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Abstract

Despite the ubiquity of physical systems evolving on time-dependent spatial domains ranging from
crystal growth, formation of patterns and shapes in biology and living organisms – animals skin
patterns, tentacle patterns on Hydra, whorled leaves, teeth primordia in the alligator – to quantum
particles traveling in a time-evolving potential, fluid motion, fluid-structure interaction, and galaxies
agglomeration in the expanding Universe, to name a few, understanding their regular and chaotic
dynamical properties is still in a quite rudimentary state. The underlying theme of this dissertation is
to explore the key differences in the dynamics – both regular and chaotic – between extended systems
on time-fixed and time-dependent spatial domains, studied here with the synergy of experimental
and theoretical approaches and numerical simulations.

In the quest to understand dynamics of distributed systems on time-dependent spatial domains,
in chapter 2, we study experimentally the response to domain deformations by Faraday wave patterns
– standing waves formed on the free surface of a liquid layer due to its vertical vibration – chosen
as a paradigm owing to their historical use in testing new theories and ideas. In our experimental
setup of a vibrating water container with controlled positions of lateral walls and liquid layer depth,
the characteristics of the patterns are measured using the Fourier transform profilometry technique,
which allows us to reconstruct an accurate time history of the pattern three-dimensional landscape
and reveal how it reacts to the domain dynamics on various length- and time-scales.

Analysis of Faraday waves on growing, shrinking, and oscillating domains leads to a num-
ber of intriguing results. First, the observation of a transverse instability – namely, when a two-
dimensional pattern experiences an instability in the direction orthogonal to the direction of the
domain deformation – provides a new facet to the stability picture compared to one-dimensional
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systems in which the longitudinal (Eckhaus) instability accounts for pattern transformation on time-
dependent domains. Second, the domain evolution rate is found to be a key factor dictating the pat-
terns observed on the path between the initial and final domain aspect ratios. Its effects range from
allowing the formation of complex sequences of patterns to impeding the appearance of any new
pattern on the path. Third, the shrinkage-growth process turns out to be generally irreversible on a
horizontally evolving domain, but becomes reversible in the case of a time-dependent liquid layer
depth, i.e. when the dilution and convective effects are absent. These experimentally observed
enigmatic effects of the domain size variations in time are complemented here with appropriate
theoretical insights elucidating the nature of the phenomena and disentangling the dynamics of
two-dimensional pattern evolution, which proves to be more intricate compared to one-dimensional
systems.

In chapter 3, we present the experimental discovery of a novel mechanism to control chaos by
time-variation of the spatial domain size. Moreover, depending upon the rate of the latter the chaotic
state may be prevented altogether. As a testbed to traverse the edge of chaos by varying the domain
size, we have chosen the Faraday waves phenomenon, which is a paradigmatic example in pattern-
forming systems due to its simplicity and richness, in particular known to exhibit temporal chaos.
The experimental findings are disentangled with theoretical insights and numerical modeling, which
also demonstrates the ability to control spatio-temporal chaos. These findings may shed some light
on biological systems and life, which require ‘a healthy dose of chaos’ for proper operation (Ko-
rolja et al., 2019) and hence often balance on the edge of chaos. The latter concept has also been
applied in many other areas (Waldrop, 1993): in economy, creative destruction represents the driv-
ing force within a market economy; in social science, the dynamic interaction between individuals
and macro-levels such as laws, religions, and governments imposing too much order and limiting
individual development in the name of conformity, ultimately leading to stasis; in human cognition
and creativity (Schwartz, 2014), the states at the edge of chaos can be seen to be maximally novel
while still connected to ones in the ordered regime – the hallmark of innovative thinking.
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Preface

This dissertation is an original work by Mahdi Ghadiri under the supervision of Professor Krechet-
nikov at the University of Alberta, Department of Mathematical and Statistical Sciences.

A version of chapter 2 is published in the Journal of Fluid Mechanics as Ghadiri, M. & Krechet-
nikov, R. (2019) “Pattern formation on time-dependent domains”, J. Fluid Mech. 880, 136–179. In
that work, all the experiments were performed in Krechetnikov Fluid Physics Laboratory (KFPL)
and M. Ghadiri was responsible for building the experimental platform, conducting the experiments,
and data analysis. All the latter tasks have been accomplished under the insightful supervision of
Professor Krechetnikov. Both authors contributed to the manuscript composition and its revisions.

Chapter 3 is prepared and finalized for submission to the Journal of Nature as Ghadiri, M. &
Krechetnikov, R. “Controlling chaos by the system size”. In that work, all the experiments were per-
formed in KFPL and M. Ghadiri was responsible for building the experimental platform, conducting
the experiments, data analysis, and numerical simulation. Professor Krechetnikov supervised all the
latter stages of the project. Both authors contributed to the manuscript composition and its revisions.

An extended version of Appendix 2.D is being prepared for submission to the Journal of Applied

Optics as Ghadiri, M. & Krechetnikov, R. “Common-optical axis Fourier transform profilometry for
free surface waves”. In that work, all the experiments were performed in KFPL and M. Ghadiri was
responsible for the development of the underlying theoretical principles, building the experimen-
tal platform, conducting the experiments, and data analysis while being supervised by Professor
Krechetnikov. Both authors will contribute to the manuscript composition and its revisions.
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Chapter 1

Introduction:

1.1 General context: problems on time-dependent domains

Despite the ubiquity of physical systems evolving on time-dependent spatial domains ranging from
crystal growth, skin patterns on tropical fish (cf. figure 1.1a), crown formation in the drop splash
problem (cf. figure 1.1b) to quantum particles traveling in a time-evolving potential and galaxies
agglomeration in the expanding Universe, to name a few, understanding their dynamical properties
is still in a rudimentary state (Knobloch & Krechetnikov, 2015). For example, standard boundary-
value theory developed for ordinary and partial differential equations on time-fixed domains proves
to be largely irrelevant because after mapping time-dependent onto time-fixed domains, the dif-
ferential operators become non-autonomous thus simply moving the difficulty to a different realm.
Hence, advancing, both theoretically and experimentally, our understanding of the very basic el-

(a) (b) (c)

Figure 1.1: Patterns observed in problems on time varying domains: (a) Pomacanthus semicirculatus (Painter
et al., 1999), (b) crown in the drop splash problem (Hartong-Redden & Krechetnikov, 2011), (c) reaction-
diffusion on a growing square domain (Madzvamuse et al., 2003).
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ements in the dynamics on time-varying domains is vital for penetrating into the nature of more
complex phenomena.

One area where many efforts have been recently put forth is developmental biology, provid-
ing both counterpart – reaction-diffusion vs fluid roll system – and context for our study. Histor-
ically, morphogenesis in biology – e.g. the stripe patterning observed in the aging Pomacanthus
fish (Kondo & Asai, 1995; Painter et al., 1999) – was originally suggested by Turing (1952) to be
due to reacting and diffusing morphogens, which interact to produce, via an instability, patterns
in concentration. The issue, however, is that this Turing instability on stationary domains occurs
under quite restrictive diffusion-controlled conditions: namely, to achieve an instability one must
enforce one of the species to diffuse much faster than the other, and hence, due to sensitivity, pattern
formation requires tight control of involved parameters and initial conditions and therefore cannot
be considered as robust. This constitutes one of the major criticisms of reaction-diffusion theory for
pattern formation (Bard & Lauder, 1974), though Turing-type patterns were eventually observed
experimentally (Castets et al., 1990; Ouyang & Swinney, 1991). In the search for more robust pat-
tern formation in reaction-diffusion systems, various modifications to the original Turing treatment
have been made, in particular taking into account domain growth and changes in geometry, cf. figure
1.1c. Crampin et al. (1999) showed that in one dimension domain growth may be a mechanism for
increased robustness, e.g. in the case of exponential growth a frequency-doubling sequence appears.
In fact, there are examples of reaction-diffusion systems which cannot exhibit a diffusively-driven
instability in a fixed domain, but are unstable in the presence of slow domain growth (Madzvamuse
et al., 2010). Despite much progress in observations, most of the above studies resort to numeri-
cal simulations thus providing little insight in the fundamental underlying mechanisms responsible
not only for various metamorphoses in pattern formation, but also for the simple creation of a new
pattern cell.

Besides reaction-diffusion-driven patterns observed in biology, chemistry, geology, physics,
and ecology, another wide class of patterns is encountered in fluid dynamics – such as hexagons
and squares in convection and capillary-gravity surface waves driven by external periodic excita-
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(a) (b) (c) (d) (e) t t + 3
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b

c
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Figure 1.2: Established Faraday waves driven by a harmonic excitation (Douady, 1990). (a) The tank is
accelerated downwards at time instant 𝑡. (b) While initially the acceleration is positive and hence the air-
liquid interface is stable according to the Rayleigh-Taylor theory, the tank must decelerate before reaching the
bottom position (b) and at this stage of negative acceleration the heavier liquid is accelerated into the lighter
air leading to a Rayleigh-Taylor instability. At the end of this deceleration (b), the water tank is located at its
minimum and the Faraday wave has attained its maximum amplitude, which corresponds to 𝑡+ 1

2𝑇 , where 𝑇 is
the period of the shaker motion. After that the tank starts to move upward which will cause the deformation of
the surface to reduce and once the water tank reaches its maximum, the surface deformation will disappear for
a moment (c) at 𝑡+𝑇 , which happens provided the fluid motion is periodic. (d) Following another half-period
of excitation, at 𝑡 + 3

2𝑇 the induced flow will carry the maxima into the minima and vice-versa compared
to (b). (e) The shaker position (solid) and the Faraday wave amplitude (dashed) are plotted as functions of
time with various stages labeled. Between stages 𝑎 to 𝑐 the shaker oscillates for one full period 𝑇 while the
Faraday waves only oscillate for half a period, 𝑇 = 𝑇0∕2.

tions (Cross & Hohenberg, 1993) – with an underlying roll structure in the bulk below the free
surface. Naturally, such systems may also evolve on the domains either varying in time periodi-
cally or experiencing growth/decay (Krechetnikov & Knobloch, 2017). The lack of a systematic
connection of theory to observations in fluid systems motivated us to come up with controlled two-

dimensional (2D) physical experiments, which will further the fundamental understanding of the
dynamics of extended systems on time-dependent spatial domains. As a paradigm, we have chosen
the Faraday waves phenomenon not only because it provides full control over pattern formation on a
time-dependent domain, but also because its dynamics on time-fixed domains has been extensively
studied and reasonably well understood for a long time.

1.2 Faraday waves

To provide the basic background, we briefly introduce the reader to the Faraday waves phenomenon,
cf. figure 1.2. As first studied by Faraday (1831) in a remarkable for his time set of experiments
(Gollub, 2006), when a vessel containing liquid is vibrated vertically a pattern of standing waves
at the free surface is observed oscillating at a frequency half that of the vessel, which was later
confirmed by Rayleigh (1883) after the controversial work of Matthiessen (1868).
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Faraday’s observations remained unexplained until Rayleigh (1883) envisaged that the waves
result from a parametric resonance analogous to the motion of a simple pendulum of length 𝔩 sub-
jected to a vertical oscillation of its pivot. If the acceleration of the pivot is 𝜖 𝑔 cos𝜔𝑡, where 𝜔 is
the angular velocity, 𝑔 the gravitational field acceleration, and 𝜖 the small scaling factor, evolution
of the angular displacement 𝜃(𝑡) in time 𝑡 obeys

𝜃′′ + 𝜔2
0 (1 + 𝜖 𝑔 cos𝜔𝑡) 𝜃 = 0, (1.1)

with 𝜔0 = (𝑔∕𝔩)1∕2 being the frequency of small natural oscillations at 𝜖 = 0, which for 𝜖 ≠ 0

are modulated at a different frequency 𝜔. Moving the modulating part to the right-hand side of
(1.1), the equation assumes the form of a simple oscillator driven by a signal 𝜖 𝜔2

0 𝑔 𝜃 cos𝜔𝑡, that
is proportional to its response 𝜃. Obviously, if 𝜃(𝑡) ∼ cos𝜔0𝑡 already has oscillation at frequency
𝜔0 and the small amplitude 𝜖 pumping 𝑓 (𝑡) ∼ cos𝜔𝑡 has the double frequency 𝜔 = 2𝜔0, from a
trigonometric identity it follows that 𝑓 (𝑡) 𝜃(𝑡) ∼ cos𝜔0𝑡, where we neglected the harmonic cos 3𝜔0𝑡

as it attenuates due to being off-resonance. Thus, for 𝜖 ≪ 1 equation (1.1) admits the solution 𝜃(𝑡) ∼
cos (𝜔 𝑡∕2) subharmonic with respect to the driving frequency 𝜔: the null solution loses stability to
this subharmonic one in the frequency interval 𝜔2

0 (1 − 𝜖∕2) < (𝜔∕2)2 < 𝜔2
0 (1 + 𝜖∕2). Rayleigh’s

point of view was confirmed by Benjamin & Ursell (1954) linear approach and will be considered
here in detail: starting from the inviscid Euler equations it will be demonstrated that for small
amplitudes each normal mode of the liquid sloshing in the container acts as a harmonic oscillator
with the natural frequency determined by the dispersion relation for capillary-gravity waves.

1.2.1 General formulation

We consider an inviscid and incompressible fluid housed in a vessel that oscillates with acceleration
𝐴 cos(𝜔𝑡), cf. figure 1.3. Then the effective acceleration in a coordinate system attached to the
moving vessel becomes 𝐆(𝑡) = [0, 0, 𝑔 − 𝐴 cos(𝜔𝑡)], where the positive 𝑧 direction is assumed to
be downward. Neglecting the effects due to the wetting of the walls, the bulk dynamics is governed

4



Figure 1.3: Sketch of the accelerated liquid. ℎ, 𝜁 , 𝐶 , and 𝑆 denote the depth of the fluid, the free surface,
the curve bounding the latter, and the wetted wall surface, respectively.

by the Euler equations of incompressible fluid of constant density 𝜌:

𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮 = − 1
𝜌
∇𝑝 +𝐆(𝑡), (1.2a)

∇ ⋅ 𝐮 =0, (1.2b)

where 𝐮 = (𝑢, 𝑣,𝑤) is the velocity field and 𝑝 the pressure. Assuming the motion started from rest,
the circulation remains zero and hence the flow is irrotational and there exists a potential function
𝜙 defined via 𝐮 = ∇𝜙,

∇
(

𝜕𝜙
𝜕𝑡

)

+ 1
2
∇|𝐮|2 = −∇

(

𝑝
𝜌

)

+𝐆(𝑡), (1.3)

where we have used the identity (𝐮 ⋅ ∇)𝐮 = 1
2
∇|𝐮|2 − 𝐮 × (∇ × 𝐮), with the latter term being zero

due to irrotational flow. Furthermore, by rewriting the mass force as 𝐆(𝑡) = ∇ ([𝑔 − 𝐴 cos(𝜔𝑡)] 𝑧)

equation (1.3) reduces to

∇
(

𝑝
𝜌
+
𝜕𝜙
𝜕𝑡

+ 1
2
|𝐮|2 − [𝑔 − 𝐴 cos(𝜔𝑡)] 𝑧

)

= 0, (1.4)

and therefore, leading to Lagrange-Cauchy integral

𝑝
𝜌
+
𝜕𝜙
𝜕𝑡

+ 1
2
(

𝑢2 + 𝑣2 +𝑤2) − [𝑔 − 𝐴 cos(𝜔𝑡)] 𝑧 = 𝐹 (𝑡). (1.5)
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where 𝐹 (𝑡) is the constant of the integration. Since the hydrostatic term 𝑔𝑧 is already included
in the above equation, the pressure at the interface becomes 𝑝 = 𝑝0 + 𝜎

(

𝜅1 + 𝜅2
), where 𝑝0 is

the atmospheric pressure acting on the surface, 𝜎 the surface tension and 𝜅1, 𝜅2 are the principal
curvatures of the surface. The function 𝐹 (𝑡) and 𝑝0 – after evaluating equation (1.5) at the interface
𝑧 = 𝜁 (𝑡, 𝑥, 𝑦) – can be absorbed in the potential function: since the potential function is not uniquely
defined and the velocity is the spatial derivative of 𝜙 we can add to 𝜙 any function of the time,
therefore redefining the potential function in equation (1.5) as 𝜙 = 𝜙 − (𝑝0∕𝜌)𝑡 +

´ 𝑡
0 𝐹 (𝑠)𝑑𝑠 leads

to 𝜎(𝜅1+𝜅2)
𝜌

+ 𝜕𝜙
𝜕𝑡
+ 1

2

(

𝑢2 + 𝑣2 +𝑤2
)

− [𝑔 − 𝐴 cos(𝜔𝑡)] 𝜁 = 0.
With the surface deformation defined as 𝜁 (𝑡, 𝑥, 𝑦), the kinematic boundary condition can be

written most conveniently using an implicit representation of the interface,  (𝑡, 𝑥, 𝑦, 𝑧) = 𝜁 (𝑡, 𝑥, 𝑦)−

𝑧 = 0:
𝜕
𝜕𝑡

+ ∇ ⋅ 𝐮 = 0 ⟹
𝜕𝜁
𝜕𝑡

+ 𝑢
𝜕𝜁
𝜕𝑥

+ 𝑣
𝜕𝜁
𝜕𝑦

−𝑤 = 0 on 𝑧 = 𝜁 (𝑡, 𝑥, 𝑦). (1.6)

At the walls and the bottom, the boundary conditions are of the no-penetration form:

𝜕𝜙
𝜕𝐧

=0 on 𝑆, (1.7a)
𝜕𝜙
𝜕𝑧

=0 at 𝑧 = ℎ, (1.7b)

where 𝑆 is the wetted surface of the vessel wall (figure 1.3), 𝐧 the normal to such a surface, and ℎ
the layer depth of the fluid.

All of the considerations above lead to the harmonic equation for the potential𝜙 and the Lagrange-
Cauchy integral for the pressure 𝑝, and interfacial dynamics:

bulk (velocity) 𝑧 ≥ 𝜁 (𝑡, 𝑥, 𝑦) ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇2𝜙 = 0, (1.8a)
𝜕𝜙
𝜕𝐧

= 0 on 𝑆, (1.8b)
𝜕𝜙
𝜕𝑧

= 0 at 𝑧 = ℎ, (1.8c)
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bulk (pressure) 𝑧 ≥ 𝜁 (𝑡, 𝑥, 𝑦) ∶
𝑝
𝜌
+
𝜕𝜙
𝜕𝑡

+ 1
2
(

𝑢2 + 𝑣2 +𝑤2) − [𝑔 − 𝐴 cos(𝜔𝑡)] 𝑧 = 0,

(1.8d)
interface (dynamic) 𝑧 = 𝜁 (𝑡, 𝑥, 𝑦) ∶ 𝑝 = 𝜎

(

𝜅1 + 𝜅2
)

, (1.8e)
interface (kinematic) 𝑧 = 𝜁 (𝑡, 𝑥, 𝑦) ∶

𝜕𝜁
𝜕𝑡

+ 𝑢
𝜕𝜁
𝜕𝑥

+ 𝑣
𝜕𝜁
𝜕𝑦

−𝑤 = 0. (1.8f)

1.2.2 Linear stability analysis

To find the analytical solution with the help of linear approximation, equation (1.8d) is evaluated
at the interface 𝑧 = 𝜁 (𝑡, 𝑥, 𝑦), and with the assumption of 𝜁 being small, both equations (1.8d) and
(1.8f) are linearized about 𝑧 = 0:

𝜕𝜁
𝜕𝑡

= 𝑤|𝑧=0 =
𝜕𝜙
𝜕𝑧

|

|

|

|𝑧=0
, (1.9)

𝜎
𝜌

(

𝜕2𝜁
𝜕𝑥2

+
𝜕2𝜁
𝜕𝑦2

)

+
𝜕𝜙
𝜕𝑡

|

|

|

|𝑧=0
− [𝑔 − 𝐴 cos(𝜔𝑡)] 𝜁 = 0, (1.10)

where, the expansion 𝜉|𝑧=𝜁 = 𝜉|𝑧=0 +
𝜕𝜉
𝜕𝑧
|

|

|𝑧=0
𝜁 + ⋯ , with 𝜉 representing any of the terms 𝜕𝜙

𝜕𝑡
, 𝜕𝜙
𝜕𝑧

,
and 𝑤 has been used for the linearization about 𝑧 = 0. In such an expansion, all of the terms on
the right hand side, except the first one, are dropped due to linearization. It should be noted that
the surface deformation is a function of only 𝑥, 𝑦, and 𝑡, therefore, the linearization about 𝑧 = 0

and accordingly the expansion above are not applicable for 𝜁 (𝑡, 𝑥, 𝑦). Also, with the assumption of
surface deformation 𝜁 , and the slopes 𝜕𝜁

𝜕𝑥
, 𝜕𝜁
𝜕𝑦

being small, the sum of principal curvatures becomes

𝜅1 + 𝜅2 =

[

𝜕2𝜁
𝜕𝑥2

(

1 +
(

𝜕𝜁
𝜕𝑥

)2
)

+
𝜕2𝜁
𝜕𝑦2

(

1 +
(

𝜕𝜁
𝜕𝑦

)2
)

− 2
𝜕𝜁
𝜕𝑥
𝜕𝜁
𝜕𝑦

𝜕2𝜁
𝜕𝑥𝜕𝑦

]

⋅

[

1 +
(

𝜕𝜁
𝜕𝑥

)2

+
(

𝜕𝜁
𝜕𝑦

)2
]−3∕2

≈
𝜕2𝜁
𝜕𝑥2

+
𝜕2𝜁
𝜕𝑦2

, (1.11)

and accordingly 𝑝 = 𝜎
(

𝜅1 + 𝜅2
)

≈ 𝜎
(

𝜕2𝜁
𝜕𝑥2

+ 𝜕2𝜁
𝜕𝑦2

)

.
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For future reference we note that using equation (1.9), the surface deformation 𝜁 may be elimi-
nated from equation (1.10) yielding a single equation involving the potential function only:

𝜎
𝜌

(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)(

𝜕𝜙
𝜕𝑧

)

+
𝜕2𝜙
𝜕𝑡2

− [𝑔 − 𝐴 cos(𝜔𝑡)]
𝜕𝜙
𝜕𝑧

= 0, at 𝑧 = 0. (1.12)

In the following we show that both the surface deformation and the potential function are gov-
erned by the Helmholtz equation with the Neumann boundary condition.

Surface deformation. First, from equations (1.8b) and (1.9) it follows that 𝜕2𝜁∕𝜕𝑡𝜕𝐧 = 0 at any
point on the curve 𝐶 bounding the surface (figure 1.3), and therefore 𝜕𝜁∕𝜕𝐧 = 𝜕𝜁∕𝜕𝐧|𝑡=0 = 0. The
latter fact is significant as it suggests the angle of contact remains 90◦ throughout the time. Second,
assuming that the temporal and spatial dependence can be separated in the surface deformation
𝜁 (𝑡, 𝑥, 𝑦), in equation (1.10) it can be replaced with 𝑎(𝑡)𝜁0(𝑥, 𝑦), and after dividing the equation by
𝑎(𝑡)𝜁0(𝑥, 𝑦), we arrive at:

𝜎
𝜌𝜁0

(

𝜕2𝜁0
𝜕𝑥2

+
𝜕2𝜁0
𝜕𝑦2

)

+ 1
𝑎(𝑡)𝜁0(𝑥, 𝑦)

𝜕𝜙
𝜕𝑡

|

|

|

|𝑧=0
− [𝑔 − 𝐴 cos(𝜔𝑡)] = 0. (1.13)

As the first term above does not depend on time; separation of variables leads to 1
𝜁0

(

𝜕2𝜁0
𝜕𝑥2

+ 𝜕2𝜁0
𝜕𝑦2

)

=

−𝑘2. Hence, 𝜁0 satisfies the Helmholtz equation with the Neumann boundary condition:

(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝑘2

)

𝜁0 =0 on 𝑧 = 𝜁, (1.14a)
𝜕𝜁0
𝜕𝐧

=0 on 𝐶. (1.14b)

Potential function. With the linearized kinematic boundary condition, cf. equation (1.9), the
boundary-value problem governing potential function (1.8a-c) is now completed:
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∇2𝜙 =0 𝑧 ≥ 𝜁 (𝑡, 𝑥, 𝑦), (1.15a)
𝜕𝜙
𝜕𝑧

=
𝜕𝜁
𝜕𝑡

at 𝑧 = 0, (1.15b)
𝜕𝜙
𝜕𝐧

=0 on 𝑆, (1.15c)
𝜕𝜙
𝜕𝑧

=0 at 𝑧 = ℎ, (1.15d)

and is considered to be of the Laplacian form with the Neumann boundary conditions. The solution
exists 1 and is unique (up to a constant) if 2

˛

𝐧 ⋅ ∇𝜙𝑑 =

˛


𝜕𝜙
𝜕𝐧
𝑑 = 0 (1.16)

where  is the surface bounding the fluid volume. This condition is clearly satisfied on𝑆 and 𝑧 = ℎ,
whereas on 𝑧 = 0 it reduces to:

˛
𝜕𝜙
𝜕𝐧
𝑑 =

˛
𝜕𝜙
𝜕𝑧
𝑑 =

‹
𝜕𝜁
𝜕𝑡
𝑑𝑥 𝑑𝑦 = 𝜕

𝜕𝑡

‹
𝜁𝑑𝑥 𝑑𝑦 on 𝑧 = 0. (1.17)

The last equality holds because 𝑑𝑥 𝑑𝑦 represents the area element of area in the plane 𝑧 = 0 and
hence is not a function of time. Accordingly, 𝜁𝑑𝑥 𝑑𝑦 denotes the element of volume displaced with
respect to the 𝑧 = 0 plane and therefore its summation over the surface is zero, i.e. ‚ 𝜁𝑑𝑥 𝑑𝑦 = 0.
Hence, the consistency condition is satisfied.

