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Abstract

General Matrix-Matrix Multiplication (GEMM) is used widely in many high-

performance application domains. In many cases, these applications repeat-

edly execute their matrix-multiplication subroutine, as is the case in the imple-

mentation of a particle-physics simulator or the repeated convolutions of many

deep-learning models. This reliance on repeated executions causes matrix-

multiplication operations to be a computational bottleneck in these applica-

tions, creating a strong motivation to improve the performance of GEMM.

The state of the art for the efficient computation of GEMM consists of

manual, programmer-directed replacement of matrix multiplication with calls

to highly optimised Basic Linear Algebra Subprograms (BLAS)-like libraries

which contain kernels painstakingly written in assembly. Beyond a clear ex-

pertise barrier for porting each kernel to each iteration of a specific platform

– and thus a maintenance issue – such a replacement creates a dependency

on external code over which a developer has no control. Moreover, calls to an

unknowable library function disable critical optimisations such as inlining and

loop fusion that can enable further optimisations in the calling code.

The solution to these issues is to provide an alternative for the computation

of matrix-multiplication, with competitive performance, directly within the

compiler. An implementation in this style automatically generates a matrix-

multiplication kernel that benefits from all applicable code transformations

available in the compiler. This thesis addresses the lack of an efficient compiler-

only path to generate code for GEMM by investigating and implementing a
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high-performance matrix-multiplication kernel implementation directly within

the LLVM™ compiler framework. Furthermore, the proposed solution inte-

grates emerging technologies, namely the matrix engine, that provide hard-

ware assistance for the computation of matrix multiplication. In particular,

the recent POWER10 processor features one such extension named Matrix

Math Assist (MMA). Its unique design choice to implement matrix multipli-

cation through the computation of outer products presents new opportunities

to improve performance.

The generation of efficient code for matrix multiplication in the LLVM

compiler framework is divided into two levels: the macro kernel and the micro

kernel. The main goal of the macro-kernel code generation is to make the best

use of the memory hierarchy when bringing the operands from the main mem-

ory to the highest-level of cache memory. The focus of the micro-kernel code

generation is to make efficient use of Single Instruction, Multiple Data (SIMD)

functional units and to reduce the memory-register data-transfer requirements

by increasing data reuse. This thesis focuses on the micro-kernel code genera-

tion, though a compiler-only macro-kernel code generation developed as part

of a large work is available.

This thesis also contributes a detailed performance study that indicates

that this new code-generation strategy results in speed improvements between

3.1 and 15.8 times when compared with the closest alternative compiler-only

code-generation implementation for some data types. There is also strong

indication that, given several improvements in the compiler assembly-code

generation, the compiler-generated kernel can match the performance of an

expert’s handcrafted solution. This thesis also features a detailed analysis of

the experimental results that reveals opportunities for changes in the com-

piler that have the potential to lead to improvements in the entire POWER

compilation stack.
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Preface

Chapter 3 and Section 6.3 contain content that has been extracted from a

multi-author manuscript that is currently being revised [41]. The portions of

Chapter 3 that have been used in this work were drafted by a co-author and

edited by all authors. Due to the large amount of overlap between related

sources, only a small amount of editing was performed to make the statements

more relevant to this manuscript. Several new sources not in the multi-author

document have also been added in Chapter 3.

The content in Section 6.3 that was duplicated from the original manuscript

was written and drafted by myself before being edited by myself and my co-

authors. The version contained in this thesis contains additional details in the

description of the code-generation design and additional experimental results

and analysis that are not included in the multi-author manuscript. The plan

at the time of writing is for the manuscript to be further revised and to be

submitted to a major international journal in the area of code generation.

