaches were embedded into SWAT model by modifying its source code. At first, regional 

and sub-basin scale performance of different snowmelt approaches were evaluated and compared 

in terms of snow depth and streamflow simulations. After that, the Analysis of Variance 

(ANOVA) method was used for uncertainty decomposition of snow depth projections in 

mountainous, foothill and plain regions of the NSRB. 

Based on the research related to objectives 1 to 3, the most reliable snowmelt module (in 

terms of simulation and uncertainties related to snow depth and streamflow) was chosen for 

evaluating the spatio-temporal changes in regional snowmelt (Objective 4) and for coupling to 

the MODFLOW groundwater model. Then, SWAT-MODFLOW model was created after 

calibrating SWAT and MODFLOW based on streamflow and observation well data, 

respectively. SWAT-MODFLOW was then used to extract the results of GW-SW interactions 

and their future changes under climate change models and greenhouse emission scenarios. 

Finally, the objectives 5 and 6 were achieved by comparison of dynamics of snowmelt and GW-

SW interactions resulting from SWAT and SWAT-MODFLOW model, respectively.  

1.3 Thesis Structure 

Chapter 2 consist of objective 1-3 in the form of a manuscript, which is currently under 

review in Journal of Hydrology. It introduces current state of snowmelt simulations and 

compares the performance of TIMs and EBMs, along with two different snow density 

approaches, on simulation and uncertainty of snow depth and streamflow. Then, the uncertainty 
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associated with snow depth projections in regional hydrological modelling was evaluated and 

discussed in different regions of the NSRB. 

Chapter 3 covers objective 4-6 in the form of a draft manuscript, which will be 

submitted for a journal publication. It describes the results of GW-SW interactions and their 

changes under future climate conditions. Also, the relations between regional snowmelt and GW-

SW interactions and their possible governing factors are discussed for mountainous, foothill and 

plain regions of the NSRB. 

Chapter 4 summarizes the findings of previous chapters and provides concluding 

remarks and take-home messages regarding the future of hydrological research on snowmelt and 

groundwater dynamics.  
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CHAPTER II – MANUSCRIPT 1 

Uncertainty assessment of snow depth projections in watersheds of 

mountainous, foothills, and plain areas in northern latitudes 

Majid Zaremehrjardy1, Saman Razavi2, Monireh Faramarzi1,* 

1 Watershed Science & Modelling Laboratory, Department of Earth and Atmospheric Sciences, 

University of Alberta, Edmonton, AB T6G 2R3, Canada. 
2 Global Institute for Water Security, School of Envionment and Sustainability, and Department 

of Civil, Geological, and Environmental Enigeering, University of Saskatchewan. 

*Corresponding author: faramarz@ualberta.ca 

Manuscript in review in the Journal of Hydrology 

2.1 Abstract  

Snowmelt is a major driver of the hydrological cycle in cold regions, as such, its accurate 

representation in hydrological models is key to both regional snow depth and streamflow 

prediction. The choice of a proper method for snowmelt representation is often improvised; 

however, a thorough characterization of uncertainty in such process representations, particularly 

in the context of climate change, has remained essential. To fill this gap, this study revisits and 

characterizes performance and uncertainty around the two general approaches to snowmelt 

representation, namely Energy-Balance Modules (EBMs) and Temperature-Index Modules 

(TIMs), and two common Snow Density formulations (SNDs) that map snow water equivalent 

(SWE) to snow depth. The major research questions we address are ‘what are the dominant 

controls of uncertainty in snow depth and streamflow simulations across scales and in different 

climates’, and ‘how the cascade of uncertainty resulting from impact model parameters, 

greenhouse gases emission scenarios, climate models and their internal variability, and 

downscaling processes help understand effects of EBM, TIM, and snow density formulations in 

snow depth projections. We enable the Soil and Water Assessment Tool (SWAT) by coupling 

mailto:faramarz@ualberta.ca
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EBM, TIM, and two SND modules for examination of different snowmelt representation 

methods and Analysis of Variance (ANOVA) for uncertainty decomposition and attribution. 

These analyses are implemented in mountainous, foothill, and plain regions in a large snow-

dominated watershed in western Canada. Results show, rather counter-intuitively, that the choice 

of SND is a major control of uncertainty rather than the choice between TIMs and EBMs and of 

their uncertain parameters. The results further show that model parameter uncertainty dominantly 

controls uncertainty in future snow depth projections under climate change, particularly in 

mountainous regions. However, in plain regions, the uncertainty contribution of model parameter 

becomes more variable with time and less dominant compared with the other sources of 

uncertainty. Overall, it is shown that the hydro-climatic and topographic conditions of different 

regions have considerable effect on the share of different uncertainty sources when projecting 

regional snow depth.  

Keywords: Regional hydrology, Uncertainty decomposition, Snowmelt projection, Energy 

Balance, Temperature Index, SWAT  
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2.2 Introduction  

Snowmelt is one of the most important components of the hydrological cycle, as it 

controls the magnitude and dynamics of snow depth, streamflow, and flood frequency, especially 

in mountainous regions with high climate variability (Zeinivand and de Smedt, 2010; Abbas et 

al., 2019). The impact of climate change on snowmelt dynamics can be substantial, since 

snowmelt is dependent on temperature, precipitation, solar radiation and other factors whose 

statistical properties are expected to change in time and space under future climate conditions 

(Raleigh and Clark, 2014; Verdhen et al., 2014). Therefore, it is essential to understand the 

dynamical properties of the snow accumulation and snowmelt processes and how they might 

change over time under current and future conditions. An improved understanding can enable 

hydrologists and water managers to reduce uncertainty for future planning and management of 

water resources, and adaptation to climate change (Pradhanang et al., 2011). 

Recently, advanced hydrological models have been used to simulate snow accumulation 

and snowmelt in different regions with various levels of areal extent and climate conditions (see 

e.g.,  Troin et al., 2016; Qi et al., 2017; Mas et al., 2018). Snowmelt simulation in these models, 

which governs snow depth dynamics as a key component of hydrological water balance, is 

carried out through two widely-used approaches, namely Temperature-Index Modules (TIMs) 

and Energy-Balance Modules (EBMs) (Debele et al., 2010). TIMs (also known as degree-day 

methods) are generally regarded as a simple and parsimonious approach for snowmelt 

estimation, as they are solely dependent on air temperature and snowpack (Hock, 2003; Debele 

et al., 2010). EBMs, however,  are more complex and parameterized, as they try to 

comprehensively account for energy exchanges in air-and-snowpack and snowpack-and-soil 

interfaces (Dingman, 2015). While comparative assessments of TIMs and EBMs in snowmelt 
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simulation models have widely been studied across different regions, the choice of the best 

model for hydrologic modelling in particular at large scales remains a controversy (Zhang et al., 

2008; Pradhanang et al., 2011).    

EBMs are generally expected to outperform TIMs in simulating snowmelt dynamics, 

mainly because of their more realistic and physically-based nature (Todd Walter et al., 2005; 

Fuka et al., 2012; Qi et al., 2017; Massmann, 2019). Nevertheless, several studies have suggested 

that TIMs may perform equally well or even better than EBMs do in the representation of 

snowmelt and snow depth dynamics (see for example, Franz et al., 2008; Debele et al., 2010; 

Verdhen et al., 2014). In addition, a disadvantage of EBMs is that they are more data-intensive 

and demand numerous forcing inputs, many of which cannot be directly measured or quantified 

at scales larger than an instrumented site (Bavera et al., 2014; Raleigh et al., 2016; Mas et al., 

2018). The issues around data demands are exacerbated in large regional studies with climate 

and land cover heterogeneity, especially in mountainous regions where regionalized data of 

energy-based variables such as snow albedo, snow surface temperature, emissivity and 

temperature lapse rate are difficult and costly to measure (Raleigh et al., 2016; Sun et al., 2019). 

Furthermore, the adequacy of any of TIMs and EBMs depends on the properties of driving 

climate forces in the region of interest. For instance, in maritime areas where rain-on-snow 

events occur more frequently, the snowmelt is dominated by turbulent heat fluxes and 

temperature gradients; therefore, the use of EBMs in such climates has proven more suitable 

(Debele et al., 2010; Qi et al., 2017). Conversely, TIMs can be considered a better option in 

regions where net solar radiation, which is a proxy for air temperature, is the dominant heat 

source (Debele et al., 2010). Consequently, the heterogeneity in climate, land cover, and 

topography across large river basins results in the dominancy of different snowmelt mechanisms 
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in different parts. Most of previous studies, however, have investigated and compared the 

adequacy of TIMs or EBMs in small-scale areas where extensive data is available (see for 

example, Franz et al., 2008; Tobin et al., 2013; Aggarwal et al., 2014; Fu et al., 2015); some 

other studies focused on larger but relatively homogeneous areas in terms of land cover, climate, 

and topography (for instance, Ficklin and Barnhart, 2014; Troin et al., 2015; Haghnegahdar et 

al., 2017). Hence, the performance of TIMs and EBMs in snowmelt simulation in large-scale 

regions with high topographic, climate, and land-use heterogeneity is yet to be properly 

understood.  

The availability of extensive and reliable data is key to successful model parametrization 

and simulation of snowmelt and snow depth in regional hydrological models (Shrestha et al., 

2012; Mas et al., 2018). At field scales where sufficient field data is available, high-fidelity 

snowmelt models can be developed (e.g., Pomeroy et al., 1998; Harder et al., 2018). At larger 

scales, however, where field data coverage is limited, some physical characteristics of the basin 

need to be represented in models by user-defined ‘effective’ parameters (Mas et al., 2018). 

Identifying such parameters that control the representation of physical processes in regional 

hydrological models is critical for short-term predictions and also projections of how the basin 

future might look like under climate change (Singh and Frevert, 2002). Parameter identification 

is a major area of research in the field of hydrology and beyond (Guillaume et al., 2019). It is 

well-known that the proper parameter values are typically non-unique in any given problem, a 

phenomenon that is commonly referred to as equifinality (Beven and Freer, 2001; Fu et al., 

2015). Depending on how one wishes to address equifinality, there are two general approaches to 

parameter calibration to data, namely the optimization-based and uncertainty-based approaches 

(Razavi et al., 2010). The former attempts to identify the best set of parameter values according 
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to some goodness-of-fit criteria and use it for prediction and scenario runs, while the latter bases 

the analyses on several well-performing sets of parameter values in order to characterize 

prediction uncertainty arising from uncertainties in model structure, model input data, and 

parameters (Faramarzi et al., 2009, 2017). Many studies that projected snowmelt and/or 

streamflow under climate change scenarios followed the optimization-based approach (see for 

example, Franz et al., 2008; Zeinivand and de Smedt, 2010; Pradhanang et al., 2011; Qi et al., 

2017; Liu et al., 2018). Other studies followed the uncertainty-based approach by suggesting 

optimal ranges for parameters to account for input data, model structure, and parameter 

uncertainty  (Renard et al., 2010; Faramarzi et al., 2017; Wu et al., 2017).  

Model parameter uncertainty is one of the many uncertainty sources in the ‘cascade of 

uncertainty’ for climate change impact assessment. Other sources include Global and Regional 

Climate Models (GCMs and RCMs), Representative Concentration Pathways (RCPs), and 

downscaling methods (Chen et al., 2011b; Bosshard et al., 2013). When dealing with the cascade 

of uncertainty in climate change impact assessments, it is important to decompose and apportion 

the uncertainty to the different uncertainty sources. The Analysis of Variance (ANOVA) has 

frequently been used for this purpose (see for example, Déqué et al., 2007; Yip et al., 2011; 

Bosshard et al., 2013), while global sensitivity analysis methods can also be used (Razavi and 

Gupta, 2019). The majority of studies for apportionment of uncertainty in future projections 

addressed only uncertainty from climate models, emission scenarios, and downscaling 

techniques (Kim et al., 2019). Only few studies quantified the uncertainty contribution from 

hydrological model parameters and input data to the uncertainty in projection of future 

streamflow (Wilby and Harris, 2006; Prudhomme and Davies, 2009; Poulin et al., 2011; Vetter et 
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al., 2017), green water and blue water flows (Ashraf Vaghefi et al., 2019), and Snow Water 

Equivalent (SWE) (Poulin et al., 2011).  

In addition to parameter uncertainty, model structural uncertainty has remained poorly 

understood, particularly in cold regions hydrology where the snow processes are of significance. 

Only few studies have evaluated the structural uncertainty as a result of using multiple snowmelt 

modules on simulating streamflow and SWE (Seiller and Anctil, 2014; Troin et al., 2015). 

Notably, the uncertainty due to the choice of TIMs and EBMs along with their parameterizations 

and its impact on uncertainty in snowmelt and snow depth projections under a changing climate 

has not been quantified. Unlike TIMs, EBMs are more physically-based and therefore they 

demand more extensive spatio-temporal data to run. As such data may not be available at large 

scales, EBMs assign calibration parameters to unknown input variables. Therefore, it is essential 

to quantify the effects of TIMs (as simpler, less parametrized modules) and EBMs (as more 

complex, more parameterized modules) on snow depth projections under climate change 

scenarios in large watersheds with diverse hydrologic, climatic, and geospatial conditions.  

Another major but often ignored research gap in hydrologic modelling of cold regions is 

the proper mapping of snow depth measurements and Snow Water Equivalent (SWE) at large 

scales. Snow depth measurements are the basis for the calibration and evaluation of snow 

modelling modules, while the representation of snow on the ground in those models is in the 

form of SWE (Avanzi et al., 2015). In other words, measurements of snow that are used for 

model evaluation are typically available as snow depths, not SWE (Sturm et al., 2010). 

Therefore, the accurate estimation of snow density (SND) that converts simulated SWE (i.e., in 

mm water) to snow depth (i.e., in mm snow depth) and vice versa becomes key to credible 

modelling of snow processes at large scales. An accurate estimation of SWE, SND, and the 
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conversion to snow depth is possible within field scales (Jost et al., 2007; Young et al., 2013; Li 

et al., 2017). However, field measurements in large regions are time-consuming, costly, and 

complicated because of heterogeneity in topography and natural conditions, and therefore, only a 

limited number of snow surveys can be available for a watershed (Bocchiola and Groppelli, 

2010; Avanzi et al., 2015). As such, reliable estimation of SND in locations where it is not 

measured is essential. Notably, the variability of SND in both time and space is less than that of 

snow depth (Bocchiola and Groppelli, 2010) but it is still quite significant and controls snow 

depth simulations (Pomeroy et al., 1998; Bormann et al., 2013). The variability and distribution 

of SND has been widely studied using empirical relations, where the snow density is defined as a 

function of various variables such as air temperature, snow depth, wind speed, among other 

predictors (Avanzi et al., 2015). Application of empirical methods for predicting SND by using 

weather data also allows the hydrologists to predict the effect of climate change on SND and 

snow depth dynamics (Meloysund et al., 2007). Various equations, employing different types of 

predictors for SND estimation, have been proposed for different study areas (for example, see 

Avanzi et al., 2015). Because most of such equations are acquired based on a particular area of 

study, a careful choice of SND equation is necessary for a reliable simulation of snow depth in a 

new area of interest. For instance, an empirical equation developed for maritime regions might 

perform poorly in snow depth simulation in Canadian Prairies (Avanzi et al., 2015). Thus, it is 

essential to evaluate and compare the performance of various SND estimations to achieve a 

better understanding of the effect of density formulations on snow depth modelling and 

projections. 

The overarching goal of this study is to provide an improved understanding of 

uncertainty associated with simulation and projection of snow depth and snowmelt dynamics in 
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regional hydrological modelling under current and future climate conditions. To this end, we 

enable Soil and Water Assessment Tool (SWAT) with both TIM and EBM snowmelt modules 

and two different SND parametrizations, by modifying its source code, to comprehensively 

assess the model structural and parametric uncertainty. We utilize ANOVA to apportion the total 

uncertainty in snow depth projections into uncertainty arising from not only model structure, 

parameters, and input data, but also the choice of climate models, greenhouse gas emission 

scenarios, and downscaling methods. The more specific objectives of this paper are threefold as 

it investigates: (1) the performance of EBM and TIMs, through examining spatio-temporal 

variability of snow depth and streamflow simulations in mountainous, foothill and plain areas by 

using a large snow-dominated watershed in Western Canada; (2) the spatio-temporal changes in 

cascade of uncertainty associated with snow depth projections using EBMs and TIMs as 

snowmelt modules in regional hydrological modelling under different climate change models, 

RCP scenarios, and downscaling methods; and (3) the effect of SND formulation on the 

simulations and projections of snow depth and its impact on the projected cascade of uncertainty. 

2.3 Material and methods 

2.3.1 Study Area 

North Saskatchewan River Basin (NSRB) is a large watershed with considerable 

variability in climate, topography, and land cover, located in the central area of Alberta, western 

Canada. The area of NSRB is 59,128 km2, forming approximately 9% of landmass in the 

province of Alberta (North Saskatchewan Watershed Alliance, 2005). The NSRB originates from 

Columbia Icefields and the foothill regions of Rocky Mountains in the west of Alberta (Figure 

2.1a). The watershed is characterized by a diverse topography, with the elevation of NSRB 

ranging from 3478 MASL on the mountainous region down to less than 500 MASL on the plain 
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areas towards east of Alberta (Figure 2.1b). The land cover changes from high mountains and 

icefields (i.e., mountain glaciers) in the west, to evergreen forests in the foothills, and urban and 

agricultural areas as well as pastures are among other land cover classes in the majority of the 

plain region in the east of the watershed (Figure 2.1a). The historical climate data of NSRB for 

1983-2007 shows a temperature range from less than -30 ℃ in winters up to +29 ℃ in summers 

for the watershed, and the average annual precipitation ranging from 760 mm year-1 in 

mountainous areas to 400 mm year-1 on the plains region. Snowfall and snow cover dominate the 

watershed for at least five months of the year (Government of Canada, 2019). This suggests a 

noticeable variance of climate, topography and land cover in time and space throughout the 

NSRB.  

 

Figure 2.1. Map of NSRB representing geographic distribution of (a) the main river basin, two main 

dams, hydrometric stations and land use-land cover classes; and (b) topographic range, weather stations, 

and the three hydrologic regions used for assess. 

The NSRB is a major basin draining to the Saskatchewan River in Canadian Prairies that 

drains into the Hudson Bay and to Atlantic Ocean. An average value of 7000 million cubic 

meters of water is annually discharged from North Saskatchewan River (NSR) to the 

Saskatchewan River at the Alberta-Saskatchewan border on the east side of NSRB (Alberta 

Environment and Parks, 2019). The NSR also provides the drinking water for the urban areas 
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within NSRB, including the city of Edmonton. Two hydro-electric dams named Bighorn and 

Brazeau Dams are located in the mountainous regions of NSRB, with an overall productivity of 

800,000 MWh year-1 (MacDonald et al., 2012). Moreover, numerous small and large glaciers 

located in the Rocky Mountains are important contributors to the streamflow in the upstream 

tributaries of this river (Figure 2.1a).  

2.3.2 Hydrologic model setup and data 

SWAT is a process-based, semi-distributed, eco-hydrological model which simulates 

various physical processes and their inter-connections on a daily basis (Arnold et al. 1998, 2012). 

Numerous hydrological variables are modelled in SWAT, including streamflow, snow 

accumulation, snowmelt, infiltration, evapotranspiration, vegetation growth and canopy 

development, groundwater recharge and base flow, among others (Neitsch et al., 2011). In 

SWAT, a basin is divided into several sub-basins, which are in turn subdivided into Hydrological 

Response Units (HRUs) as the smallest hydrological units and characterized based on soil, 

landuse-land cover, slope and other geospatial features. Hydrological processes are then 

calculated at HRU scale, and can be aggregated at sub-basin and basin levels. In this study, we 

delineated a total of 174 sub-basins using a 90m × 90m DEM and a pre-defined river network 

delineated previously based on a 10m × 10m DEM (Table A.1). Historical climate data 

including daily precipitation, temperature, solar radiation, humidity, and wind speed were used 

from Faramarzi et al. (2015), who used a suit of four climate time series from local 

meteorological, gridded produscts, and satellite data at a provincial coverage to reproduce 

historical streamflow records by implementing a calibrated SWAT hydrologic model. Other data 

including vegetation cover, soil characteristics, operation of dams, and glacial maps and their 

daily time series were obtained from Faramarzi et al. (2017). In order to examine the effects of 
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snowmelt simulation approaches (i.e., EBM and TIM) on streamflow dynamics in different 

regions of NSRB, six important hydrometric stations were considered for observing model 

performance and uncertainty analysis within different regions of this watershed. The locations 

and properties of these stations are shown in Figure 2.1 and the details are provided in Table A.2. 

Observed streamflow data for multiple hydrometric stations were collected from Environment 

Canada (Table A.1). Finally, in order to assess the performance of snow depth simulations using 

the two EBM and TIM approaches, the simulated depth data were compared with the monthly 

gridded snow depth data acquired from Canadian Meteorological Centre (CMC) Daily Snow 

Depth Analysis Data, Version 1 (Brown and B. Bransnett, 2010). The monthly CMC snow depth 

data were available from January 1999 at a spatial resolution of 24 km × 24 km, and they were 

used to validate SWAT-EBM and SWAT-TIM simulations for 1999-2007 period. The daily 

simulation of snowmelt and snow depth was performed for each sub-basin. However, for 

demonstration and comparison of the model performance in snow depth simulation in 

mountainous, foothill, and plain regions (Figure 2.1b), the monthly sub-basin data were 

calculated and aggregated using a weighted average of sub-basins’ snow depth.  

2.3.3 Snowmelt simulation approaches 

We embeded two snowmelt simulation modules into SWAT2012 model by modifying its 

source code, thereby producing what we refer to as the SWAT-TIM and SWAT-EBM models. 

The SWAT-TIM model used in this study is the SWAT built-in snowmelt module, while the 

SWAT-EBM is based on the energy balance scheme developed by U.S. Army Corps of 

Engineers (USACE, 1998). This formulation was also embedded in the SWAT2009 by Qi et al., 

(2017) for simulation of snowmelt in a small catchement. For the purpose of this study, we used 
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a similar approach as Qi et al., (2017) and embedded the modified version of EBM in the 

SWAT2012 by modifying its source code.  

