Nationa!\; brary "
of Canada r\

I*

du Canada - -

_Bibliothéque_natianale -

N . -
kanadlan Theses Servucp ' Services des théses canadiennes

Ottawa, C-anada o \
1A.O.N4’f g
< \K . \
CANADIAN THESES :
: -
NOTIEE

The .quality of thns mlcrofnche 1S heavxly dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to erisure the h[gheg\'qualny of reproduc-
tion possmle o

<

I .pages are m‘?ssmg contact the university which granted the

degrege - 1N
. - @

Some pages may have mdmmct print especnany if the ongmall

. pageswere typed| with & poat typewnter ribbon or if the univer-
sity sent Us an m,fenor photocooy ’

. - . /.'
e . .) ~ ' . « .
Prevuously,copyrugqrted matenals (journal articles, pgbhshed
tests, etc.) are not filmed.

Reproduction;iﬁ\full or in part of this fitm is goVerned by the
Canadian Copyright Act, RS.C. 1970: ¢ C-30. Please read
the authorization forms which accompany this thesis. L

THIS DISSERTATION
-HAS BEEN MICROFILMED
___EXACTLY AS RECEIVED

U 339 0 TBRIOT) *

€A

.
PN
THESES CANADIENNES \
" ‘ N
_
AVIS 4

La qualité de cette microfiche depend grandement dela quahte
de la thése soumise au microfilmage. Nous avons tout fait pour
assurer une qualite supé‘rleure de reproduction. '

Sl manque\des pages. veulllez’ commumqyer avec ﬂ‘\myer-""
sité qui a contéré e grade.

A

- Lla quahte d impression de cert anes pagec peut laisser a

desnrer surtout st lels pages orngmales ont eté dactylographrees
-a- I'aide d'un ruban usé ou si Funiversité nous a famparvemr
une ph@tocome de qualité mfeneure - N '

Les documents qui font de;a I objet d'un droit d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproducti'on, méme partielle. de ce microfilrh est soumise
a la Lol canadienne sur le.droit d'auteur, SRC 1970, ¢. C-30.
Veuijtlez prendre connalssancp des formules d' autonsatlon qu1

. accompagnent cette theea

LA THESE A ETE -
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

 Canadi

.* National Library Bibliothéque nationale - ‘ , o i /

‘of Ganada™ - du Canada CTC -
Ottawa, Canada R ' ‘ f _ -)
K1A ON4 ' - ISk G—315-—233'0}5—2
< - . L’ o T ‘;"‘ 'f
\ \
CANADIAN T SES ON MICROFICHE SERVICE SERVICE DES THESES CANADIENNES SUR MILROF‘ICHF : —

-

PERMISION TO MICROFILM -~ AUTORISAT|ON DE MICROFILMER

. Please prrnt or type — Ecfire en lettres moulées ou dactylographier l
o~ - ‘ " .AUTHOR — AUTEUR) '
Full Name of Author — Nom complet de auteur. ’ ’ T ": T T T T "' T
. - Guenm NOE A CSiv G
e —— . - . . . - - PO . A
Datc 01 Brrth - Date de naissance : ‘Canadian Cihzen, - C‘rtoy(":n canadien ; . .
Q 2 \j A"f\) - 67 S g . i ‘ ?YBS Ouw V(ﬁ;) Non » ’
e : L. . e R N ; ' ‘
Country of Brrth Lieu de naissance : \ }F’ermanem Address — Residence fixe

ce[uwoa Gy Kagieons (raec

1D T] :
o New Decyr
THESIS - THESE . - — | -
L4 B _,;,, T B

Title of Thesis — Titre de la thése T

o . N -

/

P“mzwv {aimr - C @m/]bowud’ % M %/quw’;&q L\} LjA _
o Mbeta ¥ i : - S .

\‘\ . ‘ X S—
e . B
/
\
Degree for which thesis was presented : Year thre degreo conferred '/. - . .
Grade pour lequel cette thése fut presentee M g"L Annee d obtention de ce grdde/ . C? {? £

— SO e e e

LJnrvs:rqlty UmversrtP Q rName of Supervrbor Nom Lj‘direlteurdé th;se 7)
féﬁ A bev‘ﬁ\a - , - \>~C M G\(Sr
j i ™™
AUTHORIZATION — AUTORISATION 0 : 3
- [- N e e e e et e e o e e s ‘.,,,
. B N . B ! A
Permission 1s hereby granted to the NATJONAL .LIBRARY OF CANADA to L'autonisation est. ‘par la présepte. accordee a la BIBLIOTHEQUE NATIONAL
microfilm this thesis and to Iend or sell copies of the film.) . * DU CANADA de microfilmer cette thése et de préter Gu de vendre des e
emplaires du film. - -
The author rpserves other publrcatron nghts, and ne:ther the thesis nor exten- .)
SIVe extracts from 1t may be printed or otherwnse reproduced wrthour the L'auteur se reserve les autres droits de publication. v fa these ni de longs e
. author’s written permission " . traits de celle-ct ne dowent étre imprimes- ou autremem r@produrts sar
< ’ . I'autonsation ecnte de 'auteur -
\ . . .
\ F : ATTACH FORM TO THESIS — VEUILLEZ JOINDRE cE FORMULAIRE A LA THESE. T4
: ,s.d}{;ﬂ',}Z"”T . A - [Date .W“W"W“ T A s
S S S SR S

NU ‘Htr 84011

-~

- Th¢' University of Alberta

PRESENTATION COMPONENT FOR
THE UNIVERSITY OF ALBERTA UIMS

s

by -
.“\ i . . .

Y a Gurminder Singh
VI , :

A Lhesw

submitted to the Faculty of Gradude Hudies and Research

in parual fulfillment of the requnrementq forthe degree
of Master of Scxence

Department of Computing Science

Ty . AN

Edmonton. Alberta
Al 1985

—~

il

! . THE UNIVERSITY OF ALBERTA

v

RELEASE FORM

NAME OF AUTHOR: Gurminder Singh
TlTLE OF III;ESIS: Prcsentafion Component for the University of Alberta UIMS
| DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

YEAR THIS DEGREE GRANTED: 1985

Permission 1s hereby granted to The University.of Alberta Library to
reproduce single copies of this thesis and to lend or sell Ruch copies for private,
scholarly or scientific research purposes only.

Tle author reserves other publication rights, and neither2the thecm nor
extensive extracts from w/mav be prlnted or otherwise reproduced wnhout the
author’s whtten permlssnon

/
{

| » I
_ o (Signed) @Vf\o‘ T L

e ' ‘ Permanent \ddresq

e o , 4 , CC/40A. G-8 Rajouri Garden \ o

~ .. New Delhi- 110 084
. India

Dated 4 'Sept. 1985

?
. \ , r
' Dot 0 IV TEY b A
FACULTY OF GRADUATE STUDILS AND RESEARCTT
\ _
Y -~ The undetsigned certify that they have read, and recommernd to the
'}"JAC|I’|L_\' of Graduate Studies and Research, for acceptance, a thesis entitled
] : - ' : - :

I_’rcscntﬁ.tii)n Cofﬁponcnt for the University of Alberta UIMS submitted by

Gurminder Singh in partial fulfilment of the requirements for the degree of Master

#
~

of Science.

- . { .
. S ; ! o
. //é L L&‘ o T T 4

Supervisor

. "o o /é'b' ¢\<
- : ‘ 4@/44;4(. 6/2 %&{é[e

ABSTRACT ' s

_This thesis is concerned with the design and implementation of the presentation

‘component of the University of Alberta User Interface Management System. The

Seeheim Model of User Interface Management \)atems [(1r00n198m] is considered as

“the b'l‘ﬂb of the work

It s shown that all device dependencies can be lmited to the presentation
component of the user-interface. This increases the portability of the system. In the
design proposed in thiq hesis user interfaces can easily be '1(1‘1pt0d to individual users.
The selection of lnteract'lon techniques n.nd display forma.ts can also be easily changed

to the actual user's llklng)
”»

It is.observe‘dﬂthat the existence of .a separate presentation component encourages
the use of standard libraries of interaction techniques and display procedures. This
speeds up the process of generating user-interfaces to a great extent and reduces the
cost of programming considerably. A catalogue of interaction techniques is proposed.
This catalogue defines the contents of the Iibrary of interactionstechniques., &
proposed classification scheme s based on the. mtemctlon task performed by <y
interaction technique.

.
-

Acknowledgements

[am indebted to my thesis supervisor, Dr. Mark Green. for introducing me to the
problem, guiding me at each stage of the ro%mrch, and offering valuable suggestions
for the dissertation.] :

\
L . . .
I would like to thank the members of my examination committee, Dr. Clifford

. Ny . .
Addison, Dr. Renee Elio, and Dr. Alinda Freedman for their valuable comments.

I am greatly indebted to my parents, to whom this thesis is dedicated,.for
mstilling in me their belief in the value of education. Finally, I am grateful to all
those who patiently waited for me to finish this work. : -

L

Table of Contents

.
Chapter g K ' ’ . Page
)(wla)xpt(r l: In‘;@ e ... o1
11 What is A User lntorfnyo? e JR OO UPRUSOPUPRSP PSP 1
L2 What s A CIMS? oo e SR ON 3
1.3. The Presented Work ..o m i
1.4, Or'g.'mization ;)f Lhe TRESIS ooee oo e e 5
Chapter 2: B:Lc‘kgrou_nd and Survey ‘ \(5 “
2,1. Desirable Properties of A User INtErface ovovoroererirenn) [T SRR)
2]2. Automatic Gonerntioq_,of{fser Interfaces oo bl
' \
‘2.3..Hurv0y ... R 9
231 TIGER -, SSURRRS OSSO 9
2311, TICCL DOSCEIPHON oo gy et 10
, : » :
2 3.1.2. Run-time Interpreter O PSP ©o 11
“2.3.‘2. Uof TUINMS o PP OR T e 13
23.2.1. MENULAY and M.»\I\’.RMEA\'L' ... 13
233 SYNGRAPH o 15
2.3.3.1. Lo.\'icr;l SPEcifCation oo e, 16
2.3.4.2. Syntactic Speciﬁmtioﬁ IR ITIT IR TR PP PN RR PPN PP PP 17
2.3.3.3. Semantic Specification e [T TOUROPPROS [
2.1, The Secheim Model of User Imf‘rfu(‘es P e 18
2.0 1 Presentation COmMPOBENt ... 19
'2 -1.‘2: Dialogue (‘optrol Compenent PRI B P - 20

\ *

&

243, .'\[)pli(“:/‘lk(i()ll Interface Model (o
:Z’) The lTy|i‘;'('rs.it}' of Alberta UIMS ... ' ...
Chapter 3: The Design o
3.1, Design of the Presentation Component ... P P PP PP
3]nput.’l‘okonx USSR PRTR
330U PUL TOKEIIS o
3.3.1. Token Definition File .o
- | L)
3.4 Control Module Vo
3.5, Interaction Techniques oo
351 Library of lntoructionv Techniques oo
3.6. Display Procedures ... P TP e i,
3.6.1. Library of Display Procedlnﬁ*a ...
Chapter 4: A Catalogue of Interaction Techmiques ...
AL TR EOdUCION <o e
4.2 The Catalogue of Interaction Techniques ...
1.3, Classification Qf Interaction Techniques ... S I
{1 Introduction to GUSL ... L S S P ETU
t.5. An Example Catalogue. Entry T TR SUR RPN PRRO
1.6, Using the Catalogue ... TP NN PPN
('llal;tor 5: The Implementation BT
5.1 lin\'ironmm]t‘fnr.thc Implementation U
3_’ structure of the Presentation (”omponovnt R e

5.3. Introduction to WINDLIB

[

L

tZ

to
o

[

26

26

X
. 1}

S Introduction to FDB o e TR
5.5, The Spectfication Step . S P TP L S

5.0 Window Definition ..o L :

502 Window Attributes o PP RIS

' L]

5.5.3. Tree of Windows B USSR

5.5.4. Menu Definition ..., PRSP RETPRPRRITRR

- - 1 e . ,'l

5.5.5. Input Token Definition . T

504 ratput Token Definition o

5.5.7. Next and Previous Level Definitions PP TP
5.6, T hepes Editor oo PO
5.7 Help and Frror RePOrting ..oooiiiieii e
5.8. Novice and Expert Users of 1pes: o
5.9, OutpUL of 1PCS L

5.0.1. Data Base Description ..o

3 ' ' !

0.0 T P rocedUres oo

5.9.3. File of Input/Output Tokens ... T
)

5.10. Run-Time Support Module ... :

A 101, Menu IS play
<5102 Generating Input Tokens oo

5003, Generating [mages o
DLl Run-Time rrors o
C'hapter 6: Contributions and Directions for Future Research ...
6.1 oML DU OIS

Vi

19

H0

2%
—

e

H6.

£50

51

f}1

(

6.2 Directions for lmprovements and Fature Research

References . [ETURRERTUPORRTOPRTOTS R S

Appendix Al Database Schema
Al

Appendi A2 User Manual

Appendin A3 An Example o "

-

1

X

70

List of Figures
Figaree s
Il Generating s’ Appheation o e A
210 TIGER Application Architecture oo R L o
2.2 A Sequence for Constructing an Interactive Dialogue 00
23 The seeheim Model of a User Interface o
31 The Structure of the Presentation Component ... o
t 1 General Format of a Catalogue Fintry
1.2 A Typical Catalogue Entey PR y
4
51 A sequence for-Constructing a Presentation Component ... S
52 The Tpes Screen Layout o
- ' e
53 Fditing Features supported by Ipes e oo
;
5.0 Orgamzation of the Data Base . U
\\
. . - . . .
A2.1 A Sequence for Constructing a Presentation Component ...
A2.2 The ipes Screen Layout oo PO RPN
A2 Ipes and 15 Output SR .
A3l The Screen Lavout for the Graphical Editor :
A3.2 Ipes Screen Layont after Creating Windows Ll
A33 Ipes Nereen Layout after associating Window Atrributes
A3.1 Ipes Sereen Layout after defining Menu Header ...
A% S Ipes Screen Lavout after defimng Input Tokens
A2 Sereen Lavout after defining Output Tokens

19

ro
[

.)g,{

ot

30

v

Chapter 1

*
. Introduction

»

. g £ . .
Until recently most of software system designers have concentrated mainly on

such characteristies of software quality as "portability”™, "reliabihity ™, and "testability”

.
*

(Boehm1976]. Undoubtly these properties are desirable, bat they are of primary
tnterest to software vn‘gin.(-vrﬂ and managers. 1o goal of making thv systems Tuser-
friendly ™ remains secopdary. There has been a growing awareness in software desten
of the tmportance of the user. This concern has mamfested itself, for example, 1n
analvsis of (l«wir:;l)le roperties of user interfaces [Cheriton1976] and i investigatjons
o .
into the user-friendliness of interactive systems. The concept that the u¥et {nterface
can be treated as a separate module within the whs)lv system and not simply embedded
at a range of points through it is gaining :wcept:xhilh.y (Fdmonds1981]. The effort now
15 to make user interfaces more interactive, graphic, forgiving, and self-explanatory.
B3ut, unfortunately, the construction of gé)()d nser interfaces even today remains an

s

expensive, time-consuming, and often -a frustrating process [Buxtonl983]. This

prompted researchers in human factors to explore the possibihty of_automatically gen-
erating user interfaces and the notion of a User Interface Management System (UIMS).

%
This thesis is a step in the direction of providing a tool for automatically generating

zraphical user interfaces for interactive programs and explores the issues related to the

process.

1.1. What is A User Interface? ~

The user interface 1s the part of a svstem that handles the interaction between

the user and the other components of the system. In order to complete a useful task

the system accepts inputs and presents outputs thtough the user interfuce. Edmonds

(Fdmonds1982] defines the user interface as the part of the.system that represents the
d Y

user’s model of the system. Krammer [Krammer1920] called the user interface the

i
B i .
N .
{ . "
))

"attention processor”; whilst referﬁng to the remai‘ging system as a set of virtual

\ /
"background processors”.
. U, .
As more interactive systems of comparable functionality become available, their
| . :

a

success in the market place is based increasingly on ease of use. Bad user interfaces

. - .) L N . : : B
often cause unnecessary loss of productivity and aggravation. Ease of use, not ease of

i

. N . v . ! °
implemeéntation, has become the crucial design consideration.

. Despite the current interest in user interfaces. the design of good interfaces

N

- remains to a great extent an art, with much argument over guidelines and principles of

intorface design [Blesser1982]. Pertinent information is scattered throughout the
literature of psychology. graphic design, lingudstics, hardwaTe desién,‘and under the

' . . ' 4 . .
general umbrella of computer science. Unti'lbthe concept of a user interface designer

e‘&olv_ed the system désigner’“w.as bogged down by the details of physical interaction

- 1

handling. screen management as well as the design of the actual application. The end

B .

product was an a.pplic‘at'ion system with a patched interface. '

The basic structure of a user interface does not change radically over a wide

[' s

range of applicationé (Green1984b]. There are a number of-functions that must be per-

formed-by most user interfaces. These functions include error detection and recovery,

user protocoling, and undo processing. The concepts of a separate user interface

~

*module, sepdrate interface Tusigner, and the common-features.of the user interfaces.

e

have lead to the notion of UIMS.

‘.

