Syntax Errors Just Aren’t Natural: Improving Error
Reporting with Language Models

Joshua Charles Abram Hindle José Nelson Amaral
Campbell Department of Computing Department of Computing
Department of Computing Science Science
Science University of Alberta University of Alberta
University of Alberta Edmonton, Canada Edmonton, Canada

. Edmonton, Canada
joshua2@ualberta.ca

ABSTRACT

A frustrating aspect of software development is that com-
piler error messages often fail to locate the actual cause of
a syntax error. An errant semicolon or brace can result in
many errors reported throughout the file. We seek to find
the actual source of these syntax errors by relying on the con-
sistency of software: valid source code is usually repetitive
and unsurprising. We exploit this consistency by construct-
ing a simple N-gram language model of lexed source code
tokens. We implemented an automatic Java syntax-error lo-
cator using the corpus of the project itself and evaluated its
performance on mutated source code from several projects.
Our tool, trained on the past versions of a project, can ef-
fectively augment the syntax error locations produced by
the native compiler. Thus we provide a methodology and
tool that exploits the naturalness of software source code to
detect syntax errors alongside the parser.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, diagnostics; D.3.8 [Programming Lan-
guages]: Processors—Parsing

General Terms

Languages, Human Factors

Keywords

naturalness, language, n-grams, syntax, error location, NLP

1. MOTIVATION

Syntax errors plague new programmers as they struggle
to learn computer programming [16, 4]. Even experienced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

MSR ’14, May 31 - June 07 2014, Hyderabad, India

Copyright is held by the owner/author(s). Publication rights licensed to
ACM

ACM 978-1-4503-2863-0/14/05. .. . $15.00.
http://dx.doi.org/10.1145/2597073.2597102.

hindle1@ualberta.ca

amaral@cs.ualberta.ca

programmers get frustrated by syntax errors, often resorting
to erratically commenting their code out in the hope that
they discover the location of the error that brought their
development to a screeching halt [14]. Syntax errors are
annoying to programmers, and sometimes very hard to find.

Garner et al. [4] admit that “students very persistently
keep seeking assistance for problems with basic syntactic de-
tails.” They, corroborated by numerous other studies [11, 12,
10, 17], found that errors related to basic mechanics (semi-
colons, braces, etc.) were the most persistent and common
problems that beginner programmers faced. In fact these
errors made up 10% to 20% of novice programmer compiler
problems. As an example, consider the missing brace at
the end of line 2 in the following Java code taken from the
Lucene 4.0.0 release:

1 for (int i = 0; i < scorers.length; i++) {

2 if (scorers[i].nextDoc() == NO_MORE_DOCS)
5 lastDoc = NO_MORE_DOCS;

6 return;

7 }

8 }

This mistake, while easy for an experienced programmer
to understand and fix, if they know where to look, causes the
Oracle Java compiler ! to report 50 error messages, includ-
ing those in Figure 1, none of which are on the line with the
mistake. This poor error reporting slows down the software
development process because a human programmer must ex-
amine the source file to locate the error, which can be a very
time consuming process.

Some smart IDEs such as Eclipse, aim to address this
problem but still fall short of locating the actual cause of
the syntax error as seen in Figure 2. Thus syntax errors and
poor compiler/interpreter error messages have been found
to be a major problem for inexperienced programmers [16,
4, 17).

There has been much work on trying to improve error loca-
tion detection and error reporting. Previous methods tend
to rely on rules and heuristics [3, 6, 8]. In contrast to those
methods, we seek to improve on error location reporting by
exploiting recent research on the regularity and naturalness
of written source code [7]. Recent research by Hindle et
al. [7] exploits n-gram based language models, applied to
existing source code, to predict tokens for code completion.

Oracle’s Java compiler, version 1.7.0_13, is available
at http://www.oracle.com/technetwork/java/javase/
downloads/index.htm

/home/joshua/projects/lucene-4.0.0/core/src/java/org/apache/lucene/search/ConjunctionScorer.java:56:

error: <identifier> expected

ArrayUtil.mergeSort(scorers, new Comparator<Scorer>() { // sort the array

... 48 errors omitted ...
/home/joshua/projects/lucene-4.0.0/core/src/java/org/apache/lucene/search/ConjunctionScorer.java:152:

error: class, interface, or enum expected

[javac] 50 errors

Figure 1: Oracle Java Error messages from the motivational example.

The effectiveness of the n-gram model at code completion
and suggestion is due to the repetitive, and consistent, struc-
ture of code.

Using this exact same model, and exploiting the natural
structure of source code, we can improve error location de-
tection. The idea behind this new method is to train a
model on compilable source-code token sequences, and then
evaluate on new code to see how often those sequences oc-
cur within the model. Source code that does not compile
should be surprising for an n-gram language model trained
on source code that compiles. Intuitively, most available
and distributed source code compiles. Projects and their
source code are rarely released with syntax errors, although
this property may depend on the project’s software develop-
ment process. Thus, existing software can act as a corpus
of compilable and working software. Furthermore, whenever
a source file successfully compiles it can automatically up-
date the training corpus because the goal is to augment the
compiler’s error messages. Changes to the software might
not compile. When that happens, locations in the source
file that the model finds surprising should be prioritized as
locations that a software engineer should examine.

The following sections of the paper examine the feasibility
of this new method by testing its ability to locate errors
in a variety of situations, as an augmentation of compiler
error reporting. These situations include situations which
are much more adverse than expected in practice.

