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Abstract

One of heavy oils upgrading processes is hydroconversion. As it is a complex

process involving many chemical reactions, the mathematical model of hydro-

conversion process often has more kinetic parameters than can be estimated

from the data. In this thesis, a model for hydroconversion processing of vacuum

residue is proposed. It is proved that the model is structurally identifiable, but

shown that it is inestimable and good parameter estimates may be impossible

to obtain even if the model fit is good. As a proof to the model inestimability,

it is shown that literature data can be fitted using a subset of only three (of

seven) parameters. To improve parameter estimability, a method is proposed

for designing additional experiments. The method is based on designing ex-

periments that provide data that is complementary (in an appropriate sense)

to existing data. The approach is illustrated using the hydroconversion model.

For the hydroconversion model, using two additional experiments provides a

good balance between parameter estimation and experimental effort.
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Chapter 1

Introduction

As the conventional crude oil reserves are declining and the heavy oils and

bitumens reserves are large comparing to conventional crude oil, particular

attention has been paid to upgrading processes of these heavy feedstocks, par-

ticularly, the conversion of vacuum residue (boiling over 524 ◦C) to distillates

(Gray & McCaffrey, 2002). Upgrading processes can be divided into four cat-

egories (Schuetze & Hofmann, 1984):

1. Thermal processes

2. Catalytic hydroprocesses

3. Non-catalytic hydroprocesses

4. Catalytic cracking

Vacuum residues, containing cokable materials (referred to as Conradson

Carbon Residue, CCR) and components with sulphur, nitrogen and metals,

need to be upgraded so that the contents of these undesirable materials are re-

duced (Del Bianco et al., 1993). Two common upgrading processes for vacuum

residues are coking and hydroconversion (Gray & McCaffrey, 2002). Coking

is a thermal process, which has the following disadvantages: “low CCR reduc-

tion and poor heteroatoms removal and large volumes of high sulphur, high

metals coke” (Del Bianco et al., 1993). Therefore, hydroconversion as a cat-

alytic hydroprocess is of particular interest. During hydroconversion, the feed

cracks in the presence of hydrogen and a suitable catalyst, and a portion of
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the heteroatom components are removed (Carbonell & Guirardello, 1997; De

Almeida & Guirardello, 2005). Also, the presence of hydrogen and catalyst

suppresses coke formation considerably.

Coke as an undesirable byproduct of hydroconversion, causes fouling of the

internals in a high-pressure reactor and catalyst deactivation. Process design,

optimization and control are powerful tools for the prevention of coke forma-

tion. A key condition for design, optimization and control of the process is

having a model, which describes the system kinetics accurately. A chemical

process such as hydrconversion can be modeled based on physics first prin-

ciples considering heat, mass, momentum transfer rates, reaction rates, etc..

Moreover, to obtain a computationally tractable model for oil refining pro-

cesses, lumping methodology is often used (De Almeida & Guirardello, 2005;

Rahmani et al., 2002; Wiehe, 1993) as the feed is a complex mixture containing

many different types of molecules.

In this work, a model is proposed based on work by Wiehe (1993) and

Rahmani et al. (2002). Before this model can be used, a couple of model

characteristics have to be examined. The first characteristic is model Identifi-

ability. A model is structurally identifiable if there is a unique set of parame-

ters explaining the input-output relation (Jayasankar et al., 2009). Having the

ideal (rich enough and noise-free) data set, this unique set of parameters can

be estimated for a structurally identifiable model. If a model is structurally

unidentifiable, it has to be re-structured and/or some of the parameters be re-

moved from the model. The next characteristic to be checked after the model

is proved to be identifiable is model estimability. A model is estimable, if for a

set of real-world data or a specific experimental design, the parameters can be

estimated accurately (Jayasankar et al., 2009). If different parameter values

lead to indistinguishable predictions, the model is not estimable.

The model proposed in this work contains five states, two outputs and

seven unknown parameters, and is described in a set of six ordinary differential

equations. Based on the model structure, it was decided that the system

represented by this model is bilinear. In the next step, the Identifiability of

this model is examined, and the proposed model is proved to be identifiable
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using the method by Vadja (1985) for bilinear systems. Then, the model

is checked for estimability using the experimental design by Del Bianco et

al. (1994). The approach chosen to examine the model estimability involves

performing Singular Value Decomposition (SVD) on the parameter covariance

matrix. Using SVD results, the parameters are reparameterized to a new set

of seven pseudo-parameters, which are the linear combinations of the former

parameters. SVD also allows sorting these pseudo-parameters based on their

significance in changing the output values. Considering this sorting, estimating

only the three most important pseudo-parameters and fixing the other four at

their nominal values results in a good model fit to the data by Del Bianco et

al. (1994).

Considering that the other four pseudo-parameters can become more im-

portant in another experimental design, having only three pseudo-parameters

estimated does not guarantee a model with good design capabilities. There-

fore, a set of optimal experiments need to be designed using the model and

the estimates of the three pseudo-parameters to make it possible to estimate

all seven pseudo-parameters. This is accomplished in this work using the D-

optimality criteria. It is shown that while one additional experiment does not

complement the current data considerably, two additional experiments with

the optimal designs proposed can lead to the estimation of all seven parameters

and therefore pseudo-parameters.

1.1 Objectives and contributions

The stage-wise objectives of this work are as following:

1. Propose a model for Hydroconversion processing of vacuum residue.

2. Test the proposed model for Identifiability using a suitable Identifiability

test.

3. Check the model for estimability using the SVD.

4. Use the estimability results to find the directions in the parameter space
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along which the change in parameters affect the model predictions sig-

nificantly.

5. Perform a linear reparameterization on the model and sort the new set

of pseudo-parameters based on their significance in changing the model

predictions.

6. Determine the number of pseudo-parameters that can be estimated ac-

curately using the literature data.

7. Design a set of optimal experiments using the model and the estimates

of the pseudo-parameters.

8. Decide which design is the best considering both the effort and the result.

The notable contributions of this work are as following:

1. Proposed a novel model for Hydroconversion processing of vacuum reside

based on work by Wiehe and Rahmani et al..

2. Used a suitable Identifiability and proved that the model is identifiable.

3. Developed a method to check the model for estimability performing SVD.

4. Reparameterized the model and obtained a set of pseudo-parameters,

which are the linear combinations of the model parameters.

5. Sorted the pseudo-parameters based on how much their change is signif-

icant in changing the output.

6. Fitted the model to the literature data estimating only three (out of

seven) pseudo-parameters and fixing the rest at their nominal values.

7. Designed a set of two additional experiments to complement the current

data to make it possible to estimate all the parameters.
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1.2 Thesis outline

In this thesis, a model for Hydroconversion processing of vacuum residue is

developed. Chapter 2 contains the background information and literature

review for the topics discussed in this work. These topics are: Hydroconver-

sion, Hydroconversion modeling, the base models, Identifiability, estimability,

model reparameterization and optimal experimental design. Chapter 3, sub-

mitted paper, contains the proposed model and evaluations done about the

model. Chapter 4, contains the summary of this work results and the sug-

gestions for the future work. Appendix A contains Maple codes used for

performing identifiability test. Appendix B contains MATLAB codes used

at every stage of work.
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Chapter 2

Background

2.1 Hydroconversion process

Hydroconversion is one of the upgrading processes for heavy oils and petroleum

residues (Carbonell & Guirardello, 1997). When maximum diesel oil is re-

quired, hydroconversion of vacuum residue is preferred (De Ameida & Guir-

ardello, 2005). Hydroconversion is cracking and hydrogenation of the feedstock

in the presence of hydrogen and a catalyst (Bearden & Aldridge, 1979; Car-

bonell & Guirardello, 1997). During this process, a portion of compounds

with high molecular weight are converted to lower boiling hydrocarbon prod-

ucts, and a portion of heteroatoms are removed (Bearden & Aldridge, 1979;

Carbonell & Guirardello, 1997). In other words, two reactions happen during

hydroconversion process: 1. Thermal cracking, 2. Catalytic hydrogenation

and removal of contaminants. (Carbonell & Guirardello, 1997). The cata-

lysts have no role in cracking reactions; the cracking reactions are thermal and

independent of catalyst concentration and hydrogen pressure in hydroconver-

sion (Panariti et al., 2000). The roles of catalysts are favoring hydrogenation

reactions and suppressing coke formation (Panariti et al., 2000). However,

hydroconversion term is sometimes used more broadly and also for processes

with bifunctional catalysts in which catalytic cracking also occurs (Chavarria-

Hernandez et al., 2009; De Ameida & Guirardello, 2005).

The operating conditions for hydroconversion process are severe pressure

(7–25 MPa) (Carbonell & Guirardello, 1997) and temperature (400-500◦C).

The reacor types for hydroconversion are: fixed bed, moving bed, ebullated bed
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and slurry reactor (Rana et al., 2007). In slurry hydroconversion the selected

catalyst is dispersed in the feedstock (Rana et al., 2007). As dispersed catalysts

are capable of controlling coke formation, slurry processes are good alternatives

for conventional hydrocracking processes (Panariti et al. 2000). Although

there is a large amount of data regarding the use of dispersed catalysts (Del

Bianco et al., 1993), not much information is available about the kinetics of

the process (Panariti et al., 2000).

2.2 Hydroconversion models

In order to commercialize a process, the process has to be modeled for design

and scale up purposes. Moreover, the process model can be used in later on

procedures including process optimization and control, which result in the bet-

ter performance of the process plant and obtaing more of the desired products.

A few models exist for hydroconversion processing of heavy hydrocarbons in

the literature, and some of them are reviewed in this section.

Carbonell and Guirardello (1997) used a computational fluid dynamics

approach to model the slurry bubble column reactor used in heavy oils hy-

droconversion. They believed that the models, which consider fluid dynamics

of the process, are more accurate and can enhance the design and scale up

of slurry bubble column reactor. Based on experimental evidence by Mosby

et al. (1986), they assumed that thermal cracking and removal of contami-

nants are two independent reactions going on in the hydroconversion reactor.

Therefore, They carried out their simulations in two steps without considering

coke formation and hydrogenation reactions: 1. Determination of the fluid

dynamics, 2. Simulation of the thermal cracking reaction. They also assumed

that thermal cracking reactions did not change the fluid dynamics because the

liquid phase was highly backmixed and the rate of gas adsorption was low.

The kinetic model that was used in Carbonell and Guirardello (1997) to

simulate the thermal cracking reactions had been developed by Mobsy et al.

(1986). In this model, the feed is divided into different lumps based on the

boiling point range, and each lump is regarded as a single chemical component
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separately taking part in the reaction.The reaction scheme for this model can

be seen in Figure 2.1.

The model by Carbonell and Guirardello (1997) was in good agreement

with experimental data. However, more experimental data is needed to confirm

this agreement.
 

Product gasoil 
Intermediate 
(343-538°C) 

i=4 

Feed resid 

hard to react 

(538+ °C) 

i=1 

Feed resid 

easy to react 

(538+ °C) 

i=2 

gases 

(C1-C4) 

i=7 

distillate 

(182-343°C) 

i=5 

naphtha 

(C5-182°C) 

i=6 

Feed gasoil 

(343-538°C) 
i=3 

1.00 
20.6 

0.24 
0.04 0.24 

0.18 0.21 

0.69 0.83 

3.4 13.4 

0.44 
1.27 

0.05 

Figure 2.1: Reaction scheme used by Carbonell and Guirardello (1997). Numbers
in arrows are the first-order rate constants relative to the rate constant of hard resid
cracking to product gas oil and are from Mosby et al. (1986). i is the number to
identify each lump. (Carbonell and Guirardello, 1997)

Panariti et al. (2000) carried out hydroconversion of Belayim residue in the

presence of dispersed molybdenum added as molybdenum naphthenate. The

process was operated at temperature of 400-460◦C, pressure of 8-16 MPa with

0-5000 ppm Mo, and the effect of different operating conditions and catalyst

loading was studied.

They then proposed a reaction scheme (Figure 2.2) for hydroconversion

processing based on the experimental results they obtained. Again, lumping

methodology was implemented, and four pseudo-components were introduced:

1. Vacuum residue (VR), 2. Vacuum residue that has accepted hydrogen

(VRH), 3. Distillate, 4. Coke. Based on the reaction scheme, the vacuum
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residue lump could go through two competing reactions: 1. Direct conversion

to distillate and coke 2. Catalytic hydrogenation.

According to their results, the catalyst concentration and hydrogen pres-

sure did not affect the production rate of distillate significantly as it is ther-

mally controlled, and What they affected was the amount of coke formation.

Using Panariti et al.’s model, the performance of hydroconversion process

can be optimized over different operating conditions and catalyst concentra-

tions.

 

 

VR                          Distillate + Coke 

 

 

 

VRH                        Distillate 

k1 

k2 

k3 

H2/Cat. 

Figure 2.2: Reaction scheme used by Panariti et al. (2000)

Del Bianco et al. (1994) carried out hydroconversion process for vacuum

residue of Belayim crude in the presence of molybdenum naphthenate as hy-

drogenation catalyst at temperature of 410-450◦C, pressure of 20 MPa with

200-5000 ppm Mo as MoN.

They then proposed a kinetic model for vacuum residue conversion. Their

modeling assumptions were: 1. Hydrogen pressure is nearly constant during

the reaction, and therefore, the reaction order with respect to hydrogen pres-

sure is zero, 2. The hydrogen transfer to gas-liquid interface is assumed to

be very fast comparing to hydrogen consumption in the liquid phase due to

the reaction 3. Coke formation pathway is neglected due to the small amount

of coke being formed 4. The step of catalyst transformation and activation

is considered very fast comparing to vacuum residue conversion. 5. Vacuum
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residue conversion is thermally controlled.

Finally, the reaction order with respect to vacuum residue concentration

was computed as two, and their model could predict the vacuum residue con-

version at different temperatures and pressure.

2.2.1 The base models

There are two models on which the modeling efforts in this work are based.

Each of these modeles suggests some ideas about how to make the essential

assumptions for the hydroconversion processing model.

Wiehe’s model

Wiehe (1993) suggested a kinetic model for thermolysis of vacuum residue by

lumping the vacuum residue according to its solubility and volatility charac-

teristics. In this model, coke is assumed to form because heavy hydrocarbons

phase separate when they exceed the solubility limit of the light hydrocarbons

(the arrows indicate that a reaction is happening):

H+ kH−−−−→ aA∗ + (1− a)V

A+ kA−−−−→ mA∗ + nH∗ + (1−m− n)V

A∗ex
∞−−−→ (1− y)TI + yH∗

A∗ex = A∗ − A∗max

A∗max = SL(H+ +H∗)

where A+ is reacting asphaltenes; A∗, asphaltene cores; H+, reacting non-

volatile heptane-solubles; H∗, produced nonvolatile heptane-solubles; V , volatiles;

A∗max, maximum asphaltene cores that can be held in solution; A∗ex, excess as-

phaltene cores which cannot be held in solution; TI, toluene-insoluble coke;

SL, solubility limit (wt%/wt%); a, m, n and y, stoichiometric coefficients; kH

and kA, first-order reaction rate constants (min−1).

