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, Abstract )
The devel‘opment of high level languages. which easéq the problem’oi" program writmg',-
has been done independently of advances in rmachine design .Machines have been
designed to suit particular languages and languages designed for Apartncdlar machines, but
these are 100 restrictive and tﬁe‘sema;\tnc‘ gap 1s still ncreasing L

It has\'been shown that ? convertional method of executing programs by
compiling \them to host instructiorgor ihterpreting the source directly is not efficient A
more efficient method i1s to execute arf intermediate form on a soft architecture’

Several intermediate forms have been developed and shown to be efficient
Notable among them is the directly executable versiorr of FORTRAN (DELTRAN)
developed at the S‘tanford Emulation Laboratpry. which takes about five times iess space
and time than a machine language representation

This thesis surveys language—architecture mcorﬁpatibility, determines the analytical
conditions under which mt&pretat»on 1s efficient, surveys the directly executable
languages developed and suggests design approafhes for better intermediate

.

representations. ¢
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1. Language - Architecture Incompatibility

11 Introduction
There are innumerable ways of axéressmg users’ algarnﬂ’n;ﬁs and executing the%
"High level” languages have been and are still being designed to make it easier to write
‘programs Machines are al€db beihg desngned with a bias towards particular langj!geg but
the so called "semantic gap' beI‘WEEn languages and rnag:hmes contitues to _exist
[FLYN741{MYER78] |
The wider the gap. the less likely it i1s that the user will be able to write programs
‘which minimize the tme and spacg needed in 2 Feg_l machine to execute his algorithms
| The problem of bﬂég:;lg the gap 1 \c:f course. the domain of translation programs such
as compilers or ?ﬁterpréters or some combination of 'these Before a source Ianguage
. progv‘am 1s completely axec:uted it may have to undergi: a saqxfenc:e of intermediate
.transformation ‘phases The user s seldom aware :x‘f these intermediate program
representations as they are not Usually made accessible nor are thay mtaﬁded to be.
understood or modified by users These internal representations can be regarded ‘as
proqrams for abstract’ machines with c‘;ﬂafactsﬂstics - Intermediate bEIWEEﬁ high level
language machines and real “machine lgnggage hosts
The canc:apt of intarmediate machines was first explored by lliffe [ILIF68) and has
attracted interest since then as a theoretical and praotical tool for impraving the
efficienty of axacutmg Jigh level language programs By ;haasnng the aptlmal ‘distance”
hetween the two extremas it may be possible to improve the tlﬁ’ié and space needad to
meet the user's needs Hoeavel IHC)EV74] presentad an analytical argument showing that -
. execdting' an intermediate form of a source language program would be fastgr than
executing the source itself or executing the equivaient program in the host language.
Studies dorie‘iat Stanford Emulation Laborgtory showed that a direotly executabie version
“of Fortran (DELTRAN) executed five times faster and took five times less space than its
machine language aqg&:ﬁmbﬁ an IBM 360 computer [FLYN77] A few other intexmediate
languages for direct a:;t:utvsf_ﬂ\ve been developed and shown to bg éff’;cient
In addition to executing in%rmeduatg languages, which is the tépu: '\;f this thesis,
there have bben other apprascﬁ’& to_executing programs Eaﬁverﬁ;ﬁtly aéd efficiently.

« » 1 g
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The aariiest approach was the UNCOL/POL apprgach started in 1958, in which Strong e

‘a/. ISTRG58] tried tor drsngﬂ a universal intermeghate language into which any high leve

language program could be reduced and which could be compiled for any machine’ Thy
motivating factor was the possibility of solving the problems of portability and ihavingf t
write separate complete cc;:rﬁpilers for each new machwe and language. The idsa was 1«
dide the Jjob c:f compiler writing mto two parts and tc:s avoid writing the set:aﬁd half fo
each new mac:hme The'project did not mget with much success and was abandoned.

To overcome the meffn:lencnes of compilers languages. were designed fo
existing sﬂ:hltet:turgs snd machines with special features des:gnea to suit the specific
high level ianguage (notably the Burroughs B5500 for ALGOL) Languaggs are being
designed to suit particular ;f;ﬁite:tures., ag@*machines designed on the basis of statistics
of program execution. ; .

These methods: jof Egsi’gr}mg machines and languages are too restrictive Languags
designers seem to expect an undue amount of flexibility in order that users’ 3|éérlthﬂ‘|5

can be easily and-efficiently coded into them. Aiso system mQEFS would like to have

- the c?ﬁcice,af running rhany different ianguages on their machines Languages designed

for :»aﬁit:ulsriarchntaetures are not user efficient. and machines designad by collecting

14
- statistics from a particular epvironment Caﬁﬁ@é be optimal for all envirenments Though

the studies did not result in efficient eie::mngn\qf programs, they have given rise to
promising approaches in machine design.

Ancther approach is to éesigr:n machines fpr‘mdivnduil languages. 18 to have the
high level langlage as the machine language The fevﬁ such machines, such as DPIL,
ADAM, SNOBOL4 '[CHUY75], that\@ave been built are mini computers and can be used for
programs written in that particular language only. The single execution phase is very

LY "

complex in all of these machines. - . . ' .

A more general approach is to find a bettafimeaﬁs!cf executing programs with

-axisting Ianguagas and architectures and thgn suggest wnpravements for fumrg designs.

This appraach will potentially reduce the oYerhead caused by instructions that sequence

‘through the program and the ingtructions that move data around in slower devices like

main store

] | : ﬁ‘
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It is also important to have compact representations of the programs This not B
only saves space but also fetch time when this appears to be a Fﬂa!]éf fact::sr On ﬁ?e
other hand. other factors like the complexity of decogng rmey affsét the gains due to
compacting the code A few such intermediate Ianguage} for direct execution hajg beer.
developed and shown to be efficient 7
architectures of the currently popular machuﬁe‘s; determines conditions for efﬂéugm
interpreting, surveys the directly executable and interpretable languages developed. and
suggests design approaches for better interpretable representations :

_ Chapter One discusses historical changes in gfcllitecture and programming styles.
Results of experiments analyzing architectures are re%newed as are different methods of
execuling programs. high ievel language machines. forms and applications of intermediate
languages and universal host machines and tagged architectures.” |
' In Chapter Two a réview of analytical conditions to detarmine conditions under
which executing programs by interpreting 1s efficient, and conditions under which
translating sections of source progr'aa:. into micro code and storing them in control store
speeds program execution, is made ‘Based on this analysis other modeis are developed
and conditions for efficient interpretation determinad. |

Chapter Three discusses the need for ar\d characteristics of directly mterpreuble

/
representatuons Existing DIR 5 are reviewediand design appraac:hes for better DIRs are

presented. J

1.2 The Problem ,

The esrliest caiculators were Qsigned to do smple arithmetic Computers
evolving from these early calculators we(é best_programmed in their respeactive machine
languages With advancements in technology the underlying hardware of computers
ch;r;ged from mechanical to eftectronic, moving from vacuum tubes to transistors aﬁa

finally to integrated circuits. ,The tremendous increae in spéed thus achieved made it
possible to run large brogramé' quickly, but it was difficult to write such programs in
machine language. High levél programming languages and their corresponding translators

made it possible to program the machines convenientiy.




. The capabilities of computers were also increased by features such as large
memories and several input and output devices ]I’ his led to.using machines more for data
manipulation rather than just for simple arithmetic To make such extensive use possible.
modern software. such as operating systems. has been developed to automate console
control and manage resources |

Attempts have been made to define the terms machine /i‘Dﬂ?ﬁLﬂ:éfl :nd-mmputér
architecture A broad definition by Flyﬁn [FLYNBO] 1s as follows i’}ﬁ

An instruction is a function with a set of states as its range and #s its domain
Given a particular state it causes a state trangition, giving the naxt state A mae:hme is a
funqtion plus a mechanism that causes st;t_e transition. Its range is a set of instructions
and its domain the storage An emulator 1s a program that defines the function of a
machine. An /nterpleter 1s a program that nterpyets an instruction into micro code All
the user accessible aspects of the instructton set of*é r’n,a::hmg form tr:e architecture
Architecture is indepenéem of hardware impiementation and technology.

A high level language rs a language that aliows the programmer to use symbolic
operaiors to sigmfy operations and symbolic names to represent data and d.ata structuras
and has syntax and semantics to describe the algorithm converientty @amples of high

level languages are FORTRAN, COBOL, PASCAL, APL and LISP

A' trans/ator 1s a program that transiates a high level language prggram into an

intermediate language which is distinct from the machine !anguagei‘ A compiler i1s a

program that tr&lates a high level language program into its machine language or

microcode equivalent

With the increase in variety of applications of cgmpaters, the number and typg
ke ditferent languages need

of high level languages have aiso been ‘increasing.
different architectures for ther efficient execution.
Softwarﬂ;s developed rapidly'a’i;d'm ma;wy differeﬁt directions, while the lag’u:al
structure of machines or architecture is almost uhchanged from Yon Neumann's design
‘Because of this the concepts in h:gh' level programming languages and the cam:sptss{ﬁ
Chitectures are now incompatible. This thesis examines several methods.of bridging the.

gap betweer} tigh level languages ana.architectures . )



-
A user's problem has to go through many phases before it can be ‘understood by

the machine These phases are broadly illustrated by Figure 1 1

Problem
|

[ , o .

Y% o , ,
Algorithm , : -«
i L)

I
\Y
High Level Language Representstion
: i

: ]
a 'V B
Ahernate Executable Program '
_(optional)
v . |
| L0
v .
Ermulator
]
}
V
Processing by Machne

[

Eigure L1 Transformation of a problem té( machne processing.

