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Abstract

The human vision system has an effective mechanism for retrieving and local-

izing the most important information from visual scenes. In computer vision,

Salient Object Detection (SOD) algorithms aim at modeling this mechanism

by extracting or segmenting these salient targets from given images or video

frames. Such algorithms can be used in a wide range of applications such

as image segmentation, image editing, visual tracking, robot navigation, etc.

Three categories of salient object detection methods are studied in this thesis.

1) Interactive Annotation with ByLabel: A Boundary based Semi-

Automatic Image Annotation Tool. We develop a novel boundary based

semi-automatic tool, ByLabel, for accurate image annotation. Given an image,

ByLabel first detects its edge features and computes high-quality boundary

fragments. Current labeling tools require the operators to accurately click on

numerous boundary points. ByLabel simplifies this process to selecting of the

automatically detected boundary fragments. To evaluate the performance of

ByLabel, 10 volunteers, with no experience of image annotation, were asked

to label both synthetic and real images. Compared to the commonly used

tool LabelMe, ByLabel reduces image-clicks and time by 73% and 56% re-

spectively, while improving the accuracy by 73%. The results show that our

ByLabel outperforms the popular annotation tool, LabelMe, in terms of ef-

ficiency, accuracy and user experience. 2) Unsupervised Salient Closed

Boundary Extraction by Perceptual Grouping. Salient closed bound-

ary extraction aims to automatically identify and connect a subset of detected
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fragments to form a closed boundary based on the principles of Gestalt laws.

Particularly, we propose a novel method for perceptual grouping of the salient

closed boundary, in which the salient closed boundary extraction problem is

formulated as a problem of searching for a special cycle from an undirected

graph. We propose a novel graph-based optimization algorithm “Bi-Directional

Shortest Path (BDSP)” for searching the special graph cycle. In addition, we

adapt our new method to different applications including building outline ex-

traction and salient closed boundary tracking. Experimental results show that

our methods outperform the state-of-the-art (SOTA) methods of different ap-

plications in terms of both robustness and accuracy. 3) Supervised Salient

Object Detection by Deep Convolutional Neural Networks. Deep

Convolutional Neural Networks (DCNN) have been adopted for salient ob-

ject detection and achieved state-of-the-art performance. Most of the previous

works, however, focus on region accuracy but not on the boundary quality.

We propose a predict-refine architecture, BASNet (348.5 MB, 25 frames per

second (FPS)), and a new hybrid loss for Boundary-Aware Salient object de-

tection. Experimental results show that our method outperforms the SOTA

methods both in terms of regional and boundary evaluation measures. To

achieve lighter models with faster speed, we further design a simple yet pow-

erful deep network architecture, U2-Net, with a two-level nested U-structure

for salient object detection. A full size U2-Net (176.3 MB, 30 FPS) and a

small size U2-Net† (4.7 MB, 40 FPS) are instantiated based on the nested ar-

chitecture. Both of them achieve very competitive results against the SOTA

models.
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Chapter 1

Introduction

1.1 Background

Large amounts of information including sight, hearing, smell, taste, touch and

so on, are perceived by our perception systems. Among all the information

obtained by different sensory organs, visual information is the richest. There

are 108−109 bits of visual data entering our eyes every second [27], [104], [123].

Due to the limited perceptual and cognitive resources, it is difficult to process

all the data in real-time without the help of effective mechanisms for filtering

out the noise and irrelevant parts [27]. The visual attention mechanism, as

one of the most efficient and effective mechanisms, plays an important role in

our vision system. It helps in quickly retrieving and localizing the most impor-

tant parts from the visual data and guiding our perception systems to focus

on the selected small amount of salient data [269]. In the past decades, the

visual attention mechanism has already been widely studied in psychology,

neurophysiology, computational neurosciences as well as robotics and com-

puter vision from different perspectives [27]. Psychologists [141], [167], [227]

aim at studying the relationship between human behavior, e.g. gaze, head

and eye movements, and visual attention. Neurophysiologists [240], [243] are

interested in explaining how attention mechanism works on neurons. Compu-

tational neuroscientists [33], [210] target at studying the attention mechanism

by numerical analysis and computer simulation based on the real biophysical

models of neurons. Robotics and computer vision scientists [27], [258] mainly

focus on modeling the visual attention mechanism by visual saliency detection
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from the given image or video input.

The terms “visual attention” and “visual saliency” are closely related and

sometimes can be used interchangeably [27]. As described above, “visual at-

tention” refers to a set of cognitive operations that select the conspicuous

parts from a visual scene [178]. While “visual saliency” stands for the distinct

quality of each part in a visual scene. This quality measures the ability of

each part in standing out from its neighbors and grabbing the attention [27],

[105]. Instead of modeling the exact cognitive processes of “visual attention”

mechanism, most computer vision researchers choose to simulate the “visual

attention” mechanism by computing and analyzing the “visual saliency” of

given input images and videos. Saliency detection dates back to the saliency-

based bottom-up visual attention model built by Itti et al. [106] based on the

cognitive theories, e.g. Feature Integration Theory (FIT) stated by Treisman

and Gelade [239] and Guided Search Model proposed by Wolfe et al. [268],

and early computational frameworks [17], [179], [241], e.g. Computational At-

tention Architecture by Koch and Ullman [122]. This model [106] is the first

complete implementation and verification of the Koch and Ullman model [122],

which introduces the concept of saliency map to represent the conspicuousness

of scene locations [27]. It combines multi-scale image features into a single to-

pographical saliency map and facilitates the complex scene understanding

by selecting the attentive locations in the order of decreasing saliency. Later,

to study the relationship between visual attention and human eye movements,

researchers [31], [193] start to predict eye fixation. The predicted eye fixa-

tion maps are similar to the topographical saliency maps, which have no clear

boundaries. To facilitate semantic image understanding, more region infor-

mation is then introduced into visual saliency estimation [153], [169], [248].

Inspired by the above studies, Liu et al. [159], [160] and Achanta et al. [1]

directly formulate the saliency detection as a binary segmentation problem,

which is usually named as Salient Object Detection (SOD).

In addition to the visual stimulus (bottom-up cues) and the human in-

stincts, high-level human knowledge (top-down influences) including experi-

ences, expectations, rewards and so on [27], also plays an important role in
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(a) Image (b) Eye fixation (c) Smoothed eye fix-
ation

(d) SOD mask

(e) SOD instances (f) SOD instances (g) Object detection (h) Semantic segmen-
tation

Figure 1.1. Outputs of closely related tasks [279]: (a) shows the input image;
(b) is the ground truth of eye fixation prediction and (c) is its continuous
version; (d) is the ground truth, which is a binary mask, of salient object
detection; (e) and (f) are the SOD instances represented by bounding boxes
and region masks respectively; (g) and (f) show the ground truth of object
detection and semantic segmentation respectively. Compared with (e) and
(f), the bounding boxes and region masks in (g) and (h) are labeled with
values for indicating the object classes.

“visual attention”. Land and Hayhoe [135] illustrate that the visual attention

is closely related to the hand movements in extended food preparation tasks

and prove that the eye movements in these tasks are mainly related to the

task-relevant objects and less dependent on the ‘intrinsic salience’ of objects.

Another related area in computer vision is active vision, in which the viewpoint

of the camera can be manipulated to better investigate the environment based

on the goal of the active vision system other than the ‘intrinsic salience’ of the

visual stimulus [6], [16]. As a matter of fact, in our real life, both bottom-up

and top-down visual saliency play important roles in our vision systems and

perception processes. The definitions of visual saliency vary from different

stimulus as well as different scenarios and tasks. Therefore, many computer

vision related problems and applications can be formulated and solved as visual

salient object detection problems.
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1.2 Related Research Areas

Given an input image, the saliency related tasks can be categorized into the

following groups according to their outputs:

• Eye fixation prediction;

• Salient object detection;

• Salient instance detection;

• Salient object subitizing.

In addition, other tasks including object proposal [45], [312], object detection

(see. Fig. 1.1(g)) [79], [80], [207], image segmentation (see Fig. 1.1(h)) [42],

[152], [163], image annotation [37], [216] are also closely related to salient

object detection.

1.2.1 Eye Fixation Prediction

Eye fixation prediction aims to quantitatively estimate the human eye attended

locations on the given input image [158]. It has been widely used in many

applications, e.g. image segmentation [260], video summarization [69], eye

tracker calibration [156], gaze estimation [235], video retargeting [214], etc.

To evaluate the performance of an eye fixation model, eye fixation data e.g.

DUT-OMRON [279], are collected by eye tracking apparatus, which records

eye fixations (a set of image coordinates) when the participant focuses on the

input image shown in the monitor (for 2 seconds). The initial eye fixation

ground truth is shown in Fig. 1.1(b). The continuous eye fixation maps (see.

Fig. 1.1(c)) generated by convolving across each fixation location using a

Gaussian filter are usually utilized to evaluate the accuracy of eye fixation

models.

In early conventional eye fixation prediction models, the contrast and the

rarity of local image patches e.g. [30], [31], [89], [106], [193] as well as the

global perception mechanism e.g. figure-ground segregation [26], [293], which

is likely to be influenced by factors including size, surroundedness, convexity
4



and symmetry [191], are often employed to compute the visual saliency. In re-

cent years, deep convolutional neural networks, e.g. SALICON [101], DeepNet

[192], Mr-CNN [156], DeepFix [129], DVA [259], greatly raise the bar of eye

fixation prediction thanks to large amounts of training data and the strong

learning ability of deep networks [134].

1.2.2 Salient Object Detection

In general, salient object detection (or salient object/region segmentation)

refers to the process of segmenting pixels belonging to the salient objects or

regions from input images or videos [23]. The outputs of salient object detec-

tion are usually binary masks (see Fig. 1.1(d)), in which value one denotes the

salient object and zero stands for the non-salient background. Compared with

the outputs of eye fixation prediction, the binary saliency masks produced by

salient object detection keep more geometrical details of the detected salient

objects so that there are clear boundaries between salient and non-salient re-

gions (see Fig. 1.1(d)). Thanks to the high spatial accuracy, salient object

detection methods can be used in various applications, e.g. object recognition

[217], scene understanding [25], object detection [224], image editing and ma-

nipulating [47], content-aware image resizing [12], [83], [290], image retrieval

[84], visual tracking [76], robotics [39], etc.

Early salient object detection methods [1], [2], [44], [159], [160] first esti-

mate the saliency of each image pixel/patch based on priors of local or global

contrast computed by a set of handcrafted features e.g. edge contrast, center-

surround histogram, color spatial distribution, etc. They then achieve the

segmentation results by conducting Conditional Random Field (CRF) [133] or

clustering methods e.g. K-means [171], on the computed saliency maps and the

original images. Later on, the image boundary and connectivity priors [262],

[279], [294], [310], which assume that the image backgrounds are usually homo-

geneous and connected to the image borders, are introduced to highlight the

entire salient object uniformly. With the development of deep neural networks

[94], [100], [128], [137], [228], especially the emergence of fully convolutional

network (FCN) [163], the deep methods [58], [97], [147], [154], [157], [258]
5



for salient object detection achieve significant improvements both in terms

of accuracy and robustness. Meanwhile, the new solutions of salient object

detection provide valuable references for other binary segmentation problems.

1.2.3 Salient Instance Detection

The results produced by salient object detection are binary masks with clear

boundaries. Sometimes, there are more than one salient objects in an input

image. However, binarized saliency masks are not able to differentiate different

instances of those detected multiple salient objects. To address this problem,

salient instance detection models are developed. There are two ways for rep-

resenting detected salient instances: (1) bounding boxes [4], [41], [45], [242],

[295], [312] (see Fig. 1.1(e)) and (2) segmentation masks [72], [136], [144] (see

Fig. 1.1(f)). Each bounding box indicates that there is one salient object

enclosed by the bounding box, but no semantic class information is included,

which is different from the bounding boxes output by general object detection

methods, e.g. R-CNN [80], Fast R-CNN [79], Faster R-CNN [207], etc. Com-

pared to the bounding boxes, the salient instance segmentation masks provide

accurate shape description of each salient instance, which is similar to Mask

R-CNN [92].

1.2.4 Salient Object Ranking and Subitizing

Salient Object Subitizing (SOS) is proposed to simulate the mechanism that

the human vision system can immediately and precisely identify the number (1,

2, 3, 4) of items by a simple glimpse [95], [291], [292]. Zhang et al. [292] build

a subitizing training dataset and try to directly predict the number of salient

objects from input images. He et al. [95] construct a multi-task learning

network to learn salient object detection and subitizing simultaneously. In

addition, multiple salient objects detected from the same image are usually

assigned with the same saliency level. In many scenarios, multiple salient

objects are drastically different in terms of size, shape or appearance so that

their saliency qualities are different [291]. Furthermore, different people may
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have different views on the saliency of the same object. Therefore, Amirul [11]

propose to simultaneously detect, rank and count the salient objects.

1.2.5 Summary

The outputs of the four saliency categories: eye fixation prediction; salient

object detection; salient instance detection; salient object subitizing and rank-

ing, have different characteristics and play important roles in many real-world

applications. Sometimes, there are no clear boundaries among these four cat-

egories. For example, eye fixation prediction models can be used to improve

the performance of salient object detection. The salient instance detection

and subitizing can be conducted on the results of salient object detection.

With the development of computer vision and the related applications, more

and more accurate segmentation results are required. However, the results of

eye fixation prediction are with low geometric accuracy so that their applica-

tions are limited. On the contrary, the salient object detection is essentially

a binary segmentation problem and is able to produce high accuracy segmen-

tation masks. In addition, with the development of deep learning, salient

object detection models based on deep convolutional neural networks can be

easily generalized to other related tasks, e.g. medical image segmentation

[211], satellite/aerial image segmentation [181], by just replacing the training

data. Therefore, this thesis mainly focuses on salient object detection

methods related to different applications and scenarios.

1.3 Objective and Motivation

Salient object detection is an important yet challenging topic in computer vi-

sion. Generally, there is no unified mathematical definition of “salient” and the

definition varies with different applications. Broadly speaking, “salient object”

can be low-level features, e.g. corners [90], [212] and blobs [18], [164], middle-

level elements, e.g. edges [32], [238] and line segments [3], [244], or higher-level

targets represented by closed boundaries (contours) [253] or region masks [154].

Although the development of computer vision techniques achieves significant
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(a) Centroid (b) Bounding box (c) Quadrilateral (d) Polygon (e) Region mask

Figure 1.2. Different ways of image annotation.

improvements in the past decades, it is hard to find a general salient object

detection method which is able to handle all of the different scenarios and ap-

plications. A salient object can be described by different representations, such

as centroids [49], bounding boxes [80], quadrilaterals [302], polygons [37], [216],

closed boundaries (contours) [35], [253] and region masks [151], [152], [163], as

shown in Fig. 1.2. Among these representations, closed boundaries and region

masks are the most accurate ones. In describing the two-dimensional (2D)

targets, the closed boundaries and region masks are mutually determined and

have the same accuracy. That means we can obtain the region masks from

the given closed boundaries and vice versa. In addition, it is easy to derive

the low accuracy representations, e.g. convex hull, bounding box and cen-

troid, of a target from its extracted highly accurate closed boundary or region

mask. Therefore, we are motivated to develop methods for detect-

ing salient objects and producing high-accuracy closed boundaries

or region masks.

As described above, many methods [23], [24], [27], [258] have been proposed

for salient object detection. They are mainly categorized into two groups:

bottom-up and top-down. Bottom-up saliency models rely on characteristics

of a visual scene [189], while top-down models [27] take more cognitive cues,

e.g. knowledge, experiences, expectations and reward, into consideration. Re-

cently, to apply the visual saliency to real applications, more and more methods

[114], [281] employ both bottom-up and top-down saliency cues. Therefore,

there comes the most frequently encountered problem in many computer vi-

sion tasks: how to integrate the characteristics of the visual scenes

(bottom-up cues) and the human knowledge (top-down cues) for

8



(a) Direct use of human knowledge

(b) Explicit formulating of human knowledge

(c) Implicit encoding of human knowledge

Figure 1.3. Different ways of employing human knowledge for salient object
detection.

improving the performance? In general, there are mainly three ways of

employing human knowledge into salient object detection methods: (1) di-

rectly use human knowledge in the interactive process; (2) explicitly formulate

human knowledge as the objective functions and the optimization processes

and (3) implicitly encode human knowledge into the manually labeled training

data. All of these three ways of employing human knowledge have both pros

and cons. They can be utilized in different applications to satisfy diversified

demands. Therefore, the objective of this thesis is to explore new

methods for salient object detection from the perspectives of these
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three ways:

• Direct use of human knowledge. Human knowledge can be directly

applied to salient object detection by interactive annotation (see Fig.

1.3(a)). This way is usually utilized in those applications that require

high accuracy and stable results. Many works have been proposed to

improve the efficiency and accuracy, while decreasing the workloads and

time costs. In this thesis, we first analyze the pros and cons of the ex-

isting image annotation tools. Then, we present a novel boundary based

semi-automatic image annotation tool that we developed, ByLabel, to

improve the annotation efficiency and accuracy by further simplifying

the annotation operations.

• Explicit formulating of human knowledge. Human knowledge can

also be explicitly formulated as the objective functions or the optimiza-

tion processes in unsupervised salient object detection methods. In a

narrow sense, unsupervised methods mainly refer to those methods like

principal component analysis (PCA) methods [267] and clustering meth-

ods e.g. K-means [171], mean shift [46], etc. Broadly speaking, most of

the traditional salient object methods can also be categorized as unsu-

pervised methods. The detection processes of these methods are fully

automatic, which require neither human intervention nor training data

(see Fig. 1.3(b)). Hence, this kind of methods is possible to satisfy the

automatic and high speed requirements of certain applications. In this

thesis, the unsupervised methods for salient closed boundary extraction

by perceptual grouping are studied and then they are adapted to differ-

ent applications including building outline extraction and salient closed

boundary tracking.

• Implicit encoding of human knowledge. Encoding human knowl-

edge into the training data is another popular way, which is widely used

in supervised methods. With the supervision of the training data, deep

networks or other machine learning models can learn the embedded hu-

man knowledge for detecting salient objects (see Fig. 1.3(c)). Compared
10



with unsupervised methods, supervised salient object detection meth-

ods, especially deep models, are usually more robust and accurate thanks

to the strong fitting capability of deep networks and large amounts of

training data. However, there is still a large room for improvement in

boundary quality, memory cost, speed, etc. Motivated by these factors,

supervised salient object detection methods based on deep convolutional

neural networks are also studied in this thesis.

1.3.1 Interactive Annotation with ByLabel: A Boundary
based Semi-Automatic Image Annotation Tool

Interactive annotation is the most direct and easiest way of employing human

knowledge for salient object detection. In many computer vision applications,

human interventions usually produce more accurate and robust results. There-

fore, interactive image annotation and labeling still play very important roles

in various applications, e.g. cartography, accurate image/video editing, gen-

eration of segmentation ground truth, etc. However, interactive operations,

especially those requiring high accuracy, are usually burdensome and time-

consuming. For example, to label a given image with salient objects of com-

plex shape, the operator has to localize and click a large number of control

points to formulate the polygons for describing the object contours. Hence, a

user-friendly annotation tool is necessary for reducing the workload and im-

proving the efficiency. Motivated by that, we develop a novel boundary based

semi-automatic image annotation tool, ByLabel. ByLabel enables operators

to select and group detected high-quality edge fragments to formulate closed

boundaries for describing objects with simple (one closed boundary) or com-

plex (multiple closed boundaries) shapes. To be more general and flexible, our

ByLabel is designed as a general image labeling and annotation tool, which

is able to not only label binary class salient object masks but also produce

multi-class and multi-instance segmentation masks.
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1.3.2 Unsupervised Salient Closed Boundary Extraction
by Perceptual Grouping

Although our ByLabel greatly reduces the workload of image annotation, it

still requires many human interventions. Applications like building outline ex-

traction and closed boundary visual tracking are relatively insensitive to few

times of failures and minor spatial errors while requiring automatic processes

and fast speed. That means human interactive salient object detection is not

able to handle these kinds of applications. Therefore, faster automatic salient

closed boundary extraction is needed. To automatically extract salient closed

boundaries, we propose a novel method for unsupervised salient closed bound-

ary extraction and reduce the problem into searching for a special cycle from

an undirected graph. The key component of this method is a novel flexible

graph-based optimization algorithm “Bi-Directional Shortest Path (BDSP)”,

which is able to search for the (approximated) “optimal” cycle from an undi-

rected graph regardless of the formats of the objective functions.

Furthermore, we adapt this method to address the following two practical

applications:

• Building outline extraction is an important issue in remote sensing and

geomatics. Straight-line segment is one of the most salient middle-level

features in aerial and satellite images. Closed boundaries (or polygons)

formulated by multiple straight line segments are good at describing

the building outlines in aerial or satellite images. Therefore, our closed

boundary extraction method is adapted to extract building outlines by

grouping the detected line segments based on our newly proposed group-

ing cost.

• Several targets like the rim of bowl or mug and cables are too thin to

be described by regional representations e.g. bounding boxes or region

masks. However, they can be described by boundaries. To track this kind

of targets, we first adapt our salient closed boundary extraction workflow

and optimization algorithm for salient closed boundary tracking via line

segments perceptual grouping. Additionally, we apply this tracker for
12



real robot pouring task to validate its robustness. To further improve

the accuracy and robustness of the salient closed boundary tracker, we

replace the line segments by edge fragments, which are more accurate in

describing smooth boundaries. Particularly, we study the method of fast

high-quality edge fragments extraction including edge detection, edge

breaking and edge filtering. In addition, the shape prior is encoded into

a newly proposed grouping cost and both perimeter and area variation

constraints are introduced to guide the grouping process for the salient

closed boundary tracking.

1.3.3 Supervised Salient Object Detection by Deep Con-
volutional Neural Networks

Another way of utilizing human knowledge is to encode that into training

data implicitly and then develop machine learning models or deep networks to

learn the knowledge for salient object detection from the annotated training

data. In recent years, the development of Deep Convolutional Neural Net-

works (DCNN) greatly raise the bar of salient object detection [168]. These

methods formulate the salient object detection problem as a binary class im-

age segmentation problem. Although DCNN greatly improves the accuracy

and robustness, there is still a large room for improvement. One of the draw-

backs of the existing deep salient object detection models is that their outputs

usually have low boundary qualities. However, with the development of appli-

cations and demands, more and more accurate results are needed. Although

the introduction of Conditional Random Field (CRF) [126] improves the over-

all segmentation performance, the improvement on boundary quality is limited

and the CRF doubles the processing time. To address this problem, we propose

a boundary-aware network, BASNet, and a hybrid loss for detecting salient

objects with high-quality boundaries.

On the other hand, almost all of the deep salient object detection methods

[147], [256], [289], [297] including our BASNet are built upon the backbones

adapted from image classification networks, e.g. AlexNet [128], VGG [228],

ResNet [94], DenseNet [100], etc. These backbones are originally designed for
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image classification tasks and pre-trained on ImageNet [57] dataset. However,

the logic of image segmentation and classification is different. For example,

the network for image classification tasks prefer to extract more semantic in-

formation from deeper layers by sacrificing the resolutions of feature maps. In

the segmentation tasks, both multi-level deep information and high resolution

feature maps are essential to accurate segmenting. Besides, these backbones

usually limit the running speed of the salient object detection models built

on them because of their relatively large number of filters. Therefore, there

is a need for novel flexible architectures specifically designed for salient object

detection. Motivated by that, we design a deep architecture with two-level

nested U-structure for real-time salient object detection without using any

existing backbones adapted from image classification. It can be trained from

scratch and is flexible to be configured to have different model sizes for training

on datasets with different sizes or running on different working environments.

1.4 Contributions

In this thesis, we develop a set of different methods for salient object detection.

Our contributions are summarized as follows.

First, we develop an interactive image annotation tool, ByLabel. It al-

lows people to sequentially select detected edge fragments to formulate closed

boundaries. One or multiple closed boundaries can be easily grouped to formu-

late the region masks. Compared with those polygon-based annotation tools,

our ByLabel simplifies the burdensome control points localizing and click-

ing operations as edge fragments selecting operations. It greatly reduces the

workload and time costs of labeling, especially for those targets with complex

shapes. Besides, ByLabel is able to produce smooth and pixel-wise accu-

rate region masks. Because the boundary fragments are one pixel-width pixel

chains detected automatically and they are better than straight line segments

of polygons in describing smooth curves.

Second, we develop a flexible graph-based optimization algorithm “Bi-

Directional Shortest Path (BDSP)” for solving the problem of searching for
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a special cycle from an undirected group. We further adapt the algorithm to

two different applications:

• We define a novel saliency cost function which combines the proxim-

ity and continuity principles of Gestalt Laws for extracting individual

building outlines from high resolution aerial images. Combined with

our graph-based optimization algorithm BDSP, our method is able to

extract individual building outlines with different shapes and achieves

state-of-the-art performance against other unsupervised saliency detec-

tion methods.

• We adapt our BDSP for salient closed boundary tracking by line seg-

ments perceptual grouping. Particularly, we encode the area variation

constraint into the objective saliency function and solve that by our

graph-based optimization method BDSP. To validate the performance,

we build a salient closed boundary tracking dataset. The experimental

results show that our method is able to effectively handle those extremal

cases, where stable and enough regional texture information is unavail-

able. Our method runs in real-time. In addition, we adapt our tracker

to a real robot pouring task, which further demonstrates the reliable

performance of our method. Since one pixel-width edge fragments are

more accurate than line segments in describing smooth curves, we then

further improve the above tracker by replacing the line segments with

the high-quality edge fragments generated by our newly proposed edge

breaking and filtering algorithms. Besides, we propose a novel grouping

cost, which integrates a distance difference item and the area normalized

total gap length item, and introduce both area and perimeter variation

constraints to achieve more robust performance. The experimental re-

sults show that our edge-based new tracker greatly improves the tracking

accuracy and robustness while keeping the real-time running speed.

Third, we develop two deep neural networks, BASNet and U2-Net, for

salient object detection.
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• BASNet, as a boundary-aware salient object detection network, is de-

signed to have a predict-define architecture. The predict-refine architec-

ture consists of two encoder-decoder modules. The first encoder-decoder

module is designed to take the images as inputs and output the coarse

salient object probability maps. The refine module is a relatively smaller

encoder-decoder with a residual connection, which is used to refine the

coarse saliency probability maps. In addition, we define a novel hybrid

loss that is the summation of binary cross entropy, structural similarity

loss and intersection over union loss. These three components of the loss

are used to perceive the pixel-wise, patch-wise and map-wise structures

respectively. By using the newly designed predict-refine architecture

and the novel hybrid loss, our BASNet (348.5 MB, 25 FPS) is able to

produce robust and accurate salient object detection results with high

quality boundaries.

• To achieve more flexible deep networks for salient object detection, we

design a novel deep architecture with two-level nested U-structure, U2-

Net. Particularly, we first develop a residual U-block, which is able

to be configured for extracting multi-scale information from the feature

maps with different resolutions. Instead of stacking multiple residual

U-blocks sequentially as U×n-Net, we build our novel architecture by

a nested way, Un-Net (n=2). In this thesis, we provide two instances

of this architecture: a full size U2-Net (176.3 MB, 30 FPS) and a small

size U2-Net† (4.7 MB, 40 FPS), to serve for different scenarios. The full

size model achieves state-of-the-art performance on three of the six pub-

lic datasets and achieves very competitive performance on other three,

which demonstrate the strong capability of our nested U-structure. The

competitive results of the small version U2-Net†, which is currently the

smallest salient object detection model, further proves the flexibility and

capability of our nested U-structure.
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1.5 Organization

The rest of this thesis is organized as follows.

Chapter 2: Related Works

This chapter summarizes the related works in interactive image and video

annotation, unsupervised salient closed boundary extraction and super-

vised deep salient object detection.

Chapter 3: Interactive Annotation with ByLabel: A Boundary based

Semi-Automatic Image Annotation Tool

This chapter presents our interactive image annotation tool, ByLabel.

We first introduce the basic types of different objects in terms of bound-

ary based annotation. We then describe the design and implementation

details of the newly developed annotation tool. Finally, we compare our

ByLabel with a popular image annotation tool in terms of clicks, time

costs, errors and user experiences.

