INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand commer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

A Bell & Howell Information

Company
300 North Zeeb Road, Ann Artbor MI 48106-1346 USA
313/761-4700  800/521-0600






University of Alberta

BRIDGING FAULT DiagNosis IN CMOS CIRcUITS

by

Michael Olson @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 1997



i~

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

Your e Votre rélérence
Our filg Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means  vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése d la
disposition des personnes intéressées.
The author retains ownership of the L’auteur conserve la propriété du
copyright in his/her thesis. Neither droit d’auteur qui protége sa thése. Ni
the thesis nor substantial extracts 1a thése ni des extraits substantiels de
from it may be printed or otherwise  celle-ci ne doivent étre imprimés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.
0-612-21198-3

Canadi



University of Alberta

Library Release Form

Name of Author: Michael Olson
Title of Thesis: Bridging Fault Diagnosis in CMOS Circuits

Degree: Master of Science

Year this Degree Granted: 1997

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

- 27 . -
RO A=A
Michael Olson
4211 50 Avenue
Ponoka, AB

Canada, T4J 1C2



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Bridging Fault Diag-
nosis in CMOS Circuits submitted by Michael Olson in partial fulfillment of the
requirements for the degree of Master of Science.

Dr. Bruce Cockburn

Nelsgn Durdle —
... U~ . .

Dr. M. Tamer Ozsu

P g / LS
Date: <2, ~ . . 77,

1y



Abstract

This thesis presents two new algorithms for diagnosing gate-level bridging faults in
CMOS circuits. One algorithm uses the single fault assumption, while the other
algorithm is applicable to circuits containing multiple faults. The new single fault
algorithm provides a significantly higher diagnostic resolution than that provided by
a well-known algorithm described by Chakravarty.

A set of design recommendations is given which improves the [ppg testability
of the circuit under test. Improving the testability of a circuit enables a higher
diagnostic resolution to be obtained. Recommendations are also given to maximize
the performance of the algorithm by minimizing the computer memory and CPU time
required to perform a diagnosis run.

Extensive computer simulations are performed to illustrate the merits and feasi-

bility of the new algorithms using Berkeley and ISCAS85 benchmark circuits.
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Chapter 1

Introduction

The trend in integrated circuit design is to smaller and more densely integrated sys-
tems. Currently, digital circuits are being fabricated using sub-micron technology.
The smaller component dimensions and increased circuit density have made the task
of detecting and analysing failures in digital circuits a difficult problem. The demand
for higher chip yields and more reliable circuit operation has heightened the impor-
tance of detecting failures during the design process of Very Large Scale Integrated
(VLSI) circuits.

The analysis of faulty digital circuits can be broken down into two basic categories:
testing and diagnosis [3, page 1]. A testing process provides a “pass/fail” signal
indicating whether the circuit is functioning correctly or incorrectly. If a circuit fails
a test, a diagnosis process may be required. In a diagnosis process, the location of
defective components or areas in the circuit are identified. This thesis introduces a
new diagnosis process.

Diagnosis may be performed at the system level, the board level, the gate level.
or at a lower level such as the transistor level. For digital systems already in field
operation, board-level diagnosis is useful for determining a defective system compo-
nent, and replacing it quickly. When a defect is located, the entire circuit board or
chip is replaced.

In design and manufacturing processes, a higher diagnostic resolution, such as
gate-level or transistor-level diagnosis, is required. For these types of diagnosis, the
goal is to find out exactly which logic element is causing the circuit to behave in a

faulty manner. If the location of the defect can be localized to a specific logic gate or



signal line, possible manufacturing errors or design mistakes can be identified. This
thesis focuses on diagnosis performed at the gate level.

Before diagnosis is performed, testing is done to determine whether the circuit
is operating correctly. Testing methods can be grouped into two main categories:
voltage testing methods and parametric testing methods. In voltage testing, the tests
determine whether the correct output responses are produced when particular inputs
are applied to the circuit. In perametric testing, a parameter of the circuit, such
as the quiescent current or the maximum propagation delay, is measured. A faulty
circuit is identified if it does not operate within its expected parameters. A circuit
that passes a voltage test may still fail a parametric test [18].

Most voltage testing, or logic testing, methodologies are designed to analyse the
circuit’s response to large amounts of input stimuli in a short amount of time. A
typical voltage testing architecture consists of a mechanism to provide test patterns
(inputs) to the circuit under test (CUT), and a method to collect and evaluate the
output responses. Many techniques have been proposed for both test pattern gener-

ation and output response analysis [3]. Figure 1.1 illustrates a typical logic testing

[ Test Pattern Generator J

\

[ Circuit Under Test ]

architecture.

Output Response
( Coilector/Analyser J

Figure 1.1: Logic Testing Architecture

Erroneous circuit responses are usually attributed to defects in the circuit. Defects
can be formed due to imperfections in a manufacturing process, from mishandling
during shipping, from environmental exposure, or from simple wear out during regular

circuit operation. Most testing methods employ fault models [3, page 93] to avoid
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directly handling the large number of possible physical defects in a CUT. A fault
model is a set of rules and assumptions which describe the effects that defects have
on digital circuits. When fault models are used, the testing problem becomes one of
testing for the presence of a manageable number of logical faults rather than a large
number of physical defects.

The most well-known fault model is the stuck-at fault model [3, page 110]. In the
stuck-at fault model, the logic gates in the CUT are assumed to be fault-free. Any
defects in the circuit are assumed to cause one or more of the signal nets between
the logic gates to be permanently “stuck” at either a logic 1 value, or a logic 0 value.
Due to its simplicity and its success in modelling many types of physical defects.
the stuck-at fault model has been in wide use in testing applications for over three
decades.

Once a fault model is specified for a testing architecture, a method of test pattern
generation must be chosen to provide the input stimulus to the CUT. Ideally, in order
to detect all faults in an n-input CUT, all possible input patterns (an exhaustive test
set) should be used. For circuits with a large number of inputs (i.e. > 23), exhaustive
tests are impractical due to the large amount of time required to apply the tests
and the large amount of memory required to store the test vectors. For example.
it is common for commercial circuits to have 100 or more inputs. For a 100 input
circuit, if two million test patterns are applied to the circuit every second, it will
take 7.3 x 10'® years to complete an exhaustive test session. In practice, tests should
only take seconds as this helps keep testing costs down. The subject of test pattern
generation deals with finding a high-quality, non-exhaustive test set which uses the
fewest number of test vectors to detect the maximal number of modelled faults.

The quality or grade of a test set is rated according to the fault coverage that it
provides [3, page 131]. The fault coverage of a test set is the ratio of the number
of faults which are detected by the set, to the total number of possible faults in
the circuit. Fault coverage is computed by a process called fault simulation [3, page
131]. Fault simulation consists of simulating a CUT in the presence of all the faults
specified by a fault model and recording or analysing the results. The results of
fault simulation are then compared to those obtained from a fault-free simulation of

the CUT to determine the fault coverage. It should be pointed out that if a test set
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provides 100% fault coverage, it may still fail to detect defects which are not modelled
by the fault model {3, page 131]. Subsequently, testing engineers often employ some
form of parametric testing along with logic testing in order to increase the overall
testing quality.

A commonly used brand of parametric testing for Complementary Metal Oxide
Semiconductor (CMOS) circuits is [ppg testing [37]. Ippq testing (quiescent current
testing) involves monitoring the steady-state current that flows in a CMOS circuit.
Since fault-free CMOS circuits allow very little current flow in the steady-state [37].
a high level of current indicates that the circuit is faulty. The new diagnosis methods
presented in this thesis use the results from Ippg tests which are performed on the

CUT. Figure 1.2 illustrates an Ippg testing architecture.

Circuit Under Test

Ippo

Current
Sensor

Figure 1.2: Ippg Testing Architecture

It has been shown that common defects which occur in CMOS circuits are unin-
tentional shorts or bridges between signal lines [11, 19, 27], and that many bridging
defects do not cause predictable logic errors to occur in the circuit [19]. Consequently.
bridging fault models are used to describe shorts in a CUT, and can be used at mask.
transistor, gate, and higher levels of circuit representations. This thesis deals with
the problem of diagnosing gate-level bridging faults in CMOS circuits.

Since the number of two-node bridges that can exist in a circuit is far greater than

the number of possible stuck-at faults, and since a single test vector may detect a
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large number of bridging faults, the diagnosis of bridging faults is the more difficult
problem. Previous diagnosis methods have used fault dictionaries [3, page 7] to relate
patterns of faulty circuit outputs to specific bridging faults [31]. The fact that some
bridging faults do not cause logic errors, as well as the fact that a large amount of
memory is required to store all of the possible faults in the CUT, makes this type of
diagnosis infeasible.

Another method of bridging fault diagnosis is the use of algorithms to process
either voltage-based test results [13] or Ippg test results [14, 15]. A fast algorithm
which employs Ippg test results to identify the set of possible two-node bridging faults
is given in [14]. Although the algorithm is very efficient, it relies on the assumption
that only one bridging fault is present in the circuit during the test session (single
fault assumption). The algorithm is also overly pessimistic in the way that it handles
bridging faults which create feedback paths in the CUT, thus it produces a poor
diagnostic resolution.

This thesis presents two new diagnosis algorithms to diagnose gate-level bridging
faults in CMOS circuits. The algorithms use the results from an Ippg test session
to determine the fault(s) that can be responsible for causing the Ippg failures. The
algorithms offer an advantage over the algorithm given in [14], in that more faults are
eliminated during a diagnosis run. This allows for better diagnostic resolution than
can be obtained in [14]. Furthermore, one of the new algorithms is not limited by the
single fault assumption, and CUTs containing more than one bridging fault can be
diagnosed correctly. The new algorithms are easy to implement, and no circuit-level
fault simulation is required. Moreover, no previous layout information about the CUT
is required, which makes it possible to diagnose a circuit using only the connectivity
information. This thesis is organized as follows.

Chapter 2 provides the necessary background information on digital circuit testing
and diagnosis. General testing and diagnosis techniques are discussed, and some basic
terminology is defined. A review and summary of some previously presented diagnosis
methods is also given.

Chapter 3 introduces the new diagnosis algorithms. The general theory behind
the algorithms is given. Definitions and terminology used in the algorithms are pre-

sented. Detailed examples illustrating the operation of each new algorithm are given.
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Subsequent diagnostic methods are also discussed in order to show how the new al-
gorithms can be used as part of a complete diagnostic system. Different factors and
assumptions which affect the resolution and performance provided by the algorithms
are also discussed.

Chapter 4 describes the simulations performed to test and justify the diagnosis
algorithms. The simulation environment is described. Results of the simulations are
presented, and conclusions about the effectiveness of the algorithms are drawn. A
description of the simulator and the way that it implements the diagnosis algorithms
Is given.

Finally, Chapter 5 draws conclusions about the performance achieved by the al-

gorithms and summarizes the entire thesis.



Chapter 2

Background and Literature Review

This chapter presents an overview of some of the topics relating to the diagnosis of
bridging faults in CMOS circuits. CMOS digital circuit architecture is described. The
concept of fault modelling is discussed. An overview of bridging faults is given. Basic
digital circuit testing methods, namely voltage testing and Ippg testing, are reviewed.
Previously presented diagnosis methods for digital circuits are also discussed and

evaluated.

2.1 CMOS Technology

CMOS technology is currently the dominant technology used to construct digital cir-
cuits. The following paragraphs describe the basic theory behind CMOS technology.

2.1.1 MOS Transistors

CMOS circuits are built using two different kinds of transistors: PMOS transistors
and NMOS transistors (see figure 2.1). For both types of transistors, the voltage
applied to the transistor gate controls the amount of current that flows from the
drain terminal to the source terminal. Equations 2.1 to 2.4 describe the relationship
between the gate voltage and the resulting current flow for both PMOS and NMOS
transistors [30, page 145].

For PMOS transistors,

W .
Isp = kp7-(Vse— [Vr )> if Vep2>Vse— | Vo | (2.1)
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NMOS PMOS

Transistor Transistor
Drain Source
Gate l Gate |
Source Drain

Figure 2.1: MOS Transistors

w :
Isp = kp—r-(2Vs— | Vr Vs — Vip) if Vsp<Vsg—|Vr|

where,
kp = 2222,
p is the hole mobility,
C, is the gate capacitance per unit area,
Vse is the source-to-gate voltage,
Vsp is the source-to-drain voltage,
Vr is the threshold voltage,
W is the width of the transistor channel,
L is the length of the transistor channel,

Isp 1s the current flow from source-to-drain.
For NMOS transistors,

%4 .
Ips = knf(VGS -Vr)2 if Vps2Ves—Vr

w 3
Ips = kn-L—(2(VGs —Vr)Vas —V3s) if Vps<Ves—Vr

when e!
k — unCo'

Un is the electron mobility,
C, is the gate capacitance per unit area,

Vgs is the gate-to-source voltage,

[v.4]



Vbs is the drain-to-source voltage,

Vr is the threshold voltage,

W is the width of the transistor channel,

L is the length of the transistor channel,

Ips is the current flow from drain-to-source.

In digital CMOS circuits, when a high logic level is applied to the gate of an
NMOS transistor, a conducting channel will be formed from the drain to the source
and the transistor will allow a large amount of current to flow. The same holds true

for a PMOS transistor if a low logic level is applied to the gate.

2.1.2 CMOS Logic Structures

In a fully complementary MOS (FCMOS) logic block, a network of PMOS transistors
is connected to the power rail and a complementary network of NMOS transistors
is connected to ground (see figure 2.2). During the steady state, a low resistance
path is created from one of the power rails (Vdd or GND) through one of the two
transistor networks (PMOS or NMOS) to the output of the logic block. The path
that is set up depends upon the logic values assigned to the input line(s) of the logic
block. Logic values are set on the output node by either charging or discharging the
node capacitance.

Vdd

PMOS
biock

Input(s) ——— Output

NMOS
block

1

Figure 2.2: Static CMOS Architecture

An important characteristic of CMOS logic blocks is that they allow almost no
current to flow during the steady state. This is because one of the two transistor net-

works will “open” the current path between Vdd and GND. Although large amounts



of current can flow in the transient state immediately after changing the circuit inputs.
the only current that flows during the steady state is the transistor leakage current.
This small current flow means that CMOS circuits have very low power dissipation

[37].

2.2 Defects and Fault Modelling

A fault model is a set of rules or assumptions which describe the logical behaviour
or reaction that a digital circuit has to physical defects [1]. The advantages of using
logical faults to represent defects are: the complexity of the testing problem is reduced
since many different physical defects are often represented by the same logical fault:
some logical faults are technology-independent as their fault model can be applied to
many different technologies; tests derived for logical faults can often be used to detect

defects whose effects on circuit behaviour are not completely understood [3, page93].

2.2.1 The Stuck-at Fault Model

A structural fault model is one in which the effect of each fault is to modify the in-
terconnections between circuit components [3, page93]. The most common structural
fault model is the stuck-at fault model [3, page 110]. In this fault model, all logic
gates are assumed to be fault-free, while defects are assumed to cause the signal lines
between logic gates to be permanently stuck at either a logic 1 or a logic 0, regardless
of the input stimulus to the CUT. For example, a short between either Vdd or GND
and a signal line will cause that signal line to behave as though it is permanently
stuck at a logic 1 or 0, respectively.

The stuck-at fault model has the following desirable qualities. It represents many
different physical defects. It can be used to analyse all digital circuits, regardless of
what technology is used during fabrication. Test sets designed for stuck-at faults will
also detect many other kinds of faults. Finally, the total number of possible stuck-
at faults can be easily calculated, as each line in the circuit has two possible faulty
conditions. Therefore, it is easy to determine the fault coverage or quality of any set
of input test vectors. Moreover, the number of faults that have to be investigated

during a test session can be reduced using fault-collapsing techniques {3, page 106].
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2.2.2 Bridging Defects and Bridging Faults

In VLSI circuits, signal nets are routed through narrow channels over relatively long
distances. When there is a high density of nets routed in one channel, there is a
possibility that two or more nets can become unintentionally shorted together. An
unintentional short or bridge may result due to a problem during manufacturing, such
as spot defects existing on the manufacturing masks.

Previous studies have shown that bridging defects are the most common type of
defect in CMOS circuits [11, 19, 27, 38]. In [11] it is stated that 30% to 50% of
the total defects in a circuit can be classified as unintentional bridges. The frequent
occurance of bridging defects makes their detection and diagnosis an active area of
current research.

Bridging defects are commonly represented as schematic level bridging faults.
Bridging faults can be classified depending upon their locations in a circuit and the
logical relationship between the fault’s component nodes. The following paragraphs

review the classes which are commonly used to group and describe bridging faults.

Bridging Fault Levels

A transistor-level bridge is one in which the bridged nodes are internal to a logic
gate. Figure 2.3 illustrates a transistor level bridging fault inside a CMOS NAND
logic gate.

Today digital circuits are often realized using standard cell libraries which contain
pre-defined standard logic gates, such as AND gates, OR gates, and inverters. Gate-
level bridging faults are faults which exist between the input nodes and the output
nodes of the logic gates in a circuit. Previous studies have reported that gate-level
faults are the most common type of bridging fault, as the nets between gate outputs
and gate inputs are more prone to spot defects than other types of nets [34]. Figure 2.4
illustrates a gate-level bridging fault.

Feedback and Non-Feedback Bridging Faults

The two main classes of bridging faults are feedback bridges and non-feedback bridges.

In a feedback bridge, a signal path exists between the two component nodes of the
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fault. Therefore, the logic value of one node can depend on the logic value of the
other node, even in a fault-free circuit. In a non-feedback bridge, no signal path
exists between the bridged nodes other than the fault itself. Figure 2.5 illustrates the
difference between feedback and non-feedback faults at the gate level.

Feedback and non-feedback bridging faults have different logical effects on a cir-
cuit. Feedback faults transform combinational logic circuits into asynchronous se-
quential logic circuits. These sequential circuits may exhibit stable states [25]. If the
signal path between the fault’s component nodes contains an odd number of signal
inversions, the bridging fault may cause oscillations to occur. When the rise and fall

times of the node logic levels involved with the fault are negligible compared to the
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Figure 2.5: Two Classes of Bridging Faults

propagation delay on the signal path between the nodes, the oscillations will have a
period equal to the propagation delay [25].

Since the nodes in a non-feedback fault do not influence each other in the fault-free
case, they do not cause problems such as stable states and oscillations associated with
feedback faults. Non-feedback faults will only influence the logic level of the bridged
nodes themselves and all gates which are subsequently driven by these nodes. The
logic function that a bridge implements on a pair of nodes depends on the technology

used for circuit construction.

2.3 Voltage-Based Testing

In voltage-based testing methods, a circuit is declared faulty if it produces incorrect
output data for a corresponding set of inputs. This section describes how voltage-

based testing is used to detect both stuck-at faults and gate-level bridging faults.

2.3.1 Detection of Stuck-at Faults

Two actions must be performed in order to detect a stuck-at fault. The fault must
be activated by an input test vector, and the effect of the fault must be propagated
to a primary circuit output for observation. Only certain test vectors allow both
activation and propagation to take place. Therefore, to thoroughly test a circuit for
stuck-at faults, a set of input test vectors is required that will activate and propagate
the effects of every stuck-at fault to a primary output at least once during the test
session.

Figure 2.6 illustrates the propagation of a stuck-at fault to a circuit output. If
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signal line F is stuck-at a logic 1, the effect of this fault must be propagated to output
node L in order for the fault to be detected. If the input vector to the circuit is as
shown, (A BC D E) = (0 1 0 1 0), line F has a fault-free value of logic 0 and line
L has a fault-free value of logic 1. When line F is stuck-at 1 and the test vector is
applied to the CUT, a faulty value of logic 0 is observed on line L. Consequently.
the “F stuck-at 1” fault is said to be detected by this test vector. Conversely, if the
input vector to the circuit is (A BC D E) = (0 1 0 1 1), the fault-free value at line
L is no different from the value at line L when line F is stuck-at 1. In this case, the
effects of the fault are not propagated to the output even though the stuck-at fault

is activated. Therefore, this test vector does not test for the “F stuck-at 17 fault.

faulty value
\ fault-free value

A L
o ' /0/[: %
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Figure 2.6: Detection of a Stuck-at 1 Fault on Line F

2.3.2 Bridging Fault Models and Fault Detection

Despite its popularity, the stuck-at fault model is not always good at describing faulty
circuit behaviour. For example, the effects of bridging defects in CMOS circuits are
not modelled accurately using stuck-at techniques. This subsection reviews two fault

models that have been used to model the logical circuit behaviour due to bridging
faults.

Wired-AND/OR Bridging Fault Model

The wired-AND/OR bridging fault model [1] assumes that bridges perform either a
wired-AND or a wired-OR logic function. For a wired-AND function, if either bridged
node is driven to a logic zero, both nodes will be pulled down to a logic 0. Similarly.

for the wired-OR function, if either node is driven to a logic 1, both nodes are pulled
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up to a logic 1. As with the stuck-at fault model, the effect of the bridge must be
propagated to a circuit output in order for the bridge to be detected.

While the wired-AND/OR bridging fault model performs adequately for older
technologies such as TTL and ECL, it is inadequate for describing the behaviour of
bridges in CMOS circuits [20]. Bridges in CMOS circuits can create intermediate
logic values on the bridged nodes instead of a clear logic 0 or logic 1. Since different
logic gates have different logic threshold levels [27], these intermediate values may be
interpreted differently by different gates. For example, if two bridged nodes are at
2.3 volts, a gate input with a transition threshold of 2.0 volts will treat this as a logic
1. However, a gate input with a threshold of 3.0 volts will treat 2.3 volts as a logic 0.
Consequently, it is not guaranteed that the bridge will implement a simple AND/OR
operation.

Feedback bridging faults can present further difficulties for the wired AND/OR
fault model. Due to the problems of unwanted states and oscillations, it can be
difficult to find an input test set that will propagate the effects of a feedback fault to

the circuit outputs.

Voting Fault Model

The inability of the wired-AND/OR model to accurately describe CMOS bridging
faults has led to the development of a more complex bridging fault model known as
the voting model [4]. For gate-level bridging faults, the voting model works as follows.

The voting model assumes that one of the two conducting transistor networks
(PMOS and NMOS) involved in a bridge will have more driving strength than the
other. Consequently, the bridged nodes will never sit at an intermediate logic value.
If the output nodes of two logic gates are shorted together, one of the shorted nodes
will be dominant over the other node. The function of the voting model is to estimate
which of the networks will have more current driving capability, and based on this
estimate, predict which of the nodes will be dominant.

Different criteria can be used by the voting model to determine which transistor
network will “win” a vote and set the logic value of the bridged nodes. One method is
to rank all of the logic gates in the CUT according to current driving strength based

upon previously performed-circuit level simulations. When a bridge occurs between

15



the output nodes of two gates, the gate with the higher recorded driving strength
is assumed to win the vote and determine the logic value on the bridge. A second
method is to employ wired-AND or wired-OR assumptions. Finally, the most complex
method is to derive expressions using the number of inputs for each gate, and the
number of conducting transistors activated in each gate by every test vector in the
test set. Since the number of conducting transistors is proportional to the driving
strength, the network having the most conducting transistors is assumed to win the
vote.

A drawback to using the voting model is that it can require numerous computa-
tions and simmulations. Since the driving strength of a transistor network is influenced
by many factors such as transistor sizing, the type of CMOS technology, and the
variation of transistor characteristics over different wafers [4], the use of circuit level
simulators, such as SPICE, is necessary to determine the driving strength of different
transistor networks [27].

Once it is determined which transistor network sets the logic level on a bridge.
the effect of that bridge must be propagated to a circuit output in order for the
bridge to be detected. The problem of finding an appropriate test vector to perform
this propagation can be challenging. If the fault in question is a feedback fault, the
problem of test vector selection becomes even more difficult. These problems are
discussed more thoroughly in [4].

The complexity of the voting model illustrates the difficulty in creating a simple
fault model which accurately describes the logical circuit behaviour due to bridging
defects. Moreover, it has been shown in [19] that the difficulty in modelling bridging
faults increases if the faults have non-zero resistive values. To avoid the problems
inherent with logic testing, a different testing method called Ippg testing can be

employed. The basics of Ippg testing are described in the following section.

2.4 Ippg Testing

Ippq testing (quiescent current testing) [37] is a parametric testing method that
is applicable to CMOS circuits. Ippg testing involves monitoring the steady state

current that flows between the power and ground rails of a CMOS circuit. If the
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amount of steady state current flowing in a CUT is more than a prespecified threshold
level, the CUT is declared faulty.

It was shown in figure 2.2 that a CMOS logic block contains a PMOS network and
and NMOS network, only one of which provides a low-resistance path to the output
during the steady state. As a result of this architecture, a defect-free CMOS logic
block allows almost no steady state current to flow. If a CMOS circuit contains a
defect, an abnormally high steady state current may flow depending upon both the
nature of the defect, and the input stimulus applied to the circuit. The detection of
high steady state currents can be used to indicate the presence of a defect. It has been
shown in previous studies that zero-defect testing is not possible without performing

Ippg-based tests [43].

2.4.1 Bridging Fault Detection

Due to the unique nature of CMOS circuits, Ippg tests can detect bridges that are
not detectable using voltage-based testing methods. This is illustrated using the two
CMOS inverters in figure 2.7. In figure 2.7, there is an unintentional bridge between
the output lines of the two inverters. In a fault-free case, and with the specified
inputs, the top inverter will pass a logic 1 to its output while the bottom inverter will
pass a logic 0 to its output. Moreover, there is no low resistance path from Vdd to
GND in either inverter.

After the introduction of the bridging fault, the logic level at both inverter outputs
is not readily known. The output voltage will depend on the relative driving strengths
of the PMOS transistor in the top inverter, and the NMOS transistor in the bottom
inverter. Consequently, the fault may or may not introduce an observable faulty logic
value on the shorted nodes.

The dashed line in figure 2.7 shows that a low resistance path exists between Vdd
and GND due to the bridge. Even if the output node is at a voltage between Vdd
and GND, the low resistance path clearly indicates the presence of the fault.

To illustrate how Ippg current changes in the presence of a bridge, consider the
following analysis. The equation for the steady-state current for the circuit in fig-

ure 2.7 changes depending upon which transistor has more driving strength. For
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Figure 2.7: Bridging Fault in CMOS Inverters

example, if the NMOS transistor has more driving strength, the equation becomes:

w

W -
Ip= kp‘f(VSGp —Vr)? = knf(Q(VGs,. — VI )Woutputsa — Viutputs.)- (2.5)

If the PMOS transistor has more driving strength, the equation is:
w w
Ip = ka7 (Vos, — Vr)? = kp1(2(Vse, — V1) Vs,0utpu — V2 Output)- (2.6)

If both transistors have close to equal driving strengths the equation becomes:

14 w
T(z( VSGp -VT) Vspoutlmt—vspoutp‘ut) = kn T(?-(VGSn -Vr ) VOutzmtSn - VozutputSn ).

(2.7)

In all these situations, Ip will be much larger than it is in the fault-free circuit.

Ip =k,

Therefore, if Ippg testing is performed on this circuit, this bridging fault is easily
detected.

Non-Feedback Bridging Fault Detection

The ease of detection of a CMOS bridge depends upon the nature of the fault itself.
Non-feedback bridging faults can be easily tested with /ppo methods. The testing
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process is a matter of finding an input vector that will activate the bridge while the
steady-state current in the circuit is monitored. Activating a non-feedback bridging

fault is illustrated in figure 2.8.

Node Logic Values
0101 — @
Nodes bridging fault
1001 > @

Figure 2.8: Activating a Bridging Fault

Figure 2.8 shows the four different pairs of signal values that can appear on the
two circuit nodes. For the first input pair, both nodes are at logic 1. In this case.
the bridging fault has no observable effect. Similarly, for the second input pair both
nodes are at logic 0 so a bridge between the nodes will go unnoticed. However, for the
third and fourth input pairs the nodes are at opposite logic values. The conflicting
values indicate that the bridging fault is activated, and that the resulting logic value
on both bridged nodes is uncertain. Moreover, since the circuit is attempting to drive
either end of the fault to a different logic value, a high level of Ippg current will flow.

A non-feedback fault cannot be detected using the above method if the fault is
between a pair of functionally equivalent nodes [20]. Two nodes that have identical
logic values for every input vector applied to the circuit are defined as being func-
tionally equivalent. Since these nodes can never hold opposite logic values, bridges

between them are never activated and cannot be detected using Ippg testing.

Feedback Bridging Fault Detection

Since the two nodes in a feedback bridging fault have a logical dependence on each
other, the activation of the fault can cause erratic circuit behaviour. Feedback bridges
can cause oscillations and unwanted stable states. Consequently, feedback bridges do
not always result in an easily measurable Ippq fault [14]. Figure 2.9 illustrates such
a case.