The main contributions of this work include:

e A method of statistical, probabilistic syntax-error loca-
tion detection that exploits n-gram language models.

e A prototype implementation of an n-gram language-

model-based Java syntax error locator, UnnaturalCode,?

that can be used with existing build systems and Java
compilers to suggest locations that might contain syn-
tax errors.

e A validation of the feasibility of the new syntax error
location detection method.

e A validation of the integration of the new method with
the compiler’s own methods.

e A modified version of MITLM,® which has routines devel-
oped by the authors to calculate the entropy of short
sentences with respect to a large corpus quickly.

?UnnaturalCode is available at https://github.com/
orezpraw/unnaturalcode

3The modified MITLM package used in this pa-
per is available at https://github.com/orezpraw/
MIT-Language-Modeling-Toolkit

Java - Unnatural/src/Unnatural/Un2.java - Eclipse Platform

File Edit Seurce Refactor Navigate Search Project Run Window Help

BvE@a | $v0&~ | % | #6~y |8 224 v
PBED Hviveoves
o | Un2java &2 =g

] static public void main(String [] what) {
Document [] scorers = Scorers.getInitialbocs();
Document lastDec = scerers[0];

for (int 1 = 0; 1 < scorers.length; i++) {
if (scorers[i].nextDoc() == NO_MORE_DOK
lastDoc = NO_MORE_DOCS;

return;

'
&} 3 =
3 yntax error on token "}", { expected after this token
} e

£ Problems 2 " @ Javadoc| [& Declaration | &l Console v =@

1 error, O warnings, O others
Description Resource Path Locati Type
= @ Errors (1 item)

@ Syntax error on token "}", { expected after th Un2.java /Unnatural/src/Unnz; line 25| Java Problem

o Writable Smart Insert 22

package Unnatural;

public class Unnatural {
beolean y = true;

beolean a = trug;
boolean b = ‘a@
boolean ¢ = Ib

boolean d = 1d;
o boolean e = d HQ = -
public static voit-hain(String(] args) {}; (Syntax error, insert)" to complete Block

Figure 2: Top: Figure 1’s code snippet put into
Eclipse; bottom: another example of failed Eclipse
syntax error location detection. Eclipse often de-
tects syntax errors, but often reports them in the
wrong location. Eclipse’s suggested error location is
circled in red, and the actual error location is circled
in green.

2. BACKGROUND

An n-gram language model at its lowest level is simply a
collection of counts. These counts represent the number of
times a phrase appears in a corpus. These phrases are re-
ferred to as n-grams because they consist of at most n words
or tokens. These counts are then used to infer the probabil-
ity of a phrase: the probability is simply the frequency of
occurrence of the phrase in the original corpus. For example,
if the phrase “I'm a little teapot” occurred 7 times in a cor-
pus consisting of 700 4-grams, its probability would be .01.
However, it is more useful to consider the probability of a
word in its surrounding context. The probability of finding
the word “little” given the context of “I'm a teapot”
is much higher because “little” may be the only word that
shows up in that context — a probability of 1.

These n-gram models become more accurate as n increases
because they can count longer, more specific phrases. How-
ever, this relationship between n and accuracy is also prob-
lematic because most n-grams will not exist in a corpus of

human-generated text (or code). Therefore most n-grams
would have a probability of zero for a large enough n. This
issue can be addressed by using a smoothed model. Smooth-
ing increases the accuracy of the model by estimating the
probability of unseen n-grams from the probabilities of the
largest m-grams (where m < n) that the n-gram consists of
and that exist in the corpus. For example, if the corpus does
not contain the phrase “I'm a little teapot” but it does con-
tain the phrases “I'm a” and “little teapot” it would estimate
the probability of “I'm a little teapot” using a function of the
two probabilities it does know. In UnnaturalCode, however,
the entropy is measured in bits. Entropy in bits is simply
S = —log, (p), where p is the probability. The higher the
entropy, therefore, the lower the probability and the more
surprising a token or sequence of tokens is.

Based on the entropy equation, as probability approaches
0, entropy approaches infinity. An uncounted n-gram could
exist, which would have 0 probability effectively canceling
out all the other n-grams. Thus we rely on smoothing to
address unseen n-grams.

UnnaturalCode uses Modified Kneser-Ney smoothing as

implemented by MITLM, the MIT Language Model package [9].

Modified Kneser-Ney smoothing is widely regarded as a good
choice for a general smoothing algorithm. This smoothing
method discounts the probability of n-grams based on how
many m-grams (where m < n) it must use to estimate their
probability. Probability can be estimated for a 7-gram from
a 3- and a 4-gram; in this case the probability will not be
discounted as heavily as when probability must be estimated
from seven 1-grams. Modified Kneser-Ney smoothing is tun-
able: a parameter may be set for each discount. In Un-
naturalCode these parameters are not modified from their
default values in MITLM.

While MITLM and the entropy estimation techniques im-
plemented within MITLM were designed for natural-language
text, UnnaturalCode employs these techniques on code. Hin-
dle et al. [7] have shown that code has an even lower entropy
per token than English text does per word, as shown in Fig-
ure 3. That is to say, the same techniques that work for nat-
ural English language texts work even better on source code.
Moreover, syntactically invalid source code will often have
a higher cross-entropy than compilable source code given a
corpus of only syntactically valid source code. Therefore,
defective source code looks unnatural to a natural language
model trained on compilable source.