1To allow the existence of a solution, the boundary-value problem should be self-consistent (Barton (1989), chapter
VI): ´𝑉 ∇2𝜙𝑑𝑉 =

´
𝑉 ∇ ⋅∇𝜙𝑑𝑉 =

¸
 𝐧 ⋅∇𝜙𝑑 , where the last equality followed from the divergence theorem. Since

∇2𝜙 = 0, then it is required that ¸ 𝐧 ⋅ ∇𝜙𝑑 = 0.
2The proof of the uniqueness is straightforward as follows. Assume that there exist two solutions 𝜙1 and 𝜙2 each

satisfying the Laplace equation ∇2𝜙1 = ∇2𝜙2 = 0, and the Neumann boundary conditions: 𝜕𝜙1
𝜕𝐧 = 𝜕𝜙2

𝜕𝐧 on  . Then
for the function 𝜓 = 𝜙1 − 𝜙2 it is evident that ∇2𝜓 = 0 and 𝜕𝜓

𝜕𝐧 = 0 on  . Now if one defines the volume integral
𝐽 =
´
𝑉 (∇𝜓)

2𝑑𝑉 , then 𝐽 > 0 unless 𝜓 = const. Following the identity ∇ ⋅(𝜓∇𝜓) = (∇𝜓)2+𝜓
(

∇2𝜓
) and the fact that

∇2𝜓 = 0, it is clear that (∇𝜓)2 = ∇ ⋅ (𝜓∇𝜓). Therefore, 𝐽 =
´
𝑉 (∇𝜓)

2𝑑𝑉 =
´
𝑉 ∇ ⋅ (𝜓∇𝜓) 𝑑𝑉 =

¸
 𝜓𝐧 ⋅ ∇𝜓 𝑑 =¸

 𝜓
𝜕𝜓
𝜕𝐧 𝑑 = 0 because 𝜕𝜓

𝜕𝐧 = 0 on  . Hence 𝐽 = 0 which is only possible if 𝜓 = const, establishing that 𝜙 is unique
up to a constant.
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Now that the existence and uniqueness of the solution are established, 𝜙 needs to be deter-
mined as follows. In order to keep the solution manageable analytically, separation of variables
has to be enforced (Barton, 1989), i.e. 𝜙(𝑡, 𝑥, 𝑦, 𝑧) = 𝜙0(𝑥, 𝑦)𝜙1(𝑧)𝜙2(𝑡). Performing similar anal-
ysis for equation (1.12) as done for the case of surface deformation for equation (1.10) leads to
1
𝜙0

(

𝜕2𝜙0

𝜕𝑥2
+ 𝜕2𝜙0

𝜕𝑦2

)

= −𝑘2 and with the boundary condition 𝜕𝜙
𝜕𝐧

= 0 on 𝐶 , it can be concluded that 𝜙0

also satisfies Helmholtz equation with the Neumann boundary condition:
(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝑘2

)

𝜙0 =0 on 𝑧 = 𝜁, (1.18a)
𝜕𝜙0

𝜕𝐧
=0 on 𝐶. (1.18b)

Theorem 11.5.2 in Jost (2013) assures that 𝜁0 and 𝜙0 satisfying equations (1.14) and (1.18),
respectively, can be expanded in terms of complete orthogonal set of eigenfunctions 𝑆𝑙(𝑥, 𝑦)3

(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝑘2𝑙

)

𝑆𝑙(𝑥, 𝑦) = 0, (1.19)

and therefore, 𝜁 and 𝜙 can be written as

𝜁 (𝑡, 𝑥, 𝑦) =
∞
∑

𝑙=0
𝑎𝑙(𝑡)𝑆𝑙(𝑥, 𝑦), (1.20a)

𝜙(𝑡, 𝑥, 𝑦, 𝑧) =
∞
∑

𝑙=0
𝑏𝑙(𝑡)𝑆𝑙(𝑥, 𝑦)𝜙𝑙(𝑧). (1.20b)

Substitution of equation (1.20b) into (1.15a) and applying (1.19) yields d2𝜙𝑙
d𝑧2

= 𝑘2𝑙𝜙𝑙. It follows
simply from equations (1.15b) and (1.15d) that 𝜙′

𝑙(0) = 1, 𝜙′
𝑙(ℎ) = 0, 𝑏𝑙(𝑡) = d𝑎𝑙

d𝑡
, and therefore,

𝜙(𝑡, 𝑥, 𝑦, 𝑧) = −
∞
∑

𝑙=1

d𝑎𝑙(𝑡)
d𝑡

cosh[𝑘𝑙(ℎ − 𝑧)]
𝑘𝑙 sinh(𝑘𝑙ℎ)

𝑆𝑙(𝑥, 𝑦) +𝐻(𝑡). (1.21)

3The theorem indicates that the eigenvalue problem ∇2𝜑 + 𝑘𝜑 = 0 on Ω with 𝜕𝜑
𝜕𝐧 = 0 on 𝜕Ω has countably many

eigenvalues 0 = 𝑘0 ≤ 𝑘1 ≤ ⋯ ≤ 𝑘𝑛 ≤ ⋯ (with lim
𝑛→∞

𝑘𝑛 = ∞), corresponding to the eigenfunctions 𝜑𝑖 that satisfy
𝜕𝜑𝑖
𝜕𝐧 = 0 on 𝜕Ω and any vector in the corresponding space can be expanded in terms of these eigenfunctions.
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Due to the volume of the fluid being conserved, the amplitude of the zero-mode 𝑎0(𝑡) remains con-
stant, and with the 𝑧-coordinate’s origin adjusted to be at the undisturbed flat surface, 𝑎0(𝑡) can be
set to zero. Accordingly from equation (1.10) it can be concluded that 𝐻(𝑡) = const and can be set
to zero. Substituting equations (1.20a) and (1.21) into equation (1.10) reveals:

∞
∑

𝑙=1

𝑆𝑙(𝑥, 𝑦)
𝑘𝑙 tanh(𝑘𝑙ℎ)

[

d2𝑎𝑙(𝑡)
d𝑡2

+ 𝑘𝑙 tanh(𝑘𝑙ℎ)

(

𝑘2𝑙 𝜎
𝜌

+ 𝑔 − 𝐴 cos(𝜔𝑡)

)

𝑎𝑙

]

= 0, (1.22)

since 𝑆𝑙(𝑥, 𝑦) are linearly independent, each mode amplitude satisfies

d2𝑎𝑙(𝑡)
d𝑡2

+ 𝑘𝑙 tanh(𝑘𝑙ℎ)

[

𝑘2𝑙 𝜎
𝜌

+ 𝑔 − 𝐴 cos(𝜔𝑡)

]

𝑎𝑙 = 0. (1.23)

Equation (1.23) reduces to the standard from of Mathieu’s equation by setting 𝑇 = 1
2
𝜔𝑡

d2𝑎𝑙(𝑡)
d𝑇 2

+
[

𝑝𝑙 − 2𝑞𝑙 cos(2𝑇 )
]

𝑎𝑙 = 0, (1.24)

where
𝑝𝑙 =

4𝑘𝑙 tanh(𝑘𝑙ℎ)
𝜔2

(

𝑘2𝑙 𝜎
𝜌

+ 𝑔

)

, 𝑞𝑙 =
2𝑘𝑙𝐴 tanh(𝑘𝑙ℎ)

𝜔2
. (1.25)

For the case of free vibration 𝐴 = 0, from equation (1.23) the dispersion relation found to be

𝜔2
0 =

[

𝑔 𝑘 + (𝜎∕𝜌) 𝑘3
]

tanh 𝑘ℎ. (1.26)

On the rectangular domain of length 𝐿𝑥 and width 𝐿𝑦, the eigenfunctions 𝑆𝑙(𝑥, 𝑦) due to exci-
tation of the single mode 𝑙 = (𝑚, 𝑛) can be determined explicitly; from 𝜕𝜁

𝜕𝐧
= 0 it is deduced that:

𝜕𝑆𝑙
𝜕𝑦

=0 on 𝑦 = 0, 𝑦 = 𝐿𝑦, (1.27a)
𝜕𝑆𝑙
𝜕𝑥

=0 on 𝑥 = 0, 𝑥 = 𝐿𝑥, (1.27b)
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Figure 1.4: Top view of Faraday waves: (a) mode (𝑚, 𝑛) = (4, 4), (b) superposition of modes (6,4) and (4,6).

thus from
(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝑘2𝑙

)

𝑆𝑙(𝑥, 𝑦) = 0 it is concluded that:

𝑆𝑙 = cos
(

𝑚𝜋𝑥
𝐿𝑥

)

cos
(

𝑛𝜋𝑥
𝐿𝑦

)

, 𝑘2𝑙 = 𝜋2

(

𝑚2

𝐿2
𝑥
+ 𝑛2

𝐿2
𝑦

)

. (1.28)

In summary, it has been shown that in the linear approximation, the contribution of each mode
to the surface deformation, in a rectangular container, is represented by the product of two cosine
functions, cf. equation (1.28), and the corresponding amplitude is governed by Mathieu’s equation,
with the natural frequency determined from capillary-gravity waves dispersion relation, cf. equation
(1.26).

Faraday waves exhibit patterns of a large variety of shapes and symmetries depending on the
fluid properties, layer depth, driving and boundary conditions (Douady & Fauve, 1988; Gollub,
2006). In the rectangular domain of length 𝐿𝑥 and width 𝐿𝑦, the surface deformation 𝜁 (𝑡, 𝑥, 𝑦) due
to excitation of the single mode 𝑙 = (𝑚, 𝑛) corresponding to the wavenumber 𝐤𝑙 = (𝑘𝑚𝑥 , 𝑘

𝑛
𝑦) has the

form:

𝜁 (𝑡, 𝑥, 𝑦) = 𝑎𝑙(𝑡)𝑆𝑙(𝑥, 𝑦); 𝑎𝑙 = 𝐶(𝜏) cos
[

𝜔0𝑡 + 𝜙(𝜏)
]

, 𝑆𝑙 = cos
(

𝑘𝑚𝑥 𝑥
)

cos
(

𝑘𝑛𝑦 𝑦
)

, (1.29)

in which 𝑘𝑚𝑥 = 𝜋𝑚∕𝐿𝑥 and 𝑘𝑛𝑦 = 𝜋𝑛∕𝐿𝑦, while 𝐶(𝜏) and 𝜙(𝜏) denote the Faraday wave amplitude
and phase varying on a slow timescale 𝜏 ≫ 𝜔−1

0 . The convention to denote the pattern as (𝑚, 𝑛)

on a rectangular domain, cf. figure 1.4, comes from the number of half-wavelengths formed in
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the corresponding (𝑥, 𝑦) directions as coined in the work of Simonelli & Gollub (1987), who first
applied it to Faraday waves in consonance with Benjamin & Ursell (1954) and in analogy with other
two-dimensional instabilities.
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Chapter 2

Faraday waves on time-dependent domains

The idea of the present study is to address experimentally the following key questions on the dy-
namics of 2D systems: (i) How may the spatial structure of an existing pattern be affected by the
time-evolution of the domain? In particular, we will consider three regimes of domain evolution
with varying time-dependencies – shrinkage, growth, and oscillations – with the goal to understand
destruction of one pattern and formation of another through phase-slip phenomena. An interesting
related question is whether domain shrinkage or growth leads to stabilization of a pattern that is
otherwise unstable in the time-independent domain case or vise versa. (ii) What is the response of
both mode numbers (𝑚, 𝑛) of 2D patterns to domain deformation in one direction only? (iii) What
are the key differences expected in pattern formation on time-dependent domains with and without
dilution and convective effects (local volume change and translation with the domain flow, respec-
tively)? The latter regime can be achieved by draining the liquid from the tank thus affecting the
dispersion relation (1.26) through the variation of the liquid layer depth ℎ as opposed to changing
the horizontal domain size 𝐿𝑥.

With the above scope, a guide to the paper will be useful. Section 2.1 discusses the Faraday
assembly and the visualization/measurement technique. Section 2.2 sets the stage for our study of
time-dependent domain effects by conducting a series of experiments on a time-fixed domain first, in
particular for the purpose of validating the capabilities of the setup and, most importantly, providing
a road map for the present study. Section 2.3 reports the results of investigations on time-dependent
domains starting with an experimental observation of phase-slip phenomena (§2.3.1) and pattern
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(a) (b)

Figure 2.1: (a) The Faraday waves assembly: 1 – base plate, 2 – vertical column, 3 – horizontal column, 4
– stepper motor, 5 – shaft, 6 – traveling nut connector, 7 – moving walls, 8 – wall connector, 9 – container
support rim, 10 – parallel container walls, 11 – container bottom, 12 – U-channel, 13 – injection tube. (b)
Optical setup. The captured digital image corresponds to the rendered pattern at the bottom; the top view of
the colored rendered pattern, i.e. modes (2, 6) + (6, 2), can be found in figure 2.4a.

transformations (§2.3.2), followed by a study of the reversibility of the domain shrinkage-growth
process (§2.3.3). The subsequent parts of this section examine the effects of wall speed (§2.3.4),
initial conditions (§2.3.5), and wall oscillations (§2.3.7) on the pattern structure. The section is
completed by studying Faraday waves in a draining water tank (§2.3.8). The conclusions of the
presented study are drawn in §2.4 by reviewing the key findings and posing open questions.

2.1 Experimental setup and procedure

2.1.1 Faraday waves apparatus

The experimental setup should be able not only to produce Faraday waves, but also to change the
container dimensions in a time dependent fashion, as well as to measure the characteristics of the
formed patterns. Different components of the designed Faraday assembly presented in figure 2.1a
are mounted and function independently on top of the electrodynamic shaker, Labworks ET-139.
The liquid is housed in a container with a transparent bottom and four sidewalls, so that inner tank
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dimensions are 150 × 150 × 12.7mm3 without moving walls. As the flatness of the brim plays a
crucial role in the formation of Faraday patterns (Douady, 1990; Bechhoefer et al., 1995), the tank
bottom is made of Plexiglas with the flatness precision of 0.05 mm when mounted. Both fixed and
moving container walls are machined from Delrin.

The shaker is driven through a linear amplifier, Labworks PA-138. The force rating of the vi-
bration system is 334N; thus, given the 3.2 kg weight of our assembly and the fluid, the maximum
achievable acceleration is about 10 𝑔, well above the range of accelerations 0.8 − 1.9m s−2 used
throughout all the experiments to produce Faraday waves. The acceleration signal is generated by
the LabView software and then converted to an analog voltage by the Data Acquisition Device
(DAQ). The actual acceleration of the container is measured by Brüel and Kjær 4513 accelerometer
with accuracy of ±1%, interfacing with the 1704-A-001 (Brüel and Kjær) signal conditioner before
being sent to the DAQ for readout and a real-time signal processing with LabView. The latter, using
a fitted sinusoidal curve, determines the actual frequency and amplitude of the signal and then com-
pares to the input driving signal showing the frequency difference within 0.02% and the residual
RMS amplitude never exceeding 1.0% of the driving RMS amplitude thus confirming the absence
of stray mechanical harmonics.

Since the shaker is the main source of the heat, it is equipped with a cooler pump blowing air
through its interior, which in turn helps to maintain the environment temperature unaltered – this, in
particular, is important for the constancy of surface tension, otherwise affecting the Faraday waves
as per the dispersion relation (1.26). Direct measurement of the temperature with a thermocouple
placed at the closest point of the assembly to the shaker, i.e. the aluminum base plate in figure
2.1a, showed the temperature variation between 22.7 − 22.9◦ during a 4-hour long experiment. All
the above three setup characteristics – the controlled shaker waveform and apparatus temperature as
well as flatness of the container brim and bottom – are crucial for the ability to generate reproducible
Faraday waves.

The horizontal domain size can be controlled in a time-dependent fashion according to the pre-
scribed laws 𝑥1(𝜏𝑤) and 𝑥2(𝜏𝑤), cf. figure 2.2a, where 𝜏𝑤 is a long time scale, compared to that of
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Figure 2.2: (a) A cross-section of a rectangular container with two moving walls on the left and right; the
entire container moves vertically in time. Top (b) and side (c) views of static contact angle near a corner of
the domain; the length scale is set by the thickness of the wall being 12.7mm.

the vertical oscillations. While the locations 𝑥1 and 𝑥2 are independent, in our experiment their im-
plemented motion, controlled by two linear actuators, is symmetric with respect to the centerline of
the vessel, i.e. 𝑥1 = −𝑥2. The assembly on each side of the domain, cf. figure 2.1a, is comprised of
sliding wall, wall connector, shaft, nut connector, leadscrew, and stepper motor (NEMA 11), which
converts the rotatory motion of the stepper motor into linear motion. The linear actuators enable the
walls to travel at speeds between 0 and 45mm s−1 while keeping their center of mass over that of the
shaker and providing unobstructed optical access from below and above the container. Each stepper
motor is driven by a ViX controller, Parker-Hannifin ViX 250IM, which in turn is controlled with
Easi-V software. We study the free surface between the movable walls, ignoring the one outside
thereby defined domain, cf. figure 2.2a.

Considering that the wall motion may generate sloshing waves, great care must be taken to
assure that the Faraday waves are not perturbed; thus, the time scale 𝜏𝑤 of horizontal motion should
be necessarily longer than that of the vertical vibration 𝑡 ≪ 𝜏𝑤. In our experiments, the frequency
of the vertical motion is two orders of magnitude greater than the one of the prescribed horizontal
motion 𝑓𝑤 = 𝜏−1𝑤 < 0.07Hz. At this frequency 𝑓𝑤 the amplitude 𝐶𝑤 of the wave induced by wall
motion (Ursell et al., 1960) is only 𝐶𝑤 = 0.01𝐴𝑤, where 𝐴𝑤 is the amplitude of the wall motion
(see further discussion in §2.3.7), assuring that no sloshing interferes with Faraday waves. Also, to
keep the fluid layer depth constant, the moving sidewalls do not reach the bottom of the container,
i.e. there exists a clearance of about 2mm allowing unobstructed flow underneath the walls and not
affecting Faraday waves, cf. Appendix 2.A.
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A few further comments need to be made about water as a working fluid since some practical
limitations naturally arise. Namely, when water is exposed to air, it becomes prone to contamination
leading to surface tension gradients over the free surface, which in turn complicates the interpreta-
tion of the experiments as discussed by Bechhoefer et al. (1995). While we added Titanium Dioxide
TiO2 to water for the visualization purpose (§2.1.2), this chemical neither introduces any surface
film effects nor modifies the shear viscosity and surface tension (Przadka et al., 2011); the latter
was maintained at the value 71 ± 1mNm−1 throughout the experiment with the temperature of the
room held constant at 23◦ ± 0.5◦ C. As a result, based on Young’s equation the contact angle is not
modified either, which in the static case with and without TiO2 was measured to 57.5◦ and 59.5◦,
respectively. The use of the same material for manufacturing both fixed and moving container walls
guaranteed a uniform contact angle over the entire perimeter. Given the partial wetting, no notice-
able capillary rise near the container corners was observed in the static case as verified directly
by projecting a fine grating pattern, cf. figures 2.2b and 2.2c; in the dynamic case, similarly, no
significant distortion of the contact line takes place.

Also, when water is used it can be expected that the system would be sensitive to possible
evaporation and thus water layer depth changes (Douady, 1990). Indeed, through the preliminary
experiments, we observed that Faraday waves – especially in the patterns competition regime – are
sensitive to the depth of water as per the dispersion relation (1.26). Thus, the water level was kept
constant at ℎ = 12±0.1mm by utilizing a syringe pump, PHD ULTRA Harvard apparatus, to inject
water outside the moving walls (figure 2.1a) at the same rate as the evaporation rate determined for
the given experimental conditions in the lab, i.e. 42𝜇l min−1.

2.1.2 Visualization and measurement technique

To quantitatively study Faraday waves, characterization of their global spatial structure and time
evolution 𝑧 = 𝜁 (𝑡, 𝑥, 𝑦) is needed, cf. figure 2.1b, with appropriate spatial and temporal resolutions
as per the following requirements. First, the technique should be global, i.e. able to measure the
interface deformation over the interrogation area of at least 150 × 150mm2. Second, the minimum
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required accuracy is 0.05mm, as limited by the measured meniscus waves amplitude in the center
of the tank in the range 0.05 − 0.2mm given that the meniscus can move along the sidewall up
to ∼ 0.7mm (cf. Appendix 2.B). This enables detection of the flat surface as precise as possible
while studying the phase-slip phenomena and thresholds to instability. Third, although throughout
the experiment generating waves with large amplitudes is avoided to minimize the nonlinear effects
and splashing (over the container edge), still the visualization technique should be able to measure
relatively large amplitude waves ≃ 3mm observed under certain conditions. Forth, the temporal
resolution should be reasonably fine, i.e. the sampling frequency must be at least 5 to 10 times of
the driving frequency to be able to study the dynamical behavior of the system. The last, but not
the least, requirement is for the technique to be non-invasive in order to avoid perturbing Faraday
waves.

Various visualization and surface measurement techniques have been introduced in literature to
study Faraday waves and yet most of them do not satisfy all the requirements above. For instance,
Xia et al. (2012) used the diffusing light photography (Wright et al., 1996), in which a diffusive
agent – either suspended imaging particles or a small amount (< 2% in volume) of milk – is added
to water such that the intensity of light transmitted is inversely proportional to the local depth allow-
ing the surface elevation to be computed from the 2D intensity distribution. Such a technique works
when the distance over which a light ray scatters through a large angle is larger than the surface de-
flection, but smaller than the liquid layer depth. Also, the highly accurate amplitude measurement
method with the resolution of 10−2 mm introduced by Douady (1990), which is based on the image
obtained from reflection of a thin laser beam at the specific point on the free surface, is local and
useful for small wave amplitudes since the maximum slope at the specific point on the free surface
that can be measured is limited by 1∕ tan(1

2
𝜗), where 𝜗 is the angle between the incident laser beam

and the vertical axis perpendicular to the surface. Thus, Douady (1990) had to use a separate tech-
nique (bicolor stroboscopy) to visualize the entire surface. More recently, a free-surface synthetic
Schlieren method based on the analysis of the refracted image of a random dot pattern was offered
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(Moisy et al., 2009), but among its disadvantages are extreme sensitivity to slight vibrations and
application to weak surface deformations only.

Hence, given our considerations and requirements listed above, we resorted to Fourier trans-
form profilometry (FTP) – a single-shot optical profilometric measurement of surface deformation
– which has been widely used to visualize and measure water surface waves (Maurel et al., 2009;
Cobelli et al., 2009, 2011; Przadka et al., 2011). Such a method is based on an optical system com-
posed of a video projector displaying a grating pattern on the surface and a camera recording the
reflection of this pattern from the free surface. The distorted grating pattern due to deformation of
the surface is then recorded and compared to the reference image (undistorted grating pattern on the
flat surface) in order to produce a phase-shift map – the difference between phases of light intensity
at each pixel in the two images – from which the height of the deformed surface is reconstructed
through an equation relating the phase difference to the object’s height. The biggest challenge ex-
perienced while applying this method to water surface is light reflection, which previously was
partially treated by enhancing the water light diffusivity with the addition of TiO2 (Cobelli et al.,
2009; Przadka et al., 2011); however, a considerable amount of light reflection still remains.

In an effort to improve the accuracy and applicability of the method we came up with a common-
optical axis geometry implementation of FTP along with an appropriate phase-height relation, cf.
appendix 2.D. In our experimental setup, a digital video projector (ViewSonic PJD7820HD) with
a resolution of 1920 × 1080 pixel2 projects the sinusoidal fringe pattern on the water surface with
interrogation area up to 300 × 170mm2. A DSLR camera (Nikon D5200) with the resolution of
6000 × 4000 pixel2 provides a record of the phenomena. The images are captured in raw (Nikon
electronic) format to prevent unwanted post-processing through the built-in algorithm in the camera,
which would reduce the size and quality of the image because we need to extract the actual, not
manipulated, intensities. Then they are developed into raw tagged image file format (TIFF) prior
to entering the signal processing algorithm. To make the common-optical axis geometry possible,
i.e. bringing the camera and projector optical axes together, a semi-transparent mirror (standard
50/50 beam splitter) positioned precisely at 45 degrees, with respect to the projector and/or camera
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Figure 2.3: Experimental contact line conditions: (a) pinned, (b) non-pinned, and (c) semi-pinned.

axis, was employed. Furthermore, we introduced a proper filtering of light by implementing two
linear polarizers – in front of the camera and projector, cf. figure 2.1b – to remove the reflections
remaining after the addition of TiO2. This technique was calibrated and proved to be capable of
detecting and reconstructing the surface deformation for the interrogation area of 300 × 170mm2

with the vertical resolution of 0.05mm and horizontal resolution of 0.08mm, therefore providing
an order of magnitude improvement in the accuracy compared to literature (Cobelli et al., 2009;
Przadka et al., 2011).

2.2 Results: Faraday waves on time-fixed domain

The experiments reported in this section serve to (i) characterize the setup in order to demonstrate its
capability in accurately capturing all the dynamical features of interest and (ii) develop a benchmark
study of patterns behavior to provide the context and comparison with Faraday waves on time-
dependent domains in §2.3. In particular, before embarking on experiments in time-dependent
domains we need to identify proper range of frequencies to work with. Due to high sensitivity of
the Faraday wave system, extreme caution must be taken in selecting proper contact line conditions,
especially if one tries to enhance understanding of dynamical phenomena observed experimentally
by making comparisons with the available stability theory on time-dependent domains (Knobloch
& Krechetnikov, 2014, 2015; Krechetnikov & Knobloch, 2017). This effort led us to the regime of
Faraday waves, which has not been extensively studied despite intimate connection to the classical
theory of Benjamin & Ursell (1954).
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2.2.1 Boundary conditions

Early experimental works sought to disentangle the role of boundary conditions from the physics
in the bulk of the fluid as they were considered to be a hindrance in observation of Faraday waves
(Douady, 1990; Bechhoefer et al., 1995). According to Douady (1990) two types of boundary
conditions for the free surface can be implemented based on the design of our setup. The first one is
the pinned boundary (e.g. brimful) where the vessel is filled to the fullest 𝜁 = 0, thus preventing the
emission of meniscus waves as the boundaries are pinned and the fully flat surface acts as the actual
initial condition before vertical vibrations start (Douady, 1990), cf. figure 2.3a. The advantage
of a pinned condition is that the patterns are not perturbed by the menisci and could be described
approximately as the product of two sine waves sin (𝑚𝜋𝑥∕𝐿𝑥) sin (𝑛𝜋𝑦∕𝐿𝑦), cf. Benjamin & Scott
(1979) and Douady (1990). Implementing such boundaries in practice is very delicate as precise
alignment of the walls and brim is required. Minor mechanical imperfections lead to the formation
of meniscus waves (Bechhoefer et al., 1995).

The second possible boundary condition is the non-pinned one, where the vessel is not filled
completely, cf. figure 2.3b. For this boundary condition the theoretical treatment in the case of an
inviscid fluid is rather straightforward leading to patterns as products of two cosines (1.29) (Ben-
jamin & Ursell, 1954; Douady, 1990). A considerable disadvantage of this condition is that, as the
contact lines are free to move, the imminent meniscus waves are emitted from the walls and perturb
the excited patterns and potentially could mask the true threshold of each mode appearance. How-
ever, if the capillary length ‴𝑐 = (𝜎∕𝜌𝑔)1∕2 is negligible compared to the pattern wavelength, the
effect of menisci is minimized and therefore the theory can be used as a reference point.

Using pinned boundaries is preferred as minimizing contact line mobility and meniscus waves
effects is desirable. Our setup, with the pinned boundary condition – vessel filled to the edge of
the walls – was able to produce sine patterns over the range of frequencies 7 − 100Hz of interest
to us without any observable menisci. However, our main objective of conducting experiments on
time-dependent domains prevented us from using such boundaries: on a time-fixed domain, when
the vessel is filled fully and vibrated vertically by starting from a flat surface with gradual increase
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in driving amplitude, a transient wave (especially in the low range of frequencies) with an amplitude
of several millimeters is formed, though decays quickly upon reaching the stable pattern (Simonelli
& Gollub, 1989). This transient wave substantially disturbs the fluid domain boundaries by forcing
the fluid to flow over the wall edges, which is enhanced by the walls motion thus perturbing the
whole system. Hence, from an experimental point of view, boundaries cannot be kept fully pinned
for all driving conditions. Such considerations led us to a compromise between pinned and non-
pinned conditions by setting the waterline 0.7mm below the wall edge (nearly brimful), thus limiting
the meniscus motion, which hereafter will be referred to as a semi-pinned boundary condition, cf.
figure 2.3c. Depending on driving frequency, it gives either sine or cosine type solutions. Below
frequency 12.1Hzmodes are essentially quantized same as for the choice of the boundary conditions
in Benjamin & Ursell (1954) due to the boundedness of the domain, which enables us to study the
corresponding discernible stability curves (§2.2.2).

2.2.2 Road-map

In spatially unbounded (in the 𝑥𝑦 plane) systems, there is a continuous spectrum of modes available,
while mode quantization is the signature of a finite-size domain (see Bechhoefer et al., 1995). De-
tailed study of pattern formation on a time-dependent domain requires the mode to be far removed
from adjacent modes. Since the infinite-domain regime is approximately accessible on any finite
domain size if the driving frequency is high enough, we resorted to a lower range of frequencies
to avoid this regime. Also pinned boundaries enhance the mode separation remarkably (Douady &
Fauve, 1988; Douady, 1990; Bechhoefer et al., 1995) in the sense that the overlap between the stabil-
ity curves/tongue regions is reduced thus making the modes more distinct; employing semi-pinned
boundaries in our setup contributes to mode separation as well.