The circuit in figure 2.9 has a bridging fault between node 5 and node 7. Consider
the input vector (I1 [2I314) = (010 1). In the fault-free case, node 5 is set to 0. and
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Figure 2.9: Feedback Bridging Fault

node 7 is set to 1. It can also be seen that the logic value at node 7 directly depends
upon the logic value at node 5. If a bridge exists between nodes 5 and 7, the logic
value at node 7 is fed back to node 5 and the voltage at node 5 will be increased. This
change will then propagate through the OR gate to node 6, which will in turn affect
the value at node 7. Since this propagated value is uncertain, it is not clear how node
7 will.be affected. If node 7 is changed to a 0 by the uncertain value, there may no
longer be opposite logic values on nodes 5 and 7. Consequently, there will be no low
resistance current path from Vdd to GND, and no faulty /ppg will be observed.

If the input vector (I1 I2 I3 I4) is changed to (0 1 0 0), the logic value at node 7 no
longer depends on the value at node 5. Since the two nodes are still forced to different
logic values by this vector, (node 5 = 0 and node 7 = 1), a low resistance path from
Vdd to GND will be set up in the circuit, and an Ippg fault can be detected.

This example shows that feedback bridging faults are not guaranteed to be Ippg-
detectable using the same conditions as were used for non-feedback faults. To be
certain that a feedback fault produces a high level of Ippg, the two nodes must not

depend on one another during the application of a fault-activating test vector.

2.4.2 Limitations of Ippy Testing

Equations 2.5, 2.6, and 2.7 illustrate that the faulty level of Ippg produced from a
bridging fault depends upon the magnitudes of the voltage levels in the circuit. Con-
sequently, logic circuits designed to operate with 5 volt power supplies will produce
higher levels of Ippg than logic circuits which use 3 volt power supplies.

When smaller voltages are used in digital circuits, the resulting smaller levels

of Ippg current become more difficult to measure. The Ippg testing resolution is



subsequently reduced, and the difference between good and faulty levels of Ippg
becomes smaller. Since low-power CMOS circuits are the current trend in digital
design, Ippg testing will become more difficult to implement, and may not produce a
high enough testing resolution to be a viable CMOS testing method. However, Ippq
testing is still an active area of research and testing practice for the current CMOS

technology available.

2.5 Fault Diagnosis in Digital Circuits

Fault diagnosis is an important part of circuit production as it can help to determine
common or frequent errors in newly fabricated circuits. Once the common errors are
known, they can be eliminated either by redesigning the circuit or by improving the
fabrication process.

The normal diagnosis process for a digital circuit is as follows. Once a circuit has
been declared faulty by some kind of testing method, the circuit is examined to deter-
mine which faults (specified by the fault model used during testing) are responsible
for the malfunction. Once the error-causing faults are identified, diagnosis proceeds
by physically examining the circuit in an attempt to find the actual defects.

Many of the previous works on fault diagnosis have used voltage-based schemes
and the stuck-at fault model. More recently, some diagnostic methods have been
proposed which target bridging faults as the most likely cause of circuit failures.
This sectibn reviews some previous diagnosis methods that have been proposed and

highlights both positive and negative features of these methods.

Simulation-Based Diagnosis Methods

The conventional approach to fault diagnosis is the construction of a fault dictionary.
A fault dictionary is constructed by simulating every modelled fault (usually single
stuck-at faults) in the CUT and recording the results. The results for each modelled
fault are then stored in the fault dictionary. By matching the output response of
the CUT to those in the fault dictionary, the fault or fault equivalence class can be
identified. The major deficiencies of a fault dictionary approach to diagnosis is the

limiting fault model assumption, and the inability of the method to locate multiple
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faults.

A number of proposals have been presented to diagnose multiple faults in digital
circuits. Many proposals use simulation techniques to locate the faults or fault classes
which can explain the faulty circuit behaviour. In [2], a multiple fault diagnosis
method which uses an algorithm named the Deduction Algorithm is given. Given
a test set, the algorithm uses back tracing techniques to deduce the logical values
on the internal circuit lines based on the values on the primitive circuit outputs.
By analysing these values, a list of potential stuck-at faults is produced which can
account for the faulty behaviour at the circuit outputs. A similar diagnosis method is
presented in [17]. This method uses pairs of input vectors to diagnose faulty nodes in
the CUT. The diagnosis is performed in two steps. In the first step, the possible logic
values that can appear on the circuit nodes are determined according to a specified
fault model. In the second step, back tracing is done from the values on the primary
circuit outputs to determine the actual value on the circuit nodes. In this step, it
can be deduced which circuit lines are fault-free, so any faulty behaviour is isolated
to the remaining circuit lines. As in [2], a list of potential faults or fault classes is

produced which can account for the faulty circuit behaviour.

Signature Analysis Based Diagnosis

Signature analysis is an efficient data compaction technique that is used in built-in
self-test (BIST) environments [9]. Many different diagnosis schemes exist to diagnose
circuits where signature analysis is employed during testing. These schemes can be
separated into three main categories which are specified by the type of analysis per-
formed. The categories are fault dictionaries, intermediate signatures, and algebraic
analysis.
Fault Dictionaries

Fault dictionaries in signature-based methods use look-up tables to compare the
signatures from faulty circuits to the signature of a fault-free circuit. The look-up
table is created by simulating faults or fault classes in a circuit, and recording the
faulty signature that is produced. As with other fault dictionary approaches, multiple
fault analysis is not possible due to the huge number of possible faults that can exist

in the CUT. Another weakness of the fault dictionary approach is the possibility that
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two or more faults will produce identical faulty signatures (aliasing). The possibility
of aliasing reduces the diagnostic resolution achievable by this method.
Intermediate Signatures

Intermediate signature based methods partition long circuit responses into shorter
blocks of data. When signature analysis is performed on the shorter data blocks, the
resulting signature is compared to a pre-computed fault-free signature. A fault-free
signature is required for every data block received from the CUT. After the entire
set of test vectors has been applied to the CUT, only the data blocks which produce
faulty signatures must be analysed further. This results in a large savings in the CPU
time and memory required by the fault dictionary methods.

An intermediate signature based diagnosis method is presented in [44]. In this
method, signatures are collected in a multiple-input shift register (MISR) after every
256 test patterns. If a faulty signature is found, the block of faulty data is stored.
Diagnosis using fault dictionaries and fault simulation is then performed using data
from the failing blocks. This method provides a high degree of diagnosiic resolution.
but it also requires a large amount of memory to store the failing blocks of data and
the intermediate signatures.

Algebraic Analysis

Algebraic analysis diagnostic methods use the mathematical relationships between
faulty output data from a CUT and the corresponding signatures to identify the failing
outputs from the CUT during a test session. In [28], the “error signature” of a linear
feedback shift register (LFSR) [10, page 145] is analysed to determine which output
from the CUT is responsible for producing a faulty signature. If the output sequence
from the CUT is less than 2" — 1 bits long, and if the output sequence has fewer
than three errors, the method in [28] can determine which bits in the sequence are
faulty. A similar method for diagnosing output sequences when MISRs are used is
presented in [16]. This method uses a matrix formulation to describe the output data
and perform the diagnosis.

A similar method which employs cyclic registers is given in [36]. By employing two
cycling registers, the maximum testable length of the output sequence from the CUT
is increased to the least common multiple of the degrees of the cycling registers. In

[39], 2 method is presented which uses two LFSRs to perform the diagnosis. Here the
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length of the output sequence that can be analysed is increased to the least common
multiple of the orders of the polynomials which describe the LFSRs.

In all of the above algebraic methods, the maximum length of the output sequence
is much shorter than those produced from practical circuits. This fact, along with
the fact that the methods are only successful at diagnosing output sequences which
have very few errors, implies that these methods are not useful for diagnosing large
VLSI circuits.

An analysis on the diagnostic properties of LFSRs is given in [33]. The main goal
in [33] is to develop a formula that will determine the fraction of circuit faults that
will be uniquely diagnosed (produce a unique signature) for a given circuit size and
LFSR length. Although mapping specific faults to specific signatures may provide
some diagnostic information, the problem of aliasing and the large number of faults
that can exist in VLSI circuits make diagnostic schemes based solely on this method
infeasible.

In [5] a diagnosis method is presented for multiple output circuits that are tested
using pseudorandom test vectors as inputs. This method uses detection probabilities
[5] which are precomputed for each fault to help diagnose faults quickly during signa-
ture compaction. A special type of MISR called a MINSR [5], is used to perform the
compaction while the quotient stream output from the MINSR is analysed to provide
an estimate for the detection probability. To differentiate between faults that have

similar detection probabilities, post-test simulation is performed.

Diagnosis in a STUMPS Environment

Many sequential circuits are designed using scan-based flip-flops to increase the testa-
bility of the circuit. Because input data can be scanned into a sequential circuit
through a scan chain created by connecting the scan flip-flops together, a sequential
circuit can be converted into a combinational circuit for testing purposes. Combina-
tional circuits are far easier to test than sequential circuits.

A scan-based testing architecture that is widely used is the Self-Test Using MISR/
Parallel SRSG! (STUMPS) testing architecture [9]. STUMPS is a multichip testing

architecture used to reduce the testing time at the board level. A test chip is used

ISRSG stands for shift-register sequence generator.
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to both provide test patterns to the chips and compact the output test responses in
parallel from the chips. The memory elements in each chip are configured into scan
chains prior to a test. During a test, data is scanned into the chains using a test clock.
Once each memory element is loaded, the system clock is asserted once to capture the
circuit responses back into the scan chains. The circuit responses are then scanned
out of the chains and compacted by the test chip. The resulting signature produced
by the compaction is subsequently compared to a fault-free signature to see if an error
is detected.

STUMPS can also be used to test circuits at the IC level by partitioning the
circuit into multiple scan chains. In this case, the test pattern generator and data
compactor can be built-in test resources, instead of existing on a separate test chip.

In a STUMPS-based testing architecture, it is important for diagnostic purposes
to discover which of the flip-flops in the circuit have at one time collected faulty
data from the combinational sections of the circuit. This information is analogous to
determining which primary output has at one time had a faulty logic level propagated
to it. The following paragraphs present two methods used to diagnose the “fault-
capturing” flip-flops in a STUMPS testing architecture.

The diagnosis method in [45] uses coding theory and signature analysis to identify
the fault-capturing flip-flops in a STUMPS testing architecture. By using a spe-
cial programmable MISR (PMISR) to compute signatures based upon Reed-Solomon
codes [23], a set of equations are produced which when solved, identify the fault-
capturing flip-flop frames [45]. Each chain in the STUMPS architecture can then be
retested in order to locate the actual fault-capturing flip-flops.

While this diagnosis method provides good diagnostic resolution, its implementa-
tion can be difficult. For large circuits having many faults, it can take a large amount
of computational power to solve the system of equations that is produced. Moreover.
the diagnosis requires a long time to run, and the number of faulty scan-frames that
the method can handle is limited.

The method in [40] also identifies the fault-capturing flip-flops in a STUMPS-based
testing architecture. This method uses signature analysis to systematically find the
faulty chains and flip-flops during diagnosis using a divide-and-conquer strategy. For

every flip-flop in the system, a corresponding signature can be calculated that will
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inform the user whether that flip-flop has captured faulty data at one time during
the diagnosis run.

This diagnosis method provides as good a diagnostic resolution as that in [45]
and does not require that any equations be solved. It also has no limitations on the
number of faults that can exist in the circuit. Some possible limitations of the method
are the amount of memory required to store the fault-free signatures, and the amount

of time required to perform a diagnostic run.
Bridging Fault Diagnosis

In recent years, research has been done in the area of bridging fault diagnosis. Most
of the work done has dealt with diagnosing faults in CMOS circuits. The following
paragraphs discuss some of the diagnosis methods that have been recently developed.
The methods fall into two basic categories: fault dictionary methods and algorithmic
methods.

Fault Dictionary Methods

Stuck-at fault dictionaries are used to diagnose CMOS bridging faults in [31].
The diagnosis method uses information from a stuck-at fault dictionary, and the
relationships between stuck-at faults and low-resistance bridging faults to perform a
diagnosis. It is claimed in [31] that for tests performed on benchmark circuits. over
92% of bridging faults in the circuit can be diagnosed correctly.

Although the method in [31] produces a high diagnostic resolution it has some
drawbacks. The most serious drawback is the time and memory required to construct
and store a complete stuck-at fault dictionary. For large circuits, the amount of
memory required may make the construction of a dictionary infeasible. A second
potential drawback is the way that the method handles multiple bridging faults. If
the errors that propagate to the circuit output due to multiple bridging faults mask
each other, the diagnosis may be misleading. Moreover, if the bridging faults in the
circuit have non-zero values of resistance, they may not propagate logic errors to the
outputs at all. The diagnosis of such faults is impossible using this method.

Fault dictionaries are also used for CMOS bridging fault diagnosis in [22]. In [22],
a mixed-mode (switch-level and gate-level) simulator is used to build three different

types of fault dictionaries that are used in the diagnosis. The first dictionary is known
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as the complete fault dictionary. For this dictionary, a list of detected faults at each
primary output is constructed for each input vector. The second dictionary is called
the pass/fail dictionary. It associates the list of detected faults with each input vector
instead of with each primary output at each input vector. The third dictionary is
called the count dictionary. It contains the maximum and the minimum detections
of each fault.

It is shown in [22] that the complete fault dictionary provides a very high diagnos-
tic resolution. However, a great deal of computer memory is required to implement
such a dictionary, even when small circuits are considered. It is also stated that the
other two dictionary types do not provide as high a quality of resolution, but can pro-
duce acceptable resolution if Ippg information is incorporated along with the regular
voltage information.

In [6], a diagnosis method which uses both Ippg test information as well as volt-
age information to locate faults is presented. The method uses a transistor leakage
(transistor bridging) fault model to model circuit defects, although the method can
also be used with other fault models [7]. The main idea of the method is to apply a
test set to the CUT and monitor the Ippg levels. Every time a faulty level of Ippg
is measured, the primary circuit outputs are stored, as is the sequence number of the
input test pattern. Therefore, both the input vector and the output response to the
circuit will be stored when an Ippg fault is activated. After a pre-specified number
of faults have been found (32 faults are used in [6]) fault simulation is performed for
each fault in a fault list in order to determine which faults may be responsible for the
faulty behaviour.

Since this method uses Ippg test results to aid in diagnosis, it performs well at
diagnosing bridging faults. However for large circuits, the time and memory prob-
lems associated with constructing fault dictionaries, storing output responses, and
performing fault simulation still exist. Therefore, this method can be expensive to
implement.

Algorithmic Methods

Many papers have been published by Chakravarty regarding bridging fault diag-
nosis. These papers use special algorithms to locate bridges based upon different
test results. In [14] an algorithm is presented to diagnose two-node bridging faults in

27



CMOS circuits based upon Ippg test information. The algorithm employs a single
fault assumption, and performs diagnosis at the gate level. Although the algorithm is
very efficient, it is limited by the single fault assumption. Moreover, when feedback
bridging faults are considered, the algorithm is more pessimistic than it needs to be.
This leads to a lower diagnostic resolution than is possible.

In [13] an algorithm is given which uses the wired-OR fault model to describe the
function of bridges in a circuit. When an input vector is applied to the circuit, a set
of faults is computed that are detected by that vector. A collection of these fault sets
comprise a fault dictionary. The algorithm works by analysing a set of input vectors
and a particular test result. The output of the algorithm is a list of the possible faults
that may be responsible for the test result being observed.

The algorithm in [13] requires less memory storage than the diagnosis method
given in [31]. The limitation of the method is its dependence on the wired-OR fault
model to describe bridges.

In [15], Chakravarty provides an updated version of the algorithm in [14]. Assum-
ing that it is known which input test vectors activate [ppg faults, the algorithm is
able to diagnose both internal gate bridges, and external gate bridges. The limitation
of the diagnosis algorithm, as in [14], is that it uses the single fault assumption.

The following chapter presents two new bridging fault diagnosis algorithms: a
single fault algorithm which improves on the algorithm in [14], and a multiple fault

algorithm which can diagnose circuits containing more than one fault.

[
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Chapter 3

New Algorithms

In this chapter, two new diagnosis algorithms for gate-level bridging fault diagnosis
in CMOS circuits are presented. One algorithm employs the conventional single fault
assumption, while the second algorithm is applicable to circuits containing multi-
ple bridging faults. The terminology used to describe the algorithms is defined, and
examples to illustrate the operations of both algorithms are presented. The computa-
tional complexity of the algorithms is given. Finally, subsequent diagnostic methods
which use the information provided by the new algorithms are discussed.

3.1 Testing and Diagnosis Process

The diagnosis algorithms are part of a complete bridging fault testing and diagnosis
process. The algorithms incorporate the results of an Ippg test session on a CUT
along with the results of logic simulations to determine the single bridging faults and
multiple bridging faults that can cause a circuit to produce test results identical to
those observed from the CUT. The use of gate-level logic simulation allows diagnosis
to be performed much more quickly than can be done when circuit-level simulation
is used to determine the same information.

It is assumed that some type of Ippq testing (off-chip or built-in) can be easily
performed on the CUT. However, the actual Ippg testing implementation is beyond
the scope of this thesis.

The testing and diagnosis process proceeds as follows.

1. Bridging fault testing;:



Step 1: Generate a set of Ippg test vectors.

Step 2: Perform an Ippg test on the CUT using the vectors in the test set. If
the CUT fails the test during the application of the n-th vector, the number n
is recorded.

If at least one test vector causes an Ippq fault to be detected in the CUT. the
CUT is declared faulty and diagnosis using the new algorithms is performed.

[

. Bridging fault diagnosis:
Step 1: Generate an initial set of possible faults. This set can be obtained by
extracting information from the layout of the CUT and determining which nets
are routed close enough together so that bridges may exist between them. If no
layout information about the CUT is available, an exhaustive set of bridging

faults can be used.

Step 2: Perform logic simulations on a copy of the CUT (gate level) using the
same set of test vectors used during the Ippo testing. The simulations are used
to obtain logic information for each node in the CUT. These simulations can

be performed either prior to or during the execution of the algorithm(s).

Step 3: Invoke the single fault diagnosis algorithm using the simulation infor-
mation, the Ippg test results, and the initial fault set as inputs. The algorithm
produces two fault sets which contain the diagnosed faults.

Step 4: If the single fault diagnosis algorithm does not identify any single
fault which is responsible for the faulty Ippg results from the CUT, invoke the
multiple fault algorithm. Initially, it should be assumed that the CUT contains
double faults, as they are the most probable type of multiple fault. If the
diagnostic information produced using the double fault assumption is still not
sufficient, triple, quadruple, or other multiple fault assumptions can be used in

turn.

In summary, the new diagnosis algorithms produce sets of faults which can be re-
sponsible for the faulty /ppg results observed during the testing process (i.e. the fault

equivalence classes). To determine the actual bridging fault(s) from these sets that is
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in the faulty CUT, further diagnostic methods such as circuit-level fault simulation
or electron beam testing [46] must be employed.

To use circuit-level fault simulation for diagnostic purposes, the following steps
can be performed. The netlist of the CUT is input to a circuit-level fault simulator.
Bridging faults diagnosed by the algorithms are then injected into the netlist. The
simulator applies a set of input vectors to the netlist and the resulting output logic
levels are recorded. The same input vectors are then used to stimulate the CUT, and
the output logic levels from the CUT are recorded. This set of test vectors may or
may not be the same set of vectors used by the diagnosis algorithms. Since circuit-
level fault simulation can take a long time, a small set of test vectors is normally
used.

If the outputs from the simulated netlist are different than the actual outputs from
the CUT, it is assumed that the fault injected into the netlist is not present in the
CUT. If the two sets of outputs match exactly, the injected fault may be present in the
CUT. The above process is repeated until all the faults diagnosed by the algorithms
have been tested.

If the results provided from circuit-level fault simulation are not sufficient, or if the
exact nature of the fault at the layout level must be investigated, physical diagnosis of
the CUT can be performed using an electron beam testing system. An electron beam
tester can physically trace the CUT in order to find the circuit defects responsible
for faulty circuit behaviour. Although an electron beam tester provides the highest
possible resolution of any diagnostic method, it requires a great amount of time to
perform a diagnosis. Consequently, electron beam testing is normally performed after

the diagnostic information from other methods has been collected.

3.2 Fault Assumptions

Gate-level bridges are the most common type of bridge in CMOS circuits designed
using standard cell libraries [34]. It is assumed for this thesis that bridging faults
occur at the gate level.

Both feedback bridging faults and non-feedback bridging faults are considered
during diagnosis. Due to the unpredictable effects produced by feedback bridging
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faults (see chapter 2 page 12) the assumptions made regarding the Ippq testability
of feedback faults in the CUT will affect the resolution achieved by the diagnosis
algorithms.

As is discussed in chapter 2, a test vector which attempts to force the nodes in a
feedback fault to opposite logic levels does not necessarily produce a faulty level of
Ippg- If one of the two nodes in the fault directly influences the logic level on the
second node when a specific test vector is applied, the current path between Vdd and
GND may be eliminated due to the logical dependence between the nodes. However.
without the use of a circuit-level simulator, the exact behaviour of feedback faults to
each test vector is not readily known. Without this knowledge, assumptions must be
made regarding whether feedback faults will always produce faulty Ippq levels when
they are activated.

For the new diagnosis algorithms, a relatively conservative approach is taken. It is
assumed that if the signal on one node involved in a feedback fault is responsible for
determining the signal on the second node for a particular test vector, it cannot be
determined whether the fault will produce a faulty level of Ippg during the application
of that test vector. Therefore, when a test vector produces no faulty Ippg levels in
the CUT, feedback faults can only be eliminated when the nodes in the fault are
logically independent.

3.3 Definitions and Declarations

This section provides some definitions and terminology that are used by the diagnosis
algorithms.

Let T be a set of test vectors used to stimulate a circuit while Ippg testing is
performed on that circuit. ¢ is the total number of test vectors in T'. Let Xr; be the
logic value of a node X when test vector T; is applied to the CUT.

The graph in figure 3.1 illustrates the results of a sample Ippg test session where
t = 10. For each test vector, there is a short transient component of the circuit’s
current and a longer steady-state component. Ippg testing is performed during the
steady-state. It can be seen from figure 3.1 that 4 of the 10 test vectors fail the [ppg

test, since they produce a steady-state current which is higher than the specified
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threshold current.
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Figure 3.1: Circuit Current During Ippg Test Session

Definition 3.1 If the two nodes at either end of a fault are set to opposite logic
values by a particular test vector, the fault is said to be activated by that vector.

For the example in figure 3.1, faults are activated during the application of test

vectors 2, 5, 6, and 10.

Definition 3.2 The activation pattern (AP) is the set of integers corresponding to
the indices of the test vectors which produce faulty Ippq test results. For each T; in
T (1 <£1i <t) that activates an Ippg fault, the integer i € AP.

APcyr is the AP containing the Ippg test result information obtained from the
CUT. For the example in figure 3.1, APcyr = {2,5,6,10}.

APsive = {APsiu,, APsiay, -y APsIMpor; } is the class of APs formed during
logic simulation of the CUT, where TOT is the total number of faults in the CUT.
Each set in APsrar contains the set of integers which describe the Ippg test results
for a simulated copy of the CUT, where the simulated copy contains a single bridging
fault.
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Definition 3.3 The activation frequency (AF) is the number of test vectors in a test

set T that produce a faulty level of Ippq.
For the test set in the example in figure 3.1, AF = 4.

Definition 3.4 A feedback bridging fault is said to be sensitized by the current test
vector if the logic value of one of the nodes in the fault depends directly on the logic

value on the other node.

To determine whether a feedback fault is sensitized, the node in the fault closest
to a primary input is complemented. If the other node in the fault is affected by the
change to the first node (either permanently or temporarily), the fault is sensitized

by the current test vector.

Fault Set Declarations

This subsection declares the different fault sets which are either used or produced by

the new diagnosis algorithms.

1. A set of faults, F, is denoted as {f}, f2, ... , fror1}, where TOT[ is the number
of faults in F'.

o

Fy is the initial set of bridging faults passed to either algorithm.

Fr is divided into two sets, Fr and Fxr. FFr is the set of feedback faults from
F, while FxF is the set of non-feedback faults from Fi.

3. Fy is the set of bridging faults which are identified by either diagnosis algorithm
as faults which may be responsible for all faulty Ippg levels recorded in the
CUT. When the multiple fault algorithm is invoked, Fj also contains faults
which are known to be responsible for the faulty Ippo level observed for one
particular test vector. For a single fault f;, f; € Fi if (APsa, = APcut) OR
(APsia,\APsinm;) # 0, where 1 <i,j < TOTI, i # j, and (APsrm, \APsin,) €
APcut.

4. Fp is the set of bridging faults which are identified by the multiple fault al-
gorithm as faults which may be present in the CUT, but cannot be solely re-
sponsible for all of the Ippg faults observed in the CUT; that is, f; € Fp if
(AF; < AFcut) AND (APsim, \ APcut) = 0.
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Fs is the set of feedback bridging faults which cannot be eliminated by the

9\

diagnosis algorithms due to the fact that they are sensitized for specific test
vectors, that is, f; € Fs if (APsiu; \ APcur) # @ AND f; is sensitized for all
T;, where ¢ € {APsu, \ APcut}-

6. Fsg is the subset of faults from set Fs which may be solely responsible for all
of the Ippg failures recorded from the CUT, that is, f; € Fsg if (APcur \
APspy,) # 0. The single fault algorithm diagnoses sensitized faults to Fsg
only.

7. Fy is the set of bridging faults which are not tested by a specific test set T, that
is, f; € Fy if AF; =0. Fy is produced only by the multiple fault algorithm.

8. Fy(z) is the set of multiple bridging faults where each multiple fault is a com-
bination of z single faults and z is an integer. Fy(z) contains all of the single
fault combinations from sets Fp and (Fs \ Fsg) which can combine to produce

APsiy, = APcyr, where APspyr, is the AP of one multiple fault.

Fy(z) is split into to subsets. Fp is the set of faults in Fy(z) which are made
up of single faults from set Fp only. Fys is the set of faults in Fy(z) which

contain at least one single fault from (Fs \ Fsg).

3.4 Single Fault Diagnosis

Many testing and diagnosis schemes assume that only one fault is present in a circuit
during a test session. This is known as the single fault assumption (3, page 94].
This assumption is justified when tests are performed frequently enough so that the
probability of more than one fault developing between test sessions is sufficiently
small.

This section presents a new diagnosis algorithm for circuits containing single bridg-
ing faults. The new algorithm is an improvement on the algorithm presented in {14]
as the new algorithm handles feedback bridging faults in a more optimistic manner.
As a result, a higher diagnostic resolution is obtained. This leads to savings in the
time and computational power required during subsequent diagnosis processes that

are performed using the information provided by our diagnosis algorithm.
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In the new single fault algorithm, logic simulation results are used to analyse each
fault in the initial fault set (Fy) passed to the algorithm. If the simulation results
indicate that a particular fault, f;, will produce an APspyy, which is identical to
APcyr, the fault is placed into Fr. The algorithm also places feedback faults into
F's if the fault is sensitized by every test vector T; where i € APsrar, and ¢ € APcuT-
The outputs of the algorithm are the faults in both Fy and Fs.

3.4.1 Single Fault Algorithm

The inputs to the algorithm are APcyT, and Fr. Prior to execution of the algorithm.
each fault in Fj is classified as either a feedback fault, or a non-feedback fault, and is
placed into fault sets Fr and Fnf accordingly. The algorithm proceeds as follows (a
flowchart of the algorithm can be found in figure A.1 of appendix A).

procedure SINGLE_FAULT_ALG()

begin
Fr, = Fr /* Initial classification of fault */
Fs, =0 /* lists Fp and Fs. */
fori=1tot /* Analysis is over all ¢ test vectors */
for j =1to TOTI /* Analyse every fault in the fault list */
/* that has not been eliminated */
actflag = ACTIVATION(f;) /* Determine if f; is activated by the */
/* current test vector */
if (: € APcyr) then /* If an Ippq fault is detected in the */
/* CUT by T; */
if (actflag = false) then /* Eliminate fault f; if it is not activated */
/* by T: */

eliminate f;
else /* If fault f; is activated by T; */
/* keep it in the same fault set as before */

if (f; € Fr,_,) then

fi € Fi,
else if (f; € Fs,_,) then
f] € FS.'
end if
end if
else /* If no Ippq fault is detected in the */
/* CUT by T; */
if (actflag = false) then /* If fault f; is not activated by T; */
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/* keep it in the same fault list as before */
if (f; € F,_,) then

fi € Fi,
else if (f; € Fs,_,) then
f; € Fs;
end if
else /* If fault f; is activated by T; */
if (f; € FL) OR (f;j € Fs) then
if (f; € FnrF) then /* If f; is a non-feedback fault, */

/* eliminate it */
eliminate f;
else /* If f; is a feedback fault */
if (f; is sensitized) then
/* If f; is sensitized, place it in Fs */
f;j € Fs;
else /* If f; is not sensitized, eliminate it */
eliminate f;
end if
end if
end if
end if
end if
end for
end for

end procedure /* End SINGLE_FAULT_ALG */

procedure ACTIVATION( f;) /* Determines whether fault f; is */

/* activated by test vector T; */

begin

if (XT1i, = Y7i,) then /* If the logic values on the nodes are */
flag = false /* equal, flag = false (not activated) */

else /* If the logic values are not equal, */
flag = true /* flag = true (activated) */

end if

return flag /* Return flag */

end procedure

/* End ACTIVATION */

3.4.2 Single Fault Diagnosis Example

Figure 3.2 shows a small combinational digital circuit. To help illustrate the single
fault diagnosis algorithm, an example diagnosis run will be performed on this circuit.
The circuit in figure 3.2 has eight different nodes. Therefore, there is a total of

C3$ = 8!/(2! x 6!) = 28 two-node bridging faults. Each of these faults is represented
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Figure 3.2: CUT for Example Diagnosis Run

as a node pair. Table 3.1 is divided into two halves. The left half shows each different
node pair and indicates whether the node pair is a feedback (F) or a non-feedback (N)
fault. The right half of table 3.1 gives the corresponding fault number for each node
pair. For example, node pair 1-2 is labelled as fault f;, and node pair 6-8 is labelled
as fault f7. The fault related information for the circuit in figure 3.2 is summarized

in table 3.2.