The problem to be solved should be clear and well defined It can at most be

for the problem, for example)l. An efficient algorithm for the problem should be found.
An inefficiency .in the algorithm is dif ficult to t:émﬁeﬁsate for in future steps Choosing
an afﬁciaﬁt algorithm is an important and difficult step, but since it is not directly related
to this thesis it will not be discussed |

A programming language suitable for the isig(:trithﬁ"! should be selected Trying to
solve a recursive problem using FORTRAN, or saientific computation with LISP are
examples of what should not'be done. |

Cadmg the algorithm into a programming lan'guige, especially a block structured

language. is also an important step Vaﬁmle; used in a particular block can be declared



’;cc;aily in the block or globally with the program enclosmg the biock Bﬂﬂ‘l work the same

way for a programmer but the former is more efficient when loadchng variables al!c;:ﬁg with
bidcks If the number of faguétﬁs available 'i1s less than the number of variables the

X variables have fC; be moved back and forth lfi cnly necessary variables are.given n a o
requred biock. a better program working set '\;'vili be produced Though the above

factors play a signify t role n efficient program representation. they will rot be
an ogr

discussed in this th

Efficiency here 1s defmed in terms of time to execute the executable program
snd space to store the executable program The time for execution includes the time to
transiate or compile the source program, time to interpret the executable representation,

plus time to execute the ultimate microcode The space required is the space to store the

executable program representation It does not include space to store the source
program

The creation of the executable program repfesaﬁtatm;\ from the high level

inefficiencies are introduced e more they propagate through the later steps One
method s compiling the high level language program to the rﬁit:hmes mstruction sets
Another method is to tune' the machine to accept the language directly. As will be shown
later these extreme methods are inefficient

Another approach i1s to transiate the language to an intermediate féFFﬁ which is
accepted by the emulator. The level of an optimal intérmechate form is an open problem;
the intermediate form should. however. aim at eliminating inefficiencies in both the
mtermediate form and its axscution

The format and size of a directly exacutibie intermadiate form is subject to many
ir;deaffs The source itself would be a compact form é:f’ representation but its direct
exacution by the lmlatc:f would require cbmplex decoding C)n the other hand the
microcode versiéﬁ of the source language pr’agf;‘ﬂ would be the fastest to execute but
Wwould make the program's rgprgsaﬂt;tic;\ very large. which could more than offset the

execution time saved, by ncreasing the fetch tim‘ :

'tuning here refers to a user microprogramable architecture eg 81700/B 1800 in which
the instruction set for the programmer is defined by microcode

A
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Finally, there is very little a user can do about the execution phase The machine
can be modified by changing the contents of its control store The advent of writahye

control store has made [t possible to Fﬁédify architectures for efficient represantation ofs

architecture to adapt the language This phase of program execution will also be

considered as fixed and not discussed m detail

1.3 The Divergence of Architectures and Programs

Since the ‘ddvent of transistor technology in the 1950's developments in
computer technology have been remarkabie By the 1960s :aﬁénder&;le advaﬁcasy had
been made i the field of computer science besiges those in architecture Machine
design had been the concern of engineers and technologists who géve more emphasis to

 little to users needs

)es developed for different kinds of problems have requrred
different archite s for ther efficient execution In the absence of such architectures
the software required to mf})'ament languages has baén expensive and has required a lot,
of memory Observations on these points are now leading computer scientists to
question the effe::t&eﬁgss of von Neumnann architactures ‘
Since von Neumann developed the stored program concept most machines have
been organized around a iﬂ’gle sequential memory. Sequential architecture was efficient
when program and data s&u&ts:;s were ail sequentisl (such as FORTRAN . using one

dimensional arfays),
rtypes now reaquireés many instructions to access data This makes von
Neumann machines inefficient in applications employing tﬁgserfgaturas

Thus, in the last decade or sé: it has been observed by §avaral computer scientists
that machine architectures are divgrgi;g from what programs and programming languages

-

require for their efficient exacution



7 ~ °.

-

"/t is accidemal that digital computers are organized such as desk
ca/colators. With Some worse /uck we might have taken T&r’:g'% machine as
our model/. And someone woul/d have been unen/ightened enodgh to prove
that, under certain (actually umrue! assumptions, it made no dafference.”
e < 1 design engineers began to seek more efficiem encodings for
commonly used sequences of instructions (for instance, direct addressTng
instead of a sequence of tape moving commands), progress towards the
modern computer would have begun.” IMCKEG7)

"Maost present day computers have an architecture designed in the early

60's. They have remained substamtially unchanged for a decade in the name

of compatiblity in spite of their obstac/es to generating efficient code from —
high /level Janguages”...... "The fact that few compilers for third
generation computers can produce code thst even comes close to what a

skilled assembly languasge programmer can generste argues strongly for {
redesigning machine architectures so that compilers can do their jobs

better.” [TANE78]

b ]

“there have been no advances in the computer architectures of curremt

ms s/nce the 1950's. Seme so cal/led advarnces that might come to mind|’
memories,instruction pipelining, the microprogramming concept) :
oy computer architecture advances: they are processor architectuce or
organfzation advances. /n fact, sorme of these implementation advances can

De viewed as step backward in terms of computer architecure. ” [IMYER78]

"Not all architectural/ /nnovations have been of benefit to the lprogrammer. \
In many cases there has been |ittle concern for how the rew feltures would
affect the ease with which correct software may be prepared. | p fact, as we
shall see, many recem advances in computer architecture have presented
the programwner with new and difficult thallenges rather than making his
task easier. The imroduction of large, barogue jnstruction sets -- while
presented as aids to programmers -- may have had an oversal/ negative
software impact. The use of high Ievel languages may be inhibited because
it'is difficult t6 utilize ‘special architectural festures’ from withira
standard /anguage. TDENN79]

"
-

"It shouid not surprise the reader that traditional image machines such as
the |BM system 360, the UNIVAC 1100, and the DEC-10 are not optimal
program represematiens. They were conceived at |east a decade ago (and in
some cases their designs may be trac®l Dbck to a/most three decades) in .
contexts that are simply no longer valid.” [FLYN8Q]
. ° :
One possible reason for lack of advances in the architecture is that most

languages were designed in academic environments. whereas the machines were built by
*

- commarcial organizations
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1.4 Some Architedtures And Their Deficiencie:

: According to Myers [MYER78) all architectural concepts were designed and
impiemented in theA 1£Qs and modern des:gns e ,ust faster Fixed architectures and
changes in languages and problems have createda ‘semantic g:: .
The following are aggw reasons for this gap Data structural conaepts like arrays,
and records were developed In programming langusges, but no corresponding
development appears in the architectures Similarly architectural features to faciktate

string processing, procedures. block strugture and data representations are lacking Most °

of these festures are implemented solely through software. such as compilers, at the

cost of increasing cbmplexnty of_ these representations thus making executabie
representatuogs nefficient i

The following-studies ndicate that present day architectures are not effimem for
representing a user's p/ograrrx The decreasing price of harﬂware ‘rnay help ma:hlna
designers in the future, but for the moment. work needs to be done aq fmamg better
forms to represent programs

Very little interest has been shown in analyzing architectures with respect to data
movement, register ‘usqge, memory addressing and the overhead in extra instructions
needed tO execute a user s instruction. Several reasons can be cited for this indifference
The amount \of work -irwolved IS excessive and it serves little purpose in influencing
ndustries Many machines have to mimic popular architectures (such as IBMs) to be able
to use their software

The amount of memory. registers and cache associated with machines has, on the
most part, been arbitrary. The rise in computing spaad and decraase in hardware costs
a)e possibly reasons for manufacturers to proyude increased amounts of register space.
memory and cache without justifying the amounts Actual measurement of architectures.
if done by the manufacturers, has not been reported

A few studies report on register usage during program execution on

movements, and of Lunde. who determined the optimal number of registers for

Details of these and other studies a’e given below.
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1.4.1 Functional and Non-functional instructions
A study comparing the architectural constramts of the IBM 7080 and IBM 360
was reported by Flynn in 1974 [FLYN74] In this study, Flynn computed the ratio of
functional to noq-functnor‘nI toverhead) instructions He classified the various kmds of
mstructions as follows: )
M-Type instructions are mstructoon}\that move data arewﬂ{m doing any Quﬂl
computation on 2em {e.g LOAD, STORE. MOVE)
P-Type instructiops are mstructions that sequence through the program without
performing any tranformatiohs on data Ge.g‘ BRANCH. GOTO)
F-Type instructions are functsoﬁal instructions that pgrfa;m computations on the data
(eg ADD SUBTRACT. AND. OR) |
Fiynn defme.d M-type and P-type instructions as non-functional 3 ‘
Analysis was performed on the data collected by Winder [WIND73] and the
results inchicate that 7090 1s not mfenorto that of the 360 as expactad The IBM 7090
wis a machine with many hrmitations (it had only ongfaccumuiator. for exampie) but the
_ratio of functional to non—-functional instructions does not support it
IBM 7090 ‘
M-Type/ F-type = 196
Accurmu/ ator based M-typelFlsating point F -type = 1.24
P-Type! F-type = 81
P-Type/ F/o;vt/‘ng point F-type = '1467 s
Bm 360 | /
M-Type|/ F-type = 29.
Genera/ Purbose Register based M-type/General Purpase based F - type =
31, . ' ) . ! 4
P-Typel F-type = 25 -
P-Type/ Flosting point F-type = 45

Or summarizing
iBM 7090 - - 1BM 360 ’
[P+ M)F=28" [P+ MIF=%8% . : .

The results do not imply that the 360's architecture is worse than the 7090's The datios

&
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just indicate poor feq gl 7usagg. which could possibly bﬁ due to nefficient register

allocation by compilers the sixteen registers in the 360, between three and six are

used for addressabiity afiiliinkages. leaving the user s orogram with less than what might

is sometmes forcing unnecessary data movement Also the
e ;

be normally required anc

single accumulator 7090 s aﬂ;hsiae:tg;a cannot be declared superior to the 360, because

it has a Dgitation on the size of memory '/ can address The 360's registers no doubt
* L]

mncreased this hirwt
/

" Lunde in 1975 [LUND75] found the ratio of functional to non-functional

hsﬁu&tnms on the DEC-10 to be: ¢
MIF=18 PIF = 11 IM + PIIF = 26

Tha.!:;e ratios are better than those found for the IBM 7090, the IBM iél\j and the PDP-11
{quoted below). '

Neuhauser{NEUHBO] made a aatguedésmdy analysis of the PDP-11s architecture
and found the ratio of the functional to non—functional instructions to be

MIF =26 PIF =37 1P+ MJIF=63

These ratios are worse than that of the IBM 360, IBM 7090 or DEC-10's .

Tatvelen et o/ [TAFV75] emulated a stack -oriented machine with virtual memory
and 0, . or 2 address fieids, suritable for ther directly executed language DEL—Mary
Their machine gives the following ratios
169 P/F =087

M/F

The reason for the similarity of this M/F ratio 1s. according to them. that a certam amount
of data movement cannot be avoided However this smilarity could possibly be due to
the stack architecture
-Though it is difficglt
that there have been m

Bd changes in programming stylas. and that compilers may be
inefficient in allocating registers |

Measuring lar:hu atures 1s difficult and has not been done rigorously *Filynn's
distinction between ;::fmctn::n:l and non-functional mstructions is not valid for all
programs Sorting 1s accomplished by almost all non—functional instructions Not all ADD

better measuremeant would have been to count the functional and non-functional

T

to jdge which architecture is best, these figures suggest
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instructions in the source and the representation to compute the ratios.