»

1.2. What is'A UIMS?
.o 'i&”
A UIMS is a collection of software "tools supporting the design, specification,

implemenﬂtatipn, and evaluation of user interfaces [Seattle1983). A UIMS serves to
separate the design dnd specification of the interact\ion between the user and Lhe‘a_p‘pli-
catioﬁ from the design and specification of t.hfz applic.atio‘n func_;tions that are to be
invoked. It performs an important role of media}ing the interaction bethcen.a user
and an papplicatio‘h; satisfyin/g user requex‘sty's for a‘ppli‘c'iitign actions, and application
-requests for data f'rom the user..:‘IL thus. proviaes fo.r‘tbe application "programmer's
. problem speeiﬁc skills to be concentrated. and freed fror.n‘, detailed‘concern ;vith
managing the flow of user actions aﬁd responses (Figure 1.1). LTIMS has 'a‘lso been
'nam’ed' a "Dialogue Management System” [Roach1982] or ."'Abstract‘ Intcrdctio\n

Handler™ [Feldman1982]

v

N User Interface Application
Specification : Module

»

Executable
Application |

Figure 1.1 Generating an Application

Ovér the 'p}ast few yéars many mod'els of UIMSs have been proposed and ‘imple—
‘mernted: The model considerled in this thesis is the one proposed b\ a group headed by
Mark Green at Sevéheiu.]v. Workshop on User Interface Manfxgement Systems
[Greenlgﬁi‘ia}. In this mbdel a user. interfacé is divided into the following three com-

")onents:

-

[1] Presentation Component: This is the device or physical level of the user interface.
: 5
It is responsible for managing the infmt.and output devices used by the user

“interface. All the interaction techniques.and display formats are defined in this

\

‘. » -

‘ .) . . . ' . R
component. The devicé dependencies are limited to this component of the user

vinterface: all the other components are device independent. The presentation

'\ i ——
\ ’ ’ ot . . ' .
C\(\)mponent, produces and consumes units of information called tokens.,

’

(2] Dia\ggue Control Component: This is the main component of the user interface.
It checks the sequence of input tokens produced by the presentation component
for grammatical correctness and détermines the operations the user wants to per-

form. This composxe-n\t contains the control logic of the user interface. .

; j N - . .
(3] Applicylion Interfacé Model: This model represents the functionality of the appli-

. l w N - . . sz . . .

cation. It contains the description of the major data structiires maintained by

) . . : : ; .

the application, and the application routines that can be invoked by the user
;i ' .

interface. The application interface model serves two main purposes: first, it

4

defines the interface between the user interface and the rest of the program;

second.”it tontains enough of the semantics of the application to-allow the 'L-'\IMS

~

to detect and possibly correct some of the semantic errors made by the user,

before they are passed to the application.

A detailed desc@ppion of various UIMS models appears in the following
N . . .
chapters.

1.3. The'Pre.sented Weork

~

o

.T‘he research réported here is focussed on the issues iﬁ\'olved in alxtom;xticall}'
generating the prese'-ntation ‘componem- of the user interface. The system has .been
do‘signed to keep the other components of the user interface device indebendént. keep
the designer’s interest alive tn the design process, make the design prc;cess less cumber-
some. and reduce the l;urden of progmmmi_ng as far as possible. The results presented
in this thesis are based on the svtudy- of desirable features of user interfaces and the

experience gained-through the implementation of the system to generate the presenta-

B .)
‘tion component of user interfaces automatically.

1.4. Organization of the Thesis ‘ .

The second chapter presents a survey of the research relevant to an understand-

ing of user interfaces and UIMSs. It also presents the model of user interfaces con-

. ') . », ‘ '

sidered as the basis for this research. The design of the system to generate the presen-
\ :

tation component of the user interfaces automatically is described in chapter 3.

Chapter 4 discusses the need for a catalogue of interaction techniques. The implemen-

tation details of the”system to accept the specifications and generate the presentation .

component of a user interface are discussed in chapter 5. Chapter 6 contains a discus-

ston of results and provides suggestions for future work.

Chapter 2

Background and Survey

. N . . . ! . A
This chapter describes the desirable properties of a user interfacejand presents a
| .

survey of the research relevant to the understanding of user interfaces and UIMSs,
The model used as the basis of the U of A UIMS is also presented. Finally, 2 summary

of objectives and efforts in implementing the U of A UIMS is presented.

,) . .

2.1. Desirable Propt’af{iesvofA User Interface
Starting with tile basic~definition of the user interface given in Chapter 1. the
next step is to define the desirabl'e'p'roperties of a user interface. With our e remely
\ limited knowledge, of human behavior it 1s impossibie to find a comple;c set of desir-
\inzlblo properties of the user interfaces. Foley and Wallace have summarized some of the
important f'(-at ures of user interfaces in [Foley1974]. Their suggestion is to design user
interfaces so as to avoid boredom, panic, {rustration, confusion, and discomfort to the
user. Their paper also sugg.est‘s some guidelines as\ to how to achieve this goal. Most .

of the guidelines are based on their personal experience and are not supported by any

empirical evidence. Although. the paper lists some of the important properties of user

interfaces it cannot be considered complete. The issue of effective use of color in user

o .
N

interface design, for example, receives little attention in {Fo_]cyf{?)?l]. As noted by
Geerald Murch in [I.\iurrh1984], it is impossible to develop a complete set of guidelines

for -the effective use of color in all applications. Murch's paper. however. establishes

some broad principles based on the mechanism of human color perception.

In (lesigningv interactive systems the effort should be to make the user-computer
“communication patural to the user. Thi‘s naturalness in diniogue incro_ases user pro-
ductivity. One of the main guiding principles in skillful.dvsigr‘.l’ of user interfaces
Felates to the communication language. The language of the dialogue must be the

language of the user and context of the dialogue must be natural to him. [t is also

.)

-essential for the language to be efficient and complete. An efficient language allows an

effective and concise expression of tdeas whereas a complete language permits expres-

sion of any idea relevant to the dialogue. The userinterface designer must understand
K

completely the user's task to be accomplished if a complete and eflicient language 15 to
) I guag

be achieved.

¥
A}

The other guiding principle in the Aiser interface design is to avoid psychological
o . N \

blocks like borvdox‘%, panic, frustration, confusion and discom}'&'t to the user. Bore-

dom and panic are related to the responses from the system. The user may get bored

when the system takes a long time to respond to simple commands. Panic results

because ‘of unexpected delays wherein the system does not respond over a prolonged

period of time. The remedy, when the real delay cannot be reduced, is to introduce

: Py
trivial system responses providing assurance or acknowledging completion of inter-

mediate steps.

Frustration results from the user’s inability to convey intentions to the system
easily. It is further compounded by inflexible and unforgiving systems by not provid-
ing functions like undo and error recovery. To avoid frustration to the user the system

S0

should provide recovery from incorrect actions, undo.processing, and several ways of

performing a task.

.('onfufsio.n‘ 1s a consequence of the S}'.’i‘t(’m expecting or presenting u-nnocossnry
details. To avoid confusion to the user £he‘system should organize information in a
m‘vthodicnl manner.gnd reduce llnnecesmr)'ﬂdetail. ‘Confusion can also be reduced by
prompting and telligg ihe user the tasks that can be perform(‘d'. The user’s attention
should be directed to specific areas of; interest on the screen by using different colors

and/or blinking thftm.

Discomfort tfo the user may result because of inappropriate screen formats. For

v

example, a badly designed menu may require excessive cursor movement from the user.

A

g

3

The system designers along with minimizing the cursor movement should take care of

“

the left handed users.

.) ‘ . « . . -~
In summary, user interfaces should be designed to minimize the time taken by the

\

" three types of basic human prosses: perception, cognition, and motor activity. The

.

. | ’ . . .
‘perceptual process is the process whereby the user recognizes the information

N

.\') N
A} N presented to him by the system. The cognitive process deals with how information is

acquired, organized, and retrieved. The motor process comes into play when the user,

cal actions.

y

having received, recognized, and decided how to respond, performs a response in physi-

.

2.2. Automatic Generation of User Interfacés

N

© The fact that the basic structure of a user interface daees not change radically

over a wide range of programs and. that functions like error detection. error recovery,

f

and ‘help are common to almost all user interfaces leads to the idea of automatic gen-

eration of user interfaces. The high cost and large turnaround time for hand coded

user interfaces provides additional motivation for the idea.

1]

The automatic generation of the user mte\r?qes has the following advantages:

o
It reduces the cost of producing uker interfaces.

e

[t provides a much shorter leadAime than the hand coding of the interfaces.

<

The low cost and short lead time for the production of the user interfaces makes

it possible to experiment with new ideas in user interface design.

Once the user interface generator i1s debugged completely, the software it gen-

. A
erates 1s more réliable than the hand coded software.

A particular user interface generator may be used to generate a number of user.
interfaces which are consistent in their over all approach to functions such as

error reporting and help.. Familiarity with one such user interface can expedite

the learning of the others. .
&

A UIMS consists of software tools which help to generate, maintain, debug, and

evaluate user interfaces automatically. The objective is to freethe=applications pro-
. . . ? .

grammer from low-level details enabling him/her to concentrate on higher

application-specific aspects of user interfaces.

2.3. Survey
During the past few years many models of UIMSs have been proposed and imple-
mented. In this section a survey of some of the important existing UIMSs is presented.

2.3.1. TIGER

L

The UIMS described by David J. Kasik irll [Kasik1982) is a part of The Interactive
Giraphics Engineering Resource (TIGER) which provides a framework for the (lé\'(ﬁlop-
ment of ongin(:oring application at the Boeing Company. This 5;;stem has its own pro-
gramming i:mgu:xge to define interactive dialogue sequences distinct from the applica-
tion and o run-time module that specifically handles an end user’s physical interac-

tions.

In TIGER's view of an apblication. the user dialogtie is separated from the algo-
rithmic portions of each function. The user begins the execution of a.process. The
process can insure that 1t has necessary and sufficient information for its execution.
An interactive function consists of three phases, namely, the inp'ut‘collection phase,
t-ho function execution p‘hase. and the output modification phase. The out'pu‘t,
modification phase is required if the function determines that the given input results in
n;nxltiple or ambiguous solutions or is in error. User dinlpgue is required only during
input collection and output modification phases. The ultimate interpretation of the

data that results from a function i the responsibility of the user. There are two major

points to be noted about the TIGER UIMS. First] all interaction handling is accom-

//'

) 10

phished through the user interface. Second, the user becomes the controller of the

application. Figure 2.1 shows an overview of TIGER philosophy.

)

Application

Menus \
T o
‘ Interface ‘ Utilities
UsSER Application .
~~__| Graphics : ‘ hysical
P:i(‘k{tg(‘ DBMS -~
: Storagse

Figure 2.1 GER Application Architecture

To facilitate the description of the dialogue sequences and the input interrupt

i
handling the TIGER UIMS provides two components. The first 1s a special purpose

programming linguage called TICCL (TIGER Interactive Command and Coutrol

[Language), which allows an application programmer to define the dialogue sequences.
B ,,’"/. . B . !

I'he second is the run<time interpreter which receives user inputs and passes parame-

ters to the application procedures. A brief description of the TICCL and the run-time

interpreter is presented in the following sections,

2.3.1.1. TICCL Description

This special purpose programming language provides the programmer with a tool
to ¢define and organize interactive dialogue sequences. A preprocessor compiles the
dialogue sequences written in TICCL into a formatted menu file that 1s read by the
run-time interpreter.

TICCL s a block structured language For command organization the language
‘provides a simple hierarchy of constructs. It also provides techniques to svl(‘cti'\'(‘ly
enable input devices for parameter specification. The application can r(‘qluorat the fol-

lowing data types at run-time:

ntity dentification {picking)
- Alphanumerie data
- stmple list of alternatives
- One value (for example, dial out put)
- Two values (for example, tablet position information)

- Three values (for example, sonic pen position information)

2.3.1.2. Run-time Interpreter -

The run-time interpreter portion of the UIMS assumes both input and output
responsibilities f<;r all interactive dialogue. It uses the reésults of the compiled TICCL
fanguage as-input. The interpreter displays the command sequences to the user. The
other graphical and geometrical information like position and style of display are all

contained within the interpreter. All the information 1s presented to the user in the

form of menus.

¢

The run-time interpreter collects all the interrupts and processes them according
to the ronstr:x‘ints\impo.ﬂe(l by the static TICCL structure and dynamic in;m-nx pro-
vided by the application at run-time. luterrupts (h:‘;t.deﬁne input parameters to i
function are queued by the interpreter without application intervention until a specific
command 1s requestgd or a pseudo-command condition. such as, a carriage return is

received. The interpreter passes specific information to the applicationm via parameter

lists that are specifically tailored to a particular input..
The UIMS provides the following additional capabilities: .

- Command Set Display: TICCL allows the programmer to identify functions and

) N

sets of parameters as new levels in the language hivrurchy.}{'l‘hé run=time inter-
! “

preter applies heuristics to examine the parameters and determine how far it can

look ahead on a default path. All information on each levepiis displaved to the

12

nser with the defaults clearly adentified. The user a8 allowed to select any com-
mand below his current level, and the interpreter automatically executes the

proper procedures to skip unselected levels.

Implicd Rejeet Processing: The user is allowed to select o commarnd above the
current level. During the normal interaction processing, thisaimplies that the user

is rejecting any already executed commands and wishes to follow a path that may

or may not be displayed.

- lecursive Command Re-entry: The recursion is invoked by picking a command at
a higher level than the one that the user 1w currently on. If the command is

defined as re-enterable, a recursive call to the chosen function is generated.

- Situation Dependent Commands: Depending upon the specific context the user is

presented with a set of legal commands. This helps in preventing errors.

The main problem with TIGER is that to be able to use the system the program-
mer must learn a new programming\language (TICCL). The system also roquixgs the
o ,

o S £
programmer to enter geometrical information in textual form. The programmd¥ s free-
dom in designing screen formats 1s limited as the form. positioning, and style of

é‘ ! B . ..
displays are all contained within the run-time module. TIGER's strength lies in its
capability to-handle complex interactive dialogue sequences. Its capability to handle

implied reject processing and r(*<l1rﬂive command re-entry adds to its power as a prac-

tical tool.

2.3.2. Uof T UIMS .

This system was developed in 1983 by W Buxton, M. R b, D Sherman, and
o ¢ Smich at the University of Toronto [Buxtonl983]. The UIMS cousists of two
main modules. The first 15 a preprocessor which enables the program desiguer, using
interactive graphies techniques, to design and specify the graphical layout and fune-
tionality of menu-bhased user interfaces, Ttis with this module that the applications
programmer establishes the relationships between user actions and the application

o

spectfic routines.

The second main module 1s the run-time support packagze. This package handles
event and hit detection, procedure invocation, and updating the display according to

_the schema specified using the preprocessor. The code executed by the run-time

module can be antomatically generated from the data specified to the preprocessor.

2.3.2.1. MENULAY and MAKEMENU

The preprocessor which serves as the front end of the UIMS is known as MENU-
LAY The package is designed to enable the user interface designer to specify the
graphical and functional relationships within and among-lho displays making up a
menu-based system. MIENULAY enables the designer to define user interfaces which
are made np of networks of menus. It has two levels of use: novice and expert. In
novice mode. only the basic commands are accessible. Al input is done through one
button on the cursor puck. and instructions are given at various points in the program.
In expert mode, the other three buttons on the puck can be used to perform special
functions, and fewer instructional diagnostics are displayed.

“The specifications made by using MENULAY are converted into the (" program-
ming language and compiled through the use of a companmon program MAKEMENU
The resulting code can be linked with the application-specific routines. The entire

sequence of creating an interactive dialogue i1s shown n Figure 2.2 The programs

11

generated by MAREMENU contaim unresolved external references ("hooks") where the
apphieations designer spvriﬁ‘r'(‘l nammes of application-specific functions. By writing
functions with the required names and referencing the appropriate file names when
MAKEMENU (‘:\Hv(!, the appheations programmer can add any amount of -
application-specific programming to the layout and sequence information specified by

the desizner.

create pi(‘t \res

MENULAY

store in menu
specification file

MARKEMENU
LS
L oo

create (' programs for
table-driven menu system

compile and run

Figure 222 A NSequence for Constructing an Interactive Dialogue .

The U of T UIMS provides facilities for entering geometrical information graphi-

callv and integrating the design specifications with hand-coded application routines.

.

, o)
' N

The structure of the UIMS facilitates the generation of code i different programming
Fanguages, To output code in o different language would nvolve rewritting MAK-
o . < . . , ™~
EMENU and providing run-time support in a compatible format. The UIMS does not

allow the designer to ereate more than one window This restricts the structured

desizu of user interfaces,

2.3.3. SYNGRAPH

The SYNGRAPH (SY. Ntax directed GRAPHies) user anterface generator was
developed as part of the AHI (Automated Human Interfaces) project at Arizona State
University by Dan R. Olsen Jr. and Elizabeth P Dempsey in 1983 [Olsen Jro1983a). 1t
renerates interactive Pascal prqgr:mm\fmm a description-of the tnput fanguage’s gram-
mar. ‘The system concentrates on the use of formal languages for rmplementation
rather than specification, A SYN(}R:\’PH interface s[)t-cificzxfi()ll is decomposed into
conceptual, semantic, syntactic, and lexical levels. The conceptual level guides imple-

J . '
mentation rather than being part of 1t and 1s therefore only indirectly part of such
specification. The interaction semantics of SYNGRAPH are viewed as' a <et of pro-
cedures and data types written in the implementation language. The syntactic level s
described using an extended version of BNE (Backus Naur Form) which includes
tokens, semantic actions, and information about how the user inttl‘rf:\m‘ v orgamzed,
The lexical level binds the logical token names to actual input devices and techniques.