2.1 Previous Work

The frequency and importance of syntax errors among
novice and experienced programmers has been studied by nu-
merous authors [12, 11, 10, 17, 4, 16]. Many of these studies
evaluated new programmers (often undergraduate first year
students) and have examined the frequency of syntax errors
and other kinds of errors. According to these studies miss-
ing semi-colons and misplaced braces cause between 10% to
20% of the errors that novices experience [12, 11, 10]. Jadud
et al. [12, 11] took over 42000 snapshots of first year under-
graduate code before each compile and labelled the cause
of compilation failure. They found that 60% of syntax er-
rors were immediately solved within 20 seconds, but 40%
took longer, 5% taking longer than 10 minutes. Tabanao et
al. [17, 18] studied student performance correlated with syn-
tax errors, for more than 120 students, and found that the
number of errors and frequency of compilation negatively

Cross Entropy of Project Code compared to English

o
- v — Code To Code
\ — — Lucene to Lucene
\ -+ Xerces to Xerces
\ - = - English to English

CrossEntropy

Order

Figure 3: From Hindle et al. [7], a comparison of
cross-entropy for English text and source code vs
gram size, showing that English has much higher
cross-entropy than code.

correlated with student midterm grades. Jackson et al. [10]
observed 559000 errors produced by 583 students during 1
semester; the second most common error was missing semi-
colons. Finally Kummerfeld et al. [14] studied the effect of
student programming experience on syntax errors and found
that experienced users relied on strategies to solve syntax
errors; when these strategies failed, the experience program-
mers made erratic modifications just like their inexperienced
counterparts. Thus we can see from numerous sources that
syntax errors are a common source of errors that novice and
experienced programmers run into and resolving these errors
can often consume a lot of time and effort.

Previous publications that attempt to improve syntax er-
ror messages and syntax error location fall into two cate-
gories: parser-based or type-based. Burke’s parse action de-
ferral [2] is a parser-based technique that backs the parser
down the parse stack when an error is encountered and then
discards problematic tokens. Graham et al. [5] implemented
a system that combined a number of heuristic and cost-based
approaches including prioritizing which production rules will
be resumed. Many modifications for particular parser algo-
rithms have also been proposed to attempt to suppress spu-
rious parse errors by repairing or resuming the parse after
an error. Recent examples can be found by Kim et al. [13]
who apply the k-nearest neighbour algorithm to search for
repairs, or Corchuelo et al. [3] who present a modification
that can be applied to parser generators and does not re-
quire user interaction. Other researchers have focused on
type-based static analysis such as Heeren’s Ph.D. thesis [6]
which suggests implementing a constraint-based framework
inside the compiler. Lerner et al. [15] use a corpus of compi-
lable software to improve type error messages for statically
typed languages. There have also been heuristic analyzers
that work alongside the parser such as the one presented in

| Build System (ant) |

UnnaturalCode

Wrapper LexJava

| javac

MITLM
Check
Sort

Combineé
¥

| Developer |

Figure 4: Data Flow of the Syntax-Error Location
Detector, UnnaturalCode.

Hristova et al. [8], but this approach is limited to predefined
heuristic rules addressing a specific selection of common mis-
takes. In comparison, UnnaturalCode requires no additional
information about a language other than its lexemes, which
may be extracted from its implementation or specification.
The implementation presented here differs from those works
in that it does not attempt to parse the source code. There is
also a more recent publication by Weimer et al. [20] that uses
Genetic Algorithms to mutate parse trees in an attempt to
fix defects, but this requires syntactically valid source code.

3. A PROTOTYPE IMPLEMENTATION OF
UNNATURALCODE

UnnaturalCode is designed to assist the programmer by
locating the coding mistakes that caused a failed compila-
tion. To this end, it only provides suggestions if the compile
fails. If the compile succeeds it adds the error-free code to its
corpus automatically. This allows UnnaturalCode to adapt
rapidly to changing codebases. The data-flow diagram of
UnnaturalCode is depicted in Figure 4.

The central component of the system is javac-wrap.pl, a
wrapper script that is inserted in between the build system
and the compiler, javac. Our tests were run with the ant
build system and the Oracle 1.7.1 JDK javac.

In the case of a failed compilation, UnnaturalCode lexi-
cally analyzes the source file which failed to compile, and
queries the smoothed n-gram model using a sliding window
of length 2n tokens. Both the query code and the corpus
has comments removed and contiguous whitespace reduced
to a single space.

Once UnnaturalCode has finished computing results for
all the queries, it ranks them by the entropy per token of
each query, as in Figure 5. It then reports the top five strings
with the highest entropy to the user as suggestions of where
to look for mistakes in the code. The entropy is a measure
of how unlikely the presented string of 2n tokens is, given
the corpus. In this case, n = 10, a setting that works well
while also keeping memory use low enough for machines with
512MB of memory.

The entropy, S, is calculated by MITLM in bits as the neg-
ative logarithm of the probability. The higher the entropy
score, the less likely a given string of tokens was found to
be by MITLM. Figure 3 shows that entropy per token values
are typically between 2 and 3 bits, compared to English text
which typically has entropy near 7 bits per word.

Check near == NO MORE DOCS) lastDoc = NO _MORE_DOCS; return
With entropy 4.552985

Check near () == NO_MORE _ DOCS) lastDoc = NO MORE DOCS
With entropy 4.498802

Check near NO MORE DOCS) lastDoc = NO MORE DOCS; return;
With entropy 4.244520

Check near) lastDoc = NO MORE DOCS; return; }

With entropy 4.183379

Check near) == NO_MORE_DOCS) lastDoc = NO_MORE_DOCS;
With entropy 3.858807

Figure 5: Example of UnnaturalCode output show-
ing an accurate error location from the motivational
example.