!.4.2 Optimal Numbers of Registers

- The term ISP (mstruction set processor} gomned by Bell and Newell lBELL71] 1S
defined as the logical processor that processes the instruction set Differ ISP's have
different word lengths. numbers of instructions, general and index regnstf: An attempt
to determme an optimal ISP was first made by Lunde [LUND77) Experiments were
performed to test the ISP of the DEC-10 These consisted of analyzing register ife
Register life 1s the time between 1) the ioad and 2) the register's last use before loading
again. He used a sebt of_ programs and recorded information for every mnstruction
executed The test data were forty one progrirns coded in four languages (ALGOL.
BASIC. BLISS and FORTRAN) by four different programmers
| A two phased process was used to determine the length of ttme for which the
register was not active between two consecutive loads: Phase one detected register life
and classified 1t according to the activity and noted the descriptions nto a file Phase two
worked on the data collected by phase one and determmed the number of registers hve
at each time and other statistics. The results obtained were as follows:

About 68% of the lives( averaged over all data) are between 2 to 7 mstructions‘
long, 4% more than 32 instructions iong, and about 20% between 8 and 31 The lifelength
tor chosen individual programs varied between 4 and 24 mnstructions with an average of
about 12 nstructions. Only between 2 and 6 registers were simultaneously active.
According to his fmnal conclusions, ‘which are biased towards the programmer, language
and the compiler used, eight registers would be sufficient for the general register ISP
similsr to DEC-10. provided they-are not used for addressing or indexing Though this
does not mean that eight is an optimal set of registers for any machine, such techniques
can be used to evaluate lifetimes before deciding. on the number of registers. Lunde's
results are not valtd when the same registers are used for addressing too. But they
definitely are nexpensive methods that can gve meaningful results Similar studies to
measure the size of control store required. and the cache necessary to buffer
information have not been determined Techniques to sa;/e spa.ce and time have been

developed independent of the architectures Measuring memory accessing techniques is



also required

1.4.3 information Content of Addresses _ _
storm in 1877 [HAMM77] studied memory systems and CPU
memory ssing architectures by developing models. He apphed information theory
to an 'R + D architecture. such machines compute a memory address by takmg the
contents of a memory register R and-addmg a displacement D This type of addressing is
the most‘_commonly used Using different addressing schemes. based on the IBM 360's
formats. he found that the information content in a sequence of address computations is
less than 2% and the remaining 98% is predictable His paper suggests techmques for

better methods of addressing memory by ‘tuning architectures’

1's Architecture

Tanenbaum [TANE78] designed an architecture on the basis of the Mysis‘of
10.000 lines of programs coded in the structured high level language EM- 1. His main
1dea was to have a compact representation of the source language program The design .
- permits efficient rmptementataon of most frequently used statements, and uses a small
but fixed opcode and address field for the ones frequently used The architecture helps
minimiz@ program size and makes computation straightforward. ths architectures. on a
sample test of four programs, gave average compaction ratios of 2.2 and 34% on the
size of code (in bits) produced for the PDP- 11 and CDC~CYBER respectively

1.4.5 Analysis of the PDP-11's Architecture

Neuhauser [NEUHB0] made a detailed study of the PDP-11's architecture by
monitoring program execution and collecting statistics. He found the PDP-11s
instruotion set to be '?\e‘ffic'oent This, according to him, is possibly due to orthogonality In
architecture the ievel of orthogonality refers to the number of -overiapping concepts. A
lower level of orthogonality cmphee a large number of everlapping concepts such as
many different ways to decrement a reguster In the PDP~11 orthogonality is expressed
in two formi In combining arbctrary Operators and operand address modes and in pairing

operand data types and operators This orthogonality increased the required insﬁuction
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length. Neuhauser observed that a small subset of the mstruction set is used most of the
tme. Simple operators dominate the processor whereas the c:aﬂt:iax ones are rarely
used DELTRAN (the directly executable version of FORTRAN) has been found to be i,l
better executable representation than machine language instructions for the PDP-11's
architecture. He concludes that “substantial improvements can be made by structuring
processors for dedicated use in the high level language environment”
1.5 Different Mathods Of Eancuung Programs )

Including the conventional method of executing programs by compiling the source

program to host language instructions, the methods used to execute prgsa‘ﬁs can be

reprasented as

n intermaediate Language

Eigure 1.2, Program execution methods.

Work on the methods of a:&iﬁp represented above (excluding the

converitional method of compilationt can be émgefizgﬂ as
1 HigthQvel Language machines
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2. intermediate Languages
a Machine—dependent intermediatg language »
b Language - dependent intermediate language . .\
3. ' Universal Host Machines and Tagged architectures

o

1.6 High Leve! Languagé Machines k : \/

) | " - ) .

High Level Language ————— Host .
_fwith no intermediate s ) , Y

/

- z i

n c*'der to a\/oid aompilers énd smplfy operating systeh}s, some h:Ml
language n#chines have been designed A pogh level language machine is definedf;‘s a
machine \/hose emulator 1s capable of processing the high level language program
directly, /e,, without any comp‘uatnon, interpretation or creation of a new program form

|r\\ these machines the high level language 1s also the machine langusge of the
machine. It has been claimed that such machines are easy for the user to understand Chu
[CHUY75] has put $hese machines nto two clasgs; 4

1. .. Indirect execution é(cﬁhitecmre

2 drect axegution srchitecture

From the user's pomt of view both of these types execute the program ina hngh level
guage directly without any compilation. It is the instruction set of the machine that

}Uﬁgmshes them. Indirect machines "w{terprpt the source with the hardware and execute

it This execution technique is the same as implementing an interpreter in the hardware

An exanfple of wiroct execution architecture is the SYMBOL machine announced by

Riceset at. in 1971 ' : '

Durect execution architectures execute the high iqvel language statements durectly
with the hardware. Machmes of both kinds have been designed and built Chu et a/. hav'e
been working on orT direct execution architectures since 1967.

The first step towards a high level language computer architecture was the
Burroughs B5000. designed in 1961, and later improved to the 85500 and then to the

B6000/6500 These mactungs were not designed to execute a high level language



. polish “form. Anott

directly %.rl had most of the features necessary to exacute a mgh lé(ral language, such as
stacks, implemented in the hardware

Very few high“level language machuines have actually been built Notlble among
them are:

ALGOL processor: Anderson in 1961 [ANDEG 1] designed a processor for direct
execution of ALGOL 60 programs The architecture is an extension to the BS500 and has
three stacks that control states. arithmetic operators and operands

F-CF{TRAN processors: Melbourne and Pugmire in 1965 [MELBES] proposed a
micraprggaﬁmd machine for FORTRAN. Their machine, which could be used for small

FORTRAN programs, ewdluated arithmetic expressions by converting them to reverse

r FORTRAN machine which did most of the interpreting with the
hardware was designed by Bashkow|CHUY75) (

EULER processor Wirth and Weber in 1967 [WEBE6E7] develéper:; a
mlcrapragrammad prc:n;aSSch for the high level language EULER The processar was
mplamented on an IBM 360 and programs were executed indirectly It had a

microprogrammed translator that transiated the arithmetic expressions in EULER

© programsvinto reverse paliT strings and a microprogrammed interpreter to interpret it,

and a 360 machine laﬁguage program that controlied the two

PL/1 processor: Sugimoto in 1961 [SUGIE9] proposed a praeessar for PL/1. His |

processor campnnd a reducer to translate the source and a hardware direct processor
to interpret it "

None of the designs have been implementad. Only ‘simulations were conducted
and it is suspected that some of the techniques used would not allow large programs to

be executed on them efficiently

ADAM processor: Mullery et a/. in 1964 [MULLS;"L] designed a processor to .

diractly - executa a ldnguage also desu ; thern. The important feature of this

pn:n:essar is that it could handle varlable lendth data

SYMBOL processor Rice ané Smith iﬁ 1971 [RICE71] snnounced a high level
language machine SYMBOL. SYMBOL is one of t;ig figst machines actually built The
machine processes programs written in the high Iavall/a:guage SYMBOL, which is similar
to ALGOL, PL/1 and EULER The source pr@am 1S translated to reverse polish strings

N a

4]



which were executed by a central pra};éssarx (CP) Expressions are evaluated through
stacks where both the operands and results are stored
B1700 One of the problems with the SYMBOL machine was its restriction to the
one language SYMBOL This was overcome by Wilner in the B1700 [WILN72] This
machine placed the language's interpreter in the control store. thus tuning the machine to
the language being executed The B1700 also exééuted programs thrgugh intermediate
languages
APL processor. Hassitt [ZAKS71] and Abrams|CHUY75] were among the many
pecple that developed APL machines ‘LAF’L, as a mathematical language allowing dynamic
data types, is easier to interpret than to compile to its machine language reprasentation.
Hassit's design translates APL source to an;i"tgftﬁédiata form before interpreting it
AEROSPACE processors Neilson in :‘197',3' ICHUY75] reported an serospace
processor to implement a subset of SPL (Space Progamming Languagel derived from
JOVIAL |
Since SNOBOL is a string manipulation language, and the von Neumann type architecture is
very unsuitable for such languages. huge preprocessing was required
HYDRA processor Meferland in 1970 [MCFA70) reported a HYDRA processor to
suppqrt the high level language TPL TPL 1s similar to EULER and has rich data structure
capabilities |
Altough all the above machines are kﬁawri‘as high level language machines most
of them actually have an intermediate phase (language) for execution. )
Solving architectural problems by designing high level language machines did not
attract much interest, perhapsdor the following reasons
1 Though the compilation time is saved, interpretation is complex, partly because
during interpretation values are not bound to identifiers
2 High‘LgvallL;ngugge Machines become too strongly biased towards me’p,articular
language for which they are designed.
3., Not encading the identifiers in the program makes the executsble representation
large.



hardware impiementation
interpretive languages such as APL, BASIC. LISP have been found to be better suited to
for such machines than sequential machines. Functional languages are being developed as
ar;other viable alternative They have not been proved to be good so far but Backus et a/.

are still working on them

1.7 intermediate Languages . ‘
Between the high level language and the host level language lies a range of
possible program representations.

Language Oriented
Intermediate L anguage

High Level

Language
\

Language

—— e e . — —— — — ————

Eigure. 1.3 Range of program representations. ; o

An ordinary compiler makes several passes, each pass giving an intermediate form,

before producing the binary machine ianguage equivalent of the source program. o

"Compilers can be ésigned to generate intermediate forms as desired. .

Such intermediate forms have been obtained earlier for various reasons. An
2

important reason was to split the job of compiler writing into two phases Another

reason was portability. Intermediate languages were also hélpful in implementing a new

-~y

language on a machine or rewriting only one section a compiler Originally, the last reason
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was considered most irrporpmt ' >

The first format study of intermediate languages can be traced back to 1958
 when a committee was set up to design a universal intermediate language UNCOL for an); :
probiem oriented language (POLNSTRGS8] This was an attempt to partition the job of
compiler writing and save half the time when implementing any new language on a
machine. The idea was to transiate every language into a machine independent
intermediate language which could then be compiled into machine code for any machine.

M source ‘languages N target machines

and

M transiators

Eigure 1.4, Language transiation, any ianguage to any machine.

{1

-

it there were | source languages and J tsrget machines this method would reduce the
Wr of transiators to be written from M#*N)to M+ N).

The project did not meet with much success because there is too littie in common”
among langusges and machines. It was realized that some restrictions on either machine
or language were necessary The consensus was to give up on the universality and select
langauges and machines with common features.

Apart from issues of reducing the amount of compiler writing and of portability,
intermediate languages were also built for interpretation or direct microprogrammed
execution. Some intermediate Iangua;es used for direct microprogrammed execution are:

1 The intermediate language CTL used for ALGOL 60, FORTRAN, and PL/1 for
execution on MUS [CAPO72] ' '
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 The OCQDE generated as an intermediate langusq‘ﬂ [RICH7 1]

2
3 The ZCODE from ALGOLEBC [ELSW79]
4 The mtermediate language of ALGOLG0 [RAND64)

There are two other forms of intermediate languages. The language oriented and

machine orented forms are discussed in some detail below

1.7.1 Machine Oriented intermaediaste Languages

i =
Bour ’gliUseéfm chire oriented interme. diste languages
L 3

'+ A machine oriented intermediate language is often used to partition the job of
compiler writing especially "to avoid rewriting entire compilers to implement several
, languages on one machine However, compiling a source program into a machine oriented
intermediate langusge s more difficult than translating it-into a l;ﬁguaggiaﬁeﬁtad
intermediate language A machine oriented intermediate form s aasy to exscute on 2
class of similar architectures.