Chapter 4: Unsupervised Salient Closed Boundary Extraction by

Perceptual Grouping

In this chapter, we first introduce our newly proposed method for salient

closed boundary extraction, especially a graph-based optimization al-

gorithm for the optimal graph cycle searching. We then introduce the

applications and detailed adaptations of this method in different areas in-

cluding individual building outline extraction from aerial images, salient

closed boundary tracking via line segments and edge fragments percep-

tual grouping. The experimental results and comparisons are presented

in each of those application sections respectively.

Chapter 5: Supervised Salient Object Detection by Deep Convolu-

tional Neural Networks
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This chapter describes our newly designed deep networks for salient ob-

ject detection. We first introduce our boundary-aware salient object

detection network, BASNet, including the network design, the newly

proposed hybrid loss and the ablation studies. Then, we describe our

newly proposed deep nested U-structure, U2-Net, and present its abla-

tion studies. In the end, comprehensive experiments and comparisons

with the state-of-the-art methods are illustrated.

Chapter 6: Conclusions and Future Work

This chapter discusses the strengths and limitations of our proposed

methods. Some possible future works are presented in the end.
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Chapter 2

Related Works

2.1 Interactive Salient Object Annotation

Interactive annotation is currently the most reliable and accurate approach for

obtaining detection and segmentation results from given images or videos. As

mentioned in Chapter 1, salient object detection (SOD) is essentially a binary

class image segmentation problem, which is a sub-area of image segmentation.

That means all of the image annotation tools designed for labeling image

segmentation masks are able to be utilized for salient object annotation.

Interactive image annotation can be used in various applications, such as

image/video editing, satellite/aerial image based mapping and so on. They

can also be used in generating image and video ground truth for performance

evaluation and comparison of different methods in various vision related tasks

[113]. Besides, in machine learning and deep learning methods, images and

their ground truth are indispensable to supervised training. Although many

ground-truth datasets [51], [70], [143], [151], [196], [199], [215], [266] have

been published, they are still few compared with the diversity of images and

applications of interest in the real world. Fast and accurate image annotation

remains an open problem in computer vision and related fields.

Image annotation tools seek to maximize labeling accuracy while minimiz-

ing human workloads and time costs [257]. Popular existing annotation tools

can be categorized into three main classes: (1) bounding box/quadrilateral

based labeling; (2) pixel-wise labeling; (3) boundary based labeling. This

thesis focuses on the boundary based annotation.
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A simple bounding box, defined by two corners (top-left and bottom-right),

is usually used in object recognition [70] and two degree of freedom (DoF)

tracking [127]. In registration based high DoF tracking, a quadrilateral, which

is defined by four corners, describes planar geometric transformations, such

as rotation, affine and homography [77], [132], [150], [213]. Bounding boxes

labeling is easy to implement. Doermann and Mihalcik develop ViPER, a

video annotation tool which allows users to perform annotation frame by

frame [60]. Vondrick et al. design a crowdsource video labeling tool, VATIC,

which introduces inter frames interpolation to generate bounding boxes semi-

automatically [245].

Compared to bounding boxes, pixel-wise labeling provides detailed shape

descriptions of target objects [266]. Graph cuts [28], watershed segmentation

[121], active contour [257], partition trees [78] and even mixed techniques [174],

[177] have been introduced to decrease the need for user intervention. When to-

be-annotated images have salient foregrounds and relatively flat backgrounds,

these methods perform well. Otherwise the region masks produced are often

inaccurate and noisy.

Closed boundaries are used in many annotation tools, such as KAT [218],

PhotoStuff [86], M-Ontomat Annotizer [198] and iVAT[20]. However, closed

boundaries are usually approximated by polygons in these tools, which re-

duces the accuracy in describing the smooth curves. Russell [216] develop a

web-based image annotation tool, LabelMe, based on manual polygon draw-

ing. Lluis et al. [37] use Recurrent Neural Networks (Polygon-RNN) to reduce

human intervention in polygon annotation. The annotation accuracy depends

on the number of the sampled control points and their localization errors.

First, densely sampled control points are required to describe curved bound-

aries accurately. Second, human labelers have to localize each boundary pixel

very accurately [28]. These two factors limit the annotation efficiency. To

address these problems, Yang et al. [282] propose a constrained random walk

algorithm, which combines the unified combinatorial user inputs, to obtain

relatively smooth segmentations. Maji et al. [173] refine the manually labeled

coarse polygons using random maximum a posteriori (MAP) perturbations.
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However, their results usually have similar problems as the aforementioned

pixel-wise annotation methods. Their accuracy is easy to be influenced by

noisy intensities and complex local patterns.

Another category of image annotation tools takes advantage of the image

boundary features. They allow users to select those automatically detected

boundaries for formulating contours of to-be-annotated targets. Mortensen

and Barrett [182] develop an interactive segmentation tool, intelligent scissors,

which allow users to select piece-wise boundaries generated by graph searches

on the over-segmented images from toboggan-based method. Elder et.al. [64]

build an interactive tool for image editing in the contour domain, which al-

lows users to select specific boundary pixels and then formulates the intact to-

be-annotated boundaries by one-dimensional (1D) and two-dimensional (2D)

grouping on those automatically detected edges. These tools are more accu-

rate than the polygon-based labeling tools in describing curved boundaries.

Besides, both of them introduce shortest path search algorithm to reduce the

human intervention for boundary selection.

To achieve highly accurate annotations while minimizing user interven-

tions, we present an edge fragment based annotation tool, ByLabel. Given an

image, edges are detected and split into high-quality fragments. Compared

with manually sampled polygon control points, those detected edge fragments

describe the curved boundaries more accurately. Then, users are allowed to

create closed boundaries by selecting subsets of those edge fragments sequen-

tially. The selection operation requires no careful localization of boundaries,

hence it greatly reduces the annotation workloads. One or multiple boundaries

are grouped to describe different types of objects including simple objects with

single boundary, complex objects with holes or divided by occlusions. Finally,

region masks are generated and output based on the corresponding closed

boundary groups.
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2.2 Salient Closed Boundary Extraction

Closed Boundary (CB) is one of the most common elements in natural images.

Object contours are usually comprised of one or multiple closed boundaries.

Each closed boundary consists of a set of sequentially connected pixels with

high gradient magnitude. Salient Closed Boundary (SCB) is defined as the

most attractive closed boundary in certain scenarios. Although the “most

attractive” is sometimes confusing and not unique, it can be determined by

some additional conditions and constraints. Given an image with/without

additional conditions, we refer the process of identifying the most attractive

closed boundary as salient closed boundary extraction.

As mentioned in Chapter 1, closed boundaries and regions are mutually

determined. Hence, both boundary extraction methods and image segmenta-

tion methods are able to produce closed boundaries. Many approaches have

been proposed for solving this problem. These methods can be mainly cat-

egorized into the following groups: (1) active-contour approaches; (2) shape

deformation approaches; (3) graph-theoretic approaches; (4) perceptual group-

ing approaches.

Active-contour approaches extract the target closed boundaries by

evolving the initialized closed boundaries based on image energy minimization.

Kass et al . [117] propose the snakes method, in which snake is an energy-

minimized spline guided by external constraints and image forces that enforce

the spline to evolve toward the local lines and edges. Amini et al . [8] introduce

dynamic programming that tries to guarantee the global optima of the varia-

tional energy minimization process for active contour problem. Williams and

Shah [265] propose a fast active contour method based on a greedy algorithm

which is faster than the dynamic programming based method in [8]. Caselles et

al . [34] propose an active contour model based on a geometric partial derivative

equation (Level-set method), which is independent to curve parameterization

and enables the extraction of multiple contours at the same time. Caselles et

al . [35] develop a geodesic active contour method which builds the connection

between classical “snakes” based on energy minimization and geometric active
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contours based on the theory of curve evolution. Xu and Prince [276] improve

the active contour methods by introducing an external force called gradient

vector flow (GVF), which is computed as a diffusion of the gradient vectors of

a gray-level or binary edge map derived from the image. Although the active

contour methods achieve significant progress in the past decades, their results

heavily depend on the initialization and the global optima is not guaranteed

in most of the applications [253].

Shape deformation approaches are developed to achieve more robust

performance against noises and partial occlusions. Cootes et al . [50] propose

to learn patterns of variability from annotated training images and then com-

bine the learned patterns with active contour models to achieve robust results

by iterative refinement algorithm. Staib [234] introduce a probabilistic de-

formable model to describe the flexible constraints for representing diversified

and irregular boundaries (shapes). The boundary finding problem is then

solved by optimizing a maximum a posteriori objective function. Jain et al .

[110] develop an object matching method using deformable templates, which

consist of representative contours or edges. They utilize a Bayesian scheme to

find a match between the deformed template and objects in the image based

on this prior knowledge and the edge information in the input image. Han

et al . [87] propose a topology preserving Level Set method for geometric de-

formable models, in which topology preservation is obtained by applying the

simple point concept from digital topology. Leventon et al . [140] present a

method for incorporating shape information into the image segmentation pro-

cess. They predict the target location by estimating the maximum a posteriori

position globally and refine the shape of the object based on the prior shape

information and the local image information. Although these shape deforma-

tion approaches are able to handle certain noises and specifical types of partial

occlusions, their performance is still sensitive to the initialization and there is

no guarantee that the optimal boundary will be obtained [253].

Graph-theoretic approaches are developed to avoid dependence on ini-

tialization and guarantee the production of global optima. Wu et al . (Mini-

mum Cut) [273] propose to represent to-be-clustered data (image pixels) by an
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undirected adjacency graph G, in which the arcs represent similarities between

two data points. The vertices (pixels) of G are then clustered by minimizing

the largest inter-subgraph maximum flow. Cox et al . (Ratio Regions) [53]

define the segmentation objective function as the combination of an exterior

boundary cost and an interior benefit associated with it. They optimize the

function by a graph partitioning algorithm. Shi and Malik (Normalized Cut)

[225] formulate the image segmentation problem as a graph partitioning prob-

lem and solve this problem by their newly proposed normalized cut criterion,

which measures both the total inter-group dissimilarity as well as the total

intra-group similarity. Sarkar and Soundararajan (Average Cut) [220] propose

a supervised strategy to learn the relative importance of the basic salient rela-

tionships and the grouping parameters for perceptual grouping. Jermyn and

Ishikawa [111] define a new form of energy functional on the space of bound-

aries for modeling and identification of regions of images. This functional is

able to incorporate general combinations of information both from the bound-

ary and from the interior of the region. The global optima is searched by

two polynomial-time digraph algorithms. Wang and Siskind (Ratio Cut) [254]

propose a new image segmentation cost named as cut ratio, which is defined as

the ratio of the corresponding sums of two different weights of edges along the

cut boundary and models the mean affinity between the segments separated

by the boundary per unit boundary length. This cost guarantees that the seg-

ments produced by bipartitioning are connected and aligned with image edges.

The above graphs constructed in most of those methods are based on vertices

correspond to pixels or small regions so that it is difficult to incorporate several

Gestalt laws [246], [253]. In addition, most of the graph optimization algo-

rithms are specifically designed for solving certain types of objective functions

so that they are limited to be adapted to different applications.

Perceptual grouping approaches focus on identifying and grouping

low-level features e.g. pixels, line segments or edge fragments, to formulate

high-level targets. Most of the perceptual grouping approaches are designed

based on the principles of Gestalt Laws [115], [124], [246]. One class of the

grouping approaches [9], [36], [38], [54]–[56], [186], [208] targets at grouping dis-
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joint points/edges into relatively longer open boundaries. Another class aims

at generating closed boundaries to facilitate the detection or segmentation of

certain targets. This class of algorithms [10], [66], [68], [109], [172], [233], [253]

is relatively more applicable in real-world applications, such as object detec-

tion, image segmentation, etc. Elder and Zucker [68] demonstrate that contour

closure plays an important role in the rapid discrimination of two-dimensional

shapes. Jacobs [108], [109] propose an algorithm for extracting salient convex

collections of line segments by encoding proximity and convexity into distance

constraint and angle consistent. Elder and Zucker [66] propose an algorithm

for extracting highly closed bounding contours. They use tangent vectors

and image intensity to represent the contours and build a sparsely-connected

graph based on this representation. Then, they pose the problem of computing

closed contours as the computation of shortest-path cycles in this graph. Amir

and Lindenbaum [10] introduce a generic method for perceptual grouping of

various types of data features. This method first constructs a graph based

on available grouping cues and then conducts graph partition to find feature

groups using known statistical tools such as Wald’s SPRT algorithm [247] and

the Maximum Likelihood criterion. Mahamud et al . [172] develop a real-time

image segmentation method using a saliency measure based on the proximity

and good continuity principles of Gestalt laws. Specifically, the contour clo-

sure is incorporated by finding the eigenvectors and eigenvalues of a transition

matrix, which describes a Markov process. Each element (i,j) of the matrix

denotes the conditional probability that edge j belongs to a contour and edge

i will also be a part of the contour. To achieve more robust results, Elder et

al . [65] propose to group contours by combining prior probabilistic knowledge

of the object appearance with probabilistic contour grouping models. Par-

ticularly, they first search for a set of closed boundary candidates and then

evaluate these candidates by computing the maximum a posteriori based on

figure-ground and prior probabilities. Wang et al . (Ratio Contour, RC) [253]

formulate the salient closed boundary problem as a problem of searching for a

graph cycle from an undirected graph. They solve this problem by reducing it

into a problem of finding a Minimum-Weight Perfect Matching (MWPM) in
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the same graph. Stahl and Wang [233] adapt Ratio Contour method by implic-

itly encoding the continuity principle into the area of the region enclosed by

the target closed boundary. To solve the problem, they specifically designed a

method for attaching the area information to each line segments.

As described above, many algorithms first construct a graph based on the

principles of Gestalt laws and then search for the closed boundaries from the

graph. The key component of these perceptual grouping methods is the opti-

mization algorithm. Since applications of perceptual grouping are diversified,

a well-designed optimization algorithm will enable the development of more

flexible and accurate grouping objective functions according to the require-

ments of different applications. In this thesis, a simple yet flexible graph-based

optimization algorithm named as “Bi-Directional Shortest Path (BDSP)” is de-

veloped. This algorithm first generates a set of cycle candidates by searching

for the shortest paths from two endpoints of a graph edge to a third common

vertex. Then, it searches for the optimal cycle from these generated cycle can-

didates by evaluating them based on the grouping cost functions and priors.

This algorithm is able to handle different objective functions and flexible to

be used in different perceptual grouping related applications.

2.3 Supervised Salient Object Detection by Deep
Convolutional Neural Networks

In addition to extracting salient closed boundaries, labeling pixels belonging

to the salient object is another way of salient object detection. This prob-

lem is usually formulated as a binary image segmentation problem. Early

traditional methods detect salient objects by searching for pixels according

to a pre-defined saliency measure computed based on handcrafted features

[231], [279], [294], [310]. Borji et al . [24] provide a comprehensive survey and

analysis of these traditional methods in. In recent years, many deep salient

object detection networks [258] have been proposed. Compared with tradi-

tional handcrafted features based methods [24], deep salient object detection

networks show more competitive performance. These deep methods can be

26



categorized into the following groups:

(1) Patch-wise Deep Methods: Encouraged by the advancement of image

classification of Deep Convolutional Neural Networks (DCNNs) [128], [228],

early deep salient object detection methods search for salient objects by clas-

sifying image pixels or super pixels into salient or non-salient classes based on

the local image patches extracted from single or multiple scales [145], [147],

[158], [250], [307]. However, these methods usually generate coarse outputs

most probably because spatial information is lost in the fully connected lay-

ers.

• Zhao et al . (MCDL) [307] propose to extract both local and global

context information of a superpixel by feeding the superpixel centered

image patches with different sizes into two unified networks. Then each

superpixel is predicted to be salient or not.

• Wang et al . (LEGS) [250] develop a two stages saliency detection frame-

work. Local context information are extracted in the first stage from

image patches by a deep neural network and the global saliency scores

are predicted based on these local features via a fully connected network.

• He et al . (SuperCNN) [96] propose to predict per-superpixel saliency

by feeding superpixel based multi-scale color uniqueness and distribution

sequences into convolutional networks.

• Lee et al . (ELD) [139] try to predict per-superpixel saliency by con-

catenating the deep image feature vectors extracted by VGG [228] and

the feature vectors of encoded low-level distance map of the super-pixel

query region.

• Kim and Pavlovic (SCSD) [119] develop a shape-preserving saliency

prediction method, which uses a convolutional neural network to learn

the correspondences between image patches and a set of shape classes

from a pre-defined shape dictionary.

• Li et al . (MDF) [147] propose to feed multi-scale image patches around
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a target pixel to a neural network and then obtain a feature vector for

describing the saliency of this pixel.

(2) FCN-based Methods: Salient object detection methods based on Fully

Convolutional Network (FCN) [130], [146] achieve significant improvement

compared with patch-wise deep methods, presumably because FCN is able

to capture richer spatial and multi-scale information. Most of the methods in

this category usually focus on developing new strategies or methods for bet-

ter aggregating or integrating multiple deep layers’ feature maps extracted by

backbone networks adapted from image classification, such as VGG, ResNet

[94], DenseNet [100] and so on.

• Zhang et al . (UCF) [301] develop a reformulated dropout and a hybrid

upsampling module to reduce the checkerboard artifacts of deconvolu-

tion operators as well as aggregating multi-level convolutional features

in (Amulet) [300] for saliency detection.

• Hu et al . (DLS) [98] propose to learn a Level Set [190] function by a

deep convolutional neural network to output accurate boundaries and

compact saliency.

• Luo et al . [168] design a network (NLDF+) with a 4×5 grid struc-

ture based on VGG network to combine local and global information

and utilize a fusing loss of cross entropy and boundary IoU inspired by

Mumford-Shah [185] to achieve clear saliency boundaries.

• Hou et al . (DSS+) [97] adopt Holistically-Nested Edge Detector (HED)

[275] by introducing short connections to its skip-layers for saliency pre-

diction.

• Chen et al . (RAS) [43] adopt HED by refining its side-output iteratively

using a reverse attention model.

• Zhang et al . (LFR) [299] predict saliency with clear boundaries by

proposing a sibling architecture and a structural loss function.
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• Zhang et al . (BMPM) [297] design a controlled bi-directional passing

of features between shallow and deep layers to obtain accurate saliency

predictions.

• Wu et al . (MLMS) [270] improve the saliency detection accuracy by

developing a novel Mutual Learning Module for better leveraging the

correlation of boundaries and regions.

• Wu e.g . (CPD) [272] propose to use Cascaded Partial Decoder frame-

work for fast and accurate salient object detection.

(3) Deep Recurrent and Attention Methods: Instead of designing fea-

ture aggregation strategies or integration approaches, methods in this cate-

gory aim to extract richer local and global context information from the fea-

ture maps generated by backbone networks adapted from image classification

tasks. Hence, different multi-scale feature extraction modules are designed

and integrated with those backbone networks.

• Kuen et al . (RACDNN) [131] learn global saliency information by in-

troducing a recurrent network to iteratively perform feature extraction

and refinement on selected image sub-regions.

• Zhang et al . (PAGRN) [303] develop a recurrent saliency detection

model that transfers global information from the deep layer to shallower

layers by a multi-path recurrent connection.

• Hu et al . (RADF+) [99] recurrently concatenate multi-layer deep fea-

tures to capture richer local and global context information for salient

object detection.

• Wang et al . (RFCN) [252] design a recurrent FCN-based encoder-decoder

for iteratively correcting the saliency prediction errors.

• Liu et al . (PiCANet) [157] predict the pixel-wise attention maps by a

contextual attention network and then incorporate it with U-Net archi-

tecture to detect salient objects.
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• Zhang et al . (CapSal) [298] design a local and global perception mod-

ule to extract both local and global saliency information from features

extracted by the backbone network.

• Zeng et al . (MSWS) [289] design an attention module to predict the

spatial distribution of foreground objects over image regions meanwhile

aggregate their features.

• Feng et al . (AFNet) [74] develop a global perception module and atten-

tive feedback modules to better explore the structure of salient objects.

• Liu et al . (PoolNet) [154] develop an encoder-decoder architecture for

salient object detection by introducing a global guidance module for

extraction of global localization features and a multi-scale feature aggre-

gation module adapted from pyramid pooling module for fusing global

and fine-level features.

(4) Coarse to Fine Deep Methods: To capture finer structures and more

accurate boundaries, numerous refinement strategies including progressive re-

finement modules and hybrid losses have been proposed.

• Liu et al . (DHSNet) [155] propose a deep hierarchical saliency network

which learns various global structured saliency cues first and then pro-

gressively refine the details of saliency maps.

• Wang et al . (SRM) [255] propose to capture global context information

with a pyramid pooling module and a multi-stage refinement mechanism

for saliency maps refinement.

• Inspired by [195], Amirul et al . (CARNet) [103] propose an encoder-

decoder network that utilizes a refinement unit to recurrently refine the

saliency maps from low resolution to high resolution.

• Li et al . (C2S) [148] develop a two branches contour-to-saliency network,

in which contour and saliency features are encoded in the same bottom

layers. The contour detection and SOD branches are trained iteratively

to progressively refine each other.
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• Deng et al . (R3Net+) [58] develop a recurrent residual refinement net-

work for saliency maps refinement by incorporating shallow and deep

layers’ features alternately.

• Wang et al . (DGRL) [256] propose to localize salient objects globally

and then refine them by a local boundary refinement module.

Although these methods raise the bar of salient object detection greatly,

there is still a large room for improvement in terms of the fine structure seg-

ment quality and boundary recovery accuracy. Besides, almost all of the above

deep salient object detection methods are built upon the existing backbone

networks adapted from image classification tasks like ImageNet [57]. On one

hand, the usage of these backbones does lower the risks of developing new

SOD models and improve the overall performance of SOD. On the other hand,

those backbones were originally designed for image classification tasks and

can not be directly generalized for SOD. To overcome this drawback, more

and more strategies and modules are introduced and result in overly compli-

cated SOD models. The aforementioned two main problems motivate us to

develop new deep convolutional networks for accurate, fast and robust salient

object detection. Therefore, we first present a new deep method, BASNet, for

boundary-aware accurate salient object detection. Then, a computation and

memory efficient deep architecture U2-Net is proposed for real-time salient

object detection.
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Chapter 3

Interactive Annotation with
ByLabel: A Boundary based
Semi-Automatic Image
Annotation Tool

3.1 Overview

This chapter presents a novel boundary based semi-automatic tool, ByLabel,

for accurate image annotation, as shown in Fig. 3.1. Given an image, ByLabel

first detects its edge features and computes high-quality boundary fragments.

Current labeling tools require the human to accurately click on numerous

boundary points. ByLabel simplifies this to just selecting among the boundary

fragment proposals that ByLabel automatically generates. To evaluate the

performance of ByLabel, 10 volunteers, with no experience of annotation, were

asked to label both synthetic and real images with both our ByLabel and

another commonly used labeling tool, LabelMe [216]. Compared to LabelMe,

our ByLabel reduces image click operations and time costs by 73% and 56%

respectively, while improving the accuracy by 73% (from 1.1 pixel average

boundary error to 0.3 pixel). The results show that our ByLabel outperforms

the state-of-the-art annotation tool in terms of efficiency, accuracy and user

experience. The tool is publicly available: http://webdocs.cs.ualberta.

ca/~vis/bylabel/.
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(a) Input image (b) Edge map (c) Region mask (d) Image and mask
overlap

Figure 3.1. Annotation of a bike. Given an input image (a), ByLabel computes
boundary proposals and allows humans to select and group closed boundaries.
Then, the region masks (c) are generated from these closed boundaries (b).

3.2 Basic Types of To-Be-Annotated Objects

Boundary maps and region masks are the two most commonly used image

ground truth types. The goal of ByLabel is to produce these ground truth an-

notations semi-automatically by interacting with a human user. We categorize

those to-be-annotated objects into three basic types:

• simple objects, which can be defined by one closed boundary or a piece

of the contiguous region, as shown in Fig. 3.2(a).

• objects with holes, which can be described by several nested closed

boundaries or a piece of the contiguous region, as shown in Fig. 3.2(b).

• objects divided by occlusions, which can be determined by multiple

closed boundaries or isolated regions, as shown in Fig. 3.2(c).

As we can see in Fig. 3.1 and Fig. 3.2, holes and occlusions often exist. Multi-

ple boundaries or regions are necessary to describe these kinds of complicated

targets. We take closed boundaries and the regions enclosed by them as “dual”

representations of targets, since they can be determined by each other. Hence,

we can label either boundaries or regions and generate the other one automat-

ically. ByLabel is designed to label boundaries. Region masks are generated

from the labeled boundaries.

To achieve high annotation accuracy and efficiency, we propose to use au-

tomatically detected edge fragments instead of the manually sampled control
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(a) Circular box (b) Key (c) Toy van

Figure 3.2. Three basic types of objects. Column (a) is a circular box (one
closed boundary). Column (b) is a key with a hole (two boundaries). Column
(c) is a partially occluded toy van (three boundaries). The top, middle and
bottom row are their original images, edge maps and region masks respectively.

points to describe object boundaries. Given an image, annotating a new ob-

ject involves three steps, as illustrated in Fig. 3.3. First, the edge features of

the image are detected and split properly. Then, users are allowed to annotate

boundaries interactively with a well-designed keyboard and mouse interface.

Finally, grouped boundaries, generated region masks and input class names

are organized and formatted in an output fold to represent the objects.

3.3 Feature Detection

Edge fragments (EF) are basic elements in our annotation process. They are

obtained by splitting detected edge segments (ES). There are many algorithms

have been proposed for edge detection. One the most famous edge detectors

is Canny [32]. But the edges detected by Canny are often jittered and dis-
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Figure 3.3. Annotation workflow of ByLabel.

continuous. Therefore, many multi-scale [67] or learning based [61], [275] edge

detectors were proposed to obtain better edge detection results by taking im-

age scale and structure information into consideration. However, the outputs

of these methods are usually binary masks (or probability maps) and the edge

pixels are independent. To have continuous pixel chains, these independent

edge pixels are usually grouped into edgels by additional grouping processes.

That means specific grouping costs and optimizers have to be developed. Con-

ducting these two steps separately avoids “edge breaking” but introduces other

problems, such as how to design a reliable grouping costs and guarantee the

smoothness of the locally grouped edges; how to exclude noisy edge pixels and

avoid erroneous grouping; etc. In this work, Edge Drawing (ED) [238], which

is able to produce well-localized, clean, contiguous and one-pixel wide edge

segments, are utilized. Given an image, ED first detects its anchor edge pixels

and then searches for other edge pixels and groups them into edge segments

simultaneously. The integration of edge pixels extraction and grouping is able

to produce relatively smoother and less noisy edge segments. Each (chain-

wise) edge segment detected by ED is output in vector form as an array of

pixels. Compared with manual control points, these pixel chains are smoother

and more accurate in fitting object boundaries. However, in the automatically

detected fragments some foreground and background edge pixels are often im-

properly identified as one long and complex edge segment. Our annotation

tool employs two “edge breaking” ways for splitting an edge segment into mul-

tiple well-organized edge fragments, as illustrated in Fig. 3.4: (1) automatic

splitting using turning angle rules; (2) manual splitting.
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(a) Splitting by turning angle (b) Automatic splitting result

(c) Manual splitting (d) Manual splitting result

Figure 3.4. Edge segment splitting. (a) and (b) show the automatic splitting
of an Edge Segment (ES) based on turning angle. As illustrated in (a), if
the turning angle of the pixel pi is larger than a threshold (35 degree), the
edge segment will be split between pixel pi and pi+1. (c) and (d) illustrate
the manual splitting of an Edge Fragment (EF). The edge fragment is split
between the blue and green pixels.

Pixels which have large curvatures are more likely to be incorrect connec-

tions of foreground and background edges. Here, we search for these pixels

using a simple measure, turning angle θ, which is computed as:

θpi
= arccos(

(pi − pi−2) · (pi+2 − pi)

|pi − pi−2||pi+2 − pi|
). (3.1)

where pi is the current pixel, pi−2 and pi+2 are two pixels sampled near pi. θpi

is the angle between vector −−−−→pi−2pi and −−−−→pipi+2, as illustrated in Fig. 3.4(a). All

of the detected edge segments are split at pixels where turning angles are larger

than a certain threshold (set to 35 throughout our experiments), as shown in

Fig. 3.4(b). Compared with line fitting-based edge splitting methods, this

method retains relatively long smooth edge curves, and hence prevents over

splitting.

Sometimes, foreground and background edges also have smooth connec-
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tions, leading to a boundary that cannot be inferred from the turning angle.