Nodes Nodes Corresponding Faults

1 2 3 4 5 6 7 8 1 2 3 4 5 6 T 8
1 - NN F NVFF F|1 - A o 5 fo 5 fo F
2 - - NNFF F Fl2 - - fs fo fio fir fir fis
3 - - - N F F F F|3 - - - ha hs fie fir hfis
4 - - - - N F F F|4 - - - - fie fro fu fa
5 |- - - - - F F F|5 - - - =~ - faa fuu fos
6 - - - - - - F F{l6 - - - - - - fas Sor
7 - - - - - - - Fff7T - - - - - - - Jfas
8 |- - - - - - - s - - - L

Table 3.1: Nodes and Faults for Example Circuit

Gates | Nodes | Bridging Faults | Feedback Faults | Non-Feedback Faults
5 8 28 21 7

Table 3.2: Circuit Information for Diagnosis Example

Since the CUT has only 3 inputs, an exhaustive test is used to achieve the max-
imum diagnostic resolution. In a practical circuit, the number of inputs is normally
too large to allow for the use of an exhaustive test. In such a case. a much smaller

test set. such as a set of pseudorandom test vectors. or a set of specially generated
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Ippq test vectors is used instead of an exhaustive set. Table 3.3 shows all of the test
vectors used, the order in which they are applied to the CUT , the Ippq test results

for each vector, and the fault-free logic values on each circuit node during the test.

Input Vector Node Logic Values Ippq Test Results
i 1 2 3 4 5 6 7 8

1 000 0 6 0 1 10 01 Pass

2 001 0 0 1 1 0111 Fail

3 010 06 1 01 01 1 1 Fail

4 011 01110111 Fail

5 100 1 0 0 0 1101 Fail

6 101 1 010 0100 Pass

7 110 1 10001 00 Pass

8 111 1 1 1 0 0 1 0 0 Pass

Table 3.3: Logic Simulation and Ippg Test Results for Diagnosis Example

From the Ippg test results, APcuyr = {2, 3, 4, 5}. The algorithm requires APcyr
and Fy (which is divided into Fr and FyF) as input. The algorithm starts by initially
classifying the faults from F7 into sets Fr, and Fs, as follows:

Fr, = {f1. fa: fa, fas f5, for fo2 f3, fo, fro. Ju1s fi2s fi3, fras fis. fres fiz; fis. fie.
fa0; fa1, fa2, fa3, faa, fos, faes for, fas}

Fs, =10

Faults are either eliminated or repositioned into Fi or Fs by analysing the I[ppg

test result and the logic simulation values for each test vector (1 < i < 8).

=1

Since 1 € APcyr, all activated non-feedback faults (fy, fo, and fi4). and any
activated feedback faults which are not sensitized (none), are eliminated. All activated
feedback faults which are sensitized (f3, f7, fio, fi3, fis, fis, fo0. fa1. foss fou. for-
and fis) are placed in Fs,. The remaining faults (fi, f2, fs, fe, fs, f11, fi2, fie: fir-
fro, fo2, f2s, and fzg) are placed in Fr,. After all the information from test vector 1
has been analysed, 3 faults are eliminated and Ff, and F, are as follows:

Fr, = {f1, f2, fs: fe, fa, f11, fizs fres fiz, fres fo2, foss fos}
FS; = {f3s fT, flOa f137 f157 fl81 f20’ f217 f23’ f247 f273 f23}

1= 2:
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Since 2 € APcyr, all non-activated faults (fi, fio, fis, firs fis, foo. fo1. foz: foe-
far, and fog) are eliminated. All activated faults from Fg, (f2, fs. fe, fs, fi1, fiz, fre-
and f,5) are placed in Fr,, and all activated faults from Fs, (fs, fz, fi3, fis. f23, and
fa4) are placed in Fs,. After the information from test vector 2 is analysed, Fr, and
Fs, are as follows:

Fr, = {f2, fs: fo f3, fu1s fr2, frs, fas}

Fs, = {fs, fz: f13, fiss fa3, f24}

1= 3

As was the case for test vector 2, test vector 3 activates an Ippg fault (3 € APcuT)-
Therefore, all non-activated faults (f;, fi1, fi2, fis and fis) are eliminated. The
remaining faults are placed in Fr, and Fs,:

Fr, = {fs, fe: fs, fr9, fas}

Fs, = {fs, frs fa3, foa}

1= 4:

Since 4 € APcyr, all non-activated faults (fs) are eliminated, while all activated
faults are placed in F, and F,:

FL4 = {fs, fe: fra, fzs}

Fs, = {fs, fz, faa, fad}

t = 5:

Since 5 € APgyr, all non-activated faults (fs, f7, f23, and fz5) are eliminated
while the rest are placed in Fr, and Fj,:

Fr, = {fs, f19}

Fs, = {f3, faa}
1 = 6:

Since 6 € APcyr, all activated and sensitized feedback faults (f3, fs, and fo4) are
placed into Fs,. fio is a non-activated, non-feedback fault, so it is placed in Ff,:

Frg = {fie}

Fsy = {f3, fe; faa}

i=T7and: = 8:

Examining the simulation results and checking the feedback paths for the faults in
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Fr, and Fs, for both test vectors 7 and 8, shows that no further fault elimination or
movement can be done using information from the last two test vectors. Therefore.
the final output provided by the algorithm is:

Fr, = {fie}

Fs, = {fs, fe, fas}

The four faults left in the last Fy and Fs are the bridging fauits which may be
responsible for the faulty levels of Ippg found during the testing of the CUT. Since
APsiar, = APcyr, 1t is more likely that fi9 and not one of the faults in Fs (f3. fe.
and fz4) is the fault present in the CUT. In order to determine for certain which of
the four faults is actually in the CUT, further diagnosis using other methods must be
done. For example, logic information from the CUT outputs produced during fault
simulation may provide enough information to determine which of the four bridging
faults is actually in the CUT. Experimental study on the performance of the single
fault algorithm is given in Chapter 4.

3.5 Multiple Fault Diagnosis

The single fault algorithm is used for circuits which are assumed to contain only one
bridging fault at any one time. If more than one fault exists in the CUT, the single
fault algorithm may misdiagnose one or all of the faults. This section introduces a
new multiple fault diagnosis algorithm to be used when the single fault algorithm and
successive diagnostic procedures fail to locate any defects in the CUT.

The multiple fault algorithm consists of 4 main procedures. The first procedure.
called CLASSIFY, is used to analyse simulation results from the CUT and either
categorize the faults into fault sets Fj, Fp, and Fs, or eliminate them. The second
procedure, called UNDETECTED, places all faults which are not testable by the
current test set into fault set Fyy. The third procedure, called AP _UNIQUE, analyses
the faults in Fp and Fs to determine if any single fault in these sets can be solely
responsible for producing a faulty Ippg level in the CUT. If such a fault is found. it
is moved into Fr. The last procedure, called NTUPLE, creates the multiple fault list
Fx. Fy shows which faults in Fp and Fs can produce APcyr if they appear in the
CUT simultaneously.
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3.5.1 Multiple Fault Algorithm

The inputs required by the multiple fault algorithm are APcyT, Fr (divided into Fr
and FyF), and the degree of multiple faults that will be considered (i.e. double faults.
triple faults etc.). The outputs of the algorithm are Fi, Fp, Fs, Fx (which can be
divided into Fyp and Fys), and Fy. The multiple fault algorithm proceeds as follows
(flowcharts for the algorithm are given in figures A.2 to A.5 in appendix A).

procedure MULTI_FAULT _ALG()
CLASSIFY()

UNDETECTED()

if Fr, = 0 then
AP_UNIQUE()

end if
NTUPLE(z)

end procedure
procedure CLASSIFY()
Fr, = F;

Fpy=Fs, =0

fori=1tot
for j=1t0 TOTI

actflag = ACTIVATION(f;)

if (¢ € APcyT) then

if (actflag = false) then

/* Call CLASSIFY procedure to */

/* construct Fr, Fp, and Fs */

/* Call UNDETECTED procedure to */
/* construct Fyy */

/* Call AP_UNIQUE procedure to */
/* analyse Fp and Fs */

/* Call NTUPLE procedure to */
/* create Fy(z) */
/* End MULTI.FAULT_ALG */

/* CLASSIFY constructs fault sets */
/* Fr, Fp, and Fs */

/* Initial classification of Fr, Fp, and Fs */

/* Analysis is over all ¢ test vectors */

/* Analyse all faults that have not been */
/* eliminated */

/* Determine if f; is activated by the */
/* current test vector */

/* If an Ippq fault is detected in the */
/* CUT by T: */

/* If f; is not activated by the current */
/* test vector */

if (fi € Fr,_, OR f; € Fp,_,) then

fi € Fp,
else

fJ € FS.‘
end if

[* If f; isin Ff or Fp, place it in Fp */

/* Keep fjin Fs */



else

if (f; € Fr,_,) then
fieFy,

else if (f; € Fp,_,) then
fi € Fp,

else if (f; € Fs,_,) then
fi € Fs,

end if

end if

else
if (actflag = false) then

if (f; € Fr,_,) then
f; € Fi,

else if (f; € Fp,_,) then
fi € Fp,

else if (f; € Fs;_,) then
fj € Fs,

end if

else
if (f; € FnF) then

eliminate f;
else
if (f; is sensitized) then
fi € Fs,
else
eliminate f;
end if
end if
end if
end if
end for
end for
end procedure

procedure UNDETECTED()

Fy, = Fp
fori=1tot
for j=1to TOTP

/* If f; is activated by T; */
/* keep f; in the same fault list it was in */
/* during the last loop. */

/* If no Ippq fault is detected in the */

/* CUT by T; */

/* If fault f; in not activated by T; */

/* keep f; in the same fault set as before */

/* If fault f; is activated by T; */
/* If fault f; is a non-feedback fault */
/* eliminate it */

/* If f; is a feedback fault */
/* If f; is sensitized, place it in Fs */

/* If f; is not sensitized, eliminate it */

/* End CLASSIFY */

/* Identifies all faults which are */
/* undetectable and places them in Fyy */

/* Analysis is over all ¢ test vectors */
/* Analyse all faults in Fp */
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actflag = ACTIVATION( f;)

if (actflag = true) then
eliminate f; from Fy;,
else
fi € Fi Uy
end if
end for

end for
end procedure

procedure AP_UNIQUE()

fori=1tot
if ({ € APcyT) then

q=0

for j =1to TOTI

actflag = ACTIVATION(f;)
if (f; € {Fp U Fs}) then

if (actflag = true) then

num = j
g=q+1
end if

if (¢ > 2) then end for

end if
end if
end for
if (¢ = 1) then

fnum € FL
end if

end if
end for

/* Determine if fault f; is activated by */
/* the current test vector */

/* Fault f; is activated by T; */

/* Fault f; remains in list Fp */

/* Fault f; is not activated by T; */

/* Fault f; is placed in list Fyy and */

/* removed from list Fp */

/* End UNDETECTED */

/* Determines if any fault */

/* in Fp and Fs is solely responsible */
/* for the Ippg fault observed in the */
/* CUT during the application of a */
/* particular test vector */

/* Analysis is done for all test vectors */
/* which produce an Ippg fault */

/* Determine if fault f; is activated by */
/* the current test vector */

/* Analyse f; only if it is in either */

[* Fp or Fs */

/* If f; is activated by the current test */
/* vector, save the fault index (j) and */
/* increment counter ¢ */

/* If more than one fault is activated by */
/* the current test vector, stop the */

/* analysis of the current test vector */

/* and move on to the next one */

/* If only one fault is activated by T;, */
/* move that fault to Fp */
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end procedure /* End AP_UNIQUE */

procedure NTUPLE(z) /* Multiple fault analysis to create fault */
[* list Fy(z). z is the degree of */
/* n-tuple fault to be analysed. */
/* (i.e. for double faults z=2, */
/* for triple faults z=3, etc.) */

INDEX = a set of integers /* Initial classifications */
Fsp = (Fs\ Fsg) UFp

TOTSP =TOT(S\ SE) + TOTP is the number of faults in Fsp
Fno(2z) = {fars Fazs = Farory } where TOTN = CTOTSP

fn, = {fn1]1 ) fn,J}

fori=1tot /* Analysis is over all ¢ test vectors * /
if (i € APcyT) then /* If an Ippq fault is detected in the */
/* CUT by T: */
for j = 1to TOTSP /* Analyse all faults in Fsp */
actflag = ACTIVATION(f;) /* Determine if f; is activated by T; */
if (actflag = false) then /* If f; is not activated, store the fault */
/* index (j) in INDEX */
j € INDEX
end if
end for
for s =1to TOTN /* Analyse all possible multiple faults */

if (ns;, ..y ns, € INDEX) then /* If all single faults in multiple fault f,, */
/* are not activated by the current test */
/* vector, eliminate the multiple fault */
eliminate f;,
end if
end for
end if
end for
end procedure /* End NTUPLE */

3.5.2 Multiple Fault Diagnosis Example

Since the CLASSIFY procedure is similar to the single fault algorithm, a detailed
example of it will not be presentéd here. It is also assumed for this example that the
UNDETECTED and AP_UNIQUE procedures have already been completed. The
example in this subsection illustrates how the NTUPLE procedure uses the informa-

tion produced by the other procedures to identify the possible n-tuple combinations



which can produce the Ippg test results observed from the CUT.

Table 3.4 illustrates the fault sets that are created from the first three procedures
of the multiple fault algorithm. For each fault f;, APsps, is given to help illustrate
the NTUPLE procedure.

APCUT = {2r 4, 67 7}
Fr Fp Fs Fu
Fault APsra; Fauit APsrpy, | Fault APsyy, Fault APsryr,
T 46| 2 R4 5B L, 4} ]

f19  {2,4,6,7}| f6 {6, 7} fa {4,5,6, 7} 7 {0}

f10 {7} f9 {2,4,6,7, 10} 8 {0}

fil {2, 6} f12 {2,3,4,6,7,9, 10}

f14  {4,6,7} | f13 {3, 4, 6}

f15 {4} fiT {1,2,3,4,5,6,7,8,9, 10}

f16 {6, 7} f18 {6,7,8,9, 10}

f20 {2, 4,9, 10}

Table 3.4: Input to NTUPLE Procedure for Multiple Fault Example

Since faults f1 and f19 have APs;y, = APcur, they are not analysed by pro-
cedure NTUPLE. This is because they alone can be responsible for the faulty [ppg
tests produced from the CUT. Therefore, it is worthless to combine them with other
faults, as they will “mask out” the effects of the other faults. This masking effect
also occurs for faults f9, f12, and f17 from set Fs (these three faults are in Fsg).
Consequently, they are not analysed by procedure NTUPLE. The faults in Fy, (f5.
f7, and f8,) are never activated by the test vectors used during the I[ppg tests. They
are also excluded from procedure NTUPLE. The faults which are analysed are the
faults from Fp (f2, f6, f10, f11, f14, f15, f16) and the remaining faults from Fs
(f3, f4, f13, f18, f20). These 12 faults make up fault set Fsp defined in procedure
NTUPLE.

For this example, a double fault assumption is used. Each possible double fault
is analysed (a total of C}? = 12!/(2! x 10!) = 66) for every test vector T;, where
t € APcyt (2, 4, 6, 7), until either all the information from each test vector has been

analysed, or the double fault is eliminated. The analysis proceeds as follows.

1= 2:

Since faults f2, f11 and f20 are the only faults which have 2 € APs/ar,, any of the
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double fault combinations that do not contain one of f2, f11, or f20 are eliminated.
The other double faults remain in F(2). Therefore, the following double faults are
left in Fix(2):

Fn(2) = {f2-3, f2-f4, f2-f6, f2-f10, f2-f11, f2-f13, f2-f14, f2-f15, f2-f16,
f2-f18, f2-f20, f3-f11, f3-f20, f4-f11, f4-f20, f6-f11, f6-f20, f10-f11, f10-£20.
f11-f13, f11-f14, f11-f15, f11-f16, f11-f18, f11-£20, f13-f20, f14-f20, f15-f20,
f16-£20, f18-f20}

1= 4:

The single faults for which 4 € APsyy; are 2, f14, f15, f3, f4, f13, and f20.
Therefore, only double faults in Fx(2) containing at least one of these faults are
kept. After the information from test vector 4 has been analysed, the following faults
remain in Fx(2):

Fn(2) = {f2-3, f2-f4, f2-f6, f2-f10, f2-f11, f2-f13, f2-f14, f2-f15, f2-f16,
f2-f18, f2-f20, f3-f11, f3-f20, f4-f11, f4-f20, f6-£20, f10-f20, f11-f13, f11-f14.
f11-f15, f11-£20, f13-£20, f14-f20, f15-f20, f16-f20, f18-f20}

1 = 6:

The single faults for which 6 € APsa, are f6, f11, f14, f16, f4, f13, and f18.
Once again, only double faults containing at least one of these faults are kept. The
faults remaining in Fy(2) are:

Fn(2) = {f2-f4, f2-f6, f2-f11, f2-f13, f2-f14, f2-f16, f2-f18, f3-f11, f4-f11.
f4-f20, f6-£20, f11-f13, f11-f14, f11-f15, f11-f20, f13-f20, f14-f20, f16-f20.
f18-f20}
=T

Test vector 7 is the last test vector that produces an Ippg fault in the CUT. The
faults for which 7 € APsry; are f6, f10, f14, f16, f4, and f18. Once the double
faults which do not contain at least one of these single faults are eliminated, F(2)
contains the following double faults:

Fn(2) = {f2-f4, f2-f6, f2-f14, f2-f16, f2-f18, f4-f11, f4-f20, f6-f20. f11-
f14, f14-f20, f16-f20, f18-f20}

This completes the operations performed by procedure NTUPLE. The remaining
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faults in Fy(2) are the double faults which may be responsible for producing all of
the Ippq failures. Table 3.5 presents the final results of the multiple fault algorithm.
Simulations to test the multiple fault algorithm are presented in chapter 4.

Fn(2)

Fyp Fys

f2-f6 f2-f4
f2-f14 | f2-f18
f2-f16 f4-f11
Fl1-f14 | f4-f20
f6-£20
f14-f20
f16-£20
fF18-f20

Table 3.5: Results of NTUPLE Procedure for Multiple Fault Example

3.6 Complexity Analysis of Algorithms

The complexity of an algorithm is measured by determining the total number of basic
operations t(I) that the algorithm performs on an input [ from a set of input data D,
[8]. A basic operation is chosen so that the number of basic operations is proportional
to the total number of operations performed by the algorithm.

When analysing the number of basic operations, the worst case scenario is as-
sumed. This allows for a conservative estimate for the complexity. Once the worst
case complezity W(n) has been determined, an expression for the order or growth rate
of each algorithm can be determined. In (8], the worst case complexity is computed

as

W(n) = maz{t(I)|I € D,}. (3.1)

By ignoring constants in the expression for W(n), an expression in “big O” nota-

tion can be found.

3.6.1 Single Fault Algorithm

The basic operation performed by the single fault algorithm is a decision or action

based on the simulation information and test results from the CUT. The two sources
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of input data which can vary between diagnosis runs on the same CUT are the number
of input test vectors (¢), and the number of faults in the initial fault list (n).

In the worst case scenario, every fault in the initial fault list is a feedback fault
which is sensitized by every test vector in the input test set. In addition, none of
the test vectors in the test set produce an Ippg fault in the CUT (APcyr = 0). If
the algorithm is invoked under such circumstances, no faults are eliminated during a
diagnosis session, and all of the loops in the algorithm are traversed the maximum
number of times.

The following operations are performed. APcyr is analysed to see if the current
test vector produces an Ippg fault in the CUT. This operation is performed ¢ times
(once for each test vector). Each fault that has not been eliminated must be checked to
see whether it is activated by the current test vector. When no faults are eliminated.
this operation is performed n x t times. Finally, each feedback fault must be checked
to determine whether it is sensitized or not. This operation is also performed n x ¢
times.

Given the basic operations above, the expression for the worst case complexity is
W(n) = t + 2tn. It can be seen that the complexity of the algorithm varies linearly
with both the number of test vectors and the number of faults in F;. Since the vast
majority of faults are eliminated within the first 10 test vectors during an actual
diagnosis, the n is much less than in the worst case scenario we assumed. For a
specific diagnosis run, ¢ is constant. Therefore, the complexity of the algorithm is

O(n).

3.6.2 Multiple Fault Algorithm

Since the multiple fault algorithm consists of four procedures, the complexity analysis
is performed separately in stages.
procedure CLASSIFY

This procedure is very similar to the single fault algorithm. Therefore, W(n) =
t + 2tn, and the complexity is O(n).
procedure UNDETECTED

In this procedure, faults from set Fp are examined to identify faults that are never

activated by the current test set. The basic operation performed is the analysis of
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APspy, for each fault to determine whether it is activated by the current test vector.
This operation is performed n x t times. This makes W(n) = tn, and the complexity
is O(n).

procedure AP_UNIQUE

If F; is empty, the faults in Fp and Fs are analysed to determine if any one
fault from these sets is solely responsible for the faulty Ippg results observed in the
CUT for a particular input test vector. The basic operation for this procedure is
analysing every fault in Fp and Fs to see whether they are activated or not. The
maximum number of times this operation is performed is n x t. Therefore, the worst
case complexity is W(n) = nt, and the complexity for the step is O(n).
procedure NTUPLE

In procedure NTUPLE, logic simulation information is used to determine which
multiple faults formed from fault lists Fp and Fs may be responsible for the faulty
Ippo results observed during testing. The basic operations for this procedure in-
volve the analysis of APspy, for each single fault. The two operations performed
are: checking which single faults are activated by each test vector, and determining
which possible multiple fault combinations can be eliminated. The first operation is
performed up to n X t times, while the second is performed up to C7 times, where
is the degree of multiple fault considered. Taking all basic operations into account.
the expression for the worst case complexity is W(n) = nt +n!/(z!(n —z)!). Ignoring
constants, the expression for the complexity of this procedure is approximately O(n*)
for n >> z.

Since procedure NTUPLE provides the maximum complexity of all the procedures.
the complexity of the multiple fault algorithm is O(n*). Again, in an actual diagnosis
run, most of the faults in the initial fault list are eliminated within 10 test vectors
(i.e. n << TOTI), and most CUTs which are tested will only contain a single fault.
double fault, or triple fault (i.e. z < 3).

3.7 Factors Affecting Algorithm Performance

Many factors can affect the performance achieved by the diagnosis algorithms. In

this section we first discuss design considerations which help improve the Ippg testa-
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bility of the CUT, improve the diagnostic resolution, and minimize the possibility of
misdiagnosis. We then outline other design considerations which will not affect the
testability of the CUT, but still improve the resolution and quality of diagnosis. Fi-
nally, implementation aspects which affect the amount of memory and time required
for each diagnosis session such as test vector re-ordering, and the assumptions make

to deal with feedback faults are discussed.

3.7.1 Design Recommendations

Design rules which either eliminate undetectable faults or increase the Ippq testabil-
ity of the CUT will help to increase the resolution provided by the algorithms and
minimize the time required to execute a diagnosis session. We provide three design
recommendations that will help maximize the performance achieved by the diagnosis
algorithms.

The first recommendation is to design the CUT using as few inverters as possible.
Reducing the number of inverters in the CUT leads to a better diagnostic resolution.

The reason for this is illustrated below using figure 3.3.

Bridging Fault

/

-

Figure 3.3: Feedback Faults on Inverters

In figure 3.3, a feedback fault exists between the input and the output of an
inverter. Recall from chapter 2 that to activate a bridging fault, the two nodes at
either end of the fault must be set to opposite logic values. Therefore, the feedback
fault in figure 3.3 is activated regardless of which input vector is applied to the
circuit. It is also obvious that the fault is sensitized by every test vector. Recall that
feedback faults which are activated by test vectors that do not produce faulty Ippg
levels are eliminated only when the fault is not sensitized. Consequently, bridges
between the input and output nodes of an inverter can never be eliminated by the

diagnosis algorithms.



During a diagnosis run, every bridge between an inverter input and output will be
placed into fault set Fs. If the CUT has a large number of inverters, a large number of
faults will be left after a diagnosis session and the resolution will be poor. If circuits
are designed using a minimum number of inverters, this problem will be alleviated.
and the resolution will be improved.

The second recommendation to improve the performance of the algorithms is to
eliminate redundant nodes. If a fault exists between two nodes in the CUT which
share the same logic value for all test vectors in the test set (logically equivalent
nodes), the fault can never be activated. By avoiding redundancies, the number of
undetectable bridges is reduced, and a higher quality of diagnosis is obtained. An
approach to remove circuit redundancies is presented in [42].

The final recommendation is to design all CUT’s using fully complementary stan-
dard cell CMOS gates. If standard cells are used in design, the Ippg testability of
the CUT is assured. Using non-standard CMOS gates or logic blocks in a design
can introduce situations which are detrimental to Ippg tests. For example, circuits
using pre-charge logic can experience charge sharing between nodes, which may lead
to faulty Ippg levels being measured in a fault-free circuit.

A previous work [21] has defined a minimal set of design rules which ensure that
circuits are highly Ippg testable. By using standard cell libraries, the following rules

from [21] are satisfied.

1. The gate and drain (or source) nodes of a transistor are not in the same tran-
sistor group. A transistor group is the set of transistors which are connected

together to form a conducting channel [21].

!\')

During steady-state operation, there is no conducting path from Vdd to GND.

3. During steady-state operation, each output of a transistor group must be con-

nected to Vdd or GND through a path of conducting transistors.

3.7.2 Efficiency Improvement Using Test Vector Re-ordering

The CPU time and memory required to perform a diagnosis run contribute to the

feasibility and quality of a diagnosis method. For the multiple fault algorithm. both
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can be greatly affected by the order in which the test vectors applied to the CUT are
analysed during a diagnosis session.

If the majority of faults under consideration are eliminated shortly after the al-
gorithm is invoked, the time and memory requirements decrease significantly. In the
multiple fault algorithm, faults can only be eliminated when a particular test vector
does not produce a faulty level of Ippg in the CUT. If all of the test vectors near the
beginning of the test set produce faulty levels of Ippq, the initial fault set will not be
reduced until each of these vectors has been analysed. As a result, the amount of time
and computer memory required to process the diagnostic information is maximized
as information about every fault must be computed and stored.

Since it is known which test vectors produce a failing level of [ppo before the
multiple fault algorithm is invoked, the above problems can be avoided. If all test
vectors which do not cause a faulty level of Ippo are processed before the other test
vectors in the test set, every fault which does not end up in one of the diagnosed fault
sets (Fr, Fs, or Fp, or Fyy) will be eliminated directly. Since APs;py, is not stored for
eliminated faults, the amount of required computer memory will be minimized. The
trade-off for the savings of memory and CPU time is the amount of time required to
reposition the test vectors and their corresponding Ippg test results from the CUT
before they are passed to the algorithm. In the vast majority of cases, the amount
of time and memory saved far outweighs the extra effort required to re-order the test

vector set.

3.7.3 Effects of Feedback Fault Assumptions

The new diagnosis algorithms assume that all current testing is performed during
the steady-state using simple current sensors or off-line testers. Moreover, both of
the diagnosis algorithms assume that activated, sensitized feedback faults do not
necessarily produce faulty levels of Ippg. Due to this conservative assumption, the
number of faults appearing in set Fs can be relatively large. However, depending on
the testing equipment available, previous studies have suggested that feedback faults
may not have to be treated in such a pessimistic manner. Feedback faults which
do not produce easily measurable values of Ippg due to oscillations and sensitized

feedback paths can usually be detected by monitoring or recording the average power
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supply current [24, 35]. If all activated feedback faults are detectable using current
monitoring methods, feedback faults can be treated by the algorithms exactly the
same way as non-feedback faults. Therefore, the Fs fault set will no longer be required
for either the single fault or multiple fault algorithms. This would lead to a faster
diagnosis as sensitization checks and feedback path checks will no longer be necessary
during diagnosis, and a higher diagnostic resolution is obtained since more feedback
faults will be eliminated. On the other hand, this would require either a significant
increase in hardware due to the complex current sensors required to measure the

average current, or a complex off-line tester to perform the current measurements.