1.7.2 Language Oriented intermediste Langusges

%

Eigure 1.6 Use of language oriented intermediate languages.

Hoevel analysed the tme requirments of three modeils of program execution
environments [HOEV74] He found that interpreting a language oriented intermediate
languages was the most efficient method of executing programs Such intermediate
languages have been classified by him as DELs. for Directly Executed Languages A DEL s
defined as a program representation that i1s close to the high level language
ngresgﬁtxtian It 15 a compact representation in which, for each operation in the source,
there is at most one correspondirig operation in its DEL representation The symbois are
in a one—to—one correspondence with the Db jact names used in the source program The
It therefore 1s simple to compile but complex to interpret

Earier work on language oriented intermediate languages was aimed at enhancing
portability Some of this work was;

1 BCPL was compiled to a maq"une independent intermediate language(RICH7 1]
2 PASCAL to machine independent P-CODE [ELSW79]
3 ALGOL 68C to machine indepandent Z=¢C)DE IEﬁSW%”S].
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Language oriented intermediate languages. particularly those developed for direct
execution, have some useful properties. such as. ] o
1. The intermediste form is close to the high level language reprasentation This aids in
debugging

2. For every action (ADD. SUBTRACT) in the source program there is only one
corresponding action in the intermediate form This results in fewer overhead
instructions

3. - There is a one-to-one correspondence between object names in the source
program and object names in the intermediate form -’ d

4 The intermediate form is a concise representation of the program

5 The order of operation in both the source and the intermediate forms are same.

Broadly speaking, tivefe forms. when executed on a soft architecture’ corresponding to

the fanguage, are efficient because L

1. The inefficiencies of compilation are avoided by k{epmg the intermediate leve!
closer to the language - '

2 The mefficiencies at the machne level “are overcome by interpreting the

»

intermediate form on a soft architecture’ suitable for the language.

1.8 Universal Host Machines d )

Wut‘h the advent of microprogramming it has been possible to mplement ‘soft
architectures. defimng 8 machine suitable for the langusge on the host The ease and
etficiency of such an #mplementation depends on the architecture of the host machine.
Some machines are designed to allow the emuiation of several machines. Such machines
are refered 10 as universal host machines Some of the machines which might be classed
as universal host machines are the Varian 73, Burroughs B1700/B1800, Nanodats QM- 1
and MLP-900

The Verian 7‘3 has a very complex horizontal microinstruction format which is 64

bits wide

! A-soft architecture is a user microprogramabie architecture eg B1700 such that the
instruction set for the programmer has to be defined by microcode.

- r~



- The Burroughs B1700/B1800 is a uique kind of machme with no instruction set
of 1ts own Though it has not been very successful commercially it is of great mterest to
machine gesigners ft was designed so that the soft architecture for any particular
language can be put on it before executing it thus making execution vsryr efficient In
contrast to Varian, B1700 has a 16 bit wide vertical micromstruction Varying size
opcodes and bit addressability are among the unique features Programs are not compiled
but rather transiated to an intermediate S-language and interpreted through
microprograms. This machine can e classified as an intermedhate language machine

However: there are other problems with interpreting the S-iangusge on
Burrough's Ei?DD/BéDD The decoding of instructions. though clammed to be afficient.
is not clearly defined in the available literature. nor is the bit addressing overhead given
The user must load the corresponding interpreter before executing a program in a grven

The microprogramming techniquas of the Varian 73 and Burroughs B1700 have
been combined in the Nanodata QM-1 The QM-1 uses two level microprogramming

(micro and nano) An 18 bit vertical format is used to access a 360 bit horizq
microinstruction This double format and the unusual word length of 18 bits make
QM-1 very flexible. Many machines inciuding the PDP-11 have sﬁee:s{fuliy bnﬁ
emulated on it

. 4
1.9 Tegged Arahiﬁet%lﬁs

A major step in closing the semantic gap and devjating from the classical von
Neumann model has been to meke all data words within memory identify themseives. in a
- von Neumann architecture, the types and lengths of data are defined by the instructions.
An attempt to deviate architectures from von Neumann type architectures was made by
. introducing tags

Tags were originally suggested by Illiffe [ILLIEB); for data and address
descriptions, in the design of his Basic Language Machine (BLM) Illiffe's approach was to
reduce the number of instructions by specitying data types with the data instead of with
the instruction Tags can detect errors such as adding a real and a flastlng point nurnber

By setting some tags as ‘escapes. protection and nvalid addressing can also be handied

A\

%
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The advantages of tagged g'ghrtactnfgs and ther usefulness in the production of
software for compilers and operating systems, in debugging. in register allocation and n \

Not much importance has been given to tags by ﬁgmfact;rars but smmyilar fieids
have been used for purposes such as specifying length of ‘data in the Eu?rm.ngﬁs B1700
and specifyng the parity m the IBM 7040

recent design using tags is the SWARD machine das-gned by Myers
IMYERT?lpln SWARD's architecture tags have different lengths and formats The first
‘Tcn: brts are stways fixed-to defne the type of storage area

o T [

Eigure 1.7, Tag format in the SWARD machine

[ 4

The only apparent disadvantage to tags sggrﬂs 1o be the extra storage requwred to
specify the tags Myers gives specific examples to show that the extra storage
requirement is not necessarily trua
<

Tags are the first step in designing machines where data and instructions e

distinguishable, and should be ugeful In closing the ‘semantic gap’
. ' icv
NP 1

i.ﬂ] Conclusions

Solving problems |afficiently Ahas always been difficult With the many different
kinds of programming ages it has been difficult to design a smgle machine which
can reasonably match All kinds of applications An expensive study to estsblish the
Quantitative ana quaiRative evaluation of architectures was made by thk CFA in

1977IFLLL7 7]



/

Un‘til machmes are designed to suit programming langusges. directly interpretable
representations. are the only alternative Such representstions have shown substantial
mprovements mn tme and space requvrements Fxnctnonal languages are aisc bemg
designed Recently mn [FLYNBO) it has been shodn’ that directly mterpretable forms, as
compared to machine language level reprasentations, are also efficient for distributed
processes. The ultimate §oal 1s to provide an efficient representation for every individual
program. and some work n this direction has boen done by S:l\d«dSAlN?Ql .

",



2. Analytical Conditions Fordimerpreting Programs

Running programs through an mterme&uate language or machine language representation
iIs a two phase process Phase one s to transform the source pra-grm nto its
intermediate lahguage or machme language representation and phase two s to execute it
The conventional method of running a program 1s to compile it to the n‘m:htne language

equivaient and then execute 1t A viable alternative to this is to transiate the source

program to an intermediate form and then mnterpret t The basic difference between
these two approaches is that &he machine lawgﬁage.represgﬁtatuén 1S ﬂva short
{does .*vot require many machme level mstructions to execute one representation
- instruction) but is staticafly long (requiring 2 lot more storagel. On the other hand language -
dependent intermediate languages are dynamically long and statically short Dynarmicaily
long representations require time to decode, but smce fewar instructions are fetched the

storage access time ts small

This chspter anatyzes and cosaaares the time required for executing programs by

these two methods, compilation plus direct execution versus transiation plus

nterpretation.

A Directly Interpretable Representation is defined as an ntermediste language

representation of the source program which can be interprated on the host without

. being compiled. It 1s designed to make the execution phese efficient by reducing the time
. e ‘
to fetch instructions and reducing the number of overhead mstructions

2.1 Directly Interpretabie Representations

L
The size and form of a directly interpretable representation (DIR) makes it dfinct

from both a source program and a representation in machmne iangusge The size of the

directly interpretable representation can be made smaller than that of the source program

because:

i

Variables in high level programming lang_uages use symbolic names which take a ot
of space to store Encoding them in binary reduces this space

Arithmetic gxpressions can be replaced by parenthe5|s=Eee forms (like reverse
polishi to sa%e space M

Symbol table look -ups to find values can be avoirded by using hash technigues

26
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Drrectly nterpretable representations are also distinct from the machine language
ecpuxalents of source programs When a source program is compiled nto machmne
language instructions several machine language nstructions, requirng more space to

store are needed 1o ent one source language operation Smce accessmng these

hons 1s tme-consuming, execution 1s slowed down If instaad of

machine language instr
this static expansion the source program can be encoded and expanded dynarically,
N / execution speed would be ncreased
The following section summarizes earher analytical work done to show that
executng programs thwough a language dependent mtermediste language is more
efficient thin executing mactune langusge representstions.

2.2 An Anslytical Argumaent for Interpreting ‘

Hoevel [HOEV74] evalusted and compared the tme required for executing
programs in a two phase procaessing system(Figure 2 1) The two processes required are
transistion. or compilation. and interpretation. or dwect execution The two processes are
done by programs which run on a base machine. The input to phase one 1s the source
program and the output a machine language or an intermechkste language representation is
the input for phase two |

N addition to assuming that the code produced (by the compiler) is ‘exact the
analysis assume the folh:ﬁmg
A machine has two levels of memory, a main store (wms) and a writable control store

(wcs). The control store is a fast memory which, in addition to stormg microcode can

control store is R times lass than the tme required to access the main store The access
width of the control store is at least as large as that of a machine language instruction (all
machine language instructions are assumed to contan the same number ;:f bits). The
access width of the main store is not greater than that of the control store

Given differgnt accessing speeds for the two memories, the time required for
executing programs Is dominated by the time to fetch instructions Hoevel computed the
time requirements for three different methods to determine the most efficient These

three methods are analyzed and compared below
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In thys method the machine language equivalent of the source program s itared sﬁtnrgly
in the main store and executed by fetching one Mrstmerction at a time Time required for
such execution s the time required to fetch an instruction and the unoverlapped time

*
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requwed to éxecute it All machine language instructions are assumed to be of the same
length '

Though 1t 1s not specifically stated the machine language mstructions are the same
‘as Microcode nstructions that control the gates directly and do not reuire any decoding
or microroutines This 1s a very important assurﬁptngn Compiing a source language
program td exact microcode efficiently 1s NP-hard Hence method A can be considerad
practical only if 1t 1s possible to compile the source program into exact microcode, and
only if the ime to fetch an nstruction 1s not more than the tme to execute the
INStruction so that instruction fetching and executing can be done in paraliel

The ume requred for method A 1s computed as follows
If wmi s the width of machine language instructions, wms the width of man store and R
the cycie ume to fetch trom mamn store. then the time requred to fetch a machine

‘ .

language instruction from main store 1s wmi/wms #* R (It i1s assumed that wmu is an
nump?o of wms)

7 o«
If Ns the total number of machine language instructions executed then the time

required for the executiop of program is computed as follows
QUi ! prog mp as/

-

T(A} = N (wmirwms & R + EM)
where EM 1s the unovertapped time to execute all Instructions from mam store

Method B
in this method the machne language equcvabem ot the sauﬂ:e program is axecuted
through the control stbre which, 18 assumed to cantann blocks of executable code in

addition to the mterpre&er

Source Language Move_ Segment
Program mr————— - trom Mauainstore
. 1o Fast Mamory . ll Ho
Compiled to ' 1. Check if Next
Microcode ‘ Instruction (o

be Executed s
—— n Fast Memory
Required Segment B | 2. Execute
n_Fast Memory | “TL__Micromnstruction

Microcode Divided
nto=~Segments In
Main Store

FétcK Required _ __jL.ves
Microinstruction® i
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Eigure 2.3 Flowchart for method B

Since the machine language equivaient of the source program is long and carnot
fit into control store, it 1s str:xrﬁ i main store and blocks of code moved into control
store as required Individual rnac:hme language instructions are fetched from control
store. whnch takes much less time than fetching from main ‘store. and executed
Execution contmues until the rquvreduﬁsﬁuc:ti@n is not in control store. At this stage a
fault’is said to have occurred. execution stops and the required block of code 15 moved
into cor.\tr'o‘ store. ‘

The time required for the execution of all instructions from control store is

N+ wmi/wes + EC)

where N 1s the total number of mstructions executed, L 15 the time to lotate a rgr:huja
language instruction in control store. wcs the width of control store, wmi/wcs the time
to fetch an instruction from control store. and EC the unoverlapped time to execute all
instructions from control store. . .