In the SWAT model, regardless of the snowmelt module used, the snowfall is stored at 

the ground surface in the form of snow pack. The amount of the stored snow pack is reported as 

SWE. The mass balance for the snow pack for day 𝑡 is simulated as follows (Neitsch et al., 

2011): 

 𝑆𝑁𝑂𝑡 = 𝑆𝑁𝑂𝑡−1 + 𝑆𝐹𝑡 − 𝐸𝑠𝑢𝑏 − 𝑆𝑁𝑂𝑚𝑙𝑡 (1) 

where 𝑆𝑁𝑂𝑡 is the water content of snow pack on the ground at the end of a given day 

(mm 𝐻2𝑂), 𝑆𝑁𝑂𝑡−1 is the water content of snowpack on the ground at the end of the previous 

day (mm 𝐻2𝑂), 𝑆𝐹𝑡 is the total amount of snowfall within a given day (mm 𝐻2𝑂), 𝐸𝑠𝑢𝑏 is the 

amount of sublimation on a given day (mm 𝐻2𝑂), and 𝑆𝑁𝑂𝑚𝑙𝑡 is the amount of snowmelt within 

a given day (mm 𝐻2𝑂). SWAT considers the whole precipitation for each day as snowfall if the 

air temperature is less than snowfall temperature (i.e., SFTMP, Table 2.1); otherwise, the whole 

precipitation is considered as rainfall. Also, the sublimation from the snow surface is calculated 

as a function of potential evapotranspiration of the given day. More information about the 

formulation of snowfall and snow sublimation can be found in Neitsch et al. (2011). 

In the following, the formulations and corresponding parameters of SWAT-TIM and 

SWAT-EBM are discussed. 

2.3.3.1 SWAT-TIM  

In TIMs, temperature is the main driver of snowmelt. The snowmelt simulation in SWAT 

is based on snow cover, melt factor, and temperature variables:  
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𝑆𝑁𝑂𝑚𝑙𝑡 = 𝑏𝑚𝑙𝑡 ∙ 𝑠𝑛𝑜𝑐𝑜𝑣 ∙ [

𝑇𝑠𝑛𝑜𝑤 + 𝑇𝑚𝑥

2
− 𝑆𝑀𝑇𝑀𝑃] 

(2) 

where 𝑆𝑁𝑂𝑚𝑙𝑡 is the amount of snowmelt on a given day (mm 𝐻2𝑂), 𝑏𝑚𝑙𝑡 is the melt 

factor of the day (mm 𝐻2𝑂 ∙ 𝑑𝑎𝑦−1 ∙ ℃−1), 𝑠𝑛𝑜𝑐𝑜𝑣 is the fraction of HRU area that is covered by 

snow, 𝑇𝑠𝑛𝑜𝑤 is the snowpack temperature on a given day (℃), 𝑇𝑚𝑥 is the maximum daily air 

temperature (℃), and 𝑆𝑀𝑇𝑀𝑃 is the threshold temperature at which the snowmelt will occurs 

(℃). The melt factor for snowmelt is a function of maximum and minimum melt factor of the 

year and the day of the year in order to account daily and seasonal variability of snowmelt: 

𝑏𝑚𝑙𝑡 =
𝑆𝑀𝐹𝑀𝑋 + 𝑆𝑀𝐹𝑀𝑁

2
+

𝑆𝑀𝐹𝑀𝑋 − 𝑆𝑀𝐹𝑀𝑁

2
∙ sin (

2𝜋

365
∙ (𝑑𝑛 − 81)) (3) 

where 𝑆𝑀𝐹𝑀𝑋 is the maximum melt factor of the year (mm 𝐻2𝑂 ∙ 𝑑𝑎𝑦−1 ∙ ℃−1); 

𝑆𝑀𝐹𝑀𝑁 is the minimum melt factor of the year (mm 𝐻2𝑂 ∙ 𝑑𝑎𝑦−1 ∙ ℃−1); and 𝑑𝑛 is the day 

number of the year (Neitsch et al., 2011).  

The temperature dynamics of snowpack is formulated as: 

 𝑇𝑠𝑛𝑜𝑤,𝑡 = 𝑇𝑠𝑛𝑜𝑤,𝑡−1 ∙ (1 − 𝑇𝐼𝑀𝑃) + 𝑇𝑎 ∙ 𝑇𝐼𝑀𝑃 (4) 

where 𝑇𝑠𝑛𝑜𝑤,𝑡 is the snow pack temperature on a given day (℃), 𝑇𝑠𝑛𝑜𝑤,𝑡−1 is the snow 

pack temperature on the previous day (℃), 𝑇𝑎 is the average air temperature in that given day 

(℃), and 𝑇𝐼𝑀𝑃 is the temperature lag factor in SWAT model (Neitsch et al., 2011). It should be 

noted that Equations (1) and (4) are included in both SWAT-TIM and SWAT-EBM 

formulations. 

In order to account for the spatial variability of snowmelt process within each sub-basin 

in our study, five elevation bands were applied to each sub-basin in SWAT model. The elevation 
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bands divide sub-basins into different zones based on the elevation, thereby allowing the model 

to discretize the hydrological processes based on sub-basins topography (Pradhanang et al., 

2011). SWAT defines the temperature and precipitation of each band using the following 

equations: 

 𝑃𝐵 = 𝑃𝑠𝑡 + (𝑍𝐵 − 𝑍𝑠𝑡) × 𝑃𝐿𝐴𝑃𝑆 × 10−3 (5) 

 𝑇𝐵 = 𝑇𝑠𝑡 + (𝑍𝐵 − 𝑍𝑠𝑡) × 𝑇𝐿𝐴𝑃𝑆 × 10−3 (6) 

where 𝑃𝐵 is precipitation at elevation band (mm), 𝑃𝑠𝑡 is station precipitation (mm), 𝑍𝐵 is 

midpoint elevation of band (m), 𝑍𝑠𝑡  is station elevation (m), 𝑇𝐵 is temperature at elevation band 

(°𝐶), 𝑇𝑠𝑡 is station temperature (°𝐶), 𝑃𝐿𝐴𝑃𝑆 is precipitation lapse rate (mm/km) and 𝑇𝐿𝐴𝑃𝑆 is 

temperature lapse rate (°𝐶/km) (Rahman et al., 2013). In this study, TLAPS values for each sub-

basin were assumed to be between -10 to 0 °𝐶/km, and PLAPS values were defined to vary in the 

range 0-250 mm/km (Zhang et al., 2008; Anand et al., 2018). 

In order to compute 𝑆𝑁𝑂𝑡 using Equations (1) through (6), the five input parameters 

SMTMP, SMFMX, SMFMN, TLAPS and PLAPS need to be measured through empirical 

studies or calibrated. Table 2.1 shows the physically meaningful ranges assigned to these 

parameters for evaluating the performance of SWAT-TIM in snow simulations.  

2.3.3.2 SWAT-EBM 

In EBMs, the energy used for snowmelt comes from various sources including shortwave 

(𝑄𝑠ℎ) and longwave (𝑄𝑙) net radiation, latent (𝑄𝑒) and sensible (𝑄ℎ) heat fluxes, ground heat 

flux (𝑄𝑔), and the energy contained in the rainfall (𝑄𝑝). Therefore, the total available energy for 

snowmelt (𝑄𝑚) is expressed as below (all units in 𝑘𝐽. 𝑚−2): 
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 𝑄𝑚 = 𝑄𝑠ℎ + 𝑄𝑙 + 𝑄𝑒 + 𝑄ℎ + 𝑄𝑔 + 𝑄𝑝 − ∆𝑄𝑖𝑛 (7) 

where ∆𝑄𝑖𝑛 is the internal energy stored in snow, which includes changes in freeze and 

thaw processes, as well as snow temperature. This study adopted the snowmelt scheme suggested 

by USACE (1998) as a detailed and comprehensive EBM, which considers vegetation cover and 

rain-on-snow events in snowmelt modelling (Qi et al., 2017). In this snowmelt module, the 

amount of snowmelt for each energy component in Equation (7) is calculated as: 

 
𝑀𝑗 =

𝑄𝑗

334.9 ∙ 𝜌𝑤 ∙ 𝐵
 (8) 

where 𝑀𝑗 is the snowmelt resulted from the 𝑗th component of energy in Equation (7), i.e., 

𝑄𝑗 (𝑘𝐽. 𝑚−2); 334.9 (𝑘𝐽. 𝑘𝑔−1) is the latent heat of fusion of ice; 𝜌𝑤 is the density of water (1000 

𝑘𝑔. 𝑚−3); and 𝐵 is the thermal quality of snow or the fraction of ice in a unit mass of wet snow 

(0.95-0.97) (Gray and Landine, 1988). As a result, Equation (7) is re-written as: 

 𝑀 = 𝑀𝑠ℎ + 𝑀𝑙 + 𝑀𝑒 + 𝑀ℎ + 𝑀𝑔 + 𝑀𝑝 − 𝑀𝑖𝑛 (9) 

where 𝑀 is the total daily snowmelt (mm), and the terms on the right side of Equation (9) 

are daily snowmelt values (mm) corresponded to energy sources described in Eq. 7. The USACE 

snowmelt module is dependent on different precipitation (i.e., rain-on-snow or rain-free) and 

vegetation (i.e., the value of Leaf Area Index, LAI) conditions (USACE, 1998). The equations of 

melt components in Equation (9) along with related parameters and data used are described in 

detail in USACE (1998) and Qi et al. (2017). For the sake of brevity, Table A.3 shows the 

equations for total daily snowmelt in mm (i.e., 𝑀 in Eq. 9) based on different vegetation and 

precipitation conditions. Numerous parameters and input data types are required to solve the 

equations listed in Table A.3. Table 2.2 shows such data and assumptions used for calculating 
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snowmelt in SWAT-EBM. The mathematical equations outlined in Table 2.2 are also functions 

of user-defined parameters, which intensifies the role of model parameters in uncertainties of 

snowmelt simulations. For the purpose of this study and to examine the effect of the parameter 

estimation of EBM and TIM in the cascade of uncertainty for future snow depth projections, we 

summarized in Table 2.1, the physically meaningful ranges for the parameters of the SWAT-

TIM and SWAT-EBM. The ranges were defined based on experiments and field measurements 

found in various studies in the literature. It should be noted that the ranges of 𝑘𝑠1,𝑘𝑣1 and 𝑘𝑣2 

were defined based on the meaningful ranges of 𝑘𝑠 and 𝑘𝑣 values reported in USACE (1998) 

(see Table 2.1 and Table 2.2 and for more details). As mentioned before, the snowfall 

temperature and snowpack temperature lag factor were implemented in both SWAT-TIM and 

SWAT-EBM snowmelt modules used in this study.  

Table 2.1. Parameters used in this study and their physically meaningful ranges for snowmelt modules in 

SWAT-TIM and SWAT-EBM approaches. 

Snowmelt 

module 

Parameter 

name 

Parameter description Range Reference 

SWAT-

EBM and 

SWAT-TIM 

SFTMP Snowfall temperature (℃)  [-5 , 5] 
Neitsch et al. 

(2011) TIMP Snowpack temperature lag (℃)  [0 , 1] 

SWAT-TIM 

TLAPS Temperature lapse rate (℃/𝑘𝑚) [-10 , 0] Zhang et al. (2008); 

Anand et al. (2018) PLAPS Precipitation lapse rate (𝑚𝑚) [0 , 250] 

SMTMP Snowmelt temperature (℃) [-5 , 5] 
Neitsch et al. 

(2011) 
SMFMX Maximum melt factor (℃) [0 , 10] 

SMFMN Minimum melt factor (℃) [0 , 10] 

SWAT-

EBM 

𝑘𝑠1 melt coefficient parameter [0 , 2] 

USACE (1998), Qi 

et al. (2017) 

𝑘𝑣1 Wind control parameter [0 , 2] 

𝑘𝑣2 
Vegetation surface dynamics 

parameter 
[1 , 5] 

B Snow thermal quality [0.95 , 0.97] 

Dingman (2015) 𝜀 Snow emissivity [0.95 , 0.99] 

𝛼 Snow surface albedo [0.45 , 0.85] 

𝑇𝑠𝑠 Snow surface temperature (℃) [-10 , 0] 

Negi et al. (2007); 

Singh et al. (2013); 

Jamieson and 

Schirmer (2016) 
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2.3.3.3 Snow density formulation 

As mentioned in previous sections, SWAT-TIM and SWAT-EBM calculate the amount 

of snowmelt and snow depth in the form of snow water equivalent (SWE). In order to compare 

SWAT results with observed snow depth data for model performance evaluation, the conversion 

of SWE to snow depth is necessary, which is based on SND formulations. In this study, we 

tested two SND formulations. The first formulation, which has already been evaluated on 

maritime regions of Canada (Qi et al., 2017), is referred to as SND1 in this study and is 

computed by: 

 

𝑆𝑁𝐷𝑡 = {

𝑆𝑁𝐷𝑡−1 + 𝑑𝑠 ∙ (0.6 − 𝑆𝑁𝐷𝑡−1)                                                         𝑛𝑜 𝑠𝑛𝑜𝑤𝑓𝑎𝑙𝑙

0.1 ∙ 𝑆𝐹𝑡/𝑆𝑁𝑂𝑡 + 𝑆𝑁𝐷𝑡−1(𝑆𝑁𝑂𝑡 − 𝑆𝐹𝑡)/(150 ∙ 𝑆𝑁𝑂𝑡)              𝑠𝑛𝑜𝑤𝑓𝑎𝑙𝑙

𝑆𝑁𝐷𝑡−1 + 0.5/exp (1/𝑀)                                                                      𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡

 (10) 

where 𝑆𝑁𝐷𝑡 is the snow density of the current day (𝑔. 𝑐𝑚−3), 𝑆𝑁𝐷𝑡−1 is the snow density 

of the previous day (𝑔. 𝑐𝑚−3), 𝑑𝑠 is the days since the last snowfall has happened (in days), and 

𝑆𝐹𝑡 is the snowfall of the given day.  

The second snow density formulation, which has been suggested by Pomeroy et al. 

(1998) for Canadian Prairies, is referred to as SND2 hereafter and computed by: 

  

𝑆𝑁𝐷𝑡 = {
0.06792 + 0.05125 ∙ exp (

𝑇𝑎

2.59
)         𝑓𝑟𝑒𝑠ℎ 𝑠𝑛𝑜𝑤

0.45 +
20.470

𝑑
(1 − 𝑒−

𝑑
673)                   𝑎𝑔𝑒𝑑 𝑠𝑛𝑜𝑤

 (11) 

where 𝑇𝑎 is the average temperature of a given day (℃), and 𝑑 is the snow depth (mm). 

Because the snow depth of the same day is not available in SWAT before snow density is 

calculated, it is assumed that the 𝑑 in Eq. 11 is the snow depth of the previous day. Finally, the 

snow depth will be calculated as: 
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𝐷𝑡 =

𝑆𝑁𝑂𝑡

𝑆𝑁𝐷𝑡
 (12) 

where 𝐷𝑡 is the snow depth for day 𝑡 (mm), and 𝑆𝑁𝐷𝑡 is calculated through Eq. 10 or Eq. 

11, known as SND1 and SND2, respectively.  

Table 2.2. Input parameters, formulations, and assumptions used in SWAT-EBM approach. 

Symbol Description Formulation 

𝛼 Snow surface albedo User defined 

𝐵 Snow thermal quality User defined 

𝐶𝑐 Cloud cover 𝐶𝑐 = 1 − 𝑅𝑠/𝑅𝑠,𝑚𝑎𝑥  

ℎ𝑐 Cloud base height (m) ℎ𝑐 = 121.92 ∙ (𝑇𝑎 − 𝑇𝑑)  

𝑘𝑠 Shortwave melt coefficient 𝑘𝑠 = 𝑘𝑠1 ∙ [1 + sin(𝜋 ∙ (𝑆𝑎 − 90∘)) . 𝑆]; 

𝑘𝑠 usually varies between 0.9 and 1.1 

(USACE, 1998)  

𝑘𝑠1 Calibration parameter for 𝑘𝑠 User defined 

𝑘𝑣 Wind coefficient 𝑘𝑣 = 𝑘𝑣1/exp (𝑘𝑣2 ∙ 𝐿𝐴𝐼); 𝑘𝑣 is 1 for 

unforested plains and close to zero for 

heavily forested areas (USACE, 1998) 

𝑘𝑣1 Calibration parameter #1 for 𝑘𝑣 User defined 

𝑘𝑣2 Calibration parameter #2 for 𝑘𝑣 User defined 

𝐿𝐴𝐼 Leaf Area Index Calculated by SWAT  

𝑀 Total snowmelt (mm) Calculate through SWAT-EBM 

𝑅 Rainfall (mm) Calculated by SWAT based on SFTMP 

𝑅𝑠 Solar radiation (𝑀𝐽 𝑚−2)  Input data to SWAT 

𝑅𝑠,𝑚𝑎𝑥 Daily maximum solar radiation (𝑀𝐽 𝑚−2) Calculated by SWAT  

𝑅𝐻 Relative humidity Input data to SWAT 

𝑆 Average surface slope Calculated through GIS applications 

𝑆𝑁𝑂 Snow water equivalent (mm 𝐻2𝑂) Calculated through SWAT-EBM 

𝑆𝑎 Average surface aspect (degree) Calculated through GIS applications 

𝑇𝑎 Average daily air temperature (℃) Input data to SWAT 

𝑇𝑐 Cloud base temperature (℃) 𝑇𝑐 = 𝑇𝐿𝐴𝑃𝑆 ∗ ℎ𝑐 + 𝑇𝑎 

𝑇𝑑 Dew point temperature (℃) 𝑇𝑑 = 𝑇𝑎 − 0.2 ∙ (100 − 𝑅𝐻) 

𝑇𝐿𝐴𝑃𝑆 Temperature lapse ratio (℃/𝑘𝑚) User defined 

𝑇𝑠 Snowpack temperature (℃) Calculated through Equation (4) 

𝑇𝑠𝑠 Snow surface temperature User defined 

𝑣 Wind speed Input data to SWAT 

𝜀 Snow emissivity User defined 
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2.3.4 Future climate projection data  

To simulate future changes in the snow depth projections of NSRB, future climate 

projections from the Pacific Climate Impacts Consortium (PCIC) (Cannon, 2015) were used in 

this study. PCIC provides statistically downscaled GCM climate scenarios from 1950 to 2100 

(Bürger et al., 2013) based on the Coupled Model Intercomparison Project phase 5 (CMIP5) 

(Taylor et al., 2012) and the actual historical daily gridded climate data for Canada (McKenney 

et al., 2011). On the other hand, the GCMs are forced with different Representative 

Concentration Pathways (RCPs), which define a specific emissions trajectory and subsequent 

radiative forcing in the earth-atmosphere system (van Vuuren et al., 2011). PCIC provides 

Canada-wide downscaled climate change projections using the Bias Correction/Constructed 

Analogues with Quantile mapping reordering (BCCAQ) method 

(http://www.pacificclimate.org/data).  

To test the effect of downscaling procedures on the future projections of snow depth, we 

used two different downscaled products. The first one is the aforementioned downscaled data 

from PCIC (named DS1 in Figure 2.2). The second product is a set of further downscaled PCIC 

data to Alberta condition based on daily historical climate data from earlier studies by Ammar et 

al. (2020) and Masud et al., (2018). In their study, the delta method (Quilbé et al., 2008; Chen et 

al., 2011a) is used for bias correction of the projected climate time series based on historical 

data, which are resulted from examination of a suite of four climate data sources to reproduce 

historical flow records for 130 gauging stations by using a physically process-based hydrological 

model (named DS2, Figure 2.2). In total, two emissions scenarios (i.e., RCP 2.6 and RCP 8.5) in 

an ensemble of five GCMs (see Table A.4) were incorporated for future projection of snow depth 

under two downscaling techniques, and a set of 1000 simulations generated using SWAT-EBM 
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and SWAT-TIM based on the range of input parameters were sampled to run them for the 2040-

2064 period (see section 2.3.5). 

2.3.5 Performance assessment of SWAT-TIM and SWAT-EBM, and uncertainty 

analysis  

The examination of the performance of the SWAT-TIM and SWAT-EBM models in this 

study are based on their ability to reproduce historical snow depth and streamflow data. The 

models were evaluated using monthly snow depth and streamflow measurements for the 1999-

2007 and 1986-2007 periods, respectively. The comparison analyses were performed at both 

regional (i.e., the three regions of interest in this study including mountain, foothill, and plain) 

and local (i.e., 174 sub-basins) scales for snow depth simulations, and at the six hydrometric 

station for streamflow predictions. The inclusion of streamflow analysis in the performance 

assessment is because of its sensitivity to snowmelt, especially during the melt season over the 

April-June period. It should be noted that the main goal of this study is not to develop a 

calibrated hydrological model based on the best performance of snow depth simulation by 

comparing TIMs and EBMs. Rather, our focus is to understand robustness in model structure and 

uncertainties associated with using TIMs and EBMs as snowmelt modules. Hence, the observed 

snow depth and streamflow data were used for comparison of modelling simulation using 

SWAT-TIM and SWAT-EBM, and no validation in terms of snow depth and streamflow was 

carried out in this study. For the same reason, we did not include other influential parameters on 

streamflow than snowmelt related parameters (see Table 2.1) in our parameterization and 

evaluation scheme, because we opted to study only the uncertainty arising from the TIM and 

EBM routines not other water balance routines in the SWAT model. Therefore, for any routines 

other than EBM and TIM within SWAT, we relied on the model default parameters, most of 
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which were obtained from input data such as soil database, land-use database, DEM, climate, and 

other data used to setup the initial SWAT models. Moreover, the streamflow simulations when 

only snow-related parameters were perturbed help us characterize the performance of snowmelt 

approaches used in this study. 

Input parameters for both SWAT-TIM and SWAT-EBM were chosen based on the 

number of input parameters involved in TIM and EBM routines and used for snowmelt and snow 

depth simulations in the SWAT2012 source code (see Tables 2.1 and 2.2). For model runs and 

for the purpose of uncertainty analysis, we used the widest physically meaningful range for each 

parameter that was found from literature (Table 2.1). Further, we used a Latin Hypercube 

Sampling Technique with the Sequential Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 

2015) to generate 1000 samples of parameter sets from these ranges, and fed them into the 

models to perform 1000 simulations for each model. For computational efficiency, we 

parallelized our simulations in a 200-core supercomputer using an algorithm that some authors of 

this study developed in earlier work (Du et al., 2020).  