To handle this case, ByLabel allows manual splitting. Users can split an edge

fragment by moving the mouse cursor over the expected splitting position and

pressing key “b”. As shown in Fig. 3.4(c) and Fig. 3.4(d), the expected split-

ting position is indicated by two pixels: the blue pixel pi, which is the closest

one to the mouse cursor, and the green pixel pi+1, which is the next one of pi

in the vector of edge fragment EFt.

3.4 Interactive Annotation

In ByLabel, one or multiple closed boundaries are employed to describe an

object of arbitrary shape. Closed boundaries are defined by sequentially con-

nected multiple edge fragments. In the annotation process, detected edge

fragments are superimposed on the original image, and users sequentially se-

lect a subset of them to form the object boundaries. If there is a small gap,

two successively selected edge fragments are connected with their two closest

endpoints by a short straight line segment that is automatically added. Some-

times, not all of the object boundaries can be detected successfully. To address

this problem, ByLabel provides a “drawing” mode. Users can switch the la-

beling mode between “selecting” and “drawing” by press key “a”. Similar to

LabelMe, the “drawing” mode allows users to manually enter multiple control

points to fit those missing arcs. After selecting all necessary fragments, users

can click the middle button of the mouse (mouse wheel) to finish the labeling

and close the boundary. The simple process of annotation is shown in Fig.

3.5.

An object can consist of multiple boundaries. To group these boundaries

into an object entity, users have to label them successively. The annota-

tion processes in ByLabel are sequentially ordered. After completing a closed

boundary, there will be a pop-up window asking whether the labeled boundary

is the last one of the current object. The input of “n” means the object has

more boundaries to label. The input of “y” means the current object labeling

is finished and there will be another pop-up window for inputting the object’s
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(a) Edge Fragments (EF) (b) Labeled boundary (c) Region mask

Figure 3.5. Interactive annotation. (a) shows the detected edge fragments.
(b) shows the labeled boundary: red edges are selected EF; green edges are
generated connections; pink edges are drawn segments. (c) is the region mask
generated from the labeled boundary.

class name or identity.

3.5 Annotation Formatting

There are mainly seven types of annotation outputs stored in their correspond-

ing folders: (1) color_im_overlap, (2) edge_map_classes, (3) edge_map_ in-

stances, (4) region_map_classes, (5) region_map_instances, (6) text_ EF_

pixels, (7) text_shape_pixels. The pixel coordinates of detected edge fragments

are output into text_EF_pixels. The direct results of interactive annotation

are boundaries represented by multiple edge fragments. These boundaries

are all one-pixel-wide. They are written in text files (text_shape_pixels) and

drawn as boundary maps. In addition to label boundaries, ByLabel is also

able to generate region masks according to labeled boundaries. Here, both

edge maps and region masks are output as two types of color images: class

based (edge_map_classes, region_map_classes) and instance based (edge_

map_ instances, edge_map_instances). Users are free to choose any type of
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output depending on the application. More details and instructions can be

found: https://github.com/NathanUA/ByLabel.

3.6 Experiments

To demonstrate the advantages of our boundary based annotation tool ByLa-

bel, we conduct a set of user tests to quantitatively compare its performance

with that of a popular web-based annotation tool LabelMe. Additionally, we

show the results of some typical annotation cases to demonstrate the effective-

ness of ByLabel qualitatively.

3.6.1 User Tests and Evaluation

In our user experiments, ten volunteers are asked to annotate five synthetic

images (Fig. 3.6), and ten real images (Fig. 3.7 and Fig. 3.8), as fast and

accurate as possible using both LabelMe and ByLabel. These ten volunteers

have no prior experiences on image annotation. To reduce the total work load

of the annotation test, each testing image contains only one target object,

which is defined by a single boundary.

We evaluate ByLabel and compare it with LabelMe on the following four as-

pects: clicks, time costs, error and user experience. Mouse clicks are the most

commonly used operation in image annotation. Generally, more clicks produce

more detailed annotation results and higher geometric accuracy. However, a

large number of clicks require more patience and time. Therefore, clicks and

time costs reflect the annotation work load directly. The geometric annotation

error is defined by the average Alignment Error (aveAE) [204]

aveAE =
Busr ⊗Distgt

Pusr
(3.2)

where ⊗ indicates the summation of element(pixel)-wise multiplication, Busr is

the annotated binary boundary map, Distgt is the distance map of the ground

truth, Pusr is the edge pixels’ number of Busr.

In our tests, we recorded users’ clicks, time costs and errors on each testing

image, as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8. After annotating, they
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(a) A1 (b) A2 (c) A3 (d) A4 (e) A5

(f) σl=0,σb=0 (g) σl=0.32,σb=0 (h) σl=0,σb=0.48 (i) σl=5.60,σb=0 (j) σl=35.03,σb=1.90

(k) σl=2.92,σb=0.90 (l) σl=3.74,σb=0.76 (m) σl=5.69,σb=1.04 (n) σl=13.46,σb=0.77 (o) σl=40.01,σb=4.72

(p) σl=0.19,σb=0 (q) σl=0.10,σb=0 (r) σl=0.12,σb=0 (s) σl=0.27,σb=0 (t) σl=0.14,σb=0.01

Figure 3.6. The results of user tests on synthetic images. The top row shows
the synthetic images. The second to fourth row show the clicks, time costs
and average Alignment Error (aveAE) respectively. σl and σb are standard
deviations of LabelMe and ByLabel.

were also asked to fill the forms of NASA Task Load Index (TLX) [91] for user

experience evaluation (see the results in Fig. 3.10).

1) Tests on synthetic images

Image annotation are usually simplified as polygon drawing. As mentioned

above, there are two factors that affect the annotation work load. One is the

number of boundary control points, which determines the required clicks along

the boundary. The other one is the boundary saliency. Here, the boundary

saliency denotes the intensity change rate (image gradient) along the per-

pendicular direction of local boundary. It affects the difficulty of key points

localization and therefore their accuracy.

To study the influences of the two factors on image annotation, we first
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conduct our user tests on five synthetic images of increasing complexity. These

five images are square, octagon, dodecagon, circle and a shape of butterfly

respectively (see the first row of Fig. 3.6). They are generated by blurring

corresponding binary shape maps using a Gaussian filter (kernel size = 5,

σ = 1). The Gaussian filter blurs the binary map to simulate the appearance

of real image boundaries. The binary shape maps are retained as ground truth

of synthetic images.

In LabelMe, to annotate regular polygons whose boundaries are straight

line segments as shown in Fig. 3.6(a), 3.6(b) and 3.6(c), users just have to click

through the corners sequentially. But as the number of corners goes up, more

clicks and time costs are required (see Fig. 3.6(i) and 3.6(n)). The extreme

case of the regular polygon is a circle, as shown in Fig. 3.6(d). Theoretically,

there are infinitely many corners along its boundaries. The users would need to

click many times to obtain an accurate annotation. Compared with LabelMe,

ByLabel annotates targets simply by selecting the detected edge fragments,

which is more efficient for smooth boundary annotation. As can be seen in

Fig. 3.6(f) - 3.6(i), using ByLabel reduces clicks greatly and therefore saves

the annotation time (see Fig. 3.6(k) - 3.6(n)). Although ByLabel requires the

same number of clicks as LabelMe in annotating A1, it costs less time because

selecting detected edge fragments is easier than localizing the exact control

points. The butterfly shape in Fig. 3.6(e) is comprised of many corners and

smooth arcs. It is designed as a comprehensive annotation test. The results

show that ByLabel achieves significant improvement in terms of clicks and

time cost, see Fig. 3.6(j), Fig. 3.6(o) and Fig. 3.9.

Overall, as the shape complexity increases, more clicks and time costs are

required to obtain relatively detailed annotations using LabelMe. However,

with ByLabel, the number of clicks and the time costs stayed at a low level,

as shown in the second and third row of Fig. 3.6.

As shown in Fig. 3.6(p) - 3.6(t), users produce smaller errors (0.5 - 1 pixel)

when using ByLabel than using LabelMe (over 1 pixel). Besides, different users

achieve almost the same error on each testing image when using ByLabel which

suggests that ByLabel is able to reduce the annotation uncertainties. The
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(a) B1 (b) B2 (c) B3 (d) B4 (e) B5

(f) σl=5.41,σb=2.33 (g) σl=9.18,σb=0.32 (h) σl=9.97,σb=0.82 (i) σl=4.40,σb=2.45 (j) σl=9.62,σb=0.53

(k) σl=12.44,σb=5.26 (l) σl=7.89,σb=1.71 (m) σl=17.62,σb=2.55 (n) σl=17.31,σb=4.25 (o) σl=13.97,σb=2.80

(p) σl=0.31,σb=0.03 (q) σl=0.28,σb=0 (r) σl=0.12,σb=0 (s) σl=0.13,σb=0.02 (t) σl=0.12,σb=0

Figure 3.7. The results of user tests on the first group of real images. The top
row shows the test images. The highlighted red regions are to-be-annotated
targets. The second to fourth rows show the clicks, time costs and average
Alignment Error (aveAE) respectively. σl and σb are standard deviations of
LabelMe and ByLabel.

quantitative evaluation of the uncertainties is the standard deviation σ.

2) Tests on real images

The 10 real images including nature images, satellite image, medical im-

age, and manga are selected for user tests. Their ground truth masks are

obtained by averaging the labeling results of three experienced annotators. In

the ground truth masks labeling, different image processing algorithms, such

as adaptive image filtering, image enhancement, gradient computation and so

on, are allowed to obtain auxiliary (qualitative and quantitative) information

for achieving relatively more accurate results. These images are divided into

two groups according to their targets’ shape complexity. The targets in the

first group are relatively simple, as shown in Fig. 3.7(a) - 3.7(e). Those in the
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(a) C1 (b) C2 (c) C3 (d) C4 (e) C5

(f) σl=16.38,σb=3.53 (g) σl=23.18,σb=1.71 (h) σl=22.99,σb=3.85 (i) σl=54.95,σb=2.00 (j) σl=37.80,σb=6.04

(k) σl=27.29,σb=10.94 (l) σl=30.28,σb=5.29 (m) σl=33.2,σb=13.11 (n) σl=56.51,σb=12.87(o) σl=43.39,σb=22.34

(p) σl=0.13,σb=0.07 (q) σl=0.43,σb=0.02 (r) σl=0.29,σb=0.01 (s) σl=0.21,σb=0.01 (t) σl=0.21,σb=0.15

Figure 3.8. The results of user tests on the second group of real images.

second group are more complicated and challenging, see Fig. 3.8(a) - 3.8(e).

B1, B2, B4 and B5 are circular box, rounded rectangular container, mea-

sure cup and MRI image of human neck respectively. Their boundaries are

all smooth curves. Fig. 3.7(f), 3.7(g), 3.7(h), 3.7(j) and Fig. 3.7(k), 3.7(l),

3.7(m), 3.7(o) show that ByLabel reduces both clicks and time costs on this

kind of targets. B3 (see Fig. 3.7(d)) is an aerial image with a building roof

whose boundary is comprised of multiple straight edges and sharp corners. Our

algorithm split its boundary into many edge fragments at its sharp corners.

As a result, the annotation clicks and time costs of ByLabel and LabelMe are

similar. But using ByLabel achieves almost zero errors while the errors when

using LabelMe are all close to 1 pixel, as shown in Fig. 3.7(p) - 3.7(t).

Targets in Fig. 3.8(a) - 3.8(e) are pedestrian, cable, manga totoro, insect

and motorcycle respectively. Compared with the targets in the first group, this

43



Figure 3.9. Averages and standard deviations of different measures.
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Figure 3.10. The average value of NASA Task Load Index (TLX) produced
by those 10 volunteers.

five images have finer structures, which are challenging to annotate. As shown

in Fig. 3.8(f) - Fig. 3.8(j), more than 100 clicks are required to annotate each

of these targets by LabelMe. ByLabel reduces clicks to close to or fewer than

50. Fig. 3.8(k) - 3.8(o) illustrate the advantage of ByLabel in terms of time

costs.

As can be seen in Fig. 3.8(k) and Fig. 3.8(o), some volunteers spend the

same or even more time in annotating object C1 and C5 when using ByLabel

compared to LabelMe. The reason is that some part of the boundary in C1

and C5 are missing. Volunteers have to draw the missing parts using “drawing”

mode of ByLabel. A lot of the time are spent in figuring out how to switch

between “selecting” and “drawing” mode due to their limited experience with

the tool. This can be reduced for experienced users.

3) Overall Evaluation

We summarize the averages and standard deviations of clicks, time costs

and errors of 10 volunteers on each testing image in Fig. 3.9. Our ByLabel

reduces 72.58% of clicks (from 67.35 to 18.47), meanwhile saves 56.38% time

costs (from 65.04 s to 28.53 s). The bar graph shows that our ByLabel achieves

an overall average Alignment Error (ave_AE) of 0.30. Compared with that
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Figure 3.11. Annotation of objects with multiple boundaries.

(1.10 pixels) of using LabelMe, the annotation error is decreased by 72.73%.

The standard deviation of each measure indicates that our ByLabel is more

reliable than LabelMe.

Fig. 3.10 shows the NASA Task Load Index results generated by these 10

volunteers. Lower scores denote more friendly user experience. As shown in

Fig. 3.10, ByLabel achieves lower scores than LabelMe in all six aspects.

(a) Image (b) Region classes (c) Region instances

(d) Annotated image edge (e) Edge classes (f) Edge instances

Figure 3.12. Classes and instances.
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3.6.2 More Annotation Examples

In section 3.1, the testing targets are all defined by single boundaries. To

further illustrate the capability of ByLabel, Fig. 3.11 shows annotations of

some commonly used objects which are defined by multiple boundaries.

Additionally, ByLabel is able to output both class based and instance based

annotations. Fig. 3.12 depicts a scene with three cups and four candies. Fig.

3.12(b) and Fig. 3.12(e) show the class based annotations. Objects belonging

to the same class are encoded in the same color. Fig. 3.12(c) and Fig. 3.12(f)

show the instance based annotations. Each object instance has a unique color.

The color codes and their corresponding classes and instances are output into

the additional text files.

3.7 Summary

In this chapter, we develop a novel semi-automatic boundary based image

annotation tool, ByLabel. Instead of annotating images directly, ByLabel in-

troduces edge detection and splitting algorithms to assist annotation, which

greatly improves the annotation efficiency and accuracy. The results of user

tests show that ByLabel outperforms the state-of-the-art annotation tool La-

belMe in terms of time costs, accuracy and user experience. Additionally,

ByLabel can also be used to annotate video streams frame by frame.
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Chapter 4

Unsupervised Salient Closed
Boundary Extraction by
Perceptual Grouping

4.1 Overview

In the previous chapter, we described our novel interactive method, ByLabel,

for semi-automatic image annotation. The interactive method is able to pro-

duce very accurate and reliable results. However, its accuracy and robustness

still rely on human interventions so that it hard to be used in some applica-

tions, which require fully automatic processing or real-time speed. It motivates

us to explore fully automatic and unsupervised methods.

4.2 Problem Formulation

Salient Closed Boundary (SCB) extraction refers to the process of extracting

the most salient object or target represented by a closed boundary from a given

input image or video frame. The problem of salient closed boundary extraction

here is formulated as a fragments based perceptual grouping problem. The

fragments based perceptual grouping refers to the process of identifying and

connecting a subset of extracted edge fragments or line segments from the

given image to formulate a complete closed boundary. The idea of perceptual

grouping is originally derived from psychology based on the observation that

humans naturally perceive objects as organized patterns and objects [264]. The
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Figure 4.1. Principle of closure [264].

perceptual grouping methods are usually based on a set of principles, Gestalt

Laws [115]. The Gestalt laws mainly consist of six aspects including proximity,

closure, continuity, similarity, common fate and good form [264]. The Gestalt

laws correspond to enforcing specified properties of a boundary. The Gestalt

laws enforce the to-be-grouped boundary to have specific properties [253]. For

example, proximity enforces to group the neighboring fragments with small

gap lengths. Closure requires the target boundary to be a cycle. Continuity

corresponds to the regulation on the smoothness of the target boundary. Fig.

4.1 shows a set of disconnected fragments. Human vision systems are prone

to perceive them as one circle on the left and one rectangle on the right due

to the principles of proximity, closure and continuity in psychology.

4.3 Workflow of the Perceptual Grouping

To simulate the perceptual grouping process of the human psychology system,

we adopted a general workflow mainly based on the principles of proximity

and closure in the Gestalt laws. The general workflow can be divided into

the following five steps: (1) fragments extraction; (2) gap filling; (3) graph

construction; (4) objective function definition; (5) optimization.

(1) Fragments extraction is the basic step for obtaining the to-be-

grouped elements. The fragments here can be either edges or line seg-

ments. It is worth noting that edges directly detected by commonly used

edge detectors like canny [32], edge drawing [238] have to be split into

fragments with proper length that excludes cases where background and

foreground pixels belong to the same edge. Hence, the output of this

step is a set of disconnected fragments.
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(2) Gap filling is to connect the extracted fragments. The naive way

of building the connection is to generate line segments between end-

points of different fragments based on a distance threshold. However,

this connection building method is sensitive to scale changes and noisy

fragments. Hence, Delaunay Triangulation [200] is used here to generate

the connection segments.

(3) Graph construction aims at reducing the salient closed boundary

perceptual grouping problem into the problem of searching for a cycle

from an undirected graph. The graph vertices represent the endpoints

of extracted fragments and the graph edges correspond to the extracted

fragments and the generated connecting line segments. Each edge is

assigned a weight to describe its properties.

(4) Objective function definition is one of the most important steps

in solving many vision related problems. The objective function should

provide an accurate mathematical description of to-be-solved problem

and it determines the theoretical upper bound of the final performance.

In this work, the objective functions are all defined based on the grouping

cues encoded in the undirected graphs.

(5)Optimization is usually closely related to the definition of the objec-

tive function. Some of the objective functions, especially those defined

on graphs, are often NP-hard problems and are difficult to be solved

in polynomial time. Hence, many optimization algorithms are specifi-

cally designed for certain objective functions. Meanwhile the design of

objective functions has to follow specific rules to guarantee the solvabil-

ity. In this work, a novel simple graph-based optimization algorithm,

“Bi-Directional Shortest Path (BDSP)”, is developed to solve the salient

closed boundary extraction problem. It is flexible and is able to solve

different types of objective functions defined on the undirected graph,

which enables the salient closed boundary extraction workflow to be

adapted to other different applications.
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(a) Detected fragments (b) Fragments endpoints (c) Connected fragments (d) Grouped hexagon

Figure 4.2. Perceptual grouping of a hexagon: (a) shows detected fragments
of a target hexagon; thick and thin fragments denote hexagon boundary frag-
ments and noises; (b) shows the endpoints of the detected fragments; (c)
dashed lines are connection segments generated by Delaunay Triangulation
[200] conducted on fragments endpoints; (d) illustrates the grouped hexagon.

For example, Fig. 4.2(a)-(d) shows the typical process of grouping a salient

hexagon target. Given an image with a salient target, the edge fragments or

line segments will be detected first (see Fig. 4.2(a)). These detected frag-

ments are usually disconnected, non-crossing and noisy (thin fragments in

Fig. 4.2(a)). The goal of perceptual grouping is to extract the most salient

intact closed hexagon as shown in Fig. 4.2(d). To find closed boundaries, the

potential connections have to be built by connecting their endpoints (see Fig.

4.2(b)). Fig. 4.2(c) shows the gap filling results produced by conducting the

Delaunay Triangulation on the endpoints of extracted fragments. Then, an

undirected graph G(V,E) is built by mapping the fragments (both detected

and generated) and their endpoints to graph edges E and vertices V respec-

tively. Each graph edge is assigned a weight value to describe its property.

Now the problem is reduced to searching for the optimal cycle from the undi-

rected graph. An objective function and a graph-based optimization algorithm

are developed to search for the optimal cycle from the undirected graph and

produce the final grouping result (see Fig. 4.2(d)).

4.4 The Proposed Optimization Algorithm

As described above, the problem of salient closed boundary extraction is for-

mulated as a problem of searching for the optimal cycle from an undirected

graph G(V,E) (see Fig. 4.3(a)). To solve this problem, both objective func-
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(a) Graph (b) Cycle (c) Objective

Figure 4.3. Graph based optimization: (a) an undirected graph where solid
black lines and dashed red lines corresponds to the extracted fragments and
generated gap filling fragments respectively; (b) a graph cycle candidate Cei

vt

comprised of edge ei, the shortest path P vt
vsi

from vertex vsi to vt and the short-
est path P vt

vei
from vei to vt; (c) the cycle Cei

vt consists of the graph edges cor-
responding to extracted fragments (solid green lines) and those corresponding
to generated gap filling fragments (solid red lines).

tion and the optimization algorithm play important roles. Since many graph

related optimization problems are NP-hard, the objective functions defined

on the undirected graph usually have to follow certain formats, such as the

fraction style objective functions in [253] and [233], to guarantee the existence

of polynomial-time solutions. This constraint reduces the flexibility of the

objective function designing. Therefore, there is a need for a simple and flexi-

ble optimization algorithm which is able to optimize objective functions with

different formats. Generally, a promising optimization algorithm usually has

following characteristics: (1) guarantee the global (or approximately global)

optimal solution; (2) run in polynomial time; (3) flexible to be generalized to

solve objective functions with different formats. In this section, a novel graph-

based optimization algorithm called “Bi-Directional Shortest Path” (BDSP)

with above characteristics is presented.

To illustrate the newly proposed graph-based optimization algorithm BDSP,

a simple objective function defined upon the closure and proximity principles

of Gestalt laws will be demonstrated as an example. As mentioned above,

the principle of closure enforces the boundary to be close which is explicitly
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reflected by searching for a cycle from the undirected graph. The principle of

proximity is encoded as the fraction of the total gap length
¸
B w(s)ds along the

to be extracted closed boundary B and the perimeter
¸

Γ
ds of this boundary:

Γ(B) =

¸
B w(e)ds¸
B ds

. (4.1)

As shown in Fig. 4.3(c), the total gap length
¸
B w(e)ds is the summation of

the length of the solid red lines and the perimeter
¸
B ds is the total summation

of the length of the solid red and green lines. The length and the property of

each graph edge ei are encoded into a weight value:

w(ei) =

{
0 ei corresponds to a detected fragment si

|P i
1P

i
2| ei corresponds to a generated fragment si

(4.2)

where |P i
1P

i
2| is the length of the corresponding fragment si of the graph edge

ei.

The difficulty of optimizing (4.1) on the undirected graph G(V,E) is that it

is hard to compute the total gap length and the perimeter before determining

the cycle. On the other hand, without computing the total gap length and the

perimeter it is impossible to determine the optimal cycle. Therefore, it is a

chicken and egg problem. Exhaustive search is able to guarantee the global op-

tima. But it is time-consuming and unfavorable when the graph is relatively

large. Wang et al . [253] transfer the optimization problem to a Minimum

Ratio Alternate (MRA) cycle problem and solve that by a polynomial-time al-

gorithm, Minimum-Weight Perfect Matching (MWPM). However, to be solved

by MWPM the objective function has to follow or can be transferred into the

fraction-style format like (4.1), which is unavailable in some other applications.

Given an undirected graph G(V,E) with n edges corresponding to detected

fragments and 2n vertices, our BDSP algorithm has two steps: (1) Cycle

Candidates generation, (2) optimal cycle retrieval. First, several possible cy-

cle candidates will be extracted in the cycle candidates generation step. As

shown in Fig. 4.3(b), BDSP searches two shortest paths from two vertices

(vsi , vei ) related to edge ei to a commonly third vertex vt by Dijkstra [59]. To

avoid generating of two overlapping shortest paths, the weight of edge ei is
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temporarily set to an infinite value when conducting the Dijkstra. The edge

ei, the shortest path P vt
vsi

from vertex vsi to vt and the shortest path P vt
vei

from vei

to vt construct a graph cycle candidate Cei
vt . For each edge ej, BDSP traverses

all the other 2× (n− 1) vertices to achieve 2× (n− 1) cycle candidates. For

the whole graph, there are 2× n× (n− 1) cycle candidates in total. Second,

the objective function value of each cycle candidates are computed with (4.1).

The cycle candidate with the minimal value is then selected as the final re-

sult of the salient closed boundary. The hypothesis of BDSP is that a graph

cycle with smaller total weight is more likely to be the optimal boundary. Al-

though the final results are not theoretically guaranteed to be global optima,

they are usually perfect in practice. Since BDSP collects the cycle candidates

first, those determined graph cycles enable the computation of objective func-

tions with different formats. Furthermore, BDSP can be adapted to achieve

a trade-off between accuracy and speed according to different applications.

For example, instead of traversing all of the n edges (corresponds to detected

fragments) and 2× (n− 1) vertices in the graph, bi-directional shortest paths

can be conducted on fewer sampled edges, e.g. n/2, and vertices, e.g. (n− 1).
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4.5 Application I: Building Outline Extraction

4.5.1 Overview

This section presents a novel approach for extracting accurate outlines of indi-

vidual buildings from Very-High-Resolution (VHR, 0.1-0.4 m) optical images.

Building outlines are defined as polygons here. Our approach operates on a

set of straight line segments that are detected by a line detector. It groups a

subset of detected line segments and connects them to form a closed polygon.

Particularly, a new grouping cost is defined firstly. Second, a weighted undi-

rected graph G(V,E) is constructed based on endpoints of those extracted line

segments. The building outline extraction is then formulated as a problem of

searching for a graph cycle with the minimal grouping cost. To solve the graph

cycle searching problem, the “Bi-Directional Shortest Path (BDSP)” method

is utilized. Our method is validated on a newly created dataset which contains

123 images of various building roofs with different shapes, sizes and intensities.

The experimental results with average Intersection-over-Union of 90.56% and

average alignment error of 6.56 pixels demonstrate that our approach is robust

to different shapes of building roofs and outperforms state-of-the-art method.

4.5.2 Motivation

Accurate building outline extraction is important to urban planning, cadas-

tral surveying and other related applications. Building outlines extraction

from very high resolution (VHR) images has become a popular yet challenging

topic in the fields of photogrammetry, remote sensing, geographic information

system (GIS) and computer vision.

There already exist many methods for building outlines extraction from

aerial and satellite images. Image segmentation based methods [116], [190],

[40], [142], [308] is a popular class of methods. Cote and Saeedi [52] com-

bine distinctive corners detection with level-set method to fit the best possible

boundaries of building rooftop. Song and Shan [230] adopt active contour

models and intensity based cluster to extract building boundaries from satel-
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lite images. Yang and Wang [280] extract building contours using shape priors

constrained level set method. These methods are sensitive to initialization,

local minimum and noise. In addition, perceptual grouping [249] [283] and

deep learning based approaches [288] have also been proposed. However, the

approach proposed in [249] is not able to extract non-rectangular building out-

lines. Because its grouping rules are designed according to the basic attributes

of rectangles: four sides with right angles. Learning based building extraction

methods [288] require large number of training data and their results are usu-

ally region masks with relatively coarse contours. Little attention has been

paid to obtaining accurate and detailed outlines of individual buildings.

This work focuses on extracting accurate outlines of individual buildings

with different shapes. The accurate outline extraction is formulated as a salient

object detection problem. There are mainly two classes of salient object de-

tection methods: intensity based and edge based.

The intensity based methods detect objects using the saliency measure de-

fined on the difference or contrast between foreground and background pixels.

Yang et al . [278] utilize super-pixels of a given image as nodes to construct

a close-loop graph. The saliency maps are obtained by ranking these nodes

according to their similarities to background and foreground queries based on

affinity matrices. Zhu et al . [310] propose a background measure to character-

ize the spatial layout of image regions with respect to image boundaries. They

integrate multiple low level cues and the background measures into their op-

timization problem. Srivatsa and Babu [232] estimate the foreground regions

using objectness proposals and then other pixels/regions are weighted by their

proposed saliency measure. They integrate these weights into an optimiza-

tion framework to obtain the final saliency map. Zhang et al . [296] develop

a salient object detection method by solving an approximate Minimum Bar-

rier Distance (MBD) Transform, which achieves 100X speedup over the exact

MBD algorithm. The outputs of these methods are usually saliency maps with

coarse or uneven boundaries of the target objects.

The edge based methods usually define saliency measure based on the

properties of to-be-extracted object boundaries, such as curvature, gap, length,
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enclosed region area, etc. Gestalt laws [115] and perceptual grouping are their

theoretical basis.