Table 1: Validation Data Summary Statistics

n-gram order 10

Files in Lucene 4.0.0 2 866

Files in Lucene 4.1.0 2 916

Files in Ant 1.7.0 1113

Files in Ant 1.8.4 1 196

Files in Xerces Java 2.9.1 716
Files in Xerces Java 2.10.0 754
Files in Xerces Java 2.11.0 757
Types of mutation 3
Mutations per type per file/hunk > 120
Tests using Lucene 4.0.0 corpus | 2 626 940
Tests using Ant 1.7.0 corpus 833 960
Tests using XercesJ 2.9.1 corpus | 1 547 180
Total Tests Performed 5 008 080

The current implementation is fast enough to be used in-
teractively by a software engineer. Building the corpus takes
much less time than compiling the same code, because only
lexical analysis is performed. For the Lucene 4.0.0 corpus,
results for a broken compile, in the form of suggestions, are
found for a source file with over 1000 tokens in under 0.02
seconds on an Intel i7-3770 running Ubuntu 12.10 using only
a single core and under 400MiB of memory. This is more
than fast enough to be used interactively if MITLM is already
running. However, MITLM start-up can be quite slow depend-
ing on the size of the corpus. For the Lucene 4.0.0 corpus
MITLM takes about 5 seconds to start on the same platform.

Since UnnaturalCode is not a parser, it is not necessary
for the model to recieve an unmatched } to detect a missing
{. UnnaturalCode instead relies on nearby contextual infor-
mation such as public static void main(String[] args).
Therefore, the length of a body, block, parethentical expres-
sion or other balanced syntactic structure is irrelevant de-
spite the limited 20-token sliding window that Unnatural-
Code operates with.

4. VALIDATION METHOD

UnnaturalCode was tested primarily on three Apache Foun-
dation projects: Lucene,® Ant,® and XercesJ.

For each experiment the training corpus consisted of every
Java source file from the oldest version of a single project.

4Apache Lucene is available at https://lucene.apache.
org/

® Apache Ant is available at https://ant.apache.org/
SApache XercesJ is available at https://xerces.apache.
org/xerces-j/

These source files were compiled and all compiled files were
added to the training corpus. This corpus was used for the
duration of testing. No automatic updates to the training
corpus were performed during testing.

The following mutations were applied to files:

e Random Deletion: a token (lexeme) was chosen at
random from the input source file and deleted. The file
was then run through the querying and ranking process
to determine where the first result with adjacent code
appeared in the suggestions.

¢ Random Replacement: a token was chosen at ran-
dom and replaced with a random token found in the
same file.

¢ Random Insertion: a location in the source file was
chosen at random and a random token found in the
same file was inserted there.

The resulting mutant files were actually compiled, and when
compilation succeeded the mutant file was skipped. This had
particularly dramatic results on the deletion tests, where
33% of the random token deletions resulted in a file that
still compiled.

After compilation, the compiler’s own error messages were
considered. These error messages were also given a score for
each file. The compiler was scored in a similar fashion to
UnnaturalCode: the first result produced by the compiler
mentioning the correct line number was considered correct.

Each of these three tests was repeated on each input file at
least 120 times, each time modifying a newly and randomly
chosen location in the source file. For Lucene, all 3 tests were
performed at least 120 times each on 1266 files. Millions of
tests were run on Ant and XerecesJ as well. Thus, a total of
over 5 million data points were collected as shown in Table
1.

For Lucene, 4 different kinds of source-code inputs were
tested. First, for the Lucene 4.0.0 test, source files were
taken from the exact same package as the corpus and were
modified by the above process and then tested. These source
files exist unmodified in the corpus. Second, source files were
taken from the next Lucene release, the 4.1.0 version, that
had been modified by developers. Some of these source files
exist in their 4.0.0 form in the corpus, but have been modi-
fied by developers and then by the above process. These files
are listed in the results as the “Lucene 4.1.0 — Changed Files”
test. Additionally, new source files were added to Lucene af-
ter the 4.0.0 release for 4.1.0. These new files do not exist
in the corpus but are related to files which did. These are
listed in the results as the “Lucene 4.1.0 — New Files” test.
Finally, to test files completely external to the corpus, Java
source files from Apache Ant 1.8.4 were tested. Not only do
these files not exist in the corpus but they are not related
to the files that do, except in that they are both Apache
Foundation software packages.

In order to get the above results, the following steps were
performed. First a corpus was created from the earliest re-
lease. For example, Lucene 4.0.0 was built, automatically
adding all compilable source files to the corpus.

Next, we ran query tests. In each test, we choose a random
token in the input file to mutate as described above. Then,
we run UnnaturalCode on the input file and record the rank
of the first correct result, rq.

The rankings are analyzed statistically using the recipro-
cal rank. The mean is reported as the mean reciprocal rank
(MRR) [19]:

1 1
gTe] [ZQ }

Q is the set of all queries, and ¢ is an individual query from
that set. For example, |Q| = 120 for an individual file and
type of mutation. Using the MRR has several advantages: it
differentiates the most among the first few (highest) ranks,
and has a worst value of 0, whereas for UnnaturalCode the
worst possible absolute rank depends on the length of the
input file. This is important because the more results a
programmer has to consider to find a syntax error, the less
likely he or she is to consider them all.