A desceription of lexical, syntactic, and semantic levels appears in the following sec-

tions.

g

10
.2.3'.3.1‘. Le*ical S'p'egiﬁ‘cation’.‘k,»‘ K

Ivn the lexical specification, various input devices and techniques. are bound to log-
ical to}\jen,na‘mbs:z, The token 'na:mes‘are Lb‘eﬁ ‘uséd in the synta;tic speéiﬁcation. The
mapping of:thi,s token set Lo‘a. set of interactyive”yresource‘s is handled in the syntactic
specification. ‘

There are seven pl“i'mifivé\ input_devices supported by SYNGR:\P‘H. Théy are:-
menu itle.ms. the locatqr, \'fz‘il"uatv;r‘s; funétign bAuttons. ‘keys, characters: and picks.
_VA\lenu”items are defined s{mpl.;' .by givix?gn name without any further speciﬁcation‘.’ All
;lich tok_ens are. automatically brga;ﬂniz'ed “into menus as defined by the-syntax
Speéiﬁéation. The diﬁerencé bﬁetween k'é)n’: ‘aﬁd ~chara§t,cr tokens iS'Lh;lL aj key token
refers to a speciﬁc c.ha‘racter:andl returns no \"a.lue, whereas a character token refers to
a,char/;lctér and reLurné the character as its value. The Key Lc;ken’s primary purpbse
1S t;) construct kcvaords and delinigers to control the Jpzirse.. The purpose of a charac-
ter token is to inp’ut_ textual ‘material. E_ach primitive device' has the following

A : 5
) . . Y

predefined 'prépérLies: ¢ L o

- 7 The f\pe of‘zval‘ue it 1"et.urns. ‘.
- \\"hethcr it is an eveni or sampled input.

- The d?splay’%ﬁn‘ction required when it }5 enabled.

- The prompt réquired'whén ?L is a legal input in the current parse state.

- [The acknowledgment required when it has been selected.,

. : oL . : : Yo L
What effect it has on the choice of parse transitions.

S . i .

2.3.3.2. Syntactic Speciﬁcation

y
The syntactic specification specifies the sequence of tokensy constituting valid

input streams. along with the organization and arrangement of thejr prompts and

7

echos. The S}'n} ax of-the’dialoguc is expressed in terms of a modiﬁgé BNF which uses
theAlogical token names defined in the lexical specification as \/v"e"ll as nomn-terminals
declared m the grammar. The grammar used by SYNGRAE@ allows for optional
;;hrases,irepeuting phrases zero or more times (curly braces {}) as ;el] as alternation

(vertical bar |). These extensions beyond BNF allow non-terminals to be used to

organize the dialogue.
. \

~ In complex interactions the logical resources required are much larger in number
th;::’x‘ﬁ’those actually available. Tt is therefore nc;ccssary to decompose the user interface
i"\nto smalle;: sub-dialogues. The resources are then allocated within each sub-dialogue.
The appropriate choice of s‘uch an organization must be application-dependent so that

N A) -

functionally similar_activipies can be ‘gry‘ouped together. This organization is expressed
by designating certain non-terminals as defining new levels of interaction. A level of‘_ 3
interaction extends from the non-term‘inal which is specified as it‘s'h.ead'tbrough all
non-terminalé invoked by it either directly or indirectly which ‘are not . uew levels
themselves. \When a new level of interaction is entered all of the tokens which are.
used within ‘IAha't. level become enabled. ..In the case o.fbmenu 1tems, simulated b"utrons
and simulated \'/d"l:mtoﬂrs.' this means tha} they are allocated screen space and

i

displayed. A level therefore defines a specific configuration of virtual input devices.

Most of the prompting of the user is performed automatically by SYNGRAPH.
This is done by examining the set of input tokens that are acceptable fop a given state.

Feedback is also performed automigtidally when a particular input has been selected.

7

o

In addition to the autematic prompting, it is possible to add additional information to -

the grammar. Help items can be added as special transitions which do not effect the
-

Loy
O

parse. .

R . . " : : . . -

2.3.3.3. Semantic Specification

The SYNGRAPH system is written in Pascal and the interaction semantics are

handled using Pascal statements. Each non-terminal is generated as'a recursive Pascal
-

procedure whose control structure is the syntax tables produced from the inpyt gram-

mar. Each non-terminal can have a parameter string and a header string associated
w}fh it. The parameter striﬁg must be a Pascal parameter spociﬁlcntion and the header
string a set of Pascal declarations. Within the production for the non-terminal. ..
semantic actions are expressed by Pascal statements. When the parse reaches the

state where such an action appears, 1t is executed.

To be able to use SYNGRAPH the designer has to learn a new programming

language. The system also requires the designer to represent geometrical information

in textual form. This approach is similar to the one followed in TIGER. \T\Qo alloca-
N -

tion and organization of ‘menus and virtual devices is-outside of the user’'s control. For

f

- a more natural interaction these should be user controllable. The important features

S

of SYNGRAPH include automatic prompting, Highlighting, and feedback.

2.4. The Seeheim Model of User Interfaces

The Seeheim model of user interfaces [Greenl‘)‘?‘»la] is the one considered in this
I .

thes. In this model a user interface is divided into three components as shown in Fig-

N /

ure 25} The prosvn{talion compo;lent is responsible for !h(l external prt;senration of
. the us(jr interface. This component generates the -ou&put and reads the physical input
, devices. The dialogue con-trol component defines the structure of the dialogue between’
the user and the application progra’m.vThe application i‘n.terf:xce model dcﬁn.'(‘s the

« interface between the user interface and the rest of the program. It is the representa-

tion of the application from the view point of the user interfuce.

19

2.4.1. Presemtatlon Component

I‘bc(prosenmtlon component can be viewed as the lexical level of the user mtor-

~

face. This component is responsible for managing the inpuL and output devices used
by the user interface. All the interaction techniques and display formats are defined in
this component. It reads the physical input devices and converts the raw input data

into the form required by the other components in the user interface. The user inter-
face employs an abstract representation for the input and output data. This represen-

»

" tation consists of a type or name that identifies the kind of data, and the collection of

values that define the data item. This chunk of informAtion is called a token.

Presentation Dialogue Application
USER é 7 - Interface H
COUlPODCnL C‘O[ltrol \10del .

F.igure 2.3 The Seeheim Model of a User I;l&’l‘fl\(‘(‘

The main purpose-of the presentation component is to tr:ms‘layto‘ between the-
external physical representation of the tokens. and their intern:;l abstract representa-
tion. In host, CHS(;S this tra‘nslatio.n‘ 18 3 sixﬁple one-to-one mapping. This mapping
detcrmin(:s how the user's actions are converted into input tokens and how output
toicons are converted into displays. The external-internal mapping can be viewed as a
dictionury,.witb one entry for each of t‘he external and interpal data items. This bmry
indicates how the token is to be translated. The presentation component has no con-
" trol over the contents of the dictionary, it c:'mnot change the external-internal map-
ping.

There are a number of advantages of having a separate presentation component.

Sy "I'the device dependencies are limited to this component, the other components

4

20

of the user interface can be moved to a different device without any modifications.
: . {

This increases the portability of the user interface. The presentation component can
. . L]
be designed to support a range of devices and automatically adapt to the one in use. A

separate presentation component provides a convenient means of adapting the user

interface to individual users.

.

2.4.2. Dialogue Control Component

While the presentation component is responsible for converting ‘ust’r actions to
-m» . .

input tokens. the dialogue control component defines the set of legal input tokens. It
interprets the sequence of input tokens produced by the presentation Eom’ponont to
dotormino the oporations.tbguser wants to perform. Once a complete command has
been l'or.mod from the input tokens the dialogue control component uses the applica-
tion interface model to invoke the appropriate ro‘utines in the application. Similarly
the output tokens sent by t'hc application interface model are interpreted by dialogue.
control and transformed into a format acceptable to the user. This component con-
__t:ﬁns the control logic of the use: interface. Most existing UIMSs. have concentrated
largely on this component (;f the u< -interface.

.
.2.4.3. Application Interface Mc lel

The application interface model 1s a representation of the functionality of the
application. [t represents the user interface’s view of the application. The appl:icati‘on
1.mvrf:1co. model contains tvhe descriptions of the ﬁlhjor data structures maintained by
vtho application, and the application routines that can be invoked by the user interface.

. ;
[t also covers the mode of communication between the user interface and the applica-
‘tion.
The description of an a;)plic:xt-ion's data structure includes the type of informa-

tion stored and its structure. The description of an application routine includes the

21

name of the routine and the number and types ol its parameters. The routine descrip-
tions{might also include pre- and post-conditions. The u:;er interface m:_vA communi-
cate Lwith the application in one of the three possible interaction modes. In the first
interaction modc‘; the user initiated mode, tlic user calls the routines in the applica--
tion. In the second type of intomctiqn.'callod the system initiated mode, the :'xpplki(‘:;i-
tion calls routines in the user interface. [The third inb‘t.cmction mode, mixed initiative,
is based on two communicating processes, one for the user interface and one for the

application. The user interface designer specifies the interaction mode and the UIMS
. (%)

establishes the procedures required to implement it.

2.5. The University of Alberta UIMS

The University of Alberta UIMS [Greenl985] is bage(i on the Seeheim model of
nser interfaces discussed in section 2.4 of this chapter. There are a numberbof reasons
for developing this UIMS. First, we wanted to evaluate the feasibility of the Seeheim
model as the basis for the UIMS. Sinfe this model had not been used as the basis for
any other UIMS, there was no evidence of i.ts usability. Second, we wanted a test bed
for testing new ideas in ulser interface design and implementation. Third, we wanted a

practical tool that could be used in other research projects within our department.

The design and implementation details of the presentation component of the U of
A UIMS are described in this t,h‘esis. For specifying the din‘lo.gue between the user and
computer three main notations are considered. These notations are recursive transition
networks. BNF grammars, and events. The S)'St;m to accept the di‘#)gue specified
using recursive transition networks and convert it into an intermediate code, called
EBIF (Event Based lnte;n:xl Form) is discusg(‘d in [Laul9&3]. Dctnils about the event
language and its implementation can be found in [Chial985]. At the present time the

implementation of the system for grammar based notation has not been started. The

support for the application interface model is under developement.

Chapter 3

The Design

This chapter deseribes the structure of the presentation component of the Univer-

£

sity of Alberta UIMS and explansthe related concepts.

3.1. Design of the Presentation Component

The basic job of the presentation component is to convert user interactions with
the input ;lo\'icos into input tokens, and co‘nvort ouLp;n tokious into images on the out-
-put devices. The basic structure of the presentation component of the University of
Alberta UIMS is presented in Figure 3.1. The input tokens are the tokens which flow
from the user towards the application and output tokens flow from the application
towards the user. The user interactions {called events, as described in chapter 5) flow
from the input- devices to the interaction techniques. An interaction technique mani-
pulates the raw data generated by the interactions to produce more meaningful 1ufor-
mntion.‘ The control module then restructures this information into an input token
and sends this token to the dialogue céntrolv()mponent .-(.>'f'the UIMS. In the case of
output tokens, the control module assigns the output token to a display procedure and

the window where 1ts image 1s ultimately generated.

In the following sections a description of the important concepts related to the

presentation componert of the University of Alberta UIMS is presented.

*

3.2. Input Tokens

T

The input tokens convey iﬁformation about the user‘s'intemctions with the user
interface to the other parts of th.e UIMS. The raw data generated by the user interac-
tions with the input devices i1s manipulated and restructured by the interaction tech-
niques and control module. This new structt)re.‘c:xll(‘d an input token. is sent to the

other parts of the UINS. An input token represents exactly one unit of information as

R

Display
Procedure

Display
Procedure

Display
e .
Device
User Input
I .
© Devices

Interaction
Technique

Figure 3.1 The Structure of the Presentation Component

Interaction
Technique

C'ontrol

O

Module

[

Output
okens

Input
okens

far as the UIMS is concerned. An input token contains the following information.

- Token Number

- Token Value

The token number s the

Jique number assigned to each input token by the

presentation compounent of the UINMS. The interpretation of the token value depends

upon the token number. Often, the token value field points to a structure containing

the following information.

- N coordinate value

- Y coordinate value

- Value

Bryg 7

3.3. Output Tokens

The output tokens are used for generating images. These tokens are generated by
the dialogue control component as well as the application. They are sent to the con-
trol-module of the presentation com.poncnt for further processing. The control module
tnvokes the display pr()(‘(‘(lpr(‘ associated with the output token and makes sure that
the image is generated in the appropriate window. An output token contains the fol-

lowing fields.
- Token number
- Token value
The token number is the unique number assigned to each output token by the

presentation component of the UIMS. Using the token number as the key the control

module finds out the associated display procedure and the window name. The

Cinterpretation of the token value is left to the display procedure. Usually this field

points to a structure defined in the token definition file. \

3.3.1. Token Definition File

This file contains the definitions of the structures the value field of an mput or

output token could point to. The definitions in this file are shared by the presentation

and dialogue control components of the -user interface and the application routines.

This helps in maintaining the consistency between the information pasged and its

interpretation by'th(* presentation component. [t also makes the organization more
structured in the sense that all the structure definitions are located in one file and the
changes are consistently fonvoyed to every component using the file. This file 1s
updated only when there 1s an update in the library of (li:s;)lzty' procedures. The library

of display procedures is explained 1n the following sections.

3.4. Control Module

The (‘;)ntr()l module s responsible for all communication with the other parts of
the user interface. This communication includes sending the tnput tokens to the dialo-
gue control (‘(.)lnp.()ll(‘ll(and receiving the output tokens form t‘h(' other parts of the
user interface.

The other important function of the control module is to perform external-
internal mapping. This mapping determines how the user’s actions are converted into
input tokens and hbw ontput tokens are converted into images. The external-internal
mapping can be viewed as a dictionary used by the control module for interpreting
user actions and output tokens. For input tokens the control module uses the event
number and the window name of the input event to determine .thv input token
number. In the case of output tokens it determines the window where the image will

be generated and the display procedure to be used from the output token number.
.

3.5. Interaction Techniques

Most interaction tasks are carried out or implemented by-a set of interaction

k4
techniques. An interaction technique is defined as a way of using a physical input dev-

ice to enter a certain type of word (command. value. location, etc.). coupled with the

simplest form of feedback from the system to the user [Foley 19811

Fach interaction technique has a specific purpose, such as to specify a command,
designate a position. or celect a displayed object. and each i1s implemented with some
device, such as a tablet. joystick, k(‘}'f)()nr(i, or light pen. Typical techniques include
specifving.a value using a potentiometer, do:ﬂign:xling a displaved object with a point-
ing device, or specifying a position with a tablet. Each interaction task can be imple-
mented by many 1nteraction tochxiiquoh‘.‘ The designers of the system should select

.

interaction techniques that best mateh both the user’s characteristies and the specific

requiirements of the task being performed.

ro

3.5.1. Library of Interaction Techniques

There s a multitude of possible mteraction technigues. Fach interaction tech-
nique is suitable for a particular function. The set of interaction techniques available
to a designer remains \';‘r)' Limited if he/she has to develop one every time it s

,
required. To make the designer’s chotee wider w library of interaction techniques cun
be created, This library can be used by any designer while deciding on which nterac-
tion techniques to use. Every time a new technique is developed it can be added to the
already existing library. This way one can keep building the library and help rednee
the cost and time of producing good user interfaces,

3.8. Display Procedures

»

A display procedure is a procedure that consumes output tokens. In the process
of consuming output tokens the display procedure produees imuges on the graphies
display. | This image represents the data received 10 the output token, 1",:;(‘}1. display
procedure has a specific purpose and is used to generate a specific image. The display
procedures vx[)(“r‘l;inform:xtion to be passed 1o them in a predefined format. The
display procedures also assume the availability 7 the particular type of display device

on which the procedures can generate images. Fxamplea of display procedures are

Angle Display, Vertical Bar Display, and Text Windows.

3.8.1. Library of Display Procedures

The iden of having a library of display procedures is similar to that of the Iibr‘:xry
of interaction technigues. By adding the new display procedures to the Iibrary a large
body of procedures can be built. This library can then be used for fast and economical

production of user interfaces.

Chapter 4 :

A Catalogue of Interactian Techniques

This chapter explains the need for having a catalogue of interaction techniques
and discusses s advantages. The general format for a catalorue entry is vx;;l:\in(-d.
The specification language (}'l'.\'l‘ (Graphical User interface Specification Language) is
used for formally specifying the interaction techniques. A brief introduction to GUSI,
is also presented.

4.1. Introduction

The destgner of an interactive graphics system is faced with a difficult task of
deciding on the int('rn(‘lion‘t(‘chniquos that best match both the user’s characteristics
as well as the system requirements. Quite often when faced. with 341(11 a problem the
designer develops his/her own interaction techniques or tries to adopt one from a small
set of f'i'tmili‘:xr interaction techniques. The designer is normally unaware of the
interaction techniques successfully used by others. In order to ‘mnkc' the designer'#
.chorce wider a library of mnteraction torhni(-;uvs has ‘b(‘vn proposvd in chapter 3. To be
able to decide about which interaction technique to use, the designer must have the
complete desceription of each of the interaction techniques in the library. The catalo-
gue of interaction techniques 1s intended to\be such a source of information. The
catalogue not only provides information about the computational/graphical aspects of
the interaction techniques but also human factors considerations. It can be considered
as an important source of guidance when selecting an interaction technique. Similar

5 | .
idv:xa{%ﬁ%@?{)ut producing a catalogue of interaction technique can also be found in
{Greenl983al, {Foley1981] and [}’ol(\)’.WRI].