Kokkinos [125] proposes a fractional-linear programming approach to find

the most salient boundary. Lu et al . [165] create a contour saliency measure

subject to completeness and tightness constraints, and optimize it using dy-

namic programming in polar coordinate system. However, the transformation

between Cartesian coordinate system and polar coordinate system decreases

the accuracy of boundaries. Wang et al . [249] extract rectangular building

outlines by grouping straight line segments according to their distances and

angles, but only simple rectangular buildings can be extracted and several

parameters have to be tuned carefully. Wang et al . [233], [253] develop a

graph-based method for salient closed boundaries detection. This method se-

lects and connects a subset of edge fragments sequentially to form a closed

boundary with the saliency maximum. Although they can handle more irreg-

ular shapes than [249], the cost function in their optimization is not adapted

for building outline extraction.

As buildings are artifacts with rich straight line features, our method is

based on grouping detected straight line segments, similar to [233], [253]. The

main contributions of this work are: (1) a novel grouping cost for individual

building outline extraction; (2) a new dataset with manually labeled ground

truth; (3) state-of-art performance on the new dataset both in terms of region

and boundary measures.

4.5.3 Proposed Method

Given a VHR image, our goal is to group a subset of detected line segments

and form a polygon which describes the accurate outline of a target building.

First, a novel grouping cost, which is composed of the completeness (or closure)

and smoothness (or continuation) [115], is defined. Then the straight line

segments are detected from the given image to construct a weighted undirected

graph G(V,E). Finally, the grouping process is formulated as searching for

the optimal cycle in the weighted undirected graph.

(1) Derivation of Grouping Cost
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1) Completeness

An intuitive definition of completeness requires the ratio of non-edge pixel

number over the total pixel number along a closed curve to be sufficiently

small (the optimum is zero) [165]. Given a closed curve B, the completeness

cost C(B) is defined:

C(B) =

¸
B w(e)ds¸
B ds

(4.3)

where w(e) is defined in (4.2).

2) Smoothness

The smoothness cost S(B) of a closed curve B is given by the Elastic prior

[125], [223]:

S(B) =

¸
B |κ(s)|ds¸
B ds

(4.4)

where κ(s) is the curvature of edge pixel. The numerator denotes the total

absolute curvature and measures how far the curve is from a convex curve [29].

Our method operates on a set of straight line segments that are extracted

by a line detector. As the curvature at straight line intersections is not well

defined, we describe the relative magnitude of the total absolute curvature

term in (4.4) by the ratio of contour perimeter and area:
˛
B
|κ(s)|ds ∝

¸
B ds˜
R dA

(4.5)

where R is the region enclosed by contour B and
˜
R dA denotes the area of

region R. The smoothness term can be further simplified using (4.4) and (4.5)

to:

S(B) ∝ 1˜
R dA

(4.6)

In other words, this term is reciprocal to the area of region R enclosed by B.

Literally, it indicates the preference for extracting objects with larger areas.

In fact, it implicitly guarantees the smaller grouping costs of contours with

smoother and less concave shapes.

3) Grouping Cost
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(a) Line Segments (b) Delaunay Triangulation (DT)

(c) Graph G(V,E) (d) Bi-Directional Shortest Path

Figure 4.4. Graph construction and optimization.

Grouping cost is typically formulated as a weighted summation of com-

pleteness and smoothness [165]:

Γ(B) = C(B) + λS(B) =

¸
B w(e)ds¸
B ds

+ λ · 1˜
R dA

(4.7)

where λ is a weight that balances the completeness and smoothness. However,

(4.3) and (4.6) are two incomparable measures with different units. This makes

the tuning of λ a hard process for obtaining good results. In fact, the choice

of optimal λ is shape-dependent and differs for different images. This will be

further elaborated in the experimental results.

This motivate us to propose a new Grouping Cost Γ(B) as the multiplica-

tion of these two terms:

Γ(B) =

¸
B w(e)ds¸
B ds

· 1˜
R dA

. (4.8)

In this work, the building outlines are depicted by polygons. The Grouping

Cost Γ(B) of a polygon, comprised of n detected line segments and k gaps, is
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defined as:

Γ(B) =

∑k
j w(ej)

(
∑n

i li +
∑k

j w(ej))
· 1

A
(4.9)

where ej denotes the length of a gap between two sequentially connected line

segments and
∑k

j w(ej) is the total gap length along polygon, li indicates the

length of a line segment and (
∑n

i li+
∑k

j w(ej)) is the perimeter of the polygon

and A is the area of the polygon. The polygon with the smallest Γ(B) is taken

as the final optimal outline.

(2) Graph Construction

Given a VHR image, its straight line segments are first detected by EDLines

[3]. Fig. 4.4(a) shows the detected line segments of a VHR image. Each line

segment is represented by a pair of endpoints. The line segments are fit from

the one pixel-width edges extracted by Edge Drawing (ED) [238], in which

edge pixels are searched based on the magnitudes and directions of image gra-

dients. As detected line segments are not connected, Delaunay Triangulation

(DT) [200] is utilized to fill the gaps between them (see Fig. 4.4(b)). Then

detected line segments are superimposed on the results of Delaunay Triangu-

lation to construct an undirected graph G(V,E) (see Fig. 4.4(c)). Each node

in the graph corresponds to an endpoint. A graph edge correspond to either

a generated edge (blue line) or a detected line segment (red lines). Note that

there are two types of graph edges and their weights are set differently similar

to [233]. For a generated edge, the weight is set to its geometric length which

is in fact the gap length. The weight of a line segment is set to zero. This

means that line segments are more likely to be a part of building outlines.

(3) Optimal Outline Search

A building outline corresponds to a special cycle, which has the minimal

grouping cost (4.9), in the weighted undirected graph G(V,E). Minimum Ra-

tio Weight Cycles (MRWC) [112], [253] are most commonly used algorithms

for the grouping cost optimization. However, the denominator of our grouping

cost (4.9) is multiplication of two terms which cannot be solved with MRWC

methods. This section describes our algorithm for finding the optimal cycle

based on the grouping cost (4.9). As mentioned above that our BDSP al-
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gorithm has two steps: (1) Cycle Candidates generation; (2) optimal outline

retrieval.

In the first step, a set of cycle candidates are generated. As shown in Fig.

4.4(d), a cycle is considered as a candidate if it consists of the following three

components: 1) a zero-weight edge Ei (white edge); 2) a shortest path from

the start node Vis of the edge Ei to a third node Vj (yellow path); 3) a shortest

path from the end node Vie of the edge Ei to the same third node Vj (green

path). For each zero weighted edge, we first set its weight to infinity and

then traverse all of the third nodes on the graph to generate cycle candidates

by BDSP. This means that for a graph with n zero-weighted edges, there are

n× 2(n− 1) cycle candidates.

In the second step, the grouping cost (4.9) for each cycle candidate is

computed. The cycle candidate with the minimal grouping cost is taken as

the final optimal building outline.

4.5.4 Experiments

(1) Dataset and Error Metrics

To assess the performance of our approach, a new dataset for building

outline extraction on VHR aerial and satellite images of urban areas is built

using [203]. The resolution of these images varies from 0.1-0.4m. The dataset1

contains 123 images of buildings with different shapes. The accurate Ground

Truth (GT) is manually labeled for all the images.

To quantify building outline extraction results, two accuracy measures are

used: a region-based and an edge-based measure. The region-based measure

is Intersection-over-Union (IoU) which is defined as the relative region coin-

cidence [253]:

IoU =
|R ∩RGT |
|R ∪RGT |

× 100% (4.10)

where RGT and R are the regions enclosed by the ground truth and extracted

building outline, respectively. |R| indicates the area of R.

The edge-based measure used is the average Alignment Error (EaveAl)
1https://webdocs.cs.ualberta.ca/~xuebin/building_extraction.html
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Ours λ=100 λ=1000 λ=10000

Figure 4.5. Results based on grouping cost (4.7): the size of top row image is
116× 108, the size of bottom row image is 501× 439.

which is defined as

EaveAl =
DistGT ⊗ IB
|IB|

(4.11)

where DistGT is the distance transform map of the ground truth region bound-

ary. IB is the extracted binarized outline map and |IB| is the perimeter of the

outline B.

(2) Evaluation and Comparison

Both summation-based grouping cost (4.7) and multiplication-based group-

ing cost (4.9) can be optimized using our “BDSP” algorithm. However, in (4.7),

the choice of the weight λ has to be tuned carefully for different images, es-

pecially when these buildings have big differences in their shapes and sizes.

This is further illustrated in Fig. 4.5, where the results of the algorithm for

summation-based cost is shown for different values of λ. It can be seen that

it is not possible to achieve a good accuracy on both images using the same

λ. Our multiplication-based grouping cost (4.9), on the other hand, resolves

this problem. It works well on both of these two buildings without parameters

tuning, see the first column in Fig. 4.5.

Our method is compared with other five state-of-the-art methods: (i) a

regional information combined ratio contour method (RRC) [233], (ii) a min-

imum barrier salient object detection method (MB+) [296], (iii) a saliency

detection method via graph-based manifold ranking (MR) [278], (iv) an ob-
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Image GT Ours RRC MB+ MR SO wCtr
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Figure 4.6. Sample results of different methods: the first column is the original
image, the second column is the ground truth, the third column is the result
of our method, column four to column eight are results produced by RRC,
MB+, MR, SO and wCtr.

jectness measure based salient object detection method (SO) [232], and (v)

a saliency optimization based method (wCtr) [310]. The RRC method is

the state-of-the-art line-based grouping method. The direct outputs of our

method and RRC are grouped polygons. To facilitate comparison, they are

presented as binarized region maps in Fig. 4.6. Methods (ii)-(v) are regional

intensity-based methods. Their original results are saliency maps represented

by normalized gray scale images (0-255). In our experiments, these saliency

maps are thresholded (the threshold is set to 125 because it provides almost

the best overall performance of these methods according to our thresholding

tests.) to obtain binarized buildings’ regional segmentation. The building

outlines are then obtained via edge extraction from those binarized images.

Fig. 4.6 shows sample results of different methods. The key challenge of

building outlines extraction by using grouping based method is to resist the

impacts of many detected noisy line segments which are close to the target

building. RRC fails easily in complex and concave shapes, see row 1-6. It is

sensitive to noisy line segments and prone to group shorter boundaries. Our
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(a) Ordered IoU (b) Success on IoU threshold

(c) Ordered EaveAl (d) Success on EaveAl threshold

Figure 4.7. Region and edge based evaluations. (a), (b) and (c), (d) are region
based and edge based evaluations respectively. (a) and (c) are ordered IoU
and EaveAl of the testing images. (b) shows the number of images where the
IoU is greater than certain threshold. (d) shows the number of images where
the EaveAl is less than certain threshold.

method is more robust than RRC to this kind of noisy line segments. MB+,

MR, SO, wCtr are more dependent on homogeneous colors or intensities. They

are good at extracting building roofs with unified intensities. Theoretically,

they are more robust to complex shapes. However, VHR images contains very

detailed structures of building roofs and these structures usually have different

colors, which confuse the intensity based methods. Detecting building roofs

with heterogeneous intensities is difficult for these intensity based methods,

see results in row 2 and 4. They are also prone to take salient background

as the building roofs, see row 5. It can be seen that our method is robust to

different shapes and intensity variations compared to other methods.

64



Table 4.1. Overall average IoU and EaveAl.

Method Ours RRC MB+ MR SO wCtr
IoU 90.57 82.67 66.67 72.23 76.36 64.32
EaveAl 6.54 9.52 20.17 17.76 13.87 15.87

(a) (b) (c) (d) (e)

Figure 4.8. Illustration of failure cases: Red and green outlines are ground
truth and our results, respectively. (a) failure caused by complex structures
inside the roof outline. (b) failure due to non-building noisy line segments.
(c) failure due to missing edges. (d)-(e) failure due to large surroundings area
that includes specific textures or structures; (d) is of size 281×277 and (e) is
of size 589×611.

Table 4.1 summarizes the average IoU and EaveAl of all the methods over

the dataset. Our method achieves 90.56% of the average IoU and 6.56 pixels

of EaveAl (more than 30% improvement in EaveAl), which outperform other

methods. The overall IoU and EaveAl trends of each method are shown in

Fig. 4.7(a) and 4.7(c). To further highlight the robustness of our method, the

curves of successfully extracted image numbers with respect to different IoU

and EaveAl thresholds are shown in Fig. 4.7. It can be seen that our method

outperforms all of the others in terms of both IoU and EaveAl. Although our

method outperforms state-of-the-art grouping methods in most cases, there are

still extreme cases that result in failure of accurate outline extraction, some of

which are shown in Fig. 4.8.

4.5.5 Summary

This chapter addresses the problem of accurate extraction of complex building

outlines from VHR aerial and satellite images. A new outline grouping cost is

proposed in terms of a ratio that is normalized relative to outline length and
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area. Then, a novel and simple framework is introduced for graph construc-

tion and outline searching. The results on our newly built dataset demonstrate

that our method is robust to buildings with different intensities and shapes.

Currently, our method can only extract the most salient building outline from

a given image. Hence, the input image has to be roughly cropped around

the target building. This prerequisite somehow limits the applications of our

method. Future work will focus on extending our method to multiple build-

ing outlines extraction from large scale images by integrating oriented object

detection methods.
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4.6 Application II:
Salient Closed Boundary Tracking

Visual tracking is an important yet challenging issue in computer vision and

related areas. Many different trackers [48], [82], [166], [309] have been de-

veloped to handle different targets and scenarios. Fully automatic processing

and relatively fast (e.g. real-time) speed are two important requirements of the

most tracking applications. In this section, our two newly developed salient

closed boundary tracking methods are presented. The first method is built

with line segments perceptual grouping, in which a grouping cost adopted

from closed boundary extraction [233] combined with an area variation con-

straint are utilized and optimized by our BDSP algorithm to track the target

closed boundary. To further improve the tracking accuracy and robustness,

we replace the line segments by the high quality edge fragments generated

by Edge Drawing [238] and our simple splitting technique. In addition, we

encode the prior contour information into a distance difference term and inte-

grate it with the area normalized total gap length to formulate a novel prior

shape constrained grouping cost. This grouping cost combined with both area

and perimeter variation constraints is also optimized by our BDSP algorithm.

This edge fragments perceptual grouping method for salient closed boundary

tracking provides high quality tracking performance in terms of both accuracy

and robustness while keeping the real-time speed.

4.6.1 Salient Closed Boundary Tracking
via Line Segments Perceptual Grouping

4.6.1.1 Overview

This section presents a novel real-time method for tracking salient closed

boundaries from video frame sequences. This method operates on a set of

straight line segments that are produced by line detection. The tracking

scheme is coherently integrated into a perceptual grouping framework in which

the visual tracking problem is tackled by identifying a subset of these line seg-

ments and connecting them sequentially to form a closed boundary with the
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(a) Frame 0001 (b) Frame 0089

(c) Frame 0225 (d) Frame 1085

Figure 4.9. Tracking the rim boundary of a bowl with the following character-
istics: (1) the rim of the bowl is non-planar, (2) the bowl itself has no salient
stable textures, (3) the viewpoint changes dramatically.

largest saliency and a certain similarity to the previous one. Specifically, we

define a new tracking criterion which combines a grouping cost and an area

similarity constraint. The proposed criterion makes the resulting boundary

tracking more robust to local minima. To achieve real-time tracking per-

formance, we use Delaunay Triangulation to build a graph model with the

detected line segments and then reduce the tracking problem to finding the

optimal cycle in this graph. This is solved by our “Bidirectional Shortest Path”

algorithm. The efficiency and robustness of the proposed method are tested

on real video sequences as well as during a robot arm pouring experiment.

4.6.1.2 Motivation

Closed boundaries are common elements in real world scenes. Hence, real-time

closed boundary tracking is important in robot vision. As an example, con-
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sider Fig. 4.9, where the rim contour of a bowl is tracked. In real-world indoor

images and robot applications, conventional trackers can fail, e.g. in the pres-

ence of texture-less target regions, non-rigid deformations, non-Lambertian

surfaces, changing lighting conditions, cluttered background and drastic chang-

ing of supportive regions.

Template-based high DOF trackers can estimate image transformations

such as affine and homography of a planar object region (or contour) from

one frame to the next [285]. Many template trackers using different appear-

ance models [166], [221], [62] and search methods [14], [19] have been proposed

and achieve good performance. However, they are highly dependent on sta-

ble textures and sensitive to the presence of local minima. Keypoints based

approaches [226], [77] are relatively robust to local minima, but they require

many accurate feature points to be detected that can be difficult to achieve in

practice.

Non-planar contours tracking can be approached as a pose estimation prob-

lem [48] when 3D models are available. In unstructured, natural environments

3D models are seldom available. In these cases non-planar contours tracking

can be approached as non-rigid tracking. Pixel-wise segmentation based [82]

and contour evolving based [206], [21], [236] methods are usually employed to

track those objects. However, segmentation based methods do not work well

in tracking targets whose appearances change significantly or targets which are

comprised of several regions with great differences. Given an initial contour

from the previous frame, contour based tracking is performed by searching the

target contour based on minimizing a suitable energy [285]. These methods

are more likely to trap in local minima in cluttered environments [201].

Another promising technique for closed boundary tracking is perceptual

grouping, which has been widely used in salient closed boundary extraction

from static images [66], [253], [233]. Schoenemann and Cremers [222] per-

form contour tracking by integrating pixel-wise perceptual grouping and elas-

tic shape matching into one solvable optimization problem. Unfortunately,

this method is not real-time without using GPU processing, ruling out light

weight or low power robotics applications. In [162], rough contour tracking
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(a) (b) (c) (d)

Figure 4.10. Illustration of closed boundary tracking: (a) Current image and
the tracked boundary (Bp) from the last frame (yellow polygon), (b) Detected
line segments, (c) Gap filling among line segments in the buffer (green) region
of boundary Bp, (d) Tracked boundary (Bc) of the current frame.

and shape context matching are performed separately to improve time effi-

ciency and handle cluttered background. However, the use of a fixed shape

template restricts the ability to track non-planar closed boundaries with out-

of-plane motion. Despite all different attempts, tracking of boundary targets

in unstructured environment is still a challenging problem. This paper address

this problem by presenting a novel line segments grouping based method for

tracking salient closed boundaries. Our key contributions are:

• We adapt the salient closed boundary extraction workflow for real-time

visual tracking.

• We define a salient closed boundary tracking criterion by combining

a boundary grouping cost [233] and a regularization constraint on the

boundary’s area variation, which improves the tracking robustness greatly.

• To evaluate the performance of our tracking scheme, we collected and an-

notated nine video sequences (9598 frames) of typical closed boundaries,

which are challenging to track in real robot applications.

We implement our tracking method2 and test it on our newly collected

real world video sequences3, and compare it against state-of-the-art trackers:

RKLT [302], ESM [19], HoughTrack [82] and a tracker adapted from the con-

tour grouping method RRC [233]. We also test the performance of our method
2https://github.com/NathanUA/SalientClosedBoundaryTracking
3https://github.com/NathanUA/SalientClosedBoundaryTrackingDataset
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during a real robot arm experiment following a moving bowl and pouring cereal

into it.

4.6.1.3 Proposed Method

(1) Problem Formulation

Given a video sequence, we refer to the process of extracting corresponding

salient closed boundaries from sequential video frames as boundary tracking.

The target closed boundary is usually initialized by selecting a coarse polygon

manually in the first frame. The main idea of the coming frames’ boundary

tracking is identifying a subset of line segments produced by line detector and

connecting them to form a closed boundary which corresponds to the boundary

tracked in the previous frame, see Fig. 4.10.

Therefore, the closed boundary tracking problem can be reduced to a prior

shape constrained perceptual grouping problem. We define a tracking criterion

which takes both grouping cost and shape constraint into consideration. The

grouping cost Γ, introduced in [233], is given by:

Γ(B) =

¸
B w(e)ds˜
R dA

, (4.12)

where
¸
B w(e)ds denotes the summation of the gap filling segments (blue seg-

ments in Fig. 4.10(c)) length along the boundary B. The denominator
˜
R dA

is the area of region R which is enclosed by the boundary B.

Although the distance based filtering (the green region shown in Fig. 4.10(c))

excludes many unrelated line segments, the above grouping cost is still not able

to handle grouping illusions caused by noisy segments. As shown in Fig. 4.11,

it is clear that Γ(B1) < Γ(B2) which results in an incorrectly grouped boundary

B1. To eliminate those obviously erroneous cycle candidates without signifi-

cantly increasing the time complexity, we propose to introduce a simple area

similarity SBp_Bc < Se (e.g. 0.9, this threshold is set based on experiences. The

overall tracking performance is relatively insensitive to the small variations on

this threshold because the final optimal cycle candidate is selected based on

the grouping cost.) between the searched boundary (Bc) and the prior shape
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(a) Lines within buffer re-
gion of prior boundary

(b) Wrong grouping (c) Correct grouping

Figure 4.11. Illustration of wrong boundary grouping: Yellow contours are
prior boundaries. Line segments noise often results in wrong grouping of
boundary (B1) without using area constraint.

(Bp) to constrain the grouping process as follows:

SBp_Bc = min(

˜
Rp dA˜
Rc dA

,

˜
Rc dA˜
Rp dA

), (4.13)

where
˜
Rp dA is the area of region Rp which is enclosed by the prior shape

boundary Bp. Bp is the initialization or the tracked boundary from the last

frame. (Bc is the to-be-tracked boundary).

To solve the grouping problem, we map the detected and generated (fill-

in) line segments and their endpoints to an undirected graph G = (V,E).

Line segments and endpoints correspond to graph edges and graph vertices

respectively, and thus closed boundaries correspond to graph cycles. Now, the

problem of closed boundary grouping is converted into an optimal graph cycle

searching problem. We develop a novel graph based optimization method to

find the optimal boundary (quasi-optimum) in real-time.

The workflow of our salient closed boundary tracking method is shown in

Fig. 4.12. First, we introduce the line detection and filtering. Then, the details

of gap filling are presented, followed by graph modeling and optimization.

(2) Line Detection and Filtering

Straight line segments are fundamental elements in our tracking method.

Considering the multiple steps of the tracking method shown in Fig. 4.10, the

selected line segment detector is expected to produce relatively high quality

line segments and run faster than real-time. There are many different straight
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Figure 4.12. Workflow of boundary tracking.

line segment detectors, such as Hough Transform method [15], LSD [244],

EDLines [3], MCLSD [5] and so on. Both the performance and running speed of

Hough Transform method are not able to satisfy our requirements. Compared

to Hough Transform method, LSD and MCLSD are able to produce higher

quality line segments. However, they are still slower than real-time in our

settings. Therefore, we use EDLines, a faster-than-real-time line segments

detector in our settings, for automatic detection of boundary line segments.

Detected line segments are represented by pairs of endpoints. In each incoming

frame, line detection is conducted on the whole frame. Lines of interest are

filtered by a distance constraint (with similar effect of the green buffer region

shown in Fig. 4.10(c)) from the previous boundary.

Specifically, three distances of a line from its two end-points and mid-point

to the prior boundary are computed. If the average of these distances is smaller

than certain threshold (e.g. 20 pixels), it will be retained. Lines of interest

are not directly detected from the frame subregion defined by the green buffer

because masking an image with an irregular buffer region takes more time.

(3) Gap Filling

After obtaining the line segments of interest, Delaunay Triangulation (DT)

[200] is introduced to generate virtual fragments and fill the gaps among discon-

nected segments, as illustrated in Fig. 4.13. First, line segments are simplified

as endpoints (see Fig. 4.13(a) and Fig. 4.13(b)). Then, DT is conducted

on these endpoints (Fig. 4.13(c)). Finally, we superimpose the detected line
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(a) Line segments (b) Endpoints (c) Gap filling by DT

(d) Graph structure (e) Cycle searching

Figure 4.13. Graph structure construction by gap filling (a)-(d) and Cycle
candidates searching by BDSP (e): Edge ei is the current edge and vj1 is the
third vertex. Edge ei, shortest paths Pi1_j1 and path Pi2_j1 construct a closed
cycle candidate.

segments in Fig. 4.13(a) over the generated DT edges in Fig. 4.13(c). Gen-

erated DT edges that overlap the detected line segments are removed. The

final result of gap filling is an undirected graph structure as shown in Fig.

4.13(d). To distinguish two kinds of line segments, we refer to the detected

line segments (the red lines in Fig. 4.13(d)) as detected segments and the gap

filling segments (the blue lines in Fig. 4.13(d)) as generated segments.

(4) Graph Construction

The gap filling process constructs the structure of an undirected graph

G = (V,E), which maps endpoints and segments (both detected and generated)

to graph vertices V and edges E respectively. Then, we define the edge-weight

function for each edge e ∈ E similar to [233]. Given a graph edge ei, its weight

is set by (4.2) as follow:

w(ei) =

{
0 ei corresponds to a detected fragment si

|P i
1P

i
2| ei corresponds to a generated fragment si

(4.14)

where |P i
1P

i
2| is the length of the corresponding fragment si of the graph edge

ei.

(5) Graph based Optimization
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Now, our goal is to find the optimal graph cycle which has the minimum

boundary cost, based on (4.12), and satisfies the similarity constraint in (4.13)

simultaneously. The key problem is that both the boundary cost and the sim-

ilarity constraint cannot be determined when the boundary itself is unknown.

Furthermore, they are difficult to be integrated into one cost function. So we

utilize our novel BDSP method to obtain the optimal cycle. Similar to the

last application, this method here still has two steps: generating boundary

candidates and finding the optimal one from these candidates.

Given a graph which contains n detected line segments, we sample half n/2

of them and search (n− 1) (the current segment is excluded) cycle candidates

for each sampled (detected) segment. As shown in Fig. 4.13(e), for each

sampled detected edge ei(edges with odd or even indices), we search shortest

paths from its two vertices si1 and si2 to the same third vertex vj1 using Dijkstra

[59]. The weight of ei is set to infinity other than its original weight zero during

searching. The edge ei, shortest paths Pi1_j1 and Pi2_j1 construct a cycle

candidate Ci_j1. Vertex vj1 and Vertex vj2 belong to the same edge ej and the

weight of ej is zero, thus, taking vj1 or vj2 as the third vertex usually produce

the same cycle. Hence, the total number of the cycle candidates is n(n− 1)/2.

Having obtained these cycle candidates, we can search for the optimal closed

boundary by computing their boundary costs (4.12) and similarity constraints

(4.13) easily. The optimal boundary searching algorithm is shown in Algorithm

1.

4.6.1.4 Experimental Results

We validate our tracking scheme using a number of comparative experiments

and a real robot arm experiment.

(1) Dataset and Evaluation Measure

We collected nine video sequences of salient closed boundaries, as shown

in Fig. 4.15. Each sequence is about 30 sec (30 fps) and the frame size is

640×480 (width×height). There are 9598 frames in total. In each sequence,

different motion styles such as translation, rotation and viewpoint changing

are all performed. We annotate them by drawing polygons which are well

75



Algorithm 1 Optimal cycle searching
Input: Undirected graph G = (V,E) and a shape prior represented by a set
of ordered points
Output: The optimal cycle Copt
1: for i = 0; i < n; i+ = 2 do
2: Use BDSP to search cycle candidates Ci•
3: for j = 0; j < 2(n− 1); j+ = 2 do
4: if i == 0&&j == 0 then
5: Copt = Cij
6: end if
7: if SCij_Bp > Se then
8: if Γ(Cij) < Γ(Copt) then
9: Copt = Cij
10: end if
11: end if
12: end for
13: end for
14: return Copt

Notes: Ci• are the (n− 1) cycle candidates related to edge ei.

matched with the salient closed boundaries in human vision.

To evaluate our proposed method quantitatively, we define the error metric

as the alignment error (EAL) of tracked closed boundary and ground truth

(Bgt) as: EAL = max{Bi⊗DistBgt
PBi

,
Bgt⊗DistBi

PBgt
}, where ⊗ denotes convolution, Bi

is the boundary binary image, DistBi is the distance transform image of Bi

and PBi indicates the perimeter of boundary Bi. We use the success rate to

measure a tracker’s overall accuracy [229]. The success rate on a sequence

is defined as the ratio of frames where the tracking error EAL is less than a

threshold of ep pixels and the total frames.