Figure 2.4 presents the road map for our experiments, where frequencies ranging from 10 to
22Hz were studied. We found that from 10 to 14Hz cosine-type patterns are formed, cf. figure
2.4a, and from 18 to 22 Hz sine-type patterns are excited, cf. figure 2.4b; the range of intermediate
frequencies 14 − 18Hz corresponds to the mixed zone, where patterns could not be categorized
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Figure 2.4: Road map on the square domain: for the studied range of frequencies 10−22Hz (a) and (b) depict
cosine and sine regimes, respectively. Each circle represents the measured threshold of vertical acceleration𝐴
of various modes at a given excitation frequencies 𝑓 . The images depict the observed patterns over thresholds.
The corresponding mode(s) number is stated on each pattern. Inset in (a) compares the measured wavenumber
(dots) with the critical ones predicted from the viscous theory (solid line) by Kumar & Tuckerman (1994)
and the inviscid theory (dashed line) by Benjamin & Ursell (1954).

as either sine or cosine type. Given that the wavenumber 𝑘 depends on (𝑚, 𝑛) through (1.29), in
figure 2.4 one can see that with increase in excitation frequency 𝑓 = 2𝜋∕𝜔 patterns are formed in
the order of increasing wavenumber 𝑘 – this is in accordance with the monotonic behavior of the
dispersion relation (1.26) in the cosine-regime; similar statement can be made about the sine regime
based on the work of Benjamin & Scott (1979). Obviously, the dissipative effects do not affect the
monotonicity of the wavenumber behavior, which indicates that they are not sufficiently strong in
our experiments (Douady, 1990); see also the discussion in Appendix 2.C.

Altogether, observing both types of patterns was made possible by using semi-pinned boundary
conditions, which can approximate either pinned and non-pinned boundary conditions depending on
the driving frequency. Namely, in the cosine regime (lower mode number with a longer wavelength)
the capillary length 𝑙𝑐 ≈ 2.7mm is negligible compared to a typical wavelength, which is 20 times
larger. Also, at these lower frequencies the wave amplitudes are higher, which is easy to see from the
real Ginzburg-Landau equation (GLE) describing modulation with the amplitude 𝑈𝑄 = (𝜇−𝑄2)1∕2
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and wavenumber 𝑄 of an excited spatially periodic pattern at the bifurcation parameter 𝜇: clearly,
at a fixed 𝜇 waves with lower modulation wavenumber𝑄would have a higher amplitude 𝑈𝑄. These
higher amplitude waves force the contact line to move hence being closer to non-pinned boundary
conditions. On the contrary, in the sine regime wavelength is varied from 7 to 9 times of the capillary
length which suggests that capillarity is not negligible. Furthermore, modes that are excited at higher
frequencies, i.e. with a larger wavenumber, carry lower wave amplitude thus enabling nearly pinned
boundary conditions. It should be noted that all the patterns studied throughout the experiments
fall under the category of “square patterns” (Kudrolli & Gollub, 1996) based on their symmetries.
Given the rectangular geometry of our container, the low viscosity fluid used, and the low range
of frequencies and amplitudes of the single-frequency forcing, the formation of patterns with other
symmetries such as hexagonal, stripes, quasi-crystalline is not expected.

The images in figure 2.4 depict the observed patterns at the corresponding frequencies close to
the minimum acceleration required to excite a pattern on the tongue-like threshold curve. However,
the non-monotonic behavior of 𝐴(𝑓 ) is the signature of the threshold curve in the low range of fre-
quencies as shown both experimentally and theoretically by Batson et al. (2013) based on the work
of Kumar & Tuckerman (1994). This observation is analogous to similar previous findings in the
literature (e.g. Bechhoefer et al., 1995; Batson et al., 2013) and is mainly due to the mode separation,
which allows each mode to have its tongue-like stability curve well-developed without being early
terminated by surrounding stability curves, cf. figure 2.7. The above mentioned non-monotonic be-
havior is also contributed by the large fluid layer depth, which makes the stability curves less broad
because with ℎ much larger than the viscous boundary layer thickness 𝛿𝜈 ∼

(

𝜈∕𝜔0
)1∕2 (where 𝜈

is the kinematic viscosity) the dissipation at the bottom of the container is not strong enough to
broaden the resonance tongue (Bechhoefer et al., 1995).

Dissipation of each mode is proportional to the minimum acceleration required to excite a pattern
(Douady, 1990). For example, in the sine regime, as illustrated in figure 2.4b, increase in the mode
number 𝑛 transverse with respect to the direct one 𝑚, e.g. (𝑚, 𝑛) = (14, 2) to (14, 4), leads to an
increase in the threshold and correspondingly in dissipation which was also observed in a square
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Figure 2.5: Stability curves for various modes, arranged in the increasing order of the total wavenumber
(1.29), with the domain aspect ratio 𝑅 = 2.00, where 𝑝 and 𝑞 are non-dimensional driving frequency and
acceleration, respectively, cf. equation (2.1). Dotted lines represent the experimental data, while solid lines –
the stability curve obtained from the linear inviscid theory (Benjamin & Ursell, 1954). The threshold curves
in figures 2.4 and 2.5 were found starting from a flat surface at a fixed driving frequency and increasing the
amplitude until a stable non-flat mode is reached, though Faraday waves are known to possess a hysteretic
behavior in threshold values (Simonelli & Gollub, 1989; Craik & Armitage, 1995; Périnet et al., 2016).

cell by Douady & Fauve (1988). This fact explains why the formed patterns tend to have a lower
transverse mode number: due to their lower dissipation, they can mask the observation of other
patterns with greater 𝑛 and thus with larger dissipation. In the sine regime, the system gets closer
to the infinite-domain limit due to higher frequencies as mentioned earlier. To keep the system in
the quantized regime, the remaining experiments in the paper are restricted to the cosine patterns,
which correspond to the classical inviscid theory of Benjamin & Ursell (1954); cf. comparison of
the measured with theoretical wavenumbers in the inset of figure 2.4a.

2.2.3 Thresholds

Next, the measured stability curves for several modes on the domain of aspect ratio 𝑅 ≡ 𝐿𝑦∕𝐿𝑥 =

2.00 are presented in figure 2.5 in the parameter space of dimensionless driving frequency 𝑝 and
acceleration 𝑞:

𝑝 = 4𝜔2
0∕𝜔

2 and 𝑞 = 2𝑘𝐴 tanh (𝑘ℎ)∕𝜔2, (2.1)

where 𝐴 is the dimensional acceleration defined in figure 2.4. The deviation of the experimental
results from the theoretical curve in figure 2.5 is due to the inviscid fluid approximation and infinites-
imal wave amplitude assumed by Benjamin & Ursell (1954). While the viscous theory developed
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by Kumar & Tuckerman (1994) could be used here as a reference for a better comparison with the
experimental results, much improvement cannot be expected since this theory was developed on
an infinite domain and thereby accounted for the damping in the bulk only. In our setup, however,
the bulk dissipation estimated from viscous theory (Kumar & Tuckerman, 1994) in Appendix 2.C
constitutes less than one-fifth of the total energy loss and, therefore, is subdominant to the damping
caused by the moving contact lines. Nevertheless, for each mode, the tongue-like curve (see figure
2.7) is well established and terminated by the excitation of previous/next mode. Minimum of each
curve corresponds to the resonance frequency and the minimum dissipation of the mode. Similar to
the square domain case, these modes were observed in the order of increasing wavenumber 𝑘 with
the driving frequency 𝑓 . This fact suggests that even in this smaller domain size the influence of
walls is minimized in our experiment; otherwise, non-monotonic shifts in both wavenumbers and
dissipation would be observed (Douady, 1990). The shifts observed in dissipations – e.g. mode
(1, 4) appears to have higher dissipation than (1, 5) in figure 2.5 – can be explained similarly to the
discussion in §2.2.2: the non-monotonic behavior of dissipation is the signature of the threshold
curve at low frequencies (Batson et al., 2013).

2.2.4 Symmetric mode interactions

Previous works on Faraday waves focused primarily on dynamical behaviors of the system such as
bifurcations, mode interactions, and patterns competition which leads to chaos under certain con-
ditions. For instance, Simonelli & Gollub (1989) in their experimental work on the interactions
between two symmetric modes (𝑚, 𝑛) and (𝑛, 𝑚) naturally excited on a square domain were able to
unravel the differences of the phase-space structure between square and slightly non-square contain-
ers. As it will be important for our study on time-dependent domains in the vicinity of pattern com-
petition regime (see §2.3.3), we provide here a detailed study of the interactions between symmetric
modes (2, 6) and (6, 2), as they are sufficiently away from excitation of adjacent modes, cf. figure
2.6. The interactions of such modes can reveal up to 16 fixed points, either stable or unstable, in
the corresponding phase-space (Simonelli & Gollub, 1989). The discussion here parallels that from
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Figure 2.6: Amplitude-frequency diagram around mode (6, 2) and its symmetric one (2, 6) on a square do-
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𝐶 . The circles represent the experimental data with the error bars corresponding to the accuracy of the mea-
surements; solid lines through the data sets are meant just to guide the eye. The images represent the typical
patterns observed in the region and each can be formed in the corresponding region depending on the initial
driving frequency and amplitude.

the above reference on the interaction of modes (2, 3) and (3, 2). Obviously (Simonelli & Gollub,
1989), excitation of a pure mode, e.g. (2, 6), or interaction between two modes, e.g. (6, 2) + (2, 6),
corresponds to two fixed points, one with positive amplitude and the other with negative amplitude.

Referring to figure 2.6, four distinct regions are observed above the threshold. In region 𝐷
either of the pure states, (6, 2) or (2, 6), is formed depending on the initial conditions. In region 𝐵
mixed states, where two modes interact either in-phase (6, 2) + (2, 6) or out of phase (2, 6) − (6, 2),
are found. Observation of both in-phase and out-of-phase combinations of these two modes is in
accordance with the analytical analysis of Feng & Sethna (1989), who showed that on a square
domain 𝐷4 symmetry can be expected, i.e. if the in-phase interaction (𝑚, 𝑛) + (𝑛, 𝑚) is allowed
by the system then all the other combinations – in-phase −(𝑚, 𝑛) − (𝑛, 𝑚) along with out-of-phase
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(𝑚, 𝑛) − (𝑛, 𝑚) and −(𝑚, 𝑛) + (𝑛, 𝑚) – can be formed as well. However, Simonelli & Gollub (1989)
claimed, based on the symmetry analysis, that when both 𝑚 and 𝑛 are odd or even (as in our case),
only one of the in-phase or out-of-phase cases is possible which is one of the differences between
their analysis and that by Feng & Sethna (1989). Even experimentally, Simonelli & Gollub (1989)
observed only out-of-phase mixed state for even mode numbers, (0,4) and (4,0). Nevertheless,
they pointed out that due to excitation of nearby modes such types of interactions could not be
investigated thoroughly, which may have prevented them from detecting the in-phase combination.
Later Miles & Henderson (1990) proved that symmetry analysis performed by Simonelli & Gollub
(1989) is incomplete leading to differences from that of Feng & Sethna (1989). Regardless, as
follows from figure 2.6, in our experiment we were able to observe both in- and out-of-phase mixed
states in region 𝐵, where the mixed states are stable fixed points and the pure modes become saddle
points.

Regions 𝐴 and 𝐶 are hysteretic: namely, if one starts from below the threshold curve at a fre-
quency less than 12.05Hz and increases the amplitude, in region𝐶 a flat surface would be observed,
but if the starting point is in region𝐵, then by decreasing the amplitude and entering region𝐶 mixed
states would be expected. In region 𝐴 eight stable fixed points are observed (both mixed and pure
states), while in region 𝐶 only five stable fixed points – the pure modes and the flat surface – exist.
It should be noted that images in figure 2.6 depict the typical patterns observed in the region and
each can be formed in the corresponding region depending on the initially chosen driving frequency
and amplitude due to the hysteretic behavior.

Simultaneous excitation of two adjacent modes at the same values of physical parameters takes
place in the overlap region of the two stability curves known as a pattern competition regime (dashed
areas in figure 2.7), which is very common in Faraday wave phenomena as shown by Ciliberto
& Gollub (1985b), whose phenomenological model is able to reproduce it. In this regime slow
amplitudes of two different patterns are nonzero, non-equal and oscillate with different phases at a
frequency smaller than the driving one by more than two orders in magnitude (Ciliberto & Gollub,
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(m2, n2)

(m3, n3)

f

A

Figure 2.7: Schematic representation of figure 1.2 of Ciliberto & Gollub (1984) based on experiments on
a circular domain with a radius of 6.35 mm. For each mode (𝑚, 𝑛) solid curve denotes stability boundaries
in the driving frequency 𝑓 and acceleration 𝐴 coordinates. Single/double dashed regions represent the peri-
odic/chaotic pattern competition regimes of two adjacent modes.

1984, 1985a). An example of patterns observed in such a region in our experiments can be seen in
figure 2.10c with the cycling of patterns illustrated by up-down arrows.

When performing experiments on a square domain we did not detect any time-dependent pat-
terns as expected due to symmetry (Simonelli & Gollub, 1989). However, despite the fact that
Simonelli & Gollub (1989) did not find any time-independent superposition (stable fixed point) of
the two specific symmetric modes (3, 2) and (2, 3) in a nearly square cell, we found one specific case
where the interaction between modes (2, 6) and (4, 4) was time-independent (stable fixed point) for
the domain aspect ratio 𝑅 = 1.25. Our observation is in agreement with the theory of Feng &
Sethna (1989) which predicts that time-independent mixed-states can be expected in a non-square
domain as well depending on the detuning frequency (the frequency difference from the resonance
frequency of one of the modes) and the domain aspect ratio. Furthermore, for the specific case of
interaction between modes (3, 2) and (2, 3), studied by Simonelli & Gollub (1989), the resonant
frequencies between these modes differed by 1.5% whereas for modes (4, 4) and (2, 6) in our ex-
periment the difference is only 1% which brings the stability curves closer. This makes the pattern
competition region sizable enough (e.g. compared to the Simonelli & Gollub (1989) study) that any
finite amplitude perturbations always present in real experiments are not sufficient to destabilize the
superposition of modes (2, 6) and (4, 4).

The threshold curves in figure 2.6 were measured using a manual and simpler method than the
automated scanning protocol based on the successive approximation applied by Simonelli & Gollub
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(1988, 1989). At a fixed driving frequency a low driving amplitude, at which a non-flat surface first
forms, is found by increasing it from below – this is assigned as an upper bound for the threshold.
Then, the amplitude is decreased to arrive at the flat surface which yields yet another bound for
the threshold termed as a lower one since it proves to be below the previously found upper bound.
Finally, the amplitudes between upper and lower bounds are scanned with successively reduced
positive and negative increments to identify possible hysteresis regions and to measure the instability
boundaries.

2.2.5 Summary

Our search for a suitable Faraday waves regime led us to (i) moderate aspect ratio waves, i.e. with
the wavelengths 𝜆 not significantly smaller than the domain size as opposed to the widely studied
large aspect ratio regime (Kudrolli & Gollub, 1996; Binks & van de Water, 1997; Edwards & Fauve,
1994; Douady, 1990; Douady & Fauve, 1988) thus enabling pronounced square mode separation;
(ii) but still considerably longer wavelengths compared to the capillary length 𝑙𝑐 in order to minimize
the effect of capillarity on the boundary conditions, since wetting details upset the Benjamin &
Ursell (1954) theory leading to non-analytical modes (Benjamin & Scott, 1979; Douady & Fauve,
1988; Douady, 1990); and (iii) the use of low viscosity fluids in order to match to the classical
theory (Benjamin & Ursell, 1954) amenable to transparent analytical treatment. The accuracy of
the inviscid dispersion relation (1.26) applied to our case is demonstrated in the inset of figure
2.4a, which again indicates negligible role of menisci in the sense of deviation from the inviscid
contact line conditions assumed by Benjamin & Ursell (1954). As demonstrated in Appendix 2.C,
for our low driving frequency experiments using viscous theory (Kumar, 1996) would not modify
the quantitative behavior of stability curve noticeably compared to that of inviscid one (Benjamin
& Ursell, 1954; Batson et al., 2013); thereby the linear inviscid theory can be used as the reference
for our framework. Working in this classical regime, stripped of any complexities associated with
appearance of hexagonal, quasi-periodic, quasi-crystal, and chaotic modes, is necessary to make
the domain evolution effects distinguishable. Also, while above we used, in particular, the square
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container to prove the accuracy of the experimental setup, due to the degeneracy of a square domain
(Simonelli & Gollub, 1987), which makes the system very sensitive to small symmetry-breaking
perturbations thus dramatically affecting the dynamics, we will study the domain evolution effects
on rectangular domains only.

2.3 Results: Faraday waves on time-dependent domain

Given that previous theoretical efforts have mainly focused on dynamical properties on one-dimensional
time-dependent domains (Knobloch & Krechetnikov, 2014, 2015; Krechetnikov & Knobloch, 2017),
we now resort to the Faraday waves with the aim to understand the following key effects of domain
deformation in 2D: domain shrinkage-growth, domain evolution rate, domain oscillation, and in-

teraction of domain time-dependence with a pattern competition regime.

2.3.1 Phase-slip phenomena

Interpretation of the subsequent experimental results requires an understanding of the pattern de-
struction/formation mechanism known as a phase-slip which will be considered in detail in this
section. On a time-fixed domain, given a phase-winding solution for the order parameter 𝑈 (𝜏, 𝝃) =

𝐶(𝜏, 𝝃) 𝑒−i𝜙(𝜏,𝝃) representing a spatially periodic pattern of amplitude 𝐶(𝜏, 𝝃) and phase 𝜙(𝜏, 𝝃) de-
pendant on slow time 𝜏 = 𝜖2𝑡 and spatial 𝝃 = 𝜖𝐱 variables with 𝜖 ≪ 1, a cell in a particular
𝑥-direction can only be created or destroyed via the Eckhaus instability (Eckhaus, 1965). This hap-
pens at the locations where the order parameter 𝑈 (𝜏, 𝝃) vanishes, Re𝑈 (𝜏, 𝝃) = Im𝑈 (𝜏, 𝝃) = 0,
so that the phase-winding spiral intersects the 𝑥-axis (Langer & Ambegaokar, 1967) and hence the
local spatial phase 𝜙(𝜏, 𝝃) is undefined, the event usually named as a phase slip. A phase slip inserts
a new wavelength (cell) into the pattern after relaxation resulting in a new pattern with a shorter
wavelength. When this wavelength falls in the Eckhaus-stable region, no further phase slips will be
triggered.

Effects of the domain time dependence (Knobloch & Krechetnikov, 2014) can enter in the above
picture in the following two ways. First, a gradual growth of the domain leads to repeated phase
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slips as the pattern tries to keep its wavelength in the preferred, Eckhaus-stable, range. Second,
since the phase slips occur on a fast timescale (the Eckhaus instability is subcritical), the number
of phase slips, that occur before stability is restored, depends on the delay in triggering the insta-
bility. Local analysis reveals that compared to the time-independent domain case time dependence
delays the occurrence of a phase slip when the domain is growing (Knobloch & Krechetnikov, 2014;
Krechetnikov & Knobloch, 2017) and accelerates when the domain is shrinking. In the presence of
dilution and convection, a modified near-critical amplitude equation of the GLE type for the order
parameter 𝑈 , derived by Krechetnikov & Knobloch (2017), possesses new solutions compared to
the standard GLE, including spatially periodic solutions with a time-dependent wavenumber and
spatially non-periodic (spatially localized) steady states. Also, the effect of the domain size oscil-
lations is always destabilizing in the sense that the band of stable wavenumbers is always reduced,
an effect that enhances with decreasing domain oscillation frequency.

A phase-slip event on a time-dependent domain is analyzed in figure 2.8 in the vicinity of the
mode change from (3, 4) to (3, 3) as an example. With the surface deformation (1.29), the complex
slow amplitude function is defined as:

𝑈 (𝜏) = 𝐶(𝜏) e−i𝜙(𝜏), (2.2)

where the real amplitude 𝐶 and phase 𝜙 depend on the slow timescale 𝜏 (Simonelli & Gollub, 1989;
Feng & Sethna, 1989). On a time-dependent domain when the timescale of the wall motion 𝜏𝑤 is
comparable with 𝜏, one can expect that phase-slip would take place and the present pattern changes
to another. To investigate such an event in detail, the real and imaginary parts of the complex
slow amplitude 𝑈 (𝜏) from the measurements need to be reconstructed as follows. First the total
amplitude 𝑎 = 𝐶(𝜏) cos

[

𝜔0 𝑡 + 𝜙(𝜏)
] and the time stamps are extracted from each movie frame;

then the amplitude envelope 𝐶 , wave frequency 𝜔0, and the phase 𝜙 are recovered (for each two fast
cycles separately). Finally, Re𝑈 and Im𝑈 are determined based on (2.2).

Our visualization technique with a high sampling rate (§2.1.2) allowed us to recover the expected
spiral behavior of𝑈 (Langer & Ambegaokar, 1967; Knobloch & Krechetnikov, 2015; Krechetnikov
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Figure 2.8: Phase-slip event on the time-dependent domain at the driving frequency 12.95 Hz, amplitude
1.4m s−2, and wall speed of 0.03mm s−1 for the mode change from (3, 4) to (3, 3). Data recovered from
the experiment is presented by different shapes: mode (3, 4) – triangle, mode (3, 3) – circles, and the phase-
slip event – diamonds; solid lines are the fitted curves through the data. In (a) the complex amplitude 𝑈 is
presented, in which the imaginary and real parts are the slow amplitudes of the above modes, (b) the total
amplitude envelope 𝐶(𝑡). Wave phase 𝜙, and its frequency 𝜔0 are presented in (c) and the inset, respectively.
(d) Representation of patterns evolution: the top row depicts the destruction of mode (3, 4) and bottom row
shows formation of mode (3, 3). On the top of each mode the corresponding time at which the given pattern
is observed is stated. The time origin is defined to be the mid-point of the phase-slip event.
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& Knobloch, 2017) properly during the mode change as presented in figure 2.8a, where different
symbols – triangles, circles, and diamonds – depict modes (3,4), (3,3), and the meniscus waves
close to the phase-slip, respectively. In addition, solid lines represent curves fitted through the data.
The mode change process on the shrinkage path, cf. figure 2.8a, starts from the stage at which mode
(3, 4) is established with constant amplitude and frequency (the measured Faraday wave frequency
is 40.67 rad s−1, which is very close to 40.68 rad s−1 expected from (1.26), cf. inset of figure 2.8c).
From the inset we can see that during the mode changing the wave frequency remains reasonably
close to half of the driving frequency.

During the phase-slip event, in corroboration with the above theoretical considerations, both
real and imaginary parts of the slow amplitude vanish, cf. figures 2.8a,b. It should be noted that
the discernible small-amplitude ≈ 0.2mm meniscus waves at the phase-slip event, depicted by
diamonds, are comparable to the accuracy of our measurement technique in this specific experiment
(due to the lower resolution of the used fast camera). Because of that and the nature of these waves,
we do not comment on the frequency/phase associated with these data points.

The phases recovered for modes (3, 4) and (3, 3) are presented in figure 2.8c. Curve fitting the
data to polynomial functions we find 𝜙(3,4) = 2.89 × 10−5 𝑡3 + 5.08 × 10−4 𝑡2 − 1.32 𝑡 − 1.2072 and
𝜙(3,3) = −0.0011 𝑡3 + 0.0532 𝑡2 + 1.0859 𝑡 − 6.1170, in which all the coefficients in front of 𝑡𝑛 have
the unit of [rad s−n]. With the introduction of the non-dimensional fast time 𝑡 = 𝜔0 𝑡, the phases
read 𝜙(3,4) = 4.3 × 10−10 𝑡

3
+ 3.07 × 10−7 𝑡

2
− 0.0326 𝑡 − 1.2072 and 𝜙(3,3) = −1.59 × 10−8 𝑡

3
+

3.21 × 10−5 𝑡
2
+ 0.0267 𝑡− 6.1170, from where the dominant terms are 𝜙(3,4) ≈ −0.0326 𝑡− 1.2072

and 𝜙(3,3) ≈ 0.0267 𝑡 − 6.1170. Thus the non-dimensional slow time scale for the phase functions
𝜏 = 𝜖2 𝑡 as defined in the GLE derivation (Cross & Hohenberg, 1993) yields 𝜖(3,4) = 0.18 and
𝜖(3,3) = 0.16. These values demonstrate a faster dependence on time compared to a stable Faraday
pattern on a fixed domain (for example, see Ciliberto & Gollub (1985a), where 𝜙(𝜏) = 0.008 𝜏 or
equivalently 𝜖 = 0.09) implying that the pattern formation time scale 𝜏 on a time-dependent domain
is enslaved by that of wall motion 𝜏𝑤. Furthermore, the data in figure 2.8c indicate a jump in phase
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Figure 2.9: Examples of (a) a direct mode change (2, 5) → (1, 5) with the corresponding amplitude change
2.12 → 1.7mm, and (b) a transverse one (3, 3) → (3, 2) with the amplitude change 1.37 → 1.6mm, both
observed during domain shrinkage (S) in the 𝑥 direction. Scalebars are in mm.

about 1.95𝜋 confirming the theoretical understanding that the phase is undefined at the phase-slip
and experiences a 2𝜋 jump.

At the fundamental level, the observed phase-slips correspond to phase transitions of the second
kind, which are characterized by scale invariance at the critical point, i.e. possess conformal symme-
try – invariance under local scale transformations, while preserving angles between any two vectors
(Francesco et al., 1997). In other words, the phenomena at the critical point become renormalizable.
Naturally, in our context the only free surface that satisfies this scale-invariance requirement is flat

thus explaining the peculiarity of the observed phase-slip phenomena when one pattern transforms
into another.

2.3.2 Transverse instability

Given the detailed mechanism of the mode change on time-dependent domains we can now focus
on patterns deformations during shrinkage and growth paths. As discussed in §2.1.1, the setup
design allows us to modulate the domain size in a time-dependent fashion in one direction 𝑥. In
the course of domain shrinkage or growth many mode changes occur; however, in this section we
are specifically focused on the ones that either have the form of (𝑚, 𝑛) to (𝑚 ± 1, 𝑛) or (𝑚, 𝑛) to
(𝑚, 𝑛 ± 1), henceforth named direct and transverse consecutive mode changes, respectively (cf.
figure 2.9). Under the experimental conditions of driving frequency 12.95Hz, amplitude 1.4m s−2,
and wall speed of 0.03mm s−1 on the domain shrinkage path 𝑅 = 1.25 → 2.50 a sequence of the
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transverse mode changes (3, 4) → (3, 3) → (3, 2) → (3, 1) was found. The direct consecutive mode
change (𝑚, 𝑛) → (𝑚±1, 𝑛) was observed only in the case of (1, 5) ↔ (2, 5) at the frequency of 11Hz
and amplitude of 1.32m s−2.

The first significant observation is that regardless of whether the domain is growing or shrinking

in the 𝑥 direction, the system tends to change its mode transversely in the 𝑦 direction (𝑚, 𝑛) → (𝑚, 𝑛±

1), whence is referred to as a transverse instability. It appears that transverse instability is intrinsic
to 2D systems. The direct consecutive mode change, (𝑚, 𝑛) to (𝑚 ± 1, 𝑛), was highly rare and the
single case (2, 5) → (1, 5) that we were able to find only happens above some specific wall speed
threshold, which is remarkably different between the domain shrinkage and growth. Namely, during
domain growth, the mode change (1, 5) → (2, 5) takes place for the wall speed above 0.18mm s−1,
cf. figure 2.11c; the opposite mode change (2, 5) → (1, 5) shown in figure 2.11c occurs during
domain shrinkage only with the wall speed above 2.4mm s−1, an order of magnitude greater. Below
these speeds intermittent patterns, either modes (2,4) or (4,1), are formed. The explanation for such
a difference between wall speed thresholds will be provided in § 2.3.4.