This multi-author effort focuses on creating a more efficient compiler-only

code-generation path for GEMM in the LLVM framework. The work in that

manuscript addresses the much broader issue of efficient and large matrix

multiplication on multiple platforms with varying memory and hardware con-

straints. My contribution to that work, the same contribution described in

much greater detail in this thesis, is only one facet of the investigation devel-

oped by myself and my co-authors. Overall, my contribution to that work is

the implementation of an efficient and performant matrix-multiplication kernel

that makes use of MMA, allowing for the examination and comparison of the

effects of matrix engines on large-scale matrix-multiplication kernels.
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Everyone who uses a computer frequently has had, from time to time, a mad

desire to attack the precocious abacus with an axe.

– John Drury Clark, Ignition!: An informal history of liquid rocket

propellants, 1972
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Glossary

A

AltiVec
A SIMD instruction set designed for use with single-precision floating
point and integer values.

B

Basic Block
A straight-line code sequence where only the final statement is some
sort of control flow and only the first statement may receive control flow.
Alternatively, an atomic block of statements where if the first statement
is executed, all statements in the block must be executed. Basic blocks
form the nodes in a control flow graph.

Broadcast
The act of duplicating a scalar value to all lanes in a vector register.

Builtin
A function callable from a higher-level language (e.g. C/C++) which en-
capsulates a well-known functionality with well-defined semantics. Such
a function may be implemented in header files, as language-specific key-
words, or conditionally available functions.

D

Dead
A value in a program is dead if it is guaranteed that the value will never
be used again. A static liveness analysis is performed to determine which
values are dead at a given point in a program. Therefore, a value that
is dead at a given point of the program must be dead for all possible
executions of the program. A variable may be dead or a register may be
dead.

I

Integrated Circuit
A set of electronic circuits built into a semiconductor, typically silicon.
These circuits are set in place and cannot be changed.
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Intrinsic
A generic function within an IR which encapsulates a well-known func-
tionality with well-defined semantics. The function will eventually be
lowered to either a call to an existing function or inline code. Some
compilers (e.g. Microsoft Visual C++) may use this term to refer to a
builtin.

L

Lane
A way to refer to an element of a vector register or operation. Derived
from the way circuit pathways leave and enter vector functional units in
groups corresponding to an element, like the lanes of a roadway. The
number of lanes in a vector register, which has constant width, changes
based on element width, i.e. a 128 bit register with 32 bit elements has
four lanes, with 64 bit elements it has two lanes.

Linking
Achieved through a program called a “Linker”, this is typically the final
step in the compilation process. The procedure involves combining all
object files into a single binary, resolving symbols, as well as several more
involved processes.

Live
A value is live at a point in a program if there exists at least one path
from this point that may use the value.

LLVM
The name of an umbrella project of compiler technologies including an
IR, debugger, a variety of machine backends, etc. May also be used to
refer specifically to the combination of optimiser and backend as part of
the lowering process. See Section 2.3.

Lowering
The process of transforming one representation of a program to another
representation that encodes the same semantics but is closer to a final
product. Typically begins with source code in a high level language
and ends with binary machine code; transitional steps often include a
language agnostic IR and an ISA specific assembly listing.

M

Mangle
The act of encoding extra information into a string such that the result
is unique and the information recoverable.

Matrix Engine
A general term describing a set of new facilities on the most recent
generation of CPUs which focus on matrix operations.

O
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Object File
The result of compiling a translation unit into a binary. Compilers may
skip the object file and directly generate an executable if a program
consists of a single translation unit.

P

Point
A point is a concept in program analysis defining places where a program
can be paused and the state can be examined. A point exists between
each logical statement (e.g. between instructions in assembly, between
statements in a higher level language) as well as before and after control
flow split and join points.

POWER
IBM’s high performance computing architecture built for HPC and other
applications.

POWER10
The tenth generation of IBM’s POWER architecture announced in Au-
gust 2020.

R

Rematerialisation
The process of computing a value multiple times rather than leaving it
in a register or spilling it.

S

Spill
The act of storing a live register to memory temporarily in order to free
the register for another value.

T

Translation Unit
A single input file to a compiler after the preprocessing step. All include
directives have been resolved and replaced and preprocessor commands
processed.