(2) Qualitative and Quantitative Comparison

We compare our tracking method BDSP against following methods: ESM

[19] which is a popular registration based homography tracker, RKLT [302]

which is a cascade registration based tracker that can handle partial appear-

ance changing and occlusion by RANSAC, HoughTrack [82] which is a state-

of-the-art segmentation based tracker that can provide us accurate contour

and a tracker adapted from edge grouping method RRC [233]. Both ESM and

RKLT are tested with appearance model NCC, which are implemented in a
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(a) Bowl rim (b) Garbage bin rim (c) Transparent cup rim

(d) Mark cup rim (e) Mark cup pouring tea (f) Tool box rim

(g) Non-planar bowl rim (h) Mark cup contour (i) Book stand contour

Figure 4.14. Success rates of BDSP, RRC, ESM, RKLT and HoughTrack on
the video sequences of Fig. 4.15.

modular tracking framework (MTF) [229]). We initialize them by selecting

a quadrilateral which encloses the target boundary at the first frame. Then

boundaries of following frames are computed by homography transformations

with respect to the first frame (all boundaries are assumed to be planar). We

modified RRC by substituting its line detector for EDlines [3] and added a

buffer search region as shown in Fig. 4.10(c).

The success rate curves of the above four methods and our method are

illustrated in Fig. 4.14. As we can see, the proposed method (BDSP) performs

better than others in almost all of these sequences. Both registration based

trackers ESM and RKLT fail quickly because they are sensitive to appearance

changing, as blue and cyan boundaries shown in Fig. 4.15(a) to Fig. 4.15(g).

77



(a) Bowl rim (BR) (b) Garbage bin rim (GBR) (c) Transparent cup rim
(TCR)

(d) Mark cup rim (MCR) (e) Mark cup rim pouring
(MCRP)

(f) Tool box rim (TBR)

(g) Non-planar bowl rim
(NBR)

(h) Mark cup contour (MCC) (i) Book stand contour (BSC)

Figure 4.15. Tracked boundaries on typical frames.

Although HoughTrack performs better than registration based trackers thanks

to its model updating, it corrupts quickly when the content of target region are

heterogeneous as pink boundaries shown in Fig. 4.15. Fig. 4.15(a) and Fig.

4.15(c) show an empty bowl and an empty transparent cup with relative clean

background. The corresponding tracking results illustrated in Fig. 4.14(a)

and Fig. 4.14(c) show that the RRC tracker produces almost the same success

rate with our method. But it is very susceptible to noise, as the tracked green

boundaries shown in Fig. 4.15. The intact video results are included in the

supplementary video4.
4https://youtu.be/RXjD0yHkukI
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Table 4.2. Graph scale and time efficiency.

Video BR GBR TCR MCR MCRP TBR NBR MCC BSC

Edges 445 508 550 672 753 362 419 505 286
Nodes 80 88 96 112 124 62 70 89 53
lt(ms) 4.34 8.78 4.15 4.69 5.17 4.33 5.09 5.07 3.79
gt(ms) 14.45 18.85 19.00 26.10 32.13 8.68 16.93 17.72 6.56
fps 54.12 37.55 43.21 32.48 26.80 76.81 59.74 43.88 96.57

Notes: ms denotes milliseconds.

We also measured the average processing speed of our method for each

of the nine video sequences on a machine with a quad core 3.10 GHz Intel

Core i5 processor, 16 GB RAM and Ubuntu 14.04 64-bit OS. Our method is

implemented in C++ using OpenCV and Boost library. Table 4.2 illustrates

the average graph size, which is indicated by numbers of edges and nodes, the

average time costs of line detection (lt), grouping time (gt) and the average

frequency per second (fps). The total tracking time per each frame contains

line detection time and grouping time. We compute the instantaneous fps of

each frame and then average them over the whole sequence to get the average

fps, as shown in the last row of Table 4.2. As we can see our method is

acceptable for real-time tracking.

(3) Robot Arm Poursing Experiment

Our salient closed boundary tracker has been used successfully in a real

robot arm pouring experiment. The task is to track and follow a moving bowl

and then pour cereal into it. The difficulties of this experiment are that the

bowl is non-Lambertian and has no salient textures.

The setup of our experiment is shown in Fig. 4.16(a). The system includes

a set of WAM arm and a Kinect. The 3D coordinates of the WAM arm

and the Kinect are registered. We initialize the bowl rim and track it in

RGB video stream captured by the Kinect. Meanwhile, we map the tracked

closed boundary, which is represented by a set of 2D image points, to 3D

points acquired by the Kinect depth sensor, as shown in Fig. 4.16(b) and Fig.

4.16(c). The centroid of the bowl is computed based on these mapped 3D

contour points and is taken as the pouring target position. We pre-compute
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(a) Experiment setup (b) Following

(c) Following (d) Following and accurate pouring

Figure 4.16. Robot pouring experiment: (a) A human is moving the bowl
continuously under the surveillance of a Kinect. (b)(c) Our algorithm tracks
the bowl rim and maps its 2D image points to 3D points in the robot coordi-
nates through the Kinect which is registered with the robot coordinates, then,
makes the robot arm follows the moving bowl. (d) The robot hand pours the
cereal into the bowl accurately according to our tracking result.

the shifting of the WAM hand to the bowl centroid. When the distanceDistr_b
between the centroid of the tracked bowl and the robot hand satisfies certain

thresholds(elow < Distr_b < ehigh), the WAM arm will pour the cereal into

the bowl, as shown in Fig. 4.16(d). Without having the tracking points of the

contour provided by our tracker it will be very difficult to find the 3D center

of the bowl with any other types of trackers. The experiment shows that our

tracker is stable and efficient in real robot application. A demonstration of

the pouring task can be seen in the accompanying video.
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4.6.1.5 Summary

This chapter presents a novel real-time method for salient closed boundary

tracking. By combining a saliency measure and an area constraint as tracking

criterion, the proposed method improves the tracking performance greatly. A

bidirectional shortest path based boundary candidates searching algorithm en-

ables the real-time solvability of the combined tracking criterion. We validated

it quantitatively on various real-world video sequences. Since it is robust and

fast enough, it has been used successfully in real robot pouring experiment

where other trackers have failed. Our future work will focus on addressing the

problem of tracking boundaries, which are hard to be described by straight

line segments, as well as the problem of self-occlusions.
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4.6.2 Salient Closed Boundary Tracking
via Edge Fragments Perceptual Grouping

4.6.2.1 Overview

In this section, we propose a real-time method for accurate salient closed

boundary tracking via a combination of shape constraints and perceptual

grouping on edge fragments. Particularly, we encode the Gestalt law of prox-

imity and the prior shape constraint in a novel ratio-form grouping cost. The

proximity and prior constraint are depicted by the relative gap length and

average distance difference along the to-be-tracked boundary with respect to

its area. We build a graph using the detected edge fragments and in-between

gaps. The grouping problem is formulated as searching for a special cycle in

this graph with a minimum grouping cost. To reduce the search space and

achieve real-time performance, we propose a set of novel techniques for effi-

cient edge fragments splitting and filtering. We evaluate this method on a

public real-world video dataset against other methods. The average alignment

errors of different sequences achieved by our method are mostly less than 1

pixel, an improvement over state-of-the-art methods.

4.6.2.2 Motivation

Real-time salient closed boundary tracking is an important yet challenging

issue in the computer vision community. It is also an important technique for

vision guided robot applications. Pertinent methods can be categorized into

three main classes: 1) template based methods, which estimate the geometric

transformations, such as affine and homography, of planar rigid target contours

from one frame to the next one [166], [271], 2) region segmentation based

methods, which determine boundaries on each frame by segmenting images

into foreground and background using techniques like graph-cuts [82], level

sets [284], etc. 3) perceptual grouping based methods, which search for a special

cycle of low level primitives (e.g. edge fragments, line segments) forming the

closed boundaries [184]. The proposed tracking method of this paper belongs

to the third class.
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Perceptual grouping algorithms have been widely used in contours com-

pletion [118], [180], [208] and salient closed boundaries extraction [7], [66],

[172], [184], [233], [253]. Their basic principles draw from Gestalt laws [263]

including proximity, good continuation, closure, etc. However, most of these

methods focus on extracting contours by exploring grouping cues from the

current image and cannot be used for closed boundary tracking directly.

Tracking a salient closed boundary through a video sequence can be for-

mulated as a prior shape constrained perceptual grouping problem. Elder

et al . [65] developed a framework of combining prior probabilistic knowl-

edge of the target appearance with probabilistic models for contour group-

ing. Schoenemann and Cremers [222] chose the tangent angles of curves as a

prior shape constraint term and combined it with pixel gradients, penalties for

shape stretching and shrinking to formulate a pixel-wise elastic shape match-

ing and grouping model. Neither of these methods run in real-time without

GPU acceleration. Qin et al . [202] formulated a boundary tracking criterion

by combining an area variation constraint and a grouping cost [233], which is

defined as the ratio of gap length and region area enclosed by the boundary.

They also developed a shortest path [59] based algorithm to search for the op-

timal boundary. However, the area variation constraint is weak and does not

preserve fine structures. In addition, the line segments used in their methods

can not fit curved boundaries well.

In this chapter, we develop a perceptual grouping method that combines

Gestalt saliency and prior shape information. We demonstrate a real-time

CPU implementation. Contributions include: 1) We define a new grouping

cost by adding a distance difference based prior shape constraint to the group-

ing cost. 2) We propose a novel technique for fast edge segments splitting to

speed up the grouping process. It generates high quality edge fragments in

less than one milliseconds per frame. Redundant edge fragments are removed

according to their lengths and average distance differences. 3) We implement

this edge fragments based closed boundary tracking method and test it on a

public real-world video dataset. It achieves state-of-the-art performance, out-

performing a method adapted from [233] and the method proposed in [202].
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(a) (b) (c)

(d) (e) (f)

Figure 4.17. Processes of our salient closed boundary tracking. (a) current
frame and the manually initialized boundary in yellow (or that tracked from
the previous frame); (b) edge segments detected by Edge Drawing; (c) filtered
edge segments pixels according to their distances to the prior boundary (yellow
boundary in (a)); (d) edge fragments generated from edge segments splitting
and length based filtering; (e) edge fragments filtered by the distance difference
over length DDi

Li
; (f) edge fragments selected for grouping the current salient

closed boundary.

4.6.2.3 Proposed Method

(1) Tracking via Prior Shape Constrained Grouping

Given a video sequence and a salient closed boundary defined in the first

frame, as shown in Fig. 4.17(a), our goal is to track the closed boundary over

the entire sequence by identifying and sequentially connecting a set of edge

fragments in each frame, Fig. 4.17(f). Compared with grouping the salient

closed boundaries from single image, the closed boundary tracking from video

sequences can take advantage of both saliency properties derived from Gestalt

laws and prior shape constraints from the tracked boundary on previous frame.

We divide prior shape constraints into three levels. First, intact boundary

oriented coarse constraints, such as perimeter and area variations. Constraints

of this level restrict significant shape variations other than fine structures. Sec-
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ond, primitives oriented middle level constraints such as curvature, direction,

length and distance properties of edge fragments and line segments. These

constraints provide relatively stronger restrictions to shape variations. Third,

pixel-wise constraints that can even produce very fine and accurate pixel-by-

pixel matching between to-be-tracked boundary and the prior boundary. In

this paper, we use the first and second level constraints because the pixel-wise

constraints are usually time consuming and hard to be solved in real-time.

To combine the Gestalt cues of the current frame and prior shape informa-

tion, we first define a grouping cost Γ(B) of a closed boundary B based on the

middle level constraints as:

Γ(B) =

¸
B w(e)ds+ |DDB|˜

R dA
(4.15)

where
˜
R dA is the area of the region R which is enclosed by the boundary

B.
¸
B w(e)ds denotes the total length of the edge fragments’ in-between gap

segments along the boundary and
¸
B w(e)ds˜

R dA
depicts the proximity (saliency) of

the boundary [233]. |DDB| =
∑

i∈EF DDi is the total absolute distance differ-

ence. Fig. 4.18 illustrates the distance difference (DDi) of an edge fragment

EFi which is:

DDi =

p−1∑
j=1

|dist(Pj+1)− dist(Pj)| (4.16)

where p is the number of the edge fragment pixels, Pj denotes the j-th pixel in

the fragment pixel array and dist(Pj) is its corresponding value on the distance

transform map [73] of the prior shape.

In addition to the area constraint used in [202], this paper introduces a

perimeter variation constraint to reduce the search space and improve the

tracking robustness as follows:
v(P ) = min(

Pprior
Pcur

,
Pcur
Pprior

) < eP

v(A) = min(
Aprior
Acur

,
Acur
Aprior

) < eA

(4.17)

where v(P ) and v(A) are perimeter and area variations. Pprior and Pcur are

the perimeters of prior and current closed boundaries. Aprior and Acur are the
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(a) (b) (c)

Figure 4.18. Distance Difference (DD): (a) prior shape; (b) detected edge
fragments superimposed on the distance transform map of the prior shape;
(c) zoom-in view of region enclosed by the red box in (b), gray pixels belong
to the prior shape, colorized edges are extracted from the current frame, the
value of each pixel is the Euclidean distance of the pixel to the closest pixel
of the prior shape. The effect of DD is similar to the tangent angle [222] but
easier to compute in real time.

areas of regions that enclosed by prior and current boundaries. eP and eA

represent the perimeter and area variation constraints respectively. In fact,

these two constraints are used to exclude obviously erroneous closed contour

candidates. The thresholds eP and eA are set based on the experiences. The

final tracking performance is insensitive to the small variations on these two

thresholds.

(2) Edge Fragments Detection

We use a real-time edge segment detector Edge Drawing [238] to extract

high quality edge segments from incoming frames. Each of the resulting edge

segment is a linear pixel chain with one-pixel width. The result of ED is

outputted in vector form as an array of chain-wise edge segments, as shown

in Fig. 4.17(b). These detected edge segments cannot be used for real-time

salient closed boundary grouping directly due to the following reasons: 1) large

number of redundant edge segments make the grouping search space huge; 2)

foreground and background edge pixels are often improperly identified as one

long edge segment. Hence, we propose a novel edge segments splitting tech-

nique combined with redundant edge pixels and fragments filtering to obtain

a set of well-identified high quality edge fragments.

1) Edge Pixels Filtering
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(a) (b) (c)

(d) (e) (f)

Figure 4.19. Illustration of six basic ways of edge turns. The turning distance
is the distance from the extending pixel (e+2) to the lse line: d1 = d2 = d3 = 2,
d4 = d6 =

√
2, d5 = 3

√
2

2
. According to these turning distances, we set the

splitting threshold to
√

2 ≈ 1.4 pixels. The threshold of 1.4 is chosen because
the turning distances above this threshold indicates that their corresponding
turning angles are in the edge splitting range of 45 degrees to 135 degrees.
Theoretically, if the turning angle is smaller than 45 degrees, the edge has also
to be split. But that barely happens because the edge detector, Edge Drawing,
prefers to produce split edges by starting a new edge searching process in that
case.

The edge segments detected by ED contains a lot of redundant edge pixels.

We filter these pixels according to their distances to the prior shape. Pixels

with absolute distances smaller than a threshold are retained, as shown in Fig.

4.17(c). The distance threshold (e.g. 30 pixels) depends on the relative motion

speed and the frame rate (or frames per second) of the video.

2) Edge Segments Splitting

Curvature [253], turning angle [208] and line fitting [233] based approaches

have been proposed to split detected edge segments into multiple fragments.

The curvature based method used in [253] requires spline fitting which is time

consuming. Although the line fitting based method [233] is more efficient, it

often misses short edge fragments. We develop a novel splitting method based
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on an analysis of the six basic ways of edge turns, as shown in Fig. 4.19. Given

an edge segment, we split it into one or multiple fragments by traversing it

with a step size of two pixels. Particularly, we start a fragment searching by

sampling two pixels with indices of s (starting pixel) and e = s + 2 (ending

pixel). Then, we compute the distance from the extending pixel (e + 2) to

the line lse to decide whether to split or not. Based on Fig. 4.19 if the

distance is greater than a threshold (1.4 pixels), we split the segment. Another

splitting criterion is the middle pixel deviation. If the distance from the middle

pixel (m = s+e
2
) to lse is greater than a threshold (5 pixels) we also split the

segment. Otherwise, we extend the current fragment by e = e + 2. The edge

splitting algorithms used in the previous chapters based on turning angle or

least square line fitting cost several milliseconds to process one frame. This

turning distance based edge splitting algorithm reduces the processing time to

less than one millisecond.

3) Edge Fragments Filtering

Edge segments splitting produces a large number of edge fragments. How-

ever, some of them are redundant. To reduce grouping search space and achieve

real-time performance, we propose to use their length Li and average distance

difference DDi
Li

to filter redundant edge fragments. The length based filtering

is aiming at excluding those tiny spurious edge fragments, as shown in Fig.

4.17(d). On the other hand, we assume that the to-be-tracked boundary in

the current frame is almost parallel to the prior one. The average distance

difference depicts the parallelism between fragments and the prior boundary.

It filters those edge fragments which are more likely to be perpendicular to

the prior boundary, as shown in Fig. 4.17(e).

(3) Graph Modeling and Optimization

In this section, we construct an undirected graph G = (V,E) [202] data

structure of the remaining edge fragments and assign weights to the graph

edges according to our tracking cost function. First, to model the graph struc-

ture, we take the endpoints of those disconnected edge fragments as graph

vertices, as illustrated in Fig. 4.20(b). Then, Delaunay Triangulation (DT)

[200] is used to generate gap filling segments and connect filled vertices, Fig.
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(a) (b) (c) (d)

Figure 4.20. Illustration of graph modeling using detected edge fragments: (a)
detected and filtered edge fragments and there are no intersections and com-
mon endpoints; (b) endpoints of those detected edge fragments; (c) Delaunay
Triangulation (DT) of the endpoints; (d) graph structure constructed by the
union of DT edges (c) and the corresponding degenerated edges from (a).

4.20(c). Fig. 4.20(d) shows the graph structure whose edges are the union of

the green dotted lines (DT edges) and the red solid lines (edges corresponding

to the edge fragments in Fig. 4.20(a)).

Each graph edge is assigned two weights wL(ei) and wDD(ei) as follows:

wL(ei) =

{
0 ei corresponds to an edge fragment

|P i
1P

i
2| ei corresponds to a DT edge

(4.18)

where |P i
1P

i
2| is the length of corresponding gap filling line segment P i

1P
i
2 of

the graph edge ei.

wDD(ei) = DDi (4.19)

where DDi is the distance difference of the edge ei from (4.16).

The grouping cost in (4.15) is computed as:

Γ(B) =

∑
i∈E(C) w

i
L +

∑
i∈E(C) w

i
DD

Area(C)
(4.20)

where C is a graph cycle that corresponds to a closed boundary B, E(C) is

the set of edges of C. Area(C) is the area of the corresponding polygon of

the graph cycle and it approximates the closed boundary area
˜
R(B)

dxdy in

(4.15) to simplify the area computation.

Finding a graph cycle that minimizes the grouping cost Γ(B) (4.20) is a

minimum-ratio-cycle problem and can be solved by algorithms proposed in
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[253] and [233] in polynomial time. However, we have to integrate the length

and area variation constraints (4.17) into the optimization problem. To this

end, we use a bidirectional shortest path based search strategy of [202] to

generate number of graph cycle candidates and find the optimal one according

to our tracking measure defined in (4.17) and (4.20).

4.6.2.4 Experimental Results

To evaluate the performance of our tracking method, we tested it on a pub-

lic dataset 5 [202] which has nine real-world video sequences and 9598 frames

in total. Each video sequence is about 30-45 seconds (30 fps, size: 640×

480) and contains a single moving salient closed boundary with different types

of motions including translation, rotation, zooming in/out and even out of

plane rotation. These to-be-tracked targets includes planar/non-planar, non-

Lambertian and irregular closed boundaries with/without clustered backgrounds,

see Fig. 4.22 and 4.23.

(1) Quantitative and Qualitative Evaluation

To evaluate our tracking method quantitatively, we introduce the maxi-

mal average cross alignment error aveE_AL = max{Bi ⊗DistBgt/PBi , Bgt ⊗

DistBi/PBgt} where Bi and Bgt represent the binary images of the tracked

boundary and the corresponding ground truth. DistBi and DistBgt are the dis-

tance transform maps ofBi andBgt. ⊗ denotes the summation of element(pixel)-

wise multiplication. PBi and PBgt are the number of pixels in the tracked

boundary and the corresponding ground truth.

We compared our Edge Fragments Grouping (EFG) based method with

two others: a real-time tracker which is adapted from the regional information

combined ratio contour (RRC) algorithm [233] and a state-of-the-art closed

boundary tracking method (BDSP) which only uses a saliency measure and

an area constraint [202].

Fig. 4.21 plots the alignment error aveE_AL of each frame achieved by

these three methods. Table 4.3 shows the average aveE_AL of each sequence.

As illustrated in Fig. 4.21 and Table 4.3, the RRC tracker fails quickly on se-
5https://github.com/NathanUA/SalientClosedBoundaryTrackingDataset
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(a) MCC (b) BSC (c) NBR

(d) MCR (e) TCR (f) BR

(g) TBR (h) MCRP (i) GBR

Figure 4.21. Average alignment error aveE_AL of the closed boundary track-
ing achieved by trackers RRC, BDSP and our EFG. Mark Cup Contour
(MCC), Book Stand Contour (BSC), Nonplanar Bowl Rim (NBR), Mark
Cup Rim (MCR), Transparent Cup Rim(TCR), Bowl Rim(BR), Toolbox
Rim(TBR), Mark Cup Rim Pouring (MCRP), Garbage Bin Rim(GBR).

quences Mark Cup Contour MCC (failure starts from frame: 285/total frame

number: 1226), Book Stand Contour BSC (676/899), Nonplanar Bowl Rim

NBR (416/1454), Mark Cup Rim MCR (750/859), Transparent Cup Rim

TBR (200/1135), Mark Cup Rim Pouring MCRP (213/971) and Garbage

Bin Rim GBR (426/924) and produces large average alignment errors. These

failures are mainly caused by cluttered backgrounds, see the first two rows of

Fig. 4.22, and relatively complex boundaries, as shown in the last two rows

of Fig. 4.22. Compared with RRC, the BDSP tracker is more robust because

of its area variation constraint, as shown in Table 4.3. However, boundaries
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Table 4.3. Average aveE_AL (pixel) of each sequence.

Video MCC BSC NBR MCR TCR BR TBR MCRP GBR
RRC 56.09 58.06 120.48 19.29 1.01 3.37 74.09 58.18 108.28
BDSP 1.31 1.24 1.99 1.18 1.03 0.94 1.21 2.73 1.38
EFG 0.99 0.18 1.08 0.68 0.26 0.61 0.46 2.80 1.22

tracked by BDSP often have some erroneous wiggles, as illustrated in the last

two rows of Fig. 4.22. The reason for these wiggles is that the area variation

constraint is too weak to restricts fine structures.

Table 4.4. Average tracking time costs for each video sequence: aveEFs and
aveGFs are the average numbers of Edge Fragments and Gap Filling segments.
2 × aveEFs is the number of graph vertices and aveEFs + aveGFs is the
number of graph edges. T is the average time cost of each frame tracking
in milliseconds. It includes edge segments detection, splitting, filtering, graph
construction and optimization. The frame loading time is not included because
this process can be implemented in parallel and will not influence the tracking
speed significantly.

Video MCC BSC NBR MCR TCR BR TBR MCRP GBR
aveEFs 27 23 25 36 30 25 29 35 28
aveGFs 145 120 137 200 162 136 155 192 154
T (ms) 28.11 20.37 21.60 36.39 26.45 22.31 26.39 35.08 30.92

Our EFG tracker suppresses accidental wiggles effectively through the dis-

tance term. As shown in Fig. 4.21 and Table 4.3, almost all of the errors of

our EFG tracker on different sequences are smaller than those of RRC and

BDSP. Because both RRC and BDSP operate on detected line segments while

our EFG splits edge segments into smaller smooth fragments. Fig. 4.23 illus-

trates the qualitative difference of representing boundaries via line segments

and edge fragments. Compared with RRC and BDSP, our EFG tracker fits

curved boundaries better and produces higher accuracy.

(2) Run Time

We implemented our tracking method in C++ using OpenCV and Boost

library on Ubuntu 14.04 64-bit OS. The time costs are collected by running our

tracking method on a quad core 3.10 GHz and 16 GB RAM computer without

GPU acceleration. To demonstrate our tracking method runs in real-time, the

average tracking time costs of each video sequence are illustrated in Table 4.4.
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(a) #0000 (b) #0205 (c) #0612 (d) #0890 (e) #1134
TBR

(f) #0000 (g) #0212 (h) #0213 (i) #0670 (j) #0970
MCRP

(k) #0000 (l) #0033 (m) #0096 (n) #0962 (o) #0980
MCC

(p) #0000 (q) #0014 (r) #0187 (s) #0591 (t) #0773
BSC

Figure 4.22. Failures of RRC and wiggles of BDSP: Red, green and blue
boundaries are results of RRC, BDSP and EFG respectively. All of the four
rows demonstrate the failure of RRC tracking. The last two rows show the
wiggles (within yellow boxes) produced by BDSP.

The average per frame time cost of RRC is in the range of 15 to 30 ms

but it fails quickly in most of the sequences. The average time cost of our

method is 27.51 ms which is slightly (4.64 ms) more than that of BDSP 22.87

ms, while our method improved the accuracy from 1.45 (BDSP) to 0.92 (see

Table 4.4 and 4.3). The 0.53 difference per pixel is usually the result of large

wiggles in the boundary (Fig. 4.23, 3rd and 4th rows, yellow boxes), which is

suppressed in our method. The results show that our method takes close to

or less than 30 ms per frame which means its speed is acceptable for real-time

applications.
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BR#0021 TCR#0060 MCR#0033 GBR#0296 NBR#0114

Figure 4.23. Comparison between line segments and edge fragments repre-
sented boundaries. From top row to bottom row are results of RRC, BDSP
and our EFG respectively.

4.6.2.5 Summary

In this chapter, we proposed a novel real-time edge fragments grouping based

method for salient closed boundary tracking. Our tracker encodes the prior

shape constraint into the distance difference of deliberately split edge frag-

ments and combines it with the boundary salient measure of relative gap

length. It suppresses most of the small erroneous wiggles on the boundaries

and improves the tracking accuracy. We validated our method on real-world

video sequences and achieve the state-of-the-art results both qualitatively and

quantitatively. Currently, complex shape priors and/or shapes with tiny clus-

tered structures (e.g. comb) are hard to track as the grouping process may

ignore the tiny structures. Also, the shape prior based algorithm can not han-

dle the large motions in-between frames. To address these problems, we will

try to introduce shape templates and more robust shape descriptors in our

future works.
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Chapter 5

Supervised Salient Object
Detection by Deep Convolutional
Neural Networks

5.1 Overview

Deep Convolutional Neural Networks have been adopted for salient object de-

tection and achieved state-of-the-art performance. Most of the previous works,

however, focus on region accuracy but not on the boundary quality. In this

chapter, we propose a predict-refine architecture, BASNet, and a new hybrid

loss for Boundary-Aware Salient object detection. Specifically, the architecture

is composed of a densely supervised Encoder-Decoder network and a residual

refinement module, which are respectively in charge of saliency prediction and

saliency map refinement. The hybrid loss guides the network to learn the

transformation between the input image and the ground truth in a three-level

hierarchy – pixel-, patch- and map- level – by fusing Binary Cross Entropy

(BCE), Structural SIMilarity (SSIM) and Intersection-over-Union (IoU) losses.

Equipped with the hybrid loss, the proposed predict-refine architecture is able

to effectively segment the salient object regions and accurately predict the fine

structures with clear boundaries. Experimental results on six public datasets

show that our method outperforms the state-of-the-art methods both in terms

of regional and boundary evaluation measures. Our method runs at over 25

fps on a single GPU. The code is available 1.
1https://github.com/NathanUA/BASNet
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Besides, we design a simple yet powerful deep network architecture, U2-Net,

for salient object detection (SOD). Compared with U-Net, the architecture of

our U2-Net is a two-level nested U-structure. The proposed design has the fol-

lowing advantages: (1) it is able to capture more contextual information from

different scales thanks to the mixture of receptive fields of different sizes in our

proposed ReSidual U-blocks (RSU); (2) it increases the depth of the whole ar-

chitecture without significantly increasing the computation and memory costs

because of the pooling operations used in these RSU blocks. Using this novel

architecture, we show that we can train a very deep network from scratch that

achieves competitive performance on six public SOD datasets. Our U2-Net

runs at 30 FPS on a GTX 1080 Ti GPU. Additionally, to facilitate the usage

of our U2-Net, we provide a small variant U2-Net† (40 FPS), which is only

4.7 MB. Its competitive performance further demonstrates the flexibility and

capability of our U2-Net architecture.