LI
The time to move a block from ain store to control store when a fault occurs is

Tbioc + wbloc/wms # R
where Tbioc is the time required to locate the block and wbloc width of the block.
Hence, the total time required to axecute the program is

TB) = NF» (Tbloc + wbloc/wms # R) + N# (L + wmi/wcs +ECH
where NF is the number of faults.

Method C

The previous two methods require a non=trivial compiler. Another maethod of a?an;:i;tiﬁg
source programs employ\s a trivial translator and a non—trivial interpreter. In this method
_tr'we~source program is translated into a directly interpretable rapresentations A trivial

transiator keeps the intermediate program form tiose to the source language. Such an
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intermedhate program form will be termed @ mmgh level drectly interpretable

representation { DEL ~directly executable language in Hoevel's terminology) for the rest of

this thesis

Source Language ———————%DFL
Program Equivalent

Calculate Address

of Next instruction. _
* ’ Fatch Instruction,

Dacode instruction

in Microiastruction(l, #r)

[gxma.c ) ‘ 3 ri*’

Routines in - - — éﬂ .
Control Store Fetch
Microinstruction
e ______For "ait
Microinstructionil, #r)
. Whaen Done Then. —

2.4 Flowchart for methad C

The interpreter determines t address of the mnstruction to be processad
fetches the instruction decodes 1t and intiates the corresponding microroutines If

TADDR 1s the time required to determine the address of the next high lev’el,,f)lﬁ program

instruction to be execute O the time to decode. wdi the width of high level DIR

program instruction, then the time r8guired for the execution of an entire DIR program s
TIC) = ND = (TADDR + wd/wms#R + DECO + NM (wms/wcs + ED))

where ND s the total number of DIR instructions executed NM is the average number of
machine languagg instructions executed for each DIR program instruction, and ED s the
unoverlapped time to execute all the instructions

p

Comparisons -




The number of instructions executed N, ND. and the faults NF depend on the
source program and its_translators (assumed to give the best code) To eliminate these

dependent variables the following are defined

FA: 100 » NF/N the fault rate

Fl. TADDR + DECO the igtarpreter overhead

PH NM - N/ND the high level DIR overhaad

NE: NM - Fi # (N/ND) ef fective machine language instructions gxi‘;i,.rtai

'For Method C to be faster than Method A, TIA)-TIC) must be greater than zero,

giving

Ne{wrmi/wes)—(wd/wes) \

The denominator of the right hand side of equation 1 is always greater than 0.

For method C to be faster than method B

| —(SHEAY 10Q+EMMER HWII/WESH < R oot (2)
twseg/wmslFA/ 100~ (wd/wms)

depending on whather the denominator is negative or positive. -
Equivalently, axbres%bg the difference, of time rate we get required for method

B and method C. in terms of the fault

-3

FA > 100%PH-

- '(S*ssg wmshR

Equation 1 gives the minimal value of R for which interpreting an intermediate

language would be faster than executing machine language instructions on the processor

a program is grester than the tme requred @ fetch one wgh levél DIR instruction to
control store. Hence the denorminator in (1) be positive. The value of the.right side of

equation 1, according to the Hoevel. is les n 2 for an IBM 360. the Tucker and Flynn
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{FLYN7 1] and the QM- 1 machines. The time: to access main store is more than double the
time required to access control store.

Equation 2 gives the minimal and maximal vaiues of R in buffered execution The
denominator in equation 2 is the difference between the time to move faulted blocks into
control store and the time to fetch one high level DIR instruction. Uniass the fault rate 1s
0. the denominator s positive. The term L makes the numerator negative thus making
interpreting a high level DIR an efficient means of execution for any fault rate

If R s between 4 and 16, it 1s argued that the numerator of the right side of
equation 3 is always negative and hence method C is faster than executing machine

language representations (method B! for any faultorate

. 2.2.1 Criticism and Discussion
Hoevel's work is a theoretical argument to justify executing programs through

high level DIRs It does not put any condition on the size of high level DIRs but rather sets
cdnditions'on the ratio of the cycle times of main and control stores In Methods A and B
the languages considered are assembler type languages The analysis ignores transiation
and compilation times. which are reported to be about ten percent of the system time
Also the code produced by the translators and combulers 15 assumed to be exact It i1s
possible for the value of PH # (NM - N/ND) to be negative in which case the argument
fails.

o T T nn A T BE AR TEE Oy
interpretors are available Hence they are not as easy to determine as clamed It is also
claimed that under current technological developments the factor L (which is the time
required to locate a microinstruction in control store) would always keep the numerator

of the right hand side of equation 2 negative With the increase in the size of fast

memory and the decrease in the speed of accessing, the factor L may not always make

the numerator negative. Much depends on the high level DIR overhead PH This factor is

difficult to evaluate

./

Though Hoevels work 1s the first of its kind no definite conditions for .

interpreting DIRs have been determined. Considering all the variables ignored or not well

defined it should be possible to determine conditions under which executing DIR
4
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programs would be efficient

2.3 Executing Programs from Writable Control Stores

It has been observed by Knuth [KNUTE7] that more than half of execution time-is -
spent c}niless than 4% of a program Liu and Mowle [LIUM78] devised facmtjn;es‘ta
detect this smali portion of the program and put it into control store, thus speedng up
execution In order to compensate for the time required to fetch a program inte control
store and load data mto registers, 2 loop has to be executed a certan rmrmmum number
of times Assuming that ali operands and results occupy one memory word each the run

time Overhead of loading and restoring inner loops is

TI=3«MwuFleN+3«MweF2aN+TpsMFI1+F2) *N
N+ Ty

T1 be the overhead in preloading and restoring variables and operands, ! ,
@ Tp be the average execution tme of a microinstruction in terms of main memory

cycie time, |

M be the main. memory cycle time,

F2 be the proportion of machine instructions that require a resulf returned to main

* memory, and é. K

F1 be the proportion of the machine 'rﬁstructi@ﬁA; rgqui;*g a8 main meamory
reference for each operand !

3eM#=F]=Ns the trme required to praload operands

3#M#=F2«Nis the time needed to restore results, and

TwpPo«M#F1 + F2) # N is the time to g:eéute the restoring and preloading

- microinstructions.

When a loop is implemented in microcode and stored in control store there is no
need to fetch instructions, to store resuits back into the man memory. ‘to fetch
operands, or to decode instruttions This results in the sévv’mg of exscution time. The total
exacution time thus saved is

S1 = MeR1aN + MuR 18F 18N + MRR 1#F 28N + MR 1#DwlN

3
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f
where R1 is the number of times je loop must be executed to recover T1. S1 the total
‘time to gxe«:utglcap R1 times, D  average decoding time for one machine instruction mn
numbers of Mmam memory cycle tnm& .

____ The first term s the time s&v&d by not fetching instructions, the second term is
é!e time saved by not fetchmg oc#ands or results m ragisters, third term i1s the time
saved in storing results and the usthm-\ is the time saved in decoding

The time needed to fes:’vir the overhead 51 shouid be equal to T1 Equating
these two and taking the worst case F1 + F2 = ‘ |
R!%‘liﬁ =(3+Tp/2+P
'

Similarty the overhead of dymamic dverlaying is
|

R3 = CL/(1 + (F1 *"fZ)-t-D c:r' CL/1+D ifF1+F2=0
whera R3 is number of times andlh mner loop microcode block must be executed for
the overhead to be recovered. C *he average number of microinstructions required to
implernent one machine code, L the fitia of micro and main store words.
These resuits give a clear hu of what sections can be microcoded and when
The resutts. though not directly deweloped for directly interpretable reprasentations, can
very easily be implementad for further gain in speed However, t'hls requires space in

control store. which can be ::btamd by curtailling the size of the interpreter.

2.4 Conditions Under Which iﬁt,i@f'-ﬂng Is Efficient

through. syntactically and semanticaly and a surrogate produced F‘hase two IS to execute

the surrogate in one of the following forms

1 if the surrogate is in microcode 1t i1s executed directly by state transitions
{(hard-wired mnterpretation) s
2. if the swrogate 5 in ho 3 language it 5 interpreted and executeditrivial)

{microprogram interpretation .

a T .
3 if the surrogate 1s at a higher Jevel form then interpret it and then execute
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(nterpreter mterpretation)
On the other hand. if the pn:vg?arﬁ and machine can be brought claés together, one of-
the phases would bacome trivial That is if the programmer expresses the program in
host's instructions then translaton 15 trwvial a:"\d if the machine exscutes the translated
code then execution is trivial since no interpretatibn is required.
Excluding the methods in which one of the above phases is trivial we have the

#

following methods for comparison
- Translation . ~ Interpretation

Compiling source to host ' Executing host code
machine's instructions

Translating HLL to an Interpreting surrogate
mtermediate language and exsecuting

Transiating HLL to U code ~ Executing the surrogate by
. state transition

Among the practical methods to execute each of the surrogates are to keep the
surrogate in a fast memory and execute taking one instruction at a time. If the surrogate
is larger than the available fast memory then store it in main store and execute by moving
in the required blocks to the fast‘maméry
Conventionsl Method Of Executing Programs
Method 1

In this method the source language program i1s compiled to host-langufige
instructions (conventional method) and stored m the computer's mam memory Blocks of
machine language instructions are brought to control store and executed by fetching one

instruction at a time from the control store

Source program ———> Compiler ———> Host instructions ———> Simple interpretation

==—>Exacution
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The compilation is complex. resulting in large executable program repreasentation but
execution is straight forward The sequence of steps for such an execution are
1 compile program z | o
2 fetch blocks to control stﬁe
3 if nstruction needed I1s in control store execute it through corresponding

fMICroprograms. else go to 2.