To be useful the catalogue should be organized in such 4 way that the entries for
interaction techniques performing similar interaction tasks appear together. The

catalogue ~honld provide a concise functional deseription of each 1nteraction

2R
)

techmque, [t should also include the initializations, data required. output produced,
interietion task performed, and the hardware prerequisites to use the interaction tech-
niques. A precise formal specification of each of the interaction techmagues shouald also

appear in the catalogue entries. Fanally, the catalogue should also deseribe the

erzonomic quality of the interaction techniques.

4.2. The Catalogue of Interaction Techniques

" The eatalogue of interaction techniques consists of a number of entries cach of

which corresponds to one interaction technigque. The general format of 1 eatalogue

entry is shown in Figure 1.1, The first field of the entry 1s the name of the interaction
technique. The name normally consists of seypral words describing the function of the
interaction technmique. The words comprising the name are used in locating interaction
techniques by keyword lookup. This lookup mechanism u\s explained tn the following
sections.,

Name:

Classification:

Initialization Parameters:

‘1/O Parameters:

[/0O Devices

: Deseription:

Y . . .
v Specification:

[rgonomics:

Figure 1.1 General Format of a Catalogue kntry
Foach interaction tf‘(‘hni‘que 15 assigned a unique classification code. 'Ijhis code
appears in the classification field of the catalogue vntnry. The classification code 1s a
multi-level code consisting of a sequence of alphanumeric characters. The catalogue
can be searched for interaction torhniquos belonging to a particular <“|:1w4 The
classification scheme will be explained in detai ‘lI.) the following sections.
The next field of a catalogue entry describes the interaction technique’s parame-

ters. These parameters are used for inihializing the instance of the mteraction tech-

20

nique l)vi/‘g used. Each parameter definttion consists of a parameter nwme and o type.
1

Since these parameters are used for Illl'\lilll[lll}: the mnteraction techmqgue their values
' /

must he supplicd before the tnteraction technigue s used. The output produced by
the interactton technique depends upon these parameters. The internction teehnique

oy itselfl does not change these parameters,

The input/output parameter field of o catalogue entry deseribes the nput
parameters required every time a call to the tnteraction techuique is made, and the
output values produced by the interaction technique. EFach parameter definition con-

i

sists of i parameter name, its type, and whether the parameter i< input or ontput,

The input/output devices field of a catalogue entry deseribes the hardware deviee
requirements of the interaction technique. This field also hists alternate devices that

can be used.

The description field of a catalogue entry contiains an informal deseription of the
interaction technique. This description covers the functionality of the interaction tech-
nique, how it int(‘r:xcyto\‘ with the user, and how it treats its input/ontput parameters
[+ does not describe the implementation details. The description is detailed enongh for

the designer to determine if the interaction will fulfill the requirements.

The specification field consists of a formal specification of the interaction tech-
nique. Sipce the description of the interaction technique contained in the d(‘srrlptlon
field may be brief and fairly vague, a precise statement of how the interaction tech-
nique is implemented and what function it performs s required. This s deseribed
using a formal specification language called GUSL (Graphical User interfuace

Specification Lanenage) . Anntroduction 1o GUSL s presented Tater in this chaprer

The ergonomics field contains the 1nfortation about the human facrtors of the
interaction technigue. This data serves as 1 guide to the designer as to the appropri-

ate se of the interaction' technique. The information contained in this field should

.

30

t

provide measures of cognitive load, perceptual 16ad, and r}iot,or load for the interaction
technique. Unfortunately the absolute measures for these loads for most interaction

techniques ‘are- not available [Foleyl1984]. The ergonomic quality of the interaction

«
N ~

technique if possible, should be compared with the other interaction techniques per-
' ’ prd

forming the same task.

4.3. Classification of Interaction Techniques

The interaction techniques are.classified according to the interaction tasks per-

formed by them. The classification code is a multi-level code where each successive

level in the code provides more specific information about the interaction technique:

Under such a scheme the classification codes for functionally equivalent interaction
techniques can be similar. o

5

“The classification scheme is based on four fundamental types of interaction tasks.

These interaction tasks are: selection, position, quantify, and text input. In a'selection

’

- task: t_h'e user- makes a selection from a set of alternatives. The set might be a group of

commands or a‘collection of displaved objects. In a positioning task. the user positions

att entity at a particular position on the/display. In-a quantify task, the user-specifies a)

value to quantify a measure. [n case ofa text input task, the user enters a text string.

It is important to note that the text string ent~red under this task itself represents the”
, AN .

i
s

information to be stor(‘(il in the computér. This t‘ext st‘rihé s no't‘ ,u.s;ed“for representing
a command, a vnlu‘e. or a position. The text input is.a nmw; inte};action task, not an
intoftncLii:xry step ‘in one of the other interaction tasks. Each of these interaction tasks
~can be ‘i'niplémomed b\ a number of interaction techniques. It may be noticed that the
\inteructimi tasks do not depend on the hardware or logical devices n ~menting hem

whereas the interaction techniques do. The first level of the classification code s the

interaction task performed by the intoracvtioeé technique.

c e

The second level of the classification code provides informatipn about the dimen-

i

" sionality of the interaction technique. For example, the interaction technique perform-

ing- the positioning task 1n 2D has 2 as the value for the second level in its

clas§iﬁca+io‘n. This level contains an NA (Not Applicable) for interaction tasks for

. . a . . '. ‘
which dimensionality is irrelevant.

The third level of the classification code provides informatiod about the type of"

feedback provided by the interaction technique. The feedback may be discrete or con-

o

tinuons. In the case of discrete feedback, the feedback is provided once on completion
. . . . N ,,\ . l - . .

of the task. The feedback is provided all through the duration of the interaction in the

case of continuous feedback. For example, a positioning task could be implemented

with a continuous or a discrete feedback.

i . N
[y AN

. The last level of the classification code identifies the virtual device used for imple-
menting the interaction task. An interaction task can be realized by one or more of

just four distinct virtual devices, the pick, the button, the locator, and the valuator.

For example. a selection task can be.implemented by a pick or a button. We consider

4

virtual devices, rather than the actual hardware devices as part of fhe classification

code for the following two reasons. First, each hardware devices can be treated as a

physical realization of one or several virtual devices [Foley1974]. Second. a changg in
Vo
N
& '

‘hardware devices does not necessarily represent a change in the basic implementation

. k

or the user's. perception of the interaction technique. For example, user’s view of the

interaction technique for menu selection does not change whether a-mouse or a tablet

!

. g R . : . v .
18 US(’d 1n1its lmplem(‘,ntatlon. i . . . v

’

A pick is used to designate user defined objects like a menu item. a windo&w, or o

s ’ ‘
commgnd. The lightpen is the prototype pick and can be conveniently used to point
at displaved objects. A button is used for selecting system defined objects. Proto-

o

types for this device are the programmed function keyboard and the alphanumeric

keyboard. A locator is used to indicate a position and/or orientation in the user's con-
ceptual drawing space. It is typified by the tablet, joystick, and mouse. A valuator is

used to input a single value in the real number space. A model for this device is a

potentiometer.

As an example, the classification code for an interaction technique implementing
a positioning task in 2D and providing continuous feedhack would be

Position.2.Cont.Locator.

'4.4. Introduction to GUSL /

The. specification language GUSL [(ireenl982] is based on the state machine
approach of Parnas [Parnas1972]. In the state machine approach to specification a
program 1s divided into a number of state machines. Each state machine has a local

state and a number of functions that can be used to access or change its state. The

state machines in GUSL are called modules. '

«

A GUSL module has four components. The first component is the declarations of

v

the module’s parameters. The second component contains the variable declarations

for the module. Tlle third compopen't of a module s the definitions component. The

fourth component of a module contains the definitions of its functions. In the first
component the modu](.: parameters are used to define the initial state of the mé(lnle.
This component starts with the kevword PARAMETERS followed by the parameter
declurations. A parameter declaration consists of a parameter name, a colon. and the
tvpe of the parameter. 'I‘h'c tvpe can be any of the primitive GUSIL types or the name
of :snotrlhcr module. The primitive GUSL types are integer, real, string, set. boolean,

point, and extent. The point is used for representing two dimensional points and’

extent is used for representing area in a two dimensional plane. An example parameter
\

o M v

component 1s:

33

‘ PARAMETER
a, b :real;

obj : geo_oby;

¥

The type of the parameter obj is the name of another module called geo_obj. All the

functions defined in the geo_obj module can be applied to this parameter,

The second component contains the variable declarations for the module. [t

starts with the keyword DECLARATIE®NS followed by the individual variable
, B,

declarations. A variable declaration has essentially the same format as s parameter

declaration. The only difference occurs when a module name is used as a type. In the

declarations component values must be supplied for that module's parameters. Each

time a module name 1s used as a type in the declarations component a new instance of

that module is created with its own local state. An example declarations component

is:

DECLARATIONS
start. end : point;

symbol : geo_obj{ "circle” });

)

.

The definitions compone.nt‘co(ntains the definitions of the syntax macros used in
the rﬁ‘odula Synfax macros are used to shorten functions definitions and m:xko them
more readable. This component starts with the keyword DEFINITIONS followed by
the syntax macros declarations. A syntax macro declaration consists of the type o'f the
result. the macro’s name and parameters, and the ('xpr.ossiori that defines the macro.

Some example macro declarations are: . .

; DEFINITIONS
hoolean x_range{(p) IS0 < px <. max_x:

real m IS {end.y - start.y) / (end.x - start.x);

34

® The first macro, x_range. is used to determine if the x component of its parameters is
within a certain range. The second macro returns the slope of the line between the

two points start and end.

The functions fomponent is made up of the function declarations for the module.
This component starts with the keyword FUNCTIONS followed by the individual
function definitions. There are two kinds of functions in GUSL,. namely, the V' func-

tion and O function. Fach kind of function has its own definition format.

The \ functions are usoq.l;oxrt‘prcsont and access the state of the module. The
definition of a V functioﬁ is dividéd into three pr;rts: function header, pre-conditions.
and function body. The f:mction header consists of the keyword VFUN, the name of
the function, its parametgr declarations, and the type of the result. The parameter
declarations have the same format as module p:‘lrnmeter declarations. The pre-
conditions part of the function definition starts with the keyword PRLE followed by a
list of logical expressions. All the expressions in the pre-condition p‘artv must be true
before the function is invoked. The format of .expressions in GUSL is discussed in

’

detail later in this section.

Thgre are twoltypes of V function bodies. In a primitive V function. the function
body gives the initial value of the function. This 'value can be changed by the O func-
tions in the module. Primitive V' functions are used for representing the state -of the
module. 'i‘he function body of a primitive V' function can b’e pref:xr.(‘(-i with the key-
word HIDDEN in w.'hich case the function can o.nly be accessed within the current.
module. The d(*riv.ed \ functions pro\'idé the interface between the internal state of
the module and the other modules in the .\'p(‘(‘iﬁr:xtién. The body of this type of func-
tion consi.\tscof‘thv keyword DERIVED followed by a sequence of expressions. The last

expression in the sequence must equate the function name to a value.

The O functions are used to change the state of the module. They do so by

/s

changing the value of the primitive V functions. The definition of an O function is
divided into three parts; f'{mct,ion header, pre-conditions, and post-conditions. The
function header for an O function is similar to that of a V function, exéept that there
is no result type. The pre-condition part of an O function is same as the correspond-
ing part of a V function. All the expressions iln the pre-conditions part must be true
before the function is invoked. The post condition part of an O function consists of
the kevword POST followed by a sequence of expressions. When the O function is
invoked these expressions are cbnsidored one at a time starting with the first one. For

each expression the internal state of the module is modified to make the expression

true. The O function does not specify how these modifications are made.

The expressions in GUSL are logical statements that evaluate to the values true
or false. These statements consist of the varjables, parameters, functions defined in

the module, boolean operators, functions defined in the other modules. and special

'

forms. If the type of a variable or parameter is the name of another module then any

-

that module's functions can be used in expressions involving that variable. There

\ .

are two formats for this type of function reference:
variable_name.function_name(paramerers)
. . i
operand function_name variable_name
.
In either case function_name is the name of a function defined in the module used as
variable_name’s type. The second format can only be used with functions that have

one argument.

There are three special forms that can be used in GUSL expressions. The LET

special form has the following format:

LET variable_name : type_name | expression:

36

The special forms create a new value of type type_name for the variable

vartable_name. This new value must satisfy the expression in the body of the speciul

1 §
form.

The format for the FORALL special form is:

FORALL variable_name : type_name | p(variable_name)

expressions

In this special form variable_name is a variable local to the special form and of
tvpe_name. In order for this special form to be true all values of the variable satisfy-

ing the predicate p must also satisfy the expressions in the body of the special form.

-

The EXISTS special forin has the following format: ' .

ENISTS variable_pame : type_name | p(variable_name)
expressions

In this special form the variable variable_name js local to the special form and of type

N

<
type_name. This special form has the value true if at least one .of the variable values

that satisfy the predicate p also satisfies. the expressions in the body of the special

q
form.

4.5. An Example Catalogue Entry

The graphical potentiometer is being taken as il example to show the contents of
ca typical catalogue entry. The r:nt:xlqguo entry for this interaction technique 15 shown
in Figure 42, , . ! |
Name:

Graphical Potentiometer
Classification:

Qu:\mif.\z.\':\.I\)iscrm(‘.[pcntor

Initialization Parameters:

Ux, Uy, urx. ury : real
min_value. max_value : real

orientation : integer
I/O Parameters:

x. v o realmnput

vatue : real, output o T

I/O Devices:
Any input device that can be used as a 2D tablet locator cap-be used here.- The

I .
T ¢

hest choices are either a tablet or a mouse.
Description: _ 2

This interaction tochni@tio is used for entering a real numeric value. The poten-

el

tiometer can be set up in horizontal or vertical orientation. If the value of the

parameter "orientation” is one the potentiometer is set up.in horizontal position

-

otherwise in vertical position. The user can interact with the potentiometer by

R

moving the graphical cursor in the area allocated for the potentiometer and gen-
erating an e\'ont.‘ ‘g)n rocﬂving the event the-potentiometer generates a real
. numeric value. The value of the potentiometer s constrained to' be in t'hv range
min_value <= value <= lm:s.x_vuluv. The imtial value of the potentiometer is
min_value.
‘\Sf“pec'lﬁcation:
MODULE g_pot;
PARAMETERS
e, urc : point;
min_value, max_value : real;
orientation : integer;
'
FUNCTIONS
VEUN area -> extent:
INLITIALLY)
area = 7,
END:

¢

VFUN inp(p : point) -> boolean:
DERIVED
LET r : boolean | p in area;
inp = 1.

END:

VEUN ret(p - point }-> real:
DERIVED
‘ LET val s real |
ly"onvnt;ubn = 1 THEN

val = ((mux_v:xlu@min_v:xluo)/(urc’.x-l]c.x))‘ (p.x - le.x):

39

[DIPNSD
val = ((mnx__v:;lue-min;__v.'\lllfo)/(urc._v-llc._v))* (p.y - lley)
ENDIF;
ret = min_value + val;

END:

OFUN init;
POST
IF ortentation =1 THEN
line{lle.x, (e.y+urc.v}/2.
ure.x, (He.y+ure.v)/2);
ELSE
line((llc.x+urc.x)/2, [lc.lv,
(lle.x+urcix)/2, ur.c._v);
ENDIFE;
LET ¢ = extent(llc, ure): :
area = ¢

FND:

END MODULE ¢g_pot:

"Ergonomics:
The experimental results for the measures of cognitive, perceptual. and motor
processes are not available. The interaction technique is very easy to use and can
be mastered b‘_v a user at the operators level after a few trials.

Figure 1.2 A Typical Catalogue Eatry

4.8. Using the Catalogue 4.y

The catalorue consists of onewntry per interaction techmque. The catalozue s
arranged according to the interaction tasks performed by the interaction tv(“hniquur«‘
This has the advantage that the designer while looking for ‘guitlzm(‘v ean find the infor-

mation about stmilar interaction technques together.

The catalogue can provide a very fast :‘m(l effective source of information if stored
on a computer. A set of programs similar to "apropos™ and "man” running on UNINT
can be made to work in association with the catulogue. The catalogne can then be
accessed based on the name of the interaction technique. The designer may also
search the catalogue for entries belonging to o particular elass. In this case the
designer is provided with the names of/'\“l' the interaction techniques belonging to the

specified class. The search can be based on the information stored in the name and

classification field of the catalogue entries.

Fa ke o tra demenrk o ATAT Bell Baborataries

Chapter §
The Implementation .