5.2 Datasets

There are many public salient object detection datasets. We use the most

frequently used six benchmark datasets: DUTS [251], DUT-OMRON [279],

HKU-IS [145], ECSSD [277], PASCAL-S [149] and SOD [183], to evaluate

our models.

• DUTS is currently the largest saliency detection dataset. It is comprised

of two subsets: DUTS-TR and DUTS-TE. DUTS-TR contains 10553

images designed for training andDUTS-TE has 5019 images for testing.

• DUT-OMRON has 5168 images with one or two objects in each images.

Most of the foreground objects are structurally complex.

• HKU-IS contains 4447 images. Most of them have more than one con-

nected or disconnected foreground objects.

• ECSSD contains 1000 semantically meaningful but structurally complex

images.
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• PASCAL-S consists of 850 images with cluttered backgrounds and com-

plex foreground objects.

• SOD contains 300 images which are originally designed for image seg-

mentation. These images are very challenging since most of them contain

multiple salient objects either with low contrast or overlapping with the

image boundary.
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5.3 Evaluation Metrics

The outputs of the deep salient object methods are usually probability maps

that have the same spatial resolution with the input images. The value of

each pixel in the predicted saliency map is in the range of 0 and 1 (or [0,255]).

The ground truth are usually binary masks, in which each pixel is either 0 or

1 (or 0 and 255) where 0 indicates the background pixel and 1 indicates the

foreground salient object pixel.

To comprehensively evaluate the quality of those probability maps against

the ground truth, seven measures including (1) Precision-Recall (PR) curves,

(2) maximal F-measure (maxFβ), (3) F-measure curves, (4) Mean Absolute

Error (MAE), (5) weighted F-measure (Fw
β ) [175], (6) structure measure (Sm)

[71] and (7) relaxed F-measure of boundary (relaxF b
β) are used:

(1) PR curve is a standard way of evaluating the predicted saliency prob-

ability maps. The precision and recall of a saliency map are computed by

comparing the binarized saliency map against the ground truth mask. Each

binarizing threshold results in a pair of average precision and recall over all

saliency maps in a dataset. Varying the threshold from 0 to 1 produces a

sequence of precision-recall pairs, which is plotted as the PR curve.

(2) F-measure: to have a comprehensive measure on both precision and

recall, Fβ is computed based on each pair of precision and recall as:

Fβ = (1+β2)×Precision×Recall
β2×Precision+Recall

(5.1)

where β2 is set to 0.3 to weight precision more than recall [2]. The maximum

Fβ (maxFβ) of each dataset is reported in this thesis.

(3) F-measure curve is mainly used to evaluate the robustness of the saliency

model against different binary thresholds. F-measure curve is plotted based

on data points consists of a set of binary thresholds and their corresponding

F-measures Fβ.

(4) MAE [197] denotes the average absolute per-pixel difference between a

predicted saliency map and its ground truth mask. Given a saliency map, its
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MAE is defined as:

MAE = 1
H×W

∑H
r=1

∑W
c=1|P (r, c)−G(r, c)| (5.2)

where P and G are saliency probability map and its ground truth respectively,

H andW represents the height and width of the saliency map and (r, c) denotes

the pixel coordinates. For a dataset, its MAE is the average MAE of all the

saliency maps.

(5) weighted F-measure (Fw
β ) [175] is utilized as a complementary measure

to maxFβ for overcoming the possible unfair comparison caused by interpo-

lation flaw, dependency flaw and equal-importance flaw [157]. It is defined

as:

Fw
β = (1 + β2)

Precisionw ·Recallw

β2 · Precisionw +Recallw
. (5.3)

(6) S-measure (Sm) is used to evaluate the structure similarity of the pre-

dicted non-binary saliency map and the ground truth. The S-measure is de-

fined as the weighted sum of region-aware Sr and object-aware So structural

similarity [71]:

S = (1− α) ∗ Sr + α ∗ So. (5.4)

Given a saliency probability map and its ground truth mask, its region-aware

structural similarity Sr is computed as follows: Divide the saliency probability

map (P ) and the ground truth mask G into K (4, top-left, top-right, bottom-

left, bottom-right) subregions based on the centroid of the foreground regions.

Each subregion of the saliency map and the ground truth mask can be repre-

sented as x = {xi|i = 1, 2, ..., N} and the ground truth y = {yi|i = 1, 2, ..., N}

respectively. The region-aware similarity between P and G is then computed

as:

Sr =
K∑
k=1

wk ∗ ssim(k). (5.5)

The Structural SIMilarity (SSIM) [261] is defined as:

ssim =
2xy

x2 + y2 ·
2σxσy
σ2
x + σ2

y

· σxy
σxσy

(5.6)

where x, y, σx and σy are the mean and standard deviations of x and y. σxy is

the covariance of x and y. As we can see, the SSIM computes the similarities
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between the ground truth masks and the predicted maps based on their patch-

wise mean, standard deviations and covariances, which contain relatively more

reliable statistical information of the local structures. Hence, this measure is

able to evaluate the structure qualities, which is closer to the human visual

evaluation mechanism than pixel-wise errors, of the predicted saliency maps.

The object-aware structural similarity is defined as:

So = µ ∗OFG + (1− µ) ∗OBG (5.7)

where OFG and OBG are foreground and background comparison respectively:

OFG =
2xFG

(xFG)2 + 1 + 2λ ∗ σxFG
, (5.8)

OBG =
2xBG

(xBG)2 + 1 + 2λ ∗ σxBG
. (5.9)

xFG, xBG, σxFG and σxBG are the mean and standard deviation of the saliency

probability map’s foreground region and background region.

(7) relax boundary F-measure relaxF b
β [63] is introduced to quantitatively

evaluate boundaries of the predicted saliency maps. Given a saliency proba-

bility map P , we first convert it to a binary mask Pbw using a threshold of 0.5.

Then, we obtain the mask of its one pixel wide boundary by conducting an

XOR(Pbw, Perd) operation where Perd is the eroded binary mask [88] of Pbw.

The same method is used to get the boundaries of ground truth mask. The

relaxed boundary precision (relaxPrecisionb) is then defined as the fraction of

predicted boundary pixels within a range of ρ pixels from ground truth bound-

ary pixels. The relaxed boundary recall (relaxRecallb) measures the fraction

of ground truth boundary pixels that are within ρ pixels of predicted boundary

pixels. The slack parameter ρ is set to 3 which is similar to the previous studies

[181], [219], [304]. The relaxed boundary F-measure relaxF b
β of each predicted

saliency map is computed using equation (5.1), in which Precision and Recall

are replaced by relaxPrecisionb and relaxRecallb. For each dataset, we report

its average relaxF b
β of all predicted saliency maps.

100



(a) im/GT (b) Our (c) PiCANet (d) PiCANetR

Figure 5.1. Sample result of our method (BASNet) compared to PiCANetR
[157]. Column (a) shows the input image, zoom-in view of ground truth (GT)
and the boundary map, respectively. (b), (c) and (d) are results of ours,
PiCANetR and PiCANetRC (PiCANetR with CRF [126] post-processing).
For each method, the three rows respectively show the predicted saliency map,
the zoom-in view of saliency map and the zoom-in view of boundary map.

5.4 BASNet: Boundary-Aware Salient Object
Detection

5.4.1 Motivation

Recently, Convolutional Neural Networks (CNNs), especially Fully Convolu-

tional Neural Networks (FCN) [252], have been adopted for salient object

detection. They take salient object detection problem as a binary image seg-

mentation problem. Although these methods achieve significant results com-

pared to traditional methods, their predicted saliency maps are still defective

in details (see Figs. 5.1 (c)-5.1 (d) ), reflected in either poor representation of

fine structures and/or inaccurate (blurred) boundaries. defective in fine struc-

tures and/or boundaries (see Figs. 5.1 (c) -5.1 (d)). Therefore, one of our goal

is to achieve accurate salient object detection results.
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There are two main challenges in accurate salient object detection:

(1) the saliency is mainly defined over the global contrast of the whole

image rather than local or pixel-wise features. To achieve accurate re-

sults, the developed saliency detection methods have to understand the

global meaning of the whole image as well as the detailed structures

of the objects [58]. To address this problem, networks that aggregate

multi-level deep features are needed;

(2)Most of the salient object detection methods use Cross Entropy (CE)

as their training loss. But models trained with CE loss usually have low

confidence in differentiating boundary pixels, leading to blurry bound-

aries. Other losses such as Intersection over Union (IoU) loss [176], [187],

[205], F-measure loss [306] and Dice-score loss [75] were proposed for bi-

ased training sets but they are not specifically designed for capturing

fine structures. Although Conditional Random Field (CRF) [126] is able

to improve the overall performance in terms of region-based measures

like IoU and F measure, it is incapable of producing clean and sharp

boundaries when the foreground and background pixels are similar (see

Fig. 5.1 (d)).

To address the above challenges, we propose a novel Boundary-Aware net-

work, namely BASNet, for Salient object detection, which achieves accurate

salient object segmentation with high quality boundaries (see Fig. 5.1 (b)):

(1) To capture both global (coarse) and local (fine) contexts, a new

predict-refine network is proposed. It assembles a U-Net-like [211] deeply

supervised [138], [275] Encoder-Decoder network with a novel residual

refinement module. The Encoder-Decoder network transfers the input

image to a probability map, while the refinement module refines the

predicted map by learning the residuals between the coarse saliency map

and ground truth (see Fig. 5.2). In contrast to [58], [103], [195], which use

refinement modules iteratively on saliency predictions or intermediate

feature maps at multiple scales, our module is used only once on the

original scale for saliency prediction.
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(2) To obtain high confidence saliency map and clear boundary, we

propose a hybrid loss that combines Binary Cross Entropy (BCE) [22],

Structural SIMilarity (SSIM) [261] and IoU losses [176], which are ex-

pected to learn from ground truth information in pixel-, patch- and map-

level, respectively. Rather than using explicit boundary losses (NLDF+

[168], C2S [148]), we implicitly inject the goal of accurate boundary pre-

diction in the hybrid loss, contemplating that it may help reduce spurious

error from cross propagating the information learned on the boundary

and the other regions on the image.

5.4.2 Contributions

The main contributions of this work are threefold:

• A novel boundary-aware salient object detection network: BASNet, which

consists of a deeply supervised encoder-decoder and a residual refinement

module,

• A novel hybrid loss that fuses BCE, SSIM and IoU to supervise the

training process of accurate salient object prediction on three levels:

pixel-level, patch-level and map-level,

• A thorough evaluation of the proposed method that includes comparison

with state-of-the-art methods on six widely used public datasets. Our

method achieves state-of-the-art results in terms of both regional and

boundary evaluation measures.

5.4.3 Architecture of BASNet

(1) Network Architecture

Our proposed BASNet consists of two modules as shown in Fig. 5.2. The

prediction module is a U-Net-like densely supervised Encoder-Decoder network

[211], which learns to predict saliency map from input images. The multi-scale

Residual Refinement Module (RRM) refines the resulting saliency map of the

prediction module by learning the residuals between the saliency map and the

ground truth.
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Figure 5.2. Architecture of our proposed boundary-aware salient object detec-
tion network: BASNet.

(2) Predict Module

Inspired by U-Net [211] and SegNet [13], we design our salient object pre-

diction module as an Encoder-Decoder network because this kind of archi-

tectures is able to capture high level global contexts and low level details at

the same time. To reduce over fitting, the last layer of each decoder stage is

supervised by the ground truth inspired by HED [275] (see Fig. 5.2). The

encoder part has an input convolution layer and six stages comprised of basic

res-blocks. The input convolution layer and the first four stages are adopted

from ResNet-34 [94]. The difference is that our input layer has 64 convo-

lution filters with size of 3×3 and stride of 1 rather than size of 7×7 and

stride of 2. Additionally, there is no pooling operation after the input layer.

That means the feature maps before the second stage have the same spatial

resolution as the input image. This is different from the original ResNet-34,

which has quarter scale resolution in the first feature map. This adaptation

enables the network to obtain higher resolution feature maps in earlier layers,

while it also decreases the overall receptive fields. To achieve the same recep-
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(a) (b) (c) (d)

Figure 5.3. Illustration of different aspects of coarse prediction in one-
dimension. (a) Red: probability plot of ground truth - GT, (b) Green: prob-
ability plot of coarse boundary not aligning with GT, (c) Blue: coarse region
having too low probability, (d) Purple: real coarse predictions usually have
both problems.

tive field as ResNet-34 [94], we add two more stages after the fourth stage of

ResNet-34. Both stages consist of three basic res-blocks with 512 filters after

a non-overlapping max pooling layer of size 2.

To further capture global information, we add a bridge stage between the

encoder and the decoder. It consists of three convolution layers with 512 di-

lated (dilation=2) [286] 3×3 filters. Each of these convolution layers is followed

by a batch normalization [102] and a ReLU activation function [85].

Our decoder is almost symmetrical to the encoder. Each stage consists

of three convolution layers followed by a batch normalization and a ReLU

activation function. The input of each stage is the concatenated feature maps

of the upsampled output from its previous stage and its corresponding stage

in the encoder. To achieve the side-output saliency maps, the multi-channel

output of the bridge stage and each decoder stage is fed to a plain 3 × 3

convolution layer followed by a bilinear upsampling and a sigmoid function.

Therefore, given a input image, our predict module produces seven saliency

maps in the training process. Although every saliency map is upsampled to

the same size with the input image, the last one has the highest accuracy and

hence is taken as the final output of the predict module. This output is passed

to the refinement module.

(3) Refine Module

Refinement Module (RM) [58], [103] is usually designed as a residual block
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which refines the predicted coarse saliency maps Scoarse by learning the resid-

uals Sresidual between the saliency maps and the ground truth as

Srefined = Scoarse + Sresidual. (5.10)

Before introducing our refinement module, we have to define the term

“coarse”. Here, “coarse” includes two aspects. One is the blurry and noisy

boundaries (see its one-dimension (1D) illustration in Fig. 5.3b). The other

one is the unevenly predicted regional probabilities (see Fig. 5.3c). The real

predicted coarse saliency maps usually contain both coarse cases (see Fig.

5.3d).

Residual refinement module based on local context (RRM_LC), Fig. 5.4a,

was originally proposed for boundary refinement [195]. Since its receptive field

is small, Islam et al . [103] and Deng et al . [58] iteratively or recurrently use

it for refining saliency maps on different scales. Wang et al . [255] adopted

the pyramid pooling module from [93], in which three-scale pyramid pooling

features are concatenated. To avoid losing details caused by pooling opera-

tions, RRM_MS (Fig. 5.4b) uses convolutions with different kernel sizes and

dilations [286], [297] to captures multi-scale contexts. However, these modules

are shallow thus hard to capture high level information for refinement.

To refine both region and boundary drawbacks in coarse saliency maps, we

develop a novel residual refinement module. Our RRM employs the residual

encoder-decoder architecture, RRM_Ours (see Figs. 5.2 and 5.4c). Its main

architecture is similar but simpler to our predict module. It contains an input

layer, an encoder, a bridge, a decoder and an output layer. Different from the

predict module, both encoder and decoder have four stages. Each stage only

has one convolution layer. Each layer has 64 filters of size 3× 3 followed by a

batch normalization and a ReLU activation function. The bridge stage also has

a convolution layer with 64 filters of size 3×3 followed by a batch normalization

and ReLU activation. Non-overlapping max pooling is used for downsampling

in the encoder and bilinear interpolation is utilized for the upsampling in the

decoder. The output of this RM module is the final resulting saliency map of

our model.
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(a) RRM_LC (b) RRM_MS (c) RRM_Ours

Figure 5.4. Illustration of different Residual Refine Modules (RRM): (a) local
boundary refinement module RRM_LC; (b) multi-scale refinement module
RRM_MS; (c) our encoder-decoder refinement module RRM_Ours.

5.4.4 Bounary-Aware Hybrid Loss

Our training loss is defined as the summation over all outputs:

L =
∑K

k=1αk`
(k) (5.11)

where `(k) is the loss of the k-th side output, K denotes the total number of

the outputs and αk is the weight of each loss. As described in above sections,

our salient object detection model is deeply supervised with eight outputs, i.e.

K = 8, including seven outputs from the prediction model and one output

from the refinement module.

To obtain high quality regional segmentation and clear boundaries, we

propose to define `(k) as a hybrid loss:

`(k) = `
(k)
bce + `

(k)
ssim + `

(k)
iou. (5.12)

where `(k)
bce, `

(k)
ssim and `(k)

iou denote BCE loss [22], SSIM loss [261] and IoU loss

[176], respectively.

BCE [22] loss is the most widely used loss in binary classification and

segmentation. It is defined as:

`bce=−
∑
(r,c)

[G(r,c) log(S(r,c))+(1−G(r,c)) log(1−S(r,c))] (5.13)
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where G(r, c) ∈ {0, 1} is the ground truth label of the pixel (r, c) and S(r, c)

is the predicted probability of being salient object.

SSIM is originally proposed for image quality assessment [261]. It captures

the structural information in an image. Hence, we integrated it into our train-

ing loss to learn the structural information of the salient object ground truth.

Let x = {xj : j = 1, ..., N2} and y = {yj : j = 1, ..., N2} be the pixel values of

two corresponding patches (size: N × N) cropped from the predicted proba-

bility map S and the binary ground truth mask G respectively, the SSIM of x

and y is defined as

`ssim = 1− (2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5.14)

where µx, µy and σx, σy are the mean and standard deviations of x and y

respectively, σxy is their covariance, C1 = 0.012 and C2 = 0.032 are used to

avoid dividing by zero.

IoU is originally proposed for measuring the similarity of two sets [107] and

then used as a standard evaluation measure for object detection and segmen-

tation. Recently, it has been used as the training loss [176], [205]. To ensure

its differentiability, we adopted the IoU loss used in [176]:

`iou = 1−
H∑
r=1

W∑
c=1

S(r,c)G(r,c)

H∑
r=1

W∑
c=1

[S(r,c)+G(r,c)−S(r,c)G(r,c)]

(5.15)

where G(r, c) ∈ {0, 1} is the ground truth label of the pixel (r, c) and S(r, c)

is the predicted probability of being salient object.

We illustrate the impact of each of the three losses in Fig. 5.5. These

heatmaps show change of the loss at each pixel as the training progresses. The

three rows correspond to the BCE loss, SSIM loss and IoU loss, respectively.

The three columns represent different stages of the training process. BCE

loss is pixel-wise. It does not consider the labels of the neighborhood and it

weights both the foreground and background pixels equally. It helps with the

convergence on all pixels.

SSIM loss is a patch-level measure, which considers a local neighborhood

of each pixel. It assigns higher weights to the boundary, i.e., the loss is higher
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Figure 5.5. Illustration of the impact of the losses. P̂fg and P̂bg denote the
predicted probability of the foreground and background, respectively.

around the boundary, even when the predicted probabilities on the boundary

and the rest of the foreground are the same. In the beginning of training, the

loss along the boundary is the largest (see second row of Fig. 5.5). It helps the

optimization to focus on the boundary. As the training progresses, the SSIM

loss of the foreground reduces and the background loss becomes the dominant

term. However, the background loss does not contribute to the training until

when the prediction of background pixel becomes very close to the ground

truth, where the loss drops rapidly from one to zero. This is helpful since the

prediction typically goes close to zero only late in the training process where

BCE loss becomes flat. The SSIM loss ensures that there’s still enough gradient

to drive the learning process. The background prediction looks cleaner since

the probability is pushed to zero.
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IoU is a map-level measure. But we plot the per-pixel IoU following Eq.

(5.15) for illustration purpose. As the confidence of the network prediction of

the foreground grows, the loss of the foreground reduces eventually to zero.

When combining these three losses, we utilize BCE to maintain a smooth

gradient for all pixels, while using IoU to give more focus on the foreground.

SSIM is used to encourage that the prediction respects the structure of the

original image, by a larger loss near the boundary.

5.4.5 Implementation and Experimental Setup

We evaluated our method on six frequently used benchmark datasets as de-

scribed above: DUT-OMRON [279], DUTS-TE [251], HKU-IS [145], ECSSD

[277], PASCAL-S [149], SOD [183].

We train our network using the DUTS-TR dataset, which has 10553 im-

ages. Before training, the dataset is augmented by horizontal flipping to 21106

images. During training, each image is first resized to 256×256 and randomly

cropped to 224×224. Part of the encoder parameters are initialized from the

ResNet-34 model [94]. Other convolutional layers are initialized by Xavier

[81]. We utilize the Adam optimizer [120] to train our network and its hyper

parameters are set to the default values, where the initial learning rate lr=1e-

3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0. We train the network until

the loss converges without using validation set. The training loss converges

after 400k iterations with a batch size of 8 and the whole training process

takes about 125 hours. During testing, the input image is resized to 256×256

and fed into the network to obtain its saliency map. Then, the saliency map

(256×256) is resized back to the original size of the input image. Both the

resizing processes use bilinear interpolation.

We implement our network based on the publicly available framework:

Pytorch 0.4.0 [194]. An eight-core PC with an AMD Ryzen 1800x 3.5 GHz

CPU (with 32GB RAM) and a GTX 1080ti GPU (with 11GB memory) is used

for both training and testing. The inference for a 256×256 image only takes

0.040s (25 fps).
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Table 5.1. Ablation study on different architectures and losses: En-De:
Encoder-Decoder, Sup: side output supervision; `bi = `bce + `iou, `bs =
`bce + `ssim, `bsi = `bce + `ssim + `iou.

Ablation Configurations maxFβ relaxF bβ MAE

A
rc
hi
te
ct
ur
e

Baseline U-Net [211] + `bce 0.896 0.669 0.066
En-De + `bce 0.929 0.767 0.047

En-De+Sup + `bce 0.934 0.805 0.040
En-De+Sup+RRM_LC + `bce 0.936 0.803 0.040
En-De+Sup+RRM_MS + `bce 0.935 0.804 0.042

En-De+Sup+RRM_Ours + `bce 0.937 0.806 0.042

Lo
ss

En-De+Sup+RRM_Ours + `ssim 0.924 0.808 0.042
En-De+Sup+RRM_Ours + `iou 0.933 0.795 0.039
En-De+Sup+RRM_Ours + `bs 0.940 0.815 0.040
En-De+Sup+RRM_Ours + `bi 0.940 0.813 0.038
En-De+Sup+RRM_Ours + `bsi 0.942 0.826 0.037

(a) image (b) GT (c) `bce (d) `iou

(e) `ssim (f) `bi (g) `bs (h) `bsi

Figure 5.6. Sample results trained with our BASNet on different losses.

5.4.6 Ablation Study

In this section, we validate the effectiveness of each key components used in

our model. The ablation study contains two parts: architecture ablation and

loss ablation. The ablation experiments are conducted on the ECSSD dataset.

Architecture ablation: To prove the effectiveness of our BASNet, we

report the quantitative comparison results of our model against other related

architectures. We take U-Net [211] as our baseline network. Then we start

with our proposed Encoder-Decoder network and progressively extend it with

densely side output supervision and different residual refinement modules in-
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cluding RRM_LC, RRM_MS and RRM_Ours. Table 5.3 illustrates the re-

sults of this ablation study. As we can see, our BASNet architecture achieves

the best performance among these configurations.

Loss ablation: To demonstrate the effectiveness of our proposed fusion

loss, we conduct a set of experiments over different losses based on our BAS-

Net architecture. The BCE loss `bce, SSIM loss `ssim, IoU loss `iou and their

combinations including BCE-SSIM (BS) loss `bs = `bce + `ssim, BCE-IoU

(BI) loss `bi = `bce + `iou are compared with our BCE-SSIM-IoU (BSI) loss

`bsi = `bce + `ssim + `iou. The results in Table 5.3 signifies that our proposed

hybrid `bsi loss greatly improves the performance, especially for the bound-

ary quality. To further illustrate the qualitative effect of losses, results of our

BASNet trained with different losses are shown in Fig. 5.6. It is clear that the

proposed hybrid loss achieves superior qualitative results.
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5.5 U2-Net: Going Deeper with Nested
U-Structure for Salient Object Detection

5.5.1 Motivation

Recently, with the development of deep convolutional neural networks (CNNs),

especially the rise of Fully Convolutional Networks (FCN) [163] in image seg-

mentation, the salient object detection has been improved significantly. It is

natural to ask, what is still missing? Let’s take a step back and look at the

remaining challenges.

There is a common pattern in the design of most SOD networks [58], [147],

[168], [256], that is, they focus on making good use of deep features extracted

by existing backbones, such as Alexnet[128], VGG [228], ResNet [94], ResNeXt

[274], etc. However, these backbones are all originally designed for image clas-

sification. They extract features that are representative of semantic meaning

rather than local details and global contrast information, which are essen-

tial to saliency detection. And they need to be pre-trained on ImageNet [57]

data which is data-inefficient especially if the target data follows a different

distribution than ImageNet.

This leads to our first question: can we design a new network specifi-

cally for SOD, that allows training from scratch and achieves compa-

rable or better performance than those based on existing backbones?

There are a few more issues on the network architectures for SOD. First,

they are often overly complicated [311]. It is partially due to the additional

feature aggregation modules that are added to the existing backbones to ex-

tract multi-level saliency features from these backbones. Secondly, the existing

backbones usually achieve deeper architecture by sacrificing high resolution of

feature maps [311]. To run these deep models with affordable memory and

computational cost, the feature maps are down scaled to lower resolution at

early stages. For instance, at the early layers of both ResNet and DenseNet

[100], a convolution with stride of two followed by a maxpooling with stride of

two are utilized to reduce the size of the feature maps to one fourth of the input
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maps. However, high resolution also plays an important role in segmentation

besides the deep architecture [152].

Hence, our follow-up question is: can we go deeper while maintaining

high resolution feature maps, at a low memory and computation

cost?

5.5.2 Contributions

Our main contribution is a novel and simple network architecture, U2-Net,

that addresses the two questions above. First, U2-Net is a two-level nested U-

structure that is specifically designed for SOD without using any pre-trained

backbones from image classification. It can be trained from scratch to achieve

competitive performance. Second, the novel architecture allows the network to

go deeper, attain high resolution, without significantly increasing the memory

and computation cost. This is achieved by a nested U-structure: on the bottom

level, we design a novel ReSidual U-block (RSU), which is able to extract intra-

stage multi-scale features without degrading the feature map resolution; on the

top level, there is a U-Net like structure, in which each stage is filled by a RSU

block. The two-level configuration results in a nested U-structure (see Fig.

5.11). Our U2-Net (176.3 MB) achieves competitive performance against the

state-of-the-art (SOTA) methods on six public datasets, and runs at real-time

(30 FPS, with input size of 320×320×3) on a 1080ti GPU. To facilitate the

usage of our design in computation and memory constrained environments, we

provide a small version of our U2-Net, called U2-Net† (4.7 MB). The U2-Net†

achieves competitive results against most of the SOTA models (Fig. 5.7) at

40 FPS.

5.5.3 Residual U-blocks

Both local and global contextual information are very important for salient

object detection and other segmentation tasks. In modern CNN designs, such

as VGG, ResNet, DenseNet and so on, small convolutional filters with size of

1×1 or 3×3 are the most frequently used components for feature extraction.

They are in favor since they require less storage space and are computationally
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Figure 5.7. Comparison of model size and performance of our U2-Net with
other SOTA salient object detection models. ThemaxFβ measure is computed
on dataset ECSSD. The red star denotes our U2-Net (Ours) (176.3 MB) and
the blue star indicates our small version of U2-Net† (Ours†) (4.7 MB).

efficient. Figures 5.8(a)-(c) illustrates typical existing convolution blocks with

small receptive fields. The output feature maps of shallow layers only contain

local features because the receptive field of 1×1 or 3×3 filters are too small

to capture global information. To achieve more global information at high

resolution feature maps from shallow layers, the most direct idea is to enlarge

the receptive field. Fig. 5.8 (d) shows an inception like block [237], [297], which

tries to extract both local and non-local features by enlarging the receptive

fields using dilated convolutions [42]. However, conducting multiple dilated

convolutions on the input feature map (especially in the early stage) with

original resolution requires too much computation and memory resources. To

decrease the computation costs, pyramid pooling [305] and PoolNet [154] adapt

this parallel configuration by replacing the dilated convolutions with normal

convolutions conducted on downsampled feature maps. But fusion of different
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Figure 5.8. Illustration of existing convolution blocks and our proposed RSU
block: (a) Plain convolution block PLN; (b) Residual-like block RES; (c)
Inception-like block INC; (d) Dense-like block DSE; (e) Our residual U-block
RSU.

scale features by direct upsampling and concatenation (or addition) may lead

to degradation of high resolution features [311].