V

Vectorisation
The process of transforming a loop in order to perform multiple iterations
simultaneously in a SIMD architecture.
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Acronyms

A

Advanced Matrix Extension (AMX)
The matrix engine extension for the x86 ISA.

Application-Specific Integrated Circuit (ASIC)
An integrated circuit built for a specific use instead of general purpose
use.

B

Basic Linear Algebra Subprograms (BLAS)
Originally a set of highly-optimised, low-level routines used as building
blocks in many larger linear algebra operations [45]. It has since devel-
oped into a standard interface for higher (matrix-matrix) and lower level
(scalar/vector, vector/vector) linear algebra operations with many open
source and proprietary implementations.

C

Central Processing Unit (CPU)
The main component of a computer which interacts with and controls
all other subcomponents according to the instructions contained in a
program.

Common Subexpression Elimination (CSE)
An optimisation which searches for identical expressions and potentially
replaces them with a single variable [13], [60].

Cycles Per Instruction (CPI)
The number of CPU clock cycles required to complete an instruction.
Often used as a performance metric where it refers to the ratio of total
instructions executed to total clock cycles.

F

Field-Programmable Gate Array (FPGA)
An integrated circuit which is configurable post-production via reconfig-
urable interconnects between logic blocks which perform operations.
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Fused Multiply-Add (FMA)
An instruction which performs the operation w = x×y+z often used to
perform accumulation operations as in w += x × y. SIMD equivalents
exist, performing the same operation per lane of the operand vectors.

G

General Matrix-Matrix Multiplication (GEMM)
A more general form of matrix multiplication with a scaling factor for
accumulation and multiplication, i.e. C ′ = αAB + βC where C ′ is the
new value of C after accumulation.

Graphics Processing Unit (GPU)
Originally designed to accelerate image creation for display devices, it
was soon repurposed into a general purpose, high performance compute
device.

H

High Performance Computing (HPC)
The area of computing concerned with performing large scale compu-
tations in the most efficient way possible through the minimisation of
required time and resources.

I

Instruction Set Architecture (ISA)
The abstract model of a computer, including registers, supported data
types, instructions, etc.

Intermediate Representation (IR)
A language-agnostic representation of a program encoding all of the se-
mantics of the original program and potentially annotated with debug-
ging and optimisation information.

International Business Machines (IBM)
A multinational technology company with a long history in the comput-
ing domain.

M

Matrix Math Assist (MMA)
An extension to the POWER ISA’s SIMD capabilities introduced in
POWER10. See Chapter 5.

P

Power PC (PPC)
An old name for the POWER ISA which is still in use in some contexts
as a shorthand.

R
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Reduced Instruction Set Computer (RISC)
A computer focused on a small, simple, and optimised instruction set
meant to enable the processor’s pipeline to have a low CPI.

S

Scalable Vector Extension (SVE)
An extension to ARM’s NEON vector extension which enables programs
to run on hardware with differing vector length without recompilation.

Single Instruction, Multiple Data (SIMD)
Used to describe an architecture with data-level parallelism capabilities,
i.e. able to perform the same operation on multiple units of data simul-
taneously.

Static Single Assignment (SSA)
A programming paradigm common to IRs where each variable in a pro-
gram is assigned to a single time in the program text. This format
makes reasoning about code much easier for many optimisations. See
Section 2.3.1.

T

Tensor Processing Unit (TPU)
An external ASIC for accelerating AI designed by Google [1].

Translation Lookaside Buffer (TLB)
The hardware cache responsible for aiding fast virtual to physical address
translation. Typically implemented as a key-value map where the key is
a page number and the value is the frame in which that page is resident.

V

Vector-Scalar Register (VSR)
The 64 128-bit registers defined as part of VSX. They can be interpreted
as vectors of two 64-bit, four 32-bit, eight 16-bit, or 16 8-bit elements.