To evaluate the goodness-of-fit of each SWAT run, the monthly observed and simulated 

snow depth were compared and evaluated using three widely-used criteria of efficiency, i.e., 

coefficient of determination (R2), Nash-Sutcliffe (NS), and bR2. While NS accounts for 

normalized variance of observed and simulated data, bR2 is a slope weighted coefficient of 

determination that considers both under- or over-predictions (using the factor “b”) and dynamics 

(through R2) of data (Krause et al., 2005). Detailed formulation and their description of these 

criteria with relevant references are provided in Table A.5. For comparison of observed and 

simulated values of snow depth, a sub-basin scale analysis and a regional analysis were 

performed. In sub-basin scale analysis, for uncertainty assessment of SWAT parameters in each 
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sub-basin, the simulated data of sub-basins had to correspond to their closest gridded data points 

of observed snow depth. To do so, the observed snow depth for each sub-basin was assigned 

from the average of the CMC data points located within a 12-km (i.e., half of grid size) distance 

of each sub-basin border. After that, the simulated results and the assigned observed values of 

snow depth to each sub-basin were compared. For regional analysis, snow depth simulations for 

each sub-basin were weight-averaged over the area of the three regions of study (i.e., 

mountainous, foothill or plain regions), where the weight of each sub-basin was its area; then, the 

weight-averaged snow depth was compared with average observed snow depth acquired from 

gridded data for the same region (see Figure 2.1b).  

In addition to the efficiency criteria corresponding to the optimal parameter set among 

1000 simulations in each model, we used two other statistical factors using SUFI-2, namely p-

factor and r-factor for the analysis of model uncertainty. These two factors evaluate model 

uncertainty arising from the parameter inputs, observed data, and model structure. The p-factor 

varies from 0 to 1 and it shows the percentage of measured data bracketed within the uncertainty 

band that is predicted by model in response to the range of parameters, e.g., 1000 samples of 

parameter set, provided as input. The uncertainty band in SUFI-2 is calculated as the 95 percent 

of the cumulative distribution of the simulated variables (Abbaspour, 2015), defined as 95 

Percent Prediction Uncertainty (95PPU) hereafter. While the r-factor, which varies from 0 to ∞, 

represents the width of the predicted uncertainty band. The ideal values for p-factor and r-factor 

are 1 and 0, however due to the uncertainty related to data, model structure, and input parameters 

such values are not achievable in regional hydrological modelling.  

In this study, comparison and performance assessment of the SWAT-TIM and SWAT-

EBM models were not only based on the best performing set of parameters from a total of 1000 
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simulations, but also uncertainty analysis based on p-factor and r-factor. It is suggested that for 

streamflow simulations, values between 0.6-0.8 for p-factor and values around 1.0 for r-factor 

show a reasonable performance for streamflow simulation in areas at the scale of our study 

watershed (Abbaspour, 2015). Overall, we performed a total of 80,000 simulations with 40,000 

for each of the SWAT-TIM and SWAT-EBM models (i.e., 40,000 =1000 parameter samples × 5 

GCMs × 2 RCPs × 2 Downscaling techniques × 2 SNDs), albeit by parallelizing in a 200-core 

computer (see Figure 2.2).   

2.3.6 Uncertainty decomposition and spatio-temporal apportionment  

For quantifying the cascade of uncertainty associated with future projection of snow 

depth using SWAT-EBM and SWAT-TIM approaches, we used the Analysis of Variance 

(ANOVA) method, which has been successfully carried out in various studies, including 

hydrological studies (see for example, Déqué et al., 2007; Yip et al., 2011). The ANOVA 

method decomposes the projected variance and attributes its parts to different uncertainty sources 

and their interactions. In this study, the sources of uncertainty incorporated in ANOVA include 

hydrologic model parameterization (95PPU), GCMs, RCPs, and Downscaling methods (DS). 

According to the statistical theory of ANOVA, the total sum of squares (SST) is calculated as the 

sum of the variations resulting from each uncertainty source, and from their interactions. As a 

result, the SST for this study is defined as (Wang et al., 2018): 

 𝑆𝑆𝑇 = 𝑆𝑆𝑇𝐺𝐶𝑀 + 𝑆𝑆𝑇𝑅𝐶𝑃 + 𝑆𝑆𝑇𝐷𝑆 + 𝑆𝑆𝑇95𝑃𝑃𝑈 + 𝑆𝑆𝐼 (13) 

where 𝑆𝑆𝑇𝐺𝐶𝑀 is the uncertainty share of GCMs, 𝑆𝑆𝑇𝑅𝐶𝑃 is the uncertainty share of RCPs, 

𝑆𝑆𝑇𝐷𝑆 is the uncertainty share of downscaling methods, 𝑆𝑆𝑇95𝑃𝑃𝑈 is the uncertainty share of 

SWAT-EBM and SWAT-TIM model parameters, and 𝑆𝑆𝐼 is the uncertainty resulting from 



33 

 

interactions of uncertainty sources from all different combinations of two, three, and four 

variables (i.e., 95PPU, GCM, RCP, and DS). For more details see Bosshard et al. (2013).  

In this study, a combination of 40 scenarios were applied to each of SWAT-TIM and 

SWAT-EBM in order to compare the share of uncertainty sources in the total cascade of 

uncertainty projection for snow depth projections (Figure 2.2). The monthly variation of the 

cascade of uncertainty projections were projected across the study area and the results were 

discussed for the three main regions, i.e., mountain, foothill, and plain, over the study watershed. 

 

Figure 2.2. Formation of SWAT models and cascades of uncertainty framework for snow depth 

projections 

2.4 Results and Discussion 

2.4.1 Model performance of snow depth simulations at sub-basin scale 

Figure 2.3 shows the sub-basin scale results of snow depth simulations related to the four 

combinations of SWAT models (i.e., SWAT-TIM, SWAT-EBM, SND1, and SND2). Based on 

the results shown in Figure 2.3a, the parameter ranges defined in both SWAT-TIM and SWAT-

EBM had a moderate performance in reproducing observed snow depth data, although it is 

shown that SWAT-TIM was able to have a slightly higher value of average p-factor, therefore 
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slightly better performance as compared to EBM, especially in plain areas. It is shown in Figure 

2.3a that the change of snow density formulation had a considerable effect on p-factor values, 

particularly in foothill and plain regions. It is however clear that none of snowmelt modules 

under either of the two snow density approaches had adequately reproduced historical snow 

depth in mountainous regions. The average p-factors shown in Table 2.3 and Figure 2.3 represent 

the lower level of performance for mountainous regions for any snow depth simulation 

approaches than the other two regions. This highlights the complexity of snow-related processes 

in mountainous regions,  

 

Figure 2.3. Results of (a) p-factor, (b) r-factor and (c) best R2  calculated based on 1000 simulations of 

monthly snow depth using combinations of SWAT-EBM and SWAT-TIM with SND1 and SND2 for 

1999-2007 period. 
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Table 2.3. Maximum, minimum, and average values of p-factors, r-factors and R2 for sub-basins within 

different regions of NSRB. 
 

SND1  SND2 

TIM EBM  TIM EBM 

max min avg. max min avg.  max min avg. max min avg. 

M
o

u
n
ta

in
 p 0.85 0.06 0.45 0.71 0.00 0.37  0.82 0.04 0.35 0.73 0.00 0.34 

r 12.8 0.16 2.07 42.7 0.15 6.09  71.1 0.09 9.12 138.5 0.40 20.28 

R2 0.76 0.08 0.39 0.75 0.09 0.40  0.77 0.18 0.49 0.75 0.09 0.40 

F
o

o
th

il
l p 0.73 0.32 0.59 0.65 0.27 0.46  0.56 0.27 0.44 0.64 0.19 0.46 

r 0.63 0.21 0.43 0.78 0.17 0.38  0.47 0.05 0.20 2.15 0.45 1.06 

R2 0.78 0.09 0.45 0.70 0.12 0.45  0.77 0.14 0.46 0.70 0.12 0.45 

P
la

in
 p 0.75 0.14 0.60 0.73 0.08 0.47  0.58 0.17 0.46 0.71 0.14 0.45 

r 1.03 0.16 0.50 0.68 0.25 0.39  1.04 0.00 0.15 1.93 0.64 1.08 

R2 0.80 0.00 0.55 0.85 0.03 0.51  0.81 0.01 0.45 0.85 0.03 0.51 

 

 

Figure 2.4. Monthly variation of the p-factor values within three regions of NSRB using four snow depth 

simulation approaches. The box plots show the range of p-factors obtained across sub-basins. 

which is exacerbated by the lack of reliable and consistent climate data in such areas. The 

noticeable temporal gaps in precipitation time series, as well as their inadequate spatial coverage 

in mountainous regions are potentially a major reason for the poor performance of snowmelt 



36 

 

modules to simulate snow depths in mountainous regions (Mizukami et al., 2014; Ul Islam and 

Déry, 2017). On the other hand, the higher spatial variability of temperature, solar radiation, 

wind speed and relative humidity in mountainous regions in comparison with foothill and 

mountain region and the coarse spatial resolutions of such climate data compared to the 

topographic variability of mountainous regions (see Table A.2) may be another reason for the 

low performance of SWAT-TIM and SWAT-EBM in simulating historical snow depth data in 

most of sub-basins within mountainous region (Comola et al., 2015; Helbig et al., 2015; DeBeer 

and Pomeroy, 2017). Figure 2.4 shows the variation of monthly p-factors of snow depth analysis 

based on different subbasins within mountainous, foothill and plain regions. It is shown that in 

most of the months, the p-factors of subbasins across mountainous regions had the largest 

variability compared to those of plain and foothill regions. Nevertheless, the average values of p-

factor within mountainous regions were lower than those of foothill and plain regions (see Figure 

2.4 and Table 2.3). While none of the four model combinations shown in Figure 2.4 can be 

presented as superior to others in terms of reproducing historical snow depth, the changes in p-

factor ranges under different approaches were noticeable (e.g., changes from TIM-SND1 to 

TIM-SND2). It is also noteworthy that in Figure 2.4, the variability of p-factor in foothill and 

plain regions during summer months was negligible, since foothill and plain areas of NSRB 

usually had minimum or no snow cover during summer. Overall, the high variability of p-factors 

using both TIM and EBM and under both SND1 and SND2 in mountainous region suggest 

unreliable snow depth simulation as a result of complex topography and lack of adequate and 

reliable climate datasets, even when a more comprehensive model structure (e.g., EBM 

combinations) is utilized (Helbig et al., 2015). 
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Figure 2.3b shows the r-factors corresponded to historical snow depth simulations of 

NSRB sub-basins. The high value of r-factor for several sub-basins in mountainous regions 

suggests that the effect of snow parameters in simulating snow depth can be significant in 

mountainous regions with high topographic and climate variability. This can be particularly 

related to areas with complex and highly variable hydrology, as the average and maximum 

values of r-factor in the non-mountainous region is noticeably smaller than those within the 

mountainous region. It can be interpreted from Table 2.3 that the average values of r-factors in 

mountainous regions were considerably greater than other areas, where the average p-factor 

values were less than those in other areas. This implies that a larger uncertainty is predicted in 

mountainous regions, where only small share of the historic data were reproduced using any of 

the two models under any of the SND combinations. Since EBMs are more physically-based 

approaches by definition than TIMs are, the poor performance of EBM models under any of the 

SND combinations are likely due to the poor quality of input data, i.e., spatio-temporal climate 

factors and input parameters used to run them. This suggests a clear need for enhancement of 

data collection and monitoring strategies within mountainous regions (Clow et al., 2012; Helbig 

et al., 2015; DeBeer and Pomeroy, 2017) than enhancement of the modelling approaches 

themselves. The uncertainty range (i.e., r-factor) of mountainous regions of EBMs in both SND1 

and SND2 was higher than those in TIMs, suggesting that the effect of model parameterization 

on modelling uncertainty of snow depth simulations is intensified in complex areas (i.e., 

mountainous regions in this study) (Ul Islam and Déry, 2017). On the other hand, the r-factors of 

snow depth simulation in all regions under EBM-SND2 were increased compared to the r-factors 

related to EBM-SND1, with the highest level of difference within mountainous regions (see 

Table 2.3).  
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The additional modelling uncertainty resulting from using SND2 instead of SND1 could 

be attributed to the sensitivity of SND2 to air temperature. According to Eq. (11), under fresh 

snow (i.e., snowfall) conditions, snow density is solely a function of current air temperature. On 

the other hand, under aged snow conditions, snow density is a function of snow depth of the 

previous day, a variable that is calculated based on the snow density of the previous day. As a 

result, the snow density under SND2 is a strong function of air temperature of a given day or its 

previous day(s). Since the major difference between SND2 and SND1 is in incorporating the air 

temperature in SND2, it can be argued that incorporating air temperature factor in snow density 

estimation resulted in more uncertainty in snow depth simulations using SND2 because similar 

to other climate data, the temperature data were not abundantly available for snow depth 

simulation at this scale.   

Finally, our analysis of the R2 values corresponding to the best simulation results (out of 

1000 model runs) is shown in Figure 2.3c. An overview of the results from four different model-

SND combination shows that, in general, the snow depth in sub-basins of plain areas were 

simulated properly, yet demanding improvements. Although some sub-basins in the plain region 

had the R2 of less than 0.4, most of the sub-basins showed a R2 value of 0.6 or above, which can 

be an indicator of a proper snowpack simulation in plain areas. The comparison of observed and 

simulated snow depth data in the foothill and mountainous regions, however, showed poorer 

results compared to those of plain regions. Although sporadic sub-basins with a proper R2 can be 

found in foothill and mountainous regions, most of the sub-basins showed the R2 value of less 

than 0.6. This can be due to the likely error inherent in the gridded snow depth data used for our 

comparison, as well as their coarse resolution (i.e., 24 km × 24 km) for sub-basin-based 

comparison (Helbig et al., 2015). In other words, the comparison of simulated and observed data 
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for sub-basins was based on assigning the historical data from coarse resolution grid points to 

each sub-basins. Hence, the spatial heterogeneity of historical snow depth are under-represented 

at the sub-basin scale. For the same reason, we are not presenting NS and bR2 results of snow 

depth simulation, since they provide more detailed comparison of the simulated versus observed 

data, which require a higher resolution measurements for a direct and comprehensive assessment. 

Furthermore, the lack of time-series data for precipitation in regions with high variability in 

topography and climate such as west side of NSRB resulted in a poorer model performance 

(Mizukami et al., 2014; Ul Islam and Déry, 2017). Consequently, presentation of comparison 

results at a regional-scale in our study would give more reliable insights than those of sub-basin 

scale.  

2.4.2 Effect of snow density formulation on model performance at regional scale 

The results in this section reveal the effect of snow density formulation on performance 

and uncertainty associated with simulations and projections of snow depth. The results of the 

best model runs out of 1000 simulations for various regions, snowmelt approaches (EBM, TIM), 

and snow depth approaches (SND1 and SND2) are shown in Figure 2.5 and Table A.6. As 

shown in Figure 2.5a, when using SND1, neither the SWAT-TIM (with an average NS, bR2, and 

R2 of 0.45, 0.19, and 0.65) nor the SWAT-EBM (NS, bR2, and R2 of 0.51, 0.23, 0.66) could 

reliably simulate the dynamics and magnitudes of regional snow depth within the mountainous 

regions of NSRB. However, by implementing SND2, which is an empirical formulation 

specifically meant for Canadian Prairies (Pomeroy et al., 1998), a considerable improvement in 

simulation of regional snow depth in both SWAT-TIM (with an average NS, bR2, and R2 of 0.79, 

0.58, 0.80) and SWAT-EBM (NS, bR2, and R2 of 0.25, 0.69, 0.78) can be seen. Comparison of 

Figure 2.5a with Figure 2.5b and 5c reveals that the proper formulation of snow density function 
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plays an important role in quantifying snow depth, particularly in mountainous regions (Sturm et 

al., 2010; Bormann et al., 2013). In fact, higher variability of snow depth within mountainous 

regions along with high variability of temperature might be the reason why the snow depth in 

such regions is more sensitive to definition of snow density formulations. On the other hand, the 

performance of SWAT-TIM and SWAT-EBM under SND1 and SND2 in snow depth simulation 

within foothill and plain were nearly the same. Nevertheless, it is detected that SWAT-EBM-

SND2, which is known to be more physically based and robust in snow depth simulation, mostly 

overestimated the snow depth in all the regions within NSRB. This can be in line with the 

overestimation of streamflow at the outlet of NSRB (see Figure 2.6). In other words, the 

overestimation of snow depth in winter might result in overestimation of streamflow in warmer 

periods of the year, where the snowpack is mostly melted and converted into streamflow. 

 

Figure 2.5. Comparison of the best simulated snow depth (red) with observed (blue) data in (a) 

mountainous, (b) foothill and (c) plain regions for the 1999-2007 period. 
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2.4.3 Assessment of SWAT-TIM and SWAT-EBM in reproducing streamflow  

Since streamflow is a function of snowmelt in terms of SWE (rather than snow depth), 

SWE is independent from SND approaches used. Hence, streamflow reproduction results in this 

section are reported in terms of SWAT-TIM and SWAT-EBM approaches, because using SND1 

or SND2 has no effect on streamflow values. The streamflow simulation using 1000 parameter 

set samples in SWAT-EBM and SWAT-TIM show that in the upstream stations (see Figure 2.1 

and Table A.1), representing Mountainous region, with p-factors of 0.57 and 0.33 for stations #1 

and #2 respectively, the SWAT-EBM performed slightly better than SWAT-TIM with p-factor of 

0.40 and 0.16 for stations #1 and #2, respectively (Table 2.4). In terms of NS and bR2 SWAT-

EBM with NS of 0.66 and bR2 of 0.42 performed slightly better than SWAT-TIM with NS of 

0.59 and bR2 of 0.34 in station #1; however, the performance of SWAT-TIM was much better in 

station #2, with NS of 0.23 and bR2 of 0.27 for SWAT-TIM as compared to NS of -1.43 and bR2 

of 0.05 from SWAT-EBM simulations (see Table 2.4). On the other hand, SWAT-TIM had 

performed marginally better in simulating streamflow data within downstream hydrometric 

stations. Comparisons of the r-factor, NS and bR2 shows relatively close values for SWAT-TIM 

and SWAT-EBM within both mountainous and plain regions, suggesting that the performance of 

TIM and EBM within a large watershed with diverse hydro-climate and topographic conditions 

was relatively similar in simulating the streamflow dynamics. These results are in line with 

previous studies on comparison of TIMs and EBMs for streamflow simulations (Franz et al., 

2008; Zhang et al., 2008; Zeinivand and Smedt, 2009; Debele et al., 2010; Meng et al., 2017). 

One important point, however, is the low values of NS of SWAT-EBM in most of the 

hydrometric stations. It is found in the literature that the EBMs might overestimate the 

streamflow due to overestimation of mid-winter snow depth (Franz et al., 2008). As it can be 



42 

 

found by comparison of EBM and TIM in Figure 2.6, the best performing simulation results of 

EBM, out of 1000 simulations, was yet overestimating the peak flows, resulting in low values of 

NS, which highlighted the constant overestimation of the flow (Krause et al., 2005, see Table 

2.4). It is noteworthy that the streamflow simulations are based on best-fitting snow parameters 

only, and other parameters related to soil, groundwater, runoff that are sensitive to streamflow 

can be adjusted in order to change simulated streamflow results in Figure 2.6, which is beyond 

the scope of this study. Nevertheless, the overestimation of peak flow resulting from using 

SWAT-EBM is noticeable (i.e., within hundreds of cubic meter per second), which might not be 

rectified by logical adjustment of other SWAT parameters. Hence, the potential overestimation 

of streamflow through using EBMs should be taken into account in hydrological studies such as 

analyzing extreme conditions (i.e., floods and droughts) throughout regional studies. 

 

Figure 2.6. Comparison of monthly observed (blue), best simulated (red), and 95PPU (orange band) 

streamflow for 1986-2007 period using SWAT-EBM (left column) and SWAT-TIM (right column). 

95PPU: 95 percent prediction uncertainty. 
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Table 2.4. Performance of average monthly streamflow simulation for SWAT-TIM and SWAT-EBM for 

1986-2007. 

Region Station ID 

(Table 

A.2) 

Snowmelt 

module p-factor r-factor R2 NS 𝑏𝑅2 

Mountainous  1 EBM 0.57 0.16 0.72 0.66 0.42 

TIM 0.40 0.13 0.69 0.59 0.34 

2 EBM 0.33 0.82 0.10 -1.43 0.05 

TIM 0.16 0.17 0.41 0.23 0.27 

Foothill  3 EBM 0.14 0.93 0.14 -3.74 0.13 

 TIM 0.08 0.28 0.18 -1.70 0.13 

4 EBM 0.34 0.76 0.21 -1.22 0.14 

 TIM 0.40 0.39 0.39 0.34 0.21 

Plain  5 EBM 0.23 0.49 0.57 -0.65 0.47 

TIM 0.36 0.46 0.66 0.44 0.56 

6 EBM 0.29 0.72 0.61 -2.04 0.40 

TIM 0.36 0.78 0.57 -0.10 0.52 
 

2.4.4 Evaluation of uncertainty sources in the cascade of uncertainty projection 

The average monthly results of uncertainty decomposition for snow depth projection in 

mountainous, foothill, and plain regions are shown in Figure 2.7. Also, the annual average values 

of contributions of different uncertainty sources for the same regions is outlined in Table A.7. It 

can be seen from the figures that the share of parameter uncertainty within all regions of NSRB 

is considerable, although holding different values in different regions and times. A general 

comparison of cascades of uncertainty of mountainous, foothill, and plain regions based on 

Figure 2.7 and Table A.7 shows that 95PPU arising from SWAT-EBM and SWAT-TIM holds 

the largest share of uncertainty in mountainous regions, compared to foothill and plain regions. 