From Wiehe’s model, the assumptions about how coke is formed and how

the system is going to be lumped are made.
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Rahmani et al.’s model

Rahmani et al. (2002) developed a model for thermolysis of asphaltenes in

presence of hydrogen donors based on the principles of Wiehe’s model. The

model for the case of a closed reactor is as follows (the arrows indicate that a

reaction is happening):

A+ kA−−−−→ mA∗ + (1−m)(H∗ + V )

A∗A
k′[donnor]−−−−−−−−→ H∗

A∗ex
kC−−−−→ TI

A∗ = A∗A + A∗NA, A∗max = SL(H+ +H∗ + V )

The assumptions, which Rahmani et al. (2002 based their model on, are:

1. Asphaltene cores do not form coke instantly as they phase separate.

Therefore, a finite first-order rate constant, kC , is used.

2. Asphaltene cores have a limited capacity for accepting hydrogen. Thus,

they are divided into two types: cores that can accept enough hydrogen

to change their solubility characteristics, A∗A, and cores that cannot,

A∗NA.

3. The cores that accept sufficient hydrogen from a donor convert into

heptane-soluble material, and the apparent first-order rate constant for

hydrogen transfer is the product of the rate constant and the donor con-

centration.

From Rahmani et al.’s model, one can learn how to insert hydrogen into

Wiehe’s model, which is needed for hydroconversion processing model as hy-

drogen is present in the system. The changes made to these base models to

make them applicable to hydroconversion processing are presented in Chapter

3.

2.3 Parameter estimation

To analyze performances of the physical and chemical systems under different

conditions, one has to model these systems. Typically, Physical or chemical
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systems are modeled mathematically using first principles, and the model pa-

rameters are estimated using the experimental data (Jayasankar et al., 2009).

The resulting models then are used for design, scale up, control and optimiza-

tion purposes (Jayasankar et al., 2009).

Parameter estimation is a crucial part of the modelling process. Without

estimating the model parameters, the system model would be of little use,

because it cannot predict the system behaviour under different conditions.

However, parameter estimation is not a straightforward process at most of

the times. First, the model has to be checked for identifibility. A model is

structurally identifiable if all the model parameters can be determined uniquely

having the ideal data set. Second, the model has to be tested for estimability,

which means the model parameters can be estimated accurately using the

current experimental design and data set in hand. Finally, if the model was

both identifiable and estimable, the parameters can be estimated without any

modifications made to the model. However, that is not the case most of the

times, and model parameters can be unidentifiable, or even identifiable but

inestimable.

In the following sections, identifiability and estimability are defined. More-

over, methods that are available in the literature to check for these two char-

acteristics are explained briefly. Finally, approaches available to solve uniden-

tifiability and inestimability are touched.

2.3.1 Identifiability

A model is identifiable if and only if a unique set of parameters can be de-

termined for the model using the ideal experimental data (Jayasankar et al.,

2009). If there is more than one parameter set for the model that can explain

the relationship between the input and the system response, then the model

is not identifiable (Jayasankar et al., 2009).

Some of the methods available to check for identifiability of models con-

taining non-linear ordinary differential equations are Taylor series, generating

series, local state isomorphism and differential algebraic approaches which are

explained in details with examples in Walter and Pronzato (1996). Taylor
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series method and local state isomorphism are compared in Chappell et al.

(1990). Another method is linearization-based approach by Ben-Zvi et al.

(2006). Methods particular for testing the identifiability of linear, bilinear,

polynomial and rational systems can be found in Vajda (1985).

To solve the model unidentifiability, the model can be re-structured and/or

the parameter whose change does not affect the model response can be fixed

at its nominal value or removed from the model (Surisetty, 2009).

2.3.2 Estimability

A model is estimable if the model parameters can be estimated accurately from

a data set or a specific experimental design (Jayasankar et al., 2009). When a

specific experimental design cannot provide enough excitation so that all the

parameters can be estimated, the model is inestimable for that experimental

design. It is possible for identifiable models to be inestimable (Surisetty, 2009).

The model parameters are regarded as inestimable when they do not have

statistically significant effect on the model predictions (Ben-Zvi, 2008; Yao et

al., 2003). One method to test a model for estimability is sensitivity analysis

during which a sensitivity coefficient matrix is formed and computed. If the

matrix is of full column rank, then the model is estimable (Yao et al., 2003).

Yao et al. proposed a method to determine which parameters are estimable

and which are not for models with large number of parameters. This method

was also used by Jayasankar et al. (2009). For models with a few numbers

of parameters and outputs, the sensitivity coefficients are plotted with time.

If any significant correlation can be detected in the plots, the model is in-

estimable (Beck & Arnold, 1977). Another method to test the estimability

is through computing eigenvalues and eigenvectors of the Fisher Information

Matrix (Vajda et al., 1989). The number of small eigenvalues corresponds to

the number of parameter combinations which are not estimable.

When a system is inestimable, the parameter estimates obtained for this

system are prone to be inaccurate (Ben-Zvi, 2008). With inaccurate param-

eter estimates, the system model cannot be used for scale up, design, control

and optimization (Ben-Zvi, 2008). There two solutions for the inestimability
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problem: 1. Obtaining more data, 2. Modifying the system model (Ben-Zvi,

2008). To obtain more data, more experiments have to be conducted, which

may increase the cost or be impossible for the system under study (Ben-Zvi,

2008). Therefore, the second solution is usually chosen, and the model gets

modified in order to reduce the number of parameters and improve the param-

eter estimates (Ben-Zvi, 2008).

2.3.3 Model reparameterization

There are several ways that one can modify and reduce the system model.

Chakravarti et al. (2001) fixed the parameters that do not have a significant

effect on the model predictions at a nominal value. Matos et al. (2001)

used parameter correlation information to fix the parameters at their nominal

values sequentially. Yao et al. (2003) used a sensitivity-based approach to

determine an estimable subset of parameters. Preisig (2007) proposed a Bayes

theorem-based approach in which different parameter subsets are determined

at different times. Correa et al. (2005) also proposed a similar Monte-Carlo-

based approach to measure estimability. Khare et al. (2002) used an algorithm

in which parameter values are manually changed until having a satisfactory

fit.

Methods listed above are all based on identifying an inestimable subset of

parameters. However, the parameter combinations are often inestimable not

the individual parameters. Ben-Zvi (2008) proposed a transformation-based

approach for reparameterization of unidentifiable or inestimable systems. In

this approach the parameter space is partitioned into an estimable part and

an inestimable part.

2.4 Optimal experimental design

If a system is identifiable but not estimable, and it is possible to conduct more

experiments, then there is a set of additional experiments that can complement

the existing data and make it possible for all the parameters to be estimable

or reduce the inestimability problem. To reduce the cost and effort associated
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with experimental design, one has to design an optimal set of experiments. One

can formulate the optimal experimental design problem as a maximization

or minimization problem of a certain functional of the Fisher information

matrix (FIM) with respect to the experimental conditions (Balsa-Canto et al.,

2008). With this formulation, the design can consist of several sequential or

simultaneous experiments with the initial conditions, sampling times, duration

of the experiments and time-dependent input as degrees of freedom (Balsa-

Canto et al., 2008). Fisher information matrix where having the least squares

regression is defined as (Marsili-Libelli et al., 2003):

FIM =
N∑
i=1

(∂yi/∂p)
TV −2i (∂yi/∂p)

where p is the parameter vector, yi , the output vector at time instant i,

(∂yi/∂p), the sensitivity matrix at time instant i, and Vi is a diagonal matrix

contaning weighting factors.

There are several optimality criteria that can be chosen as FIM-based cost

functional including D-, A-, E-, G-, and V-optimal (Balsa-Canto et al., 2008;

Mannarswamy et al., 2009). However, the most popular ones are D- and E-

Optimalities, which are defined as (Balsa-Canto et al., 2008):

1. D-optimality: Maximization of determinant of FIM, D-optimality crite-

rion focuses on minimizing the volume of the confidence region in the

parameter space and ensures collecting the maximum amount of infor-

mation provided by the experiments, but does not indicate how the in-

formation is distributed among the parameters.

2. E-optimality: Maximization of minimum eigenvalue of FIM, E-optimality

is about minimizing the maximum error which leads to reaching a com-

promise between the amount of collected information and the way it is

distributed among the parameters.
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Chapter 3

Hydorconversion modeling1

3.1 Introduction

Hydroconversion is an upgrading process for heavy oils and petroleum residues.

During hydroconversion, the heavy oil is cracked in presence of hydrogen and

a catalyst to produce lighter oil fractions with a lower content of heteroatom

compounds (metals, nitrogen, sulphur, and oxygen) and cokable materials

(Carbonell & Guirardello, 1997; De Almeida & Guirardello, 2005). Hydrocon-

version processes can be categorized based on reactor type: fixed bed, moving

bed, ebullated bed, and slurry (Rana et al., 2007). Typically, the reactor is

operated at high pressure (7-25 MPa (Carbonell & Guirardello, 1997)) and

temperature (400-500 ◦C) during the hydroconversion process. In the case of

slurry hydroconversion, catalyst is fed into the reactor in a finely dispersed

form along with the feedstock (Rana et al., 2007).

One key undesirable byproduct of the hydroconversion process is coke for-

mation as it causes fouling of the internals in high-pressure reactors leading

to premature shutdowns and safety problems. In addition, the formation and

deposition of coke has an inhibitory effect on catalysts. Careful selection of

reactor conditions may ameliorate the issue of coke formation. An accurate

model describing the system kinetics is useful for suppressing coke formation

while maintaining good yields of desirable oil fractions.

In order for a model to be useful for design, scale up, control, and optimiza-

1A version of this chapter has been submitted for publication to Computers and Chemical
Engineering Journal.
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tion, a subset of the model parameters must typically be estimated. Often,

some of the model parameters have little or no effect on model predictions and

can be fixed at a nominal value. If a parameter has no effect on the model

predictions regardless of the quality or quantity of the data collected then the

model is not structurally identifiable. Several methods for testing the struc-

tural identifiability of model parameters have been proposed in the literature

(Ben-Zvi et al., 2004; Vajda, 1985). If a parameter is not identifiable then

it should be removed from a model or otherwise set to a nominal value. In

practice it is possible that some model parameters are structurally identifi-

able, but have statistically insignificant effect on model predictions (Ben-Zvi,

2008; Yao et al., 2003). This situation corresponds to lack of estimability.

Several methods exist for testing the estimability of model parameters in Or-

dinary Differential Equation (ODE) models (Jayasankar et al., 2009; Yao et

al., 2003). Estimability has also been labeled practical identifiability in the

literature (Vanrolleghem et al., 1995).

In this work, a model for hydroconversion processing of vacuum residue

based on the previous work by Wiehe (1993) and Rahmani et al. (2002) is

proposed. This model is tested for identifiability in order to ensure that it is

structurally identifiable. Also, the estimability of model parameters is assessed

using experimental data. It is shown that not all parameters are necessary for

obtaining model predictions which match the experimental data. The results

from the estimability analysis is validated using data for the hydroconversion

processing of Belayim vacuum residue in the presence of molybdenum naph-

thenate (MoN) by Del Bianco et al. (1994). Also in this work, a set of optimal

experimental designs are generated in order to make it possible for all the

model parameters to be accurately estimated. In the case of the hydrocon-

version model, two additional experiments provide a good balance between

accuracy in parameter estimates and experimental effort (i.e., cost).
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3.2 Available Data

In this work, the estimability (or quality of parameter estimates) for a novel

hydroconversion model will be assessed. The data used for assessing estimabil-

ity will be from set of previously published data for hydroconversion processing

of Belayim vacuum residue produced by Del Bianco et al. (1994). In Table

3.1, the properties of Belayim vacuum residue are listed. Table 3.2 lists the

coke yields and asphaltene conversions for hydroconversion process at different

sampling times. The experimental conditions used by Del Bianco et al. (1994)

are pressure of 20 MPa, temperature of 450oC and catalyst concentration of

1000 ppm Mo as MoN. It should be noted that, in this data set, asphaltene

is defined as pentane-insoluble, and coke as tetrahydrofuran-insoluble (THF-

insoluble).

Table 3.1: Properties of Belayim vacuum residue (Del Bianco et al., 1994)

Density 15.4, g/ml 1.028
Viscosity at 100◦C, cSt 5230

Pour point, ◦C 63
RCC, wt% 20.8

C5 asphaltenes, wt% 26.2
C7 asphaltenes, wt% 18.6

C, wt% 85.03
H, wt% 10.01
N, wt% 0.57
S, wt% 4.2
Ni, ppm 130
V, ppm 179

Table 3.2: Coke yield (wt%) and asphaltene conversion (%) of hydroconversion
process at 450◦C & 20 MPa with 1000 ppm Mo as MoN (Del Bianco et al., 1994)

Time (min) Coke Asphaltene Conversion
15 1 47.4
30 1.1 61.2
60 1.3 63.9
120 1.7 78.8
240 1.4 84.3
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3.3 Proposed model

Heavy oil feedstocks are a complex mixture of many different types of molecules.

In order to construct a computationally tractable model, lumping methodol-

ogy has often been chosen to model petroleum refining processes (De Almeida

& Guirardello, 2005; Rahmani et al., 2002; Wiehe, 1993).The model proposed

in this work is based on previous work by Wiehe (1993) and Rahmani et al.

(2002). In Wiehe (1993) a lumped-parameter model (i.e., an ODE system) is

presented for the conversion of hydrocarbons via thermal cracking which in-

cludes induction period for coke formation. In Rahmani et al. (2002) the model

proposed by Wiehe (1993) is modified to include the effect of the presence of

hydrogen donors on the kinetics of thermal cracking. As hydroconversion pro-

cess consists of cracking and hydrogenation reactions, the model by Rahmani

et al. (2002) is used as a basis for the model developed in this work. However,

it is modified to reflect the effect of catalyst presence and hydrogen pressure,

and to fit the available data.

The model proposed in this work is given by the following set of reactions

P+ kP−−−−→ aA∗ + (1− a)P ∗,

A+ kA−−−−→ m′A∗ + (1−m′)P ∗,

A∗
kH(PH2

)n
′

−−−−−−−−→ P ∗,

A∗ex
kC−−−−→ THFI ,

A∗ex = A∗ − A∗max,

A∗max = SL(P+ + P ∗),

where P+ is reacting nonvolatile pentane-solubles; P ∗, produced nonvolatile

pentane-solubles plus volatiles; A+, reacting pentane-insoluble asphaltenes;

A∗, asphaltene cores; A∗max, maximum asphaltene cores that can be held in

solution; A∗ex, excess asphaltene cores which cannot be held in solution; THFI,

THF-insoluble coke; SL, solubility limit (wt%/wt%); a and m′, stoichiomet-

ric coefficients; kP , kA, and kC , first-order reaction rate constants (min−1);

kH(PH2)
n′

, apparent first-order rate constant for hydrogenation (min−1). The

assumptions for the model are:

25



1. The volatiles stay mainly in the liquid phase in a high-pressure closed

reactor (Rahmani et al., 2002). Therefore, produced volatiles and light

hydrocarbons are lumped together as P ∗.