Thie chapter deseribes the nmplementarion of the presentation combonept of the
Cnversity of Alberea UINS N briel deseriprion of the araphies and dara bree pack-

Ty . .
aves e od o the nmplementation s adso presenred,

5.1, Environment for the Implementation

The presentation component of the University of Afberea UINGS e heen imple-
mented on VAN T TS0 running UNIN 22 BsD o The programs ased for mmplementing

the svstem are wreitten o the procramminy Doaron e ©

5.2, Structure of the Presentation Component

The presentation component of fhe Universiey of Alhertn UINS s responsible for

the flowiner activiries,

- SCreelr udegement

- Information display

- Vesocianing tnteraction technigques with window-

- Vesociating display procediures with out pint Cohens

- Assizning anigine token imbers to tnpat and ourpat tokens
- Converting user interactions o inpnt tokens

- Consertine ontput tokens into tmages

- Lexiead ferdbaek

- Adap e vo different display desiees if possible

Anoanteractive approach to the desion of the presentation component of the user
mterfaces hus been adopted an this thesis, There are two stepsnvolved in the com-

plete desizn The first step s the spectficstion ~step. In this step the user mterfaee

‘ " ’P

destener interactivels x';w'llim the destrn mformation. This information s then need
i the second step for cenerating the presentation component of the nser interface anid
providine ran-time support. To support borh these Tunctions the presentation com-
ponent of the Umversaty of Alherras VINS b divided nto two Tomeadlyindependent
.
paart~ The fiest part, called “ipes™ (interetive presentation component specification),
aceept< the deston specilications from the deaoner and wenerates o data base, tolen
tables, and "C7 procedures. The second part, called "peg” (presentation component
ceneration), consist~ of owonnmber of procedures which provide run-time support and
senerate the preseatation component of the user interfaces. This pareas driven by the
dara buse and the token tables, The o7 pr'n(‘r'llnrew produced by apes e conmpiled e

nked wath the pex procedures The entire sequence of creating o presentation com-

ponent is ~hown i Fizare 501

In nmplementing the nresentation component a zraphies package called WINDLIB
-*

and o duta buse package called DR are extensively used. A brief deseription of

WINDLIE and FDE appears n the following sections,

5.3. Introduction to WINDLIB

WINDLIE GreenlO¥te as o resource bused graphies package. Troas capable of
driving multiple mpot ourpar devices stmutraneonsty cind <dividing the sereen of one
display 1nro several independent :-.re':uAk‘:vall windows, A window detines an abstracet
coordinate space and maintains aoset of arrritbnres sueh s window himes s drawins
colonr, and backoronund colour ete. The window Tlllr;})llf(‘\ detine how and where the
preture i~ displaved. Several windows with o common ancestor can overlap on the
screen. The windows on each deviee have o pricoos orderineg. The first window
created has the Towest prionty and the most reécently ereated window has the highess
priority. The provram can <elect berween overlapping and non-overlapping window s,

lu the case of overlapping windows the window priority 15 used 1o determine which

. Desren

Spectfication:

Crenerate Dat;
“ 1t ’[‘4)1\«'}

ables and o ’ \

Procedures

Comprle and .
[ank ¢
- Procedures .

pcg r(’:\(])‘

Fionre 501 A Sequence for Constrocting a Presenraton Component

window s visible when several windows overlap.

The input ~y<tem o WINDLIB is bhased on events and evenr handlers. Nnevent

can he cenerated by an inpat device or one of the rourines in the protram. Pachevem

consists of an event type, a position {in 2Dy and the name of the window 1t ocenrred
14
>

. e ¥ .
in. The event s sent 1o the window with the hichest priority tha contains the evend
position. When o window recetves an event, its event handler s invoked with rhe

event as oan arcament . Thas ewel window is responsible for handhng (s the nser

actions that oceur within it. =ince each window behaves hike-an mdependenr displas

4
d

. o S

o

and handles all input dirccted at at, 1t is possible to partitiou the presentation com-

ponent into 1 number of independent ogical nnits which can inferact nmongst thems-

selves if required.

In WINDLIB, anything which ean be drawn 1o o window can also be stored in a
contents .\'trucg,‘_nré. “X contenis structure 1s basically a hierarchical model where, in

addition to the primitives provided by WINDLIE, programmer-defined primitives are

N . e

also allowed. The contents structures can be uxed as o part of an out put token to send

information to the presentation component. The contents strycture separates the gen-

w
>

eration of data, which is the responsibility of the application routfnes. from its displayv.-

which is the responsibility of the presentation component. €7

5.4. Introduction to FDB o w0

. P ’

FDB (Frame Data Bake) [GreenlG83b1 is o data base oriented towards scientific
and engineering applications. The database is capable of handling a lurge number of
entity types and representing compléx structuring of information. The database can

J
\

also represent entities with incomplete information.
X . . .

)

L]
“The buasic orzamizattonal nnit in FDB ix called o frame. A frame is made up of a

collection of stots. Fach frame in FDB has three standard slots called ™

owner”, "type”,

‘and "i5a™ The owner slot stores.the owner of the frame. The owner of o frame is the
. \ . x>
user whoocrentedaghe frame +The type slot indicates whether the frame is an ordinary

' !
v

frame or o meta frame. An ordinary frame is used for tde storage of datat A miera

frame 15 used 1o deseribe the structure of other fraumes in the darabase. The meta
. E _ - ,

frames define the default slots and their valnes. The default valnes stored in the slots

in ordinary fraomet can be changed. The value of the "isa” slot in a frame is the associ-

ated metw frame for that frame? that O this sfot s 115.\'(%1 to link ordinary frames to
. . \ i

. |

their meta frames. - ;

o . ™

£
N

Apart from the standard slots a frame also has other slots for storing dara. Fach

slot 1s capable of storing one pigce of duta. A slot has four fields: "nume”. "visibility”,

"type”, and “value™. The name field of a slot contains the name used to reference thu

slot. The visibility f;l(‘]d of a slot can have a value between 0 and 255 A visibility 0
can be seen i)y all users of the database. Fach database user has w visibility level,slors
'\\'ilh‘\'isibility creater than this level canhot be seen by the user. The type ﬁ(‘l(i con-.
rains the type of value stored in ~lot. . In FDB the primitive values are intvgvr}s.

real numbers, strings. and frame. 1 he frame data type is used to store the name of o

frame: The value field contains the actuual value in the case of integers and a pointer

to the actual valuein the case of other data types.
5.5. The Specification Step : : o

The complete specification of the presentation component involves the

i
1

spoci‘fimti‘o.n of t/hv following components.

- Scro(‘rl 1.:1_\'ont

- [nput tokens and interaction technignes associated with WiI:l(l()W'.\‘
- Output tokens and display ﬁrocvrluros .

t

- Menn fayouts

Window

T Laflaiti g

K ; ’ Window

At rbtex

Menu

Teflnition

fuput T ken

' o R ‘
- e b : Lefiticn '

cmtput Toker

[efinition

I revions

Loeve]

Windew | Panent tg odor mw e Llor foundany ar. Tech, Ju Tokens aut Tokens

ey apT "] 1 aone a "

. .

"Figure 5.2 The ipes Sereen Layow

The interactive specification program "ipes”™ 1< nsed to enter the design informa-

tion. The ipes sereen is divided into fonr areas as shown in Figure 520 The work area

.

corresponds to the display screen of the user interface being desizned. The designer

positions windows and menus in this area. Above the work aren s text aren used for

help and error messages. The right side of the sereen is used for the ipes menn. " An
arca across the bottom of the sereen displays some of 1] ihutes of the current win-

. w ’
dow 1n the work area. In the followgnd sections o briefeseription of the funciions

performed by Ipes is presented. R

5.5.1. Window Definition
Ipes starts off by displaving the Tayout shown in Figure 5.2 In the beainning of

the specification session the work aren corresponds to the device window on which the
user interface will be implemented. Al the windows created by the wser interface

desiener are ehildren of thiy window. To start definine windows the designer has to

’

select the "Window Definition” commaund from the ipes menn. A\ window can then be
‘ A

defined by pointing at its two opposing corners. Onee o window 18 defined it ean be

removed, stretched to a different size, or moved to a wew position. An arbitrary

“mimber ol windows can'be defined at a level,

5.5.2. .Window Attributes

The window attributes can be defined by selecting "Window Attributes” com-

\i&:md»fmm the ipes menu. This command assigns and displays default atrributes for
cach window in the work area. The default attcibutes consistof the window name,
window litmits, backzround colour, drawing colour, and boundary colour. The value of

an attribute can be chaneed by pornting at it and entering a new value.

fn this step an interaction technique cun be associated with o window. An
interaction technique can be selected from the Lhibrary of tnteraction techniques or 1t
can be a procedure written b_\'A the user interface designer. Along with \pv-rif}'ing the
internction technigue the designer also specifies the npnt event g(*nvr:uv(nl by the
i eraction h'r‘hni;llun The event numbers are specified in the eall to the procedure

tnplementing the interaction technique. The toput tokens generated by these events

are specified nsing the "Tnput Token Defimtion” command. Tt 1s the responsibility of
the interaction technique 1o generate only those events which are specified inoirs

. . .) . ' . -
parameters. The run-time suppert wodute will sonerate an error message on receiving
. .
* 4
an event which does not appear in any tnput token defimtion.

The name of the ontput token :\,\'\()ci:xto(i with the window is also spectfied in this
step. On recerving lh’i\' token the run-time support modnle creates the window. Tt is
important to note that 1t is the output token name. not the winrl(m: natne, which as
used by 'I}“‘ run-time suppert module. Window name i\'_‘:‘im'd by the desianer for

}li\/lll‘r ow n rv‘fx‘rvnr‘('. A HI(‘IHl.lH"'rU] \\'i“(i()\\' IIIHH\‘\:}IQ‘] WO I'\‘”](‘II]})(‘I' l}‘.\‘ iIll ortant
. / bal \
\

. . »
functions of the window. -

Ipes ix capable of iandling windows of varable sizes In a normal cuse. depending

upon the size of the window, one, five, or ten w'ln(l(‘)w attributes are displaved ar a
time. .In the cuase of one or five attributes, the next set of :u‘rribrirv.\ cun be displayed
by moving the lr:u‘kixlf_f cross inside the window and hitring carriace r«‘111f114 To be
able to define or change ':xt:ri}_mlo; for " very small window ars size can be remporarily

adjnsred. The size of such o window s adjusted for the purposes of display only, |

The svstem also allows the use of overlupping windows. In the case of overlap-

"

ping windows, the atrributes displayved in one window overlap with the =ttributes “%r
the other window. The display for such windows can be flipped by pointing ar the,

desired window . The selected window temporarily becomes the top-most window and
its attributes become visiblé

It s not necessary to complete the li;fi‘ﬁilio'n of all the attributes of o window st o
time. The desizner can postpone the definition of all or some of the window attributes
for 2 later time. The svstem does not force any prv-dmorn.l’i"‘i‘l'v'(l sequence of
\I)<’fifi('Il‘ 1on steps to be followed. ‘ \

The atrribures for oo window can be chanced as often as desiredy The svstem does

14

not differentinte between ehanging o default attribute or desiener-defined attribute,

This facilitates the interactive design of user anterfaces. The easy wechuanism for

“accomodarting changes nthe speetfication also helps in adaptine wser juterfaces to

\
individual users. The interaction technique or eolours associated with o window. for

.

example, can be easily changed to the actual user’s hikines,

5.5.3. Tree of Windows

A tree of windows can be created lb)' '|i<i11_; the "Next Level™ "Previons Level”,
and "Window Definition™ commands from the ppes III(“III_I, By seleeting the "Next
l,v\‘f‘l" command and pointing 4t a window in the 'work arci. children of the window
pointed at can be created. The work area corresponds to the selected \\'i‘ndm\' and

child windows can be created nsing the "Window Definition” command.

The desizuer can examine 'Ih-: contents at various levels of the tree by using the
"Next Level” and "Previeus Level” commands, The svstem ””0“\' the (i('.\i};tllt‘l‘ to
modify the tree of windows as often ax dexired. The branches in the tree can be added
or defeted by using the "Window Definition” command.” The svstem does not regnire
the designer to complete the defimition of the eurrent level before coing to the next
level in the tree of windows. The tree can be defined branch-by-branch, level-by-level
or by a minture of the two approuches. The flexibility in designing the tree allows the
designer to work more methodically and concentrate on one part of the tUser interface

.. <
at o time.

o)

5.5.4. Menu Definition

The "Menu Definition” command is used for defining menus. A menn is always
associated with one of the windows defined in the work area. A menu consists of
menn header and a variable number of menn items, The me ho:bul(“r cont:uns infor-
mation aflecting the appearance and location of the menw. This imnformation consists
of Menu NAme, menu 1y pe, meni iems placement option, menu ortentation, and menu

\

output token. Menu name is entered by the desicner. A meanineful menu name can

be used to remember the purpose or contents of the menu. The system provides Facili-

ties for fixed as well us pop-up menus. The default menu type s "ixed”, 1t can be
(‘L:xh:vd to "pop-np” by typing "p" inside the box displayving the attribute. The pluc-
ing of varions menu 1tems can be :mlo'm:xlic:va)' handled by the svstem atthe run time.
The menn area iy cqually divided and allocated to each menu item inthe wmenu. The
svstem then centers the text and icons. The designer, however, has the oprion of
specifying the locution and size of individunl menu rems in the menu. The (lr'tzzmlt
menu items placement option is "system”, o can be changed ro "designer” by typing
"d" inside the box displaving the option. The defanlt menu orientation is “vertienl”, i
can be chaneed to horizontal by typing "h7™ inside the box displaying the attribure.
Fach menu is assicned an output token. On receiving this output token the run-time
support module displays the menu. The run-time support module recognizes the

menus by the ontput tokens. not by the menn names.

A variable number of menn items can be associated with o menn. Fach menn
item 1s assicned aounique input token name. When a menu ttemn 15 selected the associ-
ated input token iy generated.

Foach menn item occupies o rectangular arew within the megyn ares. A menn item
can be labeled either by anicon or text strings. Aomend may consist of womivtnre of

iconic and textual menn atems. For each menu item the designer speetties irs type:

a1

iconic or textual, In the ease of textual menn items one or more lines of text ean be

assoctated with the 1tem.

In the case of icons the svstem provides o library of qcons. Ao dcon may he
selected from this library, or it can be @ procedurd written by sthe user nterfuce
destener. To associate an icon with awmenu item the name of the procedure drawing

B

the jcon s entered.

The system allows the designer to associate more than on(‘/mvml with & window,
This helps in creating a hierarchy of menus. Tt is import:m%) note that the menus
may be displayed in any order. It is not necessary to display the menns in the order

they are defined. Therefore, though the menu defimtion hierarchy is simple, the menu

N

display hiererachy ean be as complex ax desired.

5.5.5. Input Token Definition;

'

[uput tokens can be associated with a window by selecting the “nput Token
Definition” command from the ipes menu. A variable number of input tokens can be.
associated \\i‘[‘h o window. An input token definition consists of'rok.vn name and che
associated event number. The rnn.—timv support module receives Uie events seneratod
as the result of wser interactions with the user interfuce and generates the correspond-
ot token. Therefore, depending upon the event nnmber more than one iput
1kan can be generated from the same window. The system allows the designer to

©

delete or add any number of tnpnt tokens during o specification session.

5.5.8. Output Token Definition

Ontput tokens can be associated with aowindow by selecting the "Oucput Token
Definition” command frow the ipes menu, For ontput 1okens the desizner ~pecifies the
name of the roken alone with the name of o display procedure. On receiving the ont-
put token the run-rtime support mwodule invokes the associated display procedure.
Based on the information contained in the ontput token, the display procedure pro-
duces the tmage in the window 1 which the onrpar token is specificd. The display
0
procedure can be chosen from the Tibrary of display procedures or 1t cun be o pro-

e i _
cedure written by the nterface destener. The display procedure associnred with an

ontput token ean easily be changed by typing the new display procedure name. This

facilitates the easy customization of user interfaces,

More than oue outpnt token can'be associated with a window. Different ourput
tohens are used 1o produce different images in the same window. The system allows

the designer 1o modify or delete an output token after its definition.

5.5.7. Next and Previous Level Definitions

To be able to define the next level in the tree of windows. the designer can select
"Next Level” command from the ipes menn and point to a window i[; the work aren.
This window now becomes the new parent. - ~ome of the important attributes (>f.l}zi\
window are displaved in the botrom of the sereen and the environment switchies buck

to the one shown in Fronre 5.2,

To 2o to the previous level in the tree of windows the "Previous Level” command
may be used. The system responds with the display of the windows defined at the root

of the current sub-tree,
The Next and Previous Level commands can be nsed to teaverse and modify the
information stored at various nodes o the tree of windows: N complex herarchy of

windows can be ensily ereared and maintained using these commands, The syvstem

v

does ot put any lrmie on the depth of the tree or number of windows at o particular

level of the tree!

5.8, Theipes Editor ‘
I;z;'\. provides fucilities for chanoine, insernine, appending, cod delecine tnforma-
A

ot associated with windows menus, tuput tokens: and onrput tokenss These facili-
tres cancbe used at the same time as the definirion for swindow e oy inpur token, and

outpit I()]\f'n.

' .
Exeeptm the énve of window definmtions, ipes uses cantrol characters 1o recounize

che editing commands. Ipes recognizes Control-d s delete command, Contraol-i as an
v

t~ert comifand, and Control-a as an append command. Tnothe cose of window
A

defuntions, thie editing commands are entered from the extra burtons on the cursor

pruek. Burton PF2 s ueed for resizing o window, button PF3 s used . for undoing the

Fast corner entered, and button PF1 s used for deleting o window. "The editine

. L. - N ! '4 . .
featares supported by ipes are hsted o Figure 530 The user manual deseribing in

derarl how to use apes for spectfying the desion mformation appears 1o Appendix A2,

The use of ipes for specifving the presentation component of an example graphicd

object editor is desertbed in Appendiv AL

by

| ! s(h‘
.