3.7.4 Effects of Using Different Test Sets

Using different sets of test vectors influences both the quality of testing and the quality
of diagnosis. A good test set should be able to activate each fault in the circuit at least
once, and should also contain enough test vectors so that most faults will produce
unique values for APsjy;,. However, test sets should not be too long as the time
required to perform a test should be as small as possible. Consequently, the length of
a test set is a trade-off between test application time and diagnostic resolution. Three
types of test vector sets which are commonly used in testing schemes are discussed

below.

Exhaustive Test Set

In an exhaustive test set, all possible test vectors are used to test and diagnose the
CUT (i.e. for a CUT with n inputs, 2" test vectors are used). Exhaustive sets provide
the best diagnostic results as they produce the maximum amount of information
available. The obvious problem with using an exhaustive test set is that for large
circuits, exhaustive tests are impossible due to the amount of time required. Since
most practical circuits contain a large number of inputs, exhaustive testing is not

usually used.

Pseudorandom Test Set

Pseudorandom tests are commonly used in testing and diagnosis schemes. Pseudo-

random test sets are easily generated, and provide adequate fault coverage if long
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enough test sequences are used. For pseudorandom test sets, the following factors

influence the diagnostic resolution provided by the diagnosis algorithms.

1. The number of vectors in the test set.

o

The pseudorandom pattern generator (PRPG) used to generate the pseudo-
random sequences (i.e. linear feedback shift register (LFSR), linear cellular
automata register (LCAR) etc. [10]).

3. The feedback polynomial used to define the PRPG [10].

4. The initial state of the PRPG.

Each of these factors helps to determine the number of times that each bridging
fault in the circuit is activated during a test session. When the number of test vectors
used for diagnosis is increased, better resolution is expected as A Psas, for each fault
in the CUT will become more unique. Using different PRPGs or different feedback
polynomials for the same type of PRPG may alter the randomness of the input test
set, and consequently make each APssy;, more unique. Similarly, using a different
initial state for the PRPG will produce a different input test set, which may improve
the resolution achieved by the algorithm.

[DDQ Test Set

Special test sets can be generated specifically for Ippg testing purposes. Ippq test
sets are generally very small compared to the voltage-based test sets which are used
to test the same circuits. For example, the Ippg test sets generated using the method
in [26] can be approximately 1% of the size of stuck-at fault test sets.

Although a high percentage of bridging fault coverage can be achieved from Ippg
test sets, they may not be good for use with the diagnosis algorithms. Since the test
sets are so short, many bridging faults may share the same APsrys,. In this case, the
diagnostic resolution will be relatively poor as many faults will appear in fault set Fr

for each different APcpyr.
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3.8 Diagnosis Beyond Algorithms

As stated in chapter 2, feedback bridging faults may or may not cause Ippq faults to
occur even when the fault’s component nodes are set to opposite logic values. Both
the single fault algorithm and the multiple fault algorithm assume that if a feedback
fault is sensitized, the effect that the fault has on a circuit cannot be determined using
logic simulation. Consequently, both algorithms place many sensitized feedback faults
into fault set Fs instead of eliminating them.

To determine the effects of sensitized faults, circuit-level fault simulation can be
performed. Using circuit-level simulation on the fault sets produced by each algorithm
will also identify the faults which do not create identical logic results to those observed
in the CUT. These faults can then be eliminated, and the diagnostic resolution can
be increased.

Once the number of diagnosed faults has been minimized using fault simulation.
electron beam testing can be used to search for the physical circuit defects responsible
for all faulty behaviour. The following subsections suggest procedures for analysing

the outputs of both the single and multiple fault algorithms.

3.8.1 Single Fault Algorithm Output

The output of the single fault algorithm consists of two fault lists: Fr and Fs. Recall
that Fi contains all faults in the CUT for which APsiar, matches APcyr exactly.
while Fs contains feedback faults where APsjar, # APcuT (see page 34). Therefore.
a single fault in the CUT is far more likely to be in Fi, than in Fs. Consequently, we
suggest the following methodology for subsequent diagnosis.

1. Perform fault simulation on the CUT using only those faults from list F.

2. If no faults from Fj, produce identical results to those of the CUT, perform the
above steps using the faults from set Fs.

Analysing set Fy before set Fs will decrease the total fault simulation time for
the following reasons. The fault in the CUT is most likely to be in Fi, so it will be

located faster. Secondly, simulating feedback faults with a circuit-level simulator is

36



difficult and time consuming due to the feedback loops that are set up in the circuit.
Therefore, if a fault can be located before set Fys is analysed, much time will be saved.
Once fault simulation is complete, electron beam testing can be used to investigate

the circuit nodes on all of the diagnosed faults.

3.8.2 Multiple Fault Algorithm Output

If diagnosis using the single fault algorithm does not provide good results (i.e. no
faults appear in list Fr), the diagnosis can be repeated using the multiple fault algo-
rithm. The multiple fault algorithm produces the following fault sets: Fi. Fs. Fp.

Fy, Fxp, and Fys. The following is a suggested procedure for subsequent diagnosis.

1. Fault list F, is analysed the same way as is done for the single fault algorithm.
If the single fault algorithm has already been used on the CUT, Fi will contain

exactly the same information, so it does not have to be analysed again.

[
'

Perform fault simulation using the multiple faults in set Fiyp. Each simulation
is performed by injecting all of the single faults into a copy of the CUT which

combine together to form a multiple fault.

3. Simulations can either be stopped if a multiple fault is found which produces
output logic values identical to those from the CUT, or they can be performed

on all faults regardless of whether a match is found.

4. If no multiple faults from set Fyp give the same outputs as those from the CUT.
simulations should proceed using the multiple faults from fault set Fiys.

This method will help minimize the amount of time required to perform the simu-
lations, as the faults in set Fp contain the faults which are most likely to exist in the
CUT. Faults from set Fp do not have to be simulated individually as they cannot be
solely responsible for all of the Ippg faults in the CUT. Similarly, single faults from
set F's do not have to be simulated as either they cannot be solely responsible for the
faulty behaviour in the CUT, or they have already been covered during the analysis
of the single fault algorithm output sets. Obviously, faults from set Fiy do not have to

be analysed, as they are never activated during a test session. Once the information
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from fault simulation has been collected, the nature of the physical circuit defects can

be analysed with an electron beam tester.
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Chapter 4

Simulations

To evaluate the effectiveness of the new diagnosis algorithms, computer simulations
were performed on some standard benchmarks circuits. The simulations help to
illustrate the performance of the algorithms and also show that it is feasible to apply
the algorithms on large VLSI circuits.

An overview of the simulation environment is given, including discussions about
the circuits used for the simulations and the computer resources available. The simu-
lation goals are defined and the simulation results are presented. Using the simulation

results, the performance of the algorithms is analysed.

4.1 Simulation Environment

Figure 4.1 shows an overview of our simulation environment. The center of the envi-
ronment is a logic simulator named BRIDGE [32]. It was developed to implement the
diagnosis algorithms in chapter 3. BRIDGE requires three sources of input to perform
a diagnosis session: a circuit netlist, a set of input test vectors, and a corresponding
set of Ippq test results (APcyr). The main outputs produced by BRIDGE are the
fault sets described in chapter 3 (F and Fs for the single fault algorithm, and Fr.
Fp, Fs, Fy, and Fy(z) for the multiple fault algorithm). The implementation issues
of BRIDGE are treated separately and are discussed later in this chapter. The user’s
manual of BRIDGE can be found in appendix B.

The circuits used for the simulations are from the standard Berkeley and ISCASS85
benchmarks [12, 41]. These benchmarks are sets of digital circuits used by industry in
the late 1970’s and mid 1980’s, respectively. For the past two decades, they have been
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Figure 4.1: Overview of Simulation Environment

used as the standard benchmark circuits to evaluate logic minimization algorithms.
design and test strategies, and simulation algorithms.

The Berkeley benchmarks are significantly smaller in size and implement simpler
logic functions than the ISCAS85 benchmarks. This allows for exhaustive tests and
simulations. On the other hand, ISCAS85 benchmarks are sophisticated VLSI cir-
cuits for which exhaustive simulations are impossible. Consequently, BIST and DFT
techniques are normally used to enhance the testability of the ISCAS85 circuits. Us-
ing both sets of benchmarks for our experiments provides both thorough and realistic
evaluations of our diagnosis algorithms.

Berkeley benchmarks are given in espresso format (i.e. truth table format), which
can be directly mapped into PLA (programmable logic array) implementations. The
[SCAS85 benchmarks are expressed in a netlist format of a multiple-level gate im-

plementation. Multiple-level gate implementations allow for the use of standard cell
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libraries in designs, require less silicon area than that of PLA implementations. and
are commonly used in today’s computer-aided VLSI designs.

The BRIDGE simulator accepts circuits that are expressed in the ISCAS85 netlist
format. To convert the Berkeley benchmarks to the ISCAS85 netlist representation
they are first translated to the OASIS netlist format using decaf [29]. This converts
each circuit from a truth-table format to a logically equivalent multiple-level gate
implementation. Second, the benchmarks are translated from the OASIS netlist for-
mat to the ISCAS85 netlist format. Table 4.1 lists each of the circuits used for the
simulations and shows the number of feedback faults and non-feedback faults that

can exist in each circuit.

Benchmark | Inputs | Outputs | Logic | Feedback | Non-feedback | Total
Gates Faults Faults Faults
B 2 4 4 24 162 216 378
E rd53 5 3 41 321 714 1035
R rd73 7 3 126 1662 7116 8778
K sa02 10 4 146 1976 10114 12090
E bw 5 28 155 1421 11299 12720
L rd84 8 4 219 3990 21661 25651
E 9sym 9 1 231 3724 24717 28441
Y
c432 36 7 160 9978 9132 19110
I c499 41 32 202 12722 16681 29403
S c880 60 26 383 16004 81899 97903
C c1355 41 32 546 81826 90165 171991
A c1908 33 25 880 108912 307416 416328
S c2670 233 140 1193 52558 963467 1016025
8 c3540 50 22 1669 235584 1241037 1476621
5 c3315 178 123 2307 109084 2977286 3086370
c7552 207 108 3512 221275 6692346 6913621

Table 4.1: Characteristics of Benchmark Circuits

4.2 Simulation Goals and Assumptions

The goal of the simulations is to demonstrate the feasibility of the algorithms given
in chapter 3. The simulations investigate the diagnostic resolution produced for each
benchmark circuit in table 4.1 when either the single fault assumption is employed.
or when a double fault assumption is employed. The CPU time required to perform

each diagnosis run is also recorded. For all simulations it is assumed that no layout
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information is available for each CUT. Therefore, every two-node, gate-level bridge is

considered during each diagnosis run.

4.3 Simulation Results

This section presents the results of the simulations for both the single fault algorithm
and the multiple fault algorithm. Tables containing the complete results from the
simulations can be found in appendix C and appendix D.

4.3.1 Sample Ippy Test Result Generation

Both the single fault algorithm and the multiple fault algorithm require Ippg test
results (APcyr) to perform a diagnosis. In an actual diagnosis environment, A Pcyr
is generated from the faulty circuit(s) being diagnosed. Since no faulty circuits are
available for our experiments, APcyr is obtained from other sources. We generate dif-
ferent values for APcyr by simulating single bridging faults in each of the benchmark

circuits, and recording the expected Ippg test results, as described below.

Single Fault APcyr

For each Berkeley and ISCAS benchmark, 30 faulty circuits were simulated. For each
faulty circuit, a single two-node bridge was chosen at random. Using logic simulation.
the expected APcyr was generated by recording the test vectors in the test set that
activate the bridge (i.e. the two component nodes of the bridge are set to opposite
logic values). For ease of presentation, logically simulating a bridging fault in a CUT
will be referred to as injecting a fault into the CUT for the remainder of this thesis
unless otherwise specified.

Each test result is initially stored as a binary sequence where a 1 indicates that
the circuit being simulated failed the Ippg test for the corresponding input vector
and a 0 indicates that the circuit passed the Ippg test for that vector. APcyr is

formed from each sequence by saving the indices of each sequence entry that is a 1.



Multiple Fault APcyr

Similarly, sample Ippq test results are also required for circuits containing 2 or more
bridges. For each benchmark circuit, 10 double fault Ippq test results were generated.
Double fault Ippg test results were formed by bit-wise ORing two single fault patterns
together. The resulting pattern is used as the one from a circuit containing both of
the single faults in question. The corresponding APcyr is obtained by saving the
indices of the sequence entries that are 1’s. To generate multiple faults of higher
degrees (i.e. triple faults, quadruple faults), the same methodology (bit-wise ORing)

can be used.

Test Length

The total time required to execute a diagnosis run depends upon the number of test
vectors used during the Ippg test session. To minimize the testing time, the total
number of vectors should be as small as possible. However, as was mentioned in
chapter 3, the test set should be long enough to provide an acceptable diagnostic
resolution (i.e. a high percentage of the faults in the initial fault list are eliminated
during diagnosis).

To illustrate the test length required to eliminate the majority of faults in the
initial fault list, two simulations were performed using the multiple fault algorithm
as this algorithm eliminates fewer faults during its execution (i.e. the worst case
scenario). Fach simulation performs a diagnosis run on one of the ISCAS85 bench-
marks (c432 and c5315) while the number of faults eliminated after each test vector
was analysed was recorded. The percentage of the total faults in the CUT that were
eliminated was computed for test lengths of up to 90 test vectors. The graphs in
figures 4.2 and 4.3 illustrate the results of the test length simulations.

Figures 4.2 and 4.3 show that the majority of the diagnosis information can be
obtained using relatively short test lengths since well over 90% of the faults are
eliminated within 90 test vectors. Although the diagnostic resolution can be improved
by using more test vectors for a diagnostic session, the number of vectors required for
even a modest improvement in resolution can greatly increase the time required for

diagnosis.
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g

Percentage of Total Faults Eliminated
B 8 8 8 8 d3 & 8

-

[=]
M
I

L I L —t

40 S0 60 70 80 90
Number of Tast Vectors

Q
-
o
8

Figure 4.3: Faults Eliminated After 90 Test Vectors for c5315
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For the simulations in this chapter, the test length used for each benchmark must
be chosen. For the Berkeley benchmarks, the number of inputs that each circuit has
is small enough that exhaustive sets of test vectors are used to generate the Ippq test

results. The number of vectors used for each Berkeley circuit is listed in table 4.2.

Benchmark | Inputs | Number of Test Vectors

2 4 16

rd53 5 32

rd73 7 128

sao2 10 1024
bw 5 32

rd84 8 256

9sym 9 512

Table 4.2: Number of Test Vectors used for Berkeley Benchmark Simulations

For the ISCAS85 benchmarks, each circuit has too many inputs for exhaustive
test sets to be employed. For these circuits, a test length of 1000 pseudorandom
vectors was chosen for use in the simulations. As suggested by the results in figure
4.2 and figure 4.3, 1000 test vectors should be a sufficient test length to produce a
high diagnostic resolution.

Each set of vectors is generated using a minimum cost LFSR defined by a primitive
polynomial [10]. The length of the LFSR used for each benchmark circuit is equal to
the number of primary inputs in the circuit. Table 4.3 shows the number of inputs
for each ISCASS5 circuit, as well as the polynomial which describes the LFSR used
to generate the input vectors. These polynomials are taken from the list of primitive

polynomials given in [10].

4.3.2 Simulations Using the Single Fault Algorithm

Three different sets of simulations were performed to evaluate the single fault algo-
rithm. A set of simulations using the single fault Ippg test results was performed to
examine the effectiveness of the single fault algorithm. A second set of simulations
using the same test set lengths as used in [14] was performed in order to compare
our algorithm with the single fault algorithm in [14]. The third set of simulations

was performed using double fault Ippg test results to illustrate the possibility of
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Benchmark | Inputs LFSR. Polynomial Number of Test Vectors
c432 36 2B p 1 1000
c499 41 st 42341 1000
c880 60 0+ +1 1000
cl355 41 23 +1 1000
c1908 33 2B 41341 1000
c2670 233 e T IR ] 1000
c3540 50 |20+ +2¥4z2+1 1000
c5315 178 1B 4 28 41 1000
¢7552 207 P LR S | 1000

Table 4.3: LFSR Polynomials Used for ISCAS85 Benchmark Simulations

misdiagnosis when using the single fault algorithm and demonstrate the necessity of
having the multiple fault algorithm. Tables containing the results of all simulations
performed using the single fault algorithm are found in appendix C. All simulations
using the single fault algorithm were performed on a SPARC 5 workstation having
64 MBytes of RAM.

Single Fault Simulations

The diagnostic resolution provided by the algorithms was examined by analysing
the output fault sets (F; and Fs). If the sets contain a small number of faults.
the diagnostic resolution is high. The higher the diagnostic resolution is, the more
valuable the diagnostic information becomes for finding actual defects in the CUT.
For each of the simulations, the CPU time required to perform the diagnosis was also
recorded to help illustrate the feasibility of the algorithms in diagnosing large circuits.
The results of the first set of simulations are summarized in table 4.4. The numbers
in columns Fy and Fys are the averages for the 30 simulation runs performed on each
benchmark. For example, for benchmark 2, the average number of located faults
(faults whose simulated Ippg test results match exactly with those given by AFPcur)
is 1.667. Similarly, the average number of sensitized feedback faults is 9.000. Finally.
the average time required for a diagnosis run for benchmark f2 is 0.070 seconds.
The values in table 4.4 show that the single fault algorithm is effective at reducing
the large, exhaustive set of bridging faults to a much smaller set of diagnosed faults
for both Berkeley and ISCAS85 benchmark circuits. For the Berkeley benchmarks.

the totals for Fi, indicate that, in most cases, fewer than two faults produce identical
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Circuit | Test Length Fr Fs CPU Time
2 16 1.667 9.000 0.070s
rd53 32 1.333 11.967 0.126s
rd73 128 1.233 34.733 0.703s
sao2 1024 1.133 37.700 2.374s
bw 32 1.133 35.900 0.716s
rd84 256 1.100 58.633 2.232s
9sym 512 1.233 56.933 3.117s
c432 1000 1.267 40.067 6.791s
c499 1000 3.100 40.067 9.877s
c880 1000 1.567 82.667 19.078s
cl1355 1000 1.633 95.267 81.864s
c1908 1000 14.933 | 553.200 220.589s
¢2670 1000 6.333 | 573.733 463.418s
¢3540 1000 10.167 | 867.067 | 1002.394s
c3315 1000 5.900 | 875.000 | 3257.420s
c7552 1000 7.933 | 1476.833 | 9368.553s

Table 4.4: Single Fault Algorithms Using Single Fault Patterns

Ippo test results to those produced by each faulty CUT. Obviously, the resolution
is very high for these circuits. For ISCAS circuits like c1908 and c3540, there are a
larger number of faults in Fy, (15 and 11 respectively). However, the averages are still
small (less than 20), so the resolution is still very good.

In order to develop a better appreciation for the resolution provided by the algo-
rithm, consider the following. For a circuit containing n nodes, there are 2n stuck-at
faults and C? = n!/(2!(n —2)!) = n? two-node bridging faults. Obviously, for Ippg-
based diagnosis (bridging fault diagnosis), there is a far greater number of faults
than for voltage-based diagnosis (stuck-at fault diagnosis). Moreover, voltage-based
diagnosis techniques can use information from a large number of primary outputs.
while Ippg-based diagnosis has only one observation point. This suggests that many
bridging faults will produce identical Ippg test results (i.e more aliasing will take
place than during voltage-based diagnosis). However, from the small fault totals in
table 4.4 (e.g. 15 for c1908 and 11 for c3540), the effectiveness of the single fault
algorithm is apparent.

The size of fault set Fs can be relatively large (i.e. 1477 for c7552) for large circuits.
However, when compared to the original number of faults in the entire circuit (i.e.

6,913,621 for c7552), the number of faults in F for each of the benchmarks is greatly
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reduced. Moreover, the number of faults appearing in F&s is a secondary consideration

to the number of faults in F, since the fault in the CUT has a higher probability of
being in Fr than being in Fjs.

Comparative Simulations

The second set of simulations was performed on the ISCASS85 circuits using the test
lengths specified in [14] instead of our standard test length of 1000 vectors. By using
these test lengths for simulations, our results can be compared to the results obtained
by the algorithm in [14] by Chakravarty. Due to the improvement in the analysis of
feedback faults, it is expected that a higher resolution will be obtained using our
algorithm.

Table 4.5 shows the results of these simulations. The table presents the test length
for each benchmark, the average number of faults diagnosed using both our algorithm
and the algorithm in [14], and the percentage improvement that is achieved by our
algorithm. The results for both algorithms are averages of 25 simulations.

Circuit | Test Length Our Algorithm Chak.Algorithm | % of Improvement
Fr Fs | Total Total SarTetal, « 100

c432 130 1.240 | 41.280 43 87 49.4%
c499 425 2480 | 40.120 43 570 7.6%

c880 80 20.040 | 135.240 | 156 172 90.7%
cl353 520 6.520 | 144.280 | 151 359 42.1%
<1908 865 23.040 | 559.960 | 583 952 61.2%
c2670 80 8.200 | 604.160 | 613 735 83.4%
<3540 450 12.120 | 902.920 | 916 1389 65.9%
c5315 690 6.160 | 875.040 | 882 5351 16.5%
c7552 90 6.360 | 1517.800 | 1525 1737 87.8%

Table 4.5: Results for Comparative Simulations

By comparing the values in the “Total” columns in table 4.5, it can be seen that
a significant improvement is obtained using our algorithm. The last column in the
table is used to illustrate the improvement in resolution provided by our algorithm.
The numbers show how large our total fault set (F + Fs) is relative to Chakravarty’s
total fault set. For example, for c432, our fault set is 49.4% the size of Chakravarty’s
fault set (43/87 x 100 = 49.4%). Therefore, less than half as many faults must be

examined using subsequent diagnosis methods for circuit c432 when our diagnosis
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algorithm is used.

If subsequent diagnostic methods such as fault simulation are used to further
diagnosis a circuit, a large amount of time and computer resources will be saved if our
algorithm is used to provide the initial fault set instead of Chakravarty’s algorithm.
Although Chakravarty’s algorithm takes less time to run than our algorithm, the
time saved during subsequent diagnosis analysis allows our algorithm to be more
useful when used as part of a complete diagnosis system.

The improvement in resolution achieved by our algorithm is attributed to the
fact that it eliminates more feedback faults. For example, for benchmark c432, our
algorithm identifies an average of 43 faults that can account for APcyr. Chakravarty’s
algorithm identifies an average of 87 faults. The difference of 44 faults is comprised
solely of feedback bridging faults not eliminated by Chakravarty’s algorithm.

Limitations of the Single Fault Assumption

The single stuck-at fault (SSF) model has been proven to be sufficient and effective
for voltage testing applications. Statistics show that most faulty integrated circuits
contain defects which can be modelled as SSFs, and that a large percentage of multiple
faults can also be detected by SSF test sets. The corresponding statistics for Ippg
testing are not available. The experiments presented in this subsection are designed
to investigate the limitations of the single fault assumption, i.e. if a CUT contains
more than one fault, the single fault algorithm may not be able to diagnose any of
the multiple faults, or it may produce a misdiagnosis by reporting the presence of a
single fault (aliasing).

To investigate these potential problems, 10 simulations were performed on each
benchmark using the double fault Ippg test results discussed earlier. Any faults
appearing in Fy, for these simulations show that two or more faults can be improperly
diagnosed as a single fault (aliasing). If set Fy, contains no faults for these simulations.
it is shown that the single fault algorithm is not able to locate the faults present in
the CUT.

The results of the simulations using double fault patterns are summarized in
table 4.6. For each circuit, Fr, Fs, and the CPU time are given. The numbers

in these columns are averages over 10 simulations.
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Circuit | Test Length | FL Fs CPU Time
f2 16 0 8.900 0.073s
rd53 32 0 10.100 0.123s
d73 128 0 32.600 0.652s
sao02 1024 0 36.300 2.117s
bw 32 0.200 | 32.700 0.630s
rd84 256 0 55.100 2.087s
9sym 512 0 53.900 3.045s
c432 1000 0 40.100 6.163s
c499 1000 0 40.000 8.545s
c880 1000 0 82.400 18.110s
c1355 1000 0 72.300 65.778s
c1908 1000 0 548.300 203.860s
c2670 1000 0 573.000 451.320s
¢3540 1000 0 855.500 964.083s
c5315 1000 0 875.000 | 3196.940s
c7552 1000 0 1476.200 | 9051.060s

Table 4.6: Single Fault Algorithm Using Double Fault Patterns

From the values in column Fy, in table 4.6, it can be seen that aliasing does not
appear to be a problem for the single fault algorithm when double faults exist in the
CUT. For all but one of the benchmarks (bw), no single faults exist which produce
identical Ippg test results to those made from the randomly chosen double faults
(i.e. no faults appear in set Fr). However, these results do illustrate that the single
fault algorithm is not able to provide any useful diagnostic information for circuits
containing two bridging faults, as neither of the single faults show up in set Fi.

Further conclusions can be drawn about the single fault algorithm by examining
the total number of faults in column F's for both table 4.4 and table 4.6. For all of the
benchmarks, these totals are nearly equal. This suggests that for each circuit there
is a constant number of sensitized feedback faults (e.g. a bridge between the input
and output nodes of an inverter) which cannot be eliminated by the algorithm and
are likely not responsible for producing APcyr. This result supports the claim that
little useful information is generated by the single fault algorithm when more than

one fault exists in the circuit.



4.3.3 Simulations Using the Multiple Fault Algorithm

Two different sets of simulations were performed to test the multiple fault algorithm.
A set of simulations using single fault Ippg test results was performed to investigate
how many double faults would produce Ippg test results identical to those of single
faults. In this manner, the possibility of aliasing was examined. The second set of
simulations was performed using double fault Ippg test results. These simulations
help to analyse the diagnostic resolution obtained by the multiple fault algorithm.
Tables containing the results of the multiple fault algorithm simulations are found
in appendix D. All simulations were performed on a SPARC 20 workstation having
64MBytes of RAM.

Single Fault Simulations

The multiple fault algorithm, using a double fault assumption, was invoked using the
same single fault [ppg test data as was used for the single fault algorithm simulations.

These simulations attempt to provide evidence for the following claims.

e Circuits containing single faults are diagnosed correctly (i.e. they achieve the

same results as the single fault algorithm).

e Aliasing can exist between single faults and multiple (double) faults.

Circuit | Test Length | EZ Fr Fs o Fx(2) CPU Time
_ Fys Fyp
2 16 1.677 18.633 18.633 0 91.600 18.167 0.133s
rd53 32 1.333 10.833 52.400 0 204.433 13.267 0.266s
rd73 128 1.233 44.733 114.667 0 469.233 7.300 1.886s
sao2 1024 1.133 52.900 78.133 4] 286.233 15.167 4.100s
bw 32 1.133 243.800 135.700 0 3751.467 413.767 7.661s
rd84 256 1.100 452.500 219.900 1.000 4147.300 380.867 97.034s
9sym 512 1.233 27.500 132.133 0 924.433 9.600 4.895s
c432 1000 1.267 2.300 105.833 8.000 215.833 0.867 6.396s
c499 1000 3.100 63.667 1649.033 81.000 1341.067 66.767 172.121s
c880 1000 1.567 15.067 443.100 75.000 1486.600 1.500 29.139s
cl355 1000 1.633 183.733 2984.967 122.000 129442.333 28.400 618.337s
c1908 1000 14.933 | 451.033 5245.300 1085.000 90862.100 153.867 1937.839s
c2670 1000 6.333 42.267 2783.733 954.000 14648.467 274.967 658.179s
c3540 1000 10.167 86.133 3901.133 2201.000 88850.033 16.767 1327.839s
c5315 1000 5.900 4.700 6293.833 1461.000 39732.200 0 3526.281s
c7552 1000 7.933 805.067 | 12856.633 | 3199.000 | 262021.533 | 332.900 14657.493s

Table 4.7: Multiple Fault Algorithm Using Single Fault Patterns
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Table 4.7 summarizes the simulation results. All of the totals in each column are
averages over all 30 diagnosis runs. [t can be observed that the numbers for F7 in
table 4.7 (multiple fault algorithm) are the same as those in table 4.4 (single fault
algorithm). This is because the single fault algorithm is a special case of the multiple
fault algorithm and single faults will be diagnosed correctly using the either algorithm.
However, due to the extra analysis performed by the multiple fault algorithm., it
requires more CPU time than the single fault algorithm.

The totals in column Fs in table 4.7 are larger than the totals for Fs in table 4.4.
This occurs because the multiple fault algorithm does not eliminate any faults when
the input test vector activates an Ippq fault in the CUT. Consequently, the faults in
Fs in table 4.4 are a subset of the faults in Fs in table 4.7. Although the resolution
provided by the multiple fault algorithm for single faults is not as good for set Fi
as it is for the single fault algorithm, no single faults identified by the single fault
algorithm are eliminated by the multiple fault algorithm.