A basic reason for the observed transverse instability follows from the linear theory. Namely,
since subharmonic Faraday waves have their frequency 𝜔0 fixed at half of the driving one 𝜔, from
the dispersion relation (1.26), where the wavenumber 𝑘 is the modulus 𝑘 =

(

𝑘2𝑥 + 𝑘
2
𝑦

)1∕2 of the
2D wavenumber 𝐤 = (𝑘𝑥, 𝑘𝑦), it follows that 𝑘 must be fixed as well. With domain evolution in
the 𝑥 direction the wavenumber component 𝑘𝑥 gets stretched as allowed by the presence of the
domain dilution (Krechetnikov & Knobloch, 2017), and thus the wavenumber 𝑘𝑦 in the 𝑦 direction
should adjust itself accordingly to keep the magnitude 𝑘 constant leading to the transverse instability.
Intrinsically, the mechanism for the transverse mode change is due to an Eckhaus instability: while
the direct mode wavelength can be stretched/shrunk, the transverse one is pushed in the Eckhaus
unstable region entailing a phase slip and hence a creation/annihilation of a cell (provided that this
wavelength is closer to Eckhaus unstable region compared to the direct one).

Finally, it must be noted that the discussed here transverse instability differs from the transverse
amplitude modulation instability, analyzed by Ezerskii et al. (1986) and Milner (1991), which is
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zig-zag as opposed to longitudinal (Eckhaus). Namely, in the case of the 1D zig-zag instability
bending of a roll at an unstable wavelength achieves a shorter (than the original) wavelength in
the stable region (Hoyle, 2006), i.e. it is not possible to make up for a shortening of the original
wavelength as it happens in our transverse instability. In the 2D situation, as shown by Hoyle (1993)
on a square domain, the zig-zag instability is a direct equivalent of its 1D counterpart since at the
leading order the zig-zag instability of each set of rolls is decoupled from the other one; hence
the same wavelength shortening takes place. In our case, however, the mechanism driving the
transverse instability originates from maintaining the 2D pattern wavenumber as dictated by the
dispersion relation, though some wavenumber variation is allowed due to quantization on a finite
domain (Tuckerman & Barkley, 1990).

2.3.3 Irreversibility

The difference in the behavior between domain growth and shrinkage observed in the previous sub-
section brings about the broader topic of reversibility of the sequence of patterns formed on the
shrinkage versus growth path. Reversibility is understood here in the sense that patterns observed
on the shrinkage and growth paths should be the same. For the experimental conditions of driving
frequency 11Hz, acceleration 1.32m s−2, and wall speed 0.15 mms−1, we studied domain shrink-
age and growth between four distinct domain ratios: the observed patterns on each path shown in
figure 2.10 reveal that, in general, domain shrinkage-growth is not reversible. For example, in the
case 𝑅 = 1.25 ⟺ 2.50, cf. figure 2.10a, the initial and final patterns are the same, but the
shrinkage (2,5)→(3,3)→(2,4)→(1,5)→(2,2) and growth (2,2)→(1,5)→(0,0)→(4,1)→(2,5) paths are
not the reverse of each other. Such an irreversibility can also be seen in figures 2.10b and 2.10c,
while in figure 2.10d the paths are reversible. The latter exception stems from a very short (in
space) path preventing the wavenumber to be shifted far away from that on the time fixed domain,
so that we cannot expect many mode changes, especially in the low frequency regime in which mode
separation is prominent.
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(d) R=1.25 ⇐⇒ 1.50

Figure 2.10: Pattern observed on domain shrinkage (S) and growth (G) paths, for four domain aspect ratios.
Up-down arrows indicate pattern competition regime. For each image of the pattern scaled proportionally to
its instantaneous aspect ratio, the mode number is stated on its left and the number on the right denotes the
formation time difference Δ𝑡 between the given mode and the previous mode on the path. In (a) we also show
the lifetime (𝐿𝑇 ) of each pattern. The experimental fixed parameters are frequency 11.00Hz, acceleration
1.32m s−2, and wall speed 0.15mm s−1.
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Although the present system is 2D, the difference between shrinkage and growth paths can
be explained invoking the theoretical insights for 1D systems (Krechetnikov & Knobloch, 2017;
Knobloch & Krechetnikov, 2015). Domain contraction is known to cause an early phase-slip,
thereby making mode changes more frequent on the shrinkage path allowing the system to intro-
duce new patterns more frequently; on the contrary, domain growth delays the phase-slip forcing
one pattern to stretch rather than destroying and replacing it with a new one. In other words, once
the walls travel for some distance, either after starting from the rest position or after formation of
a new pattern, on the shrinking path a phase-slip occurs and a new pattern is introduced, while on
the growing path the existing pattern continues to stretch a bit further thus preventing the formation
of a new pattern: altogether this renders the shrinkage-growth process irreversible. Therefore, one
might expect shorter lifetime (𝐿𝑇 ) – time from the moment the pattern is formed to the moment it
is fully destroyed – for identical patterns on the shrinkage path compared to the growth path. Such
a behavior is confirmed experimentally, with the results shown for the case 𝑅 = 1.25 ⟺ 2.50 in
figure 2.10a, which indicates the lifetime of mode (1, 5) on the growth path being about 1.7 times
longer than that on the shrinkage path.

Another dynamic source of the observed irreversibility can be related to the sub- and super-
critical bifurcations on the opposite sides of the resonant tongue, illustrated in the static situation
in figure 2.6 and discussed at length by Simonelli & Gollub (1989). Namely, from the dispersion
relation for the surface gravity-capillary waves we know that variation of the forcing frequency 𝑓
changes the instability wavenumber and hence leads to its time-dependence, 𝑘 = 𝑘(𝑡). Due to mode
quantization on a finite domain we also know (and observe) that changing the domain size has a tan-
tamount effect. In particular, the domain size variation leads to the same type of “Doppler effect”
term in the amplitude equation (cf. equation 14 in Krechetnikov & Knobloch (2017)) as that due to
frequency detuning, cf. §2.2 in Fauve (1998). In the (𝐴, 𝑓 ) diagram, various mode superpositions
and hysteresis belong to the subcritical (left) side, 𝑓 < 2𝑓0, and the pure modes are excited on the
supercritical (right) side, 𝑓 > 2𝑓0, of the resonant tongue (Simonelli & Gollub, 1989). Although
figure 2.6 was developed on the square domain, the theoretical work (Gu et al., 1988) provides sim-
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ilar result for the rectangular geometry (Simonelli & Gollub, 1989). Thus, on a time dependent
rectangular domain we expect that in the overlap region of the tongues the subcritical region would
play a role in the reversibility of the growth-shrinkage paths. For instance, in figure 2.11a on the
shrinkage path the patterns (2,4), (3,2)+(2,4), and (2,4) are observed, which should belong to the
subcritical region of the overlapped tongues (due to the presence of the superposition), while the
pure state mode (2,4) being only present on the growing domain should be due to the excitation in
the supercritical region. Therefore, in the case of a shrinking domain modes from the subcritical
side of the resonant tongue are excited via a finite-amplitude instability (Krechetnikov & Marsden,
2009), while in the case of a stretching domain modes from the supercritical side emerge: altogether
this entails irreversibility.

The other remarkable feature that can be observed from figure 2.10 is that the patterns on the

shorter (in space) shrinkage path are embedded in the longer one. For example, the patterns (4, 1),
(3, 3) and (0, 0) on the shrinkage path 𝑅 = 1.25 → 1.75 in figure 2.10c are also included in the
patterns observed on the shrinkage path 𝑅 = 1.25 → 2.00 in figure 2.10b. Such results are ex-
pected in the light of the fact that all the shrinkage paths discussed above start from the same initial
conditions and the only difference is the final domain aspect ratio. However, there is one case, cf.
𝑅 = 1.25 → 2.00 and 𝑅 = 1.25 → 2.50 paths in figures 2.10a,b, where such an embedding does
not hold because of mode (4, 1). The only possible difference between these two paths is the wave
amplitude of the initial pattern (2, 5) affected by the wave phase at the moment when the walls start
moving. We believe that at the given experimental conditions mode (4, 1) belongs to a pattern

competition regime (cf. §2.2.4) which makes it very sensitive to the initial conditions, including the
initial wave amplitude. Another proof that mode (4, 1) belongs to the pattern competition regime
can be gleaned from the growth path in figure 2.10b and the shrinkage path in figure 2.10c, where
we only observed a weak excitation (i.e. with a low amplitude and for a very short time) of mode
(4, 1) compared to all other cases. Since we are well above the threshold for driving amplitude of the
corresponding resonance frequencies, weak excitation indicates that we are close to the marginal
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stability curve – given the geometry of intersection of stability curves, cf. figure 2.7, we are likely
in the pattern competition regime.

Further investigation of the effects of initial conditions is postponed to §2.3.5. So far we have
seen that the irreversibility of the shrinkage-growth process is dictated by the distinct differences of
the phase-slip behavior on the shrinkage path compared to the growth path. In the following section
we will explore if such a phase-slip behavior can be controlled.

2.3.4 Wall speed effects

Next, the effect of wall speed on shrinkage and growth paths is investigated. At the driving frequency
11Hz and acceleration 1.32m s−2, four distinct wall speeds were considered with the domain aspect
ratio changing as 𝑅 = 1.25 ⟺ 2.00. The first significant finding, which is evident from figure
2.11, is that reducing speed of walls reveals greater number of patterns on the path. For example,
at a wall speed of 0.15mm s−1, cf. figure 2.11b, the shrinkage path reveals four patterns and on the
growth path two patterns are formed, but at 0.03mm s−1, cf. figure 2.11a, the number of patterns
are six and seven on the shrinkage and growth paths, respectively. Thus, the lower the speed the
higher is the number of patterns observed on the path.

The above behavior can be understood as follows. Considering the discussion in § 2.3.1, the
timescale of the domain evolution plays a crucial role in pattern formation. When the domain evolves
on a slow timescale, such as in figure 2.11a, the present pattern starts to become unstable generating
a phase-slip which would either insert a new cell into the pattern or annihilate an existing cell. If the
resulting pattern with its adjusted wavelength is still unstable, several phase slips may happen until
an intermittent stable pattern is formed – this also explains why the mode formation time difference
Δ𝑡, cf. figures 2.10-2.12, varies from one mode to another. Such a process is typically fast compared
to the domain evolution timescale, cf. figure 2.8b, allowing for the formation of several patterns
on the path (Knobloch & Krechetnikov, 2014). In the case of a faster timescale of the domain
evolution, cf. figures 2.11b-c, pattern formation is naturally impeded as phase slips have no time to
develop, which justifies the observation of fewer number of patterns and the presence of flat surfaces
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on a major part of the path. Eventually, with further increase of the wall speed “freezing” of the
surface in the flat state pattern takes place, which is the only pattern present during the entire domain
shrinkage and growth process in figure 2.11d, since the domain evolution timescale surpasses that of
the pattern formation (Knobloch & Krechetnikov, 2014). Hence, “freezing” can lead to reversibility,
though trivial, by impeding the formation of any new pattern, cf. figure 2.11d. Furthermore, one can
conclude that all the patterns observed on the higher speed paths, cf. figures 2.11b-d, are embedded

in the lowest speed path, cf. figure 2.11a – this is analogous to the one-dimensional theoretical
findings of Ueda & Nishiura (2012) indicating that more complex pattern sequences can be expected
with slow domain evolution, though these authors have not demonstrated the embedding property.

The aforementioned embedding holds for growth paths between any given wall speed and all the
lower speeds studied here, e.g. the growth path with speed of 3mm s−1 is embedded into (or equal
to) the growth path with the speed of 0.3mm s−1 and so forth. However, such an embedding does not
hold for shrinkage paths for the reason being attributed to pattern competition regimes, which are
present in the growth paths as well but do not affect embeddings as explained below. As discussed in
§2.2.4, the pattern competition regime is the relatively narrow region of the intersection between two
stability curves, in which the system can be perturbed and thus moved to the single mode stability
region leading to exhibition of one of the modes, cf. figure 2.7. At the lowest speed considered
here, perturbations affecting, in particular, the boundary conditions and thus the dispersion relation
(see the discussions in §§2.1 and 2.3.7) are not strong enough to force the system outside the mode
competition region, cf. figure 2.11a, whereas at a higher speed only one of the modes (or even
none of them in the extreme case where the previous pattern on the path is “frozen”) is observed
due to stronger perturbations imposed on the system. Therefore, depending on which mode gets a
chance to exhibit itself, embedding may or may not hold. For instance, on the slowest growth path,
cf. figure 2.11a, there exists one pattern competition regime revealing modes (4,2) and (4,1), from
which (4,2) fails to exist at all higher speeds, cf. figure 2.11b-d, and also (4,1) is only present at one
higher speed studied, cf. figure 2.11b, thus allowing the embedding. Since the two components of
the pattern competition regime on shrinkage path, modes (3, 2) and (2,4), are present non-uniformly
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Figure 2.11: Patterns observed on shrinkage and growth paths with four distinct wall speeds. Up-down
arrows indicate pattern competition regime. The experimental fixed parameters are frequency 11Hz, accel-
eration 1.32m s−2, and the domain aspect ratio changes 𝑅 = 1.25 ⟺ 2.00. Same as in figure 2.10, the
images are scaled according to the instantaneous aspect ratio and the mode formation time difference Δ𝑡 is
indicated on the right side.
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at higher speeds in the sense that their existence is dependent on the wall speed (either one of them
or both fail to exist), this prevents the aforementioned embedding to hold for shrinkage path, cf.
figure 2.11. In general, the embedding discussed here is more likely to hold for the growth path
compared to shrinkage path (such as the case studied in this experiment) due to the fact that the
growth path reveals fewer number patterns which may prevent the non-uniform presence of the
pattern competition regime’s components as explained below.

Based on the discussion in section 2.3.1, for the mode change to happen the flat surface, i.e. zero
mode (0,0), needs to be formed during the phase-slip event. In figures 2.10 and 2.11 we showed
only those zero modes at which the surface remained flat for a substantial period of time, i.e. order
of 10 seconds or above. Considering the presented superpositions of modes involved in pattern
competition regimes as distinct patterns while neglecting the flat surfaces during domain shrinkage
and growth, one can see from figures 2.10-2.11 that in general the number of patterns formed on

the shrinkage path is greater than or equal to the number of patterns on the growth path. Following
the detailed discussion in §2.3.3, the shrinkage-growth process found to be irreversible due to more
frequent phase-slips on the shrinkage path and, as pointed out, such behavior leads to the formation
of greater number of patterns on the shrinkage path. Hence, this experimental observation is consis-
tent with the theoretical findings in one dimension (Knobloch & Krechetnikov, 2015; Krechetnikov
& Knobloch, 2017).

Given the above ideas, we are now in a position to explain the difference between wall speed
thresholds mentioned in section 2.3.2 for the direct consecutive mode change (1, 5) → (2, 5) and
(2, 5) → (1, 5) on the growing and shrinking domains, respectively. From figure 2.11 it is clear that
there exist various intermittent patterns on the shrinkage-growth paths between these two modes and
thus to achieve a direct consecutive mode change (2, 5) ↔ (1, 5) formation of intermittent patterns
should be prevented, i.e. freezing of the flat surface after destruction of the initial pattern needs
to happen, cf. figure 2.11d. Since the fact that on the shrinking domain more patterns compared
to domain growth are observed is equivalent to faster pattern formation timescale, to surpass it in
order to ensure pattern “freezing” a higher speed of the walls is required. Thus, the direct consec-
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utive mode change (2, 5) → (1, 5) is accomplished with a higher speed 2.4mm s−1 of the walls on
the shrinkage path, cf. figure 2.11d, compared to the reverse (growth) direction with that of only
0.18mm s−1, cf. figure 2.11c. One may ask if there is an upper bound on the wall speed: in the case
of domain growth there is none as no sloshing waves generated, but on the shrinkage path, indeed,
an upper bound is expected due to sloshing effects.

Altogether, the wall speed was found to have significant effects on patterns evolution ranging
from allowing the formation of complex sequences of patterns to impeding their formation on both
growing and shrinking paths; however, it appears that the final pattern on a path is unaffected by
wall motion, cf. figure 2.11. This impression is revisited in the following subsections.

2.3.5 Effect of initial conditions

In the next two subsections, we will address the previously raised questions regarding the effects
of initial conditions and domain evolution on the final stage pattern. In order to vary the initial
condition, while keeping all the other parameters fixed at the initial stage, one realizable possibility
is to exploit a pattern competition regime, in which more than one mode can co-exist so that a proper
initial pattern at the moment walls start to move can be selected (another, more subtle possibility is
to start from a different instant within the single mode wave period).

Two specific cases are studied and shown in figure 2.12. In the first case, cf. figure 2.12a,
corresponding to the driving frequency 12.3Hz, acceleration 1.43m s−2, wall speed 0.15mm s−1,
and domain aspect ratio of 𝑅 = 1.25, modes (4, 4) and (2, 6) are superimposed (at an arbitrary, but
fixed in a concrete realization, phase difference). Two separate runs with different starting points,
modes (4, 4) and (2, 6) + (4, 4), reveal two distinct shrinkage paths on the right and left in figure
2.12a. However, the final patterns are identical and settled right after (within 2 seconds) walls
stop moving in both cases. In the second case, when the experimental parameters were the driving
frequency 11.2Hz, acceleration 1.28m s−2, wall speed 0.15mm s−1, and the same domain aspect
ratio of 𝑅 = 1.25, the pattern competition regime exhibits a superposition of modes (2, 5) and
(4, 3), cf. figure 2.12b. Starting from each of these two modes, two distinct paths are recorded.
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Figure 2.12: (a) Two different runs with two initial modes, (4, 4) and (4, 4) + (2, 6) on the left and right
respectively at frequency 12.3Hz, acceleration 1.43m s−2, wall speed 0.15mm s−1 and the domain aspect
ratio changes as 𝑅 = 1.25 ⟺ 2.00; the amplitude ratio of the two superimposed modes (4, 4) and (2, 6) is
analyzed in figures 2.13a and 2.13b. (b) The initial modes are (4, 3) and (2, 5) on the left and right respectively
at frequency 11.2 Hz, acceleration 1.28m s−2, wall speed 0.15mm s−1, and the domain aspect ratio changes
as 𝑅 = 1.25 ⟺ 2.00; the superposition of modes (4, 3) and (2, 5) has the corresponding amplitude ratio
of 1.00 ∶ 0.95. Same as in figure 2.10, the images are scaled according to the instantaneous aspect ratio and
the mode formation time difference Δ𝑡 is indicated on the right side.
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Similar observations were made on the growth path as well; however, here we only presented the
results from shrinkage path as it better demonstrates the above fine behavior of dependance on the

initial pattern characteristics because the number of patterns formed tends to be greater than that
on the growth path (§2.3.3).

Since it is known (§2.2.4) that pattern competition regime is capable of exhibiting chaotic behav-
ior (Ciliberto & Gollub, 1984, 1985a), to assure periodicity of the system state we used two different
methods. The first approach is based on construction of the phase-space portraits corresponding to
the slow amplitude of the involved modes, cf. figure 2.13b, extracted from the reconstructed sur-
face deformation with the help of 30,000 images taken over the time interval of 600 seconds, cf.
figure 2.13a. The modes found to have their phases as functions of slow time, which is expected
(Ciliberto & Gollub, 1984, 1985a). The phases recovered for modes (4,4) and (2,6) in this stable
(time-independent) regime are linear functions of fast time, i.e. 𝜙(4,4) = 0.385 [rad s−1] 𝑡 + 0.24𝜋

and 𝜙(3,3) = 0.385 [rad s−1] 𝑡, which reveal about 𝜋∕4 phase difference between the two modes.
Again, if we introduce the non-dimensional fast time 𝑡 = 𝜔0 𝑡, then 𝜙(4,4) = 0.01 𝑡 + 0.24𝜋 and
𝜙(2,6) = 0.01 𝑡, i.e. 𝜖 = 0.1. The dependence of the phase on the time is very weak as expected
since the modes are located in the stable periodic regime, which is analogous to the result found in
literature (for example, see Ciliberto & Gollub (1985a) in which case 𝜙(𝑡) = 0.008 𝑡 or equivalently
𝜖 = 0.09). The phase difference allows for the observation of various superpositions. For instance,
the pattern labeled as (4, 4) + (2, 6) in figure 2.12a is not exactly the in-phase superposition of the
two modes even though it may appear so. The resulting phase portrait, which depicts the real part
of the two slow amplitudes 𝑎(2,6) and 𝑎(4,4) against each other, is presented in figure 2.13b revealing
no chaotic behavior and instead confirming the periodic state of the system.

Although decomposition of the total amplitude is one of the most desirable methods to study the
chaotic behavior of the involved modes, it is limited by the assumed number of modes. Therefore,
one also finds it beneficial to analyze the total amplitude 𝑎 = 𝐶(𝜏) cos

[

𝜔0𝑡 + 𝜙(𝜏)
] in (1.29) as a

single time series, especially because in the case of Faraday waves there are always a few weakly
excited modes contributing to the surface deformation and potentially affecting the dynamics of the
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Figure 2.13: Detailed study of a pattern competition regime corresponding to experimental conditions in
figure 2.12a. In (a) the decomposed real parts of slow amplitudes, 𝑎(4,4) and 𝑎(2,6), are presented. These
amplitudes are plotted against each other in (b) forming a 4-folded limit cycle. (c) The correlation function
(𝜖) obtained from a single time series of the total amplitude 𝑎 for various embedding dimensions 𝑚. The
solid black line with slope one helps to visualize the saturated slope 𝑑. (d) The Kolmogorov entropy 𝐾𝑚,
which limit for large 𝑚 is known to be less than or equal to the sum of the positive Lyapunov exponents.

system. Thus, following the work of Ciliberto & Gollub (1985a) we also resorted to the embedding
technique (Takens, 1981; Grassberger & Procaccia, 1983c; Sauer & Yorke, 1991) as the second
approach to test for a chaos through the existence of strange attractors. This technique assumes
that all the important dynamical features are contained (embedded) in a single time series, and
therefore, with the measurement of Faraday waves amplitude 𝑎(𝑡) at only a single location on the
water surface not only reveals the type of the regime regularity but also the number of Faraday
modes involved. The embedding technique determines both by measuring the dimension of the
strange attractor and that of the phase-space, respectively. A strange attractor is characterized as an
aperiodic one, in which the surrounding trajectories diverge exponentially from each other in time,
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and most importantly is an object of fractal dimension: in Euclidean space ℝ𝑚, geometrical objects
can be fully described as a set of points and their dimension 𝑑 could range from 0 to 𝑚. Standard
objects have their dimension as an integer, for instance, points in Euclidean space are represented
with dimension 𝑑 = 0, lines with 𝑑 = 1, plane surfaces with 𝑑 = 2, and volumes with 𝑑 = 3. The
simplest procedure to determine these values is the idea of box-counting dimension (Henry et al.,
2012) which indicates that the number of small cells of size 𝜖 required to cover the object scales as
𝜖−𝑑 as 𝜖 → 0. For example, the number of squares with the area 𝜖2 required to cover a surface of
the size 𝐴 is 𝐴∕𝜖2 = 𝐴𝜖−2, hence 𝑑 = 2. On the contrary, fractal dimension 𝐷 refers to the objects
with non-integer dimensions, such as strange attractors, and its significance in dynamics lies in the
fact that the fractal dimension of a strange attractor is related to the number of dynamical variables,
i.e. phase-space dimension size 𝑚, required to describe the strange attractor dynamics.

In order to determine the fractal dimension 𝐷 and the phase-space dimension size 𝑚 using only
a single time-series the embedding technique exploits the theorem proved by Takens (1981) and
Sauer & Yorke (1991). Takens embedding theorem assures that if the time-series, for our case 𝑎(𝑡),
is one of the components of a 𝑑-dimensional attractor (with 𝑑 an integer) then the topological prop-
erties such as dimension and Lyapunov exponent of the embedding, formed by the 𝑚-dimensional
embedding phase-space coordinates constructed as {𝑎[𝑡], 𝑎[𝑡 + 𝛿𝑡], ..., 𝑎[𝑡 + (𝑚 − 1)𝛿𝑡]}, where 𝛿𝑡
is an arbitrary delay, are equivalent to that of the attractor provided that 𝑚 ≥ 2𝑑 + 1. Sauer &
Yorke (1991) generalized this theorem to the case where the attractor is a strange one with fractal
dimension 𝐷.

Practically, it is very difficult to measure 𝐷 from an experimental data set (Swinney & Gollub,
1986; Ciliberto & Gollub, 1984, 1985a; Henry et al., 2012); however, there exist other equivalent
estimates of dimension 𝐷 allowing experimental measurement, the most common one being based
on the correlation dimension:

 = lim
𝜖→0

log(𝜖)
log 𝜖

≤ 𝐷, (2.3)

where (𝜖) is 𝑁−2 (with 𝑁 denoting the total number of data points) multiplied by the number of
data-point pairs in the same cell of size 𝜖, hereafter denoted by . The numerical implementation of
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the above equation has been well developed in literature and the algorithm proposed by Grassberger
& Procaccia (1983a) is the most widely used. Such an algorithm is based on the approximation that
the probability of two points being in a cell of size 𝜖 is equivalent to the probability of two points
being separated in the phase-space by a distance less than 𝜖:

(𝜖) = lim
𝑁→∞


𝑁2

≈ lim
𝑁→∞

∑𝑁
𝑖,𝑗=1𝐻

(

𝜖 − |𝐱𝑖 − 𝐱𝑗|
)

𝑁2
, (2.4)

where 𝐻 denotes the Heaviside function

𝐻(𝑡) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑡 ≥ 0,

0 if 𝑡 < 0.
(2.5)

In practical applications, the limits 𝜖 → 0 and 𝑁 → ∞ in equations (2.3) and (2.4) cannot be
realized, and therefore, it was proposed to plot (𝜖) against 𝜖 for different values of the phase-space
dimension 𝑚; then the limiting slope in the scaling region defines the value of 𝑑 (Grassberger &
Procaccia, 1983a). Accordingly, the specific value of the phase-space dimension 𝑚 at which the
slope is saturated and does not change with further increase of 𝑚, defines the dimensional size of
the phase space, i.e. the number of required dynamical variables to model the strange attractor.

It can be seen from figure 2.13c that the slope in the scaling region does not change with further
increase of 𝑚 beyond four and is saturated at the value of 1.01 ± 0.02 which corresponds to the
dimension of a unit cycle. Such findings indicate that the system is periodic and can be described
by a 4-dimensional phase-space (real and imaginary parts of the two slow amplitudes), confirming
the results established earlier based on amplitude decomposition: excitation of nearby modes is
not strong enough to affect the periodic behavior of the system. The function (𝜖) for various
𝑚, denoted as 𝑚 here, can also be used to estimate the sum of the positive Lyapunov exponents
which correspond to the degree of trajectories’ stretching. As proposed by Grassberger & Procaccia
(1983b), at a fixed 𝜖 in the scaling range (for instance, when log(𝜖) = −0.5) the Kolmogorov’s
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entropy
𝐾𝑚 =

(

log𝑚 − log𝑚+1
)

∕𝛿𝑡 (2.6)

reaches a limiting value for large 𝑚 that is less than or equal to the sum of the positive Lyapunov
exponents and 𝛿𝑡 is the arbitrary decay in the embedding defined earlier. 𝐾𝑚 is plotted in figure
2.13d: using an exponential curve fit (Ciliberto & Gollub, 1985a), the limiting value is found to
be 0.003 ± 0.001 demonstrating negligible stretching of trajectories in the periodic regime. This
adds further credence to our earlier conclusion, based on the phase-space portrait, regarding the
periodicity of the system state, which is used as an initial condition to study the dependence of the
shrinkage or growth paths on the initial pattern characteristics.