Inspired by U-Net [211], we propose a novel ReSidual U-block, RSU, to

capture intra-stage multi-scale features. The structure of RSU-L(Cin,M,Cout)

is shown in Fig. 5.8(e), where L is the number of layers in the encoder, Cin,

Cout denote input and output channels, and M denotes the number of chan-

nels in the internal layers of RSU. Hence, our RSU mainly consists of three

components:

(1) an input convolution layer, which transforms the input feature map

x (H ×W × Cin) to an intermediate map F1(x) with channel of Cout.

This is a plain convolutional layer for local feature extraction.

(2) a U-Net like symmetric encoder-decoder structure with height of L

which takes the intermediate feature map F1(x) as input and learns to

extract and encode the multi-scale contextual information U(F1(x)). U

represents the U-Net like structure as shown in Fig. 5.8(e). Larger L

leads to deeper RSU, more pooling operations, larger range of receptive

fields and richer local and global features. Configuring this parameter

enables extraction of multi-scale features from input feature maps with
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Figure 5.9. Comparison of the residual block and our RSU.

arbitrary spatial resolutions. The multi-scale features are extracted from

gradually downsampled feature maps and encoded into high resolution

feature maps by progressive upsampling, concatenation and convolution.

This process mitigates the loss of fine details caused by direct upsampling

with large scales.

(3) a residual connection which fuses local features and the multi-scale

features by the summation: F1(x) + U(F1(x)).

To better illustrate the intuition behind our design, we compare our RSU

with the original residual block [94] in Fig. 5.9. The operation in the residual

block can be summarized as H(x) = F2(F1(x)) + x, where H(x) denotes the

desired mapping of the input features x; F2,F1 stand for the weight layers,

which are convolution operations in this setting. The main design difference

between RSU and residual block is that RSU replaces the plain, single-stream

convolution with a U-Net like structure, and replace the original feature with

the local feature transformed by a weight layer: HRSU(x) = U(F1(x))+F1(x),

where U represents the multi-layer U-structure illustrated in Fig. 5.8(e). This

design change empowers the network to extract features from multiple scales

directly from each residual block. More notably, the computation overhead

due to the U-structure is small, since most operations are applied on the

downsampled feature maps. This is illustrated in Fig. 5.10, where we show
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Figure 5.10. Computation costs (GFLOPS Giga Floating Point Operations)
of different blocks shown in Fig. 5.8: the computation costs are calculated
based on transferring an input feature map with dimension 320× 320× 3 to a
320× 320× 64 output feature map.

the computation cost comparison between RSU and other feature extraction

modules in Fig. 5.8 (a)-(d). The FLOPs of DSE, INC and RSU all grow

quadratically with the number of internal channel M . But RSU has a much

smaller coefficient on the quadratic term, leading to an improved efficiency.

Its computational overhead compared with PLN and RES blocks, which are

both linear w.r.t. M , is not significant.

5.5.4 Architecture U2-Net

Stacking multiple U-Net-like structures for different tasks has been explored

for a while, e.g. stacked UNets [188], DocUNet [170], etc. These methods

usually stack U-Net-like structures sequentially to build cascaded models and

can be summarized as “(U×n-Net)”, where n is the number of repeated U-

Net modules. The issue is that the computation and the memory costs get

magnified by n.

In this work, we propose a different formulation, Un-Net, of stacking U-

structure for salient object detection. Our exponential notation refers to nested

U-structure rather than cascaded stacking. Theoretically, the exponent n can

be set as an arbitrary positive integer to achieve single-level or multi-level
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Figure 5.11. Illustration of our proposed U2-Net architecture. The main ar-
chitecture is a U-Net like Encoder-Decoder, where each stage consists of our
proposed RSU block. For example, En_1 is based on our RSU block shown
in Fig. 5.8(e). Detailed configuration of RSU block of each stage is given in
the last two rows of Table 5.2.
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nested U-structure. But architectures with too many nested levels will be too

complicated to be implemented and employed in real applications.

Here, we set n as 2 to build our U2-Net. Our U2-Net is a two-level nested

U-structure shown in Fig. 5.11. Its top level is a big U-structure consists of

11 stages (cubes in Fig. 5.11). Each stage is filled by a well configured RSU

block (bottom level U-structure). Hence, the nested U-structure enables the

extraction of intra-stage multi-scale features and aggregation of inter-stage

multi-level features more efficiently.

As illustrated in Fig.5.11, the U2-Net mainly consists of three parts: (1)

a six stages encoder, (2) a five stages decoder and (3) a saliency map fusion

module attached with the decoder stages and the last encoder stage.

• In encoder stages En_1, En_2, En_3 and En_4, we use RSU-7,

RSU-6, RSU-5 and RSU-4, respectively. As mentioned before, “7”, “6”,

“5” and “4” denote the heights (L) of RSU blocks. The L is usually

configured according to the spatial resolution of the input feature maps.

For feature maps with large height and width, we use greater L to capture

more large scale information. The resolution of feature maps in En_5

and En_6 are relatively low, further downsampling of these feature

maps leads to loss of useful context. Hence, in both En_5 and En_6

stages, RSU-4F are used, where “F” means that the RSU is a dilated

version, in which we replace the pooling and upsampling operations with

dilated convolutions (see Fig. 5.11). That means all of intermediate

feature maps of RSU-4F have the same resolution with its input feature

maps.

• The decoder stages have similar structures to their symmetrical encoder

stages with respect to En_6. In De_5, we also use the dilated version

residual U-block RSU-4F which is similar to that used in the encoder

stages En_5 and En_6. Each decoder stage takes the concatenation

of the upsampled feature maps from its previous stage and those from

its symmetrical encoder stage as the input, see Fig. 5.11.
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• The last part is the saliency map fusion module which is used to gen-

erate saliency probability maps. Similar to HED [275], our U2-Net first

generates six side output saliency probability maps S(6)
side, S

(5)
side, S

(4)
side,

S(3)
side, S

(2)
side, S

(1)
side from stages En_6, De_5, De_4, De_3, De_2 and

De_1 by a 3 × 3 convolution layer and a sigmoid function. Then, it

upsamples these saliency maps to the input image size and fuses them

with a concatenation operation followed by a 1×1 convolution layer and

a sigmoid function to generate the final saliency probability map Sfuse
(see bottom right of Fig. 5.11).

In summary, the design of our U2-Net allows having deep architecture with

rich multi-scale features and relatively low computation and memory costs.

In addition, since our U2-Net architecture is only built upon our RSU blocks

without using any pre-trained backbones adapted from image classification,

it is flexible and easy to be adapted to different working environments with

insignificant performance loss. In this paper, we provide two instances of our

U2-Net by using different configurations of filter numbers: a normal version

U2-Net (176.3 MB) and a relatively smaller version U2-Net† (4.7 MB). De-

tailed configurations are presented in the last two rows of Table 5.2.

5.5.5 Supervision

In the training process, we use deep supervision similar to HED [275]. Its

effectiveness has been proven in HED and DSS. Our training loss is defined

as:

L =
M∑
m=1

w
(m)
side`

(m)
side + wfuse`fuse (5.16)

where `(m)
side (M = 6, as the Sup1, Sup2, · · · , Sup6 in Fig. 5.2) is the loss of

the side output saliency map S
(m)
side and `fuse (Sup7 in Fig. 5.2) is the loss of

the final fusion output saliency map Sfuse. w
(m)
side and wfuse are the weights of

each loss term. For each term `, we use the standard binary cross-entropy to

calculate the loss:

` = −
(H,W )∑
(r,c)

[PG(r,c)logPS(r,c) + (1− PG(r,c))log(1− PS(r,c))] (5.17)
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where (r, c) is the pixel coordinates and (H,W ) is image size: height and width.

PG(r,c) and PS(r,c) denote the pixel values of the ground truth and the predicted

saliency probability map, respectively. The training process tries to minimize

the overall loss L of Eq. (5.16). It is worth noting that the hybrid loss used in

BASNet was also tested with the U2-Net models. However, the improvement

is insignificant most likely because our U2-Net implicitly captures these multi-

scale information and produces accurate results with both high region and

boundary quality. In the testing process, we choose the fusion output `fuse as

our final saliency map.

5.5.6 Implementation and Experimental Setup

Similar to BASNet, we train our network on DUTS-TR, which is a part of

DUTS dataset [251]. DUTS-TR contains 10553 images in total. Currently,

it is the largest and most frequently used training dataset for salient object

detection. We augment this dataset by horizontal flipping to obtain 21106

training images offline.

In the training process, each image is first resized to 320×320 and randomly

flipped vertically and cropped to 288×288. The sizes are larger than BASNet

because larger resolution is able to keep more detail information and the low

memory and computation cost enable our U2-Net to accept input images with

larger resolutions. We are not using any existing backbones in our network.

Hence, we train our network from scratch and all of our convolutional layers

are initialized by Xavier [81]. The loss weights w(m)
side and wfuse are all set to 1.

Adam optimizer [120] is used to train our network and its hyper parameters

are set to default (initial learning rate lr=1e-3, betas=(0.9, 0.999), eps=1e-

8, weight_decay=0). We train the network until the loss converges without

using validation set which follows the previous methods [154], [157], [297].

We were using MSRA-B [160] as the validation set at the beginning. There

seems to be overfitting in terms of the validation loss, but the F-measures of

the validation set show no overfitting phenomena. Besides, we found that the

overall performance on different datasets are more consistent with the training

loss than the validation loss or F-measure most likely because these datasets
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Table 5.3. Results of ablation study.

Architecture DUT-OMRON ECSSD
maxFβ MAE maxFβ MAE

Baseline U-Net 0.725 0.082 0.896 0.066
PLN U-Net 0.782 0.062 0.928 0.043
RES U-Net 0.781 0.065 0.933 0.042
DSE U-Net 0.790 0.067 0.927 0.046
INC U-Net 0.777 0.069 0.921 0.047

(Ours) RSU U2-Net 0.823 0.054 0.951 0.033
(Ours†) RSU U2-Net† 0.813 0.060 0.943 0.041

have different distributions. Therefore, the validation sets are not used in

the training processes of both our BASNet and U2-Net (Chapter 5.5). After

600k iterations (with a batch size of 12), the training loss converges and the

whole training process takes about 120 hours. During testing, the input images

(H×W ) are resized to 320×320 and fed into the network to obtain the saliency

maps. The predicted saliency maps with size of 320×320 are resized back to

the original size of the input image (H ×W ). Bilinear interpolation is used in

both resizing processes. Our network is implemented based on Pytorch 0.4.0

[194]. Both training and testing are conducted on an eight-core, 16 threads PC

with an AMD Ryzen 1800x 3.5 GHz CPU (32GB RAM) and a GTX 1080ti

GPU (11GB memory).

5.5.7 Ablation Study

To validate the effectiveness of our newly designed RSU blocks, we fix the

outside Encoder-Decoder architecture of our U2-Net and replace its stages

with other popular blocks including plain convolution blocks (PLN), residual-

like blocks (RSE), dense-like blocks (DSE), and inception-like blocks (INC), as

shown in Fig. 5.8 (a)-(d). Detailed configurations can be found in Table 5.2.

Table 5.3 shows the quantitative results of the ablation study. As we can

see that both our U2-Net and its smaller version U2-Net† achieves significant

improvements against other models. Particularly, our full size U2-Net improves

the maxFβ about 3.3% and 1.8%, and decreases the MAE over 12.9% and

21.4% against the second best model on DUT-OMRON and ECSSD datasets,
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respectively. Furthermore, compared with the baseline U-Net our full size U2-

Net significantly improves the maxFβ by 9.8% and 5.5% on DUT-OMRON

and ECSSD as well as greatly decreases the MAE by 34.1% and 50%.
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5.6 Comprehensive Comparison against State-
of-the-Arts

We compare our methods BASNet (348.5 MB), U2-Net (full size 176.3 MB) and

U2-Net† (4.7 MB) with 22 state-of-the-art methods including one AlexNet

based model: MDF; 13 VGG based models: UCF, Amulet, NLDF, DSS,

LFR,C2S,RAS,RADF,PAGRN,BMPM,PiCANet,MLMS,AFNet;

one DenseNet based model MSWS; one ResNeXt based model: R3Net;

and six ResNet based models: CapSal, SRM, DGRL, PiCANetR, CPD,

PoolNet. For fair comparison, we mainly use the saliency results provided

by the authors. For the missing results on certain datasets of some meth-

ods, we run their released code with their trained models on their suggested

environment settings.

5.6.1 Quantitative Comparison

Table 5.4 and Table 5.5 illustrate the comparison of our methods (BASNet,

U2-Net and U2-Net†) and other state-of-the-art models in terms of five eval-

uation metrics including maximal F-measure (maxFβ), Mean Absolute Er-

ror (MAE), weighted F-measure (Fw
β ), structural similarity measure Sm and

relaxed boundary F-measure relaxF b
β . Fig. 5.12 and Fig. 5.13 show the

Precision-Recall curves and F-measure curves of our methods and others.

As we can see in Table 5.4 and 5.5, although the over all performance of

our BASNet is slightly inferior to that of our full size U2-Net and PoolNet,

it outperforms almost all of other state-of-the-art methods. Particularly, our

BASNet achieves the best performance on PASCAL-S dataset and the second

best performance (our full size U2-Net is the best) in terms of boundary mea-

sure relaxF b
β on datasets DUT-OMRON, DUTS-TE and ECSSD. On dataset

HKU-IS and SOD, our BASNet achieves the third best boundary performance

just following our U2-Net (the best) and PoolNet (the second best).

Table 5.4 and 5.5 illustrate that our U2-Net achieves the best performance

on datasets DUT-OMRON, HKU-IS and ECSSD. On DUTS-TE dataset our

U2-Net achieves the second best performance. On PASCAL-S, the performance

126



Ta
bl
e
5.
4.

C
om

pa
ri
so
n
of

ou
r
m
od

el
s
an

d
22

SO
T
A

m
et
ho

ds
in

te
rm

s
of

m
od

el
si
ze
,m

ax
F
β
(↑
),
M
A
E

(↓
),

w
ei
gh

te
d
F
w β
(↑
),

st
ru
ct
ur
e

m
ea
su
re

S
m

(↑
)
an

d
re
la
x

bo
un

da
ry

F
-m

ea
su
re

re
la
x
F
b β
(↑
).

R
ed

,
G
re
en

,
an

d
B
lu
e
in
di
ca
te

th
e
be

st
,
se
co
nd

be
st

an
d

th
ir
d

be
st

pe
rf
or
m
an

ce
.

M
et
h
od

B
ac
kb

on
e

S
iz
e(
M
B
)

D
U
T
-O

M
R
O
N

(5
16
8)

D
U
T
S
-T

E
(5
01
9)

H
K
U
-I
S
(4
44
7)

m
ax
F
β

M
A
E

F
w β

S
m

re
la
x
F
b β

m
ax
F
β

M
A
E

F
w β

S
m

re
la
x
F
b β

m
ax
F
β

M
A
E

F
w β

S
m

re
la
x
F
b β

M
D
F

T
IP

16
A
le
xN

et
11
2.
1

0.
69
4

0.
14
2

0.
56
5

0.
72
1

0.
40
6

0.
72
9

0.
09
9

0.
54
3

0.
72
3

0.
44
7

0.
86
0

0.
12
9

0.
56
4

0.
81
0

0.
59
4

U
C
F

IC
C

V
17

V
G
G
-1
6

11
7.
9

0.
73
0

0.
12
0

0.
57
3

0.
76
0

0.
48
0

0.
77
3

0.
11
2

0.
59
6

0.
77
7

0.
51
8

0.
88
8

0.
06
2

0.
77
9

0.
87
5

0.
67
9

A
m
u
le
t I

C
C

V
17

V
G
G
-1
6

13
2.
6

0.
74
3

0.
09
8

0.
62
6

0.
78
1

0.
52
8

0.
77
8

0.
08
4

0.
65
8

0.
79
6

0.
56
8

0.
89
7

0.
05
1

0.
81
7

0.
88
6

0.
71
6

N
L
D
F
+

C
V

P
R

17
V
G
G
-1
6

42
8.
0

0.
75
3

0.
08
0

0.
63
4

0.
77
0

0.
51
4

0.
81
3

0.
06
5

0.
71
0

0.
80
5

0.
59
1

0.
90
2

0.
04
8

0.
83
8

0.
87
9

0.
69
4

D
S
S
+

C
V

P
R

17
V
G
G
-1
6

23
7.
0

0.
78
1

0.
06
3

0.
69
7

0.
79
0

0.
55
9

0.
82
5

0.
05
6

0.
75
5

0.
81
2

0.
60
6

0.
91
6

0.
04
0

0.
86
7

0.
87
8

0.
70
6

L
F
R

IJ
C

A
I1

8
V
G
G
-1
6

13
1.
1

0.
74
0

0.
10
3

0.
64
7

0.
78
0

0.
50
8

0.
77
8

0.
08
3

0.
68
9

0.
79
9

0.
55
6

0.
91
1

0.
04
0

0.
86
1

0.
90
5

0.
73
1

C
2S

E
C

C
V

18
V
G
G
-1
6

60
6.
0

0.
75
8

0.
07
2

0.
66
1

0.
79
8

0.
56
5

0.
80
7

0.
06
2

0.
71
3

0.
81
9

0.
60
7

0.
89
6

0.
04
8

0.
82
9

0.
88
3

0.
71
7

R
A
S

E
C

C
V

18
V
G
G
-1
6

81
.0

0.
78
6

0.
06
2

0.
69
5

0.
81
4

0.
61
5

0.
83
1

0.
05
9

0.
74
0

0.
82
8

0.
65
6

0.
91
3

0.
04
5

0.
84
3

0.
88
7

0.
74
8

R
A
D
F
+

A
A

A
I1

8
V
G
G
-1
6

23
9.
0

0.
79
1

0.
06
1

0.
72
3

0.
81
5

0.
57
9

0.
82
1

0.
06
1

0.
74
8

0.
81
4

0.
60
8

0.
91
4

0.
03
9

0.
87
2

0.
88
8

0.
72
5

P
A
G
R
N

C
V

P
R

18
V
G
G
-1
9

-
0.
77
1

0.
07
1

0.
62
2

0.
77
5

0.
58
2

0.
85
4

0.
05
5

0.
72
4

0.
82
5

0.
69
2

0.
91
8

0.
04
8

0.
82
0

0.
88
7

0.
76
2

B
M
P
M

C
V

P
R

18
V
G
G
-1
6

-
0.
77
4

0.
06
4

0.
68
1

0.
80
9

0.
61
2

0.
85
2

0.
04
8

0.
76
1

0.
85
1

0.
69
9

0.
92
1

0.
03
9

0.
85
9

0.
90
7

0.
77
3

P
iC
A
N
et

C
V

P
R

18
V
G
G
-1
6

15
3.
3

0.
79
4

0.
06
8

0.
69
1

0.
82
6

0.
64
3

0.
85
1

0.
05
4

0.
74
7

0.
85
1

0.
70
4

0.
92
1

0.
04
2

0.
84
7

0.
90
6

0.
78
4

M
L
M
S

C
V

P
R

19
V
G
G
-1
6

26
3.
0

0.
77
4

0.
06
4

0.
68
1

0.
80
9

0.
61
2

0.
85
2

0.
04
8

0.
76
1

0.
85
1

0.
69
9

0.
92
1

0.
03
9

0.
85
9

0.
90
7

0.
77
3

A
F
N
et

C
V

P
R

19
V
G
G
-1
6

14
3.
0

0.
79
7

0.
05
7

0.
71
7

0.
82
6

0.
63
5

0.
86
2

0.
04
6

0.
78
5

0.
85
5

0.
71
4

0.
92
3

0.
03
6

0.
86
9

0.
90
5

0.
77
2

M
S
W

S
C

V
P

R
19

D
en
se
-1
69

48
.6

0.
71
8

0.
10
9

0.
52
7

0.
75
6

0.
36
2

0.
76
7

0.
90
8

0.
58
6

0.
74
9

0.
37
6

0.
85
6

0.
08
4

0.
68
5

0.
81
8

0.
43
8

R
3
N
et
+

IJ
C

A
I1

8
R
es
N
eX

t
21
5.
0

0.
79
5

0.
06
3

0.
72
8

0.
81
7

0.
59
9

0.
82
8

0.
05
8

0.
76
3

0.
81
7

0.
60
1

0.
91
5

0.
03
6

0.
87
7

0.
89
5

0.
74
0

C
ap

S
al

C
V

P
R

19
R
es
N
et
-1
01

-
0.
69
9

0.
10
1

0.
48
2

0.
67
4

0.
39
6

0.
82
3

0.
07
2

0.
69
1

0.
80
8

0.
60
5

0.
88
2

0.
06
2

0.
78
2

0.
85
0

0.
65
4

S
R
M

IC
C

V
17

R
es
N
et
-5
0

18
9.
0

0.
76
9

0.
06
9

0.
65
8

0.
79
8

0.
52
3

0.
82
6

0.
05
8

0.
72
2

0.
82
4

0.
59
2

0.
90
6

0.
04
6

0.
83
5

0.
88
7

0.
68
0

D
G
R
L

C
V

P
R

18
R
es
N
et
-5
0

64
6.
1

0.
77
9

0.
06
3

0.
69
7

0.
81
0

0.
58
4

0.
83
4

0.
05
1

0.
76
0

0.
83
6

0.
65
6

0.
91
3

0.
03
7

0.
86
5

0.
89
7

0.
74
4

P
iC
A
N
et
R

C
V

P
R

18
R
es
N
et
-5
0

19
7.
2

0.
80
3

0.
06
5

0.
69
5

0.
83
2

0.
63
2

0.
86
0

0.
05
0

0.
75
5

0.
85
9

0.
69
6

0.
91
8

0.
04
3

0.
84
0

0.
90
4

0.
76
5

C
P
D

C
V

P
R

19
R
es
N
et
-5
0

18
3.
0

0.
79
7

0.
05
6

0.
71
9

0.
82
5

0.
65
5

0.
86
5

0.
04
3

0.
79
5

0.
85
8

0.
74
1

0.
92
5

0.
03
4

0.
87
5

0.
90
5

0.
79
5

P
oo

lN
et

C
V

P
R

19
R
es
N
et
-5
0

27
3.
3

0.
80
8

0.
05
6

0.
72
9

0.
83
6

0.
67
5

0.
88
0

0.
04
0

0.
80
7

0.
87
1

0.
76
5

0.
93
2

0.
03
3

0.
88
1

0.
91
7

0.
81
1

B
A
S
N
et

(O
ur
s)

R
es
N
et
-3
4

34
8.
5

0.
80
5

0.
05
6

0.
75
1

0.
83
6

0.
69
4

0.
86
0

0.
04
7

0.
80
3

0.
85
3

0.
75
8

0.
92
8

0.
03
2

0.
88
9

0.
90
9

0.
80
7

U
2
-N

et
(O

ur
s)

N
/A

17
6.
3

0.
82
3

0.
05
4

0.
75
7

0.
84
7

0.
70
2

0.
87
3

0.
04
4

0.
80
4

0.
86
1

0.
76
5

0.
93
5

0.
03
1

0.
89
0

0.
91
6

0.
81
2

U
2
-N

et
†
(O

ur
s)

N
/A

4.
7

0.
81
3

0.
06
0

0.
73
1

0.
83
7

0.
67
6

0.
85
2

0.
05
4

0.
76
3

0.
84
7

0.
72
3

0.
92
8

0.
03
7

0.
86
7

0.
90
8

0.
79
4

127



Ta
bl
e
5.
5.

C
om

pa
ri
so
n
of

ou
r
m
od

el
s
an

d
22

SO
T
A

m
et
ho

ds
in

te
rm

s
of

m
od

el
si
ze
,m

ax
F
β
(↑
),
M
A
E

(↓
),

w
ei
gh

te
d
F
w β
(↑
),

st
ru
ct
ur
e

m
ea
su
re

S
m

(↑
)
an

d
re
la
x

bo
un

da
ry

F
-m

ea
su
re

re
la
x
F
b β
(↑
).

R
ed

,
G
re
en

,
an

d
B
lu
e
in
di
ca
te

th
e
be

st
,
se
co
nd

be
st

an
d

th
ir
d

be
st

pe
rf
or
m
an

ce
.