2. Coke is assumed to form because asphaltene cores phase separate when

they exceed the solubility limit of the light hydrocarbons (Wiehe, 1993).

3. Asphaltene cores do not form coke instantly as they phase separate.

Therefore, a finite first-order rate constant, kC , is used (Rahmani et al.,

2002).

4. Asphaltene cores that accept sufficient hydrogen convert into light hy-

drocarbons (Rahmani et al., 2002).

5. No limit is considered for the capability of asphaltene cores to accept

hydrogen due to catalyst presence.

6. It can be assumed that hydrogenation rate constant is only correlated

with (PH2)
n′

while having the same catalyst and catalyst concentration.

n′ is shown to be 1 until a specific pressure, and zero afterwards (Qader

et al., 1972). In this work, it is assumed that n′ is 1 for 8-20 MPa.

To clarify Assumption 6, the mechanism of heterogeneous catalytic pro-

cesses has to be explained. Based on Qader & Hill (1969), the heterogeneous

catalytic processes can be explained in the following five steps: “1. diffusion

of the reactant molecules from the bulk phase to the catalyst surface, 2. ad-

sorption of the reactants on the catalyst surface, 3. surface reactions of the

adsorbed molecules to form products, 4. desorption of the products, 5. dif-

fusion of the desorbed products from the catalyst surface to the bulk phase”.

Based on the activation enthalpies that Qader & Hill (1969) obtained for hy-

drocracking of low temperature tar, they concluded that the chemical reactions

control the hydrogenation rate, and steps 1, 2, 4 and 5 are not limiting. In

this work, it is assumed that the limiting reaction rate is the hydrogenation

of the hydrocarbons on the catalyst surface , and the reactants concentrations

on the catalyst surface are the same as their concentrations in the bulk phase.
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Making these assumptions, hydrogenation reaction rate of the asphaltene cores

(A∗) mostly depends on the hydrogen concentration (which is linearly corre-

lated with hydrogen partial pressure (PH2) according to Henry’s law (Trejo

& Ancheyta, 2005)), A∗ concentration and catalyst activity. Therefore, as it

was mentioned in Assumption 6, the hydrogenation rate constant is correlated

with (PH2)
n′

while having the same catalyst activity. Hydrogenation reactions

would also occur within the P ∗ and P+ fractions, but these components would

not change their solubility behavior.

The proposed model can be described using a set of non-linear coupled

ordinary differential equations (ODEs) given by

d[P+]

dt
= −kP [P+],

d[P ∗]

dt
= (1− a)kP [P+] + (1−m′)kA[A+] + kHPH2 [A

∗],

d[A+]

dt
= −kA[A+], (3.1)

d[A∗]

dt
= akP [P+] +m′kA[A+]− kHPH2 [A

∗]− kC [A∗ex].f([A∗ex]),

d[THFI ]

dt
= kC [A∗ex].f([A∗ex]),

where

[A∗ex] = [A∗]− SL([P+] + [P ∗]),

f([A∗ex]) =

{
0 if [A∗ex] ≤ 0 ; during coke-induction period

1 if [A∗ex] > 0 ; after coke-induction period
.

The variables that can be measured experimentally for System 3.1 are

the weight percentages of asphaltenes ([A] = [A+] + [A∗]) and THF-insoluble

coke ([THFI ]). These measurable variables are available in Table 3.3 for each

sampling time using Equation 3.2 and the data in Table 3.1 and 3.2. It has

to be noted that according to the model equations d
dt

(P+ + P ∗ + A+ + A∗ +

THFI) = 0. Therefore, the total content of pentane-solubles at each sampling

time can be computed from the following equation: [P ] = [P+] + [P ∗] =

constant−[A]−[THFI] (the constant is equal to 100 as the concentrations are

reported in weight percent), which implies that there are only two independent
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measurements at each sampling time ([A] and [THFI]). As will be shown

later, the relatively small number of measurements implies that only a small

subset of the process parameters can be accurately estimated.

[A] = (1− Asphaltene conversion(%)/100)× [A]0. (3.2)

Data in Table 3.3 will be used for the estimation of parameters in the

system model described by Equation set 3.1.

Table 3.3: Experimental data for P=20 MPa & T=450◦C & catalyst=1000 ppm
(Del Bianco et al., 1994).

time (min) Asphaltenes THF-insoluble coke
(wt%),[A] (wt%),[THFI]

0 26.2 0.0
15 13.8 1.0
30 10.2 1.1
60 9.5 1.3
120 5.6 1.7
240 4.1 1.4

3.4 Model Identifiability & Estimability

3.4.1 Identifiability

If some of the model parameters have no effect on the model predictions, the

model is not structurally identifiable, and those parameters can be fixed at a

nominal value or be removed from the model. In this section, the proposed

model (i.e., System 3.1) is checked for identifiability to see if all the parameters

have an effect on the model predictions. This test for identifiability can be

accomplished in a computationally efficient manner, because System 3.1 is

bilinear and can therefore be written as{
ẋ = A(p)x+B(p)xu

y = Cx
,
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where

x =


[P+]
[P ∗]
[A+]
[A∗]

[THFI ]

 , y =

[
[A]

[THFI ]

]
, u = PH2 , p =



kP
kA
kH
kC
m′

a
SL


,

A =


−kP 0 0 0 0

(1− a)kP 0 (1−m′)kA 0 0
0 0 −kA 0 0

akP + SLkCf SLkCf m′kA −kCf 0
−SLkCf −SLkCf 0 kCf 0

 , B =


0 0 0 0 0
0 0 0 kH 0
0 0 0 0 0
0 0 0 −kH 0
0 0 0 0 0

 ,

C =

[
0 0 1 1 0
0 0 0 0 1

]
.

The identifiability of bilinear systems can be tested in a computationally

efficient manner using the approach proposed by Vajda (1985). Under this

approach, a sequence of matrices {Qi}i=0,1,...,k′ are computed as follows.

Q0 = C, Qk′ =

[
Qk′−1A
Qk′−1B

]
.

For every value of k′ = 1, 2, . . . , 2n− 1, with n the number of states, one can

compute a vector Z̃k′ = Qk′x0. The vectors Z̃k′ can be used to construct a

matrix S̃ given by

S̃ =


(Z̃0)1 (Z̃0)2 · · · (Z̃0)m
(Z̃1)1 (Z̃1)2 · · · (Z̃1)m

...
...

(Z̃2n−1)1 (Z̃2n−1)2 · · · (Z̃2n−1)m

 ,

where m is the number of system parameters and

(Z̃i)j =
∂Z̃i
∂pj

.

Using the method proposed by Vajda (1985), if the S̃ matrix for the pro-

posed model has a full column rank (i.e., rank(S̃) = m) then the system is
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identifiable. In the case of System 3.1 the number of states and parameters

are n = 5 and m = 7, respectively, and x0 is a vector containing the initial

concentrations of the states ([73.8; 0; 26.2; 0; 0]). The column rank of S̃ was

equal to m and therefore, System 3.1 is structurally identifiable and all the

model parameters have a unique (although possibly small) effect on model

predictions. While the identifiability analysis presented in this section relies

on the fact that the system model is bilinear, there are identifiability tests

which apply to more general non-linear systems (Walter & Pronzato, 1996).

3.4.2 Estimability

If a model is identifiable then every parameter can be estimated using some

set of ideal (i.e., sufficiently rich providing enough excitation and noise-free)

data. However, identifiability does not guarantee that the model parameters

can be estimated from a set of real-world data. A model is said to be estimable

if all the model parameters have a statistically significant effect on the model

predictions (Ben-Zvi, 2008; Yao et al., 2003). It is possible for an structurally

identifiable model parameter to be inestimable. In this section, System 3.1 is

tested for estimability. It is shown that, while System 3.1 is identifiable, it is

not estimable for the experimental design by Del Bianco et al. (1994).

The set of data used for parameter estimation can be generically repre-

sented using a matrix Y given by

Y (p) =
[
y1|t1 · · · yl|t1 y1|t2 · · · yl|t2 · · · y1|th · · · yl|th

]T
,

where l is the number of outputs at each sampling time, and t1, t2, ..., th ∈ R+

are the time instants. In order to assess the effect of parameter values on model

predictions, one can express the model predictions as a Taylor series with re-

spect to the parameters about the nominal parameter values (or, equivalently,

about the current best estimate). The Taylor series of Y with respect to p
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about p0 can be written as

Y (p) = Y (p0) +
∂Y

∂p

∣∣∣∣
p0

· (p− p0) +
1

2
(p− p0)T ·

∂2Y

∂p2

∣∣∣∣
p0

· (p− p0) + · · · .

(3.3)

If (p−p0) is sufficiently small and ∂y
∂p

∣∣∣
p0

exists, the right-hand side of Equation

3.3 can be approximated by

Y (p) ∼= Y (p0) + Z|p0 · (p− p0),

in which p− p0 is a vector describing a deviation from the nominal parameter

value, and Z is given by

Z =
∂Y

∂p
=



(
∂y1
∂p1

)∣∣∣
t1
· · ·

(
∂y1
∂pm

)∣∣∣
t1

...(
∂yl
∂p1

)∣∣∣
t1
· · ·

(
∂yl
∂pm

)∣∣∣
t1

...

...(
∂y1
∂p1

)∣∣∣
th
· · ·

(
∂y1
∂pm

)∣∣∣
th

...(
∂yl
∂p1

)∣∣∣
th
· · ·

(
∂yl
∂pm

)∣∣∣
th



, (3.4)

where l is the number of outputs at each sampling time, m is the number of

parameters, and t1, t2, ..., th ∈ R+ are the time instants. In order to determine

which directors in the parameter space will have the greatest effect on the

vector of observations, Y , Singular Value Decomposition (SVD) is performed

on Z at p0.

Zlh×m = Ulh×lhSlh×mV
T
m×m. (3.5)

U is a unitary matrix consisting of eigenvectors (u1, u2, ..., ulh) of ZZT as

columns. V is also a unitary matrix consisting of eigenvectors (v1, v2, ..., vm)

of ZTZ as columns. S is a diagonal matrix with non-negative singular values
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on diagonal, which are sorted in descending order (Golub & Reinsch, 1970).

S =



s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sm
...

...
. . .

...
0 0 · · · 0


,

where si is the singular value corresponding to vector vi (i ∈ {1, 2, ...,m}).

Now, using SVD decomposition of matrix Z, the Taylor expansion in Equation

3.3 can be written as

Y (p) = Y (p0) + USV T (p− p0) (3.6)

= Y (p0) + U

 s1v
T
1 (p− p0)

...
smv

T
m(p− p0)

 .
U as a unitary matrix preserves the vector length. With s1 being the largest

singular value, vT1 (p−p0) has the largest impact on the value of Y (p). Similarly,

sm is the smallest singular value and vTm(p− p0) has the smallest effect on the

value of Y (p).

Each of the quantities vT1 (p − p0) to vTm(p − p0) represent linear combina-

tions of process parameters. The values of s1 to sm allow each of these linear

combinations to be ranked in terms of their effect on the value of Y (p). For

example, vT1 (p− p0) is deemed to have the largest effect on the model predic-

tion Y (p), while vTm(p−p0) is deemed to have the smallest. It should be noted,

however, that these conclusions only hold about the nominal parameter value

p0.

This ranking of parameter combinations can be further quantified by ex-

amining the value of si for i = 1, 2, . . . ,m. Specifically, if sj/si → 0, then for

some i, j ∈ {1, 2, . . . ,m} the effect of vTj (p−p0) may be numerically negligible.

For System 3.1 (using the nominal parameter values in Table 3.4) the

matrix Z was chosen so that model prediction times matched the literature

data listed in Table 3.3. Also, the experimental design chosen was the one
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by Del Bianco et al. (1994). Note that the derivatives of the measurements

with respect to the parameters at the initial time was assumed to be zero

(as the initial conditions are known and fixed), and the derivatives of the

measurements with respect to SL was zero until such time as f([A∗ex]) was

equal to one. Singular Value Decomposition (SVD) was performed on Z, and

the values for s1 to s7 were computed and plotted in Figure 3.1 as a column

graph showing the relative singular values (i.e., {s1/s1, s2/s1, ..., s7/s1}). As

can be seen from Figure 3.1, some singular values are much larger than the

others (e.g. s1/s1 = 1.0000 and s2/s1 = 0.0164 comparing to s7/s1 = 0.0000),

which means not all the linear combinations of parameters affect the model

predictions significantly, and therefore, not all the parameters are estimable

using the experimental design by Del Bianco et al. (1994). In the next section

the issue of how many (and which) parameter combinations can be estimated

using the data set by Del Bianco et al. (1994) is addressed.

Table 3.4: Nominal values for parameters

Parameter Value reported in literature Nominal
value

Unit Reference

kP 0.013 at T=400 ◦C 0.08 min−1 Wiehe (1993)
and atmospheric pressure

kA 0.015± 0.03 0.18 min−1 Rahmani et al. (2002)
for Athabasca asphaltenes

kH k′[donor]/PH2
0.0024 min−1.MPa−1 Rahmani et al. (2002)

= (0.23± 0.09)× 0.75/20
= 0.0087± 0.0037

kC 0.028± 0.008 0.02 min−1 Rahmani et al. (2002)
for Athabasca asphaltenes

m′ m+ n = 0.54± 0.03 0.55 — Rahmani et al. (2002)
a 0.221 0.20 — Wiehe (1993)
SL 0.49 for full residue 0.15 wt%/wt% Wiehe (1993)

3.5 Parameter estimation

The estimability analysis showed that not all the parameters could be esti-

mated for Del Bianco et al.’s experimental design. However, the experimental

data provided by Del Bianco et al. (1994) and listed in Table 3.3 can be used

to estimate some parameters or combinations of parameters. The parameter

combinations vTi (p− p0) with i = 1, 2, . . . , 7, computed and ranked in Section
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Figure 3.1: Singular values comparison

3.4.2, can be viewed as pseudo-parameters using the invertible matrix V de-

fined in Equation 3.5. Specifically, let k denote the set of pseudo-parameters

defined by

k = V Tp,

so that ki = vTi p and p = V k. Using this transformation Equation 3.6 can be

written in terms of k as

Y (p) = Y (V k0) + U

 s1(k1 − k0,1)
...

sm(km − k0,m)


with k0 = [k0,1, k0,2, . . . , k0,m] = V Tp0. As U is a unitary matrix, it preserves

the vector length. Therefore, k1 is the pseudo-parameter (i.e., linear combina-

tion of p) with the most significant effect on the model predictions, because s1

is the largest singular value, and km is the least important pseudo-parameter,

because sm is the smallest singular value.
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The question of how many pseudo-parameters are to be estimated can now

be addressed by comparing the effect of each pseudo-parameter on the value

of the objective function which defines the parameter estimation problem.