2.3.6 Effect of domain shrinkage or growth on the final stage mode

As evident from the observations we have made so far, the final stage pattern is normally insensitive
to whether domain shrinks or grows. In other words, once walls stop moving the formed pattern is
identical to the pattern on the time fixed domain of the same aspect ratio. Thus, domain shrinkage
or growth effects do not appear to be strong enough to perturb the final stage pattern provided that
the pattern is stable at the final domain size when the walls are at rest.

However, in order to reveal any possible weak effect of domain deformation on a final stage
pattern, we set experiments where the final stage pattern belongs to a pattern competition regime.
The experiments conducted had fixed experimental parameters identical to that in figure 2.12b, but
only in the reverse (growth) direction, where the domain aspect ratio changes from𝑅 = 2.00 to 1.25.
When the walls are at rest at the final aspect ratio 𝑅 = 1.25, cf. figure 2.12b, the system is located
in the pattern competition regime of modes (4, 3) and (2, 5), where various superpositions (4, 3),
(2, 5), (4, 3) − (2, 5), and (4, 3) + (2, 5) are present. Starting from the initial aspect ratio 𝑅 = 2.00

with the well-established and stable mode (2, 4), then growing the domain with various speeds, the
following observations were made. For a wall speed below 0.15mm s−1 the final stage only exhibits
mode (2, 5), i.e. the given trajectory in the phase-space is attracted to this fixed point, which does not
appear to be transient as it was observed over the period of time (several hours) considerably longer
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than a typical settling time for a pattern. Above this wall speed the system remains in the pattern
competition regime instead. Therefore, it transpires that the domain deformation, if slow enough,

may stabilize the final mode provided such a mode originally belongs to the pattern competition

regime.

At the dynamical systems level, one of the fine effects of domain evolution is that it can force
the dynamical system trajectory to get closer to one of its fixed points, allowing the system to reach
a stable state. At the physical level, this effect is due to wall motion affecting the bulk flow, which
could be different for identical Faraday wave patterns (Périnet et al., 2017). This leads to the pos-
sibility that hysteretic phenomena associated with the bulk flow structure (arising if one compares
the well-developed flow for a fixed domain size with the flow formed by moving the walls to the
same domain size) might be responsible for this memory effect – the dependence of the final Fara-
day wave pattern on the dynamical system trajectory. Since observations indicate different patterns
between the two cases – when the domain is time-fixed or evolves to the same size – the flow in the
bulk must necessarily be different, thus establishing the fact of hysteresis.

2.3.7 Effect of wall oscillation

Besides unidirectional motion, we also seek to understand the effect of wall oscillations on an ex-
cited Faraday wave mode, which in the linearized 1D stability theory is known to be always desta-
bilizing in the sense that the band of stable wavenumbers is reduced and increasing with lowering
the wall oscillation frequency (Krechetnikov & Knobloch, 2017). Here, instead, we study finite
amplitude effects of wall oscillations. Depending on the mode, the pattern is observed to able to
elongate/compress for some range of wall oscillation amplitudes 𝐴𝑤, though its (pattern) amplitude
𝐶 eventually starts to diminish gradually with increase of𝐴𝑤. To establish a direct relation between
the wall oscillation amplitude 𝐴𝑤 and the mode number 𝑛, at the fixed wall oscillation frequency of
𝑓𝑤 = 0.375 Hz the amplitude 𝐴𝑤 required to destroy patterns with the form (1, 𝑛) was studied. The
initial aspect ratio was set𝑅 = 2.00 and𝐴𝑤 increased with the step of 2 mm. Modes with 4 ≤ 𝑛 ≤ 9
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were excited at their own respective driving frequency 𝑓 and amplitude 𝐴, while the corresponding
𝐴𝑤 required to destroy each pattern is determined, cf. figure 2.14a.

One might expect that destruction of a mode takes place when the sloshing wave amplitude
𝐶𝑤 induced by the wall motion 𝐴𝑤 becomes comparable with the Faraday wave amplitude 𝐶 . The
magnitude of 𝐶𝑤 can be inferred from the forced surface-wave theory of Ursell et al. (1960):

𝐶𝑤
𝐴𝑤

= 2
cosh (2𝑘0ℎ) − 1

sinh (2𝑘0ℎ) + 2𝑘0ℎ
, (2.7)

where 𝑘0 is the real and positive root of 𝜔2
𝑤 = 𝑔 𝑘0 tanh (𝑘0ℎ). Thus, for 𝑓𝑤 = 0.375 Hz we find

𝐶𝑤 = 0.08𝐴𝑤, cf. figure 2.14a. However, the amplitude 𝐶 for each excited mode was different and
belonged to the range from 1.3 to 2mm, cf. the inset of figure 2.14a. For example, for mode (1,6)
the Faraday wave amplitude is 𝐶 = 1.85 mm and the corresponding 𝐶𝑤 = 1.12mm, while for mode
(1,8) with 𝐶 = 1.60 mm the required sloshing wave amplitude 𝐶𝑤 induced by the walls was larger
and equal to 1.44 mm. Thus, it is surmised that comparability of the amplitudes 𝐶𝑤 and 𝐶 is not the

only deciding factor in destruction of a pattern as they do not form a trend. However, figure 2.14a
indicates that with increasing 𝑛 the pattern becomes more resistant to destruction as both 𝐴𝑤 and
𝐶𝑤 increase almost linearly. The latter is easy to understand from a physical point of view: when
the number of pattern cells is higher, the driving frequency is higher as well, which means that the
inertia force required to bring the fluid into motion increases and is balanced by higher gravity and
capillary forces as per the linear free surface evolution equation 𝜁𝑘𝑡𝑡 +𝜔2

0(𝑘) 𝜁
𝑘 = 0 with 𝜔0(𝑘) given

by (1.26); in particular, for higher 𝑛 the curvature of the surface is locally larger compared to that of
a lower mode number pattern and thus the surface tension force is stronger. Therefore, it requires a
larger amplitude sloshing wave to overcome higher forces involved in the Faraday wave formation.

Since wall oscillations can be considered as pumping energy into the system – with increase
in the frequency of the walls 𝑓𝑤 energy injected to the system increases – one can expect that the
pattern under consideration would eventually break down at high enough frequencies. Therefore,
to gain more insight into the effects of domain oscillation we performed another set of experiments,
in which the minimum frequency 𝑓𝑤 required to destroy patterns of the form (1, 𝑛) at the fixed wall
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Figure 2.14: (a) Amplitude of wall oscillation𝐴𝑤 and corresponding wave amplitude𝐶𝑤 induced by the walls
at the wall oscillation frequency 𝑓𝑤 = 0.375Hz required to destroy a mode (1, 𝑛); Faraday wave amplitude
𝐶 (triangles) and the amplitude of the tank vertical oscillations (squares) are presented in the inset. (b) The
minimum 𝑓𝑤 required to destroy a pattern at the fixed wall amplitude 𝐴𝑤 = 6mm. Each mode is excited at
the respective driving frequency 𝑓 (cf. inset) and amplitude with initial domain aspect ratio of 𝑅 = 2.00.

amplitude 𝐴𝑤 = 6mm was measured, cf. figure 2.14b. The non-monotonic behavior of 𝑓𝑤 with
respect to 𝑛 can be partially explained based on the stability properties of the excited mode (1, 𝑛).
Namely, in the course of the experiments we noticed that the required frequency 𝑓𝑤 depends on how
well-established a pattern is, i.e. on the location of the excited mode with respect to the marginal
stability curve: when a pattern is excited at a driving frequency and amplitude that are very close
to the stability boundary, it is very sensitives to any perturbation and can be easily destroyed. For
example, the excited mode (1, 6) is fairly sensitive to any perturbation and destroyed at a lower
frequency compared to mode (1, 7), which was observed to be resilient against larger amplitude
perturbations.

2.3.8 Draining water tank

This section provides an example of a time-dependent domain with no dilution or advection ef-
fects. Namely, there also exist systems where domain change in one spatial direction leads to pat-
tern wavelength change in another – though different from the transverse instability discussed in
§2.3.2 – propagation of waves on the surface of a leaky shallow tank as pointed out by Knobloch
& Krechetnikov (2015). Thus, as water slowly drains out of the tank, the frequency of free surface
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waves changes according to (1.26). Conversely, in the case of Faraday waves, from the dispersion
relation (1.26) one can expect that due to variation of depth ℎ with time the mode wavenumber 𝑘
would change as the frequency of the wave 𝜔0 is fixed by the driving frequency 𝜔. In either case no
dilution or advection terms are present in the governing equations because the domain changes in
a direction orthogonal to the direction in which the waves are formed. A different example of such
systems is provided by pattern formation in melting boundary convection (Vasil & Proctor, 2011).

By conducting an experiment where the water depth is controlled with a syringe pump, with
the driving frequency 12.2Hz, amplitude 1.62m s−2, domain aspect ratio of 𝑅 = 1.25, and a slow
draining rate of 5mlmin−1, four distinct patterns were observed as the depth was reduced from
12.0mm to 9.5mm, cf. figure 2.15. In theory, based on the dispersion relation for the experimental
variables stated above, one can expect that with the decrease of depth the wavenumber would in-
crease. Such a behavior is confirmed in figure 2.15, where the patterns are observed in the order of
increasing wavenumber starting with mode (3, 5) with 𝑘 = 130.89m−1 at full depth and ending with
𝑘 = 136.13m−1 corresponding to mode (2, 6) at ℎ = 9.5mm. It should be noted that in figure 17 for
the superposition pattern (4, 4) + (2, 6), cf. §2.2.4, the amplitude of mode (4, 4) is about twice that
of mode (2, 6). With further decrease of depth, this pattern first reduces to mode (4, 4) and then to
(2, 6) as per the dispersion relation (1.26). At the depths below 9.5mm, unsteady random and then
meniscus waves appeared as the vertical acceleration is no longer sufficient to excite any Faraday
wave pattern.

While from a theoretical point of view, in the inviscid approximation mode change is considered
to be non-smooth, the presence of viscosity prevents abrupt changes from one mode to another; thus
a new pattern is formed while the other one phases out with an intermittent flat surface, as we saw
in §2.3.1. The remarkable behavior observed in this experiment, which is distinctly different from
the previous ones, was the formation of an intermittent flat surface for a considerable amount of
time ∼ 10 s between all the mode changes compared to most mode changes on the horizontal time-
dependent domains happening over the time interval ∼ 1 s. Such behavior indicates that patterns
cannot remain stable very far from the respective depth dictated by the dispersion relation unlike
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Figure 2.15: Patterns observed in the draining water tank. The depth of water is denoted by ℎ and the
experimental fixed variables are driving frequency 12.2Hz, amplitude 1.62m s−2, domain aspect ratio of
𝑅 = 1.25, and draining rate of 5mlmin−1.

the case of time-dependent horizontal domain in which typically one pattern is stretched beyond
that permitted by a time-fixed domain until a phase slip occurs and the next pattern is formed. In
the latter case, pattern stretching is accompanied by wavenumber shifting given that the pattern
remains stable beyond the wavenumber allowed by dispersion relation on the time-fixed domain.
Therefore, pattern stretching or equivalently wavenumber shifting is found to be less noticeable
in systems such as a draining water tank, which is due to the absence of dilution and advection
effects making each pattern to form and remain stable only in a narrow range of depths around the
time-fixed depth imposed by the dispersion relation. This observation brought us to the conclusion
that pattern formation in this type of systems should be reversible (on the filling-draining paths, cf.
figure 2.15) unlike in systems with dilution/convection, where frequent phase-slips on a shrinking
domain and prominent pattern stretching on a growing domain stipulate irreversibility (§2.3.3).
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2.4 Conclusions

In this work, we first investigated the mechanism of mode change by studying the phase-slip phe-
nomena experimentally and observed that, as expected from phase transition theory, the mode
change occurs when the complex slow amplitude of a Faraday wave goes through zero (§2.3.1).
Moreover, from this experiment we found that the slow evolution time scale 𝜏 of the Faraday wave
phase and amplitude is enslaved to that of the walls motion 𝜏𝑤. The most remarkable finding in
the mode change phenomena on time-dependent domains is the transverse instability (§2.3.2) or-
thogonal to the direction 𝑥 of the domain deformation, which is more common than the direct one
and explained as follows. Since subharmonic Faraday waves have their frequency 𝜔0 fixed at half
of the driving frequency 𝜔, the dispersion relation (§1.26) entails that the wavenumber 𝑘 must be
fixed as well. With domain evolution in the 𝑥 direction the wavenumber 𝑘𝑥 gets stretched due to
dilution (Krechetnikov & Knobloch, 2017), and thus the wavenumber 𝑘𝑦 in the 𝑦 direction should
adjust itself accordingly to keep 𝑘 constant leading to the transverse instability.

Next, we considered sequences of mode changes on the shrinkage and growth paths (§2.3.3),
which led to several findings. First, domain shrinkage-growth is irreversible with the number of
patterns formed on the shrinkage path being greater than or equal to the number of patterns on the
growth path. This is dictated by the fact that phase-slips are more frequent on shrinkage paths allow-
ing the formation of larger number of patterns, while domain growth delays the phase-slip allowing
a pattern to be stretched (Krechetnikov & Knobloch, 2017). Second, patterns on a shorter shrinkage
path are embedded in longer ones provided the starting points for such paths are identical. Third,
in the regime of the domain size oscillation (§2.3.7), we found that the pattern resistance against
destruction depends not only on the amplitude of induced sloshing waves being comparable with
that of the Faraday waves, but on other factors as well, e.g. patterns with a shorter wavelength are
more resistant to destruction. Furthermore, depending on the location of the observed mode w.r.t.
the marginal stability curve the pattern could be either easily disturbable or, conversely, insensitive
to the perturbation caused by walls oscillation.

58



We also investigated the effect of wall speed (domain size evolution rate) on the pattern for-
mation (§2.3.4). It was found that reducing the speed of walls reveals a larger number, i.e. more
complex sequences, of patterns on the path, because the slower the domain evolution timescale,
the more phase-slips either insert new cells into the pattern or annihilate the existing ones – the
process typically faster compared to the domain evolution timescale. Conversely, extreme speed of
walls may cause pattern freezing because the domain growth timescale surpasses that of the pattern
formation. Naturally, all the patterns observed on higher speed paths are embedded in the lowest
speed path since the lower evolution rate reveals a larger number of intermediate patterns.

To figure out other deciding factors influencing the sequences of patterns observed on evolving
domains, we considered the effect of initial pattern characteristics starting from a pattern competi-
tion regime and discovered different sequences of patterns on the paths (§2.3.5). On the other hand,
the effect of domain evolution on the final stage mode was found by chosing the final domain aspect
ratio to belong to a pattern competition regime: if the domain evolution is slow enough, it may se-
lect either of the pattern competition modes as a final one (§2.3.6). We explained this phenomenon
with the hysteretic behavior of the bulk flow field.

The last finding of the paper concerns reversibility of the domain shrinkage-growth in the ab-
sence of advection and dilution effects as demonstrated by performing an experiment in which the
horizontal domain size is fixed but the fluid layer depth is varying (§2.3.8). We concluded that
pattern stretching and equivalently wavenumber shifting is less prominent in the systems without
advection and dilution effects (such as a draining tank), compared to the systems in which the advec-
tion and dilution effects are present (such as a tank shrinking/growing in the horizontal direction),
thus allowing the pattern-changing process to be reversible.

Among the questions requiring further study are on the theoretical understanding of the hys-
teretic behavior of the bulk flow leading to the observed effects of domain shrinkage or growth
on the final stage mode. The exact Eckhaus-type mechanism responsible for transverse instability
needs to be established as well. Finally, given that the pattern competition regime may involve not
only regular, but also chaotic motion (Ciliberto & Gollub, 1984) and that domain deformation can
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isolate one of the competing modes in the regime which would otherwise correspond to pattern
competition on a time-fixed domain of the same size, it becomes clear that domain deformation
may also serve as a mechanism regularizing chaotic motion.
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Appendices

2.A Effects of gaps underneath the moving walls

(a)

d0

V

v
h0

h

Lx/2L0

(b) 0.1ms−1 (c) 0.01ms−1

Figure A2.1: (a) Optimization of the gap height 𝑑0 under moving walls (half of the tank is shown). (b) Flow
field observed in the bulk between a maximum and an adjacent minimum of the free surface deformation 15
mm apart before domain shrinkage and (c) 25 mm apart after domain shrinkage. Note that when the domain
is shrinking in the 𝑥 direction, the wavelength in the 𝑥 direction may increase: for instance, in figure 2.10a
the mode change (3, 3) → (2, 4) indicates that the mode number in the 𝑥 direction decreased which means
the wavelength in that direction increased (as the change in the domain size is not commensurate with the
change in the wavelength) and the distance from a maximum to the adjacent minimum of the free surface
deformation has increased accordingly. In both (b,c) the wave amplitude is 1.5mm.

An optimization of the gap height 𝑑0 was performed with the goal to maintain the layer depth ℎ
within the accuracy ±0.1mm required by the sensitivity of Faraday waves in our setup, while in-
troducing the minimal disturbance to the roll structure in the bulk. Apparently, the former requires
one to enlarge the gap, while the latter to minimize it. Just to illustrate the idea of optimization with
reference to figure A2.1a, let us consider the case when the horizontal dimensions of the water layers
are much larger than the distance traveled by the wall at speed 𝑉 , 𝐿0 ∼ 𝐿𝑥 ≫ 𝑉 𝑡, and, naturally,
that the water layer depth considerably exceeds the gap height ℎ ≫ 𝑑0; the variables are explained
in the figure. Then the time 𝑡1 it takes to create a disbalance in the heights ℎ − ℎ0 between water
levels on the left and right of the wall and the time 𝑡2 it requires to level off the difference ℎ − ℎ0

created by the wall motion can be estimated as

𝑡1 ∼ (ℎ − ℎ0)𝐿𝑥∕(ℎ𝑉 ) and 𝑡2 ∼ (ℎ − ℎ0)𝐿𝑥∕(𝑑0𝑣), (A2.1)
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(a) (b) (c) (d)

Figure A2.2: Top view of Faraday wave modes (2,5) and (17,11) excited at 𝑅 = 1.25 with 2mm gap un-
derneath walls in (a) and (c). In (b) and (d) there is no gap. Modes (2, 5) and (17, 11) were excited at the
frequencies 11.00 and 32.55Hz and accelerations 1.32 and 3.49m s−2, respectively. Patterns in (c) and (d)
were captured at different instants on the wave period. It should be noted that at high driving frequencies,
patterns of the sine-type are formed such as the mode (17, 11) presented in (c,d).

respectively; here the escape velocity 𝑣 =
√

𝑔(ℎ − ℎ0) through the gap is driven by the hydrostatic
pressure difference. The optimum corresponds to 𝑡1 ≥ 𝑡2. Taking 𝑑0 ∼ 1mm, ℎ − ℎ0 ∼ 1mm, and
𝑉 ∼ 1mms−1 we find 𝑡1 ∼ 10 s ≥ 𝑡2 ∼ 1 s, i.e. no significant disbalance ℎ− ℎ0 occurs. The escape
velocity for this choice of parameters is 𝑣 ∼ 10−1 ms−1, which yields 𝑅𝑒 = 𝑂(103), i.e. the flow
is in the inviscid regime and no significant dissipation takes place in the gaps. Similar conclusions
persist down to and below ℎ − ℎ0 ∼ 0.1mm.

To confirm that the gaps underneath walls do not affect the flow field regime in the bulk, which
may in turn perturb the Faraday patterns, three sets of experiments were performed. First, for the
domain aspect ratio of 𝑅 = 1.25 two modes with large and small wavelengths have been excited
with and without the 2 mm gap underneath walls, cf. figure A2.2. For both patterns no visible
differences were identified between the two cases.

Second, the shrinkage-growth process previously presented in figure 2.11b was repeated without
any gaps underneath walls by draining the water with the syringe pump from the inside of the
domain. The results indicate no differences in the sequence of formed patterns and only minor
changes in the formation time difference Δ𝑡 not exceeding 5 s, which corresponds to a change in the
domain size of only 1.5mm (Δ𝐿𝑥∕𝐿𝑥 ≃ 1%) at the given walls velocity of 0.15mm s−1.

Third, ideally the gaps would have no effect on Faraday waves if the deep water conditions are
met, i.e. in the inviscid limit, tanh 𝑘ℎ = 1. Since the excited wavenumbers in the cosine-regime,
which was used throughout the experiments, had the range of 100 to 160 m−1, cf. figure 2.4a and
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its inset, with the depth of ℎ = 12mm we then get 0.83 ≤ tanh (𝑘ℎ) ≤ 0.95 implying that we are
relatively close to the deep water condition. To this end, we also visualized the velocity field using
the PIV system (§2.1.2) – figures A2.1b,c, however, indicate that the particle velocities near the
bottom wall have significant horizontal components, so the deep water condition is not fully satis-
fied. Having said that, the recent study by Périnet et al. (2017) shows that when Faraday waves are
excited at the surface, there exist three possible types of streaming flow regimes in the bulk catego-
rized based on their appearance as counter-rotating rolls, mustache-shaped, and irregular patterns,
respectively. Streaming itself is the result of complex mechanisms that couple the flow inside the
bulk and at the boundary layers: (i) the oscillatory flow in the bulk induces an oscillating boundary
layer; (ii) the oscillating boundary layer exerts a feedback on the bulk flow whose steady compo-
nent originates the streaming; (iii) the streaming is diffused into the bulk due to a viscous process.
From our PIV measurements we observed that the bulk regime type is the same (mustache-shaped)
before and after the motion of the walls as presented in figures A2.1b and A2.1c, respectively. In
other words, although there exist minor flow underneath the walls, the flow field regime in the bulk
does not change during time-dependent domain experiments, and thus the gaps leave Faraday waves
unaffected.

2.B Meniscus waves

Due to the semi-pinned boundary condition in our experiments it is impossible to prevent the for-
mation of meniscus waves: however, we have not observed substantial excitation of these waves
after the transient period of settling Faraday waves patterns. In fact, recent experimental work of
Batson et al. (2013) shows that meniscus exhibits measurable interactions with harmonic Faraday
waves rather than subharmonic ones at low frequencies.

In our experiments the contact line can move along the wall up to 0.7mm, but the maximum am-
plitude of the meniscus waves observed in the middle of the container of size 150×150×12.7mm3

is only 0.2mm. To reconcile this, let us consider the basic physics of the waves generated by the
menisci motion and their dissipation. While it is not straightforward to separate Faraday and menis-
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cus waves in the setting at hand, for small amplitude oscillations one may consider them as a linear
superposition with the meniscus waves generated by vertical oscillations of a wall in the stationary
container – the setup studied by Hocking (1987a,b). The key effect responsible for higher amplitude
at the wall is purely geometric – while the interface meets the wall at the (dynamic) contact angle,
the shape of the meniscus waves away from the wall is dictated by the capillary-gravity dispersion
relation (1.26) and hence, based on mass conservation, the wave amplitude may decay significantly
from that at the wall over short distance especially for perfect wetting conditions, when the contact
line rises the most.

Besides the geometric effect, there is also dissipation at the contact line and due to bulk viscosity,
but it proves to be subdominant. The following estimate of the waves decay due to bulk viscosity
alone shows negligible effect. The amplitude of the meniscus wave in the center of the water tank
can be estimated using the relation 𝜁𝑐 = 𝜁0𝑒−𝛾𝑥 (Lamb, 1994), where the spatial decay rate 𝛾 in the
deep water case is calculated as 𝛾 = 2𝜈𝑘2∕𝑈 , with 𝑈 = 𝑉 − 𝜆 d𝑉 ∕d𝜆 being the group velocity of
the waves calculated from the velocity 𝑉 = 𝜔∕𝑘 of a wave of frequency 𝜔 = 𝜔0 and wavenumber
𝑘 = 𝑘𝑐 excited at that frequency, i.e. 𝜔2

0 = 𝑔𝑘𝑐 + 𝜎𝑘3𝑐∕𝜌. For the typical driving frequency of
11Hz, 𝑘𝑐 will be ≈ 296 m−1. Thus, the equation above yields 𝛾 = 2m−1, which is not sufficient to
explain the observed decay. Accounting for a finite depth in our case does not change this estimate
significantly (LeBlond & Mainardi, 1987).

2.C Damping sources and effects

It is well-known that damping proved to be very difficult to account for properly in the Faraday
wave phenomena (Gollub, 2006), especially for low viscosity fluids where contributions of surface
contamination and contact line dissipation may not be negligible (Bechhoefer et al., 1995). At the
very basic level, introduction of the linear damping term 2 𝛾 �̇� in (1.1) leads to the replacement of 𝜖
by (𝜖2−𝛾2)1∕2 in the subharmonic instability range (§1.2), i.e. the subharmonic response is possible
only if the driving amplitude exceeds the dissipation effect 𝜖 > 𝛾 .
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The first systematic stability studies of Faraday waves incorporating bulk viscosity were carried
out by Kumar & Tuckerman (1994) and Kumar (1996) using Floquet analysis, both assuming lat-
erally unbounded domain confirming the key effect that a finite damping requires a finite non-zero
driving acceleration for the instability to occur. Once damping is introduced, the linear amplitude
equations for normal modes become coupled, though for low viscosity fluid (𝜈𝑘2 ≪ 2𝜔0), as in
our case, one can compute the effect of viscosity perturbatively and recover a decoupled Mathieu
equation for each mode (Benjamin & Ursell, 1954).

Theory of Kumar & Tuckerman (1994) and Kumar (1996) accounting for bulk damping was
tested only experimentally by Bechhoefer et al. (1995) with a highly viscous fluid in a finite-size
container and showed agreement if the ratio ℎ∕𝐿 is small enough and the frequency is sufficiently
high, so that other sources of damping become less crucial compared to that of bulk. In order
to test the theory at low frequencies, Batson et al. (2013) came up with an experimental setup in
which the primary dissipation arises from damping in the bulk by having the stress-free boundary
condition at the sidewalls satisfied using two immiscible liquids (to be in accordance with the Kumar
& Tuckerman (1994) theory). Their experimental results were in excellent agreement with the
theory and made them able to comment on various sources of dissipation in previous experimental
studies of Benjamin & Ursell (1954), Ciliberto & Gollub (1985a), and Henderson & Miles (1990).
For instance, they showed that the contact line mobility represents a substantial source of dissipation.
However, to date there is no rigorous theory that accounts for dissipation due to moving contact
lines, boundary layers near walls and corners, meniscus waves, and bulk viscosity (Kidambi, 2009).
Instead, an empirical approach to integrate the wall effects was offered by Christiansen et al. (1995),
who incorporated damping as −2 𝛾t �̇� in the amplitude equation for the order parameter𝑈 ; here 𝛾t is
the total damping coefficient determined empirically and accounting for dissipation in the bulk, the
boundary layers, at the free surface, and the moving contact lines based on estimates from Milner
(1991) and Miles (1967).

The total dissipation rate 𝛾t of a single mode in an experiment can be evaluated based on the
idea (Douady, 1990; Christiansen et al., 1995) that a minimum acceleration 𝐴 required to excite a
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specific pattern of wavenumber 𝑘 is proportional to:

𝛾t = 𝑘𝐴 tanh (𝑘ℎ)∕(4𝜔0). (A2.2)

Since the data presented in figure 2.4a are close to the minimum of each tongue, 𝛾t varies between
0.58 and 0.66 s−1 as the driving frequency changes as per that figure. We believe such values
correspond to reasonably low dissipation rates, in particular, in the sense that they do not upset the
monotonic behavior of the wavenumber selection, cf. §2.2.2, as opposed to some of the previous
studies (Douady, 1990). Also, direct comparison of numerical values of 𝛾t for various single modes
with available experiments in literature, in which the domain is rectangular and water is used as the
working fluid, indicates the low dissipation in our system. For instance, the damping rate for mode
(7, 1) from the Douady (1990) experiment (with the domain size of 65×15mm2 and fluid layer depth
of 4.85mm) was found to be 2.89 s−1 considerably above that in our experiment. To further justify
our claim, we need to consider various dissipation sources (in the bulk, in the boundary layers at the
sidewalls and bottom, at the air-liquid interface, moving contact lines, and in the excited meniscus
waves) in the cosine regime, cf. figure 2.4a.