M
et
h
od

B
ac
kb

on
e

S
iz
e(
M
B
)

E
C
S
S
D

(1
00
0)

P
A
S
C
A
L
-S

(8
50
)

S
O
D

(3
00
)

m
ax
F
β

M
A
E

F
w β

S
m

re
la
x
F
b β

m
ax
F
β

M
A
E

F
w β

S
m

re
la
x
F
b β

m
ax
F
β

M
A
E

F
w β

S
m

re
la
x
F
b β

M
D
F

T
IP

16
A
le
xN

et
11
2.
1

0.
83
2

0.
10
5

0.
70
5

0.
77
6

0.
47
2

0.
75
9

0.
14
2

0.
58
9

0.
69
6

0.
34
3

0.
74
6

0.
19
2

0.
50
8

0.
64
3

0.
31
1

U
C
F

IC
C

V
17

V
G
G
-1
6

11
7.
9

0.
90
3

0.
06
9

0.
80
6

0.
88
4

0.
66
9

0.
81
4

0.
11
5

0.
69
4

0.
80
5

0.
49
3

0.
80
8

0.
14
8

0.
67
5

0.
76
2

0.
47
1

A
m
u
le
t I

C
C

V
17

V
G
G
-1
6

13
2.
6

0.
91
5

0.
05
9

0.
84
0

0.
89
4

0.
71
1

0.
82
8

0.
10
0

0.
73
4

0.
81
8

0.
54
1

0.
79
8

0.
14
4

0.
67
7

0.
75
3

0.
45
4

N
L
D
F
+

C
V

P
R

17
V
G
G
-1
6

42
8.
0

0.
90
5

0.
06
3

0.
83
9

0.
89
7

0.
66
6

0.
82
2

0.
09
8

0.
73
7

0.
79
8

0.
49
5

0.
84
1

0.
12
5

0.
70
9

0.
75
5

0.
47
5

D
S
S
+

C
V

P
R

17
V
G
G
-1
6

23
7.
0

0.
92
1

0.
05
2

0.
87
2

0.
88
2

0.
69
6

0.
83
1

0.
09
3

0.
75
9

0.
79
8

0.
49
9

0.
84
6

0.
12
4

0.
71
0

0.
74
3

0.
44
4

L
F
R

IJ
C

A
I1

8
V
G
G
-1
6

13
1.
1

0.
91
1

0.
05
2

0.
85
8

0.
89
7

0.
69
4

0.
80
1

0.
10
7

0.
73
7

0.
80
5

0.
49
9

0.
82
8

0.
12
3

0.
73
4

0.
77
3

0.
47
9

C
2S

E
C

C
V

18
V
G
G
-1
6

60
6.
0

0.
91
0

0.
05
5

0.
85
1

0.
89
3

0.
70
8

0.
84
0

0.
08
2

0.
76
6

0.
83
6

0.
54
3

0.
82
3

0.
12
4

0.
70
0

0.
76
0

0.
45
7

R
A
S

E
C

C
V

18
V
G
G
-1
6

81
.0

0.
92
1

0.
05
6

0.
85
7

0.
89
3

0.
74
1

0.
82
9

0.
10
1

0.
73
6

0.
79
9

0.
56
0

0.
85
1

0.
12
4

0.
72
0

0.
76
4

0.
54
4

R
A
D
F
+

A
A

A
I1

8
V
G
G
-1
6

23
9.
0

0.
92
3

0.
04
9

0.
88
3

0.
89
4

0.
72
0

0.
83
0

0.
09
7

0.
75
5

0.
80
2

0.
51
5

0.
83
8

0.
12
6

0.
72
9

0.
75
7

0.
47
6

P
A
G
R
N

C
V

P
R

18
V
G
G
-1
9

-
0.
92
7

0.
06
1

0.
83
4

0.
88
9

0.
74
7

0.
84
7

0.
09
0

0.
73
8

0.
82
2

0.
59
4

-
-

-
-

-
B
M
P
M

C
V

P
R

18
V
G
G
-1
6

-
0.
92
8

0.
04
5

0.
87
1

0.
91
1

0.
77
0

0.
85
0

0.
07
4

0.
77
9

0.
84
5

0.
61
7

0.
85
6

0.
10
8

0.
72
6

0.
78
6

0.
56
2

P
iC
A
N
et

C
V

P
R

18
V
G
G
-1
6

15
3.
3

0.
93
1

0.
04
6

0.
86
5

0.
91
4

0.
78
4

0.
85
6

0.
07
8

0.
77
2

0.
84
8

0.
61
2

0.
85
4

0.
10
3

0.
72
2

0.
78
9

0.
57
2

M
L
M
S

C
V

P
R

19
V
G
G
-1
6

26
3.
0

0.
92
8

0.
04
5

0.
87
1

0.
91
1

0.
77
0

0.
85
5

0.
07
4

0.
77
9

0.
84
4

0.
62
0

0.
85
6

0.
10
8

0.
72
6

0.
78
6

0.
56
2

A
F
N
et

C
V

P
R

19
V
G
G
-1
6

14
3.
0

0.
93
5

0.
04
2

0.
88
7

0.
91
4

0.
77
6

0.
86
3

0.
07
0

0.
79
8

0.
84
9

0.
62
6

0.
85
6

0.
11
1

0.
72
3

0.
77
4

-
M
S
W

S
C

V
P

R
19

D
en
se
-1
69

48
.6

0.
87
8

0.
09
6

0.
71
6

0.
82
8

0.
41
1

0.
78
6

0.
13
3

0.
61
4

0.
76
8

0.
28
9

0.
80
0

0.
16
7

0.
57
3

0.
70
0

0.
23
1

R
3
N
et
+

IJ
C

A
I1

8
R
es
N
eX

t
21
5.
0

0.
93
4

0.
04
0

0.
90
2

0.
91
0

0.
75
9

0.
83
4

0.
09
2

0.
76
1

0.
80
7

0.
53
8

0.
85
0

0.
12
5

0.
73
5

0.
75
9

0.
43
1

C
ap

S
al

C
V

P
R

19
R
es
N
et
-1
01

-
0.
87
4

0.
07
7

0.
77
1

0.
82
6

0.
57
4

0.
86
1

0.
07
3

0.
78
6

0.
83
7

0.
52
7

0.
77
3

0.
14
8

0.
59
7

0.
69
5

0.
40
4

S
R
M

IC
C

V
17

R
es
N
et
-5
0

18
9.
0

0.
91
7

0.
05
4

0.
85
3

0.
89
5

0.
67
2

0.
83
8

0.
08
4

0.
75
8

0.
83
4

0.
50
9

0.
84
3

0.
12
8

0.
67
0

0.
74
1

0.
39
2

D
G
R
L

C
V

P
R

18
R
es
N
et
-5
0

64
6.
1

0.
92
5

0.
04
2

0.
88
3

0.
90
6

0.
75
3

0.
84
8

0.
07
4

0.
78
7

0.
83
9

0.
56
9

0.
84
8

0.
10
6

0.
73
1

0.
77
3

0.
50
2

P
iC
A
N
et
R

C
V

P
R

18
R
es
N
et
-5
0

19
7.
2

0.
93
5

0.
04
6

0.
86
7

0.
91
7

0.
77
5

0.
85
7

0.
07
6

0.
77
7

0.
85
4

0.
59
8

0.
85
6

0.
10
4

0.
72
4

0.
79
0

0.
52
8

C
P
D

C
V

P
R

19
R
es
N
et
-5
0

18
3.
0

0.
93
9

0.
03
7

0.
89
8

0.
91
8

0.
81
1

0.
86
1

0.
07
1

0.
80
0

0.
84
8

0.
63
9

0.
86
0

0.
11
2

0.
71
4

0.
76
7

0.
55
6

P
oo

lN
et

C
V

P
R

19
R
es
N
et
-5
0

27
3.
3

0.
94
4

0.
03
9

0.
89
6

0.
92
1

0.
81
3

0.
86
5

0.
07
5

0.
79
8

0.
83
2

0.
64
4

0.
87
1

0.
10
2

0.
75
9

0.
79
7

0.
60
6

B
A
S
N
et

(O
ur
s)

R
es
N
et
-3
4

34
8.
5

0.
94
2

0.
03
7

0.
90
4

0.
91
6

0.
82
6

0.
85
6

0.
07
6

0.
79
8

0.
83
8

0.
66
0

0.
85
1

0.
11
3

0.
73
0

0.
76
9

0.
60
3

U
2
-N

et
(O

ur
s)

N
/A

17
6.
3

0.
95
1

0.
03
3

0.
91
0

0.
92
8

0.
83
6

0.
85
9

0.
07
4

0.
79
7

0.
84
4

0.
65
7

0.
86
1

0.
10
8

0.
74
8

0.
78
6

0.
61
3

U
2
-N

et
†
(O

ur
s)

N
/A

4.
7

0.
94
3

0.
04
1

0.
88
5

0.
91
8

0.
80
8

0.
84
9

0.
08
6

0.
76
8

0.
83
1

0.
62
7

0.
84
1

0.
12
4

0.
69
7

0.
75
9

0.
55
9

128



of our U2-Net is slightly inferior to CPD and competitive against AFNet and

PoolNet. On SOD dataset, our U2-Net achieves the second best overall per-

formance and outperforms other state-of-the-art models except for PoolNet.

Our U2-Net† is only 4.7 MB, which is currently the smallest model in the

field of salient object detection. Compared with the second smallest model

MSWS (48.6 MB), our U2-Net† is 10 times smaller and its performance is

much better. With much fewer parameters against other models, Our U2-

Net† still achieves surprisingly competitive results. Particularly, on datasets

DUT-OMRON, HKU-IS and ECSSD, the performance of our small size U2-

Net† is only inferior to our full size U2-Net, our BASNet and PoolNet and it

outperforms other state-of-the-art methods, which usually have 10 times or

even more parameters. Although the performance of U2-Net† is not as good as

our full size U2-Net, we believe the difference is acceptable and its small size

will facilitates its applications in many computation and memory constrained

environments.

Fig. 5.12 and Fig. 5.13 illustrate the precision-recall and F-measure curves

of our methods and other state-of-the-art methods. The performance com-

parison reflected by the precision-recall curves are almost consistent with the

maxFβ measures. The F-measure curves (see Fig. 5.13) are able to evaluate

the robustness of the method against different binarization thresholds. The

higher and the more flat the curves are, the better the performance of the

model is. As we can see in Fig. 5.13, the curves of our BASNet are relatively

more flat compared with others, which means the performance of BASNet is

stable and robust against different thresholds partially thanks to our hybrid

loss used in BASNet. The F-measure curves of our U2-Net on different dataset

are relatively higher than others, especially on datasets DUT-OMRON, HKU-

IS and ECSSD, which means it is more likely to get higher Fβ with certain

thresholds. In addition, although the F-measure curves of our U2-Net† are

lower and less flat than U2-Net and BASNet, it still able to achieve a rela-

tively high Fβ with certain thresholds.

Although our models achieve competitive results against other state-of-

the-art methods, there are still large rooms for improvements. As we can see
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Figure 5.12. Precision-Recall curves of different method on six datasets.
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Figure 5.13. F-measure curves of different methods on six datasets.
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in Fig. 5.13, our models achieve high F-measures (close to 0.95) on HKU-IS

and ECSSD datasets while obtaining relatively low F-measures (around 0.85)

on other four datasets including DUT-OMRON, DUTS-TE, PASCAL-S and

SOD. In each dataset, there are both high-quality and low-quality predictions.

Their different ratios lead to the differences on the final F-measures. There

are multiple reasons for resulting the differences. The main reason is that

these datasets are collected by different groups so that they have different

characteristics including object shapes, object numbers, background features,

image contrasts, etc. Although the training dataset, DUTS-TR, is relatively

large (10553 images), it is still not able to cover all the cases in each testing

dataset. Another important reason is that there is no unified mathematic

definition of the salient object. Hence, the quality of the "ground truth"

itself is imperfect and varies with different annotators. Therefore, although

the improvements of our models on certain datasets are relatively insignificant

against the remaining errors, their performance should not be underrated while

taking the above facts into consideration.

5.6.2 Qualitative Comparison

To further demonstrate the performance of our methods, the qualitative com-

parisons of our methods and other state-of-the-art models are presented in this

section.

Fig. 5.14 shows the comparison on the image with small object. Small ob-

ject segmentation is a difficult yet key issue in SOD. Because the small targets

are easy to be neglected by the downsampling operations in the networks. As

we can see that, all of our methods, U2-Net, U2-Net†, and BASNet segment

the small target correctly. Except for MSWS, other SOTA models either pro-

duce erroneously targets like CPD,PAGRN, RADF+, LFR, Amulet, UCF and

MDF, or segment the whole image as background.

Fig. 5.15 shows the comparison of results on large object touching image

boundaries. Large objects require models have the ability of extracting large

scale features while maintaining the fine structures. That means the models

have to correctly segment the building wall as well as the crosses on the roof.
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Our methods U2-Net, U2-Net† and BASNet produce much more accurate seg-

mentation results of the crosses than other SOTA methods. For segmenting

the building wall, R3-Net+ and PiCANet produce the best results. Although

our U2-Net† and BASNet segment a samll part of the wall after/below the

fence as background, the overall results are relatively good. Our U2-Net has

the same problem with PoolNet and PiCANetR, which predict the small part

of the left wall as background. But its overall prediction is still much better

than most of other models like PoolNet, CPD, DGRL, SRM, CapSal, MSWS,

AFNet, PAGRN, RADF+, RAS, C2S, LFR, DSS+, NLDF+, Amulet, UCF

and MDF.

Fig. 5.16 and Fig. 5.17 demonstrate the ability of our method in handling

one or multiple objects with fine structures. In Fig. 5.16, our models U2-

Net, U2-Net† and BASNet predict the most accurate fins as well as the most

clear and smoothest contours of the dolphin body. Fig. 5.17 shows that only

our three models are able to correctly segment the legs of these horses, which

further demonstrates the strong ability of our methods in handling fine details.

Fig. 5.18 and Fig. 5.19 show the results on targets with complex contours

and complex structures respectively. In Fig. 5.18, both our U2-Net and BAS-

Net outperform other SOTA models. Although the prediction confidence of

our U2-Net† is lower than that of our U2-Net and BASNet, it still extracts

relatively higher quality contours than other SOTA models. As we can see

in Fig. 5.19, U2-Net and U2-Net† achieves almost the same results with the

ground truth and outperforms others with a large margin. As for the BASNet,

although it fails in segmenting the top part of the target but it still produces

very high quality boundaries compared with other SOTA models.
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im gt U2-Net U2-Net† BASNet PoolNet CPD PiCANetR DGRL

SRM CapSal R3Net+ MSWS AFNet MLMS PiCANet BMPM PAGRN

RADF+ RAS C2S LFR DSS+ NLDF+ Amulet UCF MDF

Figure 5.14. Qualitative comparison of results on SMALL object. U2-Net,
U2-Net† and BASNet are our methods.

im gt U2-Net U2-Net† BASNet PoolNet CPD PiCANetR DGRL

SRM CapSal R3Net+ MSWS AFNet MLMS PiCANet BMPM PAGRN

RADF+ RAS C2S LFR DSS+ NLDF+ Amulet UCF MDF

Figure 5.15. Qualitative comparison of results on LARGE object. U2-Net,
U2-Net† and BASNet are our methods.

im gt U2-Net U2-Net† BASNet PoolNet CPD PiCANetR DGRL

SRM CapSal R3Net+ MSWS AFNet MLMS PiCANet BMPM PAGRN

RADF+ RAS C2S LFR DSS+ NLDF+ Amulet UCF MDF

Figure 5.16. Qualitative comparison of results on SMALL object WITH
FINE STRUCTURES. U2-Net, U2-Net† and BASNet are our methods.
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im gt U2-Net U2-Net† BASNet PoolNet CPD PiCANetR DGRL
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Figure 5.17. Qualitative comparison of results on MULTIPLE OBJECTS
WITH FINE STRUCTURE. U2-Net, U2-Net† and BASNet are our meth-
ods.

im gt U2-Net U2-Net† BASNet PoolNet CPD PiCANetR DGRL

SRM CapSal R3Net+ MSWS AFNet MLMS PiCANet BMPM PAGRN

RADF+ RAS C2S LFR DSS+ NLDF+ Amulet UCF MDF

Figure 5.18. Qualitative comparison of results on object with COMPLEX
CONTOUR. U2-Net, U2-Net† and BASNet are our methods.

im gt U2-Net U2-Net† BASNet PoolNet CPD PiCANetR DGRL

SRM CapSal R3Net+ MSWS AFNet MLMS PiCANet BMPM PAGRN

RADF+ RAS C2S LFR DSS+ NLDF+ Amulet UCF MDF

Figure 5.19. Qualitative comparison of results on COMPLEX object. U2-
Net, U2-Net† and BASNet are our methods.
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5.7 Summary

To achieve accurate salient object detection results, we proposed a novel end-

to-end boundary-aware model, BASNet, and a hybrid fusing loss for accurate

salient object detection. The proposed BASNet is a predict-refine architecture,

which consists of two components: a prediction network and a refinement

module. Combined with the hybrid loss, BASNet is able to capture both large-

scale and fine structures, e.g . thin regions, holes, and produce salient object

detection maps with clear boundaries. Experimental results on six datasets

demonstrate that our model achieves very competitive performance against

other state-of-the-art methods in terms of both region-based and boundary-

aware measures. It runs at 25 FPS (Frame Per Second), which is close to real-

time on a single 1080ti GPU. Additionally, our proposed network architecture

is modular. It can be easily extended or adapted to other tasks by replacing

either the predicting network or the refinement module.

To exclude the dependence on existing backbone networks and achieve more

flexible salient object detection models, we proposed a novel deep network:

U2-Net, for salient object detection. The main architecture of our U2-Net is a

two-level nested U-structure. The nested U-structure with our newly designed

RSU blocks enables the network to capture richer local and global information

from both shallow and deep layers regardless of the resolutions. Compared

with those SOD models built upon the combination of existing backbones and

additionally developed multi-scale information extraction modules, our U2-

Net is purely built on the proposed RSU blocks which makes it possible to be

trained from scratch and configured to have different model size according to

the target environment constraints. We provide a full size U2-Net (176.3 MB,

30 FPS) and a smaller size version U2-Net† (4.7 MB, 40 FPS) in this thesis.

Experimental results on six public saliency detection datasets demonstrate

that both models achieve very competitive performance against other 22 state-

of-the-art methods in terms of both qualitative and quantitative measures.
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Chapter 6

Conclusions and Future Work

In this chapter, we first summarize our main contributions. Then, we analyze

the limitations of our works and discuss possible improvements and future

work.

6.1 Conclusions

In this thesis, we study salient object detection related problems in three dif-

ferent aspects: (1) interactive salient object detection; (2) unsupervised salient

closed boundary extraction by perceptual grouping; (3) supervised salient ob-

ject detection by deep convolutional neural networks.

In Chapter 3, we present a novel boundary based semi-automatic image

annotation tool, ByLabel, to satisfy the high accuracy and reliability de-

mands of certain applications. Using this tool, human operators are able to

manually annotate the targets according to their specific applications. Com-

pared with “automatic” algorithms, our interactive annotation tool, ByLabel,

is more reliable, accurate and flexible. In contrast to other interactive meth-

ods, ByLabel requires less human intervention and reduces the time costs by

simplifying the control points’ clicking operations for polygon generation to

selecting operations for picking detected edge fragments. This simplification

improves both accuracy and efficiency. Because those detected edge fragments

are one pixel-width pixel chains which are more accurate than line segments

comprised of control points in depicting smooth curves. The reason for the

efficiency improvement is that the selecting operations are much easier than
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localizing and clicking exact boundary pixels.

In Chapter 4, we propose a perceptual grouping based salient closed bound-

ary extraction method and apply our method to different applications. The

key components of our method includes a general workflow and a graph-based

optimization algorithm: “Bi-Directional Shortest Path (BDSP)”. The general

workflow reduces the salient closed boundary extraction problem into the prob-

lem of searching for a special cycle from an undirected graph. The BDSP algo-

rithm solves the optimization problem on the undirected graph in polynomial-

time. Compared with other optimization methods, BDSP is more tolerant to

the formats of the objective functions. In addition, we adapt our salient closed

boundary extraction method to following two applications:

• Building outline extraction via line segments perceptual group-

ing: we first adapt the general workflow to reduce the building outline

extraction problem into searching for a special cycle from an undirected

graph constructed based on the detected line segments. Then, we design

a novel saliency objective function by encoding the proximity and conti-

nuity principles of Gestalt Laws. Combined with the BDSP algorithm,

our method is able to extract building outlines with different shapes and

achieves state-of-the-art performance against other methods.

• Salient closed boundary tracking: i) salient closed boundary track-

ing via line segments perceptual grouping. We extend the salient closed

boundary workflow to a tracking workflow by adding an area changing

constraint between the closed boundaries on the current and previous

frames. By using the BDSP, we can optimize the saliency objective

function with the area constraint easily. Additionally, we build a salient

closed boundary tracking dataset including nine video sequences (with

9598 frames in total) with manually annotated ground truth using our

ByLabel. We evaluate our method on this dataset. The results show

the state-of-the-art performance of our method in tracking closed bound-

aries without stable or enough supportive region information. To further

demonstrate the promising performance of our method, we evaluate on
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a real-world robot pouring task that requires continuous tracking of the

bowl rim. To achieve more accurate and robust tracking results, we fur-

ther adapt our method to ii) salient closed boundary tracking via edge

fragments perceptual grouping. This method replaces the line segments

of the above method with edge fragments to achieve higher accuracy for

salient closed boundary tracking. We design a new way of edge break-

ing to obtain high quality edge fragments. To reduce the time costs of

optimization, we develop a novel edge filtering approach based on the

distance map of the boundary tracked from the last frame. We test our

method on the dataset built in the above work. The experimental results

show that our edge fragments based tracker outperforms other methods,

including our last line segments based tracker in terms of accuracy. In

addition, this tracker still runs at real-time speed.

In Chapter 5, we design two deep convolutional neural networks, BASNet

and U2-Net, for high accuracy and fast salient object detection.

• BASNet, Boundary-Aware Salient object detection network, is designed

with a predict-refine architecture and trained with a novel hybrid loss.

The predict module takes an natural image as input and outputs the

coarse probability map. The refine module further refines the coarse

probability map by feeding it into another small encoder-decoder mod-

ule. The hybrid loss combines the binary cross entropy, structural simi-

larity and intersection over union to learn the pixel-wise, patch-wise and

map-wise structures, respectively. The predict and refine modules com-

bined with the hybrid loss are trained end-to-end. Running at 25 FPS,

which is promising to be used in real-time applications, It achieves very

competitive performance in terms of both region-based and boundary-

based quality.

• OurU2-Net is a nested U-structure built upon our newly designed resid-

ual U-block, which is a combination of an U-structure and a residual con-

nection. The residual U-block enables effective extraction of multi-scale

information while maintaining relatively low computation and memory
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costs. Without using backbones, our U2-Net is flexible and can be easily

configured to work on different training datasets and working environ-

ments. We provide two instances of our U2-Net: a full size U2-Net (176

MB, 30 FPS on GTX 1080ti GPU with input image size of 320×320) and

a light one U2-Net† (4.7 MB, 40 FPS). Both instances achieve competitive

results against the state-of-the-art methods. Although the performance

of U2-Net† is inferior to the full size U2-Net, the difference is acceptable

when the model size is taken into account. Before our U2-Net, almost

all of the salient object detection networks including our BASNet are

based on the backbones adapted from image classification tasks, which

impedes the further adaptation of these networks for different training

datasets and working environments. Our nested U-structure can be eas-

ily extended to other binary or multiple class segmentation problems.

6.2 Limitations and Future Work

6.2.1 Interactive Annotation with ByLabel: A Boundary
based Semi-Automatic Image Annotation Tool

There are two main limitations of ByLabel: reliable edge fragments generation

from multi-scale images and labeling of shared boundaries.

First, the selecting operation of our ByLabel is based on the automati-

cally detected edge fragments. There are mainly two steps for edge fragments

generation: i) edge detection, and ii) edge breaking. ByLabel uses the Edge

Drawing method for edge detection, with a filter size fixed to 3×3, and it is not

able to handle images with high resolutions. Furthermore, the edges detected

by EdgeDrawing are usually elongated. As a results, the foreground and back-

ground edge pixels are often erroneously tracked and grouped in the same long

edge. Although we break these elongated edges into relatively short fragments

using turning angles in ByLabel, without taking the semantic meaning of each

edge pixel into consideration, the breaking quality is hard to be guaranteed.

Therefore, new multi-scale edge detectors would be a valuable direction to ex-

plore. Specifically, multi-scale filters or strategies can be introduced to achieve
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more reliable edge detection results. Traditional edge detectors only utilize lo-

cal high frequency informations for edge detection. Introducing more regional

low frequency information and combining them with the high frequency in-

formation might be another promising way for edge detection and breaking.

Furthermore, learning based methods [161], [275], [287] for edge fragments

extraction is gaining popularity. Developing lighter, faster and more reliable

deep methods for edge detection is a promising direction.

Second, in the labeling of shared boundaries, the annotation logic of our

ByLabel is to manually select and group the closed boundaries of target ob-

jects. One assumption of this logic is that the annotation of each target object

is independent and information is not reusable between two objects annotation

processes. Another assumption is that the extracted boundary pixels belongs

to the to-be-annotated foreground targets other than the backgrounds. How-

ever, these assumptions are potentially limited. For example, if two objects

have a shared boundary, it would need to be annotated twice, once for each

object. This can be a waste of time. Besides, the boundaries are comprised

of pixels with the greatest gradient magnitudes along their gradient directions

within the local patches. Theoretically, their ownership is illusive and they

could be taken as parts of either the to-be-annotated targets or the back-

grounds (or other targets). This will introduce discrepencies to the shared

boundaries labeling so that have negative impacts on the accuracy of region

masks generated from labeled or extracted boundaries. This problem will

get even worse when there are a large number of shared boundaries such as

in scene parsing applications where almost every adjacent subregion of the

input image has to be labeled. To address this problem, scene parsing anno-

tation logic and the topological representation of annotated boundaries could

be introduced. The logic of scene parsing is to divide the whole image into

multiple subregions according to their classes. Boundaries should be defined

as the continuous paths in-between neighboring pixels other than pixels them-

selves. Instead of assigning each boundary to specific object, each boundary

can be taken as a divider for separating the adjacent image regions. Anno-

tated boundaries can then be saved into a topological format which will avoid
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repeated storage of these boundaries.

In summary, interactive image annotation tools still play an important

role in many computer vision tasks, especially when building a large number

of training datasets. Therefore, it is important for future work to study the

standard annotation protocols and web-based platforms. These techniques will

enable remote and collaborative annotation for greatly improving annotation

accuracy and efficiency.

6.2.2 Unsupervised Salient Closed Boundary Extraction
by Perceptual Grouping

In Chapter 3, we present our perceptual grouping method, especially the “Bi-

Directional Shortest Path (BDSP)” algorithm, for salient closed boundary ex-

traction and its different applications.

Although the “Bi-Directional Shortest Path (BDSP)” algorithm provides

a flexible and efficient solution for the graph-based optimization problems, it

is still not able to guarantee the absolute correctness of the to-be-extracted

closed boundaries. There are mainly two reasons. First, the results of BDSP

are approximately global and biased to certain types of closed boundaries.

In BDSP algorithm, its two shortest paths are usually searched based on the

local cues, e.g. gap length, by Dijkstra. But the grouping costs are often

defined with both local and global cues, which are not able to be considered in

the shortest paths searching processes. Second, even if the global optima of a

grouping cost is guaranteed, the result is still possible to be incorrect. Because

the grouping costs are usually designed by trial-and-error based on the human

knowledge and experiences on different applications. They are not completely

consistent with the essence of the target boundaries. Therefore, the global

optima guaranteed optimizers and better strategies of grouping costs design

are needed.

The second limitation of our salient closed boundary extraction is similar

to that of ByLabel. The performance our method heavily relies on the detected

line segments or edge fragments. However, traditional line and edge detectors

are often sensitive to variations of illumination, scale, threshold, etc. To ad-
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dress this problem, more regional information and prior knowledge need to be

integrated with these unsupervised detectors. Therefore, there is a need for ex-

ploring the methods and strategies of combining unsupervised and supervised

techniques for low level feature extraction. To achieve more robust and ac-

curate results, exploring hierarchical perceptual grouping methods, which are

able to progressively refine the grouping results, is a promising study direction.

Another drawback of this method is only able to extract a single salient

closed boundary. However, many applications such as building outline ex-

traction from large area images and multiple object tracking (MOT) require

simultaneous extraction of multiple salient closed boundaries. To address this

problem, new problem formulation strategies, loss functions and optimization

algorithms should be explored. Furthermore, graph convolutional neural net-

work is an additional technique that shows promise for solving the perceptual

grouping problem.

The widely used thresholds in those unsupervised methods potentially im-

pede their practical applications in real-world environments. There are also

several thresholds, such as the buffer size and the area variation threshold in

Chapter 4.6.1, the turning distance, edge filtering parameters, perimeter and

area variation thresholds in Chapter 4.6.2, in our proposed method. Although

these parameters are not deterministic to the effectiveness of our method,

they still play important roles in guaranteeing the performance of the whole

pipeline. The optimal values of these parameters usually vary with different

application scenarios or targets. Hence, they are often set based on the expe-

riences or experiments. Exploring novel adaptive methods for automatic pa-

rameters tunning by integrating unsupervised, semi-supervised or supervised

methods could facilitate the wider applications of our method in real-world

scenarios.

In addition to these technical problems, the testing datasets also play im-

portant roles in the study of unsupervised methods. Large scale and diversified

datasets are able to provide more complete and reliable evaluation on newly

developed algorithms. Hence, there is a need for creating larger and more

comprehensive datasets.
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6.2.3 Supervised Salient Object Detection by Deep Con-
volutional Neural Networks

Although our BASNet and U2-Net achieve very competitive results against

current state-of-the-art methods on six public datasets, there are still several

drawbacks of our methods.

Running time and model size are two important metrics in evaluating a neu-

ral network. Both our BASNet and U2-Net achieve real-time running speed,

but they are running on GTX 1080ti GPU and the size of the input images

is relatively small (256×256 or 320×320). Although our U2-Net† is only 4.7

MB and runs at 40 FPS on a GTX 1080ti GPU, it is still difficult to deploy to

mobile devices. In addition, with the fast development of image sensors, im-

age resolutions of mobile devices are increasing rapidly. This introduces more

challenges to the design of deep networks for real-time applications. Therefore,

deep network compression and light network design remain open problems.

The performance of a deep network often heavily relies on the training

dataset. The most frequently used training dataset for salient object detec-

tion, DUTS-TR, only contains 10553 images. This dataset is good for research

purposes, however, if we want to train robust networks for real world applica-

tions, more and larger training datasets are needed.

Currently, most of the deep networks for salient object detection are man-

ually designed. The more important issue here is that manually designed

“optimal” networks can be biased to a certain datasets. The optimal solution

is to search for the network architecture automatically with the given training

dataset. Neural architecture searching techniques will be another promising

direction for salient object detection and other related fields.

6.2.4 Evaluation Measures

In addition to those methods and datasets related issues mentioned above,

evaluation measures also play very important roles in almost all of the stud-

ies of computer vision and related areas. The proper usage of the evaluation

measures is able to greatly facilitate the development of novel methods and
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techniques. There are many evaluation measures have been proposed such

as precision, recall, F-measure, Intersection-over-Union, relax boundary F-

measure [181], Hausdorff distance (HD) [209], Contour Mapping (CM) [183],

etc. However, every evaluation measure is more or less biased to certain types

of errors. The selection of evaluation measures relies on the demands of differ-

ent applications and the characteristics of to-be-evaluated targets. Although

several different evaluation measures are used in this thesis for providing rela-

tively comprehensive comparisons, each measure is only able to give an overall

quality estimation in terms of certain type of errors. Currently, it is hard to

find a unified measure that equally evaluates all types of errors. Therefore,

there is a need for developing task-specific novel evaluation measures as well

as standard selection criteria of evaluation measures.
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