By a sequential techrique or otherwise blocks are brought mte the control store

and execution continues until a fault occurs. When a fault occurs the required block has
to be fetchad. 6

Time required to move in a faulted block to control store is

=3

~where TS is the time required to locate a block in main store, WS1 is the laverage)
number of instructions in a block. TM is the time to fetch a machine language mstruction
from main store to control store. and WS2 is the time required to move a block from

control store to main store. Moving the block from control store to main store is not

Time to axacuta an instruction mn control store is

TLC + TIF + Te..............

where TLC is the time required to locate a machine language instruction in control store,
TIF the time to fetch a machine language instruction from control store for execution, Te
the unoverispped time m fetching-locating-executing a machine language instruction.

Hence, the total time to compile and execute Is

TCH+TDEM+ TEM+NF(TS+WS 1 *TMI(INF +PSWAVITLC+TIF+T@) ..o ( 1.3)

where TCH is the time required to compils. TDEM the time to decode all the machine
language instructions that are executed. TEM the unoveriapped time for moving predicted
blocks, NF the number of faults in blocks of machine ianguage mnstructions, PS the
number of blocks predicted and. AVI the average number of instructions executed per
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Exscuting Intermediste Represantations

In this method the source program is'transiated to an ntermediate representation
and stored in the machine's mam store The surrogste is executed by “fetchng one
mstruction at a time decoding and executing the corresponding microroutine

ot

HLP —————=> Transistor ———————>interpreter ——————-> Host

All DIR mstructions are fetched from man store. one by one, decoded and then

executed The time required to locate, fetch and decode a:smgla DIR mstruction would be

where TFA is the fime to locate the DIR instruction needed for execution. TFD is the time
to fetch a DIR to control store and. TDE the tme to decode a DIR instruction

Time req;ra\gd to execute sach DIR mstruction decoded is

TLC 4 TIF # T@ 1 e e 2.2)

where Te 1 is the unoveriapped execution time

V

Thus the total time required is \

TCD + NDE( TFA + TFD + TDE + NDI (TLC + TIF +Te 1)) . emmense st sas s , (2.3)

where TCD is the time required to transiate from source language to DIR form, NDE the
number of DIR instructions e:ecute; and NDI the average number of machine language
lmlcrg code) mstructions per DIR instruction !

Note: for each instruction in DIR program instruction decoded a set of microinstructions

are obtained which have to be executed for the equivalent operation in the DIR program.

Execution With Buffering .
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Method 3 .

In thus method the DIR program is executed by transferring blm:ks of nstructions
to a fast memory. It 1s assumed that biocks are moved into control store m paraljel to
execution The sequence can be broken by branch mstructions, for example. requiring
some other block to be fetched to continue execution When a fault ocours the
execution stops until the required block is fetched Also with the parallel fetching of
predicted blocks there could be a wait tme associated with moving in the blocks.

The time required to move all the faulted blocks into the caﬁtrél store 1s

where NF2 is the number of fauns TDS s the time to locate a block. and WDI the width
(height) of a block

if TDO be the unoveriapped time for moving blocks then unoverispped time for
transfering blocks i1s

8L 1516 L W G TR ———————————— < b ]

giving the total time to translate and execute s

TCD+PS*TDO+NF2(TDS + TFD*WDI)+(NF 2 +PSWNDS(TDL + TDE +NDKTL + TIF+ Ta))

where TDL is the time raquwed to locate a DIR program nstruction in control store, and

NDS the number of DELs per block.

Execution By Compiling Source To Microcode
Method 4 Y
In thus method the source program is compiled directly to host microinstructions

producing microcode which can be directly executed by the host

High Level Language ——————> Compiler ——————> Host code

-
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Generating efficient micromstructions that Gontrol all the iternal paralielism is
known to be an NP-hard problem and hence compilstion would be very compilex
Execution time wculd be mmimized dependng on the -!fﬁt:iﬁﬁy of code generated, but
the resutting prog‘fn would be very large Tr'us' method could be advantageous if the
source program 1§ sxecuted many trmes and the compile time and the time to intarpret
are the dommating factors. ¢
Time to compite and execute by fetchmg one micromstruction at a time to control

store woulid be

TCOM + (TLM + TFM + TIF +Te2)

where TCOM is the time required to compile to fﬂlﬁﬂﬁaﬂg, ™ ﬂ; time requrad to
locate micromnstruction in main store. TFM the time to fetch a micromstruction from main
store, and. Te2 the unoveriapped time to fetch-execute instructions.
/

Executing Microcode with Buffering
‘Method 5

in this Méadé‘g microcode of Method 4 is executed by transfering blocks mto
control store As in method 3. blocks are moved into control store and executed The

Fd

time for moving in 'faulted blocks s

NF3 (TS2 + WS3sTM)

where TS2 is the time to locate a block of microinstructions in main store. NF3 the
number of faults for microcode blocks, and WS3 the width of a micro code block. Time

’c locate. fetch and axacute a microinstruction from centrol store 1s

NC « (TLC + TIF + TFE)

where TFE 1 1s the unoverlapped time to fat;h and execute.

The total time required is
L]

TCOM+NF3(TS+WS3#TM)+PS(Te3)+INF3+PSHNIS(TLC+TIF+TFE 1)



where Te3 is the unoveriapped time for pridicted blocks. NIS the number of instructions

per block. TFE 1 is the unoveriapped execution time.

2.4.1 Comparison And Discussion * =

Comparispn of Methods 1 And 2 T

For execution by fetching one DEL program -nstr;n:ti@ﬁ at a time imethod 2) to be faster
~than execution with blocks of host larm mstructions (method 1) we must have

(TCH+ TEM+ TDEM+NF(TS+WS*TM)+(NF+PS) # AVKTLC+TI+Tel) o
' - (TCD+NDE (TDE+TFD+TDE)+NDE*NDITLC+TIF+Te 1) > 0

The part for difference in time to execute the executable representation from the

control store is

(NF+PSMAVITLC+ TE+ Tall~INDESNDKTLC+TIF+T@ TN > 0 e e (81 1)

INF+PSWwAVI is the total micro instructions executed from the compiled version, and
NDE*ND! the total micro instructions executed through the DIR. Since the DIR program
representation is compact and small the condition is always true, and the difference
would depend on the size of DIR program. and the efficiency of interpreter

The remaining part is the time for fetching the executable representation (micro

code! to the control store

(TCH+TDEM+TEM+NF(TS+WS 1#TM))~(TCD+NDETDE+TFD+TDE) > 0 oo (5.2)

From the above. the dif ference in tme to compile is
TCH + TDEM - TCD > 0 or TCH + TDEM > TCD
{
The nequality 1s always true because the time to compile to host instructions 1s always
greater than the time to transiate to a DIR (DIRs can be obtained with one or two passes
of the compiler, whereas compilation needs more) program
The remainung part of the equation is
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NF = (TS » WS1 + TM) - NDE (TDA + TFD + TDE) > 0
NF » (TS » WS1 + TM) > NDE (TDA + TFD +TDE)

For this to be true the size of the DIR program should be small which makes NDE small
and there should bé sufficient parallelism In the worst case the number of faults could
be zero in which case the other two differences should be large enough to make

interpratation efficient otherwise method 1 would be superior to method 2

NE>NDE « (DA +TFD +
(TS *WS1 + TM)

This factor determines the number of faults for which interpreting would be faster than
executing through compilation In case NF is close to O the exscution of DIR will have to
be paralilel enough to make the denominator negative Alfn:ther possibility i1s to maika 51
large enough to compensate for this difference It is apparent that a major famor in
making the DIR faster than conventional exe:mm;:s to make the difference 51 larger
and this can be done by having a compact DIR program, and interpret it efficiertly It can
be concluded that direct execution of a DIR program would be efficient when the fault
rete in executing the buffered host instructions is high and the difference in 5 1 and 5.2
is large enough to compensate for 3 The right hand side of 5.3 depends on the
parallelism in the machine If the machine is sufficiently parallel then even very few faults

can make interpretation faster

Execution of blocks of DIR Versus blocks of Compiled Version
For maethod 3 to be faster than that of method 1 the difference in time of method 3 and

method 1 should be greater than O

(TCH+TDEM+TEM+NF (TS+WS 14TM) + (NF+PS) % AVI (TLC+TIF+TE) )
- (TCD+PS « TDO+NF2 (TDS+TMD*WDI) +
(NF2+PS) » NDS(TDL + TDE+NAI (TL+TIF+TE}) > 0

Analyzing the above equation we get the difference in time to move all the required

blocks to the control store as

(TEM+NF(TS+WS 1#TM))=(PS*TDO)+NF 2(TDS+ TMD*WDI) > Q

,f
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Since block size can be adjusted to have overlapped transfer and execution. TEM and

(PS#TDO) can be neglected giving

NF(TS+WS 1#TM)> NF2(TDS+TMD*WDI)

or » .
NE_ > + | et e e oo e SO . - 35 )
NF2 TS+WS 1«TM

Hence,, the ratio of the number of faults should be greater than the ratios of the time to

move in a block This 1s always true ' -

The difference in time to decode the saurce\'pfggram to microcode is

(TCH+TDEMI-(TCD+PS+NFWNDS(TDL+TDE) > 0

TCH+TDEM > TCD+PS+NFNDS#TDL+TDE) .. e S (- 3.
TCH+TE)9/|—TCD > (PS+NFNDS(TDL + TDE)

The difference in time to compile and decode to micronstructions and to translate the
DIR program should be greater than tme to locate and decode all the executed DIR
program instructions. This 1s difficult to achieve uniess the number of DIRs actuaily
executed i1s very small, and there 1s good parallelism. But m method 1 compilation time is
the time spent on compiling the complaete program whereas in decoding DiRs only the
required instructions are decoded which saves time.

The remaining portion of the' expression is the time to executs the microcode in

the faw ' -

(NF+PSWAVI(TLC+TIF+Te)—((INF2+PSHNDS#NAITLC+TIF+Te)>0 ...

Since number of microinstructions executed Yhrough DIRs is less than the machine
language instructions executed equation 6.3 is al'\ﬁvays true.

Conclusion: 6.1 and 6.3 can easily be more than 6.2 but for a large number of
runs all other factors excepting TCH (time to compile) get multiplied by the number of
runs and the difference in 6.2 would increase. For a large number of runs the difference
in 6.2 could become a dominating factor and thus make interpreting slower

/
Comparison between method 2 and 4
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In this section the method of compiling te micromstructions imethod 4) and executing is

compared to that of executing the DIR program by taking one tnsﬁﬁét;gﬁ at a tme

(method 2). For the latter to be faster

(TCOM+NC(TLC+TFM+TIF+TE2) ~ TCD+NDE (TFA+TFD+TDE+NDI (TLC+TH+TE1) > 0

Time required to get the microcode to the control store
NCTLC+TIF+TE2) ~ NDE#NDNTLC+TIF+TEN) > O .o S ¢ 20 | B
and .

NC-NDEsNDI > 0
Hence 7.1 is always true The remaining part is the difference in tifn:rtra have the

executable representatich to the control store is

TCOM+NC*TFM-TCD+NDE(TFA+TFD+TDE) > 0

TCOM-TCD > NDE(TFA+TFD+ TDEI-NCOTFM .....ccooocermemmomsninscoesne (7.2)

The right hand side of 7.2 can also be negative for one of the following reasons 1) NC,
the number of micro instructions. is larger than NDE the number of DIR instruction 2) the
corresponding fetching time is high With the left hand side positive and right hand side
negative 7.2 is dlways true. This equation will be false when the progam is executed many

times in which case it has to be compiled only once.