MRR is a very unforgiving measure of the performance
of a system that returns multiple sorted results. In order
to achieve an MRR greater than 0.75, the correct result
must be the first result presented to the user most of the
time. For example, consider three hypothetical token dele-
tions performed as described above on a single file. If the
correct result was ranked first for the first test, second for
the second test, and third for the third test, UnnaturalCode
would only have achieved an MRR score of 0.61 for that file.

MRR scoring was implemented for two different sets of
interleaved JavaC and UnnaturalCode results. These com-
bined results consist of a JavaC result followed by an Unnat-
uralCode result, followed by a JavaC result, and so on. The
two variations are: 1) returning a JavaC result first; and 2)
returning an UnnaturalCode result first. These combined re-
sults represent the intended use of UnnaturalCode as a way
to augment compiler errors.

S. VALIDATION RESULTS

Figure 6 shows the distributions of the MRR scores of the
files of versions of Lucene and Ant versus a Lucene trained
corpus. The wider the shaded area is in these charts, the
more files had that MRR. These plots also show the 25th,
50th and 75th percentiles as the beginning of the black box,
the white dot, and the end of the black box in the centre.
Table 2 presents the cumulative mean MRRs for each data
set and method.

UnnaturalCode performs very well at detecting mutations
in code that it is familiar with. UnnaturalCode did very well
with only the first Lucene 4.0.0 version in the corpus when
tested against both Lucene 4.0.0 and Lucene 4.1.0. A test
of Ant 1.8.4 against a foreign corpus (Lucene 4.0.0) results
in poor performance. Syntax error detection performance is
best with a corpus trained on the same or earlier version of
the system.

The scores and chart for the whole of Lucene 4.1.0 is not
the entire story for that version. It contains three kinds
of files: files unchanged from 4.0.0, changed files, and new
files added since 4.0.0. Figure 7 clearly shows how these
types files bring the MRR scores for 4.1.0 down from the
scores for 4.0.0. The newly added files have very inconsistent
performance with MRR, scores near those of the scores for
Ant’s unrelated files, despite the fact that they are a part
of the same project as the training corpus. Figures 8 and 9
show the same pattern on Apache Ant and XercesJ.

Figure 10 compares the performance of Ant 1.7.0 versus
itself and Ant 1.8.4. The MRR behaviour is similar to the

Table 2: Cumulative Mean Reciprocal Ranks (Mean MRR)

| Sources Tested | Corpus | Delete | Insert | Replace |
Lucene 4.0.0 Lucene 4.0.0 0.88 0.99 0.98
Lucene 4.1.0 Lucene 4.0.0 0.77 0.91 0.91
Ant 1.8.4 Lucene 4.0.0 0.20 0.36 0.36
Lucene 4.1.0 Lucene 4.0.0 | 0.30 | 047 | 048
Only new files
Lucene 4.1.0
Only changed files Lucene 4.0.0 0.68 0.86 0.85
Ant 1.7.0 Ant 1.7.0 0.86 0.99 0.98
Ant 1.8.4 Ant 1.7.0 0.55 0.75 0.74
Ant 1.8.4
Only new files Ant 1.7.0 0.29 0.54 0.53
Ant 1.8.4
Only changed files Ant 1.7.0 0.42 0.66 0.66
XercesJ 2.9.1 XercesJ 2.9.1 0.86 0.98 0.98
XercesJ 2.10.0 XercesJ 2.9.1 0.50 0.80 0.79
XercesJ 2.11.0 XercesJ 2.9.1 0.49 0.79 0.78
Rerces] 21101 ¢ es72.0.1 | 025 | 046 | 047
Only new files
XercesJ 2.11.0
Only changed files XercesJ 2.9.1 0.50 0.81 0.79

Lucene 4.0.0
g .
c -
o
s+
o
e
< T T T
Delete Insert Replace
Lucene 4.1.0 using Lucene 4.0.0 corpus
- T q'?_ T
« |
o
c -
o
s
o
e
o T T T
Delete Insert Replace
Ant 1.8.4 using Lucene 4.0.0 corpus
o
c -
o
SY
o
o
© T T T

Delete Insert Replace
Figure 6: UnnaturalCode-only MRR Distributions
of the files of Lucene 4.0.0, 4.1.0 and the files of Ant
1.8.4 tested against a Lucene 4.0.0 corpus.

Lucene 4.1.0 — New Files

o
- i
[
=<]
o
e]
© T T T
Delete Insert Replace
Lucene 4.1.0 - Changed Files
OQ_ T
o
r - l !
[
=<]
o
e]
© T T T

Delete Insert Replace

Figure 7: UnnaturalCode-only MRR Distributions
of only new and changed files from Lucene 4.1.0, us-
ing Lucene 4.0.0 as the corpus.

Lucene plots in Figure 6 for Lucene versus Lucene tests, and
the poor performance of Ant versus Lucene has been negated
by using Ant code in the corpus. The median remains very
high, implying that UnnaturalCode scores very well on most
files.

Figure 11 tests 3 consecutive major releases of XercesJ
against a corpus of XercesJ 2.9.1. In all cases the median
MRR of these tests are above or near 0.5, which means
that over 50% of the files have an MRR greater to or near
0.5. This is the same MRR score that a hypothetical sys-
tem which always returns the correct result in second place

Ant 1.8.4 — New Files

: {B @
o
o A 52
o
=%]
o
e]
© T T T
Delete Insert Replace
Ant 1.8.4 - Changed Files
o
c -
o
=<]
o
e]
e T T T

Delete Insert Replace

Figure 8: UnnaturalCode-only MRR Distributions

of only new and changed files from Apache Ant 1.8.4,
using ant 1.7.0 as the corpus.