Following the work of Kumar (1996), the damping rate due to the bulk dissipation for low
viscosity fluid (𝜈𝑘2 ≪ 2𝜔0) for Faraday waves in a container of a finite depthℎ is 𝛾bulk = 2(2𝜔0𝜈)1∕2𝑘

∕ sinh(2𝑘ℎ) rather than 2𝜈𝑘2 as often assumed (Ezerskii et al., 1986; Milner, 1991; Christiansen
et al., 1995). The latter proves to be one of the primary contributions in our experiment and varies
non-monotonically from 0.26 to 0.12 s−1 for the driving frequencies in figure 2.4a. However, as the
inset in figure 2.4a indicates, the bulk dissipation alone does not account for dissipative effects as
otherwise, as per the theory of Kumar & Tuckerman (1994), the measured wavenumbers should
be larger than the ones predicted by the inviscid theory (Benjamin & Ursell, 1954) – instead they
are noticeably lower, which indicates that the effect of boundary conditions and other sources of
dissipation is dominant compared to that of the bulk. Increase of critical wavenumber with viscosity
may seem counterintuitive as the frequency decreases with dissipation rate 𝛾 as 𝜔2

d = 𝜔2
0 − 𝛾

2 and
hence from the dispersion relation (1.26) one might expect that the corresponding wavenumber
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should decrease as well. However, the work of Kumar & Tuckerman (1994) showed the opposite,
which is due to 𝛾 being dependent of the wavenumber 𝑘 via 𝛾 = 2𝜈𝑘2 – at short enough wavelengths
the viscous dissipation dominates and overturns the linear and cubic growth of 𝜔2

0 with 𝑘 due to
gravity and surface tension, respectively. The latter is expected as at sufficiently short wavelengths
𝜆 the viscous timescale 𝜆2∕𝜈 becomes comparable with that of the wave 2𝜋∕𝜔0.

The energy loss rates 𝛾wall = 𝜔0 𝛿𝜈∕𝐿 ≈ 0.02 s−1 at sidewalls of length 𝐿 due to the (thin)
Stokes boundary layers of thickness 𝛿𝜈 and at the bottom 𝛾bottom =

(

𝜔0 𝜈∕2
)1∕2 𝑘∕ sinh (2 𝑘ℎ) ≈

0.06 s−1 are estimated based on the works of Miles (1967); Henderson & Miles (1990); Milner
(1991); Christiansen et al. (1995). None of such estimates revealed value greater than 0.1 s−1 for
sidewalls and bottom damping rates combined in our experiment. However, rectangular cells are
known to have higher dissipation rate compared to cylindrical ones (Henderson & Miles, 1990),
which can be attributed to the loss of energy at the corners of a rectangular tank where boundary
layers are thicker.

Several estimates are available for dissipation rate 𝛾surface at the free surface, most of which are
based on the work of Miles (1967) and confirm that in the case of contaminated surface the energy
loss may even surpass that in the bulk by a factor of 4 based on empirical measurements (Milner,
1991; Christiansen et al., 1995), thus giving about 1 s−1, well above 𝛾t in our case. Also, using
the formula 𝛾surface = 𝜔0 𝛿𝜈 𝑘 from Christiansen et al. (1995), based on the assumption that the
interface is rigidified (completely covered with a contaminant) yields 0.56 s−1 indicating that even
if the interface is affected by adsorbed surface active substances, the contamination in our case is far
from saturation. Most importantly, presence of Marangoni stresses due to surface tension variations
along the interface should increase the critical wavenumber (Kumar & Matar, 2004), which is in
contrast to the observations, as per the inset in figure 2.4a.

Lastly, if one sums up the estimates for the damping sources the net result implies that there
should be other considerable sources of dissipation, which, based on the previous discussion, should
be due to the contact line mobility. While it is known that the damping from the moving contact
line under certain conditions can exceed that produced by viscosity (Hocking, 1987a), there is no
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rigorous theory. In our experiment due to the adoption of semi-pinned boundaries (§2.2.1), the
contact lines have the freedom of moving up to 0.7mm which should cause energy losses. The
corresponding estimates available in literature, e.g. equation (13) in Christiansen et al. (1995) and
equation (C.7) in Milner (1991), with the slip length 𝑠 = 10 ∀ yield

𝛾cl = 16𝜔0 log(𝛿𝜈∕𝑠) 𝑘 𝛿2𝜈∕(𝜋 𝐿) = 0.04 s−1, (A2.3)

which is much lower compared to the expected values from the experiments in literature, as has
been investigated thoroughly by Batson et al. (2013). For example, the experiment conducted by
Benjamin & Ursell (1954) in a sealed cylindrical water tank, where they had mode (1,2) excited,
revealed a total damping rate of about 0.97 s−1 as extracted from figure 6a in Batson et al. (2013) or
figure 3 in Benjamin & Ursell (1954). Although the condition of a low-viscosity fluid 𝜈𝑘2 ≪ 2𝜔0

holds in their experiment, 𝑘ℎ is much larger than unity due to the large depth ℎ of about 25.4 cm,
demonstrating that their experiment was conducted in the infinite depth regime, so that the bulk
damping is simply 2𝜈𝑘2 = 0.08 s−1. Damping at the bottom 𝛾bottom = (𝜔0𝜈∕2)1∕2𝑘∕ sinh(2𝑘ℎ) is
negligible, since the fluid in motion is not in contact with the bottom surface given that the surface
motion has the penetration distance of 𝑘−1 when 𝑘ℎ ≫ 1 (Cerda & Tirapegui, 1998). Damping at
sidewalls due to the thin boundary layer is 𝛾wall = 𝜔0𝛿𝜈∕𝐿 = 0.14 s−1. The remaining sources of
damping could be either at the surface or due to the motion of the contact line; since the water tank
was sealed in Benjamin & Ursell (1954) experiment, it is unexpected to have the damping at the
free surface as a prominent contribution to the total energy loss. Therefore, it can be concluded that
the contact line contribution should be the chief source of dissipation as the sum of all the other
damping rates discussed above (≈ 0.22 s−1) is much less than the total damping of 𝛾t = 0.97 s−1.
However, for the experimental variables of Benjamin & Ursell (1954), the relation (A2.3) yields the
value of 𝛾cl = 0.24 s−1, which is clearly an underestimate since 𝛾t − 𝛾bulk − 𝛾bottom − 𝛾wall ≃ 0.75 s−1.
We believe that this is also the case in our experiments due to similarity in the physical conditions.
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2.D Common optical axis FTP for free surface waves

(a) (b)

Figure A2.3: (a) and (b) depict parallel and common-optical axis geometry implementation of FTP, respec-
tively.

As mentioned, we resorted to Fourier transform profilometry to reconstruct an accurate time
history of the Faraday pattern three-dimensional landscape. Such a method is based on an optical
system, cf. figure A2.3a, composed of a video projector displaying a grating pattern on the surface
and a camera recording this pattern as the reference image. The deformed grating pattern following
the deformation of the surface later is then recorded and compared to the reference image in order to
produce a phase-shift map, from which the height of the deformed surface is reconstructed through
an equation relating the phase difference to the object’s height.

In an effort to improve the accuracy and applicability of the method we came up with a common-
optical axis geometry implementation of FTP, cf. figure A2.3b, along with an appropriate phase-
height relation. To make the common-optical axis geometry possible, i.e. bringing the camera and
projector optical axes together, a semi-transparent mirror (standard 50/50 beam splitter) positioned
precisely at 45 degrees, with respect to the projector and/or camera axis, was employed. In the
following the derivation of the phase-height relation will be detailed.
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Figure A2.4: Geometry of the optical paths (Maurel et al., 2009). In this figure,𝑂𝐶 and𝑂′𝐶 ′ are equivalent
to 𝐿𝑐 and 𝐿𝑝: the distances of the camera and the projector from the unreformed surface, respectively. Also,
the distance 𝐷 between camera and projector here is denoted by 𝑐𝑐′. Dashed lines 𝐶 ′𝑏0 and 𝑏0𝐶 are the
projections of the rays 𝐶 ′𝑏 and 𝑏𝐶 on the 𝑥 = 0 plane, and therefore, their inclination with respect to the line
𝑂𝐶 ′ and 𝑂𝐶 are measured as −𝛼 and −𝛽, respectively. 𝑅 denotes the reference plane and the camera object
plane, whereas 𝐼 represents the projector image plane.

In order to understand how the surface deformation can be reconstructed using the phase-shift
map – produced from the comparison of the two images – one needs to investigate the recorded
phase of light intensity at a given pixel of the camera image, and correspondingly the path of light
reaching that pixel while being reflected from the flat surface in the first image and the deformed
surface in the second one (Maurel et al., 2009). As per figure A2.4, the intensity of the light arriving
at the point𝐴 on the image plane𝑋𝑌 is imposed by the intensity of the point𝐴′ on the grating plane
𝑋′𝑌 ′ when the ray is reflected from the reference plane𝑅 at the point 𝑎, whereas in the second image
the reflected light from the deformed surface Σ at the point 𝑏 – that reaches the same pixel 𝐴 on the

70



camera – is originated from the point 𝐵′. Therefore, the recorded phase can be expressed as

𝜑0(𝑋, 𝑌 ) = 𝜑𝐴′(𝑋, 𝑌 ) =𝜔𝑝𝑌 ′
𝐴′ , (A2.4a)

𝜑(𝑋, 𝑌 ) = 𝜑𝐵′(𝑋, 𝑌 ) =𝜔𝑝𝑌 ′
𝐵′ , (A2.4b)

where 𝜔𝑝 is the grating pattern frequency in the 𝑋′𝑌 ′ plane and is well-defined and known by the
design. In order to determine the deformation ℎ𝑏, cf. figure A2.4, at every point over the surface
with the help of the phase difference Δ𝜑(𝑋, 𝑌 ) = 𝜑−𝜑0 = 𝜔𝑝

(

𝑌 ′
𝐵′ − 𝑌 ′

𝐴′

), it is required to find an
expression for 𝑌 ′ in terms of 𝑋, 𝑌 , ℎ𝑏, and other involved geometrical parameters.

Based on the elementary optics and considering the light paths inside the camera and projector,
cf. figure A2.4, it is evident that

tan 𝛼 =
𝑌 ′
𝐵′

𝑓𝑝
, (A2.5a)

tan 𝛽 = 𝑌
𝑓𝑐
, (A2.5b)

where 𝑓𝑝 and 𝑓𝑐 are the focal length of the projector and the camera, respectively. On the other
hand, based on the optical paths outside the camera and the projector, another set of expressions for
tan 𝛼 and tan 𝛽 can be derived: first tan(𝜃 − 𝛼) can be written as (𝐷 + 𝑦𝑏)∕(𝐿𝑝 − ℎ𝑏) and therefore,

tan 𝛼 =
(𝐿𝑝 − ℎ𝑏) tan 𝜃 − (𝐷 + 𝑦𝑏)
(𝐷 + 𝑦𝑏) tan 𝜃 + 𝐿𝑝 − ℎ𝑏

∶ (A2.6)

whereas for the angle 𝛽 we can write:

tan 𝛽 = −
𝑦𝑏

𝐿𝑐 − ℎ𝑏
. (A2.7)
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Now an expression for 𝑦𝑏 can be deduced using the above definition of tan 𝛽 and the one in equation
(A2.5b)

𝑦𝑏 = −
𝑌 (𝐿𝑐 − ℎ𝑏)

𝑓𝑐
, (A2.8)

and accordingly with the substitution of the above result into (A2.6) and remembering tan 𝛼 =

𝑌 ′
𝐵′∕𝑓𝑝 we obtain

𝑌 ′
𝐵′ = −𝑓𝑝

𝐷 − (𝐿𝑐 − ℎ𝑏)𝑌 ∕𝑓𝑐 − tan 𝜃(𝐿𝑝 − ℎ𝑏)
𝐿𝑝 − ℎ𝑏 + tan 𝜃[𝐷 − (𝐿𝑐 − ℎ𝑏)𝑌 ∕𝑓𝑐]

; (A2.9)

thus, the phase function 𝜑 defined by equation (A2.4b) becomes

𝜑(𝑋, 𝑌 ) = −𝑓𝑝𝜔𝑝
𝐷 − (𝐿𝑐 − ℎ𝑏)𝑌 ∕𝑓𝑐 − tan 𝜃(𝐿𝑝 − ℎ𝑏)
𝐿𝑝 − ℎ𝑏 + tan 𝜃[𝐷 − (𝐿𝑐 − ℎ𝑏)𝑌 ∕𝑓𝑐]

. (A2.10)

Equation above is the general form for the phase function and hence the phase-height relation for
various geometries can be deduced from this equation (Maurel et al., 2009).

Parallel-optical axis geometry. When the optical axes of the camera and the projector are
positioned in parallel, the reference plane 𝑅 and the projector image plane 𝐼 coincide, cf. figure
A2.3a. Hence, with 𝐿𝑝 = 𝐿𝑐 = 𝐿 and 𝜃 = 0, the equation above reduces to:

𝜑(𝑋, 𝑌 ) = −𝑓𝑝𝜔𝑝
𝐷 − (𝐿 − ℎ𝑏)𝑌 ∕𝑓𝑐

𝐿 − ℎ𝑏
, (A2.11)

and correspondingly by setting ℎ𝑏 = 0, the phase function for the undeformed surface is deduced

𝜑0(𝑋, 𝑌 ) = −𝑓𝑝𝜔𝑝
𝐷 − 𝐿𝑌 ∕𝑓𝑐

𝐿
, (A2.12)

and from the last two equations Δ𝜑(𝑋, 𝑌 ) is determined

Δ𝜑(𝑋, 𝑌 ) = −𝑓𝑝𝜔𝑝𝐷
ℎ𝑏

𝐿(𝐿 − ℎ𝑏)
. (A2.13)
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Based on the definition of the magnification factor in a projector, 𝐺𝑝 = 𝐿∕𝑓𝑝, the grating pattern
frequency 𝜔 in the projector image plane 𝐼 can be written as 𝜔 = 𝜔𝑝∕𝐺𝑝, and finally the phase-to-
height relation is deduced as

ℎ𝑏 =
𝐿Δ𝜑

Δ𝜑 − 𝜔𝐷
. (A2.14)

As mentioned earlier, phase difference corresponds to the variation in the intensity at a given pixel of
the camera, such as 𝐴, for a given change in the reflecting surface (𝑅 to Σ). Therefore, the recorded
intensity in the reference image and the second image at the same pixel 𝐴 is associated with two
different points: point 𝑎 while reflecting from the reference plane 𝑅 in the first image and point 𝑏
while reflecting from the deformed surface Σ in the second image, and ℎ is measured at the latter
point, cf. figure A2.4. Therefore,

ℎ(𝑥𝑏, 𝑦𝑏) =
𝐿Δ𝜑

Δ𝜑 − 𝜔𝐷
, 𝑥𝑏 = 𝑥 − ℎ

𝐿
𝑥, 𝑦𝑏 = 𝑦 − ℎ

𝐿
𝑦, with ℎ = ℎ(𝑥𝑏, 𝑦𝑏), (A2.15a)

where the relations between 𝑥𝑏, 𝑦𝑏 and 𝑥, 𝑦 have been derived based on the fact that the rays 𝑎𝐶 and
𝑏𝐶 coincide, cf. figure A2.4, thus the cross product of their directional vector should vanishes.

Common-optical axis geometry. Takeda & Mutoh (1983) proved that the measurable range of
slopes in FTP technique is limited by the ratio 𝐿∕𝐷, i.e. the larger the ratio the greater would be the
maximum measurable slope. To that end, the two possible options are increasing 𝐿 or reducing 𝐷.
The former leads to the increased size of the projected pixel and hence reducing the overal accuracy
of the method, whereas the latter is limited by the physical size of the camera and projector, cf.
figure A2.3a. However, we achieved 𝐷 = 0 by introducing a semi-transparent mirror – positioned
precisely at 45 degrees, with respect to the projector and/or camera axis – which virtually decreases
𝐷 to zero and brings the projector and camera axes together, cf. figure A2.3b.

As one can inspect, equation (A2.14) is not applicable directly for the common-optical axis ge-
ometry, as evaluating this equation at 𝐷 = 0 yields the constant deformation ℎ𝑏 = 𝐿 over the entire
surface, thus rendered as invalid. From the physical point of view, such an issue is attributed to the
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fact that the grating pattern and the resulting image are being projected and observed, respectively,
from an identical position, due to the zero distance between camera and the projector. To resolve
this issue we consider the case where 𝐿𝑐 ≠ 𝐿𝑝. Therefore, starting from equation (A2.10)

𝜑(𝑋, 𝑌 ) = −𝑓𝑝𝜔𝑝
𝐷 − (𝐿𝑐 − ℎ𝑏)𝑌 ∕𝑓𝑐 − tan 𝜃(𝐿𝑝 − ℎ𝑏)
𝐿𝑝 − ℎ𝑏 + tan 𝜃[𝐷 − (𝐿𝑐 − ℎ𝑏)𝑌 ∕𝑓𝑐]

, (A2.16)

and setting 𝜃 and 𝐷 to zero yields

𝜑(𝑋, 𝑌 ) = 𝑓𝑝𝜔𝑝
(𝐿𝑐 − ℎ𝑏)𝑌 ∕𝑓𝑐

𝐿𝑝 − ℎ𝑏
, (A2.17)

and, as before, 𝜑0(𝑋, 𝑌 ) can be determined by setting ℎ𝑏 = 0

𝜑0(𝑋, 𝑌 ) = 𝑓𝑝𝜔𝑝
𝐿𝑐𝑌 ∕𝑓𝑐
𝐿𝑝

. (A2.18)

Using 𝑌 = −𝑦𝐺𝑐, 𝑓𝑐 = 𝐺𝑐𝐿𝑐, 𝑓𝑝 = 𝐿𝑝∕𝐺𝑝 and 𝜔𝑝 = 𝜔𝐺𝑝, where 𝐺𝑐 denotes the camera magnifi-
cation factor, the Δ𝜑(𝑋, 𝑌 ) becomes

Δ𝜑(𝑋, 𝑌 ) = −𝜔𝑦
ℎ𝑏
𝐿𝑐

𝐿𝑐 − 𝐿𝑝
𝐿𝑝 − ℎ𝑏

, (A2.19)

and finally,

ℎ𝑏 =
Δ𝜑𝐿𝑝

Δ𝜑 − 𝜔𝑦(1 − 𝐿𝑝∕𝐿𝑐)
. (A2.20)

It should be noted that in equation (A2.20) 𝑦 ≠ 0, otherwise ℎ𝑏 = 𝐿𝑝. Therefore, the common
camera/projector axis has to be away from the area of interest, which, from an experimental point
of view, leads to a substantial reduction of light reflection to the camera in the case of water surface
waves.
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Chapter 3

Controlling chaos by the system size

3.1 Chaotic Faraday waves and the road map

When a container is filled with a liquid and vibrated with sufficient acceleration in the direction of
gravity, standing surface waves, historically named after Faraday (Faraday, 1831), oscillate with a
frequency 𝜔0∕2𝜋 half that of the forcing. Such waves have patterns with a large variety of shapes
and symmetries (figure 3.1), depending on the fluid properties, layer depth, driving and boundary
conditions. Our experimental setup (cf. Methods) produces Faraday waves and enables variation
of the rectangular container length 𝐿(𝑡) in a time-dependent fashion with the help of computer
controlled stepper motors while still maintaining the width of the container 𝑊 and the liquid layer
depth ℎ constant.

In the rectangular (𝑥, 𝑦)-domain, the surface deformation due to excitation of the single mode
𝑙 = (𝑚, 𝑛) is

𝜁 (𝑡, 𝑥, 𝑦) = 𝑎𝑙(𝑡, 𝜏)𝑆𝑙(𝑥, 𝑦), (3.1)

where 𝑎𝑙(𝑡, 𝜏) = 𝐶𝑙(𝜏) cos
[

𝜔0𝑡 + 𝜙𝑙(𝜏)
] and 𝑆𝑙(𝑥, 𝑦) = cos (𝜋𝑚𝑥∕𝐿) cos (𝜋𝑛𝑦∕𝑊 ), in which 𝐶𝑙(𝜏)

and𝜙𝑙(𝜏) are the Faraday wave amplitude and phase evolving on a slow timescale 𝜏 ≫ 2𝜋∕𝜔0, and𝑚
and 𝑛 represent the number of half-wavelengths formed in each direction (Benjamin & Ursell, 1954;
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Figure 3.1: Physical experiment: road map. Interactions between modes (2, 6) and (4, 4) on the time-fixed
domain of dimensions 𝐿 × 𝑊 = 120mm × 150mm. Surface deformations 𝜁0(𝑡) (a-d) corresponding to
solid circles in the amplitude-frequency (𝐴, 𝑓 ) map (e). Four distinct regions exist above the threshold (thick
curve): the chaotic pattern competition (a), the periodic time-dependent (b) and -independent (c) pattern com-
petition, and time-independent periodic pure mode (2, 6) in (d). Below the panels are the patterns observed
when the respective 𝜁0(𝑡) was recorded: (2, 6) in (d) and all of (4, 4), (2, 6), (2, 6) + (4, 4), (2, 6) − (4, 4) in
(a-c). The measurement error is 𝛿𝐴 = 10−2ms−2.

Simonelli & Gollub, 1987): for example, in figure 3.1a, the leftmost surface pattern corresponds to
mode (4, 4).

Simultaneous excitation of two (adjacent) modes at the same values of driving amplitude and
frequency (𝐴, 𝑓 ) takes place in the overlap region of the two stability curves known as the pattern
competition regime, which is common in Faraday wave phenomena (Ciliberto & Gollub, 1985b).
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In this regime slow amplitudes 𝐶𝑙(𝜏) of two different patterns are both nonzero, non-equal, and
oscillate with different phases at a frequency smaller than the driving one by more than two orders
in magnitude (Ciliberto & Gollub, 1984, 1985a). According to (3.1), at the center of the container
for the two modes 𝑙1 = (2, 6) and 𝑙2 = (4, 4), and with the addition of meniscus waves with the
amplitude 𝑎𝑀 (𝑡, 𝜏) = 𝐶𝑀 (𝜏) cos

[

2𝜔0𝑡 + 𝜙𝑀 (𝜏)
], we have:

𝜁0(𝑡) ≡ 𝜁 (𝑡, 𝐿∕2,𝑊 ∕2) = 𝑎(𝑡, 𝜏) + 𝑎𝑀 (𝑡, 𝜏), (3.2)

where 𝑎(𝑡, 𝜏) = 𝑎𝑙1(𝑡, 𝜏) + 𝑎𝑙2(𝑡, 𝜏) ≡ 𝐶(𝜏) cos
[

𝜔0𝑡 + 𝜙(𝜏)
] is the superposition of the two Faraday

modes. From 𝑎(𝑡, 𝜏) the amplitude envelope 𝐶(𝜏), wave frequency 𝜔0, and phase 𝜙 are recovered
and, accordingly, the Faraday waves slow amplitude 𝑈 (𝜏) = 𝐶(𝜏) e−𝑖𝜙(𝜏) is reconstructed. Using
Re𝑈 as the time series, the state of the dynamical system, either periodic or chaotic, is determined
by measuring the fractal dimension  of the chaotic attractor, with a non-integer  corresponding
to a chaotic state, whereas  = 1 to a periodic one (cf. Methods).

To navigate the experiments on time-dependent domains, first we developed the road map on
the time fixed domain analogous to that in the literature (Simonelli & Gollub, 1989), in the (𝐴, 𝑓 )-
space surrounding the pattern competition regime of the two modes 𝑙1 = (2, 6) and 𝑙2 = (4, 4), cf.
figure 3.1e. This map is limited from the left and right by the excitation of nearby modes (5, 1) and
(5, 2), respectively, and defines the boundaries between chaotic and periodic regimes which we will
attempt to cross using domain deformation. Four distinct regions are observed above the threshold
(thick curve): (a) chaotic competition between the two modes; (b) periodic competition with a
time-dependent envelope; (c) periodic competition with a time-independent envelope; (d) the pure
mode (2, 6) oscillating periodically with a time-independent envelope. The shaded areas represent
the hysteretic regions: for example, if one starts from below the threshold curve and increases the
amplitude, in the lowest shaded area flat surface is observed, but if the starting point is in region
(a), then by decreasing the amplitude and entering the shaded area, chaotic competition is exhibited.
The surface patterns presented in figure 3.1a-d are observed during the record of the corresponding
surface deformation 𝜁0 at various instances in time, i.e. mode (2, 6) in (d) and all of the combinations
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Figure 3.2: Physical experiment: regime change in response to domain deformation at 𝑓 = 12.33Hz
and 𝐴 = 1.26m s−2. Top (bottom) row represents domain growth (shrinkage) by Δ𝐿 = 2mm at a rate
0.06mm s−1, over which the regime changes from chaotic (periodic) to periodic (chaotic). (a,d) The surface
deformation 𝜁0(𝑡) with arrows indicating the start and finish of wall motion. (b,e) The slow phase 𝜙. In (c,f)
the amplitude envelope 𝐶 and the real part of the slow amplitude Re𝑈 are shown by dotted and solid curves,
respectively.

(4, 4), (2, 6), (2, 6)+ (4, 4), (2, 6)− (4, 4) in (a-c), because in any of the latter regions the two modes
are competing. Finally, it must be noted that in our map (figure 3.1e), unlike mode (2, 6), the pure
mode (4, 4) failed to exist because of the excitation of nearby modes, such as (5,1), at frequencies
less than 12.20Hz.

3.2 Traversing the edge of chaos by changing the system size

We start by illustrating how domain growth can lead to regularization of the chaotic regime cor-
responding to 𝑓 = 12.33Hz, 𝐴 = 1.26m s−2, and 𝐿 = 120mm, cf. figure 3.2a-c. Despite that
Re𝑈 may appear periodic (figure 3.2c), its analysis reveals a chaotic attractor with fractal dimen-
sion of  = 1.38 (figure 3.3a). At 𝑡 = 513 s the domain starts to grow at a rate 0.06mm s−1 and
in the course of stretching for 2mm the system reaches the periodic state, where mode (2, 6) oscil-
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Figure 3.3: The correlation function. (𝜖) obtained for each physical experiments from a single time series of
the real part of the slow amplitude Re𝑈 for various embedding dimensions𝑚. The solid black line with slope
is shown to compare with the saturated slope  in the scaling region (between the two arrows). Parts (a,b),
(e,f), and (g,h) indicate the chaotic strange attractor dimension  = 1.38, 1.42, 1.52, 1.00, 1.48, and 1.31 ±
0.02, corresponding to figure 3.2a,d, figure 3.4a,d, and figure 3.5a,d, respectively. In (c) correlation function
for 100 fast cycles prior to wall motion in figure 3.2d is presented indicating regular periodic dynamics with
 = 1.00±0.02, whereas in (d) inclusion of 65 additional fast cycles corresponding to the interval of domain
shrinkage Δ𝐿 = 1.3mm resulted in the fractal dimension  = 1.1±0.02 indicating the transition into chaos.

lates periodically with a time-independent envelope (figure 3.2a,c). Several key observations can be
made from figure 3.2a-c. First, the fractal dimension  decreases with the domain size increasing
as opposed to, say, Rayleigh-Bénard convection (Ahlers & Behringer, 1978; Paul et al., 2007) in
which  increases with the system size; in general, however, the trend can be reversed depending
upon the interplay between the bulk and boundary dynamics. Second, using the initial phase and
envelope within the time-independent regime as the reference, the regime transformation is accom-
panied by the changes in the slow phase (−0.9%) and envelope (36.1%) during the domain growth
(figure 3.2b,c). Third, in this case the transition from chaotic to periodic state takes place during
the wall motion (indicated by arrows) over Δ𝐿 = 1.68mm when the amplitude 𝑎(𝑡, 𝜏) reaches con-
stant envelope, and once the motion ceases the system is already oscillating periodically with a
time-independent envelope. However, this scenario is not universal: in other experiments, such as
the one presented in figure 3.11a with an initial chaotic state of dimension  = 1.82 undergoing
domain growth at a rate 0.15mm s−1, the transition to periodic regime is not confined to the do-
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main deformation time interval (though, in this case the domain evolution interval is shorter in time
owing to the faster wall motion). This difference could possibly be due to a weaker chaotic state
in figure 3.2a-c ( = 1.38) compared to that in figure 3.11a ( = 1.82), which is characterized
by more unstable (in terms of Lyapunov exponents) periodic orbits (Temam, 1997) and therefore
requires longer transition regime in order to regularize the system. On the one hand, since a large
number of unstable low-period orbits are embedded within a chaotic set, on which the trajectory of
the chaotic process lives, sensitive dependence on small changes to the chaotic state implies that the
system’s behavior can be altered by using smaller (domain) perturbations for larger . On the other
hand, due to higher sensitivity at larger , probabilistically it takes longer to ‘hit’ a periodic orbit
with sufficiently large basin of attraction.