The data in table 4.7 also illustrates the possibility of aliasing. For these simula-
tions, any double faults in fault sets Fivp and Fns do not exist in the CUT since the
Ippg test results are generated from circuits containing single faults. However, the
multiple fault algorithm cannot determine if the actual fault(s) in the CUT will be
found in the single fault sets (Fr and Fs) or the multiple fault sets (Fyp and Fxs).
For example, for benchmark f2, either a single fault or a double fault may exist in the
circuit. To determine the actual fault existing in the circuit, further diagnosis using

another method must be employed.

Double Fault Simulations

A second set of simulations was performed using the 10 sample Ippg test results for
double faults that are generated for each benchmark. These simulations illustrate
the resolution provided by the multiple fault algorithm according to the number of
double faults in sets Fyp and Fys-

Table 4.8 summarizes the results of the double fault simulations on each bench-
mark. For all of the benchmarks (with the exception of bw), there are no faults in
Fr. This indicates that there is more than one fault present in each of the bench-

marks. Fyp and Fys show the number of different double faults that can exist in

A



each benchmark.

Circuit | Test Length Fr Fp Fs Fy Fxn(2) CPU Time
Fns Fyp
2 16 0 51.300 25.400 0 229.300 146.300 0.285s
rd53 32 o 18.800 55.000 0 197.600 3.900 0.282s
rd73 128 (1] 69.200 119.600 (4] 484.300 2.600 1.995s
sao2 1024 0 45.100 72.700 V] 214.300 6.500 3.222s
bw 32 0.200 960.000 187.200 0 12636.700 4272.100 76.067s
rd84 256 0 59.300 196.900 1.000 1366.100 4.600 4.852s
9sym 512 0 22.800 136.800 0 965.800 1.900 4.352s
c432 1000 0 7.900 109.700 8.000 224.000 2.100 5.967s
c499 1000 1] 224.800 1644.900 81.000 1081.100 316.500 174.692s
c880 1000 0 50.300 461.800 75.000 1759.500 2.100 28.038s
c1355 1000 1] 413.300 3010.400 122.000 117574.000 6.100 641.535s
c1908 1000 0 1177.300 5330.600 1085.000 | 102240.700 | 2051.400 2160.720s
c2670 1000 0 71.300 2790.100 954.000 12750.000 30.900 563.298s
c3540 1000 0 171.300 3962.600 2201.000 93612.500 81.500 1213.747s
c5315 1000 0 21.100 6303.300 1461.000 38626.800 7.400 2831.270s
c7552 1000 0 313.300 12824.500 | 3199.000 | 200954.800 74.300 11235.980s

Table 4.8: Multiple Fault Algorithm Using Double Fault Patterns

Although the numbers in these sets may seem too large to be of any use for
diagnosis, they provide valuable information. First, the most probable double faults
should be found in set Fyp. These faults are most likely to be the ones found in the
CUT because they do not depend upon the pessimistic feedback fault assumptions
used by the multiple fault algorithm. It can also be seen from table 4.8 that the
number of faults in set Fyp is normally much smaller than the number in set Fixs.
For example, for benchmark c7552, there are on average approximately 74 double
faults which are diagnosed to set Fyp by the algorithm, as compared to over 200,000
faults in set Fys. It will take a much shorter amount of time to analyse the faults
in Fyp and, in most cases, the double fault will be found after this analysis. In this
case, the large number of faults in set Fxs will not require further analysis.

It should also be noted that even though a large number of multiple faults can
appear in set Fiys, the number is a very small fraction of the total number of multiple
faults that can exist in the CUT. For example, for benchmark f2, there is a total num-
ber of C3™ = 71,253 double faults, which is reduced to an average of approximately

230 faults in set Fyg, and 147 faults in set Fnp-



Remarks on the Multiple Fault Algorithm

Although the multiple fault algorithm is capable of correctly diagnosing single faults,
extra CPU time is usually required to execute a diagnosis run. For the double fault
patterns and the ISCAS benchmark circuits, the time required to execute the multiple
fault algorithm (relative to the single fault algorithm) ranged from 1 (for c432) to
20 (for c499) times as long. Circuit c432 is the only circuit which ran faster using
the multiple fault algorithm. However, since other processes were running on the
computers during the times that simulations were being performed, the CPU time
required for simulations may be slightly misleading for this circuit. For all larger
circuits, the multiple fault algorithm takes considerably more CPU time than the
single fault algorithm.

Due to the increase in CPU time, we recommend using the multiple fault algorithm
and employing a double fault assumption only if the single fault algorithm fails to
locate any single faults in the CUT. If a double fault assumption does not appear to
be sufficient, a triple fault assumption can be used, and so on.

Information regarding the layout and routing of the CUT may also be used to
improve the speed and resolution of the multiple fault algorithm. Most combinational
circuits designed today contain many more gates than the Berkeley and ISCASS5
benchmarks. For these large circuits, the total number of faults can be extremely
large and the time and computer memory required for multiple fault diagnosis may
be infeasible. One solution to this problem is to physically partition the CUT into
smaller modules and perform Ippg testing and diagnosis on each module. Another
solution is to use information from the circuit layout. From an extracted circuit
layout, it is possible to determine which nets in the circuit are routed close enough to
one another to allow for a possible bridge to exist between them. This information
can be used to construct a reduced initial fault set which can be passed to the multiple
fault algorithm. Since the set will be much smaller than the exhaustive set of faults. a
large reduction in testing time and computer memory requirements can be expected.
As most computer-aided design (CAD) systems contain layout extraction tools, it is
a relatively simple task to obtain the layout information for a particular CUT.

Another potential problem with the multiple fault algorithm is that the informa-
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tion it produces can be affected by fault masking. Fault masking, as it relates to
bridging faults, exists when the effects of one bridging fault overrides or otherwise
interferes with the activation of a subsequent bridging fault. The effects of fault
masking are most evident for feedback bridging faults.

As is discussed in chapter 2, feedback bridging faults may not produce faulty Ippg
levels when the are activated. Such faults are not detectable using basic Ippg testing
methods. If a fault alters a logic level on the bridged nodes, there is a possibility
that the changed logic levels will affect the activation of subsequent bridging faults.
In this case, a subsequent fault which would normally be activated by the current
input vector may no longer be activated due to the masking effect of the first fault.
Therefore, although both faults are expected to be activated by the current test
vector, it is possible that no faulty Ippg will exist in the CUT. Unfortunately, there
is currently no way to guard against this potential problem.

Apart from the fault masking problem described above, there may also be multiple
faults which cannot be diagnosed even when a faulty Ippg test is received from
the CUT. Such a case can occur if a fault from set F; or Fs exists in the CUT
simultaneously with a fault(s) from set Fp. If every time that the fault from set
Fp is activated coincides with a fault from FL or Fs being activated, it cannot be
determined using the algorithm that the fault from Fp is in the CUT. This is because
the faulty Ippg levels from the other faults will always mask the /ppg produced due
to the fault in Fp. Therefore, the diagnosis algorithms may indicate that only a single
fault exists in the CUT, while in actual fact, many other faults may also be present
in the CUT. There is no way to solve this problem using only the information from

Ip Dq tests.

4.4 Implementation

This section discusses the implementation issues of BRIDGE. BRIDGE is a gate-level
logic simulator designed for Ippg diagnosis of gate level bridging faults. BRIDGE
is a two-valued logic simulator, i.e., only two logic values, logic 1 and logic 0, are
used. BRIDGE utilizes an event-driven signal propagation method as described in
[3, page 69]. A flowchart illustrating the functions performed by BRIDGE is given in

-0
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figure 4.4.

4.4.1 BRIDGE Classes

BRIDGE was developed in a modular structure using C++. The classes in BRIDGE
can be divided into three categories: circuit-related classes, simulation-related classes.
and miscellaneous classes. Circuit-related classes define the structures of the logic
gates available for simulations, construct a representation of the CUT, and con-
trol the way that logic information is passed between the gates during simulations.
Simulation-related classes deal with test pattern generation, creating and injecting
bridging faults into the CUT, implementing the diagnosis algorithms, and produc-
ing the simulation and diagnosis outputs. The miscellaneous classes do not perform

specific simulation or diagnosis operations, but are used by other classes in BRIDGE.

Circuit-Related Classes

There are three circuit-related classes in BRIDGE:
Gate Class

The Gate class is a generic structure used to represent the different logic gates in
the CUT. Each different Gate object that is created contains three basic attributes.
The first attribute is an array of pointers, which identify the input nodes for the Gate.
The second attribute is a single pointer which specifies the Gate’s output node. The
final attribute is a unique identifying number which is used to distinguish between
different Gates. The identifying number is related to the output node specified for
the gate in the corresponding ISCAS85 netlist representation.

The Gate class is hierarchical in nature. Each sub-class in Gate corresponds to
one of the primary logic gates available for use in BRIDGE. Figure 4.5 illustrates the
structure of the Gate class.

Node Class

The Node class represents a single node in the circuit. It accepts as input a single
number (address) from a Gate which corresponds to the Gate’s output node. Each
Node object can have multiple fanouts. The following information is stored in every

Node object:
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1. address: A unique number differentiating all Nodes.

(S
B

name: The name of the particular Node.
3. value: The logic value of the Node.

4. last scheduled value and last scheduled time: Values which keep track of
the most recently scheduled value and the corresponding time at a Node.

A dynamic array (Page 81) called NodeArray is used to specify which numbers
(addresses) correspond to existing Nodes in the circuit. NodeArray contains pointers
to all of the Nodes. The pointers are indexed by the address of the Nodes. Since the
addresses are not necessarily consecutive, NodeArray may contain gaps. If an address
does not actually have an associated Node, the corresponding index in NodeArray is
set to NULL. For example, if circuit Node number 3 in the ISCASS85 netlist represents
a fanout node and is not directly associated with a logic gate, NodeArray{3] will
contain a NULL value.

Signal Class

The Signal class represents the logic signal of a Node. Signal is implemented as a
single byte: 1 for high, and 0 for low. High impedance and “don’t care” logic values
are not defined. All standard logical operations can be performed on Signal.

The Gate, Node and Signal classes combine to form the building block for the
circuit being simulated. The building block is illustrated in figure 4.6.

Simulation-Related Classes

There are five different simulation-related classes:

~1
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Figure 4.6: Circuit Building Block

TPG Class

All test pattern generators used by BRIDGE are defined in the TPG class. Each
TPG object contains attributes for the initial state of the generator, the current state
of the generator, and the number of bits in each test pattern. The TPG class is
implemented as a state machine. Each machine can be iterated to its next state, or
reset to its initial state. Within the TPG class are the BinaryCounter, LFSR, and
LCAR subclasses. Each subclass uses different rules to compute the next test pattern
provided to the CUT. A subclass called VectorList is employed if a set of test vectors
stored in a text file are to be used as test patterns.
Fault Class

The Fault class is used construct a list of all the bridging fauits in the CUT. The
main component of a Fault object is a pair of pointers. Each pointer specifies the
address of a Node in the CUT. Together the two pointers represent a bridging fault
between the corresponding two Nodes. Each Fault object also contains the APsy,
(expressed as a bit string), of the corresponding Fault, a flag specifying whether the
Fault is a feedback fault, a non-feedback fault, or undetermined, and a flag specifying
which fault set the Fault belongs to (i.e. Fr, Fp, Fs, Fsg, or Fy). All Fault objects are
connected together in a linked list. Access to all Faults requires a pointer traversing
from the first Fault to the last Fault.
MultiFault Class

The MultiFault class defines multiple faults of degree z, where z is supplied by the
user. MultiFault is a list of the multiple fault sets, where each set contains pointers
every single Fault in the set. As with the Fault class, Each MultiFault object is strung
together in a linked list.



Event Class
The Event class controls the propagation of signals during a simulation. The

structure of an Event list is shown in figure 4.7.

time=1 Event 1 Event2 Event 3
time=2 Event4
time=3 Event S Event6 Event7 Event 15

time=32 Event 63 Event 64

Figure 4.7: Event List Structure

Each Event object has two attributes: a Node address corresponding to the Event.
and the Signal value that the Node should be changed to. For example, in figure 4.7.
three Nodes are changed at time 1 while only one Node is changed at time 2.

As new test vectors are sent to the circuit inputs during simulation, new Events
are scheduled at the input Nodes. The simulator retrieves the Events, updates the
logic values on the effected Nodes, and schedules all required subsequent Events.
Sim Class

The Sim class contains routines for all the different types of simulations performed
by BRIDGE. The Sim class uses the following routines during the execution of a
diagnosis run.

o ApplyVector Receives the next state from the TPG and applies it to the

primary inputs of the CUT.

e Run Interacts with the Event class to propagate the test vectors through the

circuit.



¢ Diagnosis Executes a diagnosis run on the CUT based upon the APcyr given

to the simulator.

¢ Diagnosis (Faults Partitioned) Executes a diagnosis on the circuit in smaller
segments (i.e. smaller groups of faults are considered at a time instead of all

the faults being considered at once).

Miscellaneous Classes

DynamicArray

DynamicArray is an array template used by many other classes in BRIDGE.
Initially, DynamicArray consists of a pointer to an array of fixed size. If a large array
is necessary, a new pointer-array set is created. Figure 4.8 illustrates the structure of

DynamicArray.

Figure 4.8: Structure of DynamicArray

4.4.2 Diagnosis Implementation

Once a circuit has been read into BRIDGE, diagnosis is carried out in two stages
when the single fault algorithm is invoked, and four stages when the multiple fault
algorithm is invoked. The first stage is used to eliminate faults from the initial fault

set. This will help reduce the amount of memory required to perform a diagnosis. As
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each test vector is applied to the CUT, BRIDGE uses simulation information and the
corresponding bit value from APcyr (which is expressed as a bit string) to determine
whether a fault should be eliminated or not. For the single fault algorithm, faults
can be eliminated regardless of whether the bit from APcyr is a 1 or a 0. For the
multiple fault algorithm, faults can only be eliminated if the bit from APcyr is a 0.
As faults are eliminated during this step, the linked list of fault objects is updated.

During this stage, feedback faults are analysed to determine whether they are
sensitized by particular test vectors. A sensitization check is performed by comple-
menting the signal on the first node in the fault, and seeing if the change propagates
down to the second node. If a feedback fault is sensitized by at least one test vector.
the corresponding flag is set in the fault object.

The second stage of diagnosis is used to categorize the remaining faults. The
categorization takes place after the entire value of APsyys, has been recorded for each
fault object in the linked list of faults. Faults are catagorized by comparing the string
of bits in APsp, to the string of bits in APcyr.

When the single fault algorithm is employed, BRIDGE flags each fault object as
belonging to either Fy or Fs. If (APsia, = APcur), the object is flagged as belonging
to Fr. If (APsim; # APcut), the object is flagged as belonging to Fs.

When the multiple fault algorithm is invoked, each fault object belongs to one of
Fi, Fp, Fs, or Fy. If (APsim, = APcut), the fault is flagged as belonging to Fi. If
(APsin, # APcur), it belongs to either Fp or Fs. BRIDGE uses the sensitization
flag in each fault object to decide whether the fault belongs in Fs or Fp. If the flag
was set during stage 1, the fault is belongs to Fs. Otherwise, the fault belongs to Fp.
Finally, if every entry in APsyay, is 0, the fault is flagged as belonging to Fy .

The set of sensitized faults belonging to Fsg is also identified in this stage. For
all faults in Fs, APspy, is logically ANDed to APcyr. If the result of the AND
operation is equal to APcyr, the fault object is flagged as belonging to Fsg as well
as Fs. After this stage, the single fault algorithm is completed.

The third stage of analysis (multiple fault algorithm only) is the implementation
of procedure AP_.UNIQUE. To implement this procedure, BRIDGE re-analyses the
stored values of APsryy, for fault objects in Fis and Fp. Each bit position in A Psyr,

is analysed for each fault to see if it is a 1. If more than one fault has a 1 in a
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particular bit position, the analysis stops, and proceeds to the next bit position. If
any bit position is found for which only one fault has a value of 1, that fault object
is flagged as belonging to Ff.

The final stage for the multiple fault algorithm is implemented using the Multi-
Fault class. The MultiFault class implements the NTUPLE procedure described in
chapter 3. MultiFault creates a new linked list of all diagnosed multiple faults. Each
entry on the list contains pointers to the single faults which combine to create the

multiple fault being considered. The new linked list is created by the following steps.

1. A multiple fault is created by pointing to z single faults from set Fp or (Fs\Fsg).

All possible single fault combinations from Fp and (Fs\ Fsg) are considered.

!\D

APsipy, for all single faults are ORed together to form the APsryr, of the mul-
tiple fault.

3. The new multiple fault APssas, is ANDed together with APcyT.

4. If the result of the AND gives a value equal to APcyr, the multiple fault is
added to the new linked list.

After the above analysis is done, the new linked list contains all of the diagnosed
multiple faults. Each entry on this list is also flagged as a sensitized fault (Fivs) if it
contains at least one single fault from (Fs \ Fsg), or as an unsensitized fault (Fxp)
if all the component single faults are from set Fp. Upon completion, BRIDGE prints
out a summary page indicating the number of faults in each of the fault sets.

Currently, BRIDGE operates in a sequential fashion. However, a new version
of the simulator, NEWBRIDGE, is under construction which analyses test vectors
in parallel. Since logic simulation information can be generated far faster with a
parallel simulator than it can be using a sequential simulator, it is expected that
NEWBRIDGE will be considerably more efficient than BRIDGE.



Chapter 5

Conclusion

Gate-level bridging defects are a common type of defect in CMOS circuits [11, 19, 27.
38]. Due to the unpredictable effects that bridging defects have on circuit operation,
testing and diagnosis methods employing voltage-based techniques are not always
successful at detecting and locating bridging defects [18].

An important property of CMOS circuits is that very little current flows during
the steady-state in a fault-free circuit. If a circuit contains a defect, an abnormally
high level of quiescent current may flow during the application of certain test vectors.
When gate-level bridges are activated in a CMOS circuit, a low resistance path is
set up between Vdd and GND causing a high level of current to flow. Therefore.
Ippg testing (steady-state current monitoring) is able to detect bridges regardless of
whether they introduce erroneous voltages into the circuit.

For a circuit with n nodes, there are approximately n? two-node bridging faults
that can exist in the circuit. Unlike voltage-based testing methods, Ippg tests use
only one observation point to record information during testing. This makes it dif-
ficult to distinguish between different faults when Ippg tests are used for diagnostic
purposes. This thesis has researched the problem of using the information from an
Ippg test to diagnose gate-level bridges in a CMOS circuit.

The main contributions of this thesis are:

(1) Two new algorithms (a single fault algorithm and a multiple fault algorithm)
to diagnose gate level bridging faults using information from logic simulations and
Ippo tests are presented. Our single fault algorithm provides a better diagnosis

(i.e. a higher diagnostic resolution) than a previously presented algorithm [14] since
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we eliminate more feedback faults during each diagnosis session. Our multiple fault
algorithm enables diagnosis to be performed on circuits containing more than one
fault at any one time;

(2) A set of circuit design recommendations is given. Some of the recommenda-
tions, such as designing circuits using standard cell libraries, minimizing the number
of inverters, and avoiding redundancies, help to increase the Ippq testability of a
circuit which in turn helps to maximize the achievable diagnostic resolution. Other
recommendations, such as re-ordering the test vectors applied to the circuit to elimi-
nate faults quicker and finding test sets that activate each fault as uniquely as possible.
will improve the performance of the algorithms;

(3) Extensive computer simulations are performed on Berkeley [41] and ISCASS5
[12] benchmarks to illustrate the merits and feasibility of the new algorithms.

The following conclusions are reached from the simulations performed for this
thesis:

(1) Our single fault algorithm provides a significant improvement on diagnostic
resolution than the algorithm presented in [14]. Our simulation results show that our
algorithm produces diagnosed fault sets that are from 7.6% to 90.7% as large as the
diagnosed sets produced by the algorithm in [14]. The smaller fault set size leads to a
savings in the amount of CPU resources and time required to implement subsequent
diagnostic methods such as circuit-level fault simulation;

(2) Our multiple fault algorithm is capable of correctly diagnosing all single faults
as well as multiple faults. The multiple fault algorithm is used when both the single
fault algorithm and subsequent diagnosis fail to locate any bridging faults. Aliasing
(e.g. multiple faults produce the same Ippg test results as single faults) is unavoidable
when using the multiple fault algorithm. When aliasing occurs, both single and double
faults are placed in the diagnosed fault sets. Subsequent diagnostic methods, such as
circuit-level fault simulation are required to determine which fault(s) is (are) actually
in the circuit.

The result of this research suggests that the new diagnosis algorithms can be a
valuable part of a complete bridging fault testing and diagnosis system. The following
problems have been identified for further investigation:

(1) Different test sets can affect algorithm performance depending upon the test
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set length and the “randomness” of the vectors in the set. Since [ppq tests require
more time to execute than voltage-based tests using the same number of test vectors.
the number of test vectors for each testing and diagnosis session should be minimized.
A study to determine the test pattern generators which produce the shortest test sets
that still enable a high diagnostic resolution will be useful in order to keep testing
time to a minimum;

(2) Applying the algorithms to transistor-level faults. A previous study has shown
that the transistor-level fault models and gate-level fault models overlap slightly, but
usually they will test for different defects [7]. Moreover, it is more difficult to find test
vectors to activate transistor-level nodes and activated transistor-level faults may not
produce easily measurable levels of Ippg- Since the algorithms in this thesis employ a
gate-level assumption, it is of interest to see whether they can be applied to transistor-
level faults as well.

(3) BIST is commonly used in voltage-based testing architectures. Fault diag-
nosis techniques which utilize existing BIST resources are readily available [40. 43].
Exploring the possibility of combining both current-based and voltage-based diagnos-
tic methods to achieve a higher quality of diagnosis is an interesting topic of future

research.
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Algorithm Flowcharts
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Figure A.1: Flowchart for Single Fault Algorithm
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A.2

Multiple Fault Algorithm Flowcharts

Initial classification
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Place faultin Fg

Figure A.2: Flowchart for Procedure CLASSIFY
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Figure A.3: Flowchart for Procedure UNDETECTED
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Figure A.4: Flowchart for Procedure AP_UNIQUE
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Appendix B
BRIDGE User’s Manual

Michael Olson, Wes A. Tutak and Alvin S. Poon
Department of Electrical and Computer Engineering, University of Alberta

NAME
BRIDGE - a bridging fault simulator and diagnosis program

SYNOPSIS

br [ options | circuit file

DESCRIPTION
Reads in a description of a combinational circuit from a circuit_file in the
ISCAS85 [12] netlist format. Simulates gate-level bridging faults for a given
test pattern generator implemented by either a CA, LFSR, or Binary-Counter.
The test patterns can also be from a file. BRIDGE produces the Ippg test
results produced due to each bridging fault in a fault set.

Bridging fault diagnosis is performed if a sample set of Ippg test results are
provided as input to BRIDGE. The output of the diagnosis is the total num-
ber of faults which are not eliminated during diagnosis. Bridge performs both
single fault diagnosis, and multiple fault diagnosis, where a multiple fault is a
combination of two or more single faults. The following information is produced

by BRIDGE during a diagnosis session.

- Total number of faults considered.

- Total number of faults eliminated.
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- Total number of located faults.

- Total number of potential faults (multiple fault diagnosis only).

- Total number of sensitized feedback faults.

- Total number of multiple faults. Total for both multiple faults consisting
of only potential faults, and those containing at least one sensitized fault

are given (multiple fault diagnosis only).

BRIDGE can also produce the SPICE format of the circuit netlist, or a truth

table in the espresso format.

OPTIONS

1. TYPE OF SIMULATION

-ap Produce the Ippg test results as a binary sequence for a
given set of input test vectors.

-av Produce the list of input test vectors, and the faults that
each vector detects.

-tt Produce a truth table with the espresso format.
the circuit under test.

-C Generate a minimum set of vectors that will test for all
bridging faults in the circuit.

-df file Perform bridging fault diagnosis using the contents of
file as the Ippg test results.

2. TYPE OF BRIDGING FAULTS TO CONSIDER

-nfbf Non-feedback bridging faults.

-fbf Feedback bridging faults.

-all Both non-feedback and feedback faults.
3. METHOD OF TEST PATTERN GENERATION
-be Binary counter.

-lcar spec LCAR. spec is the LCAR specifications.
-lfsr poly LFSR. poly is the LFSR polynomial expressed in binary.

-tf file Test vectors read from file.
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4. FAULT SET CONTROL
-ff file Initial fault list is contained in file.

-rn Initial fault list is a set of n randomly generated faults.

5. TEST VECTOR CONTROL

-il Initial test vector, specified by the binary vector i.

-nn Total number of test vectors, specified by the decimal number n
6. DIAGNOSIS CONTROL

-dv n Print out the number of faults eliminated after n test

vectors have been analysed. This can be specified up to

10 times.
-dsf List each fault (node pair) not eliminated during diagnosis.
-dap Display the corresponding Ippg test results for each
test vector not eliminated during diagnosis.
-dn n Perform multiple fault diagnosis, assuming n faults occur
simultaneously.
-dpf n Perform diagnosis on sections of n faults at a time

until the entire fault list has been analysed.

-dem Perform single fault diagnosis only.

7. MISCELLANEOUS OPTIONS

-1 Print the initial fault list.

-p Print out the list of circuit nodes.

-s Generate a netlist in the spice format.

-v Print our progress messages during execution.
-h Print out help summary.