This uncertainty range was resulted from 1000 set of parameter combination sampled from a 

physically meaningful range defined from literature (see Table 2.1). This suggest the importance 

of model parameterization and the input data in complex regions for snow depth simulations and 

projections (Mizukami et al., 2014; Ul Islam and Déry, 2017). As we move from mountainous to 

foothill and plain regions, the average annual share of parameter uncertainty becomes less than 

that of mountainous regions as the share of annual PPU, under NSD2, changes from 75.4% and 



44 

 

57.0% for EBM and TIM, respectively in mountainous to 57.8% and 42.1% in foothill, and to 

59%, and 27.5% in plain region, respectively (see Table A.7).  In the Mountainous region and 

under SND1 and SND2 formulations, both SWAT-TIM and SWAT-EBM showed a relatively 

similar trend in sharing the formation of cascade of uncertainty. The average value of 95PPU 

contribution to cascade of uncertainty for EBM-SND1, TIM-SND1 and TIM-SND2 ranges 

between 55% to 60%, presenting a relatively similar behavior of parameter uncertainty within 

these approaches. The average parameter uncertainty from EBM-SND2, however, is 75%, which 

suggests the noticeable effect of snow density approach in the formation of cascade of 

uncertainty in EBM model. EBM-SND2 also holds the largest share of parameter uncertainty for 

foothill and plain regions. It is also shown in Figure 2.7a that the share of parameter uncertainty 

decreased in warmer seasons (i.e., May to August). This indicates that as the weather gets 

warmer in mountainous regions, the effect of various GCMs, RCPs, downscaling methods and 

their interactions on snow depth projections increased, since they directly affect the precipitation, 

air temperature and solar radiation, which are major drivers of snowmelt and snow depth, 

therefore forcing a larger variation in projection of snowfall and therefore snow depth than 

hydrologic model parameters. On the other hand, snowfall events are less frequent in warm 

seasons (MacDonald et al., 2012), which makes the effect of snowmelt parameters within EBM 

and TIM less than those for colder seasons. As a result, the effect of GCMs, RCPs, downscaling 

methods and their interactions was increased in warm seasons. In colder seasons, however, 

GCMs, RCPs, downscaling methods and their interactions had less contribution to the cascade of 

uncertainty in mountainous regions, possibly because temperature variability is less effective of 

snow formation in cold seasons. In cold seasons, the air temperature within mountainous regions 

are well below freezing point; therefore, the variability of temperature among various GCMs, 
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RCPs and downscaling methods does not effect the conversion of precipitation to snowfall or 

rainfall. Because of that, EBM and TIM parameter uncertainty controls most of the uncertainty 

associated with snow depth simulations in these months than the GCMs, RCPs, and DS. As the 

study region moves from mountainous areas to the plain region, the share of different uncertainty 

sources changes for different months. The comparison of Figures 2.7a, 2.7b and 2.7c shows that 

by shifting from mountainous to plain regions, the contribution of parameter uncertainty to 

cascade of uncertainty decreased, while other sources of uncertainty contributed more to the 

overall uncertainty of snow depth projections. In particular, the contribution of GCM to the 

uncertainty cascade increased from mountainous region to foothill and plain regions. This is an 

interesting finding as it provides insight into the conflicting assessments in the literature with 

some studies concluded GCMs as the largest contributor to the uncertainty projection 

(Prudhomme and Davies, 2009; Vetter et al., 2017) and others introduced emission scenarios 

(Vetter et al., 2015), and fewer studies underscored the effects of hydrologic models (Ashraf 

Vaghefi et al., 2019) in the cascade of uncertainty projections. Our study provides a 

comprehensive assessment of all contributing factors across spatial and temporal scales and 

under diverse hydro-climatic and topographic conditions, and it describes how changes from 

mountainous to plain regions result in different pattern in the share of uncertainty contribution. 

Same as warm months within mountainous regions, the increased share of GCM uncertainty in 

foothill and plain regions in comparison with mountainous regions might be partially related to 

the effect of air temperature on considering precipitation as snowfall or rainfall in SWAT model 

(see Section 2.3.3). 
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Figure 2.7. Variance decomposition of the uncertainty in snow depth projection within (a) mountainous, 

(b) foothill, and (c) plain regions throughout NSRB using SWAT-TIM and SWAT-EBM under SND1 and 

SND2 scenarios. Note: diagonal lines indicate times when snow depth 
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Furthermore, since the parameter uncertainty had decreased from mountainous to foothill and 

plain regions (Figure 2.7), this mathematically resulted in the share of other uncertainty sources 

to increase, which is possibly one other reason for the increase of GCM contribution to 

uncertainty cascades in foothill and plain regions. The contribution of interactions of different 

uncertainty sources is the second most important contributor to the cascade of uncertainty of 

mountainous regions and among the largest contributors in foothill and plain regions, suggesting 

the non-linear effect of uncertainty sources on snow depth projections (Chawla and Mujumdar, 

2018).  

Another important point to mention is related to the contribution of model parameter 

uncertainty to the cascade of uncertainty within plain regions in warm months (i.e., May to 

August), which is close to 100%, while this contribution is much lower in other months of the 

year (Figure 2.7c). The large contribution of model parameters to the cascade of uncertainty in 

warmer months is due to the high temperature of plain regions in warm months. The temperature 

of this region is significantly higher than the snowfall temperature (especially in June, July and 

August), which makes the snowfall to rarely happen, therefore resulting in a zero contribution of 

GCM, RCP, and DS. On the other hand, the amount of snow depth in warm months is almost 

zero, as almost all the snow depth has been melted throughout the spring (e.g., April and May). 

As a result, a meager change in snow depth simulation right before or during the warm months 

will numerically result in a large variance calculation for the 95PPU, using ANOVA method, as 

compared to the small value of snow depth. As presented with diagonal lines in Figure 2.7c, due 

to the zero share of GCM, RCP, and DS during warm months in plain region, the 95PPU gained 

the maximum share of the uncertainty despite its negligible variation due to the parameter 

uncertainty. 
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2.5 Conclusion and future directions 

Snowmelt and snow depth processes are among the most significant hydrological 

processes in most of high elevation watersheds in the northern latitudes and mountainous 

watersheds with cold hydrology. However, the contribution of uncertainty due to the use of 

Temperature Index Modules (TIMs) and Energy Balance Modules (EBMs) in projection of 

snowmelt and snow depth in regional studies is poorly understood. We implemented the 

ANOVA uncertainty decomposition approaches, where a process-based TIM and EBM 

snowmelt routines, as well as two different snow density modules were coupled within the Soil 

and Water Assessment Tool (SWAT) source code and future projections were performed based 

on an ensemble climate datasets of five GCMs, under the two future scenarios of RCP 2.6 and 

RCP 8.5 and using two downscaling approaches. This allowed spatio-temporal assessment of the 

uncertainty projections of snow melt and snow depth across heterogeneous landscapes, from 

mountainous and foothill to plain areas using a large river basin in Alberta, western Canada as 

the study region. The main conclusions of this study are: 

1. The performance of EBM and TIM approaches in simulating snowmelt and snow 

depth is different across scales and time; therefore, conclusions from a small-scale study with a 

homogeneous landscape and hydro-climate condition cannot be generalized to a larger regional 

scale and for a longer period of time.  

2. While the performances of EBM and TIM were relatively similar in mountainous 

regions and both produced a relatively large uncertainty, the spatio-temporal analysis of the p-

factor, r-factor, NSE, bR2, and R2 indicated that SWAT-TIM performed better in foothill and 

plain regions as compared to the SWAT-EBM combinations and the SWAT-EBM approach 
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overestimated streamflow in most regions and snow depth in all the regions within the study 

watershed.  

3. While snowmelt simulation modules are key in hydrologic modelling of snow 

dominated regions, the performance of the models in snow depth simulations is more dependent 

on the formulation of snow density simulation, rather than using TIM or EBM. This highlights 

the importance of the selection of a proper snow density (SND) approach in accordance with the 

study area and climatic conditions.  

4. All EBM, TIM, SND1, and SND2 model combinations predicted larger uncertainty in 

simulation of snow depth and streamflow in the mountainous regions as compared to foothill and 

plain areas. Since EBMs are a more physically-based approach by definition than TIMs, the poor 

performance of SWAT-EBM model under any of the SND combinations are likely due to the 

poor quality of input data, i.e., spatio-temporal climate factors and input parameters used to run 

them. This observation suggests a clear need for enhancement of data collection and monitoring 

strategies within mountainous regions. 

5. The analysis of the cascade of uncertainty for future snow depth simulation indicated 

that the share of uncertainty from different sources varies over time and across regions. While 

the share of uncertainty was dominated by EBM and TIM parameterization in the highland areas 

and in cold months, it was conquered by the GCMs, RCPs, and DS in lower elevation foothill 

and plain areas. The share of uncertainty was also affected by the choice of snow density 

approach, and the SWAT-EBM-SN2 modelling approach resulted in a larger share of uncertainty 

in future snow depth projection, due to a more physically-based nature of the model 

combination, as compared to all other model combinations.  
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6. The larger share of parameter uncertainty in cold months is related to the air 

temperature that are well below freezing point making the variability of temperature among 

various GCMs, RCPs and downscaling methods ineffective in the conversion of precipitation to 

snowfall or rainfall in the mountainous regions, while the larger parameter uncertainty in warm 

months in the plain regions is related to a significantly higher than the snowfall temperature, 

which makes the snowfall to rarely happen, therefore resulting in a zero contribution of GCM, 

RCP, and DS and numerically allocating a large uncertainty share to the parameters.  

This research facilitates better understanding of the performance and uncertainties 

associated with the projection of snow melt and snow depth using EBM and TIM approaches in 

large regional studies, where hydro-climate and geospatial features vary across regions and 

times. It also demonstrates that a multi-scale and temporal analysis is needed for understanding 

the cascade of uncertainties in future snowmelt and snow depth simulations. Our study 

underscores the importance of the input climate data in simulation of hydrological processes in 

the high elevation areas that is likely more significant than the choice of model structure and 

process representation. Furthermore, in regional station-based observed data do not represent the 

average snow depth within a large region of study (i.e., with scales of hundreds of square 

kilometers), a fact that highlights the need of spatial gridded data for comparison of snow depth 

simulations. On the other hand, the gridded data of historical snow depth or SWE within 

Canadian Prairies are scarce, and it is difficult to acquire proper gridded data for snow depth at a 

fine spatial resolution. Therefore, any improvement in historical climate data of precipitation and 

temperature, as well as historical snow depth data can result in an improved quality of snowmelt 

and snow depth analysis within large regions.   
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3.1 Abstract  

Snowmelt and groundwater-surface water (GW-SW) dynamics are of the most dominant 

controllers of hydrological processes and water availability in northern latitudes, particularly in 

warm seasons. The dynamics and changes of snowmelt and GW-SW interactions and their 

relations is poorly understood in regional analysis. To fill this gap, this study implements 

process-based hydrological modelling of SWAT-MODFLOW to map snowmelt and GW-SW 

dynamics in regional scales. The major research questions are “what is the effect of climate 

change on snowmelt and GW-SW dynamics?” and “how are GW-SW interactions altered by 

snowmelt dynamics?” We coupled the surface water hydrological model of Soil and Water 

Assessment Tool (SWAT) with groundwater model of MODFLOW in order to analyze 

snowmelt and groundwater dynamics across scales that included: (1) historical periods, (2) their 

projections using an ensemble of five global climate models (GCMs) based on two emission 

scenarios (i.e., RCP2.6 and RCP8.5), and (3) their spatio-temporal relations. These analyses are 

mailto:faramarz@ualberta.ca


61 

 

implemented in mountainous, foothill and plain regions in a large snow-dominated watershed in 

western Canada. Results show that under climate change scenarios, earlier snowmelt is predicted 

to occur in mountainous and foothill regions, while less snow accumulation and melt is 

anticipated in plain regions. Future projections of GW-SW interactions show an increase of 

groundwater discharge to streams in winter and spring seasons, particularly as a result of earlier 

snowmelt in winter and spring. On the other hand more surface water loss to groundwater in 

summer and fall is predicted, which can be caused by low level of groundwater under future 

conditions. In the end, the correlation analysis between regional snowmelt and GW-SW 

interactions for historical (1983-2007) simulations show high correlation (R2 =0.494) in 

mountainous regions, compared to very low correlation (R2 < 0.01) in foothill and plain regions. 

The low correlation in downstream regions can be attributed to (1) the effect of 

evapotranspiration (ET) on altering groundwater and sub-surface water resources in foothill and 

plain regions; (2) the dominance of rainfall in groundwater recharge, especially in growing 

seasons; (3) GW flow connectivity and flow gradient that may create upstream-downstream 

cumulative effects under the ground and influence GW dynamics in the plain regions than in 

mountains. It is hypothesized that aquifers in the mountainous region of the study watershed are 

less influenced from their adjacent aquifers but only from surface water recharge, resulting in a 

higher correlation with snowmelt dynamics than plain regions. Overall, it is shown that the 

hydro-climatic variability and topographic conditions of different regions play an important part 

in the governing factors of snowmelt and GW-SW dynamics. 
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3.2 Introduction  

Water is of the utmost importance, both as a basic need for consumption and as the 

commodity input for agriculture and industry (Kundzewicz and Döll, 2009; Harma et al., 2012). 

The spatial and temporal availability of water throughout the world is heavily dependent on the 

hydrological cycles at a global scale (Harding et al., 2011). In cold regions, particularly the 

Canadian Prairies, snowmelt is the main source of streamflow during spring and early summer, 

and its recharge is the main source of base flow during low flow seasons (Dumanski et al., 2015). 

All of these processes control the availability of water resource in dynamic (e.g., surface run-off) 

and static (e.g., groundwater storage) environments (Flerchinger et al., 1992). Furthermore, the 

susceptibility of water to climate change is expressed in the relations between human effects and 

natural climate variability, which is not sustainable at current rates of industrial activity and 

environmental conservation (Vogel et al., 2019). It is therefore critical to consider climate 

change as a variable in hydrological research due to the impact it has on snowmelt, groundwater, 

and their combined effect on streamflow and other sources of water availability (F. Cochand et 

al., 2019). 

To address future concerns of climate change and its impacts on the spatio-temporal 

variations of water resources, various hydrologic modelling approaches must be employed to 

establish the most accurate and encompassing tactics for proper watershed planning and 

management (Hagemann et al., 2013; Guevara Ochoa et al., 2020). Usage of such models 

becomes particularly important for systems where groundwater and surface water are used 

conjunctively to satisfy multiple social sectors (Aliyari et al., 2019). Variations in the water 

content of watershed basins are controlled by multiple processes, but the movement of 

groundwater and surface water (including their interactions) in relation to snowmelt dynamics 
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play a significant role in dictating future trends of water availability and distribution (Maurya et 

al., 2018), especially in northern latitudes (Aygün et al., 2020). Although some literature has 

focused on snowmelt and groundwater-surface water interactions, with majority of them at field 

scale in different basins, some aspects of these processes require more attention, including (1) an 

analysis of snowmelt dynamics and groundwater-surface water (GW-SW) interactions under 

changing climate at a regional scale, a scale of which often neglected in GW-SW modelling but 

crucial for policy and planning; (2) the spatio-temporal relations of the dynamics of these two 

processes; and (3) assessment of the effects of natural factors such as climate, topography, and 

land-use, as well as geospatial features related to prehistoric and contemporary times on the 

dynamics of these processes. 

The widespread impacts of climate change have become heavily publicized and attributed 

to numerous weather phenomena around the world. These phenomena include heat waves, 

floods, droughts, glacier ablation, more severe and frequent storms, and inundation of coastal 

societies (Qi et al., 2019; Vogel et al., 2019). In cold regions and northern latitudes, the role of 

snowmelt in controlling the storage and flow of water within hydrological systems and by 

extension, access to water for human use and consumption, is extremely valuable (Hayashi and 

Farrow, 2014; Lundberg et al., 2016). Streamflow in the summertime is particularly vulnerable 

to changes in snowmelt pattern, which was found to have an even greater effect on these flows 

when compared to precipitation and groundwater recharge (Huntington and Niswonger, 2012). 

Snowmelt also has the ability to initiate interactions between streamflow and groundwater, as 

any deficits in the soil water profile or groundwater system prohibits these exchanges from 

taking place, unless they are restored by sources such as spring snowmelt or winter precipitation 

(Chauvin et al., 2011). Several field-scale studies elaborated on snowmelt dynamics and its 
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variations under climate change (Clilverd et al., 2011; Hayashi and Farrow, 2014). However, the 

regional analysis of snowmelt cannot be done at field-scales resolution because it is costly, 

complex, and time-consuming (Bocchiola and Groppelli, 2010; Avanzi et al., 2015). On the other 

hand, inference from field analysis to a large regional-scale assessment is subjective, since 

response of hydrogeological processes across spatio-temporal scales are highly variable. 

Therefore, hydrological modelling is used as an alternative for evaluating snowmelt dynamics in 

current and future climates. Hydrological modelling is particularly of interest because future 

climate models and greenhouse emission scenarios can be used as forcing to such models in 

order to assess the effect of climate change on hydrological processes and their interactions 

(Haddeland et al., 2014). Several hydrological models such as Snowmelt-Runoff Model (SRM, 

Kult et al., 2012; Saydi et al., 2019), Cold Region Hydrological Model (CRHM, Zhou et al., 

2014) and Soil and Water Assessment Tool (SWAT, Debele et al., 2010; Qi et al., 2017) were 

used for snowmelt analysis in the literature. However, the main focus of these models were 

mostly to study detailed hydrological processes at small areas of study (Chauvin et al., 2011; 

Gao et al., 2019), or key processes in large watershed but homogeneous in terms of climate, 

land-use, and topographic variability (Finger et al., 2012; Kure et al., 2013; Lucas-Picher et al., 

2015). In more complex regions in terms of topography, land-use, and climate, such as the 

eastern slopes of the Canadian Rocky Mountains, snowpack is a critical source of water for 

multiple prairie provinces and warmer air temperatures produced by climate change can create a 

shift from snow to rain, reducing water storage in snowpack and compromising its reliability and 

predictability as a resource that must be used and managed diligently (Schindler and Donahue, 

2006; MacDonald et al., 2012). Municipal development and drinking waters could be vulnerable 

to variations in snowmelt patterns, where they heavily rely on groundwater and reduced 
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snowmelt can urge groundwater shortage. Agriculture can be particularly susceptible to 

variations in snowmelt patterns where irrigation is heavily relied upon. The association of 

climate change with reduced snowmelt runoff and a shift in its peak of occurrence to earlier in 

the season has the potential to induce later water shortages (Bai et al., 2019). Therefore, it is 

important to evaluate the regional response of snowmelt to climate change, particularly in 

various topographical and climate settings.   

On the other hand, there are abundant, intimate relations between surface water and 

groundwater in hydrological systems, requiring an assessment of both components as a collective 

in order to establish effective and encompassing strategies for optimal water utilization and 

management (Field et al., 2014; Qi et al., 2019; Lewandowski et al., 2020). The simplest and 

most direct relations between groundwater and surface water involves recharge and discharge, 

which typically consists of exchanging large volumes of water (Kornelsen and Coulibaly, 2014). 

This can occur on local or much greater scales, with variables such as season, climate, and 

vegetation creating sets of expected or average values for water exchange. This is exemplified in 

mountainous environments, where the properties of soils and subsurface media control the 

discharge of groundwater to streams that are in transit from a high elevation catchment to a low 

elevation valley bottom, or in other words, where there is a change in topography (Allen et al., 

2010; Jutebring Sterte et al., 2018). These interactions become substantially more significant in 

the winter, where contributions to streamflow from glacier melt, rainfall, and snowmelt are 

minimal at best, and unregulated streams are ultimately maintained by groundwater discharge, 

which is controlled by stationary aspects such as the spatial variation of geology, topography, 

and climate (Paznekas and Hayashi, 2016). The importance of subsurface geology is applicable 

to other environments such as wetlands, where variations in the thickness of units below the 
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surface can produce changes in groundwater flow, leading to contrasting seasonal trends in water 

table fluctuation and surface hydrology (Devito et al., 1996). It is also critical to acknowledge 

that the likelihood of changes in the relations between groundwater and surface water is 

significantly higher when moving from a local to regional scale analysis, as there are more 

abundant aquifers and surface bodies and thus interactions, which vary temporally and spatially 

(Barthel and Banzhaf, 2016). When considering these relations, it is important to not only view 

them as dynamic within a span of weeks or months, but as sensitive interactions that can be 

variable on seasonal and decadal time scales, such as in response to snowmelt and precipitation 

patterns (Hayashi and Farrow, 2014; Bailey et al., 2016). In spite of all the past and present 

research utilizing various programs for hydrological modelling, the regionalized analysis of GW-

SW interactions demand improvements (Zhou and Li, 2011; Candela et al., 2014). The literature 

produced from the study of the impacts these variables have on partitioning of resources in 

hydrologic systems is significant and diverse (Akiyama Sakai et al., 2007; Lewandowski et al., 

2020), but is underrepresented for regional scale landscapes, where physical properties can vary 

dramatically from a spatio-temporal perspective (Barthel and Banzhaf, 2016). Therefore, 

understanding the regional dynamics of GW-SW interactions is vital, particularly because such 

dynamics can be interpreted in terms of distinct climatic and topographic properties of different 

regions, in addition to their hydrological processes and their interactions. 

In climates cold enough to produce snowfall and sustain snowpack seasonally or 

permanently, snowmelt input to groundwater and surface water has the potential to be a 

significant contributor to hydrological processes (Schilling et al., 2019). The distribution and 

availability of groundwater and surface water in these environments are limited by some of the 

same constraints as those placed on snowmelt, such as its timing and spatial distribution, the 
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structure of the basin, and the properties of the aquifers (Deng et al., 1994; Foster and Allen, 

2015; Zhang et al., 2018). The areal extent of snow cover directly impacts groundwater levels 

and the timing of subsurface water flow (Flerchinger et al., 1992). On the other hand, the climate 

change effects on snow accumulation and snowmelt can raise concerns around water availability 

in different regions, because warmer air temperatures can promote the conversion of snowfall to 

rainfall (MacDonald et al., 2012), which will ultimately have widespread impacts on surface and 

subsurface water dynamics. The complex relations between snowmelt and GW-SW interactions 

depend on numerous properties that are present in the water and the surrounding environment. 

This implies the necessity to accommodate conditions such as elevation, climate, topography, 

and vegetation cover in the analysis of the relations between these processes, as they will 

undoubtedly impact the ability and extent of processes to facilitate the relations between water 

sources in various settings (Smith et al., 2014; Carroll et al., 2018). The high susceptibility of 

water resource partitioning is exhibited effectively in mountainous environments, where the 

transition from high elevations to foothills and plain areas provides valuable opportunities for 

studying how variations in the characteristics of each of these settings controls water dynamics. 

At lower elevations, where vegetation density is high, the lower snowfall accumulation translates 

to less snowmelt and occurs prior to peak consumption demand, producing small amounts of 

groundwater recharge. Nevertheless, snowmelt rapidly drops off as the growing season begins 

and the water availability ultimately depends on the land features produced by topography 

(Carroll et al., 2019). Overall, the relation and feedback between snowmelt and GW-SW 

interactions and the variables facilitating them are extensively documented (Assani et al., 2012). 

However, to the best of our knowledge, the direct effect of snowmelt on GW-SW interactions 

and their inter-relations in different regional settings is not evaluated. The analysis of 
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correlations between snowmelt and GW-SW interactions can provide good insights into the 

factors governing these processes and how these relations might vary under variable topography, 

land-cover, and climate conditions. 