2.5 Conclusions : -
As long as 7.2 is true, interpreting would be faster. But, as in the previous case,
- ‘ . . i3 .
when the number of runs is very large then the dg‘i(cding time could become very large

and increase the total mtarpfetmg time.
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2.6 Discussion of Results

Compact repres;ntation ‘of the executable code is space saving It is also time
saving because 1t saves time'to fetch Therefore the reprasantation should be compact
" and compaction should be done such that the decoding s not very complex.
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3. High Level Directly interpretable Representations
The term Directly Executed Languages(DEL) was comned by Flynn and Hoevel in 1974
Though directly executable forms of intermediate languages were In existence earlier
they were not particularly designed They originated as intermediate forms in phases of
compilation

After studying the architecture of the IBM 7080 and the IBM 360 Flynn suggested
design approaches for hugh level DIRs (DELs in Flynns terminology) His goal was to
provide an efficient transiator producing an efficient output (‘H_Dlﬁ) which bacomes an
efficient input for the interpreter. His design characteristics were amed at making every
step in program execution efficient, because inefficiencies introduced whilé transiating
cannot be overcome when executing.

Rau [RAUR78] evéiusted various forms of pragraﬁﬁ representations He classified
the representations as follows:

High-Level Repredentation the highest on the spectrum of representations from
the source language program to its equivalent microcode The High level representation is
the high level language version written by the programmer

Directly-Executable Representation The'd:rectty executable reprasentation 15 the
lowest level of representation on the spectrum mentioned i;évg. It is the mapping on the
host The DERs are further classified into S-DERs, P-DERs and C-DERs The
representation that is the lowest semantic level is classed as S-DER. This level gives the
shortest execution time If a customizing technique. similiar to that of macros, i:s used to -
call lines of code with proper parameters the resulting code will be compact but not as
fast (as 5-DER). This r;us;cmiz-ivd representation of S=DER is termed as P-DER. {;“Z

An extension to this compaction method is to combiné a sequence of prrac:‘gdgra
calls and replace them by one single call The resulting representation is tarméd as
C-DER.

Directly interpretable representation. This is an intermediate form between the
source language level and the machine code level It can be viewed as an encoded form
of Directly Executable Representation An example of the directly interpretable
representation is the directly exacutable version of FORTRAN called DELTRAN

LN
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Assuming execution of the programs to be done in an environment in which the

machine language i1s in the middle of a spectrum with microprograms nanoprograms,

emulators on one side. and transiators, compilers interpreters on the other it can be seen
that

S5-DER is the least compact but fastest to execute
P-DER/C-DER reduces the memory access time but requires efficient
representation on either side of the lne imiddie of the spectrum) such as an encoding

easwer 1o decode by the interpreter on.the other side.

3.1 Need For DIR's
The space and time complexity of executing a high level language directly or its
machine language equivalent suggests that an intermediate version should minimize the
inefficiency.
The intermediste language representation between a hngﬁ level language and host

instruction set should be such that it aliminates *
1 the large number of temporary local storages required for organisational purposes.
2 the compiex representation of arithmetic expressions Lawson [LAWSE8) suggests

that representing arithmetic expressions in reverse polish 15 efficient for execution
3 the t:c::fﬂélgx sequencing within programs
4, the m_:srrm:;h between data structures in the swa@m@rn and in the host which

usually results in complex addressing. '
5. _ the overhead instructions required to execute a user's instruction (for example

moving data to local storage such as registers before performing an operation).

of data is required by a few instructions and not enough registers are available.
The above are some of the factors that can make execution through DIRs fast A solution
to all the problems Iistsc,; above is to reduce the semantic gap between the language and
the host One way of reducing this gap is to bring a particular language and machine close
together which on the other hand takes it (e, mérz:hmas) away from the othersie,
languages) Another solution is to reduce the language to an intermediate level and

implement a soft architecture 1e, an instruction set suitable for the intermediate language

/
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on the machine through microprogramming .

3.2 Charscteristics Of DIRs
Efficiency of a DIR depends on a number of factors some of which are the

foliowing .
1. It should be both time and space efficient for its translator. The code generated

should be efficient and independent of host's architecture

2 It should be an efficient input for the interpreter. Arithmetic exprassion evaluation
te;t:;’n‘iiqgs should be efﬁcie:ﬁt, and have easy—to-decode formats

3 it should have a close E@%respcnéeﬁce with the source program to facilitate

debugging )

The output from the translator could ba language—

machine—dependent Machine-dependent code requires a relatively complex compilation
and a nontrivial interpretation Machine dependent intermediate form is close to the host
instructions representation as m the traditional method of ‘execution Also when the
translation process is complex, inefficiencies are hiable to go unnoticed The problem of
allocating the resources such as registers is NP-compiete. Overhead instructions such as
iLGAD and STORE make the representation more inefficient This level of program
representation is not advantageous for portabijlity either [ELSW76]

At the other extreame the output from the translator can be a language-dependent
intermediate f-Gr’ﬁi This is a concise program rgprésaﬁtstiah which also corresponds to
the source closely. It is analogous to assuming that the high level language is the image
machine and the DIR its host code, when the DIR is interpreted by a soft architecture
suitable for the language. The order of operations n a language-dependent DIR should be
the same as in the source program for ease of debugging

The output from the transiator, that is the DIR, is the input to the interpreter The
interpretation time can be minimized by using an efficient DIR and an efficient interpreter.
As we have seen. in chapter two, most of the interpretation time is spent on fetching
‘data’ to be intarprétad If the program size i1s kept to a miimum fetch time during
interpretation will be reduced The size of the DELTRAN (without using techniques to

raduce code on the basis of probability) has been shown to be about five times smaller
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than the size of a coﬁventional thost instruction) representation. This size can be furﬂ;er
reduced with a very small increase in complexity of interpretation by considering the
probablities of occurences of the operations and operands.

The well known coding techrmgue’ of Huffman s compiex fo decode. A technique
which is clamed to give a compaction that ¢ about one percent longer than Huffman's
but fourteen percent faster to decode has been suggested by Wilner [WILN72] This
scheme has been used in Burrough's B1700 and shipwn to save about fifty percent of the
space. The 4-6-10 form implemented on B1700 uses 4. 6 and 10 bits for operation
codes dependmg on their probablity of occurence. Some of the bit combinations in this
scheme are used for ‘escaping to read more bits and get the complete instruction

The efficiency ciamed by Wiiner has been chalienged by Hoevel and Flynn
[HOEV77] who suggested another s . Therr scheme requires two registers and a
sequence of zeros to mdicate the end of the information in a word: (;od-es are assigned
to instructions such that frequently occuring codes have a greater number of trailing
zeroﬁ. If M bits are required to be packed into the rematning N bits of a word (M > N) it s
possible to pack the N bits if the trailing M~N bits are zeros The decoder can still
identify the instruction. But no data about its working is available

Wiiner's scheme i§ ideal for bit machines such as Burrough's_.B1700 and is also
straight forward to implement whereas Hoevel's is practical for word and byte machines
too. Schemes to encode are dasier to develop and implement. Encoding schemes that
save upto seventy five percent have been developed [HEHN?_G]. But decoding is a
complex problem Aiso word/byte machines offset the savings by word/byte alignments

The only soiution to the decoding,problem seems to be in deveioping suitable hardware.

3.3 Instruction Formats

Instruction formats are used in ali directly interpretable and assembly languages to
specify the order. sources, destinations and types of operands. The format of an
nstruction can be specified independently or within the instruction itself Most of the
popular architectures use fixed formats which results in the necessity of having many

different representations of every instruction
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An exampie of fixed format nstructions 15 the IBM 360/370 mnstruction sat

The IBM 360/370 assembier language has six formats They indicate the source
of operand addressestregisters. instruction itself, .32 main memory with displacements)
., These format types :ﬁd:rééﬂy indicate the instructions length wiﬁ:\iﬁ the instruction IBM's
formats are identified with the instructon itself For example, an RR type instruction
indicates that two numbers denoting registers are the addresses of source operands and
also that the size of mst?ux:tnz;ﬁ 15 two bytes An 55 type instruction indicates that the
source of operands is mamn store and that the instruction 1§ eight bytes long This type of
formatting is aiso used by many other assembiler languages. L.

in IBM 360/370 machine language a choice of formats is encoded in the
instructions themselves and hence no extra Space is required However. thus mathod
requires a different instruction for each combination of source operands. For example,

thére are fifteen types of ADD instructions in the 360's nstruction set If snother

important facility such as a stack were added, mergliﬁs&uetnms would be needed Eit 15
possible that because of this only 20 instructions are being used for more than 70% of
the time.

Formats within the instruction increase the iength of the instruction and the total

routines would be required) in interpreting machinas

Earlier, intermediate languages did not deviate much from this type of formatting
The directly executable form of the haghAhgvel language EULER also had six types of
formats The formats in its ;\tafmediité'itﬁﬁgs indicated operand types such as real,
integer, reference and label Since this language was developed to demonstrate the
efficiency of interpretaton. not much emphasis was put on efficiency of representation

Ancther directly executable intermediate laﬁguage DEL-Mary, does not have any
specific formats. Operation codes are followed by one, two or three addresses and
iInstruction sizes are multiples of bytes The length of the instruction is determined by the
instruction itself A 65% reduction in program size and 32% reducton in the number of
instructions have been claimed. This could ﬁassily be due to the type of storage (main and

registers) used - "
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Tanenbaum's EM- 1 [TANE 78] instructions require an operation code and an index
The mstruction set uses four formats, which are independent of probability of the
instructions  occurrence. and very similar to those of the Burroughs B1700's The
nstructions most frequently used have their operation code and index In only one byte.
and the Others use two, two or three. or four bytes depending on their frequency of use.

- The first study of formats and their use m an intermediate language was in
DELTRAN [HOEV74a FLYN77] The machine on which DELTRAN was mplemented had
both registers and stacks. For this type of memory the use of IBM 360/370 formats
would increase the number of nstructions by st least twofoki The formst type is best
specified separately DELTRAN requires specifying each operand only once in any
instruction. For example instructions of the form X = A + A should have only one A in -
therr representation (such as + A} \

Specifying formats within the nstructions is not sutbie for directly interpretable
representations. Specifying them separately i1s necessary However. in a canonical
interpretive form [FLYN77] the format which indicates the type. order and source of
operands is a space overhead This overhead can be reduced

The three different kinds of operations commonly used are.

1. nullary, which does not have any operands,

2 unary. which has one source operand and produces one result, and

3 binary, which takes two source operands and produces a single resuit

m formats for these three kinds of transformations when used for a registers + stack’
type of architecture are best stated separately Encoding formats with the fhstructions
would increase the number of instructions enormously.