Vector Multimedia Extension (VMX)
An extension to the POWER ISA implementing the AltiVec standard.

Vector Scalar Extension (VSX)
An extension to the POWER VMX enabling even greater SIMD capa-
bilities.
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Chapter 1

Introduction

Matrix multiplication is a critical basic operation in many High Performance

Computing (HPC) and AI workloads. Given the surge of popularity in AI and

the growing scale of HPC tasks and simulations, the optimisation of matrix

multiplication can mean an essential reduction in computing time. Waugh and

McIntosh-Smith demonstrate that for small thread counts, General Matrix-

Matrix Multiplication (GEMM) operations often dominate execution time in

a set of benchmarks found to be representative of current workloads [71]. While

multithreading reduces these functions’ contribution to overall runtime signif-

icantly, they conclude that, in a soon-to-be-exascale future, applications will

adapt to use more GEMM operations, expanding this portion considerably.

At the center of our capability to handle these expanding workloads is the

matrix engine. Matrix engines are a new accelerator facility, found in the

most recent generation of Central Processing Units (CPUs), that focuses on

accelerating matrix multiplication. Currently, acceleration is done via exter-

nal accelerators or via vector extensions to an Instruction Set Architecture

(ISA). An external accelerator may be an Application-Specific Integrated Cir-

cuit (ASIC) specialised to the task (e.g. Google™’s Tensor Processing Unit

(TPU)™ [1]), a Graphics Processing Unit (GPU), or a Field-Programmable

Gate Array (FPGA). Vector extensions are part of the movement towards the

Single Instruction, Multiple Data (SIMD) computing paradigm where multiple

pieces of data are used and produced by a single instruction (see Section 2.1).

An advantage of vector extensions in relation to external accelerators is that
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a vector extension can access data through the same memory hierarchy used

by the CPU while most external accelerators require data transfer through an

interconnect with slower transfer speeds.

The current state of the art when working with matrix operations is to

choose one of several libraries that implement the Basic Linear Algebra Sub-

programs (BLAS) interface (e.g. OpenBLAS [74], IBM’s ESSL [33], Intel®’s

MKL [36], [68], Nvidia®’s cuBLAS [55]). These libraries can provide incred-

ible speedups and, in parallel architectures, automatic parallelisation: a very

attractive feature for large workloads. It has been a natural extension of these

libraries to include the usage of matrix engines when targeting CPUs. How-

ever, the development of most of these libraries rely on difficult-to-maintain

assembly programs and their usage imposes extra requirements on systems.

All high-performance implementations of BLAS-like libraries have hand-

written assembly kernels at their core, though the extent of the kernel varies [76].

Nevertheless, each of these kernels must be produced and hand tuned for each

new CPU that the library needs to support. Creating these kernels requires en-

gineers who are extremely knowledgeable about the ISA and the architectural

details of a target CPU. Thus, maintaining the code surrounding such a kernel

as well as the kernel itself requires significant ongoing effort as developers try

to obtain greater performance from the implementation.

Additionally, using a library means that user code now has an external

dependency. In applications where performance and correctness are critical

and must be tightly controlled by the developer, using libraries may be an

impossibility. Similarly, while finding a BLAS implementation on major plat-

forms is often quite easy, some target platforms may not have an available

implementation with which this dependency can be fulfilled [76]. This is a

direct product of the manual kernel porting difficulties described above.

Therefore, as a counterpoint, a method of transparently accelerating ma-

trix multiplication via a compiler-only path is important for portability and

maintainability. When a matrix-multiplication kernel is created as part of a

compiler, it no longer needs to be written in assembly. Relaxing this require-

ment means that kernels become CPU agnostic rather than CPU dependent.
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It will not be ISA agnostic because a kernel, to obtain best performance, will

still need to be written in terms of an ISA’s vector extension, tying it to the

architecture, but it will not be tied to a specific version of the ISA. The change

to CPU agnostic does, however, mean that optimisations that are based on

architectural details such as register count or available functional units, which

would typically be done manually in a handwritten kernel, can now be auto-

matically performed and tuned to the CPU by the compiler. This automation

means that an appropriately written and parameterised kernel will also still

be optimal in future hardware iterations.