Xercesd 2.11.0 - New Files

§ {& %
o
o
=a
o
e]
© T T T
Delete Insert Replace
Xercesd 2.11.0 - Changed Files
: E E
o
c A il
o
=%]
o
e]
e T T T

Delete Insert Replace

Figure 9: UnnaturalCode-only MRR Distributions
of only new and changed files from XercesJ 2.11.0
Using XercesJ 2.9.1 as the corpus.

would get. As with Ant, for XercesJ in the test on a past
corpus (XercesJ 2.10.0 and 2.11.0) the bottom quartile ex-
tends further, but ends before an MRR score of 0.2, which
implies that for 75% of the files tested, UnnaturalCode per-
formed similarly to, or better than, a hypothetical system
which always returns the correct result in fifth place.

Table 3 shows the results of the compiler integration tests
and Figure 12 shows the MRR distribution for one of these
tests. In this table, the column heading describes the output
interleaving pattern: “UUUU” gives MRR means for Unnatu-
ralCode results, “JJJJ” gives MRR means for JavaC, “JUJU”

Ant 1.7.0 using Ant 1.7.0 Corpus

g <P
o
o A
o
=%]
o
Q]
S T T T
Delete Insert Replace
Ant 1.8.4 using Ant 1.7.0 Corpus
.| jf \\M/ W
o
o A
o
=<]
o
e]
© T T T

Delete Insert Replace

Figure 10: UnnaturalCode-only MRR Distributions

of the files of Ant 1.7.0 and Ant 1.8.4 tested against
the Ant 1.7.0 corpus.

Xercesd 2.9.1 using XercesdJ 2.9.1 Corpus

: T T T
o
r A
o
S
o
e |
© T T T
Delete Insert Replace
Xercesd 2.10.0 using Xercesd 2.9.1 Corpus
. zg E
o
-
o
S<
o
e |
© T T T
Delete Insert Replace
Xercesd 2.11.0 using Xercesd 2.9.1 Corpus
i zg
o
c A]”r][
o
S<
o
e |
© T T T

Delete Insert Replace

Figure 11: MRR Distributions of the files of XercesJ
2.9.1, 2.10.0, and 2.11.0 tested against the XercesJ
2.9.1 corpus.

UnnaturalCode Alone

-1 —v—— —v——
o |
o
r A
o
S« |
o
o |
< T T T
Delete Insert Replace
Oracle JavaC Alone
o | % ;
o
c A
o
=< |
o
o |
© T T T
Delete Insert Replace
Interleaved Results Starting with JavaC
@ ?
r A
oc
=< |
o
o |
© T T T
Delete Insert Replace
Interleaved Results Starting with UnnaturalCode
1 —_—— Y ———
[eo]
@
r A
oc
S« |
o
o |
o

T T T
Replace

Delete Insert
Figure 12: MRR Distributions of the files of Lucene
4.0.0 for the compiler integration test.

gives MRR means for interleaved results with JavaC’s first
result first in the output, and “UJUJ” gives MRR means for
interleaved results starting with UnnaturalCode’s first result.
All four plots come from the same set of randomly chosen
mutations. Both JavaC and UnnaturalCode perform well
on their own. UnnaturalCode performs worse than JavaC
on the deletion test and better than JavaC on the insertion
and replacement tests. However, interleaved results perform
better than either system by itself: the best performing in-
terleave depends on the file.

6. DISCUSSION

The n-gram language-model approach was capable of de-
tecting all mutations: inserted tokens, missing tokens, and
replaced tokens. This is because the sequence of tokens will
not have been seen before by the language model, assuming
it has been trained on compilable code.

6.1 Performance on Milestones

In the milestone tests, some files would get consistently
wrong results because the top results would always be the
same regardless of where the changes were made. In par-
ticular, files from outside the corpus that contained strings
of new identifier tokens would consistently produce poor re-
sults with UnnaturalCode.

Unfortunately, with only a single project in the corpus,
performance was sometimes very poor. This poor perfor-
mance could be easily triggered by adding new identifiers
that were not present in the corpus, since those new identi-
fiers were labelled with high entropy by the model. Some-
times this behaviour is accurate, as in the case of a mis-
spelled identifier, but sometimes it is inaccurate, as in the
case of a newly added, but correctly spelled, identifier.

These results are highly encouraging, however. Even the
worst MRR score of 0.20 implies that there are files in Apache
Ant in which errors are locatable using a corpus trained on
Lucene. If one runs the tests as described above on bro-
ken Java code that imports classes from packages that do
not exist in the training corpus, these correctly specified im-
ports will almost always be the top five results. However,
this behaviour only persists until they are added to the cor-
pus, and this happens after the first successful compilation
of those files. For example, even though class imports in
Ant 1.8.4 share the same org.apache class path, they also
contain new identifiers. When ProjectHelperImpl.java im-
ports org.apache.tools.ant.Target, this string contains
three identifiers, “tools,” “ant,” and “Target” which are not
in the training corpus. This will cause the average entropy
of any string of 20 tokens containing “tools.ant.Target” to
contain at least three high entropy contributions. In com-
parison, when the code is mutated for testing, at most one
additional unseen token is introduced. One possible solution
to the new identifier problem is to ignore identifier content
and train on the type of the identifier lexeme itself [1]. The
syntax error detector can often misreport new identifiers,
such as package names, as syntax errors.