Seven denbtations are sufficient to 'represam possible sources or destination of

.operands. They are as follows
just above the top of the stack (S"), top of stack (S), just below the top of stack (S), A
memory location (or register A, B. C) and a 'null’ operand_)

With these types of operands, the number of possible combinations for
operations with up to three operands is 7° or 343. But for reasons of practicality most
of them uro»“bg'd, redundent or too difficutt for the compfter to-generate For example
instructions si;ch as S'SS", §"S__ are illegal with respect to stack properties Aiso. she
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permutastions of the three storage addresses are redundant
t hal been shown [HOEV77] that after removing the illegal and redundant
combinstions:
1 Thirty-two formats are sufficient to express ail legal transformations using up to
three operands ~ N
2 For those using only one or two operands only sixteen formats will be enough.
3 With symmetry in use of‘operanés only eight formats are S;Jfflt:léﬁt
4 Six formats are sufficient ifthe unique 1dentifier property of canonical interpretive
form [FLYN77] is to be ignored
The method of choosing the right number of formats depends on the needs of the
programs. For a complete set thirty—two formats sg‘requirgd These can be represented
by five bits Even if the cannonical interpretive form can be achieved these five bits
would be an overhead for every instruction
One method of saving on the total space required for the storage of formats is
to use techniques that aliocate different lengths depending on their probabilities. This
method introduces some complexity in compiling We will discuss two other methods

METHOD 1 *

One method of specifying different formats 15 to classify them on the basis of the
number of operands instead of the types of sources and destinations. The four
classifications are )
1. no operlﬁdﬁ, for operation codes such as continue, stop and end
2 one operand\ '\;vhich is also the ééstirﬁtan of the result For instructions such as A =
'A +AorB=p@ '
3 \ two Operands in which case there are two operands and three possible
combinations.
“a operate on the first and store in second. egB=A+ A
b operate on both and store in first eg A=A + B
c operate on both and store rasult- mnsecond eg B=A+B
4 Three operands. in this cfsa there are thrn cparands and two possible

combinations -
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a operate on first two ;n order and store m the third
b operate on frst two n opposite order and store n third
These four different types require seven different representations These seven can be

shown to be functionally complete for operations requiring upto three operands
opla) ' .
L J
a <—- opla)
b <-- opia)
8 <—= opla. b

b <-- opia. b)

€ <-- opla bl
c <-- opb.a

an <=- oplal.a2 s
The representation of the first seven typgs requires three bits The [ast

representation (three bits give eight) can be used for operations which has many
operands with the same operstion. for example A = A1 + A2 ++ An This type of
operation is not very common but still could be used for furméampactmn This set of
stack addresses are specified as zero a maximum of five bits will be requirad in the
worst case. The other advantage of this method is the flexiblity in hsviné a large number
afap:rﬁdséhmﬁcp;@aisﬂiamFarsxsﬁplaA§C,1+W*R*T*Y*Ucaﬁ
be represented with only one operation code s
Method 2
In this method four different types are specified by two bits and two of them, the third
and tourth 1In method 1. need one or two more bits to give the complete éimfafmatic:n

00 no operands (type 1) N

01 one operand in which both the source and destination are the same
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{type 2)
10 two operands. with a possibility of having a
a) third bit specifying address of resutt, or
b) next two bits giving order and destination (type 3)
11 three operands and two different orders that can be spacified by one
bit (type 4) ‘

This method requires only two bits for symmetric representations as opposad to
three in the techrique used for DELTRAN Its extension to specify the order of opearation
and destination of result raquires an increass n the size of types 3 and 4 only. Assurming
that all formats are used with the same probability this method, with the extensions,
would require an average of 25 bits.

One advantage with both the methods is the possibility of having an unused
representation for an opening tobgive bigger patterns for other uses (similar to that of
B1700's 4-6-10)

3.4 Techniques for reducing execution time and space

Various techniques for improving the execution time and space for program’s
size may increase the speed by réduéing the fetch time but is usually offset by the
decoding complexity For this reason methods designed are difficult to argue for as
claimed Space reductions from 5% to 75% have been cisimed But the overheads are not
very well known l N )

initial work on drectly interpretable representations was done to obtan an
interpretable representation {such as high level ianguage Euler s reverse polish form) The
representation itself being much more efficient than conventiona!l methods. not mwuch
’emphasts has been plaé:ed on techmques for further program compaction to save time
"Qnd space still more ' ‘

There have been many arguments advanced regarding the importance of space
over time [SAUN79] Some of them are as follows |
1 Space complexity 1s more important fog real applications A user can afford to w§it

a little longer with a complexly encoded program than with a very lengthy one

=, o e e
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which does not fit into the storage.
2 Compact programs have other advantages such as less page faults m a pagng
‘ environment, a small working set sﬁﬁ which all mdirectly save time
3 When the dominating factor in execution tme s the fetch time, a compact

reprasentation wouid:be advantageous | e
4 Since space compactions are static it 1s easier to measure achievement
There have been many approaches to increasing speed by using techniques such as
defining new instructions

A few other techmiques to gain program speed are by Abdalish-Kaslagrad

(ABDA74], Rauscher [RAUS76]. and Burrough's SD-I's [WILN72]
Apart from this. many statistical studies have been made to help design machines and
iNstructions, but these are rather static snalyses Most of the techniques for code
compaction were developed after studying a certain class of programs or programs

written in a certan environment The machines, compilers and customizers so designed

cannot be clamed to.be general The efficiencies claimed will not hold in general and an

uitimate goal would be to deveiop methods that treat individual program or a class’of
programs independently The latest work done in this area is by Saunders [SAUN79] and
Hehner (HEHN76] : . '

‘ - é-

3.4.1 Code Compaction_

Hehner's Work on Code Compaction
Hehner devised techniques to make the machine representation of prégﬁrﬁs

compact His techméue can be applied to a single program or a class of programs It is an

iterative method in which frequently used parrs of instructions are selected and replaced’

by one instruction and the iteration repeated until no more parring is possible Then,
depending on the frequency of the resulting instructions, instruction length is determined
The technique is efficient to improve instruction sets and i1s probability dependent In the
tests performed, the tachnique increased the set of operators from 47 to 178 operation

codes, decreased the space required for operations to less than half the space requirred

P —— =
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before paring and to less than a quarter of the 8 bit fixed—length encoding

Another method devised !bv Foster and Gonter [FOST71) is aiso probability
dependent and works as follows:
For sny operation code every operation has a known probablity of foliowing it This
property is used to give mmimum space encoding in the context following that operation
This 1s a coding technique and resuits of its zmplsigantstngﬁ by Hehner on his sarmple gave
a space reduction of about 50%

Hehner's methods are efficient to produce compact representation and invent
new in3Yructions suitable for the program The results have also been very promising,
saving UBto 75% on machine representation space. Though Hehner did this for machine

language representation the techruiques can be easily mplemented for DIRs

Saunder's Work On Code Compaction
Saunders work can be regarded as an approach towards ultimate goal in program
representation Earhier work was tcz:;:gvalap better representations of a language Then
by collecting statistics and taking the most fréquentl); used operands stc. appropriate
comptiiers are designed to suit the environment from which the data was collected These
two methods have achieved some success but are too general Saunder's idea which is
not very different from Hahnars treats each program independently and devalops a
gmt reprasentation for the same Compaction is done on the basis of the frequency
of instructions in that particular program and not some general statistics from a particular
anvirohment .

His approach i1s to customize a DIR He admits the difficulty in measuring the
efficiency and restricts tailoring to suit ‘a translator. a DEL. and an interpreter which
together implement some source language on some host machine.

DIR's are tailored to optimize the translation time. simphcity in translation, the
resulting DIR's transperancy. and the interpreter's size and efficiency Tailoring requires
many compromises and tradeoffs The goal and achievements of tailoring depend on the
maeasuwuring paramaters

The choice of source language and the host chosen constrain a DIR designer

Some repeated sequences of certain operations in a language (such as array addition in



FORTRAN) or a sequence of instructions to implement an instruction (on the machine)
frequently used by the user are among the constramts

&
Apart from the constraints Iisted above. other organisational representations such

as data references. code references and control information can be made C:nrnp -t by

e
taking into consideration the statistical properties such as probabilities of sccirrences in
bz
the program. : 4

After a DIR is tailored an mdividual program can be customized to give the most
suitable and compad representation. There are many ways c-:sf doing this. From defining
opcodes ideal for the program to combining a few opcodes to create new opcodes. The
iatter is much cheaper to impiement |

Interpreters can be custorhized by letting the user not pay for the facilities he's
not using. ‘If a certain operation is not used then remove it from the interpreater (by
removing the hnk) This reduces the size of the nterpreter tgo.

DIR's can be customized by replacing similiar sequences of instructions by a
single instruction or call to a macro. This is similiar to Rau's P-DER. Saunder's method is
to translate the program to a tree form and detect matching patterns. The matching
patterns found are implemented as an instruction and their occurence replaced by the
new instructions and proper parameters.

The techniques developed were used to built a caﬁnpiler XP* for Pascal which
customizes DIR's by ,omitting unused operations from the intgrprétar,r adding new
opcodes. An average compaction of about 50% on implementing the above, for a
compiler for PASCAL written in LISP, has been claimed '
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Conclusions

In thes thesis we have exammed the problem of matching program representations
on existing architectures. and the problem of evaluating rchitattu;as. In C.hipter 2
analytical arguments for interpreting and conditions for executing with writable control
storas are éurvgygd, followed by the derivation of conditions under which interpreting
would be efficient

:Z Chapter Three we looked into the needs for and characteristics, of high level
DIRs. Different types of instruction formats, were surveyed and cpmpared Then
techniques to further compact high level DIRs were discussed.

T‘he raguity can be summed up as follows:

Current architectures are not suitable for a good mapping of high level language
onto machine. Restricting the mit:hme to a single high level language is also not ndgal
- architecture for all prc:bhrn domams 15 very difficult to defsign and has not proved
optimal. The best approach is to reduce Iangu:ggs to an ntermediate form and emulate a
soft architecture on the host machine |

T’his approach has been made in the Eu?rcuwg B1700, but it had different

interpreter for each intermediate form A common intermediste form for a class of
languages would be ideal It is possible to transiate a class of most commonly used high
level languages to a common intermediate form FORTRAN and PASCAL have alre;‘gy
been translated to a common intermediate form . :
DELTRAN as designed i1s not in a vesy compact form. It still can be improved. It is,
however a good form to aliocate resources and detect parallelism for further efficiency.
Building a common high level DIR 1s similiar to going back to the UNCOL, but with
a different perspective The goal is not portablity HBut direct execution. Efficient ;E'!Sts for
direct forms can be designed and mp smented and facilities developed to debug the high

level DIRs. \
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3.5 Suggestions for Future Resesrch
lementing DiRs has a long way to go Translators for different languages to a

covmiv;m need tc be designed Technigques to detect paralieiism are required it has
been shown that more than half of execution time is spent on less than 4% of FORTRAN
programs [KNUT74) it should be possible to dynfﬁia;ily detect thws and place the
microcode for the 4% mto control store and save on execution time -

Compact representations require bit machines But the overhead far bit
addressing 1s high Hence instructions and formats should be such that they are suitable
for byte/word machines Interpretsrs for such machines need be developed.

In a muitiprogramming environment it should be possible to load the appropiate
interpreter for the langauge bemg interpreted. This can be accomplished by looking for

Finally,. most of the techniques discussed in this thesis apply only tt:; static

programs. Methods to detect problems of representations dynamically are needed.
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