5.7. llelp and E'rror Reporting

Ipes provides ditTerent help messaees depending ou the level of experiance of the:
] I 05 | | !

desteners For aonew or less experienced desizner, the help messiazes produced by 1pes

»

are (;!li!(' detaled, For an (‘\p(‘ri(‘n(‘(‘(l t!«‘\i‘:m'r the }n‘]p eSS ASes (re terse, The Te I
eragion of help messages can be turned on or ofl any time during the exeention of ipes.
The help feature 1s antomatically turned on for the lt"w expericnced user on the mmvo-
Ccatton of 1pes The Messiages appear i the window aeross the top of the display

SCTeeT. v

v
Window Delimitions
Undo the Tast corner entered
Liemove a4 window
Vdd aonew window
[ielize anexistinge window
Chanee the window artribates
ASERTRITS
Chanee rthe menu arreibutes
Delete amenn
Add anew menu
Menn items
Chanoe the menn item attributes
Delete aomenuitem
7{; [nsert o menn irgm before the enrrent item
Append aamenu ttem after the current 1tem
Vdd o menu itern ot the end of theanenu trem Hiet
Input Tokens
Change the input token atirrbites
Delete an i[l{)ln token
Addan npat token
Outpnt Tokens
Chanee the output token aterbutes
Delete an output token
Add an ontput roken .

Fioure 5.3 FEditine Features supported by ipes
Tpes deteers and reports the errors commuitted by the desioner while entering the
¥ '

deston specificntions. The error messages appear i same window as the help messaces

5.8. Novice and f]xpert Users of ipes

[pes has two levels of nser "noviee™ and "expert™ A novice may ase only the hasie
set of commands. Tn this mode all the input i« done through one button on the cnrsor
puck. and «ll throwch the ipes session the designer is gutded by the help messazges,
The help messizes are guite detarled for the lm.\'im'. [n expert mode, the destaner is
allowed to use orber buttons on the puek and the messages p}mlnmwi by the system are
terse. The use of extra buttons on rhe puck sllows the designer 1o delete, Vrmi/.v,’ move,
or temporarily change the size or priority of o window. . An expert neer of 1pes is thns
provided \\"ith A owider st of commands with fewer and terse prompting messigess A
profile for cach nser of ipes {eatdled Tuserprofile ™) ereated wond maantained by the pro-

cram. nigadly tarsnyg cach user a onovice. The aserprofile file stores the ~tarus

.

(ooviee™ ar "expert™) of thie weers the number o tomeecrpes tvoked and che nnmher of
tines the desioner sneesfally fineshed the wpestfieanion o o Voo e el

aporaded 1o expert brewd on the nnmber of cuccessfnl exeentions of the pes

5.9, Output of ipes

The ourpnt prodiieed by apes s used 1o drvve ol sno-time support nedule and
provide tnrerface for che dindozue coutrol compoment and the application interfaee
model o the user interfuee. The nformation prodaced for the ron-time support
module conerts of an FDE data base and O procedures, wihiereas e it erfaen thior-
mation for the diddozue control component and application mierfaee maodel cansisis of

tables of tnpot and ourput tokenss A brief deseription of these files s presented n the

Followine <eetions

5.9.1. Data Base Description
The desicn information for the presentation component is stored an an FDOE dara
For eenerating this data baseapes nses the sehema given in Appendix A1 The

l;.l\("
hasie orcanization of the data present in the data base s ~hown o Fioure 5060 \u
object inﬂthv data base is represented by a froame. A \\inldm\ frame points to the next
window in the same Tevel as well s to its ehild windows ot the next level Indddition,
a owindow frame points to the first menn, first input r’<>l\'vn‘ and first owtput token
frames associated with the window. v window friame also stores thie relevant attri-
butes Tor the window. The firet window frame in the data base is },‘(;immi‘m by wspe-
cral froome.

A menu frame points to the next mien associated wirth the same window and

stores other important atrribates for the mena Iroalso points to the first menitem i

the men.

‘

A menn item frame stores the text or the teon nmme Tabeling the menu rem rhe

focation of the itemn in the menu, and the name of the tnpat token that vots venerared
when the e s selected . B pornts o the et menn arem belowains to the sane

menin.

Aunnput token frame stores the name of the token, event number associated wirh

thie token, and pointer to the next input token resocinted with the saane window.,

Anooutput token frame stores the name of the token, name of the display pro-
codure associnted with the token, and pomter to the next ontput token associated winh

the ~ame window,

5.9.2. 'C" Procedures .l

The O procednres generated by ipes are manly vsed for passing parameters 1o
,

the called interaction techniques. The procedure calls are also used for oading the

i

appropriate routines from the hbrary of tnteraction technigues, fibrary of display pro-

cediures: and hbrary of 1cons. These procediires are compiled and linked with the other

/

routines for run rne support. 4 '

5.9.3. File of Input/Output Tokens

.. Thic file contgins the names of W the input and output tokens along with 4
unmber. These nnmbers are asstgned by ipes to each of the mnput and outpur tokens

For reasons of efficiencey this number is nsed for communication amongst various com-

-~

ponents of the user interface at run time.

gl o
L&

) . "
Wind ow e MWindow b vpge Wb w e Whibw b rane
> Windew Inf ration J > >
b o e |
St s T AT IR
Pire N SRS SO S
e e 4 b]
Firt Yeum UL bSO AU
Pirt apwt T hen U Sa RN
])
-
First - mirpat Token) AL, A L
Mooy Frae Shenu b M S b mne
-~ — S—
Shen
lufomuation
et —t —_—- - AL
it Nene () L a1
s N Frane
N Pem Fraae M)
ca N item
) ’ nfmmativn
Tlext] —4 AELEE N
' [nput Token Fane T 1 Frne
== .
fuput Token
f fuf mation
rlext 1 I R
utput Token Frane T Emne TFHFmnw
- —
. > stput Tohen
Informati o
et AR
. o
. Figure 5.1 Organiration of the Data Base
. [
5.10. Run-Time Suppcrt Module i .

The run-time support for the presentiation component of the user interfice is pro-

7
o - . o e . . T g
. vided by the roatines in "pez” The following function® are supported by peg N ~—

1,

- Yeceive the user's interactions in the form of WINDLIE events. reformiat them

i1 .

into input tokens. and send these tokens for further processing.
Ve W N

- Receive output tokens from the dinlogue control cemponent. dind the appropriate

window and display procedure, and call the display procedure.
AN

- Display menus and highlight the selected menu items. o
’ - ik

The program peg is driven by.the data base created by the specification program

Cipes. I retrieves the information from the datubase und restructures the information
, \

ax Tequired. It also receives some help from the "7 code generated by the ipes. This

code is compiled and linked with'the other run time rontines. Pegis divided into three
- . . 4 .

logical parts. Tlhie first part is responsible for displaying menns and performing the

" > . .
associnted bookkeeping:” The second part handles the user iﬂl(?I‘fl(‘gi()_nﬁ and generates

the input tokens. The third and the last part receives the o}% ut tokens and is respon-

sible for their display. The functions performed by each of these parts are described in

detail in the following sections.

5.10.1. Menu Display S ‘ -
Thisx part of peg is responsible for the functions related to the display of menus
. \ - o

and.the associated bookkeeping. In order to handle all the menu related functions this

v

part performs the following functions.

1

- Allocate space for ench mennuitem,

. . v . : LT . .
- [f the menu item is labeled as*textnal, display the text after céMering it horizon-
tally as well as vertically.
- Af the menu item happens be anvicon, make a cull to the associated procedure and |
pass the appropriate parameters,
- Keep track of the current menu selection and highlight the selected menu item,
- Onegelection of a menu item generate an event so that the approprinte input

"

Y

- 5410.3. Gcnerating Images

token ;Il:l}' bhe j_:(‘!ll‘!‘:ll‘("("l.

For allocating space to the menu itews the program checks for the allocation
option.” If.tlu‘_:gllomlion was done by the designer then it sim;.)ly allocates the spaee
and po,\iti(’)n‘ to each menu item as specified by the designer. Otherwise, peyg divides the
whdle meny aren cqually for each n-wnu iem and alfocates the space in the order-of

i

their appearanee in the list of menu items.

1

-

5.10.2. Generating Input Tokens

Peg receives all the tuput evenrs cenerated as aresult of the user’s interactions

N

-

with the user interface and generates the input tokens. Depending upon the event
number and the window from where thesevents originate the proeram performs o table

look np to determine the input token number. The information is then restructured in

the form of an input token and sent 1o the dialogue control component.

A

Peg receives output tokens from the other parts of the program and gencrates
images corresponding to thv.\‘(; lokon.;‘. To be uable té display an output FO‘.{L‘H pcg finds
the window :1<I<lr(;.<s where the token hould: be -di.\jpl.".‘\‘('(l and the display procedure
respousible for displaying the r"oki‘n. To perform trhow functions it uses a table look

wp mechanism. “After determining the required information a call is made 1o %

-

display procedure with the output token and the window address as the parameters.

The display procedure then generates the huage in the specified window according 1o

-l}bv information present in the output token,

5

' ()

\
5.11. Run-Time Errors

)

The ryn-time support module detects errors such as illeeal eveut 1ype, creating
- . }
an already existing window, and illegal outpur tokens. The crrors detected by the

run-time support module are written into a file called ";irgﬁﬁ'". The system 1gnores

N ®

the action in the cases of errors and continnes vhe support for the user interfuce.

o

N

Chapter 8

Contributions and Directions for Future Rescarch

8.1. Contributions

: Although important works on aser inrerfaces date us far back as the Tate 19607

(Foley 1921 most of the ideas of User Interfuce Muauagement Systems and automutic

'

L B) - N I N -.x‘ B : 0
ceneration of user interfaces are comparatively new (Newmanlo6xl INasik10227

1

Winest 192270 Ruxton 1 9¥3]0 (Jacob1923] TOlen Jr1ox3aj. The mujority of existing
svstems, with the exception of U of T UIMS have concentrated Lurgely on the dinogue
control component with little or no attention devored to the presentation component,

. " - - Lt . . wl -
In his paper "Automatic Generstion of Interactive Systems". Dan Olsen noted that:

\ .
we have relied heavily on concepts derived from work in compilers und
programmineg languages. The reason for this is that any interactive system
is characterized by its command langnage .7 [Olsen Jr1923b], » .

In this thesis attention is focussed on the issues involved, in automatic generation

\ . ’ . . R . .\ﬁ. : .
of presentation component of userinterfaces! The model used asthe basis of thix work

K . V ’ . : . . P .
yrovides a top-dewn straetured approach to user interface design. The desizner con-
A . H . oy ~

& 4] e
B E R . . P . .
m‘m,r'!sh‘n‘ o1 one component of the user interface at a time. The separution of presen-
-5 " ,

4

;
- . + . B : o .
l':né@m compouent from the dialogue control compoinient helps designers work more

methodicallyv. and may therefore result in better nser iaterfuces. The approach also

overcomes one of the.major stnmbling blocks in user interface design. namely. the

represcutation of seometrie information in fextual form. In our design most of the

b

. . . . — N .‘ s . < . Y -
ceometrical information is entered #raphicallv. The system provides n window bused

environment which helps designers structure the user interfaces in o more natural way.

The system also provides facilities for creating and mamtaining o hierarchy of win-
dows and menns. The interactive design of user interfaces is supported by allowing

the desiener to move to-the next level in the hicrarchy withour completing the

defimtion of all aspects of the user interface at the current level The system provides

‘

more freedom to the designers by, not fmposing any predetermined <equence of com-
v

mands for ereating nser interfaces.
.

The second contribution of this thesis is the ihusgfation thae all deviee dependen-

: \
cies can be limited to the presentation component of the user interfuce. H{t’t]w user

\

interface is moved to o different deviee only the presentation component needs to be

chanwed. This increases the portability of the user interfaces. Also. as shown in the

' -

implementarion. the prefentation component can be designed to support o rante of
devices and antomatically adapt to the one in use without changing the siruciure of

. 4
the dinlowne. -

The third contribntion of this rhesis is to lustrate that user interfaces can easily,

)
.

be adapted to individunal nsers. Sereen layout, forexample, can be casily vailored for
left. handed nsers. The selection of interaction techniques and display formats can also
be casily changed to the actual user’s hiking.
. v

It s also observed thit the existence of i separate -presentiation component
cncouraees the use of o standard library of interaction techniques. - This speeds up the
process of senerating nser interfaces to a great extent and reduces the cost of pro-
cramming considerably. This reduction in cost and time encourages experimentatyon

with user interfices and hence dnereases user satisfaction.

0

The catalozue of interaction techniques deseribes the contents of the library of

CogRteraction technignes. The catalogue helps the designer of graphies systems i selecr-

SR
. a

ing interaction technigaes that best match both the upplicatioy requirements and the

nser characteristies. A clissification of interaction technigues based on the interaction
task performed, their dimensionality, the type of feedback produced. and che virtnal

deviee used for implementing the technigue has been proposed.

8.2. Directions for Improvements and Future Research

The tnput and output facilities provided in the presentation component can be
(‘Xl(‘[l;](‘(l to inelnde \:()!H](l.» touch. and movement. Another extension could be 1o
nutomatically adjust the size of the \\'in(im\'x.dnpvln(lin}; npon the :nnm‘m! of mforma-
tion to be displayed. More facilities can be added to the system 1o provide w betrer
overview of the <vstem being desizned. The system could be extended 1o display the
complete herarchy Qf windows and allow the desiguer to jump more than one level at
a time in the hierarchy.

A different direction for research could be m‘m:xk(' the .[.)rv.wnl:xlion cormpoient
adaptive. Our system is capable of ('ollccling“(l:\l:\ about various menu sclections :1n<.l
the movement of graphical cursor on the sereen. Depending npon the st:ni\'ic; cen-
erated from .l his data the system could adupt itself for a better performance or produce
the results and let the designer decide abont the action. ,\'omvf work in this direction

4
has been done by Fdmonds [Fdmonds19%1].

References

Blesserl s,
T. Blesser and 1. D, Foley, " Towards Speetfving and Evaluating the Haman
[actors of User-Computer Interfaces™, Confoon Human Factors in Computer

Syatema, Mar. 10R2,

Boechm1 076,

v

BoW. Boehm, J. B Prown and M Lipow, " Quantinative Evaloation of Software
Quality ™, Proe JTEERE-ACM 2nd Int- - tional Conference gn Software
Ingineering, 1976,

Buaxtonlox3.

.

W, Buxton, M. B Lamb, D, Sherman anag Smith, " Towards a

’

N

Comprehensive User Interfuce Management System”™. Computer Graphics 17,3

(July 1939, pp B35-12.

Cheriton 1976,

’

DI Cheriton, ™ Man-Machioe lntv(‘f:xco Desian for Time-Sharing Systems”,

Proc. of A M Annual Conf.. 1976, pp B62-286.

Chinloss,

L]

M. S Chin, ™ An Event Based Dialogue Specification for Autonatic Generation of- £

[ser Interfiees” NoscsThess, -I)npt.‘o'f Computing Science, Univ. of ;\H')vrl:v..
Edmonton, Mberta, Canads, 1025

If(inmn(l.\‘lf)\l.
oA Edmonds, ™ Adaptive Man-Computer Interfaces”, in Computing Skills and

the User Interfaces, Academic Press, London. TUXT. pp 354- 126,

Fdmondstoxe,
oy Bdmonds, ™ The Man-Computer Tnterface: A Note on Concepts iond

Desten”. Int. . Man-Machine Studica 16, (19%2), pp 231-236.

N e . :
GireenlO=3a. , .

Feldmanlo=?,

ML Feldman and o Il(\;;('r;. Fownrds the Desigu and Developement of Styvle

Independent Interactiye ®wetemns™, Proc. (st Annal Conf on Human Factors in

A}
Compuler Systems, (Gaithersburyg Maryland, Mar, 1932 pp 1H-116,

Foley 1971,

oD, Foley and VoL Wallaee, " The Art of Natural Graphic Man-Machine

-
Conversation”. Proc. TEEE. Apr. 1974 pp 126-17 1

FoleyTOx].
SLoD Foley, VoL Wadlace and P Chan, ™ The Human Factors of Interaction
Technigaes” 13T Report 21-03, Dept. of Electrieal Fugineering and Computer

Setence, The Georme Wishineton University, \\':mhin‘:@‘ O Mar, 1951,

Foley1axt.

J0 D Foley, VoL Wallace and PoChan, ™ The Human Factors osComputer

Graphies Interaction Techniques™, JTEEE-Computer Graphies and Applications §,
L (Nov. 1Ox1), pp 13-4%.

Cireenl s,

N Gireen, T 4 Spectfication Language and Design Notation for Graphical User

SRS

Interfaces”, Tech. Rep. 81-C°5-09, Unit for Computer Science. MeMaster

University, Hamilron, Ontario, Canada, June 1652,

M. Green, "N Cutalocue of Graphical Tnteraction Techniques™, Computer
/ et
_/ &

£ ‘ , ' .
Crraphdds, Jan. 1GR3 pp 16-52, ’

v

CireenlO<5b.

Mo Green, M Barnell, H. \'vrnj:x.k and M. Vernjak, " Fxperience with a (lf:lphi(‘:xl

257270,

Data Base System”™, Proec. Giraphics Interface 85, 1983, po

£54

CireenTOX fa,
ML Green, " Design Notations and User Interfuce Mangement syvstems”, 'roe,
Sechein workshop on User Interface Managrment Systems, 10301,
CircenlOx b,
ML Green, " The Design of Graphicad User Interfaces™, PhD Thesis, Uiy, of
Toronto. Toronto. Canada, 1051,
GireenlOXte,
M. Gireen and N %fi(ly;(‘ﬂl:xﬂ. CWINDLIE Programmer’s Manual”, Dept. of
Computing Science, Univ, of Alberta, Edmonton, AMlberta, Canndie, 191,
CireenlOsh,
ML Green, " The University of Alberra User Interfuce Management System”, Proc.
Stggrapl N5 1055 pp 200-213.
Cinest 1932,
H«-plwné‘. Guest, " The Use of software Tools for Dialogue Design™ /nt. Journal
Cof Man-Machine .\'{u'/i.c'.s 16, (1(?‘\"‘.:,).. pp 263-185.
“JacoblOsn, ’
R.J K. Jacob, " Execntable Specifications for a Human-Computer lnlvrf:‘_x(‘v",
| Proc. CHI'SE Dec. 1993, pp“.’%-f% i -
Kasik o8,

>

DoJo Kastk, " A User Interface Management Avstem”™, Computer Graphies 16,3
A

(July TOX2). pp G9-108.