6.2 Performance with Compiler Integration

The UnnaturalCode/JavaC combination performed
better than either JavaC or UnnaturalCode alone in
every test case.

UnnaturalCode was often capable of detecting errors that
JavaC was not and JavaC often was capable of detecting
errors that UnnaturalCode was not. This fact allows Unnat-
uralCode to augment the accuracy, in terms of MRR score,
of the compiler when its results were interleaved. The in-
terleaving improved the MRR score from 0.915, using just
JavaC, to 0.943 using interleaved results for the deletion test
on Lucene 4.0.0. Intuitively, this means that 66% of the time
when JavaC’s highly ranked results are wrong, Unnatural-
Code has a highly ranked result that is correct. Or, we can
save 66% of the time that software engineers spend hunting
for the source of syntax errors. Results are presented to the
user side-by-side because the best interleave choice is not
consistent.

7. THREATS TO VALIDITY

Construct validity is affected by the assumption that single-
token mutation is representative of syntax errors. This as-

Table 3: Compiler Integration Mean Reciprocal Ranks (MRRs).

Interleaving Pattern

| Sources Tested | Corpus Uuuu | JJJJ | JUJU | uJuJ
Lucene 4.0.0 Lucene 4.0.0 .950 .932 .959 .963
Lucene 4.1.0 Lucene 4.0.0 .865 937 .960 914
Ant 1.7.0 Ant 1.7.0 .940 927 .956 .958
Ant 1.84 Ant 1.7.0 .681 .923 .945 .806
Ant 1.8.4 Lucene 4.0.0 .308 921 .930 .600
XercesJ 2.9.1 XercesJ 2.9.1 .939 .895 937 .955
XercesJ 2.10.0 | XercesJ 2.9.1 .694 .889 916 .796
XercesJ 2.11.0 | XercesJ 2.9.1 .688 .884 911 791

sumption may not be very representative of changes a soft-
ware engineer would make between compilation attempts.

However, single-token mutations are the worst-case
scenario and provide a lower bound on performance.

A file with two syntax errors is further from compiling
than a file with one syntax error. Since UnnaturalCode only
models files that do compile, a file with two syntax errors
will have more entropy than a file with one syntax error. In
this case a developer would be presented with the highest-
entropy error first. If they chose to fix that problem and
recompile, they would be presented with the next-highest
entropy error. Multi-token errors would be easier for Unnat-
uralCode to detect.

Internal validity is hampered by using the MRR formula
to score our ranking of the correct query results. These rank-
ings are affected by the maximum gram length, n, where typ-
ically larger is better, and the number of total results. The
number of total results is [— 2n/s where [is the the length
of the file and s is the step size. Since correct results com-
prise at most 2n/s of the results, the chance of the correct
result appearing in the top 5 if the results are sorted ran-
domly is approximately proportional to 1/I. In other words,
the system will naturally perform better on short input files
simply because there is less noise to consider.

External validity is affected by the choice of Java projects.
The experimental evaluation covers 5 million tests of Un-
naturalCode and JavaC across 3 different medium-to-large
Apache Foundation Java projects: Ant, XercesJ and Lucene.
JavaC compilation is much slower than querying Unnatural-
Code alone.

Java has a syntax typical of many C-like languages. Thus,
these tests are a good representative, and the results for
these projects will generalize well to other projects. These
results should generalize to other languages as well but this
assumption has not been tested yet. The evaluation on 5
million single-token mutation tests across 3 distinct corpuses
is a fairly significant evaluation of the new method.

8. FUTURE DIRECTIONS

This technology can be very useful to software engineers
who are actively developing a piece of software. All the
engineer must do is instruct their build system to call the
wrapper instead of the compiler directly, and the system will
begin building a corpus; if the compile fails it will return
side-by-side ranked results from both the compiler and from
UnnaturalCode. The performance evaluation indicates that
a system using the ideas presented in this paper will suggest
the location of the fault in the top two results often enough

to be useful as long as the corpus contains one successful
compile of the same project.

The method proposed should be implemented not only as
a compiler wrapper for general purpose command-line use,
but also as a plug-in for an integrated development envi-
ronment (IDE) such as Eclipse. In such an environment it
could provide immediate and visual feedback after a failed
compile of which lines were likely to cause problems, perhaps
by colouring the background with a colour corresponding to
the increase in entropy for those lines.

The generalization to other languages needs to be evalu-
ated. One simply needs to replace the Java lexical analyzer
used in UnnaturalCode with a lexical analyzer for the lan-
guage they wish to use and modify the compiler wrapper to
locate input file arguments and detect the failure of their
compiler of choice. The n-gram model is flexible and will
work with many programming languages [7].

Several changes could be made to enhance performance.
The first is to build an n-gram model consisting only of
the lexical types of each token, but not the token itself.
The language model corpus and input would then consist of
words like “identifier,” “operator,” “type,” instead of “read-
Byte”, “+,” and “int.” Combining entropy estimates from
that model with the current model could produce more accu-
rate results when considering never-before-seen tokens. This
approach would be similar to the model proposed in Allama-
nis et al. [1].

The effect of a multi-project corpus on syntax error de-
tection should be investigated. The idea is to explore what
makes a good corpus for general purpose syntax error detec-
tion.

Several extensions to the system could be implemented.
For example, the combination of this method with token
prediction could automatically repair source code by statis-
tically directing most-likely syntax repair searches based on
a dynamic and project-specific corpus instead of statically
defined least-cost repair searches such as those presented
in Corchuelo et al. [3] and Kim et al. [13]. This approach
should be much more efficient than the approach applied in
Weimer et al. [20]. It may also be interesting for developers
or project managers to be able to see the entropy of each
line or token of source code themselves because the entropy
may correlate with other properties of the source code that
have not yet been considered.