Kernels written as part of a compiler are also implicitly subject to all of

the optimisations available in the compiler, now and in the future. Currently,

these include optimisations such as loop interchange, blocking, and unrolling

which are known to have significant effects on matrix multiplication speed [4],

[18], [61], [67]. For example, Velkoski et al. demonstrate a ∼ 2.5× speedup

using unrolling alone for certain parameters; interchange and blocking have a

much greater effect on memory-heirarchy usage, providing greater benefits as

the operation size grows. In the backend, improvements to processes such as

register allocation and instruction scheduling (reordering/pipelining) will be

retroactively available to these kernels as well, completely transparently to the

user.

Furthermore, a crucial optimisation, loop fusion, is impossible with the

current paradigm of library function calls. Mathematically, consecutive matrix

operations (e.g. D = ABC) can be fused so as to perform both computations

at once instead of producing a temporary result (i.e. T = AB;D = TC).

Fusing operations in this manner significantly reduces the memory movements

required by removing the need to store and reload the whole-matrix temporary

value. Moreover, given sufficiently large matrices, it is likely that portions of

the matrix have already been forced out of the cache. A compiler has the

foresight and tools to fuse these operations and then further optimise the

resulting code.

A compiler-only solution for matrix multiplication, while benefitting from

preexisting features of a compiler, nevertheless requires knowledge of the com-
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piler framework, target operation, and the target architecture; forethought

based on the constraints derived from this knowledge; and an actionable design

built from this forethought. As in a handwritten solution, required knowledge

includes an understanding of the matrix engine and vector extensions of the

target architecture as well as how they interact with each other and with the

memory hierarchy. However, because the kernel is written at a higher level

within the compiler, it counters many of the issues associated with the hand-

written assembly version. Authors are now more productive by only having

to focus on writing the kernel: registers and the data in them are now auto-

matically managed, the instruction schedule can be optimised by the compiler

to hide latencies, loops are unrolled according to architecture capacity, and

more. The produced kernels are more portable, functioning on CPUs with

the same ISA (in some cases cross-ISA) with much of the infrastructure being

portable between architectures. Finally, maintenance is also easier: higher

level languages are more readable with less expertise required to interact with

them.

The method of delivering the kernel must also be considered. Libraries are

the currently preferred method of acceleration and therefore any replacement

method should aim to require less effort if it hopes to be adopted. Library

download and installation is oftentimes a simple barrier to overcome for the

average user whereas the majority of users are loath to find and benchmark

combinations of compiler flags in an effort to optimise their program. They

would prefer instead to assume that the preset, curated optimisation levels (i.e.

-O1, -O2, -O3) are sufficient. Therefore, a compiler-only solution should strive

to be as transparent as possible when it comes to enabling easy adoption.
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Chapter 2

Background

This chapter introduces concepts that are necessary for subsequent chapters.

SIMD architectures and vectorisation are concepts critical to every facet of

the work. This chapter also explains the LLVM framework, in which this work

is implemented, as well as the Intermediate Representation (IR) used in the

LLVM framework.

2.1 SIMD Architecture

First introduced as part of the ILLIAC IV [8], processors capable of SIMD

computation were a crucial advancement in high-performance computing his-

tory. Flynn characterised a SIMD processor as having the ability to apply

a single “master” instruction over a vector of related operands [20]. Such an

architecture is desirable for its ability to increase the throughput of repeated

operations through data-level parallelism and is thus highly applicable to one

of the most standard computing control flow mechanisms: loops. This process

of increasing the throughput of loops, through what is essentially a reduction

in the number of instructions executed, has developed into what is now the

well-known and well-studied process of “vectorisation”.