The goal of this study is to provide a framework for regional analysis of snowmelt and 

GW-SW interactions, as well as their changes under future climate conditions. We also focused 

on improving the understanding of correlations between snowmelt and GW-SW interactions and 

how they are inter-connected in different regions of study. Finally, the effect of climate 

conditions, topography, and land-use on such changes and interactions are examined. To this 

end, we coupled the surface hydrological model of the Soil and Water Assessment Tool (SWAT) 

with groundwater model of MODFLOW to evaluate the dynamics of snowmelt and GW-SW 

interactions at a regional-scale. These analysis are performed in mountainous, foothill and plain 

regions of a large and complex watershed in central Alberta. The more specific objectives of this 

paper include: (1) the regional assessment of the impacts of climate change on the seasonal and 

decadal changes of snowmelt patterns; (2) analysis of response of seasonal and decadal changes 

in GW-SW interactions to future climate; (3) assessment of how spatio-temporal variation of 

groundwater-surface water is associated with snowmelt patterns; and (4) comparison of 

snowmelt and GW-SW interactions in different hydroclimate regions such as mountainous, 

foothill and plain regions in regional hydrological models. 

3.3 Material and methods 

3.3.1 Study Area 

North Saskatchewan River Basin (NSRB) has been chosen for the study area as an 

example of a large region with high variability of climate and land use/land cover (Figure 3.1). 
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NSRB is a relatively large basin with an approximate drainage area of 60,000 km2, which 

comprises more than 9% of landmass area in the province of Alberta (North Saskatchewan 

Watershed Alliance, 2005). The elevation of NSRB ranges from 3478 MASL on the west side to 

just 500 MASL on the Alberta/Saskatchewan border, with its extent ranging from 52-55 °N and 

110-120 °W. The average annual precipitation within NSRB for 1983-2007 ranges from 400 mm 

year-1 on the east side to 760 mm year-1 on the mountainous region of NSRB on the west. Also, 

the historical temperature data for NSRB suggests that the temperature can range from -30 ℃ in 

winters up to +29 ℃ in summer, with high spatial and temporal variability of the temperature 

(Government of Canada, 2019). 

The North Saskatchewan River (NSR) originates from headwaters in highlands of the 

Rocky Mountains, where Columbia Icefields in Banff National Park are the major contributing 

glaciers to this river. The river flows more than a thousand kilometers before reaching the 

Alberta/Saskatchewan border. The NSR later joins the South Saskatchewan River, which will 

ultimately drain into Hudson Bay (North Saskatchewan Watershed Alliance, 2005). The NSR is 

a major tributary to the Saskatchewan River, as the annual discharge of NSR at Alberta-

Saskatchewan border is more than 7 cubic kilometers (Alberta Environment 2019). This river is 

regulated by two headwater dams, namely Bighorn dam on the main stem of NSR, and Brazeau 

dam on Brazeau River, to provide water supply for the City of Edmonton. These factors along 

with the existence of glaciers, forests, mountain snowpacks, and wetlands (North Saskatchewan 

Watershed Alliance, 2005) have resulted in a relatively complex area in terms of hydrological 

process, GW-SW interactions, and climate variability.  

An analysis of historical pattern of river flow at HYDAT Station 05df001 at the City of 

Edmonton (see Figure 3.1) shows an overall decrease of streamflow on the main river channel 
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from 1911 to 2013 (North Saskatchewan Watershed Alliance, 2005). Also, trend analysis of 

observed data from four selected climate stations within NSRB, namely Nordegg (1915 to 2007), 

Rocky Mountain House (1978 to 2007), Vermilion (1913 to 2007) and the City of Edmonton 

(1880 to 2007) show an increasing pattern for temperature. Climate change studies on the NSRB 

suggest an increase of temperature between 0.3 ℃ to 2.2 ℃ for different areas of the basin by 

2035. Therefore, there is a need for watershed planners to understand the climate projections and 

their uncertainty within NSRB in order to adapt their plans for surface water and groundwater 

management and the most effective mitigation strategies (Golder Associates, 2008). 

3.3.2 Hydrological Model and Input Data 

3.3.2.1 SWAT model 

The Soil and Water Assessment Tool (SWAT) is a process-based, semi-distributed 

hydrological modelling with the ability of simulating the quality and quantity of surface water in 

daily time steps (Arnold et al. 1998, 2012). SWAT is capable of being applied for studying 

climate change impact assessment and effects of land management practices on dynamics of 

surface water quality and quantity over large and complex watersheds. Numerous hydrological 

processes can be simulated by SWAT, including but not limited to streamflow, snowmelt, 

subsurface flow, evapotranspiration, and soil moisture dynamics (Neitsch et al., 2011).  

SWAT model formation demands input climate data of precipitation, temperature, 

humidity, wind speed and solar radiation. The delineation of sub-basins and Hydrological 

Response Units (HRUs) can be done through application of GIS maps for Digital Elevation 

Models (DEMs), land-use and land cover, soil, and their physical properties. HRUs are 

delineated within subbasins, and they are the smallest spatial units for process simulations in the 

model that are characterized with homogeneous soil, landuse, and slope parameters. Table A.1 
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shows the name, extent and sources of different datasets for building the SWAT model in this 

study. In this study, the 90m × 90m DEM was used to set up the SWAT model for the NSRB. A 

total of 174 sub-basins were delineated using a pre-defined river network which was previously 

delineated using 10m × 10m DEM (Table A.1). Historical climate data including precipitation, 

temperature, wind speed, solar radiation and relative humidity is derived from Faramarzi et al. 

(2015), who used various climate datasets from meterological stations and gridded product to 

reproduce historical streamflow throughout the province of Alberta.  

We used Sequential Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 2015) to 

calibrate and validate the NSRB SWAT model for the periods of 1993-2007 and 1983-1995, 

respectively, with a warm-up period of three years for each time window. The choice of 

parameters and their ranges for model calibration and validation were obtained from Faramarzi 

et al. (2017). In model calibration, each iteration contained 1000 samples of parameter sets from 

their physically meanful ranges to be fed into SWAT model, resulting in 1000 SWAT 

simulations. For each simulation the monthly observed and simulated streamflow were compared 

in six important hydrometric stations within NSRB. Also, several iterations (each containing 

1000 simulations) were needed for acquiring appropriate ranges of SWAT parameters. For time 

effective calculation, this process were parallelized over 200 cores using a parallelization 

algorithm developed by Du et al. (2020). The locations and properties of those hydrometric 

stations are shown in Figure 3.1a and Table A.2, respectively. In order to evaluate the goodness-

of-fit of SWAT model, we considered three widely-used criteria of efficiency, i.e., coefficient of 

determination (R2), bR2, and Nash-Sutcliffe (NS). Detailed formulation and description of these 

criteria can be found in Table A.5.  
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Figure 3.1. Map for NSRB representing (a) land-use classification, main river network, two 

main dams, and six hydrometric stations for SWAT calibration, (b) topographic range, three 

hydrologic regions for analysis of modelling results, and locations of observation wells for 

MODFLOW calibration. 

In addition to the performance criteria related to optimal SWAT parameter sets among 

1000 simulations in each iteration, we used two statistical factors from SUFI-2 algorithm, 

namely p-factor and r-factor, to evaluate the uncertainty associated with model parameters, 

structure and observed data. The p-factor ranges from 0 to 1 and determines the percentage of the 

measured data bracketed within the uncertainty band generated by SWAT. The uncertainty band 

in SUFI-2 is calculated as the 95 percent of the cumulative distribution of the simulated 

variables, defined as 95 Percent Prediction Uncertainty (95PPU) hereafter. On the other hand, r-

factor (ranging from 0 to ∞) represent the width of the predicted uncertainty band. When 

calibrating a model using SUFI-2 approach, the ideal outcome can be a p-factor of 1, indicating 

that 100% of the measured data are reproduced using simulations; and r-factor of zero, indicating 

a minimum uncertainty prediction or a perfect simulation. However, due to uncertainty related to 

input and measured data, model structure, and parameters within hydrological modelling, a p-

factor value of more than 0.5 and r-factor of close to 1 might be a sign of proper model 

calibration, depending on the research objectives, modeller’s view point and their expertise in 

interpretation of results, as well as status of input data availability (Faramarzi et al., 2009). 
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3.3.2.2 MODFLOW model 

The MODFLOW model for NSRB was developed using Visual MODFLOW Flex 6.0. 

The Newton formulation of MODFLOW-2005 (namely, MODFLOW-NWT) has been used to 

effectively take into account the nonlinearities involved with groundwater flow equations of 

MODFLOW cells during drying and rewetting phases (Bailey et al., 2016). The MODFLOW 

model developed for NSRB covers 181,500 sq.km of area. The area of the MODFLOW project 

is larger than SWAT project area in order for the MODFLOW grids to cover the whole SWAT 

area of study (i.e. NSRB area, Figure 3.1). A total of 55 × 33 grid cells were defined in the 

MODFLOW model to cover study area, with the dimensions of each grid to be 10 km × 10 km. 

Although a coarse resolution was chosen for MODFLOW setup, the structure of MODFLOW 

and SWAT-MODFLOW for the NSRB remained relatively complex because of a high 

variability in formations and elevations of MODFLOW layers in different regions of NSRB. 

Each of the MODFLOW layers is corresponded to a geological unit. In this study, five 

geological formations are included in MODFLOW setup for NSRB. The data for the extent and 

elevation of geological formations, as well as the hydraulic properties of each formation, has 

been acquired from Alberta Geological Survey (Smerdon et al. 2017; Alberta Geological Survey 

2019). The possible ranges of horizontal hydraulic conductivity (KH) values for each geological 

formation has been provided based on the maximum and minimum KH values measured from 

various boreholes throughout the west-central part of Alberta province (Smerdon et al. 2017). 

Table 3.1 shows the names and property value ranges of each geological formation considered 

for this study. After assigning five geological formations to MODFLOW model, a constant value 

of 500 meters below ground surface was assigned to the bottom of MODFLOW model in order 

to keep the lower boundary of the model far away from surface water features. This allowed for 
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possible groundwater flows in areas where deeper geological formations might connect to the 

surface (Chunn et al., 2019). The elevation data for top and bottom of geological formations 

were not available for a part of mountainous region of the study area (i.e. western side of NSRB, 

close to Rocky Mountains). As a result, it was assumed that the elevation of geological formation 

at the west side of the NSRB are constant, with a value equal to the most western side of the 

study area with available elevation data. Finally, we used the information from DEM data of 

NSRB to fill the missing elevation data for top of the upmost layer (the layer that is closest to 

ground surface) in MODFLOW.  

Besides the information related to geological formations for setting up the MODFLOW, 

initial heads, as well as boundary conditions such as rivers and recharge data need to be defined 

to the model for a more precise representation of hydraulic head fluctuations within NSRB. In 

addition, the basis of integrating MODFLOW with SWAT is required (see Section 3.3.2.3). In 

the MODFLOW model of NSRB, initial conditions are at first defined to be equal to ground 

surface for each MODFLOW cell. However, after running MODFLOW for one time, initial 

heads are updated based on MODFLOW.HDS output file in order to provide a better initial 

condition for SWAT-MODFLOW integration. On the other hand, River (RIV) and Recharge 

(RCH) boundary conditions have been imported from NSRB SWAT model into MODFLOW in 

order to facilitate the integration process of SWAT-MODFLOW model. The details of complete 

processes of importing RIV and RCH data from SWAT to MODFLOW can be found in Chunn 

et al. (2019).  
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Table 3.1. Geological formations used for setting up NSRB MODFLOW model. 

Layer 

No. 

Layer name Elevation range of 

layer top (meter) 

Horizontal hydraulic 

conductivity (𝐾ℎ) range (m/s) 

(Smerdon et al., 2017) 

𝐾ℎ/𝐾𝑣 range 

(Chen et al., 2017; 

Tanachaichoksirikun 

et al., 2020) 
1 Mountainous 

region/Displaced 

bedrock 

500.21 – 3413.05 1.48 × 10−10 − 1.94 × 10−7 1-100 

2 Bedrock – Paskapoo 466.97 – 1390.48 1.09 × 10−10 − 5.49 × 10−5 1-100 

3 Bedrock – Scollard 366.78 – 963.13 9.53 × 10−10 − 3.55 × 10−6 1-100 

4 Bedrock – Battle 53.06 – 920.88 7.73 × 10−10 − 1.34 × 10−7 1-100 

5 Bedrock - Horseshoe 42.83 – 913.79 4.34 × 10−10 − 3.57 × 10−6 1-100 

  
 

Figure 3.2. Geographic formations related to NSRB MODFLOW model. The mountainous 

region has been modeled with the same properties as the first geological formation i.e. displaced 

bedrock. X and Y axes shows easting and northing (in meters) of NSRB MODFLOW model, 

which is mapped on Cartesian coordinate system in MODFLOW. Z axis shows the elevation 

(MASL) in meters.  
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MODFLOW simulates hydraulic head in all the cells within a model, which is the sum of 

actual groundwater elevation and pressure head. Since observation wells collect the historical 

data for hydraulic head, they can be beneficial in calibration and validation of groundwater flow 

models. Therefore, historical data for 20 observation wells within NSRB geological system was 

collected for 1983-2007. In order to calibrate MODFLOW model, the horizontal (Kh) hydraulic 

conductivity and its ratio to vertical hydraulic conductivity (i.e., Kh/Kv) values was adjusted in 

each layer and the model was forced to reproduce hydraulic head throughout NSRB. Although 

specific storage and yield are also adjustable in MODFLOW for calibration, the hydraulic 

conductivity values in MODFLOW are the key variables for simulating hydraulic heads (Chunn 

et al., 2019). Also, to the best of our knowledge, no observed data related to storage of geological 

units were available for NSRB; hence, we used MODFLOW default values of 10−5 m−1 for 

specific storage and 0.2 for specific yield for all geological units. Furthermore, the initial ranges 

of Kh values were derived from borehole studies (Smerdon et al., 2017), which could facilitate 

model calibration in terms of assigning hydraulic properties to different layers. On the other 

hand, the initial range of Kh/Kv was derived from the suggested ranges in the literature (Chen et 

al., 2017; Tanachaichoksirikun et al., 2020, see Table 3.1). We used SUFI-2 approach to sample 

1000 sets of MODFLOW parameters (i.e., five 𝐾ℎ and five 𝐾ℎ/𝐾𝑣 parameters related to five 

layers) to compare simulated and measured hydraulic heads acquired from 20 observation wells 

for 1983-2007 period. The locations of observation wells can be found in Figure 3.1. Three 

criteria of R2, Mean Absolute Error (MAE) and Normalized Root Mean Squared Error (NRMSE) 

were used to compare month-by-month (i.e., first day of each month) simulations of 

MODFLOW to their corresponding observed data. The ideal values of R2, MAE, and RMSE are 

1, 0, and 0, respectively. 
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3.3.2.3 SWAT-MODFLOW 

In this study, we used an integration of SWAT (as surface hydrology model) with 

MODFLOW (as groundwater model) in order to analyze the dynamics of GW-SW interactions 

throughout the NSRB. The linkage between SWAT and MODFLOW can be done though GIS 

applications, where the elevation and locations of each MODFLOW grid is corresponded to the 

same properties related to SWAT HRUs (Park & Bailey, 2017). Due to the differences between 

the resolution and boundaries of spatial units of SWAT and MODFLOW (i.e., HRU in SWAT 

and grid cells in MODFLOW), some geolocations need to be done before integrating SWAT and 

MODFLOW. For this purpose, the HRUs within SWAT model are disaggregated and geo-

located to establish the connection between SWAT and MODFLOW cells. The Disaggregated 

HRUs (DHRUs) pass location and amount of groundwater recharge from ground surface within 

subbasins to their corresponding MODFLOW cells across the watershed, and return calculated 

hydraulic head values from MODFLOW to SWAT at the stream locations, so that the GW-SW 

interaction can be made throughout this process on a daily basis. Furthermore, location of stream 

network of SWAT is needed to be projected on MODFLOW cells in order to geographically 

specify the location of GW-SW interactions and river formations (Guzman et al., 2015; Bailey et 

al., 2016). Hence, some data conversions and modifications are needed in GIS environment to 

connect SWAT DHRUs to MODFLOW grid cells. The details of creating linking files and 

setting up SWAT-MODFLOW model are available in Park & Bailey (2017). 

3.3.3 Future climate projection data 

In order to project climate change impact on the hydrological system of NSRB, climate 

projections of five climate models acquired from the Pacific Climate Impacts Consortium (PCIC) 

(Cannon, 2015) were used in this study. PCIC provides downscaled GCM climate scenarios from 
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1950 to 2100 (Bürger et al., 2013) based on the Coupled Model Intercomparison Project phase 5 

(CMIP5) (Taylor et al., 2012) and historical daily gridded climate data for Canada (McKenney et 

al., 2011). The data provided by PCIC is Canada-wide downscaled climate change projections, 

which are provided using the Bias Correction/Constructed Analogues with Quantile mapping 

reordering (BCCAQ) method (http://www.pacificclimate.org/data). In this study, we further 

downscaled PCIC data to Alberta condition based on historical climate data (Ammar et al., 2020 

and Masud et al., 2018). We used the delta method (Quilbé et al., 2008; Chen et al., 2011) for 

bias correction of projected climate time series based on historical data, which were resulted 

from analyzing a suite of four climate data sources used for reproducing historical flow for 130 

hydrometric stations across Alberta through a process-based hydrological model.  

 On the other hand, GCMs were forced with different Representative Concentration 

Pathways (RCPs), which define different emission scenarios and subsequent radiative forcing in 

the earth-atmospheric system (van Vuuren et al., 2011). Therefore, two emission scenarios, 

namely RCP 2.6 and RCP 8.5 in an ensemble of five GCMs were used for evaluating the climate 

change effects on snowmelt and GW-SW dynamics for 2040-2064 period. The details of GCMs 

used in this study can be found in Table A.4. 

3.4 Results and Discussion 

3.4.1 Calibration, Validation and Uncertainty Analysis 

3.4.1.1 SWAT 

The calibration of the SWAT model was performed for 1993-2007 (i.e., three years of 

warm-up and 12 years of calibration), whereas the validation was completed for 1983-1995 (i.e., 

three years of warm-up followed by 10 years of validation). As it is shown in Table 3.2, the 
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statistics of each hydrometric station under calibration and validation is very similar. It can also 

be seen that in mountainous regions, where stations #1 and #2 are located, the values of p-factor 

and r-factor are both low, albeit the statistics of the best simulation is comparable to other 

regions. However, increase of r-factor in mountainous regions would result in increase of r-factor 

in foothill and plain regions. This suggests the importance of proper availability of historical data 

in hydrological simulations in mountainous areas and its effect on downstream. The lack of 

climate reliable data (both spatially and temporally) in mountainous regions could have 

contributed to low ranges of p-factor.  

According to streamflow calibration and validation results shown in Figure 3.3 and Table 

3.2, more than 60% of the observed data are bracketed within modelling simulations between 

1986-2007, with desirable statistics for SWAT best simulation in most of the regions. It should 

be noted that the performance of model calibration at stations #2 and #4 is marginally lower than 

other areas, which could be attributed to seasonal availability of observed data in such stations 

(see Table A.2). The observed data for stations #2 and #4 was not available for November to 

March, meaning that the low-flow simulations were not evaluated in these stations. However, 

proper statistics (i.e., R2, NS and bR2) can be seen from the statistics of other two stations in 

upstream regions (i.e., stations #1 and #3), with the same level of p-factor and r-factor with 

stations #2 and #4 respectively. This suggests that the performance of stations #2 and #4 could 

be improved if observed data was available for all seasons, which could enable a comprehensive 

calibration of streamflow at those stations.  
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Table 3.2. Calibration (1996-2007) and validation (1986-1995) results for streamflow 

reproduction in NSRB SWAT model. 

Region Station ID 

(Table S2) 

Period 
p-factor r-factor R2 NS bR2 

Mountainous  1 Calibration 0.44 0.47 0.70 0.68 0.57 

Validation 0.45 0.47 0.74 0.70 0.66 

2 Calibration 0.47 0.57 0.52 0.43 0.36 

Validation 0.53 0.67 0.62 0.45 0.46 

Foothill  3 Calibration 0.74 0.92 0.80 0.80 0.71 

 Validation 0.59 1.02 0.83 0.76 0.82 

4 Calibration 0.68 0.99 0.65 0.47 0.51 

 Validation 0.64 0.91 0.66 0.58 0.52 

Plain  5 Calibration 0.58 0.93 0.68 0.58 0.59 

Validation 0.63 0.75 0.74 0.74 0.54 

6 Calibration 0.62 0.86 0.67 0.65 0.52 

Validation 0.59 0.78 0.72 0.71 0.47 

 

3.4.1.2 MODFLOW  

As it was mentioned in Section 3.3.2.2 and shown in Figure 3.1b, the observed hydraulic 

heads from 20 observation wells were taken into consideration for calibrating hydraulic heads in 

MODFLOW. Observed heads at the 1st day of each month were used for evaluating model 

performance in order to account for the hydraulic head fluctuations in a more sensible way. In 

total, approximately 3600 data points were extracted from 20 observation wells between 1983 

and 2007 for comparison with model simulations. Out of 1000 parameter sets defined from 

initial ranges in Table 3.1, the best performance statistics and their corresponding parameters 

were acquired, and the hydraulic head values are shown in Figure 3.4. The performance of best 

chosen MODFLOW parameters were shown as R2 = 0.95, MAE = 22.9 m and NRMSE =

0.108, and the corresponding parameters of the best simulation are shown in Table 3.3. 
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Figure 3.3. Calibration (1996-2007) and validation (1986-1995) results for simulation of 

historical streamflow in different regions of NSRB. 
 

Table 3.3. Calibrated values of 𝐾ℎ and 𝐾ℎ/𝐾𝑣 related to best simulation in MODFLOW.  

Layer 

No. 

Layer name Horizontal hydraulic 

conductivity (Kh)  
Kh/Kv  Statistics 

1 Mountainous 

region/Displaced bedrock 
5.87 × 10−9 6.5 R2 = 0.951 

MAE = 22.9 

NRMSE = 0.108 2 Bedrock – Paskapoo 1.99 × 10−5 36.6 

3 Bedrock – Scollard 2.88 × 10−6 29.1 

4 Bedrock – Battle 9.04 × 10−8 23.1 

5 Bedrock - Horseshoe 5.8 × 10−9 76.6 
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Figure 3.4. Comparison of observed and simulated hydraulic head values using SUFI-2 

algorithm in MODFLOW.  
 