Appendix C

Single Fault Algorithm Simulation
Tables
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C.1 Single Fault Diagnosis Using Single Fault Pat-
terns

2
378 faults simulated
16 test vectors
Pattern Frequency | F Fg CPU Time

1 6 2 9 0.0667s
2 6 2 8 0.0667s
3 10 1 11 0.0833s
4 12 2 8 0.0833s
5 10 1 8 0.0667s
6 12 2 8 0.0500s
T 4 2 8 0.0833s
8 8 1 12 0.0667s
9 8 1 9 0.0833s
10 12 1 8 0.0667s
11 8 1 8 0.0500s
12 6 2 9 0.0667s
13 14 2 8 0.0667s
14 8 1 8 0.0667s
15 8 1 18 0.0667s
16 6 4 8 0.0833s
17 10 2 9 0.0667s
18 4 1 8 0.0833s
19 10 2 8 0.0833s
20 8 1 12 0.0667s
21 8 1 8 0.0833s
22 12 4 8 0.0500s
23 8 1 8 0.0667s
24 10 2 8 0.0667s
25 4 1 8 0.0667s
26 8 1 8 0.0667s
27 8 1 12 0.0667s
28 10 2 9 0.0667s
29 4 4 8 0.0833s
30 10 1 8 0.0667s

Average 8.400 1.667 | 9.000 0.070

Std. Dev. 2.603 0.907 | 2.098 0.010

Table C.1: Results for Benchmark 2
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rd53

1035 faults simulated
32 test vectors

Pattern Frequency | F; Fs CPU Time
1 20 1 12 0.1333s
2 8 2 19 0.1167s
3 12 2 12 0.1167s
4 16 1 10 0.1167s
5 24 2 10 0.1167s
6 16 1 11 0.1333s
7 16 1 10 0.1333s
8 8 2 12 0.1333s
9 16 2 10 0.1333s
10 5 1 24 0.1667s
11 16 1 11 0.1167s
12 16 2 10 0.1500s
13 18 1 12 0.1333s
14 16 1 10 0.0833s
15 16 1 10 0.1333s
16 16 1 11 0.1167s
17 19 1 12 0.1333s
18 16 2 17 0.1333s
19 16 2 11 0.1333s

20 16 2 13 0.1333s

21 10 1 15 0.1333s

22 16 1 10 0.1167s

23 i6 1 12 0.1333s

24 16 1 12 0.1500s

25 24 2 10 0.0833s

26 24 1 10 0.1167s

27 20 1 11 0.1333s

28 20 1 10 0.1000s

29 16 1 11 0.1167s

30 16 1 11 0.1167s
Average 16.133 1.333 | 11.967 0.126
Std. Dev. 4.295 0471 3.049 0.017

Table C.2: Results for Benchmark rd53




rd73

8778 faults simulated
128 test vectors
Pattern Frequency Fr Fs CPU Time
1 64 1 33 0.7167s
2 92 1 34 0.6167s
3 66 1 35 0.7667s
4 80 L 33 0.6167s
5 82 L 35 0.6333s
6 78 1 32 0.6000s
7 70 1 32 0.7333s
8 56 1 32 0.6833s
9 104 1 33 0.7167s
10 64 3 33 0.6167s
11 72 1 34 0.6833s
12 64 L 32 0.6167s
13 46 1 36 0.7500s
14 24 1 38 0.7167s
15 65 1 32 0.6667s
16 38 1 32 0.6833s
17 48 L 34 0.7333s
18 36 1 7 0.7167s
19 96 L 33 0.6500s
20 64 1 34 0.6500s
21 64 2 35 0.6167s
22 64 2 35 0.6667s
23 88 2 34 0.7833s
24 106 1 33 0.6167s
25 48 2 33 0.7167s
26 112 1 32 0.6833s
27 64 1 34 0.9500s
28 64 L 32 0.6667s
29 2 1 66 1.0333s
30 30 2 34 0.7833s
Average 65.033 1.233 | 34.733 0.703
Std. Dev. 24.400 0.496 | 6.000 0.094

Table C.3: Results for Benchmark rd73
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sao2

12090 faults simulated
1024 test vectors

Pattern Frequency Fr Fg CPU Time
1 512 1 37 2.2000s
2 976 2 36 1.8000s
3 512 1 36 2.5500s
4 1004 1 36 1.8167s
S 192 2 43 2.6333s
6 352 1 37 2.3333s
7T 512 1 37 2.1333s
8 480 1 38 2.5333s
9 696 1 36 2.1333s
10 960 1 38 2.1167s
11 544 8 40 2.3833s
12 120 1 40 3.3833s
13 720 1 36 2.0333s
14 800 1 37 2.0833s
15 320 1 37 2.5333s
16 832 1 7 2.1667s
17 508 2 46 2.6333s
18 480 1 38 2.5000s
19 512 1 36 2.3833s

20 256 1 41 2.5667s

21 560 1 37 2.3000s

22 400 1 38 2.3667s

23 512 1 36 2.3833s

24 508 1 36 2.6167s

25 392 1 37 2.7667s

26 457 1 39 2.3833s

27 76 1 38 2.7667s

28 680 1 36 2.1000s

29 498 2 36 2.2667s

30 566 1 36 2.3667s
Average 531.233 1.133 | 37.700 2374
Std. Dev. 227.325 0.340 2.283 0.308

Table C.4: Results for Benchmark sao2
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bw

12720 faults simulated
32 test vectors

Pattern Frequency Fr Fs CPU Time
L 6 2 43 0.7000s
2 20 1 35 0.6333s
3 10 1 36 0.6000s
4 13 2 42 0.7833s
5 24 1 33 0.8500s
6 10 1 34 0.8167s
7 8 1 41 0.7667s
8 20 2 32 0.8667s
9 12 1 36 0.6167s
10 20 1 36 0.6000s
11 9 1 44 0.9167s
12 18 1 34 0.6333s
13 24 1 32 0.7167s
14 24 1 31 0.6500s
15 18 1 44 0.6833s
16 22 1 31 0.7000s
17 12 1 35 0.8000s
18 22 1 34 0.7333s
19 25 1 32 0.6333s

20 20 1 31 0.5833s

21 22 1 32 0.7667s

22 12 1 34 0.6500s

23 23 1 30 0.7833s

24 20 1 32 0.6833s

25 22 1 37 0.6333s

26 2 1 52 0.9500s

27 24 2 35 0.5667s

28 11 1 42 0.7833s

29 24 1 33 0.7333s

30 24 1 34 0.6333s
Average 17.367 1.133 | 35.900 0.716
Std. Dev. 6.463 0.340 5.042 0.099

Table C.5: Results for Benchmark bw



rd84

25651 faults simulated
256 test vectors

Pattern | Frequency Fr Fg CPU Time
1 136 2 58 2.0333s
2 128 1 55 2.2167s
3 82 1 61 2.1833s
4 37 1 68 2.5833s
5 176 1 53 2.4500s
6 40 1 7 2.3000s
7 208 1 53 1.9500s
8 180 1 54 2.0167s
9 96 8 359 2.5167s

10 238 1 53 1.9333s
11 156 1 57 2.0833s
12 193 L 57 1.9667s
13 160 L 54 2.0333s
14 186 L 35 1.9667s
15 120 1 55 3.0167s
16 206 L 53 1.9500s
17 128 1 56 2.0667s
18 37 1 67 2.8833s
19 252 1 53 1.9667s
20 48 1 73 2.4667s
21 68 1 60 2.1167s
22 T4 1 63 2.0167s
23 56 2 T 2.4167s
24 28 2 62 2.5667s
25 62 1 60 2.6833s
26 28 1 62 2.5500s
27 104 1 56 2.0000s
28 179 L 54 2.0000s
29 180 L 54 2.0667s
30 128 L 53 1.9667s
Average 123.800 1.100 | 58.633 2.232
Std. Dev. 65.764 0.300 5.936 0.300

Table C.6: Results for Benchmark rd84
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9sym

28441 faults simulated
512 test vectors

Pattern Frequency | Fp Fg CPU Time
1 256 1 55 2.8667s
2 130 1 61 2.9000s
3 160 1 56 3.2167s
4 256 1 53 2.9500s
5 122 1 60 3.6167s
6 48 2 62 3.4333s
7 288 1 55 2.8333s
8 256 1 55 2.7500s
9 320 1 57 2.5833s
10 256 1 53 2.7833s
11 352 1 55 2.7167s
12 256 1 54 3.4333s
13 256 1 53 3.0167s
14 406 2 53 2.5167s
15 365 1 55 2.6500s
16 188 1 53 3.2000s
17 256 1 55 2.8667s
18 88 1 63 3.7167s
19 280 1 53 3.1833s

20 76 1 63 3.8333s

21 92 1 60 3.7333s

22 56 1 7 3.4000s

23 160 1 56 3.1833s

24 52 2 56 3.9333s

25 352 2 54 2.7500s

26 448 2 55 2.6833s

27 256 2 56 2.9333s

28 220 2 66 4.2833s

29 256 1 56 2.8333s

30 389 1 58 2.7000s
Average 229.867 1.233 | 56.933 3.117
Std. Dev. 110.024 0.423 3.915 0.447

Table C.7: Results for Benchmark 9sym
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c432

19110 faults simulated
1000 test vectors
Pattern Frequency | Fr Fs CPU Time
1 507 1 40 7.0833s
2 495 1 40 7.7333s
3 501 8 40 7.0667s
4 517 2 40 6.9000s
5 537 1 40 6.0833s
6 477 1 40 6.5833s
7 514 1 40 6.3833s
8 219 1 40 6.4667s
9 254 2 40 6.9667s
10 495 L 40 7.0000s
11 316 3 41 7.1667s
12 532 2 40 6.6000s
13 820 1 40 6.0167s
14 482 2 40 7.0333s
15 694 I 40 7.2833s
16 677 1 41 6.7833s
17 543 1 40 6.6833s
18 528 1 40 7-4167s
19 544 1 40 7.6167s
20 344 1 40 7.1167s
21 501 1 40 6.7667s
22 234 1 40 6.8333s
23 508 1 40 6.3167s
24 357 1 40 6.6500s
25 241 1 40 6.7167s
26 499 2 40 6.3333s
27 m 8 40 6.6333s
28 524 2 40 7.1167s
29 441 1 40 6.1667s
30 502 1 40 6.2000s
Average 492.467 1.267 | 40.067 6.791
Std. Dev. 140.758 0.512 0.249 0.430

Table C.8: Results for Benchmark c432
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c499

29403 faults simulated
1000 test vectors
Pattern Frequency Fr Fs CPU Time
1 498 L 40 8.9167s
2 496 L 40 9.6667s
3 496 2 40 9.5000s
4 510 5 40 10.1667s
5 498 1 40 11.6833s
[ 491 1 40 9.6167s
7T 492 2 40 8.5167s
8 518 5 40 8.3167s
9 487 1 40 10.1167s
10 496 1 40 10.2667s
I1 509 1 40 10.5833s
12 483 5 40 10.1333s
13 501 1 40 9.6167s
14 480 1 40 9.9500s
15 480 1 40 9.8833s
16 506 1 40 9.4667s
17 482 5 40 10.9333s
18 498 1 41 8.4333s
19 501 H] 40 9.0333s
20 494 5 40 9.4833s
21 499 5 40 10.3333s
22 490 1 40 8.9667s
23 503 1 40 10.7333s
24 508 1 41 8.9333s
25 512 1 40 10.6500s
26 502 26 40 9.2167s
27 486 5 40 9.3000s
28 512 5 40 10.0667s
29 509 1 40 12.5833s
30 511 1 40 11.2333s
Average 498.267 3.100 | 40.067 9.877
Std. Dev. 10.230 4.614 0.249 0.951

Table C.9: Results for Benchmark c499




c880

97903 faults simulated
1000 test vectors

Pattern Frequency Fr Fs CPU Time
1 502 1 83 18.9667s
2 332 1 82 21.0167s
3 709 4 86 17.3333s
4 252 2 82 19.6833s
S 306 1 83 20.5333s
6 485 1 80 18.4833s
7 145 2 84 20.3333s
8 497 1 84 18.8167s
9 512 1 82 18.1833s
10 555 1 82 17.1333s
11 497 1 81 18.5167s
12 646 2 82 17.6167s
13 375 1 83 19.6500s
14 694 4 84 18.6333s
15 609 1 81 18.5333s
16 497 1 86 20.9167s
17 482 L 84 20.0333s
18 549 1 81 19.6167s
19 66 4 84 21.7167s

20 484 1 83 20.2500s
21 489 1 82 18.0667s
22 501 2 85 18.0333s
23 436 1 83 17.8167s
24 471 2 82 18.9500s
25 302 1 81 18.8167s
26 498 1 80 18.9667s
27 487 1 82 18.1833s
28 464 2 84 18.9167s
29 477 2 82 19.1833s
30 481 2 82 19.4333s
Average 460.000 1.567 | 82.667 19.078
Std. Dev. 138.674 0.920 1.513 1.108

Table C.10: Results for Benchmark ¢880
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cl355
171991 faults simulated
1000 test vectors

Pattern Frequency Fr Fs CPU Time
1 251 1 119 91.2833s
2 493 1 7 74.8833s
3 508 2 7 84.8000s
4 371 1 98 84.7000s
5 509 1 82 81.4000s
6 480 1 86 68.5667s
7 501 2 83 70.2167s
8 515 2 64 65.1833s
9 490 2 80 77.9333s
10 507 5 88 82.9167s
11 124 1 151 113.1167s
12 355 1 96 98.5500s
13 505 2 79 62.1000s
14 499 2 T 77.8833s
15 476 1 82 58.8667s
16 499 1 83 83.3000s
17 996 1 54 45.1833s
18 5 1 297 167.0000s
19 249 1 125 101.7833s
20 504 5 98 94.2333s
21 514 2 66 77.9333s
22 251 1 136 82.7333s
23 384 1 102 78.6833s
24 239 1 101 82.9333s
25 481 5 102 £9.7000s
26 518 1 T 76.0333s
27 382 1 84 83.4333s
28 751 1 64 66.0667s
29 67 1 60 48.3333s
30 492 1 82 86.1667s

Average 450.667 | 1.633 | 95.267 81.864

[ Std. Dev. | 180.217 | 1.197 | 43.310 21.304

Table C.11: Results for Benchmark c1355
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<1908

416328 faults simulated
1000 test vectors
Pattern | Frequency Fr Fs CPU Time
1 502 H 555 226.2667s
2 484 8 568 230.5667s
3 507 2 552 202.0667s
4 514 24 549 220.7333s
5 515 8 554 216.1333s
6 499 8 556 207.2167s
7 515 3 549 245.4833s
8 521 1 556 204.2333s
9 526 2 549 241.4333s
10 480 15 550 203.9167s
11 509 6 546 193.5167s
12 524 22 560 218.8833s
13 491 6 553 215.4167s
14 506 119 547 228.2500s
15 504 12 550 196.9667s
16 516 26 550 206.4167s
17 497 21 551 233.4000s
18 479 6 550 200.2167s
19 491 18 559 228.9833s
20 446 5 553 218.4833s
21 507 6 552 231.6333s
22 477 25 562 230.3333s
23 483 39 549 243.6333s
24 502 6 550 226.6000s
25 736 1 559 203.9667s
26 483 5 552 219.5333s
27 511 33 551 214.9667s
28 490 2 558 252.0167s
29 481 2 555 225.8667s
30 521 12 551 230.5333s
Average 507.233 14.933 | 553.200 220.589
Std. Dev. 45.926 21.752 4.785 14.961

Table C.12: Results for Benchmark c1908
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c2670

1016025 faults simulated
1000 test vectors

Pattern | Frequency Fr Fs CPU Time
1 463 6 573 455.0167s
2 163 4 589 487.7667s
3 489 14 573 450.4333s
4 541 3 573 457.9667s
S 662 1 573 439.3833s
6 494 1 573 467.2167s
7 480 2 573 459.0833s
8 529 6 573 456.9167s
9 548 8 573 448.8667s

10 495 18 573 458.6667s
11 472 2 573 472.9667s
12 516 6 573 479.6833s
13 493 2 573 454.6500s
14 239 2 573 468.0500s
15 432 4 57! 477.8500s
16 564 5 573 464.3333s
17 470 1 573 481.4500s
18 503 1 573 476.9667s
19 489 2 573 475.3833s
20 473 2 573 455.6167s
21 456 20 573 483.7833s
22 816 2 573 446.1167s
23 514 6 573 462.0833s
24 486 2 573 452.9667s
25 482 7 573 475.2500s
26 176 4 573 479.4167s
27 476 21 573 473.6833s
28 780 24 573 438.1333s
29 534 2 573 461.1333s
30 523 12 573 441.7167s
Average 491.933 6.333 | 573.733 463.418
Std. Dev. 130.700 6.472 3.032 13.622

Table C.13: Results for Benchmark ¢2670
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c3540

| 1476621 faults simulated
1000 test vectors
Pattern | Frequency Fr Fs CPU Time
1 467 8 853 1047.8833s
2 126 1 914 997.3667s
3 507 1 861 1037.7833s
4 568 9 849 977.9167s
5 513 16 868 963.5667s
6 347 2 853 1081.4500s
7 715 16 855 932.4333s
8 528 2 853 969.5667s
9 281 8 929 1024.8333s
10 396 1 861 1064.2500s
11 353 4 873 1070.3333s
12 516 1 857 976.2833s
13 506 18 852 1078.6833s
14 534 4 861 1011.1667s
15 518 2 855 1012.6167s
16 633 16 853 976.1333s
17 512 1 853 1040.1833s
18 558 24 872 1000.8333s
19 612 19 893 986.4167s
20 450 28 937 1000.6167s
21 742 1 855 944.7333s
22 243 24 872 1054.8667s
23 513 9 870 1034.4667s
24 825 51 859 948.2500s
25 335 1 866 1074.1500s
26 764 19 855 954.1833s
27 823 9 853 941.9333s
28 527 2 870 980.2833s
29 523 6 851 953.4167s
30 793 2 859 935.2167s
Average 524.267 10.167 7.067 1002.394
[Std. Dev. | 166.905 | L1.130 | 22.082 46.278

Table C.14: Results for Benchmark ¢3540
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c5315

3086370 faults simulated
1000 test vectors

Pattern Frequency Fr Fs CPU Time
1 423 1 875 3290.2167s

2 484 28 875 3193.6333s

3 463 6 875 3355.3167s

4 650 4 875 3231.6500s

5 502 2 875 3208.2167s

6 357 1 875 3243.6500s

7 475 3 875 3230.9167s

8 525 8 875 3230.4500s

9 514 22 875 3260.3500s

10 685 1 875 3258.2000s

11 511 3 75 3226.6833s

12 544 5 875 3184.6333s

13 463 15 875 3221.3333s

14 512 1 875 3300.4167s

15 539 4 875 3196.8167s

16 447 14 875 3308.9833s

17 484 4 87 3226.9667s

18 485 1 875 3202.9000s

19 491 2 875 3244.7667s
20 462 6 875 3300.1833s

21 284 2 875 3317.1000s

22 724 8 875 3213.1500s

23 480 4 875 3286.3000s

24 545 7 875 3350.1833s

25 275 2 875 3355.0667s

26 450 12 875 3296.7333s

27 475 6 875 3333.2167s

28 585 1 875 3222.2000s

29 528 2 875 3206.2167s
30 661 2 875 3226.1500s

Average 500.767 5.900 | 875.033 3257.420
Std. Dev. 97.126 6.353 0.180 50.886

Table C.15: Results for Benchmark ¢3315
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c7552

6913621 faults simulated
1000 test vectors

Pattern Frequency Fr Fs CPU Time
8 414 12 1477 9968.6667s
2 487 5 1477 9229.0167s
3 521 10 1477 8923.2833s
4 358 20 1481 9413.4167s
5 514 2 1477 9295.7167s
6 548 1 1475 9077.3667s
7 506 28 1478 9412.4667s
8 451 5 1475 9593.0500s
9 592 1 1475 9497.1000s
10 368 1 1481 9614.4833s
11 818 1 1475 9225.1000s
12 510 17 1477 9250.3667s
13 350 1 1475 9415.9500s
14 504 1 1477 9379.3333s
15 474 3 1477 9171.9000s
16 465 5 1475 9445.3167s
17 511 3 1477 9422.7667s
18 427 4 1475 9264.1000s
19 514 12 1477 9307.8667s

20 497 3 1475 9299.7000s
21 494 2 1475 9370.8667s
22 910 3 1475 9151.0833s
23 475 4 1475 9399.7333s
24 463 4 1477 9433.6167s
25 523 7 1477 9471.1667s
26 161 2 1485 9633.3333s
27 449 27 1479 9474.2167s
28 561 51 1475 9507.6833s
29 506 1 1475 9210.2333s
30 423 2 1479 9197.7000s
Average 493.133 7.933 | 1476.833 9368.553
Std. Dev. 127.377 10.853 2.282 193.303

Table C.16: Results for Benchmark c7552
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C.2 Comparative Diagnosis Simulations

c432
19110 faults simulated
130 test vectors
Pattern Frequency Fr Fs CPU Time
1 65 1 40 2.3667s
2 69 1 40 2.0500s
3 58 1 40 2.0833s
4 68 2 40 2.2667s
S 64 1 40 1.4833s
6 57 1 40 1.9833s
T 66 1 40 1.4333s
8 22 1 42 1.6667s
9 26 2 50 2.2333s
10 68 1 40 2.2667s
11 7 3 41 2.1333s
12 65 2 40 1.9167s
13 113 L 41 1.3667s
14 7 2 40 2.1000s
15 94 1 40 1.8167s
16 83 1 41 1.4333s
17 62 1 40 2.0333s
18 69 1 40 1.8667s
19 63 1 40 2.2833s
20 29 1 40 2.3167s
21 67 1 40 2.1000s
22 33 1 41 1.8833s
23 66 1 40 1.5333s
24 7 1 41 2.0000s
25 28 1 55 1.8167s
Average 60.600 1.240 | 41.280 1.937
Std. Dev. 21.105 0.512 3.424 0.297

Table C.17: Results for Benchmark c432
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c499

29403 faults simulated
425 test vectors

Pattern Frequency Fr Fs CPU Time
1 197 2 40 5.1667s
2 200 2 40 5.8667s
3 223 2 40 5.4333s
4 220 5 40 5.9167s
5 202 1 40 7.8000s
6 214 1 40 5.6167s
7 211 2 40 4.5000s
8 219 5 40 4.5500s
9 207 1 40 6.0667s
10 200 1 40 6.0333s
11 203 1 40 5.7667s
12 210 5 40 5.8500s
13 216 1 40 5.7167s
14 202 1 41 6.1333s
15 202 1 40 5.8333s
16 209 1 40 5.0667s
17 204 1 40 7-1333s
18 220 1 41 4.3167s
19 218 5 40 5.0000s
20 213 5 40 5.4333s
21 207 5 40 6.0167s
22 202 1 40 5.0333s
23 235 L 40 6.3667s
24 216 1 41 4.3333s
25 217 6 40 5.9500s
Average 210.680 2.480 | 40.120 5.636
Std. Dev. 8.952 1.857 | 0.325 0.796

Table C.18: Results for Benchmark c499
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97903 faults simulated
80 test vectors
Pattern Frequency Fr Fs CPU Time
1 38 1 121 5.8833s
2 29 1 139 6.2833s
3 74 95 133 4.2667s
4 13 29 174 6.5500s
5 23 1 123 5.9500s
6 33 2 116 5.4833s
7 3 67 204 7.0333s
8 39 3 123 5.2833s
9 39 1 117 5.3833s
10 54 1 126 4.3333s
11 27 1 127 5.9667s
12 42 40 118 5.1333s
13 15 L 127 6.9167s
14 34 4 118 5.9667s
15 63 1 120 4.1667s
16 29 1 124 7.3000s
17 41 1 116 6.7333s
18 54 L 117 5.9667s
19 2 136 280 8.8833s
20 31 1 121 6.9667s
21 44 1 120 4.3667s
22 55 2 121 4.2667s
23 48 1 135 4.1833s
24 49 2 120 5.5667s
25 19 107 141 5.8833s
Average 35.920 20.040 | 135.240 5.789
Std. Dev. 17.357 37.900 35.322 1.147

Table C.19: Results for Benchmark c880




cl1355

171991 faults simulated
520 test vectors

Pattern Frequency Fr Fs CPU Time
1 126 1 144 59.7167s
2 257 3 117 56.9333s
3 255 2 126 65.4000s
4 186 1 124 54.5500s
5 254 1 122 55.0333s
6 256 1 121 46.0667s
7 249 8 124 46.2667s
8 283 2 104 48.3333s
9 258 2 116 55.0167s
10 266 5 114 60.5167s
11 67 1 165 75.8500s
12 187 L 120 67.0167s
13 262 44 129 44.3167s
14 256 38 146 66.7333s
15 233 1 122 42.4833s
16 256 34 121 64.4333s
17 517 1 89 29.0333s
18 3 1 551 119.5000s
19 129 1 161 71.1667s
20 279 5 122 7.3833s
21 270 2 106 60.9000s
22 131 1 152 50.7833s
23 191 1 144 54.6667s
24 138 1 133 60.9167s
25 253 5 134 64.8667s
Average 222.480 6.520 144.280 59.515
Std. Dev. 93.469 12.083 84.754 15.958

Table C.20: Results for Benchmark c1355
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1908

416328 faults simulated
865 test vectors
Pattern Frequency F Fs CPU Time
1 435 5 558 199.9333s
2 416 189 573 202.2333s
3 436 2 559 185.0333s
4 448 24 555 197.4167s
5 47 8 563 195.0333s
6 429 8 565 203.1333s
7T 448 3 553 220.9667s
8 451 1 565 180.0000s
9 452 2 556 219.3500s
10 419 15 556 182.8667s
11 428 6 554 175.1833s
12 451 22 566 194.0167s
13 420 6 559 193.0667s
14 435 120 552 202.2000s
15 432 12 557 179.3000s
16 440 26 558 187.4167s
17 438 21 557 212.5167s
18 411 6 556 203.6333s
19 431 18 566 209.5000s
20 396 5 562 197.4167s
21 440 6 559 209.5167s
22 417 25 572 209.0500s
23 414 39 556 219.8833s
24 429 6 557 208.0333s
25 634 1 565 184.0500s
Average 439.880 23.040 | 559.960 198.830
Std. Dev. 42.047 41.106 5.473 12.944

Table C.21: Results for Benchmark c1908
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c2670

1016025 faults simulated
80 test vectors

Pattern Frequency Fr Fs CPU Time
1 26 10 616 57.8667s
2 12 60 685 85.9167s
3 36 16 598 54.5833s
4 53 3 600 65.1833s
5 60 1 589 47.8833s
6 44 I 593 66.8167s
7 30 2 615 67.5167s
8 47 6 598 54.4333s
9 50 12 583 51.7833s
10 50 22 596 65.2833s
11 21 2 609 78.1167s
12 36 6 593 81.7333s
13 43 2 593 58.3167s
14 24 2 611 73.5833s
15 21 4 622 82.1167s
16 33 7 608 69.6167s
17 32 1 608 85.8667s
18 38 L 595 71.9667s
19 29 4 589 83.7167s
20 42 2 584 59.9167s
21 20 24 627 80.5833s
22 68 2 614 49.8833s
23 46 6 591 63.0333s
24 7 2 585 57.9667s
25 34 7 602 78.1167s
Average 37.280 8.200 604.160 67.672
Std. Dev. 13.046 12.261 20.303 11.746

Table C.22: Results for Benchmark ¢2670




<3540

1476621 faults simulated
450 test vectors
Pattern Frequency Fy Fs CPU Time
1 205 8 901 551.1667s
2 55 L 934 479.2167s
3 231 1 892 564.3667s
4 254 9 888 479.0000s
5 233 16 901 452.8667s
6 152 2 888 571.8667s
7 316 16 902 437.6333s
8 227 2 889 469.1333s
9 136 8 944 524.9833s
10 180 1 892 533.7833s
1l 167 4 913 559.9167s
12 225 1 901 462.0500s
13 218 54 897 567.7
14 256 4 899 522.6000s
15 234 2 912 523.7333s
16 292 16 T 484.9167s
17 222 1 901 550.1333s
18 256 24 903 498.7167s
19 285 19 911 490.6833s
20 209 28 949 523.6500s
21 338 1 892 456.4500s
22 125 24 891 536.7667s
23 223 9 893 583.1167s
24 379 51 889 469.0667s
25 168 1 904 581.2833s
Average 223.440 12.120 | 902.920 514.992
Std. Dev. 68.483 14.492 16.466 43.729

Table C.23: Results for Benchmark ¢3540
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c5315

3086370 faults simulated
690 test vectors

Pattern Frequency Fr Fs CPU Time
i 284 1 875 2205.0167s

2 314 28 875 2170.5167s

3 307 6 875 2262.6667s

4 444 4 875 2191.7000s

5 352 2 875 2262.5667s

6 227 1 875 2221.4667s

7 318 3 87 2236.7500s

8 366 8 875 2156.5833s

9 351 22 875 2170.9667s

10 466 1 875 2184.7333s

11 355 3 87 2098.1667s

12 394 5 87! 2117.2167s
13 319 15 875 2164.1167s
14 358 1 875 2228.9167s

15 387 4 875 2089.4167s

16 293 14 875 2195.9167s

17 336 4 876 2162.7333s

18 322 1 87 2141.5667s

19 41 2 875 2133.0333s

20 299 6 875 2171.3167s

21 183 2 87! 2203.1333s
22 504 8 875 2132.3000s
23 342 4 875 2209.7167s

24 395 7 875 2203.3167s
25 172 2 875 2237.3000s

Average 337.160 6.160 | 875.040 2182.045
Std. Dev. 74.493 6.685 0.196 46.178

Table C.24: Results for Benchmark ¢5315




c7552

6913621 faults simulated
90 test vectors

Pattern Frequency | Fp Fs CPU Time
1 27 12 1537 1162.0833s
2 48 5 1512 980.8000s
3 48 10 1496 792.7833s
4 24 24 1608 1201.2000s
5 47 2 1497 1068.3167s
6 56 1 1503 788.0333s
7 46 28 1549 981.5333s
8 30 5 1531 1060.3667s
9 63 1 1492 928.9833s
10 37 L 1542 1219.2167s
11 s 1 1492 911.1000s
12 47 L7 1514 884.4000s
13 33 1 1513 1081.6833s
14 53 1 1495 937.9333s
15 40 3 1517 819.4833s
16 38 5 1511 992.6667s
17 42 3 1516 995.4500s
18 29 4 1562 813.5833s
19 51 12 1543 817.9333s
20 43 3 1510 885.4167s
21 42 2 1508 1041.5667s
22 86 3 1490 778.5667s
23 52 4 1498 889.3833s
24 43 4 1510 897.5833s
25 51 7 1499 937.3667s
Average 46.120 6.360 | 1517.800 954.697
Std. Dev. 13.978 7.065 26.580 124.631

Table C.25: Results for Benchmark ¢7552




terns

C.3 Single Fault Diagnosis Using Double Fault Pat-

2
378 faults simulated
16 test vectors
Pattern Frequency | Fi Fs CPU Time
1 9 0 8 0.0667s
2 9 0 11 0.0833s
3 11 0 8 0.0833s
4 13 0 8 0.0833s
S 11 0 12 0.0833s
6 15 0 8 0.0667s
7T 11 0 10 0.0667s
8 11 0 8 0.0833s
9 11 0 8 0.0500s
10 11 0 8 0.0667s
Average 11.200 0.000 | 8.900 0.073
Std. Dev. 1.661 0.000 | 1.446 0.011

Table C.26: Results for Benchmark 2

rd53
1035 faults simulated
32 test vectors
Pattern Frequency Fr Fs CPU Time
1 16 0 11 0.1167s
2 24 0 10 0.1167s
3 21 0 10 0.1167s
4 21 4] 10 0.1333s
5 24 ] 10 0.1333s
6 24 0 10 0.1167s
T 24 (1] 10 0.1333s
8 24 1} 10 0.1167s
9 22 0 10 0.1167s
10 24 0 10 0.1333s
Average 22.400 0.000 | 10.100 0.123
[ Std. Dev. 2.458 0.000 | 0.300 0.008

Table C.27: Results for Benchmark rd53
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td73

8778 faults simulated
128 test vectors
Pattern Frequency Fr Fs CPU Time
1 79 0 34 0.7167s
2 96 1] 32 0.6667s
3 96 0 32 0.6000s
4 62 0 3 0.6167s
5 77 0 32 0.6667s
6 70 0 32 0.6500s
7 100 0 33 0.5833s
8 88 0 32 0.5667s
9 a8 0 32 0.6500s
10 32 0 34 0.8000s
Average 79.800 0.000 | 32.600 0.652
Std. Dev. 20.094 0.000 0.800 0.065