Specifically, let the objective function for parameter estimation problem be

defined as

p̂ = arg min
p1,...,pm

(Yexp − Y (p))TW (Yexp − Y (p)), (3.7)

subject to

0 ≤ pi ≤ 1 (i ∈ {1, 2, ...,m}),

where Yexp consists of all the experimental outputs, W is a strictly positive

weighting matrix, and m is the number of parameters. The lower limits for all

the parameters were chosen as 0, because none of them can have a negative

value. The upper limits for kp, kA, kH , kc, and SL (p1, p2, p3, p4, p7) were chosen

as 1, because of the order of magnitudes of their values reported in literature

(Table 3.4). The upper limits for m′ and a (p5, p6) were chosen as 1, because

they encode fraction values and cannot be larger than 1.

The objective function in Equation 3.7 can be written in terms of the

pseudo-parameters as follows.

k̂ = arg min
k1,...,kg

(Yexp − Y (k))TW (Yexp − Y (k)),

subject to

0 ≤ ṽik ≤ 1 (i ∈ {1, 2, ...,m}),

where ṽi is the ith row of V, and g, with 0 ≤ g ≤ m, is a positive integer that

encodes the number of pseudo-parameters to be estimated. As the pseudo-

parameters are sorted based on their importance, one can estimate the first g

pseudo-parameters and fix the rest at their nominal values. To determine the

number of pseudo-parameters necessary to obtain a good fit to literature data

(Del Bianco et al., 1994) one can compare the objective function at each value

of g. For System 3.1, with data from Table 3.3, the optimization problem
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was solved, in turn, with g values of one to seven. The weighting matrix was

chosen as

Wlh×lh = diag(w1, w2, ..., wl, w1, w2, ..., wl, ..., ..., wl),

where

wi =
ri

‖yi,exp‖
(i = 1, 2).

wi was chosen to normalize the weight assigned to each output. The value

of ri is used to make sure that the problem is numerically tractable (in case

‖yi,exp‖ is very large for some of the outputs). In this work, ri was chosen as

lh = 12 for i ∈ {1, 2}.

The MATLAB optimization function patternsearch was first used to solve

the estimation problem, and the nominal values in Table 3.4 were chosen as

initial guesses for each parameter. Thereafter, the optimization answer was

chosen as an initial guess for MATLAB fmincon function, and a final optimum

was obtained after using fmincon function once or more. Due to the fact that

the Taylor series expansion in Equation 3.3 is valid only about some nominal

parameter value, the mapping V was recomputed after a specific number of

optimizer iterations in order to reflect the updated parameter estimates. The

minimum of the objective function obtained for the different number of pseudo-

parameters (i.e. g ∈ {1, 2, ..., 7}) is shown in Figure 3.2. As can be seen from

Figure 3.2, a value of g = 3 provides the best tradeoff between having a

low objective function value (hence a good fit of data) and model parsimony.

The fit of the model using only three pseudo-paramters is compared with

experimental data (from Table 3.3) in Figure 3.3, and the pseudo-parameter

estimates along with their confidence regions are listed in Table 3.5. Estimates

for original system parameters based on the transformation V : k 7→ p are

shown in Table 3.6.

As shown in Figure 3.3, it is possible to obtain good fit of experimental data

using only three pseudo-parameters. In addition to obtaining point-estimates

it is also possible to obtain approximate confidence regions for these three

pseudo-parameters as well as for the predicted response. The approximate
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confidence interval for each pseudo-parameter is (Marsili-Libelli et al., 2003)

δi = ±t1−(α/2)N−nk

√
Cii,

where N is the number of experimental data points, nk is the number of

Table 3.5: Confidence intervals for pseudo-parameters

i ki δi
1 −0.0006 ±0.0004
2 −0.0276 ±0.0117
3 0.0744 ±0.0102
4 0.0982 N/A
5 −0.5330 N/A
6 0.2304 N/A
7 −0.1608 N/A
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Figure 3.3: Model fit for g = 3 and confidence bounds for mean responses

pseudo-parameters, α is the confidence level, and

C(k̂) =
2

N − nk
E(k̂)H(k̂)−1,

H(k̂) =
∂2E(k)

∂k∂kT

∣∣∣∣
k̂

,

E(k̂) =
N∑
i=1

(yi − ŷi)Twi(yi − ŷi).

In the case where only three pseudo-parameters are estimated, the Hessian ma-

trix was calculated with respect to k1, k2, k3. The results for pseudo-parameters

approximate confidence intervals are shown in Table 3.5.

Based on the formula suggested by Seber & Wild (1989) for confidence

intervals of model predictions, the approximate confidence intervals for the

mean responses were obtained by using the following equation
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Table 3.6: Parameter estimations for g = 3

NO. Parameter Estimate for data by Del Bianco et al. (1994)
1 kp 0.0034
2 kA 0.2278
3 kH 0.0006
4 kC 0.0480
5 m′ 0.5306
6 a 0.1730
7 SL 0.1149

ε = ±t1−(α/2)N−nk

[(
∂y

∂[k1, ..., k3]

)
C(k̂)

(
∂y

∂[k1, ..., k3]

)T]1/2
.

The approximate 95% confidence limits for the predicted response are

shown in Figure 3.3. It should be noted that the confidence intervals com-

puted in this work are only approximate due to the fact that the parameter

estimation problem is non-linear.

3.6 Optimal experimental design

As shown in Section 3.4.2 the measured data obtained by Del Bianco et al.

(1994) can be reproduced using only three independent parameters. However,

according to the identifiability analysis every parameter has some unique effect

on the model predictions. This implies that there exists an alternative exper-

iment or operating condition which could provide measured data that cannot

be fitted using only three pseudo-parameters. More importantly, a process

designed based on estimates obtained using only the data in Del Bianco et

al. (1994) and operated under a different set of conditions may not behave as

predicted and may therefore not be able to meet design specifications.

In this section, methodology for the computation of an optimal experimen-

tal design for the estimation of all system parameters is proposed. A feature

of the proposed approach is that the new experiments are designed to com-

plement existing data in the sense that new experiments are chosen so that

the combined data set is optimal. The optimality criteria used in this work is

D-optimality.
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For any single experiment, one can define a scaled sensitivity matrix, Zscaled,

which is a matrix containing the scaled sensitivity coefficients of outputs with

respect to parameters at different time instants.

Zscaled =



hp1
‖y1‖

∂y1
∂p1

∣∣∣
t1

hp2
‖y1‖

∂y1
∂p2

∣∣∣
t1
· · · hp7

‖y1‖
∂y1
∂p7

∣∣∣
t1

hp1
‖y2‖

∂y2
∂p1

∣∣∣
t1

hp2
‖y2‖

∂y2
∂p2

∣∣∣
t1
· · · hp7

‖y2‖
∂y2
∂p7

∣∣∣
t1

hp1
‖y1‖

∂y1
∂p1

∣∣∣
t2

hp2
‖y1‖

∂y1
∂p2

∣∣∣
t2
· · · hp7

‖y1‖
∂y1
∂p7

∣∣∣
t2

hp1
‖y2‖

∂y2
∂p1

∣∣∣
t2

hp2
‖y2‖

∂y2
∂p2

∣∣∣
t2
· · · hp7

‖y2‖
∂y2
∂p7

∣∣∣
t2

...
...

...
...

hp1
‖y1‖

∂y1
∂p1

∣∣∣
th

hp2
‖y1‖

∂y1
∂p2

∣∣∣
th
· · · hp7

‖y1‖
∂y1
∂p7

∣∣∣
th

hp1
‖y2‖

∂y2
∂p1

∣∣∣
th

hp2
‖y2‖

∂y2
∂p2

∣∣∣
th
· · · hp7

‖y2‖
∂y2
∂p7

∣∣∣
th


,

where h is the number of samples, and ‖yi‖ (i ∈ {1, 2}) is

‖yi‖ =
√
yi2|t1 + yi2|t2 + · · ·+ yi2|th .

If ‖yi‖ = 0 for an experiment, it means that yi is zero at any time instant. For

this situation, rows of Zscaled containing yi are put as all zero.

The notation of Zscaled can be extended to a design with multiple experi-

ments. For a q-experiment design, one may define a matrix Z̄ which contains

the scaled sensitivity matrix from q experiments.

Z̄ =


Zscaled,0

Zscaled,1
...

Zscaled,q

 , (3.8)

where Zscaled,j (j ∈ {1, 2, ..., q}) is Zscaled computed for jth design, and Zscaled,0

is Zscaled computed for already available data.

The optimality criteria used in this work is D-optimality which implies

that for an optimal design
∣∣det(Z̄T Z̄)

∣∣ is maximized. For the system under

consideration in this work there are two optimization variables: a) initial con-

centrations, b) hydrogen partial pressure. One can also optimize over sampling
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time but in this work, it is fixed at a small practical value, 10 min. The existing

constraints for the optimization variables are:

1. Initial concentrations ([A]0, [THFI ]0): Maximum asphaltene initial con-

centration ([A]0) was assumed to be less than 32 wt% ([A]0 = 32.7 wt%

belongs to Athabasca bitumen vacuum bottoms (Rahimi et al., 1999)).

Initial coke content ([THFI ]0) was fixed at zero.

2. Hydrogen partial pressure (PH2): the hydrogen pressure was kept con-

stant during each experiment, and the range for it was chosen as 8-20

MPa according to pressures for similar experiments done by Del Bianco

et al. (1994) and Panariti et al. (2000).

Now, the experimental design problem can be defined as

[
[A]0 PH2

]∗
= arg max

[A]0,PH2

∣∣det(Z̄T Z̄)
∣∣ , (3.9)

subject to

0 < [A]0 < 32,

8 ≤ PH2 ≤ 20,

where the ∗ notation in the left hand side of Equation 3.9 denote optimal value

for the optimization variables. Solving Equation 3.9 for different number of

experiments (i.e., the value of q in Equation 3.8) allows the trade off between

experimental effort and quality of model to be quantified. For case of System

3.1, enforcing the constraints and using the parameter estimates in Table 3.6,

the optimal configurations for one, two and three new experiments are listed

in Table 3.7.

In order to choose the appropriate number of additional experiments, the

parameter estimates obtained from the different experimental designs listed

in Table 3.7 must be compared. This was done by generating a data set

(via simulation) using the parameter values from Table 3.6 for each of the

experimental designs in Table 3.7. Next, parameters in Table 3.6 were back-

calculated using the combined data set containing the simulated data and the
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Table 3.7: Optimal configurations for different experimental designs

Design Experimt [P ], [A], [THFI ], Ts, PH2
,

Number wt% wt% wt% min MPa
Current 1 73.8 26.2 0 Varianta 20

One-experiment 1 73.5 26.5 0 10 8

Two-experiment
1 73.5 26.5 0 10 8
2 68.0 32.0 0 10 19.9

Three-experiment
1 68.0 32.0 0 10 19.9
2 68.4 31.6 0 10 8
3 100.0 0.0 0 10 20

a Current data is available at sampling times of 15, 30, 60, 120 and 240 min

data in Table 3.3. The objective function in Equation 3.7 was used with W

chosen as an Identity matrix. MATLAB patternsearch and fmincon functions

were used for optimization. The results for parameter back-calculations as

well as the percent error for each parameter are listed in Table 3.8.

Table 3.8: Parameter back-calculation for different designs

Parameter kP kA k kH m′ a SL

Nominal value 0.0034 0.2278 0.0006 0.0480 0.5306 0.1730 0.1149

Current
Estimated

value
0.0004 0.1410 0.0005 0.8721 0.5229 1.0000 0.1209

%error 87.4 38.1 12.8 1716.5 1.5 477.9 5.2

One-
Estimated

value
0.0032 0.2044 0.0004 0.0494 0.5332 0.1273 0.1150

experiment % error 5.1 10.3 20.3 3.0 0.5 26.4 0.1

Two-
Estimated

value
0.0033 0.2143 0.0006 0.0497 0.5297 0.1708 0.1151

experiment % error 0.4 5.9 1.8 3.5 0.2 1.3 0.2

Three-
Estimated

value
0.0034 0.2156 0.0006 0.0505 0.5297 0.1692 0.1156

experiment %error 1.6 5.4 1.6 5.2 0.2 2.2 0.6

The different experimental designs listed in Table 3.7 were compared using

several benchmarks. Firstly, the percent error for each parameter estimate was

compared. As shown in Figure 3.4 there is a marked decrease in the percent

estimation error for the parameters with the two (additional) experimental

design as opposed to the single (additional) experimental design. However,

the three design do not provide a large improvement in the quality of the

parameter estimates over the two experiment design.

To get a quantitative assessment of the different experimental design, Three

numerical benchmarks were chosen. The benchmarks used are the total area
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in the approximate confidence ellipsoids for the parameter estimates (At),∣∣det(Z̄T Z̄)
∣∣, and the norm of error for the parameters (Et) for each experi-

mental design. The values for each benchmark and design are listed in Table

3.9. The confidence ellipsoids used to compute At were obtained based on the

method proposed in Marsili-Libelli et al. (2003), and the areas under ellip-

soids for each pair of parameters were estimated using normalized axis (i.e.,

where the nominal parameter value is equal to unity). The values of At for the

case where zero and one additional experiments were performed is listed as∞,

which means that the confidence intervals were in hyperboloidal shape. This

hyperbolic shape of the confidence intervals supports the proposition that the

parameters are inestimable using only the data provided in Del Bianco et al.

(1994) and further suggests that the parameters are likely to be inestimable

even in the case where one additional experiment is performed. This, in turn,

implies that the experimental design with two additional runs is the smallest

design (in terms of number of experiments) for which one can expect reliable

parameter estimates.

Table 3.9: Properties of different designs

Design Total area of
confidence
ellipsoids

(At)

∣∣det(Z̄T Z̄)
∣∣ Et =

√√√√ 7∑
i=1

(pi − p̂i)2

Current ∞ 9.1369E-17 1.1707
One-experiment ∞ 0.0002 0.0515
Two-experiment 0.0929 0.0497 0.0139

Three-experiment 0.0461 1.4465 0.0131

As expected, the value of At decreases as the number of experimental runs

increases from two-experiment to three-experiment design. The value of Et

also decreases from current to three-experiment design. It should be noted

that some of the individual estimation errors do not improve (Figure 3.4).

For example, going from two-experiment design to three-experiment design,

percent error for kP increases.

Overall, the two experiment design is the smallest design which gives reli-

able parameter estimates and furthermore, increasing the number of additional
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experiments from two to three does not result in a large improvement in pa-

rameter estimates or their confidence regions. As a result, the two-additional

experiments design is the best one for System 3.1 given existing data (Table

3.3) and the current parameter estimates (Table 3.6).
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Figure 3.4: Error comparison of parameter estimation for different designs

3.7 Conclusion

A lumped kinetic model for hydroconversion processing of vacuum residue is

proposed. The model is shown to be identifiable. However, subsequent sensi-

tivity analysis revealed that not all model parameters can be estimated from

literature data. It is shown that the model fit depends critically on only three

pseudo-parameters. The ability to obtain good predictions using only three

pseudo-parameters was validated using literature data. Confidence regions for

the pseudo-parameters and model responses were also computed. A method-

ology for the design of new experiments which complement existing data is
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presented. Several sets of optimal experiments were designed and evaluated.