3.4.2 Analysis of spatio-temporal changes in snowmelt dynamics under changing 

climate 

The comparison results of historical (1983-2007) and future projections (2040-2064) of 

regional snowmelt along with their driving factors are presented in this section. Since five GCMs 

are used under RCP2.6 and RCP8.5 emission scenarios (see Table A.4), the future projections of 

model responses are presented in the form of possible ranges, encompassing the minimum and 

maximum projected value for each time step. The results are presented based on 7-day moving 

averages in order to smooth the daily outputs of SWAT and SWAT-MODFLOW. As shown in 

Figure 3.5a, the peak of snowmelt in mountainous regions occurs around May and June for 

historical period, while the peak snowmelt of foothill and plain areas happens earlier, particularly 

in March and April. This could be because of the lower temperatures in mountainous regions 

before the start of spring (i.e., before March, Figure 3.6c). As it is depicted in Figure 3.6, the 
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average temperature of all regions in almost every season is projected to increase. This increase, 

along with changing snowfall patterns has resulted in different snowmelt projections in different 

seasons of NSRB mountainous region. However, an increased snowmelt is projected in April and 

May for the mountainous regions, which can be mostly related to the increase of temperature in 

those months. Although temperature increase occurs in almost every month of the mountainous 

region, its increase in colder seasons is more significant because where air temperature increases 

from freezing point to melting points (i.e., with temperatures close to 0 ℃), more snowmelt 

events will initiate. As shown in Figure 3.6c, air temperature in April and May is projected to 

increase and at some points pass the melting point, resulting in more snowmelt events to occur in 

cold season. It is also found in the literature that climate change in mountainous regions might 

result in earlier snowmelts than present (Clilverd et al., 2011; Aygün et al., 2020). The earlier 

snowmelt, along with decreased projected snowfall in mountainous regions (Figure 3.6b) has 

also resulted in slower snowmelt in summer times. These results are in line with numerous 

findings in the literature (see for example, Moore et al., 2007; Kobierska et al., 2011; Elias et al., 

2015; Sadro et al., 2018).  
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Figure 3.5. Comparison of historical (1983-2007) average of snowmelt with future projections 

(2040-2064) in NSRB regions (presented in 7-day moving averages) 

On the other hand, it can be seen from Figure 3.5c that the spring snowmelt in plain 

region is projected to decrease, although no significant change in snowmelt peak timing can be 

witnessed. Also, the snowmelt of plain region is predicted to increase in winter (i.e., December 

to February). Although there is no significant change in snowfall pattern predicted for the plain 

region, the projected increase in temperature of this area is noticeable, which can result in 

increased snowmelt in cold seasons. Another important point related to the plain region is the 

projected decrease of snowmelt predicted from March to September (i.e., spring and summer), 
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where the projected snowmelt is mostly zero from June to September. This is due to the decrease 

in snowfall and snow accumulation, leaving less or no snow pack on the ground to be melted in 

warm seasons. Finally trends of snowmelt and climate indicators related to foothill region lays 

between those of mountainous and plain regions, since this region holds the characteristics of 

both mountainous and plain regions in terms of climate, topography and elevation variations.   

 
Figure 3.6. Historical simulation (1983-2007) and future projection (2040-2065) of (a) 

precipitation, (b) snowfall and (c) temperature in mountainous, foothill and plain regions of 

NSRB. The data are presented as 7-day moving averages of modelling results. 
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Analysis of precipitation, snowfall, and temperature patterns of NSRB regions (see 

Figure 3.6) suggest an overall increase of precipitation projected for the future of all regions, 

except for warm seasons of the mountainous region. These trends, however, are not repeated for 

snowfall patterns, where it is predicted that the snowfall will notably decrease in almost all 

seasons of mountainous regions and warm seasons of the plain region. Based on such results, 

more rainfall events can be anticipated under future conditions, while snowfall is mostly 

projected to decrease or remain unchanged under climate change scenarios. 

3.4.3 Analysis of spatio-temporal changes in GW-SW interactions under changing 

climate 

The results of GW-SW interactions and their changes under climate change scenarios are 

presented in this section. Four seasons namely winter (December, January and February), spring 

(March, April, May), summer (June, July, August), and fall (September, October, November) are 

considered for the analysis of spatial GW-SW interactions. In Figure 3.7, the average of 

historical GW-SW for 1983-2007 are shown in each MODFLOW cell. Positive values of GW-

SW interactions show the groundwater discharge to surface water in the streams, while negative 

values denote water loss from streams to groundwater. It can be seen in Figure 3.7 that in 

general, groundwater discharge to surface water has occurred in greater values than groundwater 

recharge, especially in most parts of mountainous and foothill regions. Nevertheless, in some 

parts of the mountainous regions there is a groundwater recharge, and the values of GW-SW 

interactions are mostly small compared to foothill region. In foothill region, most of groundwater 

contribution to surface water within NSRB occurs. This is intensified in spring and summer 

months, where the increased level of groundwater has resulted in more contribution of 

groundwater to surface water. On the other hand, most of the groundwater recharge has occurred 
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in plain region. This can be related to the evapotranspiration (ET) resulting from vegetation 

cover and dry soil, which has played an important part in decreasing soil moisture and therefore 

increasing groundwater recharge from streamflow (Carroll et al., 2019). Also, the surface water 

gain from groundwater in plain region is minimum, suggesting that the volumes of GW-SW 

interactions (in both terms of groundwater recharge and discharge) are low in all seasons of plain 

region. Apart from ET, the lower exchanges between GW and SW can also be related to 

groundwater table in plain region, which might still be not high enough to interact with surface 

water (Foster and Allen, 2015). The results of historical GW-SW interactions are in line with 

Chunn et al. (2019) and Foster and Allen (2015), where most of the interactions had occurred in 

the form of groundwater discharge to the streams.  

 
Figure 3.7. Average historical GW-SW interaction for MODFLOW cells. Positive values of 

GW-SW interactions show the groundwater discharge to surface water in the streams, while 

negative values denote water loss from streams to groundwater. 

 

Figure 3.8 shows the averaged changes in GW-SW interactions based on average results 

from five GCMs and two RCPs used in this study. In this figure, negative values denote 
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increased surface water loss to groundwater, and positive values shows increased groundwater 

discharge to surface water. It can be said from Figure 3.8 that some regions might experience 

more groundwater recharge in the future; on the other hand, regional analysis show an increase 

in groundwater discharge to surface water in various months for different regions (see Figure 

3.9). In mountainous regions, especially in warmer seasons, it is predicted that groundwater 

contribution to the rivers water will increase in the future. This also stands for plain regions in 

most of warm seasons. However, GW-SW interactions and their changes are not significant in 

plain regions between September to February (see Figure 3.9) which highlights the effect of 

snowmelt and streamflow on GW-SW interactions (Huntington and Niswonger, 2012; Foster and 

Allen, 2015). In fact, higher projected groundwater discharge to surface water in the future of 

mountainous and plain regions can be attributed to snowmelt recession and its effect on 

streamflow formations. Comparisons of changes in GW-SW interactions (Figure 3.9a) and in 

snowmelt (Figure 3.5a) in mountainous regions indicates the same patterns of increase in both 

processes in spring. This pattern, however, cannot be seen for the plain region, which suggests 

that the changes in GW-SW interactions in such areas are not solely controlled by snowmelt 

(Hayashi and Farrow, 2014). 

According to Figure 3.8 and Figure 3.9b, the changes in GW-SW interactions of foothill 

region show two different patterns: (1) a noticeable increase of groundwater discharge to surface 

water in winter and spring, (2) increase of surface water loss to groundwater in July to 

September (mainly in summer). This can be related to earlier snowmelt in mountain regions, 

which will increase groundwater levels in mountainous regions as well. Such an increase will 

therefore result in contribution of groundwater to surface water in mountainous and, particularly, 

foothill regions. On the other hand, the opposite trend can be seen in future projections of foothill 
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region in summer. In fact, earlier and slower snowmelt in mountainous regions (see Figure 3.5a) 

has resulted in decreased snowmelt flow in summer, ultimately lowering the hydraulic gradient 

of groundwater. This results in soil moisture deficit in foothill regions in comparison to historical 

simulations, which has resulted in surface water loss to groundwater. Analysis of changes of 

GW-SW interactions shows that the areas within foothill region that are affected by climate 

change the most are very close to mountain regions, rather than plain region. This shows the 

close connection of mountainous region and upstream of foothill region, where the groundwater 

level of mountainous region has a direct influence on foothill region. 

 
Figure 3.8. Averaged changes in GW-SW interactions under future climate conditions. Positive 

and negative values indicate increase of groundwater discharge to surface water and groundwater 

recharge, respectively. The changes calculated as Future (m3/day) – Historical (m3/day). 
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Figure 3.9. Comparison of historical average of GW-SW interactions with future projections in 

NSRB regions (presented in 7-day average values) 

 

3.4.4 Analysis of relations between GW-SW Interactions and Snowmelt 

The results of this section show the influence of snowmelt on dynamics of GW-SW 

interactions in different regions of NSRB. Comparison of monthly snowmelt and GW-SW 

interactions in Figure 3.10 suggest that the correlation between these two processes is only 

meaningful in mountainous regions, where the R2 of these two factors is 0.494. This correlation 

is significant, considering the fact that many factors play role in the formation of snowmelt and 

GW-SW interactions. This clearly shows that snowmelt plays a key role in GW-SW formation in 
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mountainous regions, because these two processes have showed a similar trend (see Figure 3.5a 

and Figure 3.9a). On the other hand, the correlation between snowmelt and GW-SW interactions 

in foothill and plain regions is marginal, with the R2 of both regions being less than 0.01. A more 

detailed view of the relations between these two factors can be found in Figure 3.11. As shown 

in Figure 3.11a, dynamics of snowmelt and GW-SW interactions show similar trends throughout 

the simulation period (i.e., 1983-2007) in mountainous region, which suggests the direct 

influence of snowmelt on groundwater dynamics and interactions with surface water. These 

results are in line with findings of Carroll et al. (2019), where a high correlation was found 

between snowmelt and groundwater recharge in a mountain system. According to Figure 3.11b, 

the response of GW-SW interactions to snowmelt has been delayed, and the dynamics (trends) of 

GW-SW interactions do not directly follow that of snowmelt. The lagged GW-SW interactions 

might be the result of upstream contribution of GW and SW to foothill region, while the 

snowmelt is only occurring within foothill areas. It can be seen in Figure 3.11b that GW-SW 

interactions (i.e., the y-axis on the right) had considerable values in comparison to snowmelt 

(i.e., the y-axis on the left). This highlights the important effect of GW discharge to SW from 

mountainous regions in forming significant amounts of GW-SW interactions in the foothill 

regions. As we approach the plain region, GW-SW interactions become very small in 

comparison to snowmelt. Although small GW-SW interactions in plain region might be effective 

on its weak correlation with snowmelt (see Figure 3.11c), same correlation has also been 

witnessed in foothill region, where the GW-SW interactions are very high. Hence, other factors 

can potentially play parts in lack of relations between GW-SW interactions and snowmelt in 

foothill and plain regions. It is discussed in the literature that GW-SW interactions are highly 
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dependent on topography (Carroll et al., 2019). Potential reasons for low correlations of 

snowmelt and GW-SW interactions in foothill and plain regions are:  

 

 

Figure 3.10. Monthly snowmelt and GW-SW interactions in (a) mountainous, (b) foothill, and 

(c) plain region of NSRB. 
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Figure 3.11. Monthly time-series simulation results of snowmelt and SW-GW interactions for 

(a) mountainous, (b) foothill and (c) plain regions of NSRB (1983-2007), the results for first 

three years (i.e., 1983-1985) as the warm-up period are excluded from the graph. 
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(1) Land cover type, soil type, and vegetation cover can play a very important role in 

groundwater recharge in the terrestrial part of a given sub-basin and in the SW-GW interactions 

in the streams (Hayashi and Farrow, 2014; Hayashi et al., 2016). These effects are mostly are 

represented through actual ET from land and vegetation cover. A large ET from the soil and 

vegetation cover can reduce terrestrial soil moisture and decrease potential recharge to ground 

water, which eventually dwindles GW levels, and therefore changes the dynamics of GW-SW 

interactions (Condon et al., 2020). Since most parts of the mountainous region of NSRB is 

sparsely vegetated (see Figure 3.1), and evaporative demand from soil is low due to higher 

elevation and colder climate (Shi et al., 2014), the value of ET is small. Also SWAT simulations 

for 1983-2007 show that the average annual ET for mountainous, foothill, and plain regions are 

236 mm/year, 418 mm/year and 396 mm/year, respectively. The low ET from mountains can 

leave a large volume of soil moisture for potential recharge to GW, which had a considerable 

effect on high correlation between snowmelt and GW-SW interactions (Carroll et al., 2019). On 

the contrary, the foothill and plain regions are mainly covered by evergreen forests, pastures, and 

agricultural lands (see Figure 3.1). The amount of ET resulting from such vegetation covers and 

soil groups, particularly in growing seasons when evaporative demand of atmosphere is high due 

to warmer temperature, has inhibited groundwater discharge to uptake the water to plant roots, 

instead of surface water (Hayashi et al., 2016; Carroll et al., 2019; M. Cochand et al., 2019). 

Such effects can be seen in Figure 3.11b and Figure 3.11c, where GW-SW interaction is 

moderated at the times of peak snowmelt. As a result, it can be argued that the effect of ET on 

the correlation of snowmelt and GW-SW interactions is considerable. 

(2) Groundwater recharge and GW-SW interactions in mountainous regions is mostly 

dependent on snowmelt, and permeability of geological formations (Carroll et al., 2019), since 
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snowfall is the dominant precipitation in this region. On the other hand, rainfall precipitation 

occurs more and plays a more important role in foothill and plain regions (see Figure 3.6 for 

details). Therefore in these regions, the effect of summer rainfall should be considered in 

addition to snowmelt runoff in order to have a comprehensive assessment of GW-SW interaction 

drivers. Hayashi and Farrow (2014) suggested that by taking into account the effect of snowmelt 

and growing-season rainfall, the correlation between the precipitation and groundwater level 

rises was improved. This suggests the importance of summer rainfall and snowmelt together for 

analysis of the response of GW-SW system to precipitation and snowmelt events. 

(3) The historical simulation of MODFLOW in this study show that the groundwater level is 

higher in mountainous regions, and the flow of groundwater is from mountainous regions 

towards foothill and plain regions (results are not shown). This is also found in line with findings 

of Bekele et al. (2003) and Adams et al. (2004), where the groundwater flow of Alberta basin 

was found to be topography-driven, as opposed to recharge-controlled flows (Gleeson et al., 

2011). As a result, the foothill and plain regions of NSRB are impacted by the groundwater flow 

from mountainous region. On the other hand, while all the regions are impacted by aquifers from 

north and south sides of NSRB, the mountainous region is less impacted by upstream (i.e., west 

to east) groundwater flow. As a result, the impact of upstream groundwater flow from 

mountainous region to downstream regions (i.e., foothill and plain regions) might potentially 

result in changing the GW-SW interactions and their correlation with snowmelt. It should be 

noted that regional snowmelt is localized to each region of interest, while GW-SW interaction of 

each region is impacted by the groundwater flow and surface water dynamics of their upstream 

and surrounding regions as well. 
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3.5 Conclusion and Future Directions 

Snowmelt and GW-SW interactions are among the most important and dynamic 

hydrological processes in high elevation watersheds in cold regions, particularly in warmer 

seasons. In this study, we coupled surface hydrological model of Soil and Water Assessment 

Tool (SWAT) with MODFLOW model to assess the historical trend of snowmelt and GW-SW 

interactions, as well as their projections under future climate scenarios by using an ensemble 

climate datasets of five GCMs under two future RCP scenarios. Furthermore, we evaluated and 

discussed the correlations between snowmelt and GW-SW interactions in different regions of 

study. This allowed spatio-temporal assessment of snowmelt and GW-SW interaction dynamics 

across heterogeneous landscapes, extending from mountainous to foothill and plain regions, 

using NSRB as a large river basin in central Alberta as the study area. The main conclusions of 

this study can be summarized below: 

1. Based on regional analysis, the historical reproductions of snowmelt and GW-SW 

interactions is different within mountainous, foothill and plain regions. These processes also 

showed distinct responses to climate change in different regions. 

2. Under climate change scenarios, it is predicted that precipitation will increase in spring 

(March to May) and early summer in all regions of NSRB. However, air temperature is 

projected to mostly increase in all regions and all seasons throughout NSRB. As a result of 

the dominancy of air temperature increase over precipitation increase, snowfall is projected 

to decrease in every season of mountainous regions. Except for the winter and early-spring 

snowfall, no considerable change in snowfall is predicted for foothill region. Finally, the 

spring and summer snowfall on the plain region is predicted to decrease, while no apparent 

changes can be witnessed in other seasons of this region. 
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3. Analysis of regional snowmelt projections under future climate scenarios showed that 

mountainous region of NSRB will predictably experience an earlier snowmelt, where the 

snowmelt is predicted to increase in April and May, while decreasing in June and July. Also, 

considerable snowmelt decrease is predicted in fall and winter (September to February) in 

mountainous regions, possibly because of less snow accumulation projected for this area. In 

the foothill region, snowmelt is projected to increase in warm seasons (i.e., spring and 

summer), with no considerable changes in snowmelt peak time. In contrary to mountainous 

and foothill regions, plain region is projected to experience increased snowmelt in winter, 

and less snowmelt in spring and summer. The increased winter snowmelt of the plain region 

can be attributed to increased air temperature in winter, whereas the decreased snowmelt of 

spring and summer is due to less snow cover available in the future for melting to occur.  

4. Historical analysis of GW-SW interactions show that groundwater discharge to surface water 

dominates such interactions in most areas of NSRB and in all seasons. Both mountainous and 

foothill regions mostly showed a groundwater discharge to streams in historical analysis. The 

groundwater contribution to surface water is particularly larger in spring and summer, 

suggesting the important effect of snowmelt percolation on increasing groundwater levels in 

mountainous regions, and recharging surface water through GW-SW interactions in 

mountainous and foothill regions. Finally, most of the historical groundwater recharge occurs 

in plain regions, which can be related to lower groundwater level as a result of ET, land-

cover and soil types. 

5. Results of climate change scenarios and future projections of GW-SW interactions show a 

general increase of groundwater discharge to surface water in mountainous and plain regions. 

The increased contribution of groundwater to surface water under climate change in 
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mountainous regions predictably occurs in warm seasons, which can be related to the earlier 

snowmelt projected in this region. In plain regions, increased amount of precipitation, 

especially in warm seasons, could be an important factor in increasing groundwater discharge 

to surface water. Furthermore, the foothill region is projected to have an increased 

groundwater discharge in winter and spring, followed by a noticeable increase in 

groundwater recharge in summer. It is argued that this trend can be a direct result of earlier 

snowmelt and its percolation in both mountainous and foothill region, followed by 

groundwater level drop in summer as a result of less snowmelt and increased air temperature 

within the foothill region. 

6. Analysis of correlations between regional snowmelt and GW-SW interactions in 

mountainous, foothill and plain regions showed high correlations (R2 = 0.494) in 

mountainous regions, but negligible correlations in foothill and plain regions (R2 < 0.01 for 

both regions). Three major factors can potentially affect the relations between snowmelt and 

GW-SW interactions. First, the average ET in mountainous regions is much smaller than 

those in foothill and plain regions (average historical ET is 236 mm/year in mountainous 

region, compared to 418 mm/year and 396 mm/year in foothill and plain regions, 

respectively). The higher ET in foothill and plain region might have played an important role 

in the small correlation between snowmelt and GW-SW interactions, since higher ET alters 

the water balance, and surface and sub-surface water availability. Second, while snow is the 

dominant type of precipitation in mountainous regions, rainfall is more common in 

downstream areas such as foothill and plain regions. Third, since the groundwater flow in 

Alberta is mostly topography-driven, groundwater flow of high-elevated areas such as 

mountainous regions affects those of downstream regions such as plain and foothill regions. 
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Thus, future studies can focus on the possible improvements in analysis of relations of 

snowmelt vs. GW-SW interactions by incorporating land-use and seasonal precipitation into 

comparisons. 

This research facilitates a better understanding of dynamics of snowmelt and GW-SW 

interactions, their possible changes under future climate scenarios in regional scale. It also 

demonstrates how regional snowmelt might affect GW-SW interactions, and how and why such 

effects are different in various climate, topographic and land-use conditions. Our study shows 

that although a complex relation among climate, topography, vegetation and other related factors 

results in formation of GW-SW interactions, snowmelt runoff is potentially the main driver of 

this process in mountainous regions. Future studies can also focus on other effective factors on 

GW-SW dynamics in regions with various topography and land-use settings, in order to achieve 

a better understanding of major drivers of groundwater recharge and its connection to surface 

water. Also, recent studies have shown the vital role of depression-based recharge, especially in 

Canadian Prairies, on GW-SW interactions (Hayashi and Farrow, 2014; Brannen et al., 2015; 

Hayashi et al., 2016). As a result, it is important to consider the effect of wetlands, potholes, and 

other water bodies on groundwater recharge in the modelling process using high-quality input 

data and appropriate setup of fill-and-spill processes within hydrological models. Another 

limitation of this study is the assumption that land-use/land-cover, soil properties, and hydraulic 

conductivity of geological formations do not change over time. It is argued that the K values of 

underlying formations are changed based on groundwater level dynamics (Brannen et al., 2015). 

Moreover, the effect of frozen soil and low permeability lenses on infiltration, groundwater 

recharge and GW-SW interactions can be substantial in cold region hydrology and hydrogeology 

(Aygün et al., 2020; Zhang et al., 2020). Finally, the effect of historical water bodies, and 



100 

 

geospatial features related to prehistoric and contemporary times can greatly control and impact 

GW-SW dynamics and their correlation with different hydrological processes (Gomez-Velez et 

al., 2014; Lewandowski et al., 2020). We acknowledge that such effects are not explicitly taken 

into account in hydrological modelling within this study, but improvements can be made in 

future research on a better representation of the aforementioned factors in regional modelling. 

This will result in a better understanding of the governing processes in the formation of 

groundwater recharge and its connection to surface water. 

3.6 Acknowledgement 

Funding for this study has been received from Campus Alberta Innovation Program Chair (Grant# 

RES0034497), and Natural Sciences and Engineering Research Council of Canada Discovery 

Grant (Grant# RES0043463).  

  



101 

 

 3.7 References 

Abbaspour, K.C., 2015. SWAT-CUP: SWAT Calibration and Uncertainty Programs- A User 

Manual, Department of Systems Analysis, Intergrated Assessment and Modelling 

(SIAM),EAWAG. Swiss Federal Institute of Aqualtic Science and Technology, 

Duebendorf, Switzerland. https://doi.org/10.1007/s00402-009-1032-4 

Adams, J.J., Rostron, B.J., Mendoza, C.A., 2004. Coupled fluid flow, heat and mass transport, 

and erosion in the Alberta basin: Implications for the origin of the Athabasca oil sands. 

Canadian Journal of Earth Sciences 41, 1077–1095. https://doi.org/10.1139/E04-052 

Akiyama Sakai, A., Yamazaki, Y., Wang, G., Fujita, K., Nakawo, M., Kubota, J., and Konagaya, 

Y., T., 2007. Surfacewater-groundwater interaction in the Heihe River basin, Northwestern 

China. Bull Glaciol Res. 