Next, using the periodic state reached at 𝐿 = 122mm as the initial state and then shrinking
the domain back to the original length 𝐿 = 120mm (figure 3.2d-f) with the same wall speed re-
turns the system to the chaotic state, but with a fractal dimension  = 1.42 (figure 3.3b). The
reconstructed slow phase 𝜙 (figure 3.2e) and envelope 𝐶 (figure 3.2f) indicate that the dynamical
system is qualitatively experiencing a reverse process to that during the domain growth. However,
the transition from periodic to chaotic state is shorter in length than the domain shrinkage interval:
analysis of the amplitude 𝑎(𝑡, 𝜏) reveals that before the start of the domain shrinkage, the system is
in a periodic state with  = 1.00 ± 0.02 (figure 3.3c), while the domain shrinkage Δ𝐿 = 1.3mm

leads to  = 1.1 (figure 3.3d), hence indicating a transition to chaos before the walls come to rest.
Therefore, in comparison with the domain growth cases presented in figure 3.2a (Δ𝐿 = 1.68mm)
and figure 3.11a (Δ𝐿 = 2mm), domain shrinkage (figure 3.2d) leads to regime transformation on a
smaller domain size variation Δ𝐿.

3.3 The effect of the domains evolution rate: chaos prevention

With the help of the same map (figure 3.1e), another remarkable ability of domain evolution to
control chaos is identified: namely, isolating one of the competing modes in the regime, which on a
time-fixed domain of the same size would otherwise correspond to a chaotic pattern competition. As

80



(a)

0 250 500 750

−2

0

2

t [s]

ζ
0
[m

m
]

(b)

200 400 600 800
5.0

5.5

6.0

6.5

t [s]

φ
[r
a
d
]

(c)

200 400 600 800
0

1

2

t [s]

R
e
U
,
C

[m
m
]

(d)

0 250 500 750

−2

0

2

t [s]

ζ
0
[m

m
]

(e)

200 400 600 800

5.8

6.0

6.2

6.4

t [s]

φ
[r
a
d
]

200 400 600 800

5.8

6.0

6.2

6.4

t [s]

φ
[r
a
d
]

(f)

200 400 600 800
0

1

2

t [s]

R
e
U
,
C

[m
m
]

Figure 3.4: Physical experiment: wall speed effect at 𝑓 = 12.33Hz and 𝐴 = 1.26m s−2. The slower
evolution of the domain prevents the system from entering the chaotic regime. The domain shrinkage Δ𝐿 =
2mm starts at 𝐿 = 122mm with two wall speeds 0.15 (top) and 0.03mm s−1 (bottom).

evident from figure 3.1e, the system at 𝑓 = 12.33Hz and 𝐴 = 1.26m s−2 is located in the chaotic
competition regime – we examine if this final state of the system can be altered with the help of
domain evolution at varying rates. These experiments are similar to the one in figure 3.2d-f but
conducted at different evolution rates. Starting with the pure mode (2, 6) oscillating periodically
with a time-independent envelope on the domain 𝐿 = 122mm we will see if, depending on the
domain evolution rate, shrinking the domain to 𝐿 = 120mm would provide the ability to control
the final state of the system, which is known to be chaotic on a time-fixed domain of the same size.

Top and bottom rows in figure 3.4 show two different runs at wall speeds of 0.15 and 0.03mm s−1,
respectively. At 0.15mm s−1, the domain shrinkage leads to the chaotic pattern competition (fig-
ure 3.4a) – the regime expected on a time-fixed domain of the same size – with the strange attractor of
dimension  = 1.52 (figure 3.3e). Surprisingly, decreasing the speed below 0.03mm s−1 prevents
the system from entering the chaotic regime (figure 3.4d), and makes it continue with periodic oscil-
lation of mode (2, 6). That is, domain deformation isolates mode (2, 6) out of the potential (expected
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on a time-fixed domain of the same size) chaotic pattern competition regime, which is confirmed
by the attractor dimension study in figure 3.3f showing  = 1.00± 0.02. Furthermore, as shown in
figure 3.4d, even after 535 s from the moment the walls are brought to rest, the system remains in the
periodic steady state. The two other performed experiments (not presented here) at the speeds 0.3
and 0.015mm s−1 indicated the same result as above, i.e. the former led to the chaotic state while
the later allowed the system to remain periodic. Yet, with another domain shrinkage experiment
at the wall speed 0.06mm s−1 presented in figure 3.2d-f one can conclude that at this speed and
above the system reaches the expected chaotic pattern competition regime, whereas for the speeds
≤ 0.03mm s−1, the chaotic behavior of the system is prevented. Between the two speeds of 0.03
and 0.06mm s−1, either of the chaotic or periodic final state is possible since no further experiments
were performed in this range as the selected wall speeds to perform experiments were discrete with
the selection criteria being doubling the speed (at least) from one experiment to another (0.015,
0.03, 0.06, 0.15, and 0.3mm s−1). Therefore, if slow enough, the domain deformation isolates one
of the competing modes and forces the system to stay in the periodic state – altogether the signature
of hysteretic behavior.

Surface profiles reveal that domain shrinkage at slow rates only shortens the wavelength 𝜆𝑥 of
mode (2, 6), which is balanced out by the increase in wave amplitude (figure 3.4d) in accord with the
mass conservation𝐶×𝜆𝑥×𝜆𝑦 ≈ const. Thus, slow domain evolution is not strong enough to perturb
the system away from the periodic state of mode (2, 6), i.e. the system is capable of adapting and
thus staying near this periodic orbit; hence mode (4, 4) is no longer formed. On the contrary, during
a rapid domain evolution the system experiences an instability leading to the appearance of mode
(4, 4) and hence competition with the preexisting mode (2, 6) resulting in the chaotic regime. At
intermediate speeds, the system transitions through the edge of chaos,1 which separates the basins
of attraction where perturbations decay either towards regular or chaotic regime, due to larger per-
turbations of the system caused, in particular, by sloshing induced by moving walls.

1Topologically, the edge of chaos may have a very complicated structure in spatially extended systems as in the
laminar-turbulent flow transition (Schneider et al., 2007; C.-L. Chian et al., 2013), where it is an unstable traveling
wave, which corresponds to a saddle point lying at the basic boundary between regular and chaotic states
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At the dynamical systems level, one of the fine effects of domain evolution is that it can force the
dynamical system trajectory to be closer to one of its fixed points, allowing the system to reach (or
remain in) a stable periodic state. At the physical level, this effect is due to wall motion affecting the
bulk flow, which could be different for identical Faraday wave patterns (Périnet et al., 2017). This
leads to the possibility that hysteretic phenomena associated with the bulk flow structure (arising
if one compares the well-developed flow on a fixed domain with the flow formed when walls move
to the same domain size) might be responsible for this memory effect – the dependence of the final
Faraday wave pattern on the dynamical system trajectory. Since observations indicate different
patterns between the two cases – when the domain is stationary and when it evolves to the same size
– the flow in the bulk must necessarily be different, thus establishing the fact of hysteresis.

3.4 Relation to frequency chirping

From the dispersion relation 𝜔2
0 = [𝑔𝑘 + (𝜎∕𝜌)𝑘3] tanh 𝑘ℎ for Faraday waves, one can see that the

variation (chirping) of the frequency𝜔0 in time affects the instability wavenumber 𝑘(𝑡) = |𝐤|; hence,
if the number of cells is not changing under the domain deformation, but the wavelength is being
adjusted instead, domain shrinkage 𝑘 ↑ should be equivalent to frequency increase 𝜔0 ↑ and vice
versa. However, due to the Eckhaus instability of the modes and because of the mode quantization
on a finite size domain (Knobloch & Krechetnikov, 2015), the link between domain deformation and
frequency chirping is not as monotonic as we saw from the road map in figure 3.1 and it is known
in the literature (Simonelli & Gollub, 1989); nevertheless, we expect that the frequency chirping
effect is related to changing the domain size. Thus, phenomena similar to that in figure 3.2 can be
investigated with frequency being the controlling parameter, while the domain size is fixed at 𝐿 =

120mm (figure 3.5). To be able to compare the two processes, the initial starting point on the road
map (figure 3.1) should be the same. In order to reveal the effects of frequency variation, it is desired
to pass through all regions (a-d) in figure 3.1, from a chaotic to a periodic state of the pure mode (2, 6)
and vice versa, which is achieved, as the one shown in figure 3.1e, at 𝐴 = 1.26m s−2 and 𝑓 varying
from 12.33 to 12.44Hz at the rate of 0.0066Hz s−1, thereby taking the same amount of time as the
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Figure 3.5: Physical experiment: regime change in response to frequency chirping. Frequency change
12.33Hz ⇔ 12.44Hz takes place on fixed domain of size 𝐿 = 120mm. Top (bottom) row represents
frequency increase (decrease) for 0.11Hz at the rate of 0.0066Hz s−1, due to which the regime changes from
chaotic (periodic) to periodic (chaotic).

domain deformation (figure 3.2). Considering that in figure 3.5a location of the arrows indicates the
start and the finish of the frequency chirping, it is evident that, unlike the domain deformation case
in figure 3.2, the transition regime is extended far beyond the point where the frequency increase
ceases: the envelope takes a considerably longer time (about 250 s) to become time-independent
and thus to settle the regular regime than the frequency chirping application time. Since the chaotic
attractor dimensions in these two cases are comparable ( = 1.38 and  = 1.48, respectively), this
likely means that the system adapts better to domain size variation than to frequency chirping. To
that end, figure 3.5b,c demonstrate relative changes in slow phase 𝜙 and the envelope 𝐶 of −36.6%
and 40.7% in the course of frequency chirping, respectively. It seems that this substantial change
in the phase is the reason behind the extended transition in the frequency chirping case, whereas
the corresponding phase change in the domain deformation case is negligible and correlated to a
short transition regime contained in the wall motion interval. It must be noted that the observed
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phase jumps −0.74𝜋 in figure 3.5b and 1.1𝜋 in figure 3.5e are not phase-slips requiring Δ𝜙 = 2𝜋

since they result from the appearance of a new mode (4, 4) on top of pre-existing one (2, 6) thus
leading to a change in the total phase of both superimposed modes (3.2). This behavior differs from
the standard frequency chirping when the driving frequency 𝑓 crosses the border of the Arnold
tongue leading to the loss of synchronization (zero detuning) between the driving and the oscillator
frequencies and thus infinite growth of the phase difference (Pikovsky et al., 2001). This growth is
not uniform: there are epochs when the phase difference is nearly constant, and other, much shorter,
epochs where the phase difference changes relatively rapidly by 2𝜋, which is called a phase-slip.
On the other hand, phase jumps, which are not multiples of 2𝜋, are known to accompany phase
synchronization transitions in chaotic systems which exhibit phase coherence (Lee et al., 1998) as
in our case, cf. Figs. 3.2b,e, figure 3.5b-e, and figure 3.4b. While the phase coherence of a chaotic
attractor may mean that a suitably defined phase increases steadily in time, here we understand the
phase coherence in a broader sense when the phase exhibits some pattern on a long timescale – the
fact that chaotic systems, if examined over a sufficiently long time, can display regular patterns has
been known for a while (Encinas-Sanz et al., 2000) and could be the result of some symmetries
underlying the dynamical system (Stewart, 2000).

The lower panels in figure 3.5 correspond to the reverse process, i.e. decrease of the frequency
leading to the change of the regime from periodic to chaotic. Since the system reaches the chaotic
state once the frequency decrease is finished (figure 3.5d), the transition regime should be short
and contained in the frequency chirping interval. Compared to domain shrinkage (figure 3.2f), the
envelope 𝐶 in figure 3.5f (dotted curve) experiences a sharp increase during the very initial stage of
frequency decrease, i.e. at the location of the first arrow. This is because on top of mode (2, 6) a new
appearing mode (4, 4) superimposes thus increasing the total amplitude 𝐶 of both modes. In gen-
eral, while frequency chirping leads to a “domain flow” linear term in the corresponding amplitude
equation (Fauve, 1998) similar to that for the actual domain flow (Krechetnikov & Knobloch, 2017)
since both of them amount to the Doppler-like effect, at the nonlinear level there are crucial differ-
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ences in the corresponding amplitude equations and thus in the finite-amplitude behaviors reported
above.

3.5 The Ginzburg-Landau model

Spatially extended (and thus infinite-dimensional) systems are prone not only to temporal (ampli-
tude) chaos, which is well studied in finite-dimensional contexts, but also to spatio-temporal chaos
(van Hecke, 1998), in particular phase turbulence (Shraiman, 1986; Chaté & Manneville, 1995). A
good example where both phase and amplitude chaos are observed is the temperature evolution in
a well controlled time-dependent convection experiment (Mancini & Maza, 1997). Phase slips are
the signature of the temporal chaos during which the amplitude of the wave goes to zero (defect)
and the total phase of the system experiences a 2𝜋 jump, i.e. a wavelength is inserted or eliminated;
in the phase-chaotic regime essentially no phase slips occur (Granzow & Riecke, 1996).

To gain further insights, in what follows we study the Ginzburg-Landau equation (GLE) on a
time-dependent spatial domain as a minimal model. Although the current system is two-dimensional
and would require two coupled GLEs to describe the two cross-roll hydrodynamic system (Hoyle,
2006), qualitative results can still be achieved using a single 1D complex GLE (cGLE) evolving on
the slow time 𝜏 and long spatial 𝜉 ∈ [−𝐿(𝜏), 𝐿(𝜏)] scales written here in a non-dimensional form
(van Hecke, 1998):

𝑈𝜏 = (1 − i𝓊)𝑈 + (1 + i𝛼)𝑈𝜉𝜉 − (1 + i𝛽) |𝑈 |

2𝑈, (3.3)

which incorporates an extra term 𝑖𝓊𝑈 accounting for the effects of advection and dilution, where
𝓊(𝜏, 𝜉) denotes the domain velocity at point 𝜉. Chaotic behavior exhibited by the cGLE on time-
fixed domains and with 𝓊 = 0 has been extensively studied (Aranson & Kramer, 2002), and, there-
fore, will be used as a reference. Depending on the values of 𝛼 and 𝛽, the cGLE on time-fixed
domains can exhibit various behaviors including plane waves, spatio-temporal chaos, and intermit-
tency (both chaotic and periodic) (Aranson & Kramer, 2002; van Hecke, 1998). The chaotic regime
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occurs beyond the Benjamin-Feir-Newell curve 𝛽 ≤ −𝛼−1, leading either to phase chaos, defect
chaos, or bichaos (Aranson & Kramer, 2002; van Hecke, 1998). When 𝑈 has no zeros, |𝑈 | remains
saturated and only its phase will be dynamically active, leading to phase chaos. On the contrary, if
𝑈 reaches zero at some point 𝜉, then the complex phase is undefined there and a phase slip occurs
leading to defect (amplitude) chaos. In the bichaotic regime, taking place for the values of 𝛼 and 𝛽
closer to the Benjamin-Feir-Newell curve 𝛼𝛽 = −1 (van Hecke, 1998), a defect- and phase-chaotic
attractors coexist.

3.5.1 Numerical simulation of cGLE on time-fixed domains

In the following, we first discuss the numerical treatment of the cGLE on time-fixed domain

𝑈𝜏 = 𝑈 + (1 + i𝛼)𝑈𝜉𝜉 − (1 + i𝛽) |𝑈 |

2𝑈, (3.4)

by means of pseudo-spectral method and exponential time-differencing, the combination of which
was necessary due to the stiffness of the system (Boyd, 2001; Cox & Matthews, 2002). To that
end, the latter two techniques will be discussed in a general context and later these results will be
used as the basis for developing the required numerical framework in order to solve the cGLEs on
time-dependent domains, cf. equation (3.3).

Pseudo-spectral method. To set up the stage, we start with the following spatial partial differ-
ential equation (PDE) governing the evolution of some vector function 𝑈 (𝐱)

ℒ𝑈 (𝐱) = 𝑓 (𝐱) 𝐱 ∈ Ω ⊆ ℝ𝑛, (3.5)

with boundary conditions

ℬ𝑈 (𝐱) = 0 𝐱 ∈ 𝜕Ω, (3.6)
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where ℒ and ℬ are some linear operators. We intend to find the best approximation for function
𝑈 , and to that aim, spectral and pseudo-spectral methods have been shown to be significantly ac-
curate for a various type of applications (Cox & Matthews, 2002; Boyd, 2001; Canuto et al., 1988;
Fornberg, 1995). Therefore, we will resort to the latter to discretize the space.

Spectral methods are generally based on the approximation of a real, continuous, “well-behaved”
function,𝑈 (𝐱), as an expansion in an orthogonal set of functions 𝜙𝑛(𝐱) called basis or trial functions

𝑈 (𝐱) ≈ 𝑈 (𝐱) =
𝑁−1
∑

𝑛=0
𝑎𝑛𝜙𝑛(𝐱), (3.7)

where 𝑎𝑛 are the coefficients to be determined. Due to the above approximation, once equation
(3.7) is substituted into (3.5) there is a non-zero residual 𝑅 = ℒ𝑈 − 𝑓 . This residual needs to be
minimized with the help of weighting functions 𝑛(𝐱), 𝑛 = 0,⋯ , 𝑁 − 1, that allow the weighted
average of residual become zero over the entire domain

ˆ
Ω
𝑛(𝐱)𝑅𝑑𝐱 = 0, 𝑛 = 0,⋯ , 𝑁 − 1. (3.8)

Weighting functions. Depending on the weighting functions’ type various numerical methods
are developed (Boyd, 2001; Gurevich, 2016). For example, if the weighting functions are selected
to be the same as the basis functions 𝜙𝑛, then it is referred to as the Galerkin method. On the other
hand, if the former are defined as the delta functions at spatial points 𝐱𝑛, i.e. 𝑛(𝐱) = 𝛿(𝐱−𝐱𝑛), then
the approach is called the “pseudo-spectral” method. In that case equation (3.8) leads to

ˆ
Ω
𝑛(𝐱)𝑅𝑑𝐱 =

ˆ
Ω
𝛿(𝐱 − 𝐱𝑛)

[

ℒ𝑈 (𝐱) − 𝑓 (𝐱)
]

𝑑𝐱 = ℒ𝑈 (𝐱𝑛) − 𝑓 (𝐱𝑛) = 0, (3.9)

where the second step uses the sampling property of the delta function. Then, applying equation
(3.7) leads to the following linear system of equations

𝑁−1
∑

𝑗=0
𝑎𝑗ℒ𝜙𝑗(𝐱𝑛) = 𝑓 (𝐱𝑛), (3.10)
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which can be used to determine all the unknown coefficients 𝑎𝑗 once the basis functions 𝜙𝑗 are
selected.

Basis functions. In contrast with the finite-difference or finite element methods where the
trial functions are local polynomials, spectral methods implement globally smooth functions, e.g.
Fourier or Chebyshev series, and the particular choice is dependent on the geometry of the prob-
lem. For instance, with the spatially periodic intervals, as in the case of cGLE, Fourier series
𝜙𝑗(𝐱𝑛) = 𝑒−𝑖𝐤𝑗𝐱𝑛 is the natural choice (Boyd, 2001; Gurevich, 2016). Therefore, with the assumption
of ℒ being a linear operator, equation (3.10) reduces to

𝑁−1
∑

𝑗=0
𝑎𝑗𝑞(𝐤𝑗)𝑒−𝑖𝐤𝑗𝐱𝑛 − 𝑓 (𝐱𝑛) = 0, 𝑛 = 0,⋯ , 𝑁 − 1, (3.11)

where 𝑞 is deduced from the mapping of the basis functions 𝜙𝑗 through the linear operator ℒ , i.e.
ℒ𝜙𝑗(𝐱𝑛) = 𝑞(𝐤𝑗)𝑒−𝑖𝐤𝑗𝐱𝑛 .

For simplicity, we now turn to the one-dimensional case and accordingly set

𝑥𝑛 = 𝑛Δ, 𝑛 =0,⋯ , 𝑁 − 1, (3.12a)
𝑘𝑗 =

2𝜋𝑗
𝑁Δ

, 𝑗 = −𝑁∕2,⋯ , 𝑁∕2, (3.12b)

which yields

𝑁−1
∑

𝑗=0
𝑎𝑗𝑞(𝑘𝑗)𝑒−2𝜋𝑖𝑗𝑛∕𝑁 − 𝑓 (𝑥𝑛) = 0, 𝑛 = 0,⋯ , 𝑁 − 1. (3.13)

With the help of the discrete Fourier transform ℱ and its inverse ℱ −1

𝑎𝑗 =ℱ (𝑎𝑛) =
1

√

𝑁

𝑁−1
∑

𝑗=0
𝑎𝑛𝑒

2𝜋𝑖𝑗𝑛∕𝑁 , (3.14a)

𝑎𝑛 =ℱ −1(𝑎𝑗) =
1

√

𝑁

𝑁∕2
∑

𝑗=−𝑁∕2
𝑎𝑗𝑒

−2𝜋𝑖𝑗𝑛∕𝑁 , (3.14b)
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equation (3.13) can be written as

ℱ −1 [𝑎𝑗𝑞(𝑘𝑗)
]

(𝑥𝑛) − 𝑓 (𝑥𝑛) = 0, (3.15)

and after applying DFT we obtain

𝑎𝑗𝑞(𝑘𝑗) −ℱ
[

𝑓 (𝑥𝑛)
]

(𝑘𝑗) = 0. (3.16)

The Fourier transform of 𝑓 (𝑥𝑛) can be computed efficiently using fast Fourier transform (FFT)
algorithm available in MATLAB and therefore 𝑎𝑗 can be deduced using the equation above. The
latter leads to the desired result: approximation of the solution 𝑈 through equation (3.7).

Exponential time differencing method. When solving a PDE involving both temporal and
spatial terms subject to spatially periodic boundary conditions, it is natural to express the solution
as a sum of Fourier modes with time-dependent coefficients (Cox & Matthews, 2002; Boyd, 2001).
However, the linear terms introduce stiffness into the resulting set of ODEs governing the mode
amplitudes: indeed, the highest modes evolve on a very short time scale of the order 𝑂(𝑛−𝑚), where
𝑛 and 𝑚 denote the mode number and the highest spatial derivative involved. For such problems,
applying standard explicit time-stepping techniques, if feasible, is very costly as it requires extremely
small time steps to integrate the resulting ODEs (Cox & Matthews, 2002). The exponential time
differencing (ETD) exploits the advantages of the exact integration of the linear parts with the help of
integration factor, while the nonlinear terms integration is treated approximately. This combination
leads to a more accurate solution and superior performance compared to its counterparts such as
linearly implicit schemes (Cox & Matthews, 2002).

Inspired by the cGLE’s from, cf. equation (3.4), in this part we consider the PDE of the form

𝑈𝑡 = ℒ𝑈 +𝒩 (𝑈 ), 𝑈 = 𝑈 (𝐱, 𝑡), 𝐱 ∈ Ω ⊂ ℝ3, 𝑡 ∈ [0, 𝑇 ], (3.17)
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along with the initial condition 𝑈 (𝐱, 0) = 𝑈0(𝐱) in Ω and periodic boundary conditions. ℒ and
𝒩 denote the linear and nonlinear operators, respectively. Following the pseudo-spectral technique
discussed above, we first discretize the space by taking the Fourier transform ℱ

𝑈𝑡 = 𝑞(𝐤)𝑈 +ℱ [𝒩 (𝑈 )], (3.18)

where 𝑈 = ℱ𝑈 . Since 𝑞(𝐤) is not dependent on time, it may be treated as a constant variable
for the current purpose of time discretization. To perform the exact integration of the linear terms
involved, equation (3.18) should be multiplied by the integration factor 𝑒−𝑞𝑡

𝑈𝑡𝑒
−𝑞𝑡 − 𝑞𝑒−𝑞𝑡𝑈 = d

d𝑡

[

𝑈𝑒−𝑞𝑡
]

= 𝑒−𝑞𝑡ℱ [𝒩 (𝑈 )], (3.19)

and accordingly the integration over a single time step from 𝑡 = 𝑡𝑛 to 𝑡 = 𝑡𝑛 + ℎ yields

𝑈
(

𝑡𝑛+1
)

= 𝑈
(

𝑡𝑛
)

𝑒𝑞ℎ + 𝑒𝑞ℎ
ˆ ℎ

0
𝑒−𝑞𝜏 ℱ

[

𝒩
(

𝑈 (𝐱, 𝑡𝑛 + 𝜏), 𝑡𝑛 + 𝜏
)]

𝑑𝜏, (3.20)

where we have used the change of variable 𝑡 = 𝑡𝑛+ 𝜏. The last integration in the above equation can
be approximated with various approaches. For example, the assumption of 𝒩 evolving linearly in
time between 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛 + ℎ, i.e. 𝒩 ≈ 𝒩 (𝑛) + 𝜏 𝒩 (𝑛)−𝒩 (𝑛−1)

ℎ
, leads to the following scheme

𝑈 (𝑛+1) = 𝑈 (𝑛)𝑒𝑞ℎ +ℱ [𝒩 (𝑛)]
(1 + 𝑞ℎ)𝑒𝑞ℎ − 1 − 2𝑞ℎ

𝑞ℎ2
+ℱ [𝒩 (𝑛−1)]

−𝑒𝑞ℎ + 1 + 𝑞ℎ
𝑞ℎ2

. (3.21)

Integration of the cGLE on time-fixed domains. With the combination of pseudo-spectral
methods and ETD now we are well equipped to treat the cGLE numerically: first we rewrite equation
(3.4) in the Fourier space

𝑈𝜏 =
[

1 − 𝑘2(1 + 𝑖𝛼)
]

𝑈 −ℱ
[

(1 + 𝑖𝛽) |𝑈 |

2𝑈
]

, (3.22)

91



where we have used ℱ𝑈𝜁𝜁 = −𝑘2𝑈 . Then, given that [1 − 𝑘2(1 + 𝑖𝛼)] is not a function of time,
equation above can be classified as the type discussed in previous section, cf. equation (3.18), and
therefore by setting [

1 − 𝑘2(1 + 𝑖𝛼)
]

= 𝑞, and [

(1 + 𝑖𝛽) |𝑢|2 𝑢
]

= 𝒩 we can use the scheme (3.21).

3.5.2 Numerical simulation of cGLE on time-dependent domains

As mentioned earlier, to compare and interpret the results of our physical experiments we need
to develop the framework for numerical simulations of a single complex GLE on time-dependent
domains, cf. equation (3.3), where the evolution of the domain introduces new challenges and
enigmas compared to the time-fixed domains scenario discussed above – these will be detailed
below.