It is shown that a design with two additional experiments provides an ideal

balance between the accuracy of parameter estimates and experimental effort.

The proposed sensitivity analysis and re-parameterization approach is quite

general and can be applied to any system for which the dependence of the out-

puts on the parameters is differentiable or can be approximated using a finite

difference. As a result, the proposed method could be applied to a system

operated non-isothermally, as well as a some model formulations where addi-

tional parameters are added to characterize differences in feed or in catalyst

activity. While the identifiability analysis presented in this work relied on

the fact that the system model is bilinear, there are identifiability tests which

apply to more general non-linear systems.
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Chapter 4

Conclusions and future work

4.1 Conclusions

Nowadays, converting vacuum residue (boiling point above 524 ◦C) into distil-

lates and improving its economic value is of particular interest (Gray & McCaf-

frey, 2002). In order to produce distillates from and upgrade heavy feedstocks,

some of their properties such as H/C ratio have to be improved (Del Bianco

et al., 1993). H/C ratio can be increased by either carbon rejection such as

in coking or hydrogen addition such as in hydroconversion (Del Bianco et al.,

1993). Carbon rejection processes have several disadvantages (Del Bianco et

al., 1993) : “low distillate conversion with poor quality (low CCR reduction

and poor heteroatoms removal and large volumes of high sulphur, high met-

als coke). Therefore, hydrogen addition processes like hydroconversion have

attracted a lot of attention.

A model for hydroconversion processing of vacuum residue is proposed.

This model contains five states, two outputs and seven parameters, and is ex-

pressed in five ordinary differential equations (ODEs). The proposed model is

developed using lumping methodology and first-principle conservation equa-

tions. The components participating in the reaction are lumped according to

their solubility characteristics. After model proposal, it is checked for identi-

fiability using the method by Vajda (1985) for bilinear systems, and proved

to be identifiable. Then, it is checked for estimability performing the singular

value decomposition (SVD) on the parameter covariance matrix. The result

was that not all the model parameters are estimable using the experimental
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design by Del Binaco et al..

The proposed model is reparameterized using the results of SVD of the pa-

rameter covariance matrix, and seven pseudo-parameters are obtained, which

are the linear combinations of the former parameters. The advantage of the

new set of parameters is that they are sorted based on their significance in

changing the output predictions. The model then is fitted to the data by

Del Bianco et al. (1994) estimating only the three most important pseudo-

parameters and fixing the rest at their nominal values, which confirms that

not all the parameters are estimable for the data by Del Bianco et al..

The fact that only three pseudo-parameters are estimated will concern one

about the design capabilities of the model as the other four pseudo-parameters

can become more important in a different experiment. Therefore, a set of

additional experiments has to be designed to collect enough data for estimating

all seven parameters. This is accomplished using the D-optimality criteria

in this work, and different sets of experiments are designed and compared.

The designs being compared are one, two and three additional experiments.

Comparing the effort and the different properties for these designs such as

norm of the error, two-experiment design is chosen as the best experimental

design in this work.

4.2 Future work

To better understand the dynamics of hydroconversion, and improve the qual-

ity of its products, suppress coke formation, and reduce the catalyst deactiva-

tion, the following items are suggested for future work:

1. Obtain additional measurements running the optimal experiments de-

signed in this work.

2. Check the model estimability for the data obtained, and try to estimate

all the parameters.

3. The model should be expanded in order to include the effect of changes

in temperature, catalyst concentration and type.
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4. The estimability of the expanded model should be examined.

5. New experiments should be designed for estimation of all (new and old)

parameters of the expanded model.

6. A model-based predictive control should be designed so that the maxi-

mum desired products (distillates) are produced and coke formation is

minimized.
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Appendix A

Maple codes

Note 1: the entries that are numbered are maple outputs, and the ones that

are not numbered are inserted by the user.

Note 2: Pp, Ps, Ap, As are P+, P ∗, A+, A∗ respectively. k1, k2, k3, k4, m and

s are kP , kA, kH , kC , m′ and SL respectively.
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(3)(3)

(4)(4)
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(4)(4)

(5)(5)
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(6)(6)

(4)(4)
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59



(6)(6)

(5)(5)

(8)(8)

(4)(4)

(7)(7)
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(9)(9)
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(7)(7)
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(9)(9)
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Appendix B

MATLAB codes

B.1 Parameter estimation
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1. ODEs 

function dx=dbmodrecurws(t,x,u,p) %ODEs 
 % x(1):Pentane-soluble, reactant  
 % x(2):Pentane-soluble, product 
 % x(3):Asphaltenes, reactant 
 % x(4):Asphaltenes, product 
 % x(5):THF-insolubles 
 % p(1)=kP  
 % p(2)=kA 
 % p(3)=kH 
 % p(4)=kC 
 % p(5)=m' 
 % p(6)=a 
 % p(7)=SL 
 % u=PH2 
dx=zeros(5,1); 

  
if x(4)>(p(7)*(x(1)+x(2))) 
    f=1; 
else  
    f=0; 
end; 

  
dx(1)=-p(1)*x(1); 
dx(2)=(1-p(6))*p(1)*x(1)+(1-p(5))*p(2)*x(3)+p(3)*u*x(4); 
dx(3)=-p(2)*x(3); 
dx(4)=p(6)*p(1)*x(1)+p(5)*p(2)*x(3)-p(3)*u*x(4)-p(4)*(x(4)-

p(7)*(x(1)+x(2)))*f; 
dx(5)=p(4)*(x(4)-p(7)*(x(1)+x(2)))*f; 
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2. ODEs including sensitivities 

function dx=dbmodrecur(t,x,u,p) %ODEs including sensitivities 
 % x(1):Pentane-soluble, reactant  
 % x(2):Pentane-soluble, product 
 % x(3):Asphaltenes, reactant 
 % x(4):Asphaltenes, product 
 % x(5):THF-insolubles 
 % p(1)=kP  
 % p(2)=kA 
 % p(3)=kH 
 % p(4)=kC 
 % p(5)=m’ 
 % p(6)=a 
 % p(7)=SL 
 % u=PH2  
dx=zeros(40,1); 

  
if x(4)>(p(7)*(x(1)+x(2))) 
    f=1; 
else  
    f=0; 
end; 

  
dx(1)=-p(1)*x(1); 
dx(2)=(1-p(6))*p(1)*x(1)+(1-p(5))*p(2)*x(3)+p(3)*u*x(4); 
dx(3)=-p(2)*x(3); 
dx(4)=p(6)*p(1)*x(1)+p(5)*p(2)*x(3)-p(3)*u*x(4)-p(4)*(x(4)-

p(7)*(x(1)+x(2)))*f; 
dx(5)=p(4)*(x(4)-p(7)*(x(1)+x(2)))*f; 

  
c = [-p(1), 0, 0, 0, 0; (1 - p(6)) * p(1), 0, (1 - p(5)) * p(2), u 

* p(3), 0; 0, 0, -p(2), 0, 0; p(6) * p(1) + p(7) * p(4) * f, p(7) 

* p(4) * f, p(5) * p(2), -p(4) * f - u * p(3), 0; -p(7) * p(4) * 

f, -p(7) * p(4) * f, 0, p(4) * f, 0;]; 

  
b = [-x(1), 0, 0, 0, 0, 0, 0; (1 - p(6)) * x(1), (1 - p(5)) * 

x(3), u * x(4), 0, -p(2) * x(3), -p(1) * x(1), 0; 0, -x(3), 0, 0, 

0, 0, 0; p(6) * x(1), p(5) * x(3), -u * x(4), p(7) * f * x(1) + 

p(7) * f * x(2) - f * x(4), p(2) * x(3), p(1) * x(1), p(4) * f * 

x(1) + p(4) * f * x(2); 0, 0, 0, -p(7) * f * x(1) - p(7) * f * 

x(2) + f * x(4), 0, 0, -p(4) * f * x(1) - p(4) * f * x(2);]; 

  
r=zeros(5,7); 
 for d=1:7 
     for e=1:5 
         r(e,d)=x(d*5+e); 
     end; 
 end; 

  
 s=b+c*r; 
 for d=1:7 
     for e=1:5 
         dx(d*5+e)=s(e,d); 
     end; 
 end; 
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3. Sensitivity test 

clear all 
 

p=[0.08     0.18    0.0024    0.02    0.55    0.20    0.15]; 
u=20; 
x0=[73.8,0,26.2,0,0,zeros(1,35)]; 
[T,X]=ode45(@(t,x)dbmodrecur(t,x,u,p),[0,15,30,60,120,240],x0); 

  
Y=zeros(size(X,1),16); 
for i=1:8 
    Y(:,2*(i-1)+1)=X(:,5*(i-1)+3)+X(:,5*(i-1)+4); 
    Y(:,2*i)=X(:,5*i); 
end; 

  
Z=zeros(2*size(Y,1),7); 

  
for i=1:size(Y,1) 
    for j=1:2 
        for k=1:7 
            Z((i-1)*2+j,k)=Y(i,k*2+j); 
        end; 
    end; 
end; 

  
[U,S,V]=svd(Z); 

  
Sd=diag(S); 
for i=1:7 
    s(i)=Sd(i)/Sd(1); 
end; 

  
bar(s) %Resulting in bar figure of relative singular values 
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4. Singular Value Decomposition (SVD) 

function V=svdcal(p) 
 

u=20; 
x0=[73.8,0,26.2,0,0,zeros(1,35)]; 
[T,X]=ode45(@(t,x)dbmodrecur(t,x,u,p),[0,200],x0); 

  
Y=zeros(size(X,1),16); 
for i=1:8 
    Y(:,2*(i-1)+1)=X(:,5*(i-1)+3)+X(:,5*(i-1)+4); 
    Y(:,2*i)=X(:,5*i); 
end; 

  
Z=zeros(2*size(Y,1),7); 

  
for i=1:size(Y,1) 
    for j=1:2 
        for k=1:7 
            Z((i-1)*2+j,k)=Y(i,k*2+j); 
        end; 
    end; 
end; 

  
[U,S,V]=svd(Z); 
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5. Objective function for parameter estimation stage 

function J=dbrecurlinrep(c0,t,u,k,V,k1) 
global s  

  
kp=[k,k1]'; 
p=V*kp; 
[m,n]=size(c0); 

  
y0=c0(1,:); 
x0=zeros(1,5); 
x0(1,3)=y0(1,1); 
x0(1,5)=y0(1,2); 
x0(1,1)=100-y0(1,1)-y0(1,2); 
Y(1,:)=y0; 

  
for i=1:m-1 
    [T,X]=ode45(@(t,x)dbmodrecurws(t,x,u,p),[t(i,1) t(i+1,1)],x0); 
    x0=X(end,:); 
    Y(i+1,1)=X(end,3)+X(end,4); 
    Y(i+1,2)=X(end,5); 
    clear X T 
end; 
W=zeros(1,2); 
W(1,1)=12/norm(c0(:,1)); 
W(1,2)=12/norm(c0(:,2)); 
J=0; 
s=s+1 
for l=1:m 
    for o=1:n 
        J=J+(W(1,o)*(Y(l,o)-c0(l,o))).^2; 
    end; 
end; 
J 
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6. Parameter estimation with optimizing over only one pseudo-

parameter 

clear all 
clc  
global s  
s=0; 
u=20; 
%load p1.mat 
load Y.mat 
load T.mat 

  
p=[0.08     0.18    0.0024  0.02    0.55    0.20    0.15];%initial 

guess 
V=svdcal(p); 
vp=p*V;%transforming p 
k0=vp(1,1);%the pseudo-parameters that are being held constant 
k1=vp(1,2:7);% the initial guess for pseudo-parameters that are 

being optimized 
exitflag=0;%the exit error for patternsearch which has to be 

“minimum TolX has reached” 

  
A(1:7,:)=-V(:,1); 
b(1:7,1)=V(:,7)*k1(1,6)+V(:,6)*k1(1,5)+V(:,5)*k1(1,4)+V(:,4)*k1(1,

3)+V(:,3)*k1(1,2)+V(:,2)*k1(1,1);% the transformed left-hand side 

of constraint for parameters (0<p) 
A(8:14,:)=V(:,1); 
b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,6)+V(:,6)*k1(1,5)+V(:,5)*k1(1,4)+V(:,4)*k1(1,3)+V(:,3

)*k1(1,2)+V(:,2)*k1(1,1));% the transformed right-hand side of 

constraint for parameters (p<1) 

  
options1=psoptimset('TolFun',0.000001,'TolX',0.000001,'MaxIter', 

25, 'MaxFunEval', 30000); 

  
while exitflag==0 

 

   

[K,fval,exitflag]=fmincon(@(k)dbrecurlinrep(Y,T,u,k,V,k1),k0,A,b,[

],[],[] 

    ,[],[],options1); 

    vp=[K,k1];% the answer of optimization+ constant pseudo-

paramaters 
    p=vp*V';%new set of parameter estimates 
    V=svdcal(p);% new V based on new p 
    kf=vp; 
    vp=p*V;% new set of pseudo-parameter estimates based on new V 
    k0=vp(1,1);% new initial quess based on new p and V 
    k1=vp(1,2:7);% new values of constant pseudo-parameters 
    %Upadating constraints 
    A(1:7,:)=-V(:,1); 
    

b(1:7,1)=V(:,7)*k1(1,6)+V(:,6)*k1(1,5)+V(:,5)*k1(1,4)+V(:,4)*k1(1,

3)+V(:,3)*k1(1,2)+V(:,2)*k1(1,1); 

    A(8:14,:)=V(:,1); 
    b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,6)+V(:,6)*k1(1,5)+V(:,5)*k1(1,4)+ 
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     V(:,4)*k1(1,3)+V(:,3)*k1(1,2)+V(:,2)*k1(1,1)); 

end; 

  
save('p1','p'); 
run RecursiveLinReparaSimulator 
clear all 
clc  
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7. Parameter estimation with optimizing over two pseudo-parameters 

global s  
s=0; 
u=20; 
load Y.mat 
load T.mat 
%load p2.mat 
p=[0.08     0.18    0.0024  0.02    0.55    0.20    0.15];%initial 

guess 
V=svdcal(p); 
vp=p*V;%transforming p 
k0=vp(1,1:2);%the pseudo-parameters that are being held constant 
k1=vp(1,3:7);% the initial guess for pseudo-parameters that are 

being optimized 
exitflag=0;%the exit error for patternsearch which has to be 

"minimum TolX has reached" 

  
A(1:7,:)=-V(:,1:2); 
b(1:7,1)=V(:,7)*k1(1,5)+V(:,6)*k1(1,4)+V(:,5)*k1(1,3)+V(:,4)*k1(1,