Alberta Environment and Parks, 2019. Alberta river basins [WWW Document]. URL 

https://web.archive.org/web/20160409210242/http://www.environment.alberta.ca/apps/basi

ns/default.aspx (accessed 7.30.19). 

Alberta Geological Survey, 2019. 3D provincial geological framework model of Alberta, version 

2. 

Aliyari, F., Bailey, R.T., Tasdighi, A., Dozier, A., Arabi, M., Zeiler, K., 2019. Coupled SWAT-

MODFLOW model for large-scale mixed agro-urban river basins. Environmental 

Modelling and Software 115, 200–210. https://doi.org/10.1016/j.envsoft.2019.02.014 

Allen, D.M., Whitfield, P.H., Werner, A., 2010. Groundwater level responses in temperate 

mountainous terrain: Regime classification, and linkages to climate and streamflow. 

Hydrological Processes 24, 3392–3412. https://doi.org/10.1002/hyp.7757 

Ammar, M.E., Gharib, A., Islam, Z., Davies, E.G.R., Seneka, M., Faramarzi, M., 2020. Future 

floods using hydroclimatic simulations and peaks over threshold: An alternative to 

nonstationary analysis inferred from trend tests. Advances in Water Resources 136, 103463. 

https://doi.org/10.1016/j.advwatres.2019.103463 

Arnold, J., Moriasi, D., Gassman, P., Abbaspour, K., White, M., Srinivasan, R., Santhi, C., 

Harmel, R., van Griensven, A., Van Liew, M., Kannan, N., Jha, M., 2012. SWAT: Model 

Use, Calibration, and Validation. Transactions of the ASABE 55, 1317–1335. 

https://doi.org/10.13031/2013.42244 

Arnold, J., Srinivasan, R., Muttiah, R., Williams, J., 1998. Large Area Hydrologic Modeling and 

Assessment; Part I: Model Development. Journal of the American Water Resources 

Association 17, 73. https://doi.org/10.1016/S0899-9007(00)00483-4 

Assani, A.A., Landry, R., Laurencelle, M., 2012. Comparison of interannual variability modes 

and trends of seasonal precipitation and streamflow in southern quebec (canada). River 

Research and Applications. https://doi.org/10.1002/rra.1544 



102 

 

Avanzi, F., De Michele, C., Ghezzi, A., 2015. On the performances of empirical regressions for 

the estimation of bulk snow density. Geogr. Fis. Dinam. Quat. 38, 105–112. 

https://doi.org/10.4461/GFDQ.2015.38.10 

Aygün, O., Kinnard, C., Campeau, S., 2020. Impacts of climate change on the hydrology of 

northern midlatitude cold regions, Progress in Physical Geography. 

https://doi.org/10.1177/0309133319878123 

Bai, Y., Fernald, A., Tidwell, V., Gunda, T., 2019. Reduced and Earlier Snowmelt Runoff 

Impacts Traditional Irrigation Systems. Journal of Contemporary Water Research & 

Education. https://doi.org/10.1111/j.1936-704x.2019.03318.x 

Bailey, R.T., Wible, T.C., Arabi, M., Records, R.M., Ditty, J., 2016. Assessing regional-scale 

spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-

MODFLOW model. Hydrological Processes 30, 4420–4433. 

https://doi.org/10.1002/hyp.10933 

Barthel, R., Banzhaf, S., 2016. Groundwater and Surface Water Interaction at the Regional-scale 

– A Review with Focus on Regional Integrated Models. Water Resources Management. 

https://doi.org/10.1007/s11269-015-1163-z 

Bekele, E.B., Rostron, B.J., Person, M.A., 2003. Fluid pressure implications of erosional 

unloading, basin hydrodynamics and glaciation in the Alberta Basin, Western Canada. 

Journal of Geochemical Exploration 78–79, 143–147. https://doi.org/10.1016/S0375-

6742(03)00148-1 

Bocchiola, D., Groppelli, B., 2010. Spatial estimation of snow water equivalent at different dates 

within the Adamello Park of Italy. Cold Regions Science and Technology 63, 97–109. 

https://doi.org/10.1016/j.coldregions.2010.06.001 

Brannen, R., Spence, C., Ireson, A., 2015. Influence of shallow groundwater-surface water 

interactions on the hydrological connectivity and water budget of a wetland complex. 

Hydrological Processes 29, 3862–3877. https://doi.org/10.1002/hyp.10563 

Bürger, G., Sobie, S.R., Cannon, A.J., Werner, A.T., Murdock, T.Q., 2013. Downscaling 

extremes: An intercomparison of multiple methods for future climate. Journal of Climate 

26, 3429–3449. https://doi.org/10.1175/JCLI-D-12-00249.1 

Candela, L., Elorza, F.J., Tamoh, K., Jiménez-Martínez, J., Aureli, A., 2014. Groundwater 

modelling with limited data sets: The Chari-Logone area (Lake Chad Basin, Chad). 

Hydrological Processes. https://doi.org/10.1002/hyp.9901 

Cannon, A.J., 2015. Selecting GCM scenarios that span the range of changes in a multimodel 

ensemble: Application to CMIP5 climate extremes indices. Journal of Climate 28, 1260–

1267. https://doi.org/10.1175/JCLI-D-14-00636.1 

Carroll, R.W.H., Bearup, L.A., Brown, W., Dong, W., Bill, M., Willlams, K.H., 2018. Factors 

controlling seasonal groundwater and solute flux from snow-dominated basins. 



103 

 

Hydrological Processes 32, 2187–2202. https://doi.org/10.1002/hyp.13151 

Carroll, R.W.H., Deems, J.S., Niswonger, R., Schumer, R., Williams, K.H., 2019. The 

Importance of Interflow to Groundwater Recharge in a Snowmelt-Dominated Headwater 

Basin. Geophysical Research Letters 46, 5899–5908. 

https://doi.org/10.1029/2019GL082447 

Chauvin, G.M., Flerchinger, G.N., Link, T.E., Marks, D., Winstral, A.H., Seyfried, M.S., 2011. 

Long-term water balance and conceptual model of a semi-arid mountainous catchment. 

Journal of Hydrology 400, 133–143. https://doi.org/10.1016/j.jhydrol.2011.01.031 

Chen, J., Brissette, F.P., Leconte, R., 2011. Uncertainty of downscaling method in quantifying 

the impact of climate change on hydrology. Journal of Hydrology 401, 190–202. 

https://doi.org/10.1016/j.jhydrol.2011.02.020 

Chen, M., Izady, A., Abdalla, O.A., 2017. An efficient surrogate-based simulation-optimization 

method for calibrating a regional MODFLOW model. Journal of Hydrology 544, 591–603. 

https://doi.org/10.1016/j.jhydrol.2016.12.011 

Chunn, D., Faramarzi, M., Smerdon, B., Alessi, D.S., 2019. Application of an integrated SWAT-

MODFLOW model to evaluate potential impacts of climate change and water withdrawals 

on groundwater-surface water interactions in west-central Alberta. Water (Switzerland) 11. 

https://doi.org/10.3390/w11010110 

Clilverd, H.M., White, D.M., Tidwell, A.C., Rawlins, M.A., 2011. The sensitivity of northern 

groundwater recharge to climate change: A case study in Northwest Alaska. Journal of the 

American Water Resources Association 47, 1228–1240. https://doi.org/10.1111/j.1752-

1688.2011.00569.x 

Cochand, F., Therrien, R., Lemieux, J.M., 2019. Integrated Hydrological Modeling of Climate 

Change Impacts in a Snow-Influenced Catchment. Groundwater. 

https://doi.org/10.1111/gwat.12848 

Cochand, M., Christe, P., Ornstein, P., Hunkeler, D., 2019. Groundwater Storage in High Alpine 

Catchments and Its Contribution to Streamflow. Water Resources Research 55, 2613–2630. 

https://doi.org/10.1029/2018WR022989 

Condon, L.E., Atchley, A.L., Maxwell, R.M., 2020. Evapotranspiration depletes groundwater 

under warming over the contiguous United  States. Nature communications 11, 873. 

https://doi.org/10.1038/s41467-020-14688-0 

Debele, B., Srinivasan, R., Gosain, A.K., 2010. Comparison of process-based and temperature-

index snowmelt modeling in SWAT. Water Resources Management 24, 1065–1088. 

https://doi.org/10.1007/s11269-009-9486-2 

Deng, Y., Flerchinger, G.N., Cooley, K.R., 1994. Impacts of spatially and temporally varying 

snowmelt on subsurface flow in a mountainous watershed: 2. Subsurface processes. 

Hydrological Sciences Journal. https://doi.org/10.1080/02626669409492772 



104 

 

Devito, K.J., Hill, A.R., Roulet, N., 1996. Groundwater-surface water interactions in headwater 

forested wetlands of the Canadian Shield. Journal of Hydrology. 

https://doi.org/10.1016/0022-1694(95)02912-5 

Dumanski, S., Pomeroy, J.W., Westbrook, C.J., 2015. Hydrological regime changes in a 

Canadian Prairie basin. Hydrological Processes 29, 3893–3904. 

https://doi.org/10.1002/hyp.10567 

Elias, E.H., Rango, A., Steele, C.M., Mejia, J.F., Smith, R., 2015. Assessing climate change 

impacts on water availability of snowmelt-dominated basins of the Upper Rio Grande basin. 

Journal of Hydrology: Regional Studies 3, 525–546. 

https://doi.org/10.1016/j.ejrh.2015.04.004 

Faramarzi, M., Abbaspour, K.C., Schulin, R., Yang, H., 2009. Modelling blue and green water 

resources availability in Iran. Hydrological Processes 26, 1–16. https://doi.org/10.1002/hyp 

Faramarzi, M., Srinivasan, R., Iravani, M., Bladon, K.D., Abbaspour, K.C., Zehnder, A.J.B., 

Goss, G.G., 2015. Setting up a hydrological model of Alberta: Data discrimination analyses 

prior to calibration. Environmental Modelling and Software 74, 48–65. 

https://doi.org/10.1016/j.envsoft.2015.09.006 

Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, 

M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., 

MacCracken, S., Mastrandrea, P.R., White, L.L., 2014. Climate change 2014 impacts, 

adaptation and vulnerability: Part A: Global and sectoral aspects: Working group II 

contribution to the fifth assessment report of the intergovernmental panel on climate 

change, Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and 

Sectoral Aspects. https://doi.org/10.1017/CBO9781107415379 

Finger, D., Heinrich, G., Gobiet, A., Bauder, A., 2012. Projections of future water resources and 

their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on 

hydropower production during the 21st century. Water Resources Research. 

https://doi.org/10.1029/2011WR010733 

Flerchinger, G.N., Cooley, K.R., Ralston, D.R., 1992. Groundwater response to snowmelt in a 

mountainous watershed. Journal of Hydrology 133. https://doi.org/10.1016/0022-

1694(92)90260-3 

Foster, S.B., Allen, D.M., 2015. Groundwater - Surface Water Interactions in a Mountain-to-

Coast Watershed: Effects of Climate Change and Human Stressors. Advances in 

Meteorology 2015. https://doi.org/10.1155/2015/861805 

Gao, Z., Wang, Z., Wang, S., Wu, X., An, Y., Wang, W., Liu, J., 2019. Factors that influence the 

chemical composition and evolution of shallow groundwater in an arid region: a case study 

from the middle reaches of the Heihe River, China. Environmental Earth Sciences. 

https://doi.org/10.1007/s12665-019-8391-0 

Gleeson, T., Marklund, L., Smith, L., Manning, A.H., 2011. Classifying the water table at 



105 

 

regional to continental scales. Geophysical Research Letters 38, 1–6. 

https://doi.org/10.1029/2010GL046427 

Golder Associates, 2008. Assessment of climate change effects on water yield from the North 

Saskatchewan River Basin. 

Gomez-Velez, J.D., Krause, S., Wilson, J.L., 2014. Effect of low-permeability layers on spatial 

patterns of hyporheic exchange and groundwater upwelling. Water Resources Research. 

https://doi.org/10.1002/2013WR015054 

Government of Canada, 2019. Historical Climate Data [WWW Document]. URL 

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html (accessed 8.6.19). 

Guevara Ochoa, C., Medina Sierra, A., Vives, L., Zimmermann, E., Bailey, R., 2020. Spatio-

temporal patterns of the interaction between groundwater and surface water in plains. 

Hydrological Processes 34, 1371–1392. https://doi.org/10.1002/hyp.13615 

Guzman, J.A., Moriasi, D.N., Gowda, P.H., Steiner, J.L., Starks, P.J., Arnold, J.G., Srinivasan, 

R., 2015. A model integration framework for linking SWAT and MODFLOW. 

Environmental Modelling and Software 73, 103–116. 

https://doi.org/10.1016/j.envsoft.2015.08.011 

Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., 

Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.D., Wada, Y., Wisser, D., 2014. 

Global water resources affected by human interventions and climate change. Proceedings of 

the National Academy of Sciences of the United States of America. 

https://doi.org/10.1073/pnas.1222475110 

Hagemann, S., Chen, C., Clark, D.B., Folwell, S., Gosling, S.N., Haddeland, I., Hanasaki, N., 

Heinke, J., Ludwig, F., Voss, F., Wiltshire, A.J., 2013. Climate change impact on available 

water resources obtained using multiple global climate and hydrology models. Earth System 

Dynamics. https://doi.org/10.5194/esd-4-129-2013 

Harding, R., Best, M., Blyth, E., Hagemann, S., kabat, P., Tallaksen, L.M., Warnaars, T., 

Wiberg, D., Weedon, G.P., Van Lanen, H., Ludwig, F., Haddeland, I., 2011. WATCH: 

Current knowledge of the terrestrial global water cycle. Journal of Hydrometeorology. 

https://doi.org/10.1175/JHM-D-11-024.1 

Harma, K.J., Johnson, M.S., Cohen, S.J., 2012. Future Water Supply and Demand in the 

Okanagan Basin, British Columbia: A Scenario-Based Analysis of Multiple, Interacting 

Stressors. Water Resources Management. https://doi.org/10.1007/s11269-011-9938-3 

Hayashi, M., Farrow, C.R., 2014. Watershed-scale response of groundwater recharge to inter-

annual and inter-decadal variability in precipitation (Alberta, Canada). Hydrogeology 

Journal 22, 1825–1839. https://doi.org/10.1007/s10040-014-1176-3 

Hayashi, M., van der Kamp, G., Rosenberry, D.O., 2016. Hydrology of Prairie Wetlands: 

Understanding the Integrated Surface-Water and Groundwater Processes. Wetlands 36, 



106 

 

237–254. https://doi.org/10.1007/s13157-016-0797-9 

Huntington, J.L., Niswonger, R.G., 2012. Role of surface-water and groundwater interactions on 

projected summertime streamflow in snow dominated regions: An integrated modeling 

approach. Water Resources Research 48, 1–20. https://doi.org/10.1029/2012WR012319 

Jutebring Sterte, E., Johansson, E., Sjöberg, Y., Huseby Karlsen, R., Laudon, H., 2018. 

Groundwater-surface water interactions across scales in a boreal landscape investigated 

using a numerical modelling approach. Journal of Hydrology. 

https://doi.org/10.1016/j.jhydrol.2018.03.011 

Kobierska, F., Jonas, T., Magnusson, J., Zappa, M., Bavay, M., Bosshard, T., Paul, F., 

Bernasconi, S.M., 2011. Climate change effects on snow melt and discharge of a partly 

glacierized watershed in Central Switzerland (SoilTrec Critical Zone Observatory). Applied 

Geochemistry 26, S60–S62. https://doi.org/10.1016/j.apgeochem.2011.03.029 

Kornelsen, K.C., Coulibaly, P., 2014. Synthesis review on groundwater discharge to surface 

water in the Great Lakes Basin. Journal of Great Lakes Research. 

https://doi.org/10.1016/j.jglr.2014.03.006 

Kult, J., Choi, W., Keuser, A., 2012. Snowmelt runoff modeling: Limitations and potential for 

mitigating water disputes. Journal of Hydrology. 

https://doi.org/10.1016/j.jhydrol.2012.01.043 

Kundzewicz, Z.W., Döll, P., 2009. Will groundwater ease freshwater stress under climate 

change? Hydrological Sciences Journal. https://doi.org/10.1623/hysj.54.4.665 

Kure, S., Jang, S., Ohara, N., Kavvas, M.L., Chen, Z.Q., 2013. Hydrologic impact of regional 

climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: 

Hydrological response of flow to climate change. Hydrological Processes. 

https://doi.org/10.1002/hyp.9535 

Lewandowski, J., Meinikmann, K., Krause, S., 2020. Groundwater-surface water interactions: 

Recent advances and interdisciplinary challenges. Water (Switzerland). 

https://doi.org/10.3390/w12010296 

Lucas-Picher, P., Riboust, P., Somot, S., Laprise, R., 2015. Reconstruction of the spring 2011 

richelieu river flood by two regional climate models and a hydrological model. Journal of 

Hydrometeorology. https://doi.org/10.1175/JHM-D-14-0116.1 

Lundberg, A., Ala-Aho, P., Eklo, O., Klöve, B., Kværner, J., Stumpp, C., 2016. Snow and frost: 

Implications for spatiotemporal infiltration patterns - a review. Hydrological Processes. 

https://doi.org/10.1002/hyp.10703 

MacDonald, R.J., Byrne, J.M., Boon, S., Kienzle, S.W., 2012. Modelling the Potential Impacts 

of Climate Change on Snowpack in the North Saskatchewan River Watershed, Alberta. 

Water Resources Management 26, 3053–3076. https://doi.org/10.1007/s11269-012-0016-2 



107 

 

Masud, M.B., Ferdous, J., Faramarzi, M., 2018. Projected changes in hydrological variables in 

the agricultural region of Alberta, Canada. Water (Switzerland) 10. 

https://doi.org/10.3390/w10121810 

Maurya, A.S., Rai, S.P., Joshi, N., Dutt, K.S., Rai, N., 2018. Snowmelt runoff and groundwater 

discharge in Himalayan rivers: a case study of the Satluj River, NW India. Environmental 

Earth Sciences. https://doi.org/10.1007/s12665-018-7849-9 

McKenney, D.W., Hutchinson, M.F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., 

Milewska, E., Hopkinson, R.F., Price, D., Owen, T., 2011. Customized Spatial Climate 

Models for North America. Bulletin of the American Meteorological Society 92, 1611–

1622. https://doi.org/10.1175/2011BAMS3132.1 

Moore, J.N., Harper, J.T., Greenwood, M.C., 2007. Significance of trends toward earlier 

snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. 

Geophysical Research Letters 34, 1–5. https://doi.org/10.1029/2007GL031022 

Neitsch, S., Arnold, J., Kiniry, J., Williams, J., 2011. Soil & Water Assessment Tool Theoretical 

Documentation Version 2009. Texas Water Resources Institute 1–647. 

https://doi.org/10.1016/j.scitotenv.2015.11.063 

North Saskatchewan Watershed Alliance, 2005. The State of the North Sask River Watershed 

Report. 

Orozco, I., Francés, F., Mora, J., 2019. Parsimonious modeling of snow accumulation and 

snowmelt processes in high mountain basins. Water (Switzerland). 

https://doi.org/10.3390/w11061288 

Park, S., Bailey, R.T., 2017. SWAT-MODFLOW Tutorial—Documentation for Preparing Model 

Simulations. 

Paznekas, A., Hayashi, M., 2016. Groundwater contribution to winter streamflow in the 

Canadian Rockies. Canadian Water Resources Journal 41, 484–499. 

https://doi.org/10.1080/07011784.2015.1060870 

Qi, J., Li, S., Jamieson, R., Hebb, D., Xing, Z., Meng, F.R., 2017. Modifying SWAT with an 

energy balance module to simulate snowmelt for maritime regions. Environmental 

Modelling and Software 93, 146–160. https://doi.org/10.1016/j.envsoft.2017.03.007 

Qi, P., Zhang, G., Xu, Y.J., Xia, Z., Wang, M., 2019. Response of water resources to future 

climate change in a high-latitude river basin. Sustainability (Switzerland) 11. 

https://doi.org/10.3390/su11205619 

Quilbé, R., Rousseau, A.N., Moquet, J.S., Trinh, N.B., Dibike, Y., Gachon, P., Chaumont, D., 

2008. Assessing the effect of climate change on river flow using general circulation models 

and hydrological modelling - Application to the chaudière River, Québec, Canada. 

Canadian Water Resources Journal 33, 73–94. 



108 

 

Sadro, S., Sickman, J.O., Melack, J.M., Skeen, K., 2018. Effects of Climate Variability on 

Snowmelt and Implications for Organic Matter in a High-Elevation Lake. Water Resources 

Research 54, 4563–4578. https://doi.org/10.1029/2017WR022163 

Saydi, M., Ding, J. li, Sagan, V., Qin, Y., 2019. Snowmelt modeling using two melt-rate models 

in the Urumqi River watershed, Xinjiang Uyghur Autonomous Region, China. Journal of 

Mountain Science. https://doi.org/10.1007/s11629-018-5365-8 

Schilling, O.S., Park, Y.J., Therrien, R., Nagare, R.M., 2019. Integrated Surface and Subsurface 

Hydrological Modeling with Snowmelt and Pore Water Freeze–Thaw. Groundwater 57, 63–

74. https://doi.org/10.1111/gwat.12841 

Schindler, D.W., Donahue, W.F., 2006. An impending water crisis in Canada’s western prairie 

provinces. Proceedings of the National Academy of Sciences of the United States of 

America. https://doi.org/10.1073/pnas.0601568103 

Shi, H., Fu, X., Chen, J., Wang, G., Li, T., 2014. Spatial distribution of monthly potential 

evaporation over mountainous regions: case of the Lhasa River basin, China. Hydrological 

Sciences Journal. https://doi.org/10.1080/02626667.2014.881486 

Smerdon, B.D., Hughes, A.T., Jean, G., 2017. Permeability Measurements of Upper Cretaceous 

and Paleogene Bedrock Cores made from 2004-2015 (tabular data, tab-delimited format, to 

accompany Open File Report 2016-03). 