In our physical problem of Faraday waves, the appropriate length scale is the domain size and
since in the case of time-varying domains 𝐿(𝜏) is not constant, the spatial variable in equation (3.3)
needs to be scaled first, i.e. 𝜉 → 𝐿(𝜏)𝜉, thus

𝑈𝜏 = (1 − i𝓊)𝑈 + 1 + i𝛼
𝐿2(𝜏)

𝑈𝜉𝜉 − (1 + i𝛽) |𝑈 |

2𝑈, (3.23)

where for the case of isotropic growth 𝓊(𝜏, 𝜉) can be expressed as 𝓊 = 𝜉𝐿′(𝜏)∕𝐿(𝜏) = 𝜉𝑓 (𝜏)

indicating that the velocity 𝓊 of stretching depends on the location away from the stationary center
𝜉 = 0 (Krechetnikov & Knobloch, 2017). Then, the above equation in Fourier space becomes

𝑈𝜏 =
[

1 −
𝑘2(1 + i𝛼)
𝐿2(𝜏)

]

𝑈 − (1 + i𝛽)𝑈 |𝑈 |

2 + 𝑖𝑓 (𝜏)𝜉𝑈, (3.24)

and unlike equation (3.18) the coefficient of the linear term in equation (3.24) is not constant in time,
i.e. 1− 𝑘2(1 + i𝛼)∕𝐿2(𝜏) is a function of time and the scheme demonstrated by equation (3.21) will
not work. Indeed, the required integration factor in equation (3.24) can be written as

𝐼 = exp
[

−
ˆ

1 −
𝑘2(1 + i𝛼)
𝐿2(𝜏)

𝑑𝜏
]

, (3.25)
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and assuming domain growth at a constant rate, i.e. 𝐿(𝜏) = 𝐿0 + 𝑣𝜏, we obtain

𝐼 = exp
[

−𝜏 −
𝑘2(1 + i𝛼)
𝑣𝐿(𝜏)

]

. (3.26)

Now multiplying equation (3.24) with the corresponding integration factor, and denoting the non-
linear terms −(1 + i𝛽)𝑈 |𝑈 |

2 + 𝑖𝑓 (𝜏)𝜉𝑈 as 𝒩 , the resulting equation simplifies to

d
d𝜏

[

𝑈𝐼
]

= 𝐼𝒩 , (3.27)

leading to the following exact integration of the linear part of the equation over a single time step
from 𝜏 = 𝜏𝑛 to 𝜏 = 𝜏𝑛 + ℎ

𝑈 (𝜏𝑛 + ℎ)𝐼(𝜏𝑛 + ℎ) − 𝑈 (𝜏𝑛)𝐼(𝜏𝑛) =
ˆ 𝜏𝑛+ℎ

𝜏𝑛
𝐼𝒩 𝑑𝜏 =

ˆ ℎ

0
𝐼(𝜏𝑛 + 𝑡)

[

𝒩
(

𝑈 (𝜏𝑛 + 𝑡, 𝜉), 𝜉, 𝜏𝑛 + 𝑡
)]

𝑑𝑡, (3.28)

where the change of variable 𝜏 = 𝜏𝑛 + 𝑡 is used to arrive at the last integral above. Assuming 𝒩

grows linearly in time, i.e. 𝒩 ≈ 𝒩 (𝑛) + 𝑡𝒩
(𝑛)−𝒩 (𝑛−1)

ℎ
and using trapezoidal approximation for the

integration we obtain

𝑈 (𝜏𝑛 + ℎ)𝐼(𝜏𝑛 + ℎ) − 𝑈 (𝜏𝑛)𝐼(𝜏𝑛) =
ℎ
2
[

𝐼(𝜏𝑛 + ℎ)
(

2𝒩 (𝑛) −𝒩 (𝑛−1)) + 𝐼(𝜏𝑛)𝒩 (𝑛)] . (3.29)

Thus, the developed numerical scheme becomes

𝑈 (𝑛+1) = ℎ
2
(

2𝒩 (𝑛) −𝒩 (𝑛−1)) +
(

𝑈 (𝑛) + ℎ
2
𝒩 (𝑛)

)

exp
[

ℎ + 𝑘2

𝑣

( 1
𝐿(𝑛+1)

− 1
𝐿(𝑛)

)

]

, (3.30)

where hats denote discrete Fourier transforms which can be calculated using FFT command in
MATLAB, and 𝐿(𝑛+1) = 𝐿(𝑛) + 𝑣ℎ.
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3.5.3 Traversing the edge of chaos

We first consider domain shrinkage and its reverse process in analogy with experiments in fig-
ure 3.2. Figure 3.6a,b depict the spatio-temporal bichaotic state on time-fixed domain – resulting
from integration of (3.3) with (𝛼, 𝛽) = (0.75,−1.4) and 𝑣 = 0 up to 𝜏𝑓 = 500 – used as the initial
condition for integration on a time-varying domain. Then the domain growth by Δ𝐿 = 17.98 at
the rate of 𝑣 = 0.003 brings the system to the periodic state (figure 3.6g). Figure 3.6c,d present
Re𝑈 (𝜉, 𝜏𝑓 = 6000) and Re𝑈 (𝜉 = 0, 𝜏) where 5500 ≤ 𝜏 ≤ 6000, respectively, and indicate that the
system has reached periodic state both in time and space, thereby proving the capability of domain
evolution not only to control the temporal but also the spatial chaos. To examine the reversibility
of the process, the domain growth is undertaken starting from the periodic state in figure 3.6c,d
– as demonstrated in figure 3.6h, the system becomes chaotic right away and remains chaotic even
beyond 𝜏 = 550 for which the final stage is presented in figure 3.6e,f. Therefore, the regime transfor-
mation from chaotic to periodic is reversible, though the required change of the domain size during
shrinkage and growth are not necessarily equal or even of the same order (figure 3.6g,h) as will be
explained later. To confirm that domain shrinkage also has the capability to control chaotic state, a
similar to the above numerical investigation is performed, except that the domain now first undergos
shrinkage and then growth. figure 3.7c,g indicate that the domain shrinkage by Δ𝐿 = 13.50 brings
the system to the periodic state and growth by Δ𝐿 = 7.68 takes the system back to the chaotic state
(figure 3.7e,h). Next, an important observation can be made from the comparison of the results
of integration in figure 3.6 and figure 3.7, as both were initiated from an identical state (panels a
and b in both figures). Compared to domain growth, shrinkage can make the system periodic over
a smaller change in the domain size, i.e. Δ𝐿 = 13.50 in figure 3.7a→c vs. Δ𝐿 = 17.98 in fig-
ure 3.6a→c. The same observation is also made for the regime transformation from periodic to
chaotic: domain shrinkage takes only Δ𝐿 = 1.66 (figure 3.6c→e) whereas domain growth requires
Δ𝐿 = 7.68 (figure 3.7c→e). To understand this asymmetry between growth and shrinkage, note
that compared to domain growth, domain shrinkage causes early phase-slips thereby leading to a
faster change in the wavenumber structure of a pattern as known theoretically (Knobloch & Krechet-
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Figure 3.6: Numerical modeling: regime change in response to domain deformation. (a,b) the spatio-
temporal bichaos used as the initial state with domain size fixed at 𝐿 = 200 and (𝛼, 𝛽) = (0.75,−1.4). In
(c,d) the state of the system after domain growth by Δ𝐿 = 17.98 at a rate 𝑣 = 0.003, over which the regime
changes from chaotic to periodic. Starting from the periodic state in (c,d), shrinking the domain byΔ𝐿 = 1.66
at a rate 𝑣 = 0.003 leads to the chaotic state (e,f). In (a,c,e) Re𝑈 (𝜉, 𝜏) is plotted at the corresponding final
integrated time 𝜏𝑓 , whereas in (b,d,f) Re𝑈 (𝜉, 𝜏) is plotted at 𝜉 = 0 over 𝜏𝑓 −500 ≤ 𝜏 ≤ 𝜏𝑓 . space-time plots
of the growth and shrinkage processes are shown in (g) and (h), respectively.

nikov, 2015) in 1D and experimentally in 2D (Ghadiri & Krechetnikov, 2018). Hence, if the route
to chaos requires the change in the wavenumber structure of the original periodic mode, then the
difference in the phase-slip characteristic times between domain shrinkage and growth might be
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Figure 3.7: Numerical modeling: regime change in response to domain deformation. (a,b) depict the spatio-
temporal bichaos used as an initial state with domain size 𝐿 = 200 and (𝛼, 𝛽) = (0.75,−1.4). In (c,d) the
state of the system after domain shrinkage by Δ𝐿 = 13.50 at a rate 𝑣 = 0.003, due to which the regime
changes from chaotic to periodic, is presented. Starting from the periodic state in (c,d), growing the domain
by Δ𝐿 = 7.68 at a rate 𝑣 = 0.003 leads to the chaotic state (e,f). space-time plots of the shrinkage and growth
processes are shown in (g) and (h), respectively.

responsible for the observed difference. If, on the other hand, the route to chaos from a given origi-
nal periodic mode simply requires an excitation of another mode, the interaction of which with the
original one (so-called pattern competition) leads to temporal chaos (Ciliberto & Gollub, 1984),
then the difference could lie in the subcritical nature of the transition to chaos, which can occur
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directly as it happens in other contexts, e.g. when a modulationally destabilized monochromatic
wave in a fluid system undergoes a subcritical bifurcation directly into chaos, provided dissipation
is weak enough (Moon, 2004). It is known that finite amplitude perturbations are needed in order
to trigger subcritical instabilities (Krechetnikov & Marsden, 2009; E et al., 2012). In the context
of Faraday waves, such finite-amplitude perturbations are always present, e.g. in our system due to
wall motion when domain size is changing. The direct transition from periodic to chaotic via sub-
critical bifurcation is justified not only by the periodic and chaotic regions being adjacent (Meron &
Procaccia, 1986) in the amplitude-frequency (𝐴, 𝑓 )-plane, but also by the fact that superposition of
modes, where chaos is observed, belongs to the subcritical side of the resonant tongue (Simonelli
& Gollub, 1989). Given that in the case of domain shrinkage, modes from the subcritical side of
the resonant tongue are excited via a finite-amplitude instability, while in the case of growth, modes
from the supercritical side emerge – this entails irreversibility and therefore hysteretic behavior of
Faraday waves (Ghadiri & Krechetnikov, 2019), which fundamentally is due to viscous dynamics
of the bulk flow underlying the surface pattern (Périnet et al., 2016, 2017).

While performing the above numerical investigation, we observed that domain shrinkage is more
effective at controlling chaos; for instance, the domain growth fails to regularize the stronger chaotic
state presented in figure 3.9a,b (compared to the weaker chaotic state in figure 3.6a,b), whereas do-
main shrinkage is able to make the system periodic starting from both the weaker and the stronger
chaotic states. This fact is again rationalized as the early and hence more frequent phase-slips on do-
main shrinkage can control the stronger chaotic state better compared to delayed phase slips which
tend to keep the system in its existing state. Furthermore, the ability of the domain shrinkage to re-
veal more delicate states and a higher number of patterns has been previously shown experimentally
(Ghadiri & Krechetnikov, 2019).

3.5.4 The effect of the domain evolution rate

Finally, a numerical study is performed to demonstrate the effect of domain evolution rate similar
to experiments in figure 3.4: a periodic state that is reached by the domain growth (figure 3.6c) is
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Figure 3.8: Numerical modeling: domain evolution rate effect. The slower domain evolution prevents the
system from entering the chaotic regime. (a,b) depict the initial periodic state (figure 3.6c,d). The domain
shrinkage Δ𝐿 = 0.3 at two rates 𝑣 = 10−3 and 10−4 correspond to the middle (c,d) and right columns (e,f)
respectively. space-time plots of the two processes are shown in (g,h).

used as the initial state for the domain shrinkage at various rates with the result shown in figure 3.8.
The domain evolution by Δ𝐿 = 0.3 at two rates 𝑣 = −0.001 and 𝑣 = −0.0001 reveals that the faster
rate (figure 3.8c,d,g) allows the system to go back to the expected chaotic state, as in figure 3.6e,f;
on the other hand, the slower rate (figure 3.8e,f,h) keeps the state of the system periodic.
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We also started from a chaotic state rather than a periodic one in order to see if the shrinkage
rate would play a role in controlling chaos. Using as an initial condition a stronger chaotic state
(figure 3.9a,b) – reached by picking the values (𝛼, 𝛽) = (0.8,−1.4) that are further away from
the Benjamin-Feir-Newell curve 𝛼 𝛽 = −1 – the required domain shrinkage to enter the periodic
regime at the rate of 𝑣 = 0.01 is about Δ𝐿 = 100 (figure 3.9c,g), whereas at the slower rate of
𝑣 = 0.001, the required change in domain length is much smaller, Δ𝐿 = 15.4 (figure 3.9e,h).
As alluded to above, at a lower speed the system is subject to smaller perturbations, the slower
associated time scales of which allow the system to adapt and get attracted to a periodic orbit; at a
higher speed the perturbation are larger thus making it harder for a system to get attracted to a stable
periodic orbit, which statistically takes longer time (larger domain size variation). In other words,
a slower rate facilitates the regularization of the regime, while a faster rate impedes the process:
this is analogous to the experimental results on regular Faraday waves on time-dependent domains
(Ghadiri & Krechetnikov, 2019) showing that pattern formation is naturally impeded during fast
domain evolution as phase slips have no time to develop. Furthermore, such results compare well
with the 1D theoretical findings (Ueda & Nishiura, 2012) indicating that more complex pattern
sequences can be expected with slow domain evolution, i.e. slower rates allow for more phase-slips
to occur and lead to sooner changes in the state of the system.

3.6 Methods

The built experimental setup in figure 3.10 produces Faraday waves, and allows computer-controlled
variation of the container dimensions in a time dependent fashion as well as measurement of the
formed patterns characteristics. The designed Faraday assembly is mounted on top of the electro-
dynamic shaker (Labworks ET-139) and is controlled by a computer signal via amplifier. The liquid
is housed in a container with a transparent bottom and four sidewalls, so that inner tank dimensions
are 150×150×12.7mm3 without moving walls. The length 𝐿(𝜏𝑤) of the domain can be controlled
in a time-dependent fashion according to the prescribed laws, where 𝜏𝑤 is a time scale longer com-
pared to that of the vertical oscillations in order to avoid generating sloshing waves. Also, the fluid
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Figure 3.9: Numerical modeling: domain evolution rate effect. (a,b) depict the spatio-temporal bichaos
used as the initial state with domain size 𝐿 = 200 and (𝛼, 𝛽) = (0.8,−1.4). The domain shrinkage Δ𝐿 = 100
and Δ𝐿 = 15.4, over which the regime changes from chaotic to periodic, with two different rates 𝑣 = 10−2
and 10−3 corresponding to the middle (c,d) and right columns (e,f), respectively. Space-time plots of the two
processes are shown in (g,h).

layer depth is kept constant by allowing the moving sidewalls not to reach the bottom of the con-
tainer, i.e. there exists a clearance of about 2mm enabling unobstructed flow underneath the walls
and not affecting Faraday waves (Ghadiri & Krechetnikov, 2019). Furthermore, considering the
sensitivity of Faraday waves to possible evaporation and thus to water layer depth changes (Ghadiri
& Krechetnikov, 2019; Douady, 1990), in our setup the water level was maintained constant at
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Figure 3.10: Experimental setup. Faraday waves assembly with variable size container is mounted on the
shaker which is driven using the amplifier and controlled through the data acquisition card (DAQ). The surface
wave amplitude is measured using the laser displacement sensor (LDS). The camera, projector, beam splitter,
and polarizers form the optical part required to visualize the Faraday waves.

ℎ = 12 ± 0.1mm with the help of a syringe pump (PHD ULTRA Harvard apparatus) which injects
water outside the moving walls at the rate 42𝜇l min−1 required to compensate the evaporation for
the given conditions in the lab.

Figure 3.10 also reflects on the optical setup used to visualize Faraday waves with the help of the
Fourier transform profilometry (FTP) technique – a single-shot optical profilometric measurement
of surface deformation – which has been widely used in water wave studies (Ghadiri & Krechet-
nikov, 2019; Cobelli et al., 2011; Przadka et al., 2011). This method is based on an optical system
composed of a video projector (ViewSonic PJD7820HD) casting a grating pattern on the water free
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surface and a camera (Nikon D5200) recording the reflection of this pattern from the free surface.
The grating pattern distorted due to deformation of the surface is then recorded and compared to the
reference image of the undistorted grating pattern on the flat surface in order to produce a phase-
shift map – the difference between phases of light intensity at each pixel in these two images – from
which the height of the deformed surface is reconstructed using a relation between the phase shift
and the object’s height. The highly accurate common-optical axis implementation of FTP for water
surface waves introduced recently (Ghadiri & Krechetnikov, 2019) guarantees a vertical resolution
of 0.05mm. For further details on the experimental setup and the visualization technique the reader
is referred to Ghadiri & Krechetnikov (2019).

For the present study, the setup reported in Ghadiri & Krechetnikov (2019) was modified in
order to investigate temporal chaos. To that end, measurement of the waves amplitude at a single
point on the surface suffices (Ciliberto & Gollub, 1985a) as explained below; hence, we resorted to
a laser displacement sensor (Optex FA CDX-30A) allowing us to measure the surface deformation
with the accuracy of 0.01mm and the sampling rate of up to 80, 000 per second. Although no spatial
information is provided by the measurement at a single point (3.2), combination with the Fourier
transform profilometry used to visualize the surface assured that there is no additional spatially-
induced time dependence involved such as pattern rotation (Ciliberto & Gollub, 1985a). An example
of controlling chaos by the domain deformation is provided in figure 3.11, which also illustrates the
data analysis procedure. The surface deformation 𝜁0(𝑡) is recorded with the laser displacement
sensor (LDS) at the vessel’s center (figure 3.11a), the Fourier transform of which (figure 3.11b)
reveals that the strongest contribution is made by the Faraday waves oscillating at half of the driving
frequency and the next contribution, though much weaker, comes from the meniscus waves. Such
a process will be discussed in detail below. Blocks of data were recorded continuously over a 650 s
interval, which is more than 20 times longer than required for the regime to change from periodic
to chaotic or vice versa due to wall motion, also allowing us to carefully study the regime before
and after the domain deformation. Moreover, being capable to record continuously – with loss of
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Figure 3.11: Data analysis procedure. (a) The recorded surface deformation 𝜁0 at the vessel’s center
with arrows indicating the start and finish of wall motion. The experimental conditions: 𝑓 = 12.33Hz,
𝐴 = 1.16m s−2. The domain growth of Δ𝐿 = 2mm starts from 𝐿 = 120mm at 𝑡 = 520 s with wall speed
0.15mm s−1. (b) Fourier transform’s amplitude |𝜁0(𝜔)| of the recorded surface deformation. (c) Data points
recorded by the laser for several fast cycles are presented along with the curves fitted to the data. (d) The
extracted slow phase 𝜙. In (e) the amplitude envelope 𝐶 and Re𝑈 are shown by dashed and solid curves,
respectively. (f) The correlation function (𝜖) obtained from a single time series of Re𝑈 for various embed-
ding dimensions 𝑚. The solid black line with slope one signifies the saturated slope  in the scaling region
(between the two arrows) is larger than one.

data on the order of 0.1 s between the two blocks (figure 3.11a) – assured that the regime under
investigation is not transient.

Collecting data at the rate 150 per second and with a vertical resolution of 0.01mm enabled us to
fully eliminate the meniscus wave contribution from the surface deformation. Following equation
(3.1), the spatial contribution of the two modes 𝑙1 and 𝑙2 to the surface deformation at the center of
the container reduces to unity, i.e. 𝑆𝑙1 = 𝑆𝑙2 = 1. Thus, with the inclusion of meniscus waves we
arrive at equation (3.2). Given the Faraday waves total amplitude 𝑎(𝑡, 𝜏) = 𝐶(𝜏) cos

[

𝜔0 𝑡 + 𝜙(𝜏)
],

the complex slow amplitude function is defined as:

𝑈 (𝜏) = 𝐶(𝜏) e−𝑖𝜙(𝜏), (3.31)
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The real and imaginary parts of𝑈 (𝜏) can be reconstructed from the measurements as follows. From
the recorded surface deformation given by (3.2), the amplitude envelope 𝐶(𝜏) (figure 3.11e), wave
frequency 𝜔0, and phase 𝜙(𝜏) (figure 3.11d) are recovered for each of the fast cycles individually
sampled at the rate 25 data points per cycle, cf. figure 3.11c. Then, Re𝑈 (figure 3.11e) and Im𝑈

are determined based on equation (3.31). In figure 3.11d,e the extracted data are from the first block
of 650 s (shown with blue color in figure 3.11a), covering 520 s of the chaotic regime, the domain
growth of 6.67 s and the final periodic stage of 123.33 s. The second block of data – partially shown
in figure 3.11a with black color – is provided just to confirm that the regime remains periodic.
Finally, it should be noted that for different experiments, laser measurement naturally starts at an
arbitrary instant within the single fast cycle period, resulting in a different initial phase 𝜙. To have
the same initial phase 𝜙 for all the experiments, during the data analysis we picked up the starting
data point of the first fast cycle to be at (approximately) the same location during the fast cycle
period for every experiment. Then, the reconstruction of the slow amplitude initiated from the first
fast cycle with a specific value of 𝜙, which in our case was selected to be 2.03𝜋 for the convenience
of plotting; being close to 2𝜋 allows us to observe the effect of the phase in the slow amplitude 𝑈
more clearly when the amplitude envelope 𝐶 and Re𝑈 are plotted in the same axes (figure 3.11e):
with 𝜙 starting from 2𝜋, 𝐶 and Re𝑈 are equal initially (Re𝑈 = 𝐶 cos(2𝜋) = 𝐶) and as the phase
evolves they start to differ from each other.

To determine the dynamic type of the Faraday wave regime we resorted to the analysis of the
total amplitude 𝑎(𝑡, 𝜏) using the embedding technique (Takens, 1981; Grassberger & Procaccia,
1983c; Sauer & Yorke, 1991), which with the measurement at a single location on the surface
not only reveals the regularity of the regime (the dimension of the strange attractor) but also the
number of modes involved. This technique assumes that all the important dynamical features are
contained (embedded) in a single time series. A strange attractor is characterized as an aperiodic
one, in which the surrounding trajectories diverge exponentially from each other in time, and, most
importantly, is an object of fractal dimension 𝐷, i.e. the number of small cells of size 𝜖 required to
cover the attractor scales as 𝜖−𝐷 as 𝜖 → 0. The 𝑚-dimensional embedding phase-space coordinates
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are constructed as {Re𝑈 [𝑡], Re𝑈 [𝑡 + 𝛿𝑡], ...,Re𝑈 [𝑡 + (𝑚 − 1)𝛿𝑡]}, where 𝛿𝑡 is an arbitrary time
delay. The theory (Takens, 1981; Sauer & Yorke, 1991) assures that the topological properties
extracted from the above embedding, such as dimension and Lyapunov exponent, are equivalent to
that of the attractor provided that 𝑚 ≥ 2𝐷 + 1. Practically, it is very difficult to measure 𝐷 from
an experimental data set (Ciliberto & Gollub, 1984, 1985a; Swinney & Gollub, 1986; Henry et al.,
2012); however, there exist equivalent estimates of 𝐷, the most common one being based on the
correlation dimension:

 = lim
𝜖→0

log(𝜖)
log 𝜖

≤ 𝐷, (3.32)

where (𝜖) is the number of data-point pairs separated by a distance less than 𝜖 in the phase-space
multiplied by𝑁−2 with𝑁 denoting the total number of data points. The numerical implementation
of (3.32) has been well developed in literature (Ciliberto & Gollub, 1984; Grassberger & Procaccia,
1983a; Henry et al., 2012). Once (𝜖) is determined and plotted against 𝜖 for different values
of the phase-space dimension 𝑚, the limiting slope in the scaling region, e.g. in figure 3.11f the
neighborhood of log(𝜖) = −5 shown by the arrows, defines the value of . It can be seen from
figure 3.11f that the slope in the scaling region does not change with further increase of 𝑚 beyond
four and is saturated at the value of 1.82 ± 0.02 which corresponds to the fractal dimension  of
the strange attractor thus indicating that the system is in a chaotic state and can be described by a
4-dimensional phase-space formed by real and imaginary parts of the two slow amplitudes.
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Conclusions

In this thesis, I explored the key differences in the dynamics between extended systems on time-
fixed and time-dependent spatial domains. We chose to use the Faraday wave phenomenon as a
testbed to study regular and chaotic dynamical properties of physical systems evolving on time-
varying domains. Consequently, a vibrating fluid container with time-dependent dimensions was
designed and constructed. Our study revealed how patterns transform in response to the domain
dynamics on various length- and time-scales. In particular, we considered three regimes of domain
evolution: shrinkage, growth, and oscillation leading to various remarkable findings. First, we
observed that when a two-dimensional pattern is stretched in one direction, it most often experiences
a wavenumber change in the transverse direction, a new twist to the well-studied Eckhaus instability
in 2D. Second, the domain evolution rate was found as the key factor dictating the formation of
patterns observed on the path between two domain aspect ratios. Its effects range from allowing the
formation of complex sequences of patterns at slow rates to impeding the appearance of any new
pattern on the path at higher rates. The primary differences in pattern formation on time-dependent
domains with and without dilution and convective effects – the latter case is achieved by varying
the liquid layer depth instead of the domains size – have been explored and it was found that the
shrinkage-growth process is irreversible in the former case but reversible in the latter. The most
intriguing result presented in this thesis was the discovery of a novel mechanism to traverse the
edge of chaos, namely by time-variation of the domain size and in the extreme cases, i.e. at a very
slow rate of the domain evolution, preventing the chaotic state altogether.

Given the difficulty and complexity of the systems evolving on time-dependent domains, in biol-
ogy where the applications are ubiquitous, it is common to consider the domain size as an externally
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imposed parameter, while in reality the tissue on which the spatial pattern resides is growing at a rate
which is itself regulated by the diffusible chemicals that establish the spatial pattern. Also, despite
much progress in observations, most theoretical studies resort to numerical simulations thus provid-
ing insufficient fundamental insight in the fundamental underlying mechanisms responsible not only
for various metamorphoses in pattern formation, but also for the simple creation of a new pattern
cell. The theoretical foundations for understanding pattern formation on time-dependent domains
in one dimension have been laid out recently (Knobloch & Krechetnikov, 2014, 2015; Krechetnikov
& Knobloch, 2017); however, this theoretical framework needs to be extended to two dimensions
should one target the quantitative comparison of the experimental results presented in this thesis
with theory. One question that is in need of immediate attention is the observed transverse instabil-
ity phenomena where Eckhaus instability analysis fails to provide an adequate explanation, which
is likely the result of the domain flow effects being neglected. Thus, it is required to derive a set
of two-dimensional coupled Ginzburg-Landau equations from the Swift-Hohenberg equation in the
presence of the domain flow and then to perform a thorough stability analysis. Once the theoretical
framework for pattern formation on time-dependent domains in two dimensions is established, the
subsequent study of controlling chaos by the domain size variation will be the next natural step.

With the pivotal role of Faraday wave phenomena in our study, another interesting avenue to
explore is to extend the pertinent viscous theory (Kumar & Tuckerman, 1994) to the case of finite
domains. The latter can be achieved by modeling the dissipation with the help of lubrication theory
assuming the fluid layer being thin. This would allow for a better comparison to experimental
results, for instance those presented in figure 2.5.

In summary, since the concepts of pattern formation and, especially, chaos are ubiquitous in
nature and science, the results presented in this thesis should be of interest to various scientific and
engineering fields.
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