2)+V(:,3)*k1(1,1);% the transformed left-hand side of constraint 

for parameters (0<p) 
A(8:14,:)=V(:,1:2); 
b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,5)+V(:,6)*k1(1,4)+V(:,5)*k1(1,3)+V(:,4)*k1(1,2)+V(:,3

)*k1(1,1));% the transformed right-hand side of constraint for 

parameters (p<1) 

  
options1=psoptimset('TolFun',0.000001,'TolX',0.000001,'MaxIter', 

25, 'MaxFunEval', 30000); 

  
while exitflag==0 
    

[K,fval,exitflag]=fmincon(@(k)dbrecurlinrep(Y,T,u,k,V,k1),k0,A,b,[

],[], 

    [],[],[],options1); 
    vp=[K,k1];% the answer of optimization+ constant pseudo-

paramaters 
    p=vp*V';%new set of parameter estimates 
    Vn=svdcal(p);% new V based on new p 
    kf=vp; 
    V=Vn;% new V based on new p 
    vp=p*V;% new set of pseudo-parameter estimates based on new V 
    k0=vp(1,1:2);% new initial quess based on new p and V 
    k1=vp(1,3:7);% new values of constant pseudo-parameters 
    %Updating constraints 
    A(1:7,:)=-V(:,1:2); 
    b(1:7,1)=V(:,7)*k1(1,5)+V(:,6)*k1(1,4)+V(:,5)*k1(1,3)+ 

     V(:,4)*k1(1,2)+V(:,3)*k1(1,1); 
    A(8:14,:)=V(:,1:2); 
    b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,5)+V(:,6)*k1(1,4)+V(:,5)*k1(1,3)+ 

     V(:,4)*k1(1,2)+V(:,3)*k1(1,1)); 
end; 

  
save('p2','p'); 
run RecursiveLinReparaSimulator 
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8. Parameter estimation with optimizing over three pseudo-

parameters 

clear all 
clc  
global s  
s=0; 
u=20; 
%load p32.mat 
load Y.mat 
load T.mat 

  
p=[0.08     0.18    0.0024  0.02    0.55    0.20    0.15];%initial 

guess 
V=svdcal(p); 
vp=p*V;%transforming p 
k0=vp(1,1:3);%the pseudo-parameters that are being held constant 
k1=vp(1,4:7);% the initial guess for pseudo-parameters that are 

being optimized 
exitflag=0;%the exit error for patternsearch which has to be 

“minimum TolX has reached” 

  
A(1:7,:)=-V(:,1:3); 
b(1:7,1)=V(:,7)*k1(1,4)+V(:,6)*k1(1,3)+V(:,5)*k1(1,2)+V(:,4)*k1(1,

1);% the transformed left-hand side of constraint for parameters 

(0<p) 
A(8:14,:)=V(:,1:3); 
b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,4)+V(:,6)*k1(1,3)+V(:,5)*k1(1,2)+V(:,4)*k1(1,1));% 

the transformed right-hand side of constraint for parameters (p<1) 

  
options1=psoptimset('TolFun',0.000001,'TolX',0.000001,'MaxIter', 

25, 'MaxFunEval', 30000); 

  
while exitflag==0 
    

[K,fval,exitflag]=fmincon(@(k)dbrecurlinrep(Y,T,u,k,V,k1),k0,A,b,[

],[], 

    [],[],[],options1); 
    vp=[K,k1];% the answer of optimization+ constant pseudo-

paramaters 
    p=vp*V';%new set of parameter estimates 
    V_op=V; 
    k_op=vp; 
    V=svdcal(p);% new V based on new p 
    vp=p*V;% new set of pseudo-parameter estimates based on new V 
    k0=vp(1,1:3);% new initial quess based on new p and V 
    k1=vp(1,4:7);% new values of constant pseudo-parameters 
    %Updating constraints 
    A(1:7,:)=-V(:,1:3); 
    

b(1:7,1)=V(:,7)*k1(1,4)+V(:,6)*k1(1,3)+V(:,5)*k1(1,2)+V(:,4)*k1(1,

1); 
    A(8:14,:)=V(:,1:3); 
    b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,4)+V(:,6)*k1(1,3)+V(:,5)*k1(1,2)+ 

     V(:,4)*k1(1,1)); 
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end; 
save('p32','p'); 
save('V_op32','V_op') 
save('k_op32','k_op') 
save('/home/sshams/model2v/Jan14_2measVarib/K_CI/p32','p'); 
save('/home/sshams/model2v/Jan14_2measVarib/K_CI/V_op32','V_op'); 
save('/home/sshams/model2v/Jan14_2measVarib/K_CI/k_op32','k_op'); 
run RecursiveLinReparaSimulator 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74



9. Parameter estimation with optimizing over four pseudo-

parameters 

clear all 
clc  
global s  
s=0; 
u=20; 
%load p4.mat 
load Y.mat 
load T.mat 

  
p=[0.08     0.18    0.0024  0.02    0.55    0.20    0.15];%initial 

guess 
V=svdcal(p); 
vp=p*V;%transforming p 
k0=vp(1,1:4);%the pseudo-parameters that are being held constant 
k1=vp(1,5:7);% the initial guess for pseudo-parameters that are 

being optimized 
exitflag=0;%the exit error for patternsearch which has to be 

“minimum TolX has reached”  

  
A(1:7,:)=-V(:,1:4); 
b(1:7,1)=V(:,7)*k1(1,3)+V(:,6)*k1(1,2)+V(:,5)*k1(1,1);% the 

transformed left-hand side of constraint for parameters (0<p) 
A(8:14,:)=V(:,1:4); 
b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,3)+V(:,6)*k1(1,2)+V(:,5)*k1(1,1));% the transformed 

right-hand side of constraint for parameters (p<1) 

  
options1=psoptimset('TolFun',0.000001,'TolX',0.000001,'MaxIter',20

, 'MaxFunEval', 30000); 

  
while exitflag==0 
    

[K,fval,exitflag]=patternsearch(@(k)dbrecurlinrep(Y,T,u,k,V,k1),k0

,A,b, 

    [],[],[],[],[],options1); 
    vp=[K,k1];% the answer of optimization+ constant pseudo-

paramaters 
    p=vp*V';%new set of parameter estimates 
    kf=vp; 
    V=svdcal(p);% new V based on new p 
    vp=p*V;% new set of pseudo-parameter estimates based on new V 
    k0=vp(1,1:4);% new initial quess based on new p and V 
    k1=vp(1,5:7);% new values of constant pseudo-parameters 
    %Updating constraints 
    A(1:7,:)=-V(:,1:4); 
    b(1:7,1)=V(:,7)*k1(1,3)+V(:,6)*k1(1,2)+V(:,5)*k1(1,1); 
    A(8:14,:)=V(:,1:4); 
    b(8:14,1)=ones(7,1)-

(V(:,7)*k1(1,3)+V(:,6)*k1(1,2)+V(:,5)*k1(1,1)); 
    save('p4','p'); 
end; 

  
run RecursiveLinReparaSimulator 
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10. Parameter estimation with optimizing over five pseudo-

parameters 

clear all 
clc  
global s  
s=0; 
u=20; 
%load p5.mat 
load Y.mat 
load T.mat 

  
p=[0.08     0.18    0.0024  0.02    0.55    0.20    0.15];%initial 

guess 
V=svdcal(p); 
vp=p*V;%transforming p 
k0=vp(1,1:5);%the pseudo-parameters that are being held constant 
k1=vp(1,6:7);% the initial guess for pseudo-parameters that are 

being optimized 
exitflag=0;%the exit error for patternsearch which has to be 

"minimum TolX has reached" 

  
A(1:7,:)=-V(:,1:5); 
b(1:7,1)=V(:,7)*k1(1,2)+V(:,6)*k1(1,1);% the transformed left-hand 

side of constraint for parameters (0<p) 
A(8:14,:)=V(:,1:5); 
b(8:14,1)=ones(7,1)-(V(:,7)*k1(1,2)+V(:,6)*k1(1,1));% the 

transformed right-hand side of constraint for parameters (p<1) 

  
options1=psoptimset('TolFun',0.000001,'TolX',0.000001,'MaxIter', 

33, 'MaxFunEval', 30000); 
pashe=0; 
while exitflag==0 
    

[K,fval,exitflag]=patternsearch(@(k)dbrecurlinrep(Y,T,u,k,V,k1),k0

,A,b, 

    [],[],[],[],[],options1); 
    vp=[K,k1];% the answer of optimization+ constant pseudo-

paramaters 
    p=vp*V';%new set of parameter estimates 
    V=svdcal(p);% new V based on new p 
    kf=vp; 
    vp=p*V;% new set of pseudo-parameter estimates based on new V 
    k0=vp(1,1:5);% new initial quess based on new p and V 
    k1=vp(1,6:7);% new values of constant pseudo-parameters 
    %Updating Constraints 
    A(1:7,:)=-V(:,1:5); 
    b(1:7,1)=V(:,7)*k1(1,2)+V(:,6)*k1(1,1); 
    A(8:14,:)=V(:,1:5); 
    b(8:14,1)=ones(7,1)-(V(:,7)*k1(1,2)+V(:,6)*k1(1,1)); 
    pashe=pashe+1; 
end; 

  
save('p5','p'); 
run RecursiveLinReparaSimulator 
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11. Parameter estimation with optimizing over six pseudo-

parameters 

clear all 
clc  
global s  
s=0; 
u=20; 
%load p6.mat 
load Y.mat 
load T.mat 

  
p=[0.08     0.18    0.0024  0.02    0.55    0.20    0.15];%initial 

guess 
V=svdcal(p); 
vp=p*V;%transforming p 
k0=vp(1,1:6);%the pseudo-parameters that are being held constant 
k1=vp(1,7);% the initial guess for pseudo-parameters that are 

being optimized 
exitflag=0;%the exit error for patternsearch which has to be 

"minimum TolX has reached" 

  
A(1:7,:)=-V(:,1:6); 
b(1:7,1)=V(:,7)*k1(1,1);% the transformed left-hand side of 

constraint for parameters (0<p) 
A(8:14,:)=V(:,1:6); 
b(8:14,1)=ones(7,1)-(V(:,7)*k1(1,1));% the transformed right-hand 

side of constraint for parameters (p<1) 

  

  
options1=psoptimset('TolFun',0.000001,'TolX',0.000001,'MaxIter', 

20, 'MaxFunEval', 30000); 
pashe=0; 
while exitflag==0 
    

[K,fval,exitflag]=fmincon(@(k)dbrecurlinrep(Y,T,u,k,V,k1),k0,A,b, 

    [],[],[],[],[],options1); 
    vp=[K,k1];% the answer of optimization+ constant pseudo-

paramaters 
    p=vp*V';%new set of parameter estimates 
    kf=vp; 
    V=svdcal(p);% new V based on new p 
    vp=p*V;% new set of pseudo-parameter estimates based on new V 
    k0=vp(1,1:6);% new initial quess based on new p and V 
    k1=vp(1,7);% new values of constant pseudo-parameters 
    %Updating constraints 
    A(1:7,:)=-V(:,1:6); 
    b(1:7,1)=V(:,7)*k1(1,1); 
    A(8:14,:)=V(:,1:6); 
    b(8:14,1)=ones(7,1)-(V(:,7)*k1(1,1)); 
    pashe=pashe+1; 
end; 

  
save('p6','p'); 
run RecursiveLinReparaSimulator 
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12. Parameter estimation with optimizing over all the pseudo-

parameters 

clear all 
clc  
global s  
s=0; 
u=20; 
%load p7.mat 
load Y.mat 
load T.mat 

  
p=[0.08     0.18    0.0024    0.02    0.55    0.20    

0.15];%initial guess 
V=svdcal(p); 
vp=p*V;%transforming p 
k0=vp(1,1:7);%the pseudo-parameters that are being held constant 
k1=[]; 
exitflag=0;%the exit error for patternsearch which has to be 

"minimum TolX has reached" 

  
A(1:7,:)=-V(:,1:7); 
b(1:7,1)=zeros(7,1);% the transformed left-hand side of constraint 

for parameters (0<p) 
A(8:14,:)=V(:,1:7); 
b(8:14,1)=ones(7,1);% the transformed right-hand side of 

constraint for parameters (p<1) 

  

  
options1=psoptimset('TolFun',0.000001,'TolX',0.000001,'MaxIter', 

25, 'MaxFunEval', 30000); 
pashe=0; 
while exitflag==0 
    

[K,fval,exitflag]=fmincon(@(k)dbrecurlinrep(Y,T,u,k,V,k1),k0,A,b, 

    [],[],[],[],[],options1); 
    vp=[K,k1];% the answer of optimization+ constant pseudo-

paramaters 
    p=vp*V';%new set of parameter estimates 
    kf=vp; 
    V=svdcal(p);% new V based on new p 
    vp=p*V;% new set of pseudo-parameter estimates based on new V 
    k0=vp(1,1:7);% new initial quess based on new p and V 
    k1=[];% new values of constant pseudo-parameters 
    %Updating constraints  
    A(1:7,:)=-V(:,1:7); 
    b(1:7,1)=zeros(7,1); 
    A(8:14,:)=V(:,1:7); 
    b(8:14,1)=ones(7,1); 
    pashe=pashe+1; 
    save('p7','p'); 
end; 

  

  
run RecursiveLinReparaSimulator 
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13. RecursiveLinReparaSimulator 

clc 
%simulates the system using estimated parameters, the actual 

points are 
%from Y.mat and T.mat 

  
clear u y0 x0 X time Ys  

  
u=20; 
y0=Y(1,:); 
x0=zeros(1,5); 
x0(1,3)=y0(1,1); 
x0(1,5)=y0(1,2); 
x0(1,1)=100-y0(1,1)-y0(1,2); 

   

  
[time,X]=ode45(@(t,x)dbmodrecurws(t,x,u,p),[0 250],x0); 
Ys(:,1)=X(:,3)+X(:,4); 
Ys(:,2)=X(:,5); 
Ys=roundn(Ys,-1);    

  

  

  
Ys=roundn(Ys,-4); 