KrammerlHa0).
G Krammer, " On Computer Problem-Solving Interaction™. in Methodology of
[nteraction, Amesterdam, North-Holland, 1920, pp 272-292.

Lanto=h,

SO Lau, " The Use of Reedrsive Transition Networks for Dialogue in ser

By

Inter fuces” Mo Thesis, Dept. of Computinme ~civnee. Univ. of AMberta,

Fdmonton, Cannda, 13 {expected).

[V
Murchlust,

oMU Nureh, " Phvsiologicnd Principles for thie Fifective Use of Color™. 101]-
Computer Graphies and Applications {11 (Nov, 1O 1), pp 10-53.
Newmanl 063,
WML Newmnn, " A System for Interactive Craphical Prosramming”. Proe
Spring Joint P'umpu!('r Conf. l‘.“iH: pp te-ot
Olsen Jr 1020,
Pan B Olsen Jroand Elizabeth PUDempsey, " SYNGRAPH: A Graphicad User
Interfuce Generator™ Computer Graphics 17,5 [July 1982), pp 13-70.
Olsen Jr 1Oxsh,
Dan B Olsen Jro ™ Automatic Generation of Interactive Systems", Compnter

(iraphics. Jan, 1933, pp 53-5

Parna-1072.
DL Purnas. ™ A Technique for Software Module Specification with Examples™,
Comm, ACM 155 {1072). .

Ronch10%2,
J. Roach. R Hartson, I3 Ehrich, T, Yunten :m.(l o Johnson, " DMS: A
Comprehensive System for Managing }lu’m:m—"'omplnvr Dialogue™ Proe. 13t

Annual Confoon Human Factors in Computer Systems. (aithersburg Maryland,

Mar, 10X2, pp 102-105.

- Seattle 195 : : .

Seattle ™ Proc. of Graphics Input Interaction Technique Worksop, June 2-

n

q'u. . 2 Yy
Sattellesseattle™ Computer Graphics Jan. 1023

Appendix Al

Database Schema

FRRAME head
first _window = -1;
ND

FEAME wind_Jist META
fheader = 1
name
miny = 0.0;
[N =
miny = 0.0);
Ny
e Uy
NG Ty
he_color = 0

!

I

dr_color = 1;
bnd_color = 1;
intt_tech:
intt_call;
\\'in(l()\\'Jokvn:
parent _frame = -1:
first_cehitd = -1;
first_menu=-1

first _Jn_tok = -1;
fir<t_ont_tok = -1:
next= -1; _ PR

ND

FRAME input _token MEF A
fheader = 2:
inname;
inl}‘p}".
innext = -1

END L

FEAME output _token META -
fheader = 3 '
outname: .
ontproc: f
ontwindptr: .
outnext = -1;

END

FIRAME menn_header META
fheader = 4;
menu_nime;
menu_type:
ortentation;

llll'llllm(()kz'lll
1‘()()!‘(!___l']lt)i(‘«';

fat gneun Jtem = -1;
nest gnepu = o=l
FND

FREAME menagtem META
”I(‘:llit‘r == --»;

Ai_tok Jime;
“tn_tok_no:

Hem_t ype

bostin: boxlly:

hoxury: bovury:

lina;

linh;

line;

o

fconname;

next Jtem = -1-
ND

H

£

ax

Apptvndix A2

User Manual

’
There are two steps volved o che complete desians of rhe pr‘@“’

v

component of woneer nterface The first stepis the *\[m-ll':v:uin!f\'«(':,n

w

rew

useranterface destoner tnteractively spectfies the desianinform: Hmn Thix]lifi‘*fr"‘tn:{'f i«)iJ
b l“P “ . N

K ' Cow

s then need i the second step for generating the prosent: nmn (mmponn m (’?M(ho"n\r,

. - . . y o r;‘* . s B
tterface and providing run-thne support. To™ support lmlhgrhvw;fgnvhmm 1}1.; e
vided angoriwo e

'

presentation componentr of the Universioy

-

Sl % R <

: s ‘
lowically udependent partss The firse part, ealled Mipes llmyr Yo prose n xllﬂll
con? U .' RO Yo -
component specification]. accepts the desion specifications fpﬁ) L UAE vw'mr and

it o .
: i l Lf,‘& i
- vl e
venerates an FDB dara base, token tables, aud 07 procedires lﬁnf-’j\ -d’oml pi \rl lHul
) . Coume Y
' ’ 1 et A ‘4*‘

K’

"pee” (presentation component generation), consists of numbl X
provide the ruu-time suppart for the presentation compon

This parr s driven by the data base and che token 1l

LR

. . . . =
produced by apes are comptled and linked with peg procedursy

.

creating aopresentation component is~hown in Froure A2 -7

1.- The Specificdtion Sté‘ .

) TR N Wﬁ%» ! et 3
. . L . . *
Phe complete specification of the prmz nf: 11‘1<$n" (‘(HHvb()IIP{V

S

N ",, "‘
specification of the following components. - : .
- ~creen lavour ' RT3
N
. N . ‘b
- Tnput tokens and interaction techmques to be assoctated with windows
. Wi
- Ontpint tokens and display procedures B
. . Cnd
- Menn Tavouts . ‘ N
. + -

o

The interactive spectfication program “ipes” 1 used to o enter the design s

information. The ipes sereen s divided into four areas as shown in Fignre A2 20 The

i

-

A,

Desren

Sgerificgtion:

.

T

Crenerate Dat:
Pase, Token
) Tables and "o

Procednres

Compile and
“lank O ~
Procedures

pex ready

Froure A2 T\ Sequence for Construeting o Presentation Component

W, .
S . A . . . oy
Fwork area corresponds to the display sereen of the uter interface being desioned. Th

(S

desiener postrions windows and menws in this area. Above the work area s 4 text aren

n~ed for help and crror m#ssawess The richt side of the sereen s used for the ines
o - . 9 .

» . _ _
menn. An area across the hottdm of the sereen displayvs some of the artribntes of the
current window in the work area: In the following sections a brief description of the

funcrions pt'rformvﬁ)y tpes s presented.

. f
)

-1
v

“Window

e Anitien

Window »

Attrihutes

Neou

c
JEDAnition

taput Tohen

[efinition

cCatput Toke

Do fAnitien

- et

{ovel

Frevious

du el

(DAY

Hulp

O “Andow

Jupd _ dupt

f’g “olor

R}

mawolor

Boundary

wone

at. Teh. -

u Tokens wat Toukens

2. Running ipcs.

-

Ipes stores the design information entered by the «

" Lhis database should beinitialized before starting s specification session. The schemn,

.
v

(

N

S A
Figlire A2,

*)

-

-

v

The ipes Screen Favout

e

/ for the database iso deffned 1o the file c:xl‘.%d "theschema™ in singh/new/code

.
lesigner in an- DB database.

5%

§2

directory. The following command may be used to inttialize the database:
. .

schema <dbname> theschema

Fhe "dbname™ is the name of the database where the desici information is stored.
This name should be entered when ipes prompts for the name of the database. The

following command should be used to invoke the program: -

ipes

3. Window Definition ' ‘
The "Window Definition” command 1s used for ereating windows in the svork area.

This commund can also be uséd for deleting or regizaing existing windows. To eréate
) 3 N v

window the user is expected to point at the two,qpposing corners of the window. This

. : o S A o
can be done by moving the graphical curser fo, the desired positions and hittine PEFL
’ . .V ,r‘"‘v Cy ‘ * ' . . . '
A window can be deleted by moving the gPaphical cursor inside the window and hirting
. H N - - . N " ‘ .

PF1. To resize an existine window move the graphical cursor inside the window elose

“to the lower left or upper right corner and Lt I’i’@'vl‘ho input fow chiynges to sample

mode nnd the selected corner can be drageed to the desired position.. The corner cun
! .

be fixed by hitting PF1. \While creating windows if one of the corners (the first corner,
‘ ho T _ .

for any window) is to be undone, hit PF2.

,

4. Window Attributes -

4
-

The "Window Attribute” command s dised for assigning attnibutes to the
. : ~ S .

{

windows. This commuand assigns some defanlt attribures to each of the windows., The

S 2
default atrnibuatgs for .'n(.“'g‘i‘nd()w are-wind »w name. window hmits, background colour.

drawing colour.. and boundary colour. An atrribute can be chunged by moving the

~

eraphical cursof on top of the box displaying the attribute and typing the new value.

#

PR

Te associate an interaction techunique with a window the designer is required to type
.,‘) " g
the name of the interaction techuique adong with its parameters. The call 1o the

- !

- i .)
interaction technique should be typed exactly as it would be typed in a """ program.

There should not" be any 7 at the end of the call Tn thiscall the nume of the window

e

<hould be "wind”, irrespective of the name 0@?’?‘ window to which the interaction
o ¥ . '

. J g.‘," ' ' v . t . \ .
technique is associared. All the events generated by the interaction technique shonld
be sent to window named "term”. Any event type less than 512 cun Be generared by

) ° - . Cim K
the interaciion technigie. For example, to associate a graphical potentiometer (g_pot)
' 1
to a window called "w11” the call should be ty gl ns follows:
. N . * "‘7“7‘-'" .

g_pot{ wind, other_parameters, tegm, 1)

Al

it

In a normal case. depending upon the size of the window. one. five, or ten

attributes ase displaved at a time. In the case of five or one attributes, the next set of
attributes can be displaved by moving the graphical cursor inside the window and
¢ 4
. O . hd . . .’l . . .
hitting carriage return. 1T the size of o window is smuller. the system cannot display
any attributes unless it s changed. To temporanty adjust the size of such a window

&

the designer s required to move the graphical eursor inside the window and hit PF2.

.

» . R o LA
In the caxe of overlupping windows, rhe attribntes of one the windows may oyerlap
- . o . . N

2

with another window. To flip the windows tn such w case move the graphical cursor

5
2

inside the windowsto be displayed and hit PI'30 The selected window temporarity
) . Pl
becomes the top most window. The screen ¢an he redrawn in 1t~ orizinal form by

hitting PFtany where in the work area,

1

3

5. Menu Definition

-

This command is used for defining menus and associating them with windows. To

r N .
e associate a1 menu with 1 window select the window after the <election of the "Menn
-

w

r " " . c
Definition™ command. A window can be selected by moving the graphical cursor tnside

Tl - : N

.

PN

the window boundary and hitting P71

~———

A meénu definition consists of two parts; mienu header definition, and menu item
N . » . . ., . :

defimtion. The menu header information consists of information refevant to the whole

menn. It affeets the appearance and location of the menu. This part of the menn

definition consists of menu name, mwenu type, menu items placeinent option, ménu
, . s) - . ’

ortentation, and name of the ontput 1oken adsociated with menn. Some of the menn

header attributes are assigned default values, The defanlt value for the menn type is
: . o X i

"fixed” 1t can be.changed to "pop-up” by typing "p”inside the box. The default menu

items plucement option is "system”, it can be ¢hanged to "desizher” by typing "d”
oy .

S L3I

O

: : JrrToa— : . .
L. . ,re : o . Tt i N " . 0w,
in~ide the box. The default menn gi,rucr.xl;n'wm s "vertical™ 1t can be chanzed 1o
o v .
rorizontal™ by tyvping "h” inside the,.box. te menu name and output token name
! tal™ by typing Tt ! tl%[I'ho L output tol

are eutered by the designer. These names should be unique. After the mena header
. N . @ B T

e . . N - . - # “,\‘ 0 A . . ’ . .
definition is complete, the menu items dvﬁnltmuéggm be started by hitting o carringe -

@

return inside the window..

The menu item definition consists of the input token name and its type. The type

of w mem item can be textutl or iconie. The defanlt type s "textuul”s it ean be

. . . [. . N v ! ‘ v
changed 1o iconic by typing "i" inside the box for the item type. If the menu refiy,

placement option in the menu header is "desi®ier”™. then the lower left and upper rislg
cornen codrdinates for the aren allocated to the menu itém are entered by the designer.
v - . . ’ . .
[n the case of textual type menu items the designer can enter up to three lines of text.
Foach of these fines can be wmaximum of 80 characters long. [n the case of un iconic
menuw ttem the desizner 1s required to enter the nawte of the procedure drawing the
S k)

icon. No parameters for the procedures are required. The Text or ivou names are
entered after entering the input token name, menu item type. the coordinates of the
box. and hitting the carriage return. The next item in the menn can be defined by

e o : .
hitting the carriage return. The process can be repeated to assign more than one item

.

to 4 ment, '

T

N\ menu item may be deleted by hitting Control-d when the item is visible. This

&

will delete the displayed item from the list and display the next item. If the deleted
B L . ST .
ittem Mappened (o be the last item, the next item is empty To insert & menu item

. iy
-~ beforé the enrrent item enter o Control-ic The system will display an cmpty&tens
‘ ' ot : e
The designer can deline its contents. To add amenu item after the current item enter

Control-w. This will display an empty menu item whose contents ean be defined by

the (]L‘.\i:norv. . i
H .\~ !
“More than one menu canbe associated with o window by typing Control-a when
- v ‘
sthe menn hewder s visible. {'he-process of defining the contents of the menu remuins
the ¥ame as_described earlier. To delete a amenu cuter Control-d when the menu
header is, displayved. . : \ ‘ ; d

Il

8. Input Token Definition

i

Any number of input tokens can be associated with a window by selecting the
“Input Token Definition” command. The window can be selected by hitting P anside
the boundary of the window. An input token definition consists of an exyent type &

it token name. The event type is the type of event which trigzers the token. 1 hggo
} A A X 55 | f;f&

\

! \
roken names must be untque. To define the next input token hit the earriage return

]

after the definirion of one of the tokens is complete,
Aninput roken can be deleted by hitting Control-d when the token is displayed.

v ’ f

7. Output Token Definition

)

SAny number of output x(ﬂl\om’ cin }< associated with o window by selectinng the
TOntput Token Definition” command. The window cun be selecred by hitting D)
inside r_l:_v lm}m(l:xr_\' of the window. An output teken definition consists of output
token nume and the associated display procedure [lmmv. The ().lllpill(token names are
eight churacters long and mnént‘ be nnigues A (li'spl.'l)' procedure can be associated with

14

N

an output token by typing its name. No parameters for the procedur® are required.

. : . . e D
Fo define the next output tokem hit the carriage return after the definition of ane of

the tokens s (‘()H][)l(‘lt‘. \,‘
An output token can be deleted by hitting Control-d when the token is displaved.

8. Next Level Definition
A tree of windows can beereated by using rhe "Next Level”™ and "Window
Definition™/"Window Attributes” commands from the ipes menn. By selecting tht"

“Next Level” command and pointing -at a window in the work area children of the ,
v .

. . 1t 4 :
window pointed at can be created. The work area then corresponds to the selected

EY

window and child windows can be created.

9. Previous Level

e

. . ‘\.‘) :
To go to ! he previous levelin &WF f‘(f\g‘u?()r \yi‘ﬁ, Previous l;_(‘\'vl"ﬁcmnn.l and

-

j) AN 5 L Y";&;\'E’

f . . : . Looay
may be used. The system responds windows and- their

attribates defined in the previous level. T oL !
. . : i L
¢ ‘: 3
. : : . “w
» ' . - & .
10. Ilelp and Error Reporting - : o R P
.) B . . M . H
') : . o . .

Ipes provides ditferent help messages depending on the level of experience of the

desigrier. For a new or less experienced desiener. the help messages preduced by ipese
ol . L . .. i . PR .
are quite detailed. For an experienced designer the help méssages are terse. ™1 I

-
)

generation of help messages can be turned on or ofl atiy time during the execution of
ipes. The help feature is antomatically turned on for the less experienced nser on the
. L] . | .
,‘:« - //

Tnvecation of ipes. The messages appear in the window across the top of the display

sereen. . : o ’ . : Lo @

Ipes dggects and reports the errors committed by the designer whileentering the
design specifications. The error messages appear in the same window jas the help:
Messuges.) s

¥

' ') ?,.,,L.‘ . ‘;%
v DN

11. Novice and Expert Users of Ipcs

[pes has two Tevels of use: "novice™ and "expert”™. \ novice may use only the bhasic
. .
set of commands.. In this mode all the mput s done through one button onthe cursor

a

puck. and all thirough the ipes session the designer s guided by the help messazes,

The help messages are quite detaifed for the novice. I expert mode, the designer is -

'

allowed to use other buttons on the puck and the messages produced by the system are
terse. An expert user of ipesis thus provided with a wider set of commands with fewer

. . 'i. ’ " v 1 .
and terse prompting messages. A profile for cach user of ihes {called "userprofile”) is

created and maintained by the program. Ainitally tagging each user & noviee. The

userprofile stores thy status {"noviee” or "expert”) of the designer. the number of times
. . o b - .

ipes hus been tnvoked, and the ngdgber of times the-designer sucessfully finished the

L)

J - . * ' . N .
specificarionssessions, . A novice ggts upgraded to an expert based on the number 8
.)) 7 . . . LW !

successful execitians of ipes.

12. Ot&tpu__t.oprcs"}_ L :

Ihe output produced by ipes is used for-driving/the ruiztime support ‘module and

.