Table C.28: Results for Benchmark rd73

sao2
12090 fauits simulated
1024 test vectors
Pattern Frequency Fr Fs CPU Time
1 T 0 36 1.9833s
2 468 0 37 2.2167s
3 T44 0 36 1.9000s
4 604 0 37 2.2667s
5 764 1] 7 2.1333s
6 752 1] 36 2.1833s
T 624 0 36 2.1833s
8 748 1] 36 2.0167s
9 689 0 36 2.0833s
10 536 0 36 2.2000s
Average 669.700 0.000 | 36.300 2.117
Std. Dev. 101.151 0.000 0.458 0.112

Table C.29: Results for Benchmark sao2
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bw

| 12720 faults simulated
32 test vectors
Pattern Frequency Fr Fs CPU Time
1 13 1 3 0.5833s
2 18 0 33 0.6667s
3 18 0 32 0.6333s
4 20 0 31 0.6333s
5 12 (o] 40 0.8000s
6 24 0 33 0.6167s
7T 28 0 31 0.5833s
8 29 0 32 0.5833s
9 28 1 31 0.6833s
10 28 0 31 0.5167s
Average 21.800 0.200 | 32.700 0.630
Std. Dev. 6.145 0.400 2.571 0.073

Table C.30: Results for Benchmark bw

rd84
25651 faults simulated
256 test vectors
Pattern Frequency Fr Fs CPU Time
1 196 0 53 1.9333s
2 114 0 60 2.0833s
3 132 0 55 2.1500s
4 225 0 53 1.9667s
5 180 0 53 2.1167s
6 80 o 58 2.2833s
7T 117 (1] 55 2.0333s
8 79 0 56 2.2167s
9 89 0 55 2.2500s
10 180 0 53 1.8333s
Average 139.200 0.000 | 55.100 2.087
Std. Dev. 49.745 0.000 | 2.256 0.139

Table C.31: Results for Benchmark rd84
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9sym

28441 faults simulated
512 test vectors

Pattern Frequency Fr Fs CPU Time
1 256 0 55 2.8667s
2 163 [1] 55 3.3833s
3 258 0 53 3.1667s
4 160 1] 57 3.6667s
S 182 1] 54 3.2667s
6 285 0 53 2.9667s
7 359 0 53 2.8333s
8 384 1) 53 2.6833s
9 384 0 53 2.6833s
10 383 ] 53 2.9333s
Average 281.400 0.000 | 53.900 3.045
Std. Dev. 87.887 0.000 1.300 0.304

Table C.32: Results for Benchmark 9sym

c432
19110 faults simulated
1000 test vectors
Pattern Frequency Fr Fg CPU Time
1 749 0 40 6.3833s
2 754 0 40 6.5000s
3 742 o 40 5.8667s
4 417 0 40 6.0833s
5 662 (1] 41 6.4333s
6 645 (V] 40 6.5333s
7 644 1] 40 6.0833s
8 632 0 40 5.9833s
9 756 0 40 5.8500s
10 727 0 40 5.9167s
Average 672.800 0.000 | 40.100 6.163
Std. Dev. 97.911 0.000 | 0.300 0.258

Table C.33: Results for Benchmark c432
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c499

29403 faults simulated

1000 test vectors

Pattern Frequency | F¢ Fs CPU Time
1 729 4] 40 8.6833s
2 751 (4] 40 9.1833s
3 740 0 40 8.3167s
4 752 4] 40 8.6333s
5 756 1] 40 8.3000s
6 733 (1] 40 9.5500s
7 756 0 40 8.2167s
8 731 (1] 40 8.0500s
9 743 (1] 40 8.3000s
10 748 0 40 8.2167s

Average 743.900 0.000 | 40.000 8.545

Std. Dev. 9.741 0.000 0.000 0.456

Table C.34: Results for Benchmark c499

c880
97903 fauits simulated
1000 test vectors
Pattern Frequency | Fp Fs CPU Time
1 506 (1] 82 18.6167s
2 655 4] 81 17.5833s
3 569 0 84 17.8667s
4 681 0 81 18.4667s
5 757 0 84 19.1833s
6 512 0 83 19.6333s
7T 720 0 84 16.7333s
8 632 0 82 18.1333s
9 742 0 81 16.9167s
10 724 0 82 17.9667s
Average 649.800 0.000 | 82.400 18.110
Std. Dev. 88.283 0.000 1.200 0.868

Table C.35: Results for Benchmark ¢880
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cl1355

171991 faults simulated

1000 test vectors

Pattern Frequency | F. Fs CPU Time
1 615 0 68 65.8667s
2 671 0 74 50.2833s
3 732 (4] 64 49.5167s
4 437 0 7! 84.2667s
S 737 0 62 50.0667s
6 500 V] 82 79.5833s
T 619 1] 76 85.1167s
8 437 o 85 57.7167s
9 604 0 72 7.7000s
10 690 0 62 67.6667s

Average 604.200 0.000 | 72.300 65.778

Std. Dev. 106.253 0.000 7.772 13.153

Table C.36: Results for Benchmark c1355

c1908
416328 faults simulated
1000 test vectors
Pattern Frequency | Fr Fs CPU Time
1 741 4] 550 211.6833s
2 755 1] 552 198.4333s
3 745 0 542 191.9167s
4 740 4] 548 201.7833s
5 748 [¢] 544 184.6833s
6 746 0 550 214.1667s
7 745 0 549 193.2167s
8 729 0 548 212.2667s
9 T44 0 545 217.0167s
10 738 0 555 213.4333s
Average 743.100 0.000 | 548.300 203.860
Std. Dev. 6.488 0.000 3.662 10.772

Table C.37: Results for Benchmark c1908
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c2670

1016025 faults simulated
1000 test vectors
Pattern Frequency Fr Fs CPU Time
1 543 1] 573 442.9833s
2 742 1] 573 438.4667s
3 746 1] 573 456.8167s
4 27 1] 573 441.5667s
3 57L o 573 466.0000s
6 751 0 573 459.3833s
T 722 o 573 445.7667s
8 736 (] 573 453.1000s
9 742 0 573 441.3667s
10 558 1] _:3'3 467.7500s
Average 683.800 | 0.000 | 573.000 | 451.320
Std. Dev. 83.417 0.000 0.000 10.216

Table C.38: Results for Benchmark c2670

c3540

1476621 faults simulated
1000 test vectors

Pattern Frequency Fr Fs CPU Time

1 540 4] 853 951.8833s

2 777 0 861 912.4167s

3 682 0 849 936.4333s

4 580 0 861 998.4333s

5 676 [¢] 855 929.8333s

6 751 0 849 988.3667s

7T it 0 853 990.5500s

8 557 0 872 995.1333s

9 672 0 853 1012.9000s

10 767 0 849 924.8833s
Average 678.000 0.000 | 855.500 964.083
Std. Dev. 87.405 0.000 6917 34.799

Table C.39: Results for Benchmark ¢3540
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c5315

3086370 faults simulated
1000 test vectors
Pattern Frequency Fr. Fs CPU Time
L 688 0 875 3184.9000s
2 735 0 875 3199.1833s
3 657 0 875 3265.3167s
4 748 0 87 3135.5500s
H 733 0 875 3169.8167s
6 711 0 875 3171.5333s
7 742 0 875 3202.7333s
8 614 0 875 3207.4333s
9 637 0 875 3234.6667s
10 712 0 875 3198.2667s
Average 697.700 0.000 | 875.000 3196.940
Std. Dev. 44.668 0.000 0.000 33.976

Table C.40: Results for Benchmark ¢5315

c7552

6913621 faults simulated
1000 test vectors

Pattern Frequency Fr Fs CPU Time

1 692 1] 1477 9006.5333s

2 697 4] 1481 9123.2833s

3 654 0] 1475 9221.7333s

4 689 4] 1475 8966.4667s

5 734 Q 1477 8966.4667s

6 693 (1] 1475 8923.1833s

7 747 0 1475 8982.0333s

8 719 o] 1475 9079.7667s

9 551 0 1477 9283.0167s

10 721 0 1475 8958.1167s
Average 689.700 0.000 | 1476.200 9051.060
Std. Dev. 52.599 0.000 1.833 116.200

Table C.41: Results for Benchmark c7552
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Appendix D

Multiple Fault Algorithm
Simulation Tables
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D.1 Multiple Fault Diagnosis Using Single Fault

Patterns
2
378 faults simulated
16 test vectors
Pattern Frequency Fr Fp Fg Fuy Fxs Fxp CPU Time

1 6 2 8 10 0 2 8 0.0833s
2 6 2 7 8 (1] 0 3 0.1000s
3 10 1 13 26 4] 89 4 0.1000s
4 12 2 29 36 4] 283 18 0.1667s
3 10 1 10 20 (4] 81 3 0.0833s
6 12 2 125 18 0 177 126 0.5833s
7 4 2 0 10 (1] L [¢] 0.0667s
8 8 1 2 T 0 K 1 0.0667s
9 8 1 10 11 0 7 4 0.0667s
10 12 1 29 34 0 291 23 0.2000s
11 8 1 15 8 0 0 4 0.0833s
12 6 2 1] 9 0 o] 0 0.0500s
13 14 2 103 41 0 466 103 0.6000s
14 8 1 18 23 0 148 12 0.1167s
15 8 1 1 22 0 2 1] 0.0833s
16 6 4 4 8 0 0 5 0.0833s
17 10 2 13 27 0 203 16 0.1333s
18 4 1 0 8 o] 1] o] 0.0667s
19 10 2 14 18 0 52 4 0.0833s
20 8 1 4 21 0 28 2 0.0833s
21 8 1 14 10 0 19 11 0.0833s
22 12 4 58 24 0 255 122 0.2500s
23 8 1 19 11 0 33 33 0.0833s
24 10 2 15 21 0 99 9 0.1167s
25 4 1 0 8 [41] 1] 0 0.0833s
26 8 1 7 18 )] 55 2 0.0833s
27 8 1 7 26 1] 69 2 0.0667s
28 10 2 13 7 0 203 16 0.1000s
29 4 4 0 8 0 Q 0 0.0833s
30 10 1 21 21 0 109 14 0.1333s

Average 8.400 1.667 | 18.633 | 18.633 | 0.000 91.600 18.167 0.133

Std. Dev. 2.603 0.907 | 28.158 9.214 0.000 | 113.374 | 33.984 0.129

Table D.1: Results for Benchmark f2



rd53

1035 faults simulated
32 test vectors

Pattern Frequency Fr Fp Fs Fy Fxs Fnp CPU Time
1 20 1 14 62 1] 296 4 0.2833s
2 8 2 3 54 0 121 2 0.2000s
3 12 2 3 50 0 151 1 0.2000s
4 16 1 4 48 1] 151 2 0.2167s
5 24 2 73 88 0 1107 201 0.8167s
6 16 L 1 48 0 154 0 0.2000s
7 16 1 3 45 (1] 75 0 0.1833s
8 8 2 0 45 ] 130 0 0.2500s
9 16 2 17 45 Q 97 6 0.2333s
10 5 1 0 45 0 87 1] 0.2000s
11 16 1 1] 51 Q 140 0 0.1833s
12 16 2 4 48 Q 161 2 0.1833s
13 18 1 26 63 0 430 54 0.3833s
14 16 1 0 45 o] 98 0 0.1833s
15 16 1 1 45 o] T4 4] 0.1667s
16 16 1 3 51 0 170 0 0.2500s
17 19 1 17 62 o] 378 10 0.2833s
18 16 2 7 50 0 98 4 0.2333s
19 16 2 0 48 1] 93 4] 0.1833s

20 16 2 2 49 ] 97 0 0.1667s

21 10 1 o] 47 ] 89 0 0.1833s

22 16 1 0 52 (4] 187 4] 0.2000s

23 16 1 8 48 1] 195 12 0.2167s

24 16 1 0 50 0 110 0 0.2000s

25 24 2 74 66 0 455 84 0.8500s

26 24 1 37 61 0 307 14 0.3667s

27 20 1 8 56 1] 237 0 0.2333s

28 20 1 8 50 0 145 1 0.2000s

29 16 1 6 49 ] 111 0 0.2667s

30 16 1 6 51 0 189 1 0.2667s
Average 16.133 1.333 | 10.833 | 52.400 | 0.000 | 204.433 | 13.267 0.266
Std. Dev. 4.295 0.471 | 18.700 8.842 0.000 | 195.551 | 38.994 0.160

Table D.2: Results for Benchmark rd53
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rd73

8778 faults simulated
128 test vectors

Pattern Frequency Fr Fp Fs Fy Fns Fxp CPU Time
1 64 1 2 104 0 251 0 1.0833s
2 92 1 57 144 0 739 0 1.8500s
3 66 1 6 107 0 369 0 1.2000s
4 80 1 8 110 0 230 (o} 1.1333s
5 82 1 20 106 Q 212 0 1.2500s
6 78 1 5 104 V] 295 0 1.1500s
7 70 1 111 125 0 1282 27 2.3833s
8 56 1 1 103 0 354 0 1.1833s
9 104 1 190 162 0 1022 5 4.4167s
10 64 3 18 105 0 310 16 1.3000s
11 72 1 3 107 0 253 0 1.1333s
12 64 1 2 101 0 233 0 1.1000s
13 46 1 23 114 1] 447 11 1.3667s
14 24 L 10 108 V] 517 T 1.3667s
15 65 1 9 107 [s] 238 1} 1.1667s
16 38 1 1 103 Q 264 0 1.1833s
17 48 1 0 99 0 224 0 1.1167s
18 36 1 8 107 (4] 368 0 1.3000s
19 96 1 80 133 (4] 7l L 2.1500s

20 64 1 6 106 0 237 1 1.1333s
21 64 2 22 117 (4] 282 4 1.3667s
22 64 2 15 107 (4] 355 6 1.2000s
23 88 2 39 119 1] 378 0 1.4333s
24 106 1 249 139 0 1140 107 5.5167s
25 48 2 8 114 0 503 0 1.4167s
26 112 1 397 175 0 1642 11 10.6333s
27 64 1 34 101 0 364 12 1.3333s
28 64 1 6 112 1] 323 0 1.1833s
29 2 1 0 98 0 66 0 1.2167s
30 30 2 12 103 0 408 11 1.3000s
Average 65.033 1.233 | 44.733 | 114.667 | 0.000 | 469.233 | 7.300 1.886
Std. Dev. 24.400 0.496 | 86.208 18.207 | 0.000 | 355.292 | 19.554 1.887

Table D.3: Results for Benchmark rd73
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12090 faults simulated
1024 test vectors

Pattern Frequency Fr Fp Fu Fxs Fnp CPU Time
1 512 1 38 o 377 32 3.5167s
2 976 2 25 (1] 515 0 2.2833s
3 512 I L 0 80 [1) 2.8667s
4 1004 1 175 0 1630 o 8.5167s
S 192 2 0 0 110 0 3.6667s
6 352 1 9 0 55 1) 3.4500s
7 512 1 51 0 224 24 3.6167s
8 480 1 0 4] 79 1) 2.8833s
9 696 1 175 0 227 3 5.7333s
10 960 1 172 0 613 1 5.5833s
I1 544 1 12 0 208 3 3.1500s
12 120 1 2 ] 132 0 3.9167s
13 720 1 113 0 295 14 4.2500s
14 800 1 166 (] 284 0 5.3333s
15 320 1 5 0 63 4 3.2833s
16 832 1 293 0 1809 327 13.2333s
L7 508 2 31 0 180 12 3.5667s
18 480 1 2 64 o 81 0 3.0000s
19 512 1 0 64 0 121 0 2.8167s
20 256 1 1 64 ] 82 0 3.5667s
21 560 1 145 86 0 443 32 5.3000s
22 400 1 11 66 0 53 (4] 3.2000s
23 512 L 22 64 0 81 0 3.1167s
24 508 1 26 66 0 80 2 3.2833s
25 392 1 0 64 (1} T o 3.4167s
26 457 1 0 64 0 123 4] 2.8333s
27 76 1 2 64 0 20 1 3.8167s
28 680 1 109 72 0 200 o 3.8833s
29 498 2 0 68 (1] 147 ] 2.9833s
30 566 1 1 66 0 129 0 2.9333s

Average 531.233 52.900 0.000 | 286.233 4.100

Std. Dev. 227.325 75.969 0.000 | 408.086 2.086

Table D.4: Results for Benchmark sao2




bw

12720 faults simulated
32 test vectors
Pattern Frequency Fr Fp Fs Fyr Fns Fnp CPU Time
1 6 2 10 94 0 679 3 1.1333s
2 20 L 178 111 0 1875 168 3.0000s
3 10 1 45 87 4] 626 38 1.2667s
4 13 2 158 111 0 1905 265 2.7167s
5 24 1 400 217 (] 671 733 13.8333s
6 10 1 16 85 0 415 0 1.1833s
7 8 1 20 83 o 468 (4] 1.1167s
8 20 2 97 120 0 1698 L 2.0333s
9 12 1 181 109 1] 2531 117 3.1500s
10 20 1 117 109 (1] 1261 o 2.0833s
11 9 1 10 89 o 445 1 1.1500s
12 18 1 121 123 1] 1985 9 2.4833s
13 24 1 370 214 (1] 4593 63 10.8500s
14 24 1 624 173 0 6706 969 20.2167s
15 18 1 227 155 0 4246 246 4.4167s
16 22 1 811 169 0 12336 1402 31.9333s
17 12 1 30 7 0 7 3 1.2667s
18 22 1 120 150 1] 2309 [¢] 2.7833s
19 25 1 584 221 0 8114 139 18.7667s
20 20 1 221 118 0 2351 1 3.5167s
21 22 1 84 113 0 1152 20 1.8833s
22 12 1 63 98 0 909 41 1.4833s
23 23 1 230 149 1] 3240 69 4.5167s
24 20 1 805 123 0 6260 2007 35.6167s
25 22 1 241 134 0 2790 319 4.8333s
26 2 1 4] 79 0 140 0 1.0667s
27 24 2 548 243 0 13972 1658 18.0000s
28 11 1 88 96 0 872 172 1.6500s
29 24 1 603 252 4] 18683 3835 23.0500s
30 24 1 312 159 0 2511 134 8.8167s
Average 17.367 1.133 | 243.800 | 135.700 | 0.000 | 3751.467 | 413.767 7.661
Std. Dev. 6.463 0.340 | 237.110 49.370 0.000 | 4364.251 | 819.423 9.440

Table D.5: Results for Benchmark bw




25651 faults simulated
256 test vectors

Pattern Frequency Fr Fp Fs Fyg Fns Fyxp CPU Time
L 136 2 4 174 L 820 0 3.5833s
2 128 1 4 179 1 1264 0 3.8667s
3 82 1 S 185 1 1161 1 4.4833s
4 37 1 1 179 L 1423 o] 4.3667s
5 176 1 72 201 1 1495 51 4.9667s
6 40 1 12 177 1 1182 8 4.4167s
7 208 1 1551 282 1 6521 0 101.4833s
8 180 1 109 235 1 1880 0 6.3000s
9 96 1 30 178 1 1371 14 4.4333s
10 238 1 2659 428 1 21813 2992 442.3000s
|83 156 1 5 195 1 1472 0 3.5667s
12 193 1 16 195 1 1055 0 3.4833s
13 160 1 12 191 1 1162 [¢] 3.7667s
14 186 1 47 296 1 4020 12 20.0667s
15 120 1 19 200 1 1319 7 4.5000s
16 206 1 264 252 1 2372 1 10.6833s
17 128 1 29 199 1 1127 Q 4.0500s
18 37 1 20 181 L 1234 13 4.5833s
19 252 1 T4 571 1 58069 8296 2226.8500s

20 48 1 o 183 1 906 0 4.6333s
21 68 1 7 191 1 1127 0 4.2667s
22 T4 1 4 181 1 1093 0 4.0167s
23 56 2 37 185 1 738 8 4.8500s
24 28 2 0 187 1 1226 0 4.4000s
25 62 1 0 186 1 1409 0 4.3167s
26 28 1 1 199 1 1245 0 4.7500s
27 104 1 21 180 1 1040 2 4.1333s
28 179 1 24 178 1 1222 9 3.4333s
29 180 1 106 236 1 2252 12 6.4167s
30 128 1 i5 193 1 1401 0 4.0667s
Average 123.800 1.100 452.500 219.900 | 1.000 | 4147.300 380.867 97.034
Std. Dev. 65.764 0.300 | 1514.938 82.554 0.000 | 10705.844 | 1564.475 403.457

Table D.6: Results for Benchmark rd84
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9sym

28441 faults simulated
512 test vectors

Pattern Frequency Fr Fp Fs Fy Fns Fnp CPU Time
1 256 1 10 130 0 894 (4] 4.0833s
2 130 1 o 121 0 712 (1] 4.4167s
3 160 1 3 124 0 74T 4] 4.3500s
4 256 1 0 123 0 730 o 3.9500s
5 122 1 1] 123 0 720 (1] 4.4667s
6 48 2 1 120 0 808 o 4.7833s
7 288 | 8 127 0 820 3 4.1333s
8 256 L 4 128 0 711 0 3.9667s
9 320 1 37 141 0 1129 3 4.2667s
10 256 1 3 134 o 1215 1 4.0833s
11 352 L 46 140 0 999 2 4.5833s
12 256 1 14 133 0 868 0 4.4167s
13 256 1 2 128 ] 909 0 4.0833s
14 406 2 28 151 V] 1118 0 4.1333s
15 365 1 83 148 (4] 1085 4 4.9333s
16 188 1 5 126 (1] 842 2 4.3667s
17 256 1 (1] 124 (4] 719 Q 3.9667s
18 88 1 8 123 0 738 0 4.5167s
19 280 1 48 145 4] 1306 27 4.9000s

20 76 1 2 123 0 759 L 4.8500s

21 92 1 (4] 120 1] 658 4] 4.6167s

22 56 1 o 118 0 468 4] 4.6833s

23 160 1 5 128 0 1058 1 4.6000s

24 52 2 2 125 0 899 1 5.0833s

25 352 2 32 146 0 947 10 4.2167s

26 448 2 447 204 0 2811 226 19.5833s

27 256 2 9 123 0 729 3 4.1000s

28 220 2 4 123 0 473 4] 4.4833s

29 256 1 23 136 (4] 1116 4 4.5167s

30 389 1 8 129 [1] 745 1] 3.7167s
Average 229.867 1.233 | 27.500 | 132.133 | 0.000 | 924.433 9.600 4.895
Std. Dev. 110.024 0.423 | 80.157 16.043 | 0.000 | 402.107 | 40.502 2.747

Table D.7: Results for Benchmark 9sym
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c432

19110 faults simulated
1000 test vectors

Pattern Frequency Fr Fp Fs Fy Fns Fynp | CPU Time
1 507 1 0 103 8 180 1] 6.2833s
2 495 1 0 103 8 282 0 6.2167s
3 501 1 0 103 8 180 0 6.2333s
4 517 2 0 103 8 180 (] 6.2000s
3 537 1 0 103 8 180 0 6.0667s
6 477 1 0 103 8 180 0 6.4333s
7 514 1 1] 103 8 180 0 6.0833s
8 219 1 1] 103 8 270 0 7.3000s
9 254 2 0 103 8 180 4] 7.3333s
10 495 1 0 103 8 180 0 6.8667s
11 316 3 49 157 8 496 24 10.6667s
12 532 2 (1] 103 8 180 0 6.1833s
13 820 1 12 97 8 183 1 4.5333s
14 482 2 0 103 8 181 (1] 6.2333s
15 694 1 2 102 8 180 (1] 5.1833s
16 677 1 3 126 8 386 o 5.7167s
17 543 1 4] 108 8 220 (1] 6.1333s
18 528 1 1] 103 8 190 (4] 6.0667s
19 544 1 4] 107 8 224 o] 6.5167s

20 344 1 4] 103 8 180 o] 6.9167s

21 501 1 (4] 103 8 180 o] 6.2167s

22 234 1 (1] 103 8 277 4] 7.3833s

23 508 1 2 103 8 201 1 6.0000s

24 557 1 0 103 8 194 0 5.9667s

25 241 1 1] 106 8 281 0 7.4667s

26 499 2 (V] 103 8 181 0 6.0833s

7 771 1 1 103 8 180 0 4.9167s

28 524 2 0 103 8 180 0 6.2167s

29 441 1 ] 106 8 209 4] 6.3833s

30 502 1 0 103 8 180 0 6.0667s
Average 492.467 1.267 | 2.300 | 105.833 | 8.000 | 215.833 | 0.867 6.396
Std. Dev. 140.758 0.512 | 8.952 10.488 | 0.000 70.002 4.303 1.022

Table D.8: Results for Benchmark c432




c499

29403 faults simulated

1000 test vectors

Pattern Frequency Fr Fp Fs Fu Fyns Fxp CPU Time
1 498 1 9 1653 81 1703 (1} 165.9667s
2 496 1 14 1653 81 1259 0 167.0167s
3 496 2 14 1651 81 992 0 167.4667s
4 510 5 14 1646 81 1000 1} 165.0500s
3 498 1 9 1654 81 1973 0 163.4667s
6 491 1 44 1647 81 964 0 166.2500s
7 492 2 9 1652 81 964 0 166.7667s
8 518 5 32 1644 81 2475 35 163.9333s
9 487 1 9 1655 81 1584 0 167.0167s
10 496 1 35 1655 81 2376 0 171.3167s
11 509 1 35 1648 81 962 0 164.1667s
12 483 5 505 1639 81 1065 1565 232.0333s
13 501 1 20 1650 81 968 0 164.5333s
14 480 1 9 1655 81 1957 0 167.6333s
15 480 1 14 1651 81 1385 0 163.8333s
16 506 1 5 1653 81 960 0 160.7833s
17 482 5 213 1638 81 980 0 193.3333s
18 498 1 90 1647 81 1035 1 171.9000s
19 501 5 475 1639 81 1015 345 232.5833s

20 494 5 14 1651 81 970 0 166.8333s

21 499 5 20 1651 81 2155 25 166.9000s

22 490 1 20 1651 81 1382 0 163.6000s

23 503 1 9 1652 81 961 0 164.8667s

24 508 1 9 1655 81 1094 0 164.7833s

25 512 1 32 1649 81 3045 32 166.7333s

26 502 26 156 1639 81 1064 0 185.0000s

27 486 5 27 1649 81 970 0 164.8833s

28 512 5 14 1646 81 1025 Q 164.2500s

29 509 1 27 1649 81 989 0 170.6333s

30 511 1 27 1649 81 960 0 170.1000s
Average 498.267 3.100 63.667 1649.033 | 81.000 | 1341.067 66.767 172.121
Std. Dev. 10.230 4.614 | 122.262 4.929 0.000 553.345 285.038 17.273

Table D.9: Results for Benchmark c499
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c880

97903 faults simulated
1000 test vectors
Pattern Frequency Fr Fp Fs Fyr Fns Fxp | CPU Time
1 502 1 11 445 75 1318 1] 27.9500s
2 332 1 9 430 75 1251 0 30.5833s
3 709 4 13 441 7 1669 4 24.4667s
4 252 2 26 450 75 3921 29 33.6500s
5 306 1 3 447 75 1634 4] 31.9167s
6 485 1 8 438 75 1516 [¢] 28.0167s
7 145 2 13 428 T 686 1] 34.1500s
8 497 1 27 460 75 1646 (4] 29.3667s
9 512 1 8 425 7! 856 o] 27.2833s
10 535 1 2 438 7! 1217 0 27.2333s
11 497 1 23 437 75 1552 Q 28.2000s
12 646 2 43 476 7 1536 6 27.6833s
13 75 1 11 447 7 1453 0 30.7667s
14 694 4 25 463 7! 1648 o] 25.4167s
15 609 1 18 453 75 1762 0 26.7833s
16 497 1 31 454 75 1396 0 29.2500s
17 482 1 8 425 75 455 0 27.8667s
18 549 1 21 430 7! 1176 0 27.1833s
19 66 4 9 424 75 157 4 35.5833s
20 484 1 3 434 75 942 0 27.8167s
21 489 1 5 442 7 1549 0 28.4667s
22 501 2 21 444 75 1540 0 28.7167s
23 436 1 3 436 7 1294 0 29.1667s
24 471 2 10 445 75 1474 0 28.6167s
25 302 1 43 466 7! 2318 2 34.2667s
26 498 1 4 439 75 1810 0 28.0167s
27 487 1 13 445 7! 1835 4] 29.5833s
28 464 2 14 457 7! 1469 0 29.7167s
29 477 2 23 451 75 1551 0 29.1333s
30 481 2 4 423 7! 545 [¢] 27.3333s
Average 460.000 1.567 | 15.067 | 443.100 | 75.000 | 1486.600 | 1.500 29.139
Std. Dev. 138.674 0.920 | 11.000 13.027 0.000 595.506 5.309 2.536

Table D.10: Results for Benchmark ¢880
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c1355