Smith, R.S., Moore, R.D., Weiler, M., Jost, G., 2014. Spatial controls on groundwater response 

dynamics in a snowmelt-dominated montane catchment. Hydrology and Earth System 

Sciences. https://doi.org/10.5194/hess-18-1835-2014 

Tanachaichoksirikun, P., Seeboonruang, U., Fogg, G.E., 2020. Improving Groundwater Model in 

Regional Sedimentary Basin Using Hydraulic Gradients. KSCE Journal of Civil 

Engineering 24, 1655–1669. https://doi.org/10.1007/s12205-020-1781-8 

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment 

design. Bulletin of the American Meteorological Society 93, 485–498. 

https://doi.org/10.1175/BAMS-D-11-00094.1 

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., 

Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, 

S.J., Rose, S.K., 2011. The representative concentration pathways: An overview. Climatic 

Change 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z 

Vogel, M.M., Zscheischler, J., Wartenburger, R., Dee, D., Seneviratne, S.I., 2019. Concurrent 

2018 Hot Extremes Across Northern Hemisphere Due to Human-Induced Climate Change. 

Earth’s Future 7, 692–703. https://doi.org/10.1029/2019EF001189 

Zhang, Q., Knowles, J.F., Barnes, R.T., Cowie, R.M., Rock, N., Williams, M.W., 2018. Surface 

and subsurface water contributions to streamflow from a mesoscale watershed in complex 

mountain terrain. Hydrological Processes. https://doi.org/10.1002/hyp.11469 



109 

 

Zhang, Z., Li, Y., Barlage, M., Chen, F., Miguez-Macho, G., Ireson, A., Li, Z., 2020. Modeling 

groundwater responses to climate change in the Prairie Pothole Region. Hydrology and 

Earth System Sciences 24, 655–672. https://doi.org/10.5194/hess-24-655-2020 

Zhou, J., Pomeroy, J.W., Zhang, W., Cheng, G., Wang, G., Chen, C., 2014. Simulating cold 

regions hydrological processes using a modular model in the west of China. Journal of 

Hydrology 509, 13–24. https://doi.org/10.1016/j.jhydrol.2013.11.013 

Zhou, Y., Li, W., 2011. A review of regional groundwater flow modeling. Geoscience Frontiers. 

https://doi.org/10.1016/j.gsf.2011.03.003 

  



110 

 

CHAPTER IV – CONCLUSION 

4.1 Research Summary 

Snowmelt and groundwater dynamics are among the most important hydrological 

processes in northern latitudes and cold regions that affect dynamics of water quantity and 

quality of different spatio-temporal scales. Therefore, the primary goal of this study was to 

develop a framework for assessing the performance and uncertainty associated with different 

snowmelt modules in hydrological modelling, as well as analysis of regional snow depth, 

snowmelt and groundwater-surface water (GW-SW) interactions using process-based 

hydrological modelling. To achieve these goals, the Soil and Water Assessment Tool (SWAT) 

model was coupled with Energy Balance Modules (EBM) and Temperature-Index Modules 

(TIM) for assessment of uncertainties in snow depth and snowmelt simulation. The model was 

also coupled with MODFLOW model for assessment of GW-SW interaction and its response for 

snowmelt dynamics under changing climate. The models were applied to North Saskatchewan 

River Basin (NSRB) in central Alberta. The heterogeneity of NSRB in terms of climate, 

topography and land-use/land-cover allowed us to perform regional analysis of snow and GW-

SW interactions in mountainous, foothill, and plain regions in order to assess the effect of 

regional topography and climate on hydrological responses and their underlying uncertainties in 

northern latitudes.  

First, we analyzed the performance and uncertainty of snow depth and streamflow 

simulations and projections using different snowmelt modules. We used two generally-used 

snowmelt approaches including of TIMs and EBMs within SWAT model. We used SWAT 

default snowmelt approach as one of the widely-used TIMs, and embedded the EBM module 

into SWAT source code. We also implemented two snow density (SND) approaches in SWAT 
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source code to account for the effect of snow density functions in performance and uncertainty of 

snow depth simulations and projections. The two snow density approaches were previously 

implemented in maritime regions (namely SND1, Qi et al., 2017) and Canadian Prairies (namely 

SND2, Pomeroy et al., 1998). Results for streamflow simulations, subbasin-scale snow depth 

simulations, and regional snow depth simulations and projections under climate change scenarios 

were then analyzed and discussed. The regional analysis of snow depth for 1999-2007 was 

reported for mountainous, foothill and plain regions of NSRB. For uncertainty assessment of 

snow depth projections in 2040-2065 time window, we used the Analysis of Variance (ANOVA) 

approach for quantifying the uncertainty sources related to snow depth projections based on an 

ensemble of five GCMs, under two future scenarios of RCP2.6 and RCP8.5, and using two 

downscaling methods.  

Results showed that the performance of SWAT-EBM and SWAT-TIM were relatively 

similar in all three regions of NSRB, while all snowmelt approaches were showing poor 

performances in mountainous region. However, SWAT-EBM overestimated snow accumulation 

and spring snowmelt runoff. Also, the choice of SND formulation played a significant role in 

performance and uncertainty of snow depth analysis, where SND2 resulted in more reliable 

results of snow depth simulations in all regions of NSRB. The evaluation of cascade of 

uncertainty for different regions and snowmelt approaches of NSRB showed that the share of 

uncertainty sources varied among different months and different regions. In general, the share of 

hydrological model parameter uncertainty (i.e., EBMs and TIMs) was dominant in mountainous 

region, while the share of GCMs, RCPs, downscaling methods and their interactions was 

increased in foothill and plain regions. These results provided a better understanding of the 

performance and uncertainties of using TIMs and EBMs, as well as different snow density 
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approaches, in regional analysis of snow depth. The results also mark the importance of 

considering multi-scale spatio-temporal analysis of regional snow depth simulation and 

projection. Particularly, while some researchers might argue that either GCMs, RCPs, DS or 

parameter uncertainty could be the main uncertainty source of hydrological projections, this 

study shows that the dominance of such sources can be substantially different based on spatial 

and temporal difference of study regions. Another key message from our uncertainty analysis is 

that in the areas where quality and quantity of input climate data for initial model setup is poor 

(i.e., mountainous region), the uncertainty of hydrologic model dominates all other uncertainty 

sources, and both EBMs and TIMs perform equally poor with a high uncertainty range. 

However, differences between EBMs and TIMs become more apparent in lower elevation 

regions, where a greater quality and quantity input data were used to initiate model runs and to 

represent climate variability, a key driver of hydrology and snowmelt, in foothills and plain 

regions. 

Following the snowmelt and snow depth analysis, we focused on regional snowmelt and 

GW-SW interactions and their changes under future climate conditions. Furthermore, the 

relations between snowmelt and GW-SW interactions were analyzed in mountainous, foothill 

and plain regions of NSRB in order to understand how snowmelt governs GW-SW interactions 

under different spatio-temporal settings. We implemented the integrated SWAT-MODFLOW 

model for analyzing and projecting snowmelt and GW-SW interactions. For setting up the 

modelling, we implemented the most suitable snowmelt module from the first part of research 

(i.e., SWAT-TIM-SND2) to set up, calibrate, and validate the SWAT model based on historical 

streamflow data (1986-2007) of NSRB. Also, we set up and calibrated the MODFLOW model 

based on historical hydraulic head data (1983-2007) in various observation wells of the basin. 
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After model calibration and validation, historical trends of regional snowmelt and GW-SW 

interactions in different regions of NSRB were outlined, as well as their projected changes under 

future climate scenarios. The future climate change scenarios were carried out using five GCMs 

under two emission scenarios of RCP2.6 and RCP8.5. Finally, we evaluated the correlations 

between snowmelt and GW-SW interactions in different regions, as well as discussing possible 

drivers of their inter-relations.  

The historical simulations of snowmelt and GW-SW interactions and their changes under 

climate change scenarios revealed the spatio-temporal importance of response of different 

hydrological processes to climate change. Analysis of snowmelt projections under climate 

change scenarios predicted earlier snowmelt in mountainous region, with significant decrease of 

future snowmelt in summer, fall and winter seasons. The shift of snowmelt to early spring has 

resulted in slower snowmelts in summer to winter, which can be also related to less snow fall and 

accumulation in mountainous regions. Also, it is predicted that snowmelt will mostly increase in 

foothill regions, and drop significantly in spring and summer of plain regions. These changes are 

mostly related to the pattern of precipitation and snowfall in foothill and plain regions, 

accompanied by temperature increase in such regions. On the other hand, future projections of 

GW-SW interactions showed that the contribution of groundwater to surface water will increase 

under future climate scenarios, particularly in warm seasons (i.e., spring and summer). The 

important effect of earlier snowmelt under future climate scenarios was explained by the results 

in foothills regions, where it is predicted that groundwater discharge to surface water will 

increase in spring and summer. As the foothill region is predictably affected by earlier snowmelt, 

groundwater recharge in this region will increase in the summer, which is the result of soil 

moisture depletion in that season.  
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Finally, the relations of regional snowmelt and GW-SW interactions were evaluated 

through correlation analysis in NSRB regions. High correlation between these two processes was 

found (R2 = 0.494) in mountainous regions, in contrast to very low correlations (R2 < 0.01) for 

foothill and plain regions. The low correlation of snowmelt and GW-SW interactions of foothill 

and plain regions was then attributed to three possible reasons, which are different from those in 

mountainous regions: (1) high amounts of ET in foothill and plain regions, which could 

significantly affect groundwater level and GW-SW interactions; (2) the effect of rainfall on GW-

SW interactions, particularly in growing seasons where ET and rainfall will alter the dynamics of 

groundwater recharge and discharge; and (3) the effect of upstream-downstream connection of 

surface water and groundwater from mountainous regions to foothills and plains regions; 

4.2 Study Limitations and Future Directions 

The use of hydrological modelling, particularly in regional applications, can always bring 

about uncertainties and limitations in thoroughly representing the complex interactions of 

various hydrological processes in a large area. Therefore, the limitations of this study can be 

summarized as below: 

1. The regional study of snowmelt and snow depth modelling requires reliable input data, such 

as altitudinal representative precipitation, climate, radiation, and other climate data at a high 

spatial and temporal resolution, and minimal gaps to be existed in datasets. In mountainous 

regions of NSRB, where the most important hydrological and hydrogeological water 

processes occur, the number of station data cannot adequately represent the complex climate 

and topography of that region. Also, the gridded data used for input climate and historical 

snow depth values had relatively coarse resolutions when compared to the variable 
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topography and elevation of the west side of NSRB. Therefore, the data availability could 

play a vital part in representation of hydrological processes through regional modelling, 

albeit we provided the most reliable data (existed by the date of analysis) for simulation and 

climate change scenario analysis of all regions within NSRB. Finally, the usage of observed 

SND data as well as implementing several other SND formulations on snow depth analysis 

can be beneficial for validating the snow density reproduction results.  

2. The setup of MODFLOW model requires various hydrogeological information, properties of 

geological formations, groundwater storage, groundwater recharge data, constant head, and 

river data. One of the limitations of this study was the unavailability of geological formation 

data in mountainous regions of NSRB. The inevitable assumptions related to this gap might 

have some effects on groundwater simulation and calibrations. Moreover, despite the 10-km 

grid cell used in MODFLOW and SWAT-MODFLOW analysis, a 25-year simulation of 

SWAT-MODFLOW lasted more than 8 hours while using a 200-core super-computer. This 

is mainly because SWAT-MODFLOW is run based on daily runs of MODFLOW in transient 

mode with daily runs of SWAT. Since the groundwater dynamics are much slower than 

surface water, the changes in groundwater system can be reported in weekly, bi-weekly or 

monthly time-steps, while still representing groundwater dynamics properly. Therefore, 

linking daily-basis simulation runs of SWAT with weekly- or monthly-basis simulations of 

MODFLOW can greatly reduce the SWAT-MODFLOW simulation time, without degrading 

the simulation quality in terms of results and dynamics.  

3. Various factors and processes have potentially great impact on sub-surface flow and its 

interaction with surface water. The effects of wetlands, potholes and water bodies can be 

significant in GW-SW interactions since they attenuate water flow and provide the base for 
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GW-SW interactions. However, at a large regional scale such effect might be critical only in 

specific sub-basins, where these water bodies are dominant landscape features in them. If the 

majority of sub-basins are governed with such water bodies in entire study watershed, then a 

significant effect can been found in regional GW-SW interactions. Furthermore, 

improvements in the representation of (1) low permeability lenses, (2) geospatial features 

related to prehistoric and contemporary times, and (3) frozen soil as well as their effect on 

and water infiltration and surface-sub surface connectivity of water can be a subject for 

future studies of regional analysis of snowmelt and groundwater. In the end, we acknowledge 

that land-use/land-cover and hydraulic conductivity (K) values were assumed to be constant 

throughout the historical and future analysis, while it is shown that changes in soil type, 

vegetation cover, and K values can directly affect snowmelt and its relation with GW-SW 

interactions. 

This study provided the basis for understanding the performance and uncertainty 

associated with simulation and projection of snow depth and streamflow using multiple 

snowmelt and snow density approaches. We also presented the projected future of regional 

snowmelt and GW-SW dynamics, as well as how they can be correlated and dependent on one 

another. It is clear that model parameterization under lack of data can result in noticeable 

uncertainty in future projections of streamflow and snow depth. While the improvements in 

providing more reliable input data are yet in demand, simulations and projections of snow, 

streamflow, and groundwater dynamics in regional scale can provide the fundamental 

understanding of most important and critical elements of hydrological processes in northern 

latitudes. As a result, comprehensive studies such as this research effort may help policy-makers 

in facing possible adversaries under the uncertain future of climate and water resources. 
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APPENDICES 

Table A.1. Data sources for SWAT model setup, uncertainty assessment and future projections 

 Scenarios/dataset Time span Spatial 

Resolution 

Time step Reference 

Input 

climate 

data 

Meteorological  

stations 

CFSR 

1983-2007 

 

1983-2007 

- 

 

0.3° grid 

Daily 

 

Daily 

Government of Canada: 

http://climate.weather.gc.ca 

SWAT weather generator: 

http://globalweather.tamu.edu 

GIS 

Layers 

Land-use/Land 

cover map 

Soil map 

 

 

Digital Elevation 

Maps (DEM) 

2000 

 

2003 

 

 

2008 

30 m × 30 m 

 

10 km × 10 

km 

 

90 m × 90 m 

10 m × 10 m 

- 

 

- 

 

 

- 

Geobase Land Cover Data 

(Government of Canada, 2017) 

Food and Agriculture 

Organization of the United 

Nations (FAO, 2003) 

SRTM (Jarvis et al., 2008) 

http://www.altalis.com/ 

Model 

conceptual  

data 

Glacier melt 

Reservoirs  

1985-2005 

Since 

compilation 

River basin 

River basin 

Monthly 

Monthly 

Faramarzi et al. (2015, 2017) 

AESRD, Alberta Environment 

Sustainable Resources 

Development: measured data at 

hydrometric stations. 

Observed 

data 

Hydrometric 

station data 

Snow depth data 

1986-2007 

 

1999-2007 

River basin 

 

24 km × 24 

km 

Monthly 

 

Monthly  

Environment Canada: 

https://wateroffice.ec.gc.ca/ 

Brown and B.Bransnett (2010) 

 

 

Table A.2. Properties of hydrometric stations across NSRB; station IDs are based on Figure 2.1 

(data source: https://wateroffice.ec.gc.ca/) 

Region 
Station 

ID 
Station Name 

Operation 

Schedule 

Data 

Availability 

Mountainous 1 
North Saskatchewan River at Whirpool 

Point 

Continuous 

1983-2007 

 2 Brazeau River Below Cardinal River 
Seasonal (May 

to October) 

Foothill 3 Clearwater River near Dovercourt Continuous 

1983-2007 
 4 

North Saskatchewan River Near Rocky 

Mountain House 

Seasonal (April 

to October) 

Plain 5 North Saskatchewan River at Edmonton 
Continuous  1983-2007 

 6 North Saskatchewan River Near Deer Creek 

http://climate.weather.gc.ca/
http://globalweather.tamu.edu/
https://wateroffice.ec.gc.ca/
https://wateroffice.ec.gc.ca/
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Table A.3. Equations used in SWAT-EBM for total daily snowmelt for rain-on-snow and rain-

free conditions with different vegetation levels (USACE, 1998).  

Rain-on-snow conditions 

𝐿𝐴𝐼 > 0.8 𝐿𝐴𝐼 ≤ 0.8 

𝑀 = 1.27 + 1.3259 ∙ 𝑇𝑎 + 2.0574 ∙ (𝑇𝑎 − 𝑇𝑠𝑠) 
+0.0126 ∙ 𝑅 ∙ (𝑇𝑎 − 𝑇𝑠𝑠)/𝐵 + 0.00625 ∙ 𝑆𝑁𝑂 ∙ 𝑇𝑠 

𝑀 = 1.016 + 1.3259 ∙ 𝑇𝑎 + 0.8591 ∙ 𝑘𝑣 ∙ 𝑣 
∙ (𝑇𝑎 − 𝑇𝑠𝑠) + 0.0126 ∙ 𝑅 ∙ (𝑇𝑎 − 𝑇𝑠𝑠)/𝐵 
+0.00625 ∙ 𝑆𝑁𝑂 ∙ 𝑇𝑠 

Rain-free conditions 

𝐿𝐴𝐼 > 0.8 0.6 < 𝐿𝐴𝐼 ≤ 0.8 

𝑀 = 1.3259 ∙ 𝑇𝑎 + 2.1031 ∙ (𝑇𝑎 − 𝑇𝑠𝑠) + 0.00625 
∙ 𝑆𝑁𝑂 ∙ 𝑇𝑠 

𝑀 = 1.3259 ∙ 𝑇𝑎 + 0.8591 ∙ 𝑘𝑣 ∙ 𝑣 ∙ (𝑇𝑎 − 𝑇𝑠𝑠) 
+0.00625 ∙ 𝑆𝑁𝑂 ∙ 𝑇𝑠 

0.1 < 𝐿𝐴𝐼 ≤ 0.6 𝐿𝐴𝐼 ≤ 0.1 

𝑀 = 2.4282 ∙ (1 − 𝐿𝐴𝐼) ∙ 𝑘𝑠 ∙ 𝑅𝑠 ∙ (1 − 𝛼) 
+1.3259 ∙ 𝐿𝐴𝐼 ∙ 𝑇𝑎 + 0.8591 ∙ 𝑘𝑣 ∙ 𝑣 ∙ (𝑇𝑎 − 𝑇𝑠𝑠) 
+0.00625 ∙ 𝑆𝑁𝑂 ∙ 𝑇𝑠 

𝑀 = 3.084 ∙ 𝑘𝑠 ∙ 𝑅𝑠 ∙ (1 − 𝛼) + (1 − 𝐶𝑐) ∙ (0.9694 

∙ 𝑇𝑎 − 21.336 ∙ 𝜀 ∙ (
𝑇𝑠𝑠 + 273.15

273.15
)

4

+ 1.3259 ∙ 𝐶𝑐 ∙ 𝑇𝑐  

+0.8591 ∙ 𝑘𝑣 ∙ 𝑣 ∙ (𝑇𝑎 − 𝑇𝑠𝑠) + 0.00625 ∙ 𝑆𝑁𝑂 ∙ 𝑇𝑠 

 

Table A.4. List of the ensemble GCMs and scenarios available from PCIC, where downscaled 

and bias corrected data were used in this study 

GCM 

Name 

Country Institution Spatial Resolution 

(Lon x Lat) 

Scenario 

CanESM2 Canada Canadian Centre for Climate Modelling 

and Analysis 

2.7906 x 2.8125 RCP 2.6, 8.5 

CCSM4 United 

States 

National Center for Atmospheric 

Research 

0.9424 x 1.25 RCP 2.6, 8.5 

CNRM-

CM5 

France Centre National de Recherches 

Meteorologiques/Centre Europeen de 

Recherche et Formation Avancees en 

Calcul Scientifiqu 

1.4008 x 1.40625 RCP 2.6, 8.5 

CSIRO-

MK3.6.0 

Australia Commonwealth Scientific and Industrial 

Research Organization in collaboration 

with the Queensland Climate Change 

Centre of Excellence 

1.8653 x 1.875 RCP 2.6, 8.5 

MIROC5 Japan Meteorological Research Institute 1.4008 x 1.40625 RCP 2.6, 8.5 
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Table A.5. The three criteria of efficiency used for SWAT-EBM and SWAT-TIM model 

performance assessment in this study. 

Formula Description of the variables References 

𝑅2 =
[∑ (𝑂𝑖 − �̅�)(𝑆𝑖 − 𝑆̅)]𝑛

𝑖=1
2

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑆𝑖 − 𝑆̅)2𝑛

𝑖=1

 

 

𝑂𝑖 and 𝑆𝑖 are observed and 

simulated value for the day 𝑖, 
respectively; �̅� and 𝑆̅ are 

average values for observed and 

simulated values, respectively; 

𝑛 is the total number of 

simulated values, and 𝑏 is the 

coefficient of the regression line 

between measured and 

simulated data (Abbaspour, 

2015). 

Abbaspour et al., 

2015; Krause et 

al., 2005 

𝑁𝑆 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=𝑖

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 

 

𝑏𝑅2 = {
|b|R2            if            |b| ≤ 1

|b|−1R2       if            |b| > 1
 

 

Table A.6. Regional analysis of performance of SWAT-EBM and SWAT-TIM in snow depth 

simulations. 
 

EBM-SND1 TIM-SND1 EBM-SND2 TIM-SND2 

Mountain NS 0.51 0.45 0.25 0.79 

Mountain bR2 0.23 0.19 0.69 0.58 

Mountain R2 0.66 0.65 0.78 0.8 

Foothill NS 0.73 0.76 0.23 0.8 

Foothill bR2 0.46 0.51 0.63 0.65 

Foothill R2 0.76 0.8 0.8 0.81 

Plain NS 0.73 0.78 0.2 0.74 

Plain bR2 0.48 0.55 0.62 0.57 

Plain R2 0.75 0.79 0.77 0.74 

 

Table A.7. Annual average contributions of different sources to the cascade of uncertainty in snow 

depth projections for 2040-2064 period. 

 

 Mountain Foothill Plain 

Uncertainty 

Source 
SND1 SND2 SND1 SND2 SND1 SND2 

 EBM TIM EBM TIM EBM TIM EBM TIM EBM TIM EBM TIM 

PPU (%) 58.0 56.8 75.4 57.0 23.9 39.4 57.8 42.1 31.0 27.2 59.0 27.5 

RCP (%) 10.6 13.2 5.4 13.2 9.5 4.8 6.7 5.4 4.1 4.0 2.5 4.0 

DS (%) 1.9 1.7 1.6 2.6 6.6 6.1 2.2 4.7 6.3 9.8 2.5 9.5 

GCM (%) 5.1 6.5 2.6 6.1 24.4 15.9 8.1 14.7 27.2 20.7 10.6 19.6 

Interactions 

(%) 
24.4 21.8 15.0 21.1 35.7 33.8 25.3 33.0 31.3 38.2 25.5 39.4 