  

  
 plot(time,Ys(1:end,1),'-g',time,Ys(1:end,2),'-

b',T,Y(1:end,1),'.g',T,Y(1:end,2),'.b','LineWidth',2,'MarkerSize',

20); 
set(gca,'FontSize',16) 
legend('A','THFI','A (exp)','THFI (exp)') 
xlabel('time (min)','FontSize', 18); 
ylabel('%wt','FontSize', 18); 
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B.2 Optimal experimental design
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1. ODEs including sensitivities 

function dx=dbmodrecur(t,x,u,p) 
 % x(1):Pentane-soluble, reactant  
 % x(2):Pentane-soluble, product 
 % x(3):Asphaltenes, reactant 
 % x(4):Asphaltenes, product 
 % x(5):THF-insolubles 
 % p(1)=kP  
 % p(2)=kA 
 % p(3)=kH 
 % p(4)=kC 
 % p(5)=m’ 
 % p(6)=a 
 % p(7)=SL 
 % u=P_H2 
dx=zeros(40,1); 

  
if x(4)>(p(7)*(x(1)+x(2))) 
    f=1; 
else  
    f=0; 
end; 

  
dx(1)=-p(1)*x(1); 
dx(2)=(1-p(6))*p(1)*x(1)+(1-p(5))*p(2)*x(3)+p(3)*u*x(4); 
dx(3)=-p(2)*x(3); 
dx(4)=p(6)*p(1)*x(1)+p(5)*p(2)*x(3)-p(3)*u*x(4)-p(4)*(x(4)-

p(7)*(x(1)+x(2)))*f; 
dx(5)=p(4)*(x(4)-p(7)*(x(1)+x(2)))*f; 

  
c = [-p(1), 0, 0, 0, 0; (1 - p(6)) * p(1), 0, (1 - p(5)) * p(2), u 

* p(3), 0; 0, 0, -p(2), 0, 0; p(6) * p(1) + p(7) * p(4) * f, p(7) 

* p(4) * f, p(5) * p(2), -p(4) * f - u * p(3), 0; -p(7) * p(4) * 

f, -p(7) * p(4) * f, 0, p(4) * f, 0;]; 

  
b = [-x(1), 0, 0, 0, 0, 0, 0; (1 - p(6)) * x(1), (1 - p(5)) * 

x(3), u * x(4), 0, -p(2) * x(3), -p(1) * x(1), 0; 0, -x(3), 0, 0, 

0, 0, 0; p(6) * x(1), p(5) * x(3), -u * x(4), p(7) * f * x(1) + 

p(7) * f * x(2) - f * x(4), p(2) * x(3), p(1) * x(1), p(4) * f * 

x(1) + p(4) * f * x(2); 0, 0, 0, -p(7) * f * x(1) - p(7) * f * 

x(2) + f * x(4), 0, 0, -p(4) * f * x(1) - p(4) * f * x(2);]; 

  
r=zeros(5,7); 
 for d=1:7 
     for e=1:5 
         r(e,d)=x(d*5+e); 
     end; 
 end; 

  
 s=b+c*r; 
 for d=1:7 
     for e=1:5 
         dx(d*5+e)=s(e,d); 
     end; 
 end; 
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2. Building ZScaled for one-experiment design 

function J=maxdet1(Ts,p) 
global rs 
u=Ts(2,1); 
x0=[100-Ts(1,1),0,Ts(1,1),0,0,zeros(1,35)]; 

  

  
[T,X]=ode45(@(t,x)dbmodrecur(t,x,20,p),[0,15,30,60,120,240],[73.8,

0,26.2,0,0,zeros(1,35)]); 
[T1,X1]=ode45(@(t,x)dbmodrecur(t,x,u,p),(0:10:250),x0); 

  
Y=zeros(size(X,1),16); 
for i=1:8 
    Y(:,2*(i-1)+1)=X(:,5*(i-1)+3)+X(:,5*(i-1)+4); 
    Y(:,2*i)=X(:,5*i); 
end; 
for i=1:16 
    if norm(Y(:,i))>0 
        Y(:,i)=Y(:,i)*size(Y,1)/norm(Y(:,i)); 
    end; 
end; 
Z=zeros(2*size(Y,1),7); 

  
for i=1:size(Y,1) 
    for j=1:2 
        for k=1:7 
            Z((i-1)*2+j,k)=p(1,k)*Y(i,k*2+j); 
        end; 
    end; 
end; 

  
Y1=zeros(size(X1,1),16); 
for i=1:8 
    Y1(:,2*(i-1)+1)=X1(:,5*(i-1)+3)+X1(:,5*(i-1)+4); 
    Y1(:,2*i)=X1(:,5*i); 
end; 
for i=1:16 
    if norm(Y1(:,i))>0     
        Y1(:,i)=Y1(:,i)*size(Y1,1)/norm(Y1(:,i)); 
    end; 
end; 
Z1=zeros(2*size(Y1,1),7); 

  
for i=1:size(Y1,1) 
    for j=1:2 
        for k=1:7 
            Z1((i-1)*2+j,k)=p(1,k)*Y1(i,k*2+j); 
        end; 
    end; 
end; 
z=[Z;Z1]; 
rs=rs+1 
J=-abs(det(z'*z)) 
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3. Designing one additional optimal experiment 

clear all 
clc 
global rs 
rs=0; 
load p32.mat 
 

options=psoptimset('TolMesh',10^-8,'TolX',0.001); 
[Ts,fval]=patternsearch(@(ts)maxdet1(ts,p),[32;15],[],[],[],[],[0;

8],[32;20],[]); 
save('TsOneReal','Ts') 
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4. Building ZScaled for two-experiment design 

function J=maxdetTwo(Ts,p) 
global rs 

  

  
u1=Ts(3,1); 
u2=Ts(4,1); 

  
%r=fix(250/Ts(3,1)); 

  

  
x01=[100-Ts(1,1),0,Ts(1,1),0,0,zeros(1,35)]; 
x02=[100-Ts(2,1),0,Ts(2,1),0,0,zeros(1,35)]; 

  
[T,X]=ode45(@(t,x)dbmodrecur(t,x,20,p),[0,15,30,60,120,240],[73.8,

0,26.2,0,0,zeros(1,35)]); 
[T1,X1]=ode45(@(t,x)dbmodrecur(t,x,u1,p),(0:10:250),x01); 
[T2,X2]=ode45(@(t,x)dbmodrecur(t,x,u2,p),(0:10:250),x02); 

  
Y=zeros(size(X,1),16); 
for i=1:8 
    Y(:,2*(i-1)+1)=X(:,5*(i-1)+3)+X(:,5*(i-1)+4); 
    Y(:,2*i)=X(:,5*i); 
end; 
for i=1:16 
    if norm(Y(:,i))>0 
        Y(:,i)=Y(:,i)*size(Y,1)/norm(Y(:,i)); 
    end; 
end; 

  
Y1=zeros(size(X1,1),16); 
for i=1:8 
    Y1(:,2*(i-1)+1)=X1(:,5*(i-1)+3)+X1(:,5*(i-1)+4); 
    Y1(:,2*i)=X1(:,5*i); 
end; 

  
Y2=zeros(size(X2,1),16); 
for i=1:8 
    Y2(:,2*(i-1)+1)=X2(:,5*(i-1)+3)+X2(:,5*(i-1)+4); 
    Y2(:,2*i)=X2(:,5*i); 
end; 

  
for i=1:16 
    if norm(Y1(:,i))>0 
        Y1(:,i)=Y1(:,i)*size(Y1,1)/norm(Y1(:,i)); 
    end; 
end; 

  
for i=1:16 
    if norm(Y2(:,i))>0 
        Y2(:,i)=Y2(:,i)*size(Y2,1)/norm(Y2(:,i)); 
    end; 
end; 
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Z=zeros(2*size(Y,1),7); 

  
for i=1:size(Y,1) 
    for j=1:2 
        for k=1:7 
            Z((i-1)*2+j,k)=p(1,k)*Y(i,k*2+j); 
        end; 
    end; 
end; 

  
Z1=zeros(2*size(Y1,1),7); 

  
for i=1:size(Y1,1) 
    for j=1:2 
        for k=1:7 
            Z1((i-1)*2+j,k)=p(1,k)*Y1(i,k*2+j); 
        end; 
    end; 
end; 
Z2=zeros(2*size(Y2,1),7); 

  
for i=1:size(Y2,1) 
    for j=1:2 
        for k=1:7 
            Z2((i-1)*2+j,k)=p(1,k)*Y2(i,k*2+j); 
        end; 
    end; 
end; 
z=[Z;Z1;Z2]; 

  
rs=rs+1 
J=-abs(det(z'*z)) 
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5. Designing two additional optimal experiments 

clear all 
clc 
global rs 
rs=0; 
load p32.mat 
options=psoptimset('TolMesh',10^-8,'TolX',0.1); 
[Ts,fval]=patternsearch(@(ts)maxdetTwo(ts,p),[0;0;20;8],[],[],[],[

],[0;0;8;8],[32;32;20;20],[],options); 
save('TsRealTwo','Ts') 
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6. Building ZScaled for three-experiment design 

function J=maxdetThree(Ts,p) 
global rs 

  
u1=Ts(4,1); 
u2=Ts(5,1); 
u3=Ts(6,1); 

  
%r=fix(250/Ts(4,1)); 

  

  
x01=[100-Ts(1,1),0,Ts(1,1),0,0,zeros(1,35)]; 
x02=[100-Ts(2,1),0,Ts(2,1),0,0,zeros(1,35)]; 
x03=[100-Ts(3,1),0,Ts(3,1),0,0,zeros(1,35)]; 

  
[T,X]=ode45(@(t,x)dbmodrecur(t,x,20,p),[0,15,30,60,120,240],[73.8,

0,26.2,0,0,zeros(1,35)]); 
[T1,X1]=ode45(@(t,x)dbmodrecur(t,x,u1,p),(0:10:250),x01); 
[T2,X2]=ode45(@(t,x)dbmodrecur(t,x,u2,p),(0:10:250),x02); 
[T3,X3]=ode45(@(t,x)dbmodrecur(t,x,u3,p),(0:10:250),x03); 

  
Y=zeros(size(X,1),16); 
for i=1:8 
    Y(:,2*(i-1)+1)=X(:,5*(i-1)+3)+X(:,5*(i-1)+4); 
    Y(:,2*i)=X(:,5*i); 
end; 

  
Y1=zeros(size(X1,1),16); 
for i=1:8 
    Y1(:,2*(i-1)+1)=X1(:,5*(i-1)+3)+X1(:,5*(i-1)+4); 
    Y1(:,2*i)=X1(:,5*i); 
end; 
Y2=zeros(size(X2,1),16); 
for i=1:8 
    Y2(:,2*(i-1)+1)=X2(:,5*(i-1)+3)+X2(:,5*(i-1)+4); 
    Y2(:,2*i)=X2(:,5*i); 
end; 
Y3=zeros(size(X3,1),16); 
for i=1:8 
    Y3(:,2*(i-1)+1)=X3(:,5*(i-1)+3)+X3(:,5*(i-1)+4); 
    Y3(:,2*i)=X3(:,5*i); 
end; 

  
for i=1:16 
    if norm(Y(:,i))>0 
        Y(:,i)=Y(:,i)*size(Y,1)/norm(Y(:,i)); 
    end; 
end; 

  
for i=1:16 
    if norm(Y1(:,i))>0 
        Y1(:,i)=Y1(:,i)*size(Y1,1)/norm(Y1(:,i)); 
    end; 
end; 
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for i=1:16 
    if norm(Y2(:,i))>0 
        Y2(:,i)=Y2(:,i)*size(Y2,1)/norm(Y2(:,i)); 
    end; 
end; 

  
for i=1:16   
    if norm(Y3(:,i))>0     
        Y3(:,i)=Y3(:,i)*size(Y3,1)/norm(Y3(:,i)); 
    end; 
end; 

  
Z=zeros(2*size(Y,1),7); 

  
for i=1:size(Y,1) 
    for j=1:2 
        for k=1:7 
            Z((i-1)*2+j,k)=p(1,k)*Y(i,k*2+j); 
        end; 
    end; 
end; 

  
Z1=zeros(2*size(Y1,1),7); 

  
for i=1:size(Y1,1) 
    for j=1:2 
        for k=1:7 
            Z1((i-1)*2+j,k)=p(1,k)*Y1(i,k*2+j); 
        end; 
    end; 
end; 

  

  
Z2=zeros(2*size(Y2,1),7);  
for i=1:size(Y2,1) 
    for j=1:2 
        for k=1:7 
            Z2((i-1)*2+j,k)=p(1,k)*Y2(i,k*2+j); 
        end; 
    end; 
end; 

 
Z3=zeros(2*size(Y3,1),7); 
for i=1:size(Y3,1) 
    for j=1:2 
        for k=1:7 
            Z3((i-1)*2+j,k)=p(1,k)*Y3(i,k*2+j); 
        end; 
    end; 
end; 
z=[Z;Z1;Z2;Z3]; 

  
rs=rs+1 
J=-abs(det(z'*z)) 
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7. Designing three additional optimal experiments 

clear all 
clc 
global rs 
rs=0; 
load p32.mat 
options=psoptimset('TolMesh',10^-8,'TolX',0.0001); 
[Ts,fval]=patternsearch(@(ts)maxdetThree(ts,p),[0;30;25;8;8;20],[]

,[],[],[],[0;0;0;8;8;8],[32;32;32;20;20;20],[],options); 
save('TsRealThree','Ts') 
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B.3 Parameter back-calculations for different

experimental designs
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1. ODEs 

function dx=dbmodrecurws(t,x,u,p) 
 % x(1):Pentane-soluble, reactant  
 % x(2):Pentane-soluble, product 
 % x(3):Asphaltenes, reactant 
 % x(4):Asphaltenes, product 
 % x(5):THF-insolubles 
 % p(1)=kP  
 % p(2)=kA 
 % p(3)=kH 
 % p(4)=kC 
 % p(5)=m’ 
 % p(6)=a 
 % p(7)=SL 
 % u=P_H2 

  
dx=zeros(5,1); 

  
if x(4)>(p(7)*(x(1)+x(2))) 
    f=1; 
else  
    f=0; 
end; 

  
dx(1)=-p(1)*x(1); 
dx(2)=(1-p(6))*p(1)*x(1)+(1-p(5))*p(2)*x(3)+p(3)*u*x(4); 
dx(3)=-p(2)*x(3); 
dx(4)=p(6)*p(1)*x(1)+p(5)*p(2)*x(3)-p(3)*u*x(4)-p(4)*(x(4)-

p(7)*(x(1)+x(2)))*f; 
dx(5)=p(4)*(x(4)-p(7)*(x(1)+x(2)))*f; 
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2. Parameter back-calculation objective function for current 

experimental design 

function J=joptex0(T,Y,u1,p_op) 
global s 

  

  
ob=0; 
[m,n]=size(Y); 

  
y0=Y(1,:); 
x0=zeros(1,5); 
x0(1,3)=y0(1,1); 
x0(1,5)=y0(1,2); 
x0(1,1)=100-y0(1,1)-y0(1,2); 

  
Yt(1,:)=y0; 

  
for i=1:m-1 
    [Tt,Xt]=ode45(@(t,x)dbmodrecurws(t,x,u1,p_op),[T(i,1) 

T(i+1,1)],x0); 
    x0=Xt(end,:); 
    Yt(i+1,1)=Xt(end,3)+Xt(end,4); 
    Yt(i+1,2)=Xt(end,5); 
    clear Xt Tt 
end; 

  
W(1,1)=1; 
W(1,2)=1; 

   
s=s+1 
for l=1:m 
    for o=1:n 
        ob=ob+(W(1,o)*(Yt(l,o)-Y(l,o))).^2; 
    end; 
end; 
J=ob 
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3. Parameter back-calculation for current experimental design 

clear all 

  
global s 
s=0; 
load pZeroReal.mat 
load Y.mat 
load T.mat 

  
u1=20; 

  
p0=[0.08    0.18    0.0024  0.02    0.55    0.20    0.15]; 
options=psoptimset('MaxIter',50000,'MaxfunEvals',600000,'TolMesh',

1e-8); 

  
[P,fval]=patternsearch(@(p_op)joptex0(T,Y,u1,p_op),p0,[],[],[],[],

zeros(1,7),ones(1,7),[],options); 
p0=P; 

  
[Tt,Xt]=ode45(@(t,x)dbmodrecurws(t,x,u1,P),0:10:250,[73.8,0,26.2,0

,0]); 
Yt(:,1)=Xt(:,3)+Xt(:,4); 
Yt(:,2)=Xt(:,5); 

  
plot(Tt,Yt(1:end,1),'-g',Tt,Yt(1:end,2),'-

b',T,Y(1:end,1),'.g',T,Y(1:end,2),'.b'); 

  
 save('/home/sshams/model2v/Jan14_2measVarib/CI on experimental 

design/CI for one experiment/pZeroReal','p0') 
 save('pZeroReal','p0') 
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4. Parameter back-calculation objective function for one-

experiment design 

function J=joptex(T,Y,Ye,u1,u2,p_op) 
global s 
[Tt,Xt]=ode45(@(t,x)dbmodrecurws(t,x,u1,p_op),0:10:250,[73.5,0,26.