Vectorisation is the process by which a compiler merges multiple scalar

operations into a single operation on a vector. Unrolling a loop exposes re-

peated operations that can be rescheduled and grouped. This extends loads

and stores which, when combined, produce only a single (wider) memory oper-

ation. Repeated memory requests are queued in a memory controller, waiting
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for earlier requests to complete before being started. Requiring only a single

request for the same amount of data can significantly reduce memory latency.

2.2 The IBM Power Architecture

International Business Machines (IBM)® has decades of history in computing,

tracing their roots back to the 1880s; first incorporated as the Computing-

Tabulating-Recording Company in 1911, it was eventually renamed to IBM in

1924 [35]. Throughout this history, IBM has made a point of innovating and

pioneering numerous technologies in hardware, software, and the intermingling

of the two. One such innovation was the POWER ISA.

The POWER® ISA was first announced in 1990 along with its primary

instantiation in the IBM System/6000 [51]. The System/6000, a Reduced In-

struction Set Computer (RISC), implemented new features such as register

renaming and out-of-order execution via the Tomasulo algorithm [64]. Previ-

ously these features were only available in the IBM System/360 mainframe.

Years later, in August 2020, IBM remains competitive in its technology

offerings with the announcement of the tenth generation of the POWER ISA,

aptly named POWER10.

2.2.1 SIMD History in IBM Power

Initially, the POWER architecture implemented its SIMD capabilities through

a common standard named AltiVec. AltiVec was designed through a collabora-

tion between IBM, Apple, and Motorola and described a SIMD instruction set

for floating-point and integer values. This implementation, presented under

the name Vector Multimedia Extension (VMX), was first instantiated by IBM

as part of POWER6 (POWER ISA v2.03) in 2007 [17] despite the standard

being presented in 1999 [65].

Improvements for POWER7 (POWER ISA v2.06) added a new facility,

called the Vector Scalar Extension (VSX), designed to add even further ma-

nipulation capabilities when dealing with vectors. This included support for

up to 64 vector registers, 64-bit integers, and double-precision floating point
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values. Both VMX and VSX exist to this day in the most recent version of

the ISA (POWER ISA v3.1), though many refer to them collectively under

the second name, VSX.

2.2.2 Matrix Math Assist

As part of the new POWER10’s offerings, IBM has implemented a new fa-

cility, dubbed Matrix Math Assist (MMA), into the ISA, continuing IBM’s

commitment to providing cutting edge hardware for the software needs of the

current era. MMA is an addition to POWER’s preexisting VMX and VSX

SIMD facilities. It provides a high-throughput and low-latency method for

calculating matrix multiplications.

The state of the art for hardware that performs matrix multiplication

falls into two categories: (1) via external components (e.g. GPU, FPGA,

or ASIC such as Google’s TPU) and (2) via CPU ISA extensions (e.g. x86’s

Advanced Matrix Extension (AMX) or ARM®’s NEON™/Scalable Vector Ex-

tension (SVE)). MMA belongs to the second category given that the facility

is built directly into the CPU. Thus, the facility is amenable to tasks that

would normally incur avoidable overhead, for example, while sending data to

an external component such as a GPU. See Chapter 5 for further discussion.

2.3 LLVM

LLVM, originally an initialism for Low-Level Virtual Machine, is a compila-

tion framework devised by Chris Lattner [43], [44]. Lattner originally positions

LLVM as a “unique multi-stage optimisation system” that aims to “support ex-

tensive inter-procedural and profile-driven optimisations, while being efficient

enough for use in commercial compiler systems” [44]. LLVM, now a mononym,

has evolved into a project covering a wide range of compilation-related tools

including frontends for many languages, an optimiser, backends for many plat-

forms, a linker, debugger, and several other projects.

Frontends exist for a multitude of languages including C/C++ (clang™),

Fortran (flang), Swift (swiftc), and Rust (rustc). Backends also exist for