9. CONCLUSION

This paper presents a system to address the common issue
of poor syntax-error location reporting by modern compilers.

Syntax errors plague novice and experienced programmers
alike. UnnaturalCode avoids parsing completely, instead re-
lying on a statistical language model from the field of natu-
ral language processing. The choice of model was guided by
the promising results in code completion. UnnaturalCode
consists of a compiler wrapper, a lexical analyzer, and a lan-
guage model that cooperate and are more than fast enough
to be used interactively. UnnaturalCode is tested by insert-
ing, deleting and replacing random tokens in files from the
software that it was trained on, and later versions of the
software it was trained on, and a completely independent
software package. The experimental evaluation shows that
UnnaturalCode performed very well on the same version,
well on the next version, and poorly on external software.
When UnnaturalCode’s results are combined with the com-
pilers own results, the correct location is reported earlier
than with the compiler’s results alone.

This work helps bridge the gap between statistical lan-
guage analysis tools and computer-language parsers. Bridg-
ing this gap solves a problem that has haunted the users of
parsers since they were invented: accurately locating syntax
errors. This approach is unique in that it employs a sta-
tistical model: all previous work in this area are based on
parser modifications to repair or recover from syntax errors,
static code analysis, predefined heuristics, or type analysis.
Furthermore, the model can evolve with the changing con-
texts of individual engineers and projects as it continuously
updates its training corpus. By combining this method with
the current compiler’s error messages we achieve better per-
formance in syntax error localization than either technique
alone.

The n-gram language-model is capable of enhancing the
compiler’s ability to locate missing tokens, extra tokens,
and replaced tokens.

Finally, when you build a language model of working source
code, “syntax errors just aren’t natural.”

10. ACKNOWLEDGMENTS
Abram Hindle is supported by an NSERC Discovery Grant.

11. REFERENCES

[1] M. Allamanis and C. Sutton. Mining source code
repositories at massive scale using language modeling.
In Proceedings of the Tenth International Workshop
on Mining Software Repositories, pages 207-216. IEEE
Press, 2013.

[2] M. G. Burke and G. A. Fisher. A practical method for
LR and LL syntactic error diagnosis and recovery.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 9(2):164-197, Mar. 1987.

[3] R. Corchuelo, J. A. Pérez, A. Ruiz, and M. Toro.
Repairing syntax errors in LR parsers. ACM Trans.
Program. Lang. Syst., 24(6):698-710, Nov. 2002.

[4] S. Garner, P. Haden, and A. Robins. My program is
correct but it doesn’t run: a preliminary investigation
of novice programmers’ problems. In Proceedings of
the Tth Australasian conference on Computing
education- Volume 42, pages 173-180. Australian
Computer Society, Inc., 2005.

[5]

(6]

(11]

(12]

(16]

(17]

(19]

20]

S. L. Graham, C. B. Haley, and W. N. Joy. Practical
LR error recovery. SIGPLAN Not., 14(8):168-175,
Aug. 1979.

B. J. Heeren. Top Quality Type Error Messages. PhD
thesis, Universiteit Utrecht, Nederlands, 2005.

A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu.
On the naturalness of software. In Software
Engineering (ICSE), 2012 34th International
Conference on, pages 837-847, June 2012.

M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting Java programming errors
for introductory computer science students. ACM
SIGCSE Bulletin, 35(1):153-156, 2003.

B. Hsu and J. Glass. Iterative language model
estimation: efficient data structure & algorithms.
2008.

J. Jackson, M. Cobb, and C. Carver. Identifying top
java errors for novice programmers. In Frontiers in
Education, 2005. FIE’05. Proceedings 35th Annual
Conference, pages T4C-T4C. IEEE, 2005.

M. C. Jadud. A first look at novice compilation
behaviour using bluej. Computer Science Education,
15(1):25-40, 2005.

M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73-84. ACM, 2006.

[.-S. Kim and K.-M. Choe. Error repair with
validation in LR-~based parsing. ACM Trans. Program.
Lang. Syst., 23(4):451-471, July 2001.

S. K. Kummerfeld and J. Kay. The neglected battle
fields of syntax errors. In Proceedings of the fifth
Australasian conference on Computing

education- Volume 20, pages 105-111. Australian
Computer Society, Inc., 2003.

B. S. Lerner, M. Flower, D. Grossman, and

C. Chambers. Searching for type-error messages. In
Conference on Programming Language Design and
Implementation (PLDI), pages 425434, San Diego,
CA, USA, 2007.

L. Mclver. The effect of programming language on
error rates of novice programmers. In 12th Annual
Workshop of the Psychology of Programming Interest
Group, pages 181-192. Citeseer, 2000.

E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Identifying at-risk novice java programmers through
the analysis of online protocols. In Philippine
Computing Science Congress, 2008.

E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Predicting at-risk novice java programmers through
the analysis of online protocols. In Proceedings of the
seventh international workshop on Computing
education research, ICER ’11, pages 85-92, New York,
NY, USA, 2011. ACM.

E. M. Voorhees et al. The TREC-8 question answering
track report. In Proceedings of TREC, volume 8, pages
77-82, 1999.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In Proceedings of the 31st International
Conference on Software Engineering, pages 364-374,
Washington, DC, USA, 2009. IEEE Computer Society.