B . Gy -

provides the interfuce to the dialogue eontrol component and application interfuce

o
%

model. The information produced Tor the ran=time support module” consists of an FI3B

4
-

data base and ¢ proceduresawhereas the nformatipn for the dialogne. control

%

ccomponent and application interface thodel spstx of tables of input and output

+

tokens. The complete <equence of creating a presentation omponent and the flow of
. N . s

datd s shown in Frgure A2.3.

12.1. 'C" Procedures . ' <

»

ps

e e) 7 . . T "f:" ,)
Ihie "7 procedures generated by ipes are mainly used for passing the pardmeters

Pl
' C

- Lo o LI . » pre .. e : ’ . .
to the eatled interaction techniques andydisplay procedures. The 07 code also helps in
o> . i .

lornding the appropriaté procedures from the Library of Niteraction techniques, hbrary
. , . V

.
aneh new Jhep
angh new global
\ : ‘
|
|

tntak h
—— S

dnalonew cade

\

|

\

outak h
[

tnteraction

angh new code

fsplavirs.
A

datatase
\\ N

i defs

e {hothe s hema

ot fef

| ‘o

make

'
6){:
!

“Figure A2.3 Ipes and its Output
(" M

display procedures, and library of icons. These procedures are compiled and linked
with the other routines for the run time support.

12\2 Filé of Input/Output Tokens

&;
numbers.

~This file contains the names of all the tnput and ontput tokens slong with token

[hese numbers are assigned by the ipes to

each of the input and output
i \ a K
tokens. For reasons of efficiency this number is used for communication amongst’
varions components of the user interface.. v
13. Run-Time Support Module " ; '
Tim, *
a . A . IR ‘
The run-time support for the presentation component of the UINS 15 provided by
the rontines in "peg™
T

The routines to provide the run-tim® support are located

.

=0

singh/new /disp directory. I'ng, is driven by the data base and the token tables
created by the specification program ipes® The dutabase files should be copied from
sinch/new feode to \'in~_:h/nms-/diwp.l Peg retrieves the information from the
Jdatabase and restructures the information as required. [0 also gers some help from the
7 code wenerated by the ipes. This code s rompilvtl» and linked with the other run
‘ : ° N
time routines. Pegis divided into three logieal parts. The first puast s r<‘>p()nsil'&§5%>r 3
; ‘ ! @ w
displaying menus and performing the associated bookkeeping, The second part
handles the nser interactions and generates the input tokens. The third and the last

/

part receives the output tokens and 1s responsible for their (ii\pl:\),',.

14. Files to be-Compiled and Loaded

2
#
The tiles interaction.e and displayproc.c have 1o be C<3111;>i1?61 and linked with the
run-time support module. The files are created in o sinehy/new /disp directory. To do
: . &

' . . ’ ‘ . .]?>
<o run "make” focared in singh/new /disp directory.

15. Files to be Included ' . ‘ “., s

The files outdefls and indefs are read by the run-time module to . cather
information for input and outpyt token definmitions. These files are different from
mtok b and ouwtokh which are cereated for the dinlogue control component and
Y

apphication interfice model. The user s not supposed to do anytinng about this step.

These files ure created in sinch/new /disp directory.
D i .
18. Files for Other Components

The files outtok.h and intok h are used by the other components. These filex are

3

created in singh/uew /zlobal directory.

17. Run-Time Errors

.' @ . .
['he ran-time support module detects errors sueh as illecal event type. creating

i

NS

an already existing window, and illezal ourpurt tokens. The errors detected by 1he

run-time support module are written into o file called "pewerr”. The system znores
3

the action in the cases of errors and continues the support for the user interface.

e

‘ * Appendix A3

An Example
The use of ipes to enter desizn specifications for the presentation component of o
wser interface is dhistrated with the Belp of an evample 1o ereate a0 menn deisen
craphicad objeer editor. This f:l'f\l)lli(;fll cdiror can be used for addins, mosine, or
deleting “_fr.'xl)]l'l(‘:ll objects of variable wizes on the sereens The craphical ()!)j"c‘!\
considered in this example are cirele, square, and triangle. The sive of vach of these
(>l>j(-(*1¥ can be controlled by a f;r:\phi(‘:al'polvnriomvtvr. "ljhc screen lavouwt for this
cditor consists of three windows as shown in Ficure A5 1. The inain windos is ealled
the work window where all the objects are positioned. The menn window s located on
the rizht sade of the display sereen. The I[lir(].\\;Il(l()'\\'.,.(‘.".”t‘(i the porentiomerer.
window. i~ located across the bottom of the sereen :md»i\ nsed for displaying the
vraphical porentiometer. The meniu consists of o mil‘lturu of leonic and textual wmenn
iems. it contains the three wraphical objects and three commands, namely. "Move™

"Delete™ and "Eact, displayed as rexe,

Al) . %

O

AN

.\1()\'(‘

Dekgre

i ; ' bt

Pimure AL e Sereen | aveout for thea ir.lplur.tl Fdiror!

< —~

To [m\ili(\ll i\ _\:r:l]‘lli(‘:\i (\I)jt‘(’t in the work area the DRIy selects one of the cirele,
square, or trignygle from the menu and points o the position where the ul)jm-t shonld
be loeated, .'Hlo stz of an object can he controlled by the valne of the graphicad
potentiometer, 'H)v command selection s open ended. chiar s, the seleered commuand
retlns acetive fnx'/lun'; as the user does noe chanze 1t explicnt]y change the posinion
of an objeet the "Move™ commund s wuseds The wser dirst pomts ar the object 1o be
woved and then 4t he nes posifion. To delere an objeer from the sereen the "Delere”
command 15 used. The ohjvrtAr:m be deleted by pornting at o after the (-«>1|1:111(i;i\
~electeds Tromay be noted thar the value of the [luh-mimnv;vr docw nor dleet the move

or delete operntrons. To exit from the editor the "™ command s need,

1. The Design ,

a,
W

The work window 10 the oditor needs 1o coperate one inpnt toren. Ths token s
uved for passing the corrdinares of *lh-:- pornt nthe work area to the dindogie contrel
component. The token can be generated by :\“» event of l)'[»(“"l'i i the waork \\ind\?_
To be ahble 1o «lr:t;\ and erase three types of ('~!)Ji-<'r~ tis window peeds i olivt.;"n!
tokens, Three of these rokens are ased for drawing the <>hj."<‘t\ :n‘ui the otheér three Ifur
crasing them Poach onrpar token has an associnted display procedare 1o]n'rform‘ r“h;"v

Ve

c o
recquiired Danetions The mena window zenerses one input token for cach commuagdin,

R
the menn. This window does ©00 Bave any output token associnted swirhoat. e,
. . P e
window for the craplieal potentiomieter has one input token assoctted wirh 100 7 Thise
’ L)

input token s used for changing the size of the graphical object< This window does

not hove any oonrpit foken associnted wit‘h "

2. The Speciﬂc,yt{‘)n Step

. !
Pl dirse step iy the speciication process s to nttialize the desron donabase The ‘Q’«"’;
daraboee for e esanpde cdiior s endbed Tediror™ 0 This b e he mmnedhi ed b
the IoHowgn s ooy i) ' e

schema editar the <ehemn

The program pes” s invoked by tapine v name. The name of the databaee,
“editor” as entered when apes prompts for che dacdase nane. The three windows, s

shhownom Froure N2 T can be ereated by nsing che "Window Definton” command from

the tpes menn and pointing at their opposing corner o After ereanimg thy windows the
L . .
ipes sereen fooks as shown an Floure A5 2
o associnte attpthates wirh the windows, "Window Nirmbures™ is weolecred from
the tpes menu - Onoselecting this commund the display sereen s redrawn by e
.,‘/ . B
. \ .) : “ .
program. Thiscommand wdso assiens defaale atiribyres 1o caeh of the windows, | or
the example editor, the window ourput token naume 15 1o be assoctated with caeh of the
‘ .
windows. This can be done by moving the craphical cursor on top of the box for the
outpnt token and typing its nume. The window ontput tohen nome ean be the same s
¥ - . ‘e l

the window warme. Sinee only one atribiute s displaved at atiine 1o the case of the

potentiometer window. the Carringe Return (C30) s entered tlb the required attribute

i~ displayeds The graphical pglentiometer tnteraction technigue s 1o be associnted .

with the porentiomerer windows N his can be done by typing the following eall i the

\' ’ . Al

box forinteraetion technique.
g apotf wind, HORZS 0.0 1.0 "e”™ term. 1) ' y
“ i .

B

[N s

S0 A Trer thas srép thenpes sereen looks as ~hown in Fioure A3 3,

S o associate the menu with the menu window. the "Menn Definition” command is
- : "“ ' . N M N : 1 »
o oselueteds ATrer sefeening this command the designer points at the menn window, dpes
rhen displass the menn header o' the menn window with the defaule ooribgres '!‘!w'j\ .

i

desizoer needs to rvpe tnothe menn novne and thee neenn ot token ane This e

beodene byropans Tmenn™ o the boves for the arrsbares The oo o b <o

o

vk s b n basare V0 L ke

‘ . Py

L

P

\‘

A e et win b ow' e

g e d

i

1

VO reate Vwinel cay gy it At the twe SEEEINT RllaliEs fhe wichow ding Y
an

s .
a8y e Vv B A i g ety

LY

t,

[REATEY B N

Lttt

P S ————————

Tyt Uohen

Tettyy

.

Pang

3

Froure A3

The mepn vrems for the menn can be de

1 t

=5

[S N |

N

i

the o

k4

[pes ~creen Ly frer Creating Windows

'

,
e

3

menn widow bor eachomenn vem the desizner needs to enter the tipat token name

o
-

[

t

¢ o C
fined by hirtine o Cyrrmeze Beourn an the

‘

Weellinz the vrem For eonie arems the desprndcr

s Tren AT ey e by s 7 the Box for

s A4

~ 8i3
™ » o
‘!\\\‘ -
T i w '
1]
3 . . A .
Sef) A 4 . - ~
4 . ﬁ-«%{).\ngo an attribute, nve rbe rursor ontop of the attibste and type the .
new \'%I'ﬁr carriage return alter entering the value, Window -
FE2 - 1o ading sire, BF3 - ta Rip vindess PF - o prinw N -
. - y — £ o Anition
Lo M ii: . S
o~ N . TAm: B \ . ‘:{ ame: - .
‘\\‘\ R ’ R) Window -
- : -“*‘i.nu'! N O | . ‘ At ributos,
o ‘ * Limit Ix: i').(ﬂ)]
£l . '-‘. L
\ . . o Meny -
Limit- 1y o
. LN
Limit ty: ' L2 Agition
4 N B : "
Limit urk: - oo B ' A
s o) - . Input Token
. . N) -~ Limit une 1.0 .
; Limit urnz h_ - : ' D flnition
) . \) P .
Fg Color , -) Limit ury: rtput Tokey - .
- 4 Definition
fraw Color [° Fg Culor) . D
. ' o . .) ext S
EBndry Color E B B \) . x . . Lovel ,
T ; ¢ Draw Culor]
) \ ’ intret Tech.: o - Frevious X
.' -— Budry ."fh]ur_t Ej [ovel
+ . ' - P s
; Tpput Token: -
i ‘. o ,
. . N 1T
o : fatre Toch.: »
. 3 - ¢
' v ’ Help
' . ’ . N LOFF
,
“Nindow Farent g Toior I 'maw Color Boundary nt. Tech. | fo Tukens “ut Tokens
Fi . ’ .
’ fup? Jnp? N 1 1 none 0 0
<
. - ’ . .) ' .) ‘-
¢ - Figure A3.3 Ipes Screen Layout-after associating Window Attributes
the menu item type. In the next step the program then asks for the name of the .
procedure drawing the icon. For example, in the case of the circle. the name of the -

input token can be "circle” and the name of the procedure drawing the circle can also

be “circle”™ In the case of textuual items, the program provides boxes for entering the

r S
i |
N Sdlect 0 cndow for which neou i to be deflaed using P Fisst menu header B
and then meiny itens 1o created. On header T -4 next owenu, 'ITl d: dllm- Window
7 menn, o teny 4 TR insert e, CTRL-a append dem TV v! lote "»vu . ’
k ' [flnition .
e NMenu MName ’
. Window
o Limit 1 b Atrributes -
> . “enu Typer [.l'nni I ’
. " ~ < N .
s) \nu Y
L Limit Iy~ (R ~
Coord Chogeer Deflnition N
e
Limit urx:) .
) . N ! InputsTuken "
. . - "Tium:n'xr\vh: :
Limit urn . - . . Cefinition b B
o . [y
R ’ N ", . . . “ "t K . - " o .
g Color — * ' / Tutput Token: poeny utput Topherdd.
- . / h
. I / v [efinition
ﬁ\ . s ¢t / !
\k IDmaw ulnL‘ -
\‘N /// N wext B -
A
\? L
: Codry CGlorm RSy lovel
e PR futmt Teck.: m / «d f"m‘q'n\,_:xs
—) . * -
' ~ - [ovel e
Sutput Token: W9 -
‘ N AT ‘
”\'fp
s .
Same: : 4
(DN JFE
5)] \ . .
L Wit ow Farent Ig Color [mmw Color Peandary ut. Tech. o Tokens ut Tokens .
apT pT & 1 L nune / i n:
B ’!/ .
I Y . // .
Figure A3.4 Ipes Screen Layvout after dcﬁn-ing‘.\l'o/nu Header®
. - . ! . : . R / " Ttk R A
'lvxt»rov})o <1|.'pl:1_v(‘(l~m the menu item. In this example, "Mdve™, "Delete”. and "Exit”
. r' R
are ‘entefed f()r the fourt ﬁft h. and sixth menu 1items respectively. This completes
the definition of the.menu. // ,
3

N 8R
3 .-\\
a3 E .) w “‘
. ‘ L \ ‘ n :y‘y’ 15",;’“ . . ‘ R
In” the next 'step, inputdtokens are assocyuprd with the work and potentiometer

B
‘e

selpput Token Definition” command

.

vindows. This is accomplished by s&‘loctj,j'ri.:; the

‘ . o .
from the ipes menn and pointing at the required windows. For each input token the
input token namd® and the .’(l.‘\:.}i()(‘.l.'ll(‘(l event type are entered. In the case of work
wirtdow, the name of the input token s “point”. The defanlt type of the event need
v - .

) .)
not be changed in this case. Similarly input token name "size™ecan be associated with
the rotentiometer window. The screen in this case looks as shown in Fhgure A5,

. ” - !
Phie last stepin -pecification sequepce is the definition of the output tokens.

\ ¢
This can be started by su*ffoctirxg the "Outpat Token Definition™ command from the
ipes menu and pointing at the work window. For cach output-token the output token
name and thevname of the associated display procedure is utered. For exay . the

m ~ 1 | '
coutput. tokey for drawing the circle has token name "deire” and the name ePYhe
. - . . v '
M T 4 " N L] [a] - - ., v . " " " v
display procedure is "drawcire™. The other output token nmmes are "dsq", “deri”,

"ecire”, "esq” and "etri”. The names of the displuy procedures are "drawsq”, "drawtri®,
. -

-
4 A

" - N " . . ." " o . .. ' - N N El . . - "’
erascire”,"erissgT, and Terustri” respectively. Fhesereen Tayout in this cuse looks'as
: : s . ‘ .

. .. oo erep) . . Lo . »
shown in Fizure A3.6.. This completes the <pecification required for the example

0 . . o [}

editor. oo . _ ;

2)

o

-

)
i
. R0
.
N R i . N —
-~ N
Infimmation can beentend by movidg the earsor on the att ibate and
PVRI i new value, Tiest femean be ereated by Litting a4 1. Window
Todebetn ke nen CTTT L AD) .
- Letnition
!‘ “("" b D N ’
vt T Menu Mame: apenu
. . . Window
, * > "
. . T
sntok Napme: . A
. N :
, - Monu Ty
J .
Nt
¢ ke ’
. o Yoico: aAnition
Input Token .
Corientation:
Leflnition
v 4

Tntak Manee

centpit Token:

I ©

<t pr'W Kot

[vfnity 1

Previous

Lave]

2T

Hoelpy

AW Cnlor

WWoindew i arent bgolor

fap?

Feundary

ut. Twech. n Tokens

1 nOLe 0

et Tokens

Figure A35 Ipes Sereen Layout after defining Input Tokens |

s

[}
The speeification session can be ended by selecting the "Exit" command from the
ipes menu. On oxelecting this command, ipes creates the-database, token tables, and
files of """ procedures. The files of "¢ procedures are compiled and loaded with the

N

rontines in the run-time support module.

-

. »
laformation can be ontonsd by moeving the eumor on the attrbute and
. . L :
PYpBg o new value, St temean be ereated by hittigg v B Window
\
Todeletorobenpse YD,
e finition
- ’
ttmame Nenu Name: i
E MWindow
. . N, .
.) At .
[Proes {h—\wriﬁ' . Altgtrs
. Nenu Tope: [I\-‘d l
. ? Nenu
“
ok
S Chciew: - [olnithn
N 33
-+
~
e Input Token
" rientation: [.m i-al
: [»Anition
.
“ .
Catput Token: Cutput Toke:
[Apition
3 rlxt
. . [ann]
-
k
Previous
.
{ove]
- N
T
.
. ¥
7 - Heip
‘m‘kk Tane: [L‘r
' N £t
" |
|
H
fanrnt fgulor raw Color Foundary ut. Tuch. n T kens ut Tookens
e jup? , D 1 1 none 0 N

N

Figure A3.8 Screen Layout

after defining Output Tokens