171991 fauits simulated

1000 test vectors

Pattern Frequency Fr Fp FL Fy Fns Fyxp CPU Time
1 251 1 50 2977 122 90395 0 638.9000s
2 493 1 391 3020 122 145202 208 664.2167s
3 508 2 97 2965 122 115393 0 557.4667s
4 371 1 68 2968 122 95829 (1] 588.8667s
H 3509 i 170 2959 122 103970 0 568.1833s
6 480 1 313 3068 122 111967 6 641.4000s
7T 501 2 189 2966 122 101609 (/] 596.616%7s
8 515 2 275 2959 122 130417 (1] 623.6667s
9 490 2 145 2965 122 111473 0 653.5333s
10 507 5 241 2973 122 97356 0 637.8833s
11 124 1 44 2993 122 70088 49 655.0167s
12 355 1 83 2965 122 91504 0 606.8833s
13 505 2 263 2963 122 124218 0 592.6667s
14 499 2 294 3020 122 127826 30 634.2167s
15 476 1 86 2969 122 115300 [¢] 548.0833s
16 499 1 254 3116 122 136759 307 631.5667s
g 292 1 i8 2968 122 85916 0 607.1333s
18 5 1 10 2968 122 687953 25 671.8667s
19 249 1 7 2966 122 87204 (1] 646.9333s

20 504 S 286 2973 122 83298 0 623.7000s
21 514 2 227 2950 122 126054 /] 587.0167s
22 251 L 7 3039 122 108022 116 650.0167s
23 384 L 115 2983 122 111809 (1] 618.6833s
24 239 L 57 2997 122 148303 55 650.3167s
25 481 5 215 2971 122 76037 0 603.5000s
26 518 L 265 2953 122 122368 56 600.6000s
27 382 1 86 2962 122 118178 0 608.9667s
28 751 1 595 3061 122 121956 0 670.3000s
29 671 1 416 2953 122 128748 0 587.9667s
30 492 1 135 2959 122 108118 0 583.9500s
Average 427.200 1.633 | 183.733 | 2984.967 | 122.000 | 129442.333 | 28.400 618.337
Std. Dev. 151.175 1.197 | 133.897 38.863 0.000 105490.548 | 67.551 32.681

Table D.11: Results for Benchmark c1355




c1908

416328 faults simulated
1000 test vectors
Pattern | Frequency Fy Fp Fs Fy Fns Fxp CPU Time
1 502 5 322 5231 1085 70663 0 1733.3833s
2 484 8 260 5269 1085 78898 108 1955.8667s
3 507 2 276 5215 1085 74123 0 1678.2667s
4 514 24 457 5250 1085 92846 194 1791.5333s
5 515 8 335 5216 1085 84857 0 1733.8833s
6 499 8 364 5207 1085 81897 0 1736.2667s
7T 515 3 484 5239 1085 102658 14 1808.6333s
8 521 1 277 5199 1085 74652 (4] 1891.3333s
9 526 2 534 5250 1085 137140 1344 1843.9333s
10 480 13 216 5207 1085 94256 [¢] 1699.2667s
11 509 6 521 5269 1085 92630 0 1854.7833s
12 524 22 331 5199 1085 69580 (4] 1971.7333s
13 491 6 460 5268 1085 92769 4] 2114.7833s
14 506 119 7 5332 1085 116316 1762 2112.2833s
135 504 12 291 5196 1085 77145 4] 1694.8167s
16 516 26 572 5316 1085 118236 272 1904.6000s
17 497 21 545 5231 1085 89670 249 2067.6833s
18 479 6 702 5325 1085 98368 0 2274.6500s
19 491 18 457 5204 1085 70263 0 2045.9667s
20 446 5 403 5242 1085 84589 0 1806.6333s
21 507 6 262 5207 1085 79734 0 1942.8667s
22 477 25 369 5343 1085 131732 625 2093.9833s
23 483 39 560 5241 1085 85787 0 2141.0000s
24 502 6 832 5210 1085 87856 0 2245.1333s
25 736 1 793 5279 1085 94605 10 2091.1333s
26 483 5 902 5216 1085 95994 20 2168.5667s
27 511 33 240 5281 1085 93864 0 2006.1833s
28 490 2 30 5197 1085 79356 4] 1604.0000s
29 481 2 192 5194 1085 74756 0 1878.0000s
30 521 12 697 5326 1085 100623 18 2244.0167s
Average 507.233 14.933 | 451.033 | 5245.300 | 1085.000 | 90862.100 | 153.867 1937.839
Std. Dev. 45.926 21.752 | 212.768 45.154 0.000 16771.706 | 399.068 185.937

Table D.12: Results for Benchmark c1908
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c2670

1016025 faults simulated
1000 test vectors
Pattern Frequency Fr, Fp Fg Fy Fns Fyp CPU Time
1 463 6 10 2760 954 12951 24 651.2167s
2 163 4 398 2810 954 23046 4840 864.4167s
3 489 14 0 2746 954 13034 0 659.0333s
4 541 3 0 2754 954 12581 [ 668.8667s
5 662 1 12 2766 954 12401 0 570.1500s
6 494 1 0 2741 954 12357 0 645.2833s
7 480 2 0 2751 954 20615 0 641.1167s
8 529 6 1] 2763 954 12385 0 619.7667s
9 548 8 0 2754 954 12347 0 613.9500s
10 495 18 12 2755 954 12527 0 629.9333s
11 472 2 0 2769 954 12664 0 647.7167s
12 516 6 12 2751 954 12420 0 632.2500s
13 493 2 24 2759 954 12292 0 628.6667s
14 239 2 0 2752 954 14609 0 743.7833s
15 432 4 32 2859 954 23730 64 689.5000s
16 564 5 216 2807 954 13179 5 666.0167s
17 470 1 0 2742 954 12537 0 636.3167s
i8 503 i (o] 2760 954 12373 0 635.7333s
19 489 2 1] 2744 954 12399 (Y 626.3500s
20 473 2 0 2769 954 12382 o 649.5167s
21 456 20 0 2783 954 13110 0 649.3500s
22 816 2 274 3074 954 16161 0 632.7333s
23 514 6 0 2757 954 12398 0 625.1833s
24 486 2 0 2755 954 12473 0 657.2833s
25 482 7 0 2744 954 12709 0 738.9167s
26 176 4 0 2734 954 17300 0 774.3500s
27 476 21 14 2769 954 13242 0 645.5167s
28 7 24 264 3040 954 34363 3316 651.3833s
29 534 2 0 2767 954 12413 0 620.0333s
30 523 12 0 2777 954 12456 0 631.0333s
Average 491.933 6.333 | 42.267 | 2783.733 | 954.000 | 14648.467 | 274.967 658.179
Std. Dev. 130.700 6.472 | 99.761 77.069 0.000 4780.926 | 1035.341 55.213

Table D.13: Results for Benchmark ¢2670
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c3540

1476621 faults simulated
1000 test vectors
Pattern | Frequency Fr Fp Fs Fyr Fns Fxp CPU Time
1 467 8 59 3883 2201 87887 (1] 1371.0000s
2 126 1 0 3830 2201 73854 0 1660.8833s
3 507 1 30 3911 2201 82567 o 1339.3500s
4 568 9 140 3978 2201 100281 (4] 1349.8167s
3 513 16 26 3875 2201 95718 o 1362.4667s
6 347 2 7 3899 2201 95890 0 1539.7500s
7T 715 16 486 4052 2201 116752 0 1366.8667s
8 528 2 59 3905 2201 103819 0 1324.5167s
9 281 8 215 3863 2201 47260 194 1584.1500s
10 396 1 65 3920 2201 88500 0 1460.0833s
11 353 4 7 3844 2201 80517 0 1420.8667s
12 516 1 46 3872 2201 85731 0 1315.8833s
13 506 18 57 3901 2201 87129 0 1321.1500s
14 534 4 26 3923 2201 89315 0 1296.0833s
15 518 2 25 3835 2201 9687 (1] 1267.5333s
16 633 16 70 3881 2201 103055 (1] 1196.7000s
17 512 1 90 3909 2201 93198 1] 1338.3833s
18 558 24 19 3878 2201 75973 0 1270.8000s
19 612 19 1 3848 2201 73948 0 1212.1333s
20 450 28 42 3880 2201 42762 0 1356.5000s
21 742 1 222 3990 2201 89718 0 1151.7000s
22 243 24 9 3855 2201 103449 0 1582.3500s
23 513 9 0 3831 2201 75795 0 1292.1333s
24 825 51 90 3940 2201 87244 0 1055.0833s
25 335 1 37 3857 2201 104496 0 1451.9667s
26 764 19 314 3992 2201 108385 o] 1180.5667s
27 823 9 167 3950 2201 106816 309 1073.1333s
28 527 2 14 3859 2201 89773 [¢] 1283.7167s
29 523 6 33 3884 2201 91568 (4] 1305.6167s
30 793 2 168 3989 2201 87230 0 1104.0000s
Average 524.267 10.167 | 86.133 | 3901.133 | 2201.000 | 88850.033 | 16.767 1327.839
Std. Dev. 166.905 11.130 | 105.416 54.388 0.000 15760.114 | 64.468 143.581

Table D.14: Results for Benchmark ¢3540
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c5315

3086370 faults simulated
1000 test vectors
Pattern Frequency Fr Fp Fs Fy Fxs Fyxp | CPU Time
1 423 1 1 6289 1461 40651 0 3600.6833s
2 484 28 0 6284 1461 38805 0 3445.0333s
3 463 6 2 6297 1461 39018 0 3582.1667s
4 650 4 19 6325 1461 39290 (o] 3195.0833s
H 502 2 5 6289 1461 40295 0 3574.4833s
6 357 L 13 6281 1461 40248 0 3995.3667s
7 475 3 1 6296 1461 39179 o] 3550.1000s
8 525 8 3 6297 1461 41528 0 3362.8833s
9 514 22 1 6284 1461 39342 0 3663.2000s
10 685 1 7 6293 1461 38843 0 2981.1667s
1L 511 3 0 6286 1461 39317 0 3325.8500s
12 544 5 5 6323 1461 39529 0 3304.2333s
13 463 15 0 6298 1461 39611 0 3496.9500s
14 512 1 1 6303 1461 39132 0 3442.4167s
15 539 4 1 6305 1461 39112 0 3335.5000s
16 447 14 9 6294 1461 38956 4] 3798.5167s
17 484 4 1 6285 1461 39351 4} 3464.0000s
18 485 L 35 6284 1461 40365 1] 3434.6333s
19 491 2 0 6282 1461 38989 0 3573.5333s
20 462 6 2 6286 1461 39171 Q 3478.7833s
21 284 2 o 6285 1461 43442 0 4111.4333s
22 724 8 5 6307 1461 40262 o] 2708.4667s
23 480 4 3 6295 1461 40476 o] 3490.6167s
24 545 7 S 6293 1461 39510 0 3359.7833s
25 275 2 9 6281 1461 40389 0 4274.1000s
26 450 12 3 6281 1461 40984 0 3536.2333s
27 475 6 1 6286 1461 38934 ] 776.2667s
28 585 1 7 6291 1461 38990 0 3537.5167s
29 528 2 13 6310 1461 39393 o 4093.0833s
30 661 2 19 6305 1461 38854 (1] 3296.3500s
Average 500.767 5.900 6293.833 | 1461.000 | 39732.200 | 0.000 3526.281
Std. Dev. 97.126 11.481 0.000 986.129 0.000 313.657

Table D.15: Results for Benchmark ¢5315
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c7552

6913621 faults simulated
1000 test vectors

Pattern Frequency Fr, Fp Fq Fy Fys Fnp CPU Time
1 414 12 24 12531 3199 195146 0 14065.1167s
2 487 5 49 12524 3199 176932 0 13046.7000s
3 521 10 80 12524 3199 180456 0 12143.4167s
4 358 20 270 14844 3199 757455 1142 17457.3167s
35 514 2 103 12541 3199 175865 0 12510.5333s
6 548 1 161 12551 3199 191314 0 12154.9167s
7 506 28 59 12549 3199 201749 52 12713.6833s
8 451 5 297 12546 3199 200711 30 13429.4833s
9 592 1 196 12587 3199 189016 0 12133.9167s
10 368 1 134 12509 3199 182011 0 13674.7333s
11 818 1 18937 19406 3199 1192790 7650 61292.6333s
12 510 17 50 12565 3199 178144 0 12663.2833s
13 350 1 190 12524 3199 200896 4] 14315.4000s
14 504 1 194 12533 3199 183179 0 12604.5833s
15 474 3 24 12521 3199 181604 0 12203.1833s
16 465 5 132 12534 3199 193043 0 13175.3333s
17 511 3 50 12532 3199 181252 0 14868.0500s
18 427 4 132 12556 3199 199796 0 12981.2500s
19 514 12 193 12542 3199 182879 0 12406.3833s
20 497 3 108 12529 3199 189827 0 12374.3333s
21 494 2 227 12534 3199 190085 0 12274.1667s
22 910 3 1643 12937 3199 200091 1113 10793.6833s
23 475 4 192 12545 3199 199679 0 12738.2333s
24 463 4 53 12526 3199 182371 0 12770.2667s
25 523 7 50 12529 3199 178417 [¢] 12315.4000s
26 161 2 55 12531 3199 800339 1) 15212.7667s
27 449 27 82 12553 3199 208035 o 13290.5667s
28 561 51 221 12537 3199 197216 4] 12220.2667s
29 506 1 222 12548 3199 189545 0 12709.2667s

30 423 2 24 12511 3199 180803 0 13185.9167s

Average 493.133 7.933 805.067 12856.633 | 3199.000 | 262021.533 | 332.900 14657.493

Std. Dev. 127.377 10.853 | 3378.844 1285.919 0.000 227065.324 | 1387.376 8741.692

Table D.16: Results for Benchmark ¢7552
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D.2 Multiple Fault Diagnosis Using Double Fault
Patterns

2
378 faults simulated
16 test vectors
Pattern Frequency Fr, Fp Fs Fy Fns Fnp CPU Time
1 9 0 26 11 ¢} 34 28 0.1167s
2 9 1] 11 29 0 144 10 0.1000s
3 i1 (1] 36 11 0 29 2 0.1167s
4 13 (] 71 38 0 524 212 0.3667s
5 11 0 22 25 (1] 133 7 0.1333s
6 15 0 183 42 0 734 648 1.2500s
7T 11 0 14 28 0 126 10 0.1167s
8 11 0 106 14 0 124 530 0.4167s
9 11 0 15 19 1] 7 2 0.0667s
10 11 0 29 7 1] 348 14 0.1667s
Average 11.200 0.000 | 51.300 | 25.400 | 0.000 | 229.300 | 146.300 0.285
Std. Dev. 1.661 0.000 | 52.238 | 10.837 | 0.000 | 221.299 | 230.857 0.340

Table D.17: Results for Benchmark {2

rd53
1035 faults simulated
32 test vectors
Pattern Frequency Fr Fp Fs Fy Fxs Fxp | CPU Time
1 16 o] 8 61 [1) 334 8 0.2833s
2 24 0 33 62 0 260 1 0.3833s
3 21 0 12 46 1] 75 2 0.2167s
4 21 o 27 7 0 132 2 0.2833s
5 24 o 17 61 1) 239 2 0.3000s
6 24 (1] 5 48 (o] 69 1 0.2000s
7 24 0 31 59 0 236 3 0.3667s
8 24 [v] 11 53 o 190 8 0.2333s
9 22 0 23 58 0 254 6 0.2833s
10 24 0 21 55 0___ 187 6 0.2667s
Average 22.400 0.000 | 18.800 | 55.000 | 0.000 | 197.600 | 3.900 0.282
Std. Dev. 2.458 0.000 9.261 5.865 0.000 80.567 2.663 0.056

Table D.18: Results for Benchmark rd53
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8778 faults simulated
128 test vectors
Pattern Frequency | Fp Fp Fs Fyr Fns Fxp | CPU Time
1 79 1] 54 112 (4] T L 1.4333s
2 96 0 128 138 (1] 874 1 2.9167s
3 96 (1] 42 108 0 228 T 1.3667s
4 62 1] 59 118 4] 540 1 1.7167s
5 7 0 52 112 1] 312 1 1.4667s
6 70 4] 11 110 0 451 1 1.2833s
7 100 0 57 122 0 324 2 1.7167s
8 88 0 39 126 V] 449 4 1.5500s
9 98 4] 234 147 1] 903 4 5.1667s
10 32 [+] 16 103 Y] 425 4 1.3333s
Average 79.800 0.000 | 69.200 | 119.600 | 0.000 | 484.300 | 2.600 1.995
Std. Dev. 20.094 0.000 | 62.662 13.253 0.000 | 218.842 | 1.960 1.149
Table D.19: Results for Benchmark rd73
saon2
12090 fauits simulated
1024 test vectors
Pattern Frequency | Fp Fp Fs Fy Fns Fxp CPU Time
1 768 0 80 7 0 222 | § 3.3667s
2 468 0 24 66 0 95 2 3.3167s
3 744 0 61 73 (4] 181 1 3.1333s
4 604 0 117 103 1] 938 40 5.2167s
5 764 0 65 81 0 209 15 3.3333s
6 752 0 7 64 0 89 1 2.3667s
7 624 0 18 66 (4] 84 1 2.8167s
8 748 0 68 66 0 110 1 3.1167s
9 689 0 2 64 0 80 1 2.5500s
10 536 0 9 69 0 135 2 3.0000s
Average 669.700 0.000 | 45.100 | 72.700 | 0.000 | 214.300 6.500 3.222
Std. Dev. 101.151 0.000 | 36.542 | 11.367 | 0.000 | 246.384 | 11.902 0.737

Table D.20: Results for Benchmark sao2




bw

12720 faults simulated
32 test vectors
Pattern Frequency Fr Fp Fs Fu Fns Fxp CPU Time
1 13 1 216 110 1] 3038 400 4.0833s
2 18 0 460 138 0 3665 40 13.0000s
3 18 o 297 127 0 3705 3 6.6167s
4 20 1] 334 115 1] 2601 3 7.0833s
5 12 0 95 36 a 922 9 1.7833s
6 24 0 540 179 Q 6338 356 16.9500s
T 28 0 1651 246 0 14540 155 190.8000s
8 29 (1] 2522 232 0 22591 663 226.9500s
9 28 1 1941 368 0 49986 38977 180.4667s
10 28 0 1544 261 0 18981 2115 112.9333s
Average 21.800 0.200 | 960.000 | 187.200 | 0.000 | 12636.700 4272.100 76.067
Std. Dev. 6.145 0.400 | 823.429 83.187 0.000 | 14380.389 | 11584.142 87.145
Table D.21: Results for Benchmark bw
rd84
25651 faults simulated
256 test vectors
Pattern Frequency Fyr Fp Fs Fy Fns Fxp | CPU Time
1 196 0 13 180 1 1131 2 3.3167s
2 114 0 46 188 1 1149 3 4.6833s
3 132 0 120 181 1 1630 31 5.8167s
4 225 0 122 226 1 1512 1 5.8667s
S 180 1] 152 207 1 1415 1 6.0833s
6 80 0 22 190 L 1474 1 4.7167s
7 117 1] 21 191 1 1159 1 4.0833s
8 79 o] 46 211 1 1617 4 5.2167s
9 89 4] 9 199 1 1424 1§ 4.5500s
10 180 ] 42 196 1 1150 1 4.1833s
Average 139.200 0.000 | 59.300 | 196.900 | 1.000 | 1366.100 | 4.600 4.852
Std. Dev. 49.745 0.000 | 49.390 13.612 0.000 190.594 8.857 0.845

Table D.22: Results for Benchmark rd84
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28441 faults simulated
512 test vectors

Pattern Frequency Fr Fg Fyr Fxs Fyp | CPU Time
L 256 (1] 129 0 815 0 3.9167s
2 163 0 126 (1] 853 2 4.4167s
3 258 0 132 1] 958 1 4.2333s
4 160 0 127 0 787 1 4.6333s
S 182 0 129 0 1028 1 4.4500s
6 285 0 133 0 863 4 4.2167s
T 359 0 147 0 1215 2 4.7667s
8 384 0 155 0 1194 5 5.2167s
9 384 0 150 (4] 1074 1 3.7500s
10 383 (4] 140 1] 871 2 3.9167s
Average 281.400 0.000 136.800 | 0.000 | 965.800 | 1.900 4.352
Std. Dev. 87.887 9.958 0.000 | 147.242 | 1.446 0.423
Table D.23: Results for Benchmark 9sym
c432
19110 faults simulated
1000 test vectors
Pattern Frequency Fr Fp Fs Fuy Fyxs Fxp | CPU Time
1 749 0 2 103 8 180 1 5.3667s
2 754 0 3 106 8 199 2 5.2833s
3 742 0 2 103 8 180 1 5.3500s
4 417 0 3 103 8 180 2 7.1667s
5 662 0 54 157 8 532 6 7.7667s
6 645 [¢] 3 104 8 180 2 5.7500s
7 644 0 2 103 8 180 1 5.9000s
8 632 o 4 106 8 202 1 5.9500s
9 756 (4] 4 106 8 208 4 5.4833s
10 727 1] 2 106 8 199 L 5.6500s
Average 672.800 0.000 | 7.900 109.700 | 8.000 | 224.000 | 2.100 5.967
Std. Dev. 97911 15.824 0.000 | 103.215 | 1.578 0.792

Table D.24: Results for Benchmark c432




c499

29403 faults simulated
1000 test vectors
Pattern Frequency Fr Fp Fs Fyr Fns Fnp CPU Time
1 729 [4] 80 1646 81 960 1 164.3500s
2 751 0 194 1642 81 960 4 159.6667s
3 740 0 124 1641 81 960 2 155.0167s
4 752 (1] 46 1657 81 965 1 145.3500s
5 756 0 67 1648 81 961 L 153.0000s
6 733 0 57 1649 81 960 1 148.6000s
s 756 1] 725 1652 81 2165 2995 253.1833s
8 731 1] 582 1637 81 960 25 234.2167s
9 743 4] 149 1640 8L 960 35 161.5333s
10 748 0 224 1637 81 960 130 172.0000s
Average 743.900 0.000 | 224.800 | 1644.900 | 81.000 | 1081.100 | 316.500 174.692
Std. Dev. 9.741 0.000 | 223.750 6.300 0.000 361.303 893.637 35.520
Table D.25: Results for Benchmark c499
c880
97903 faults simulated
1000 test vectors
Pattern Frequency Fr Fp Fg Fyr Fxs Fxp | CPU Time
1 506 1] 33 457 75 1607 3 29.8000s
2 655 0 20 452 73 1850 1 26.6500s
3 569 0] 70 468 7! 1992 3 30.6667s
4 681 ] 44 461 7! 1773 1 26.2833s
5 757 0 117 469 75 2153 1 28.6833s
6 512 0 18 437 75 824 4 28.3167s
T 720 0 16 459 T 1649 1 25.4333s
8 632 1] 104 495 7! 2169 2 32.8000s
9 742 0 T 454 75 1671 1 26.0833s
10 724 0 44 466 7 1907 4 25.6667s
Average 649.800 0.000 | 50.300 | 461.800 | 75.000 | 1759.500 | 2.100 28.038
Std. Dev. 88.283 0.000 | 33.785 14.190 0.000 364.030 1.221 2.333

Table D.26: Results for Benchmark ¢880




cl355
171991 faults simulated
1000 test vectors
Pattern Frequency Fr Fp _Fs_ Fr Fyxs Fnxp CPU Time
1 615 0 558 3027 122 117405 1 685.2333s
2 671 0 471 3060 122 104691 1 628.2667s
3 732 0 526 2954 122 112557 6 635.7167s
4 437 0 183 2994 122 115319 1 630.3000s
5 737 0 552 3017 122 126295 3 626.5000s
6 500 0 278 3114 122 131260 37 656.0667s
7T 619 ] 410 2968 122 108344 5 626.0333s
8 437 (1] 181 3039 122 123290 1 655.4167s
9 604 1] 584 2978 122 111725 5 690.4833s
10 690 0 290 2953 122 124854 1 581.3333s
Average 604.200 0.000 | 413.300 | 3010.400 | 122.000 | 117574.000 6.100 641.535
Std. Dev. 106.253 0.000 | 145.329 48,911 0.000 8152.869 10.473 30.226
Table D.27: Results for Benchmark c1355
<1908
416328 faults simulated
1000 test vectors
Pattern Frequency Fr Fp Fs Fy Fns Fxp CPU Time
1 741 0 1691 5440 1085 109080 3448 2318.7500s
2 755 0 821 5230 1085 90665 16 1777.2000s
3 745 0 1232 5386 1085 108524 195 2398.5667s
4 740 0 1593 5385 1085 107110 714 2253.4500s
5 748 [h] 815 5281 1085 103423 252 1802.2667s
6 746 0 1440 5404 1085 110671 108 2512.5333s
7 745 0 816 5263 1085 93843 30 2033.3167s
8 729 (4] 1511 5457 1085 122454 15717 2247.1167s
9 744 0 1546 5260 1085 108117 30 2526.4333s
10 738 0 308 5200 1085 68520 4 1737.5667s
Average 743.100 0.000 | 1177.300 | 5330.600 | 1085.000 | 102240.700 | 2051.400 2160.720
Std. Dev. 6.488 0.000 435.939 88.630 0.000 14025.498 4663.212 287.401

Table D.28: Results for Benchmark ¢1908
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c2670

1016025 faults simulated
1000 test vectors
Pattern Frequency | Fp Fp Fg Fu Fyns Fxp CPU Time
1 543 ] 422 2855 954 15784 24 709.0333s
2 742 ] 23 2745 954 12280 14 512.5667s
3 746 [¢] 32 2764 954 12298 36 530.0333s
4 727 (1] 42 2777 954 12271 4 540.0000s
5 571 0 68 2869 954 13389 8 7.9333s
[ 751 0 14 2784 954 12282 1 516.8667s
7 722 (1] 4 2769 954 12282 4 533.1167s
8 736 0 26 2798 954 12278 120 534.5667s
9 742 0 39 2760 954 12294 14 518.6000s
10 558 0 43 2780 954 12342 84 600.2667s
Average 683.800 0.000 71.300 2790.100 | 954.000 | 12750.000 | 30.900 563.298
Std. Dev. 83.417 0.000 | 118.087 38.571 0.000 1063.172 37774 61.878
Table D.29: Results for Benchmark ¢2670
c3540
1476621 faults simulated
1000 test vectors
Pattern Frequency | Fr Fp Fs Frr Fxs Fxp CPU Time
1 540 0 68 3891 2201 85702 8 1292.7833s
2 77 0 247 4038 2201 94138 16 1159.0833s
3 682 0 194 4020 2201 104824 4 1231.0167s
4 580 0 336 3974 2201 87105 8 1339.9333s
5 676 0 81 3891 2201 85708 4 1141.8000s
6 751 0 271 4070 2201 98884 80 1255.7667s
7 778 0 144 3935 2201 84446 2 1104.4333s
8 557 0 129 3934 2201 104619 672 1304.9667s
9 672 0 68 387 2201 103430 9 1154.9167s
10 767 0 175 3997 2201 87269 12 1152.7667s
Average 678.000 0.000 | 171.300 | 3962.600 | 2201.000 | 93612.500 81.500 1213.747
Std. Dev. 87.405 0.000 | 86.808 64.156 0.000 8142.225 198.042 77.362

Table D.30: Results for Benchmark ¢3540
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c5315
3086370 faults simulated
1000 test vectors
Pattern Frequency Fr Fp Fs Fog Fyns Fnxp CPU Time
L 688 0 30 6297 1461 38598 28 2762.5333s
2 735 (V] 21 6312 1461 38603 12 2630.1333s
3 657 [J] 24 6315 1461 38666 3 2878.4500s
4 748 4] 26 6301 1461 38538 66 2605.4500s
5 733 0 17 6320 1461 38571 15 2860.9833s
6 711 0 32 6301 1461 38547 56 2684.1833s
7 742 0 i3 6292 1461 38534 2 2646.8667s
8 614 [+] 10 6296 1461 38832 12 3101.0000s
9 637 0 17 6305 1461 38768 8 3276.5833s
10 712 1] 21 6294 1461 38611 72 2866.5167s |
Average 697.700 0.000 | 21.100 | 6303.300 | 1461.000 | 38626.800 | 27.400 2831.270
Std. Dev. 44_668 0.000 6.730 9.012 0.000 95.502 25.578 206.694
Table D.31: Results for Benchmark c5315
c7552
6913621 faults simulated
1000 test vectors
Pattern Frequency Fr, Fp Fs Fyr Fns Fxp CPU Time
1 692 0 92 12566 3199 173231 60 11075.3167s
2 697 (1] 542 14929 3199 369729 560 14727.0667s
3 654 0 526 12567 3199 185695 5 11352.7833s
4 689 (1] 307 12599 3199 185020 17 11092.0333s
5 734 (1] 270 12601 3199 172980 3 10641.7000s
6 693 0 174 12589 3199 186016 20 10289.7833s
7 747 1] 347 12617 3199 184664 6 10381.2667s
8 719 o 304 12610 3199 186528 16 10635.1667s
9 551 o] 170 12589 3199 180934 54 12071.6000s
10 721 ] 401 12578 3199 184752 2 10093.0833s
Average 689.700 0.000 | 313.300 | 12824.500 | 3199.000 | 200954.900 | 74.300 11235.980
Std. Dev. 52.599 0.000 | 140.459 | 701.684 0.000 56464.823 163.074 1288.111

Table D.32: Results for Benchmark c7552
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