5,0,0]); 

  
Yt(:,1)=Xt(:,3)+Xt(:,4); 
Yt(:,2)=Xt(:,5); 

  
W=zeros(1,2); 
W(1,1)=1; 
W(1,2)=1;  

  
ob=0; 
for i=1:size(Ye,1) 
    for j=1:2 
        ob=ob+(W(1,j)*(Yt(i,j)-Ye(i,j)))^2; 
    end; 
end; 

  
clear Xt Yt Tt 
[m,n]=size(Y); 

  
y0=Y(1,:); 
x0=zeros(1,5); 
x0(1,3)=y0(1,1); 
x0(1,5)=y0(1,2); 
x0(1,1)=100-y0(1,1)-y0(1,2); 

  
Yt(1,:)=y0; 

  
for i=1:m-1 
    [Tt,Xt]=ode45(@(t,x)dbmodrecurws(t,x,u2,p_op),[T(i,1) 

T(i+1,1)],x0); 
    x0=Xt(end,:); 
    Yt(i+1,1)=Xt(end,3)+Xt(end,4); 
    Yt(i+1,2)=Xt(end,5); 
    clear Xt Tt 
end; 

  
W(1,1)=1; 

W(1,2)=1; 

  
s=s+1 
for l=1:m 
    for o=1:n 
        ob=ob+(W(1,o)*(Yt(l,o)-Y(l,o))).^2; 
    end; 
end; 
J=ob 
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5. Parameter back-calculation for one-experiment design 

clc 
clear all 

  
global s 
s=0; 
%load pOneReal.mat 
load p32.mat 
load Y.mat 
load T.mat 
u1=8; 
u2=20; 
[Te,Xe]=ode45(@(t,x)dbmodrecurws(t,x,u1,p),0:10:250,[73.5,0,26.5,0

,0]); 

  
Ye(:,1)=Xe(:,3)+Xe(:,4); 
Ye(:,2)=Xe(:,5); 

  
p0=[0.08    0.18    0.0024  0.02    0.55    0.20    0.15]; 
options=psoptimset('MaxIter',50000,'MaxfunEvals',600000,'TolMesh',

1e-8); 

  
[P,fval]=patternsearch(@(p_op)joptex(T,Y,Ye,u1,u2,p_op),p0,[],[],[

],[],zeros(1,7),ones(1,7),[],options); 
p0=P; 

  
[Tt,Xt]=ode45(@(t,x)dbmodrecurws(t,x,u1,P),0:10:250,[73.5,0,26.5,0

,0]); 
Yt(:,1)=Xt(:,3)+Xt(:,4); 
Yt(:,2)=Xt(:,5); 

  
plot(Tt,Yt(1:end,1),'-g',Tt,Yt(1:end,2),'-

b',Te,Ye(1:end,1),'.g',Te,Ye(1:end,2),'.b'); 

  
save('/home/sshams/model2v/Jan14_2measVarib/CI on experimental 

design/CI for one experiment/pOneRealfmin','p0') 
save('pOneRealfmin','p0') 
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6. Parameter back-calculation objective function for two-

experiment design 

function J=j2exp(T,Y,Ye1,Ye2,u1,u2,u3,p_op) 
global s 
[Tt1,Xt1]=ode45(@(t,x)dbmodrecurws(t,x,u1,p_op),0:10:250,[68,0,32,

0,0]);  
W=zeros(1,2); 
W(1,1)=1; 
W(1,2)=1; 

  
Yt1(:,1)=Xt1(:,3)+Xt1(:,4); 
Yt1(:,2)=Xt1(:,5); 

  
ob=0; 
for i=1:size(Ye1,1) 
    for j=1:2 
        ob=ob+(W(1,j)*(Yt1(i,j)-Ye1(i,j)))^2; 
    end; 
end; 

  
[Tt2,Xt2]=ode45(@(t,x)dbmodrecurws(t,x,u2,p_op),0:10:250,[73.5,0,2

6.5,0,0]); 

 
Yt2(:,1)=Xt2(:,3)+Xt2(:,4); 
Yt2(:,2)=Xt2(:,5); 

  

  
for i=1:size(Ye2,1) 
    for j=1:2 
        ob=ob+(W(1,j)*(Yt2(i,j)-Ye2(i,j)))^2; 
    end; 
end; 

  
[m,n]=size(Y); 

  
y0=Y(1,:); 
x0=zeros(1,5); 
x0(1,3)=y0(1,1); 
x0(1,5)=y0(1,2); 
x0(1,1)=100-y0(1,1)-y0(1,2); 

  
Yt(1,:)=y0; 

  
for i=1:m-1 
    [Tt,Xt]=ode45(@(t,x)dbmodrecurws(t,x,u3,p_op),[T(i,1) 

T(i+1,1)],x0); 
    x0=Xt(end,:); 
    Yt(i+1,1)=Xt(end,3)+Xt(end,4); 
    Yt(i+1,2)=Xt(end,5); 
    clear Xt Tt 
end; 
for l=1:m 
    for o=1:n 
        ob=ob+(W(1,o)*(Yt(l,o)-Y(l,o))).^2; 
    end; 
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end; 
s=s+1 
J=ob 
clc 
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7. Parameter back-calculation for two-experiment design 

clear all 

  
global s 
s=0; 
%load pTwoReal.mat 
load p32.mat 
load Y.mat 
load T.mat 
u1=20; 
u2=8; 
u3=20; 
p0=[0.08    0.18    0.048/20    0.02    0.55    0.20    0.15]; 
%p0=P; 
[Te1,Xe1]=ode45(@(t,x)dbmodrecurws(t,x,u1,p),0:10:250,[68,0,32,0,0

]); 

  
Ye1(:,1)=Xe1(:,3)+Xe1(:,4); 
Ye1(:,2)=Xe1(:,5); 
[Te2,Xe2]=ode45(@(t,x)dbmodrecurws(t,x,u2,p),0:10:250,[73.5,0,26.5

,0,0]); 

  
Ye2(:,1)=Xe2(:,3)+Xe2(:,4); 
Ye2(:,2)=Xe2(:,5); 

  
options=psoptimset('MaxIter',150000,'MaxfunEvals',200000); 
[P,fval]=patternsearch(@(p_op)j2exp(T,Y,Ye1,Ye2,u1,u2,u3,p_op),p0,

[],[],[],[],zeros(1,7),ones(1,7),[],options); 

  
[Tt1,Xt1]=ode45(@(t,x)dbmodrecurws(t,x,u1,P),0:10:250,[68,0,32,0,0

]); 
Yt1(:,1)=Xt1(:,3)+Xt1(:,4); 
Yt1(:,2)=Xt1(:,5); 

  
[Tt2,Xt2]=ode45(@(t,x)dbmodrecurws(t,x,u2,P),0:10:250,[73.5,0,26.5

,0,0]); 
Yt2(:,1)=Xt2(:,3)+Xt2(:,4); 
Yt2(:,2)=Xt2(:,5); 

  
plot(Tt1,Yt1(1:end,1),'-g',Tt1,Yt1(1:end,2),'-

b',Te1,Ye1(1:end,1),'.g',Te1,Ye1(1:end,2),'.b'); 
figure; plot(Tt2,Yt2(1:end,1),'-g',Tt2,Yt2(1:end,2),'-

b',Te2,Ye2(1:end,1),'.g',Te2,Ye2(1:end,2),'.b'); 

  
save('pTwoReal1','P') 
save('/home/sshams/model2v/Jan14_2measVarib/CI on experimental 

design/CI for 2 experiments/pTwoReal1','P') 
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8. Parameter back-calculation objective function for three-

experiment design 

function J=j3exp(T,Y,Ye1,Ye2,Ye3,u1,u2,u3,u4,p_op) 
global s 
[Tt1,Xt1]=ode45(@(t,x)dbmodrecurws(t,x,u1,p_op),0:10:250,[68,0,32,

0,0]); 

  
W=zeros(1,2); 
W(1,1)=1; 
W(1,2)=1; 

  
Yt1(:,1)=Xt1(:,3)+Xt1(:,4); 
Yt1(:,2)=Xt1(:,5); 

  
ob=0; 
for i=1:size(Ye1,1) 
    for j=1:2 
        ob=ob+(W(1,j)*(Yt1(i,j)-Ye1(i,j)))^2; 
    end; 
end; 

  
[Tt2,Xt2]=ode45(@(t,x)dbmodrecurws(t,x,u2,p_op),0:10:250,[68.4,0,3

1.6,0,0]); 

  
W(1,1)=1; 
W(1,2)=1; 

  
Yt2(:,1)=Xt2(:,3)+Xt2(:,4); 
Yt2(:,2)=Xt2(:,5); 

  
for i=1:size(Ye2,1) 
    for j=1:2 
        ob=ob+(W(1,j)*(Yt2(i,j)-Ye2(i,j)))^2; 
    end; 
end; 

  
[Tt3,Xt3]=ode45(@(t,x)dbmodrecurws(t,x,u3,p_op),0:10:250,[100,0,0,

0,0]); 

  
W(1,1)=1; 
W(1,2)=1; 

  
Yt3(:,1)=Xt3(:,3)+Xt3(:,4); 
Yt3(:,2)=Xt3(:,5); 

  
for i=1:size(Ye3,1) 
    for j=1:2 
        ob=ob+(W(1,j)*(Yt3(i,j)-Ye3(i,j)))^2; 
    end; 
end; 

  
[m,n]=size(Y); 

  
y0=Y(1,:); 

99



x0=zeros(1,5); 
x0(1,3)=y0(1,1); 
x0(1,5)=y0(1,2); 
x0(1,1)=100-y0(1,1)-y0(1,2); 

  
Yt(1,:)=y0; 

  
for i=1:m-1 
    [Tt,Xt]=ode45(@(t,x)dbmodrecurws(t,x,u4,p_op),[T(i,1) 

T(i+1,1)],x0); 
    x0=Xt(end,:); 
    Yt(i+1,1)=Xt(end,3)+Xt(end,4); 
    Yt(i+1,2)=Xt(end,5); 
    clear Xt Tt 
end; 

  
W(1,1)=1; 
W(1,2)=1; 

  
for l=1:m 
    for o=1:n 
        ob=ob+(W(1,o)*(Yt(l,o)-Y(l,o))).^2; 
    end; 
end; 
s=s+1 
J=ob 
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9. Parameter back-calculation for three-experiment design 

clc 
clear all 

  
global s 
s=0; 
%load pThreeRealfmin.mat 
load p32.mat 
load Y.mat 
load T.mat 
u1=19.9; u2=8; u3=20; u4=20; 
p0=[0.08    0.18    0.048/20    0.02    0.55    0.20    0.15]; 
%p0=P; 
[Te1,Xe1]=ode45(@(t,x)dbmodrecurws(t,x,u1,p),0:10:250,[68,0,32,0,0

]); 

  
Ye1(:,1)=Xe1(:,3)+Xe1(:,4); 
Ye1(:,2)=Xe1(:,5); 

  
[Te2,Xe2]=ode45(@(t,x)dbmodrecurws(t,x,u2,p),0:10:250,[68.4,0,31.6

,0,0]); 

  
Ye2(:,1)=Xe2(:,3)+Xe2(:,4); 
Ye2(:,2)=Xe2(:,5); 

  
[Te3,Xe3]=ode45(@(t,x)dbmodrecurws(t,x,u3,p),0:10:250,[100,0,0,0,0

]); 

  
Ye3(:,1)=Xe3(:,3)+Xe3(:,4); 
Ye3(:,2)=Xe3(:,5); 

  
options=psoptimset('MaxIter',150000,'MaxfunEvals',200000,'TolMesh'

,1e-6); 
[P,fval]=patternsearch(@(p_op)j3exp(T,Y,Ye1,Ye2,Ye3,u1,u2,u3,u4,p_

op),p0,[],[],[],[],zeros(1,7),ones(1,7),[],options); 

  
[Tt1,Xt1]=ode45(@(t,x)dbmodrecurws(t,x,u1,P),0:10:250,[68,0,32,0,0

]); 
Yt1(:,1)=Xt1(:,3)+Xt1(:,4); 
Yt1(:,2)=Xt1(:,5); 

  
[Tt2,Xt2]=ode45(@(t,x)dbmodrecurws(t,x,u2,P),0:10:250,[68.4,0,31.6

,0,0]); 
Yt2(:,1)=Xt2(:,3)+Xt2(:,4); 
Yt2(:,2)=Xt2(:,5); 

  
[Tt3,Xt3]=ode45(@(t,x)dbmodrecurws(t,x,u3,P),0:10:250,[100,0,0,0,0

]); 
Yt3(:,1)=Xt3(:,3)+Xt3(:,4); 
Yt3(:,2)=Xt3(:,5); 

  
plot(Tt1,Yt1(1:end,1),'-g',Tt1,Yt1(1:end,2),'-

b',Te1,Ye1(1:end,1),'.g',Te1,Ye1(1:end,2),'.b'); 
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figure; plot(Tt2,Yt2(1:end,1),'-g',Tt2,Yt2(1:end,2),'-

b',Te2,Ye2(1:end,1),'.g',Te2,Ye2(1:end,2),'.b'); 
figure; plot(Tt3,Yt3(1:end,1),'-g',Tt3,Yt3(1:end,2),'-

b',Te3,Ye3(1:end,1),'.g',Te3,Ye3(1:end,2),'.b'); 

  
save('pThreeRealfmin1','P') 
save('/home/sshams/model2v/Jan14_2measVarib/CI on experimental 

design/CI for 3 experiments/pThreeRealfmin1','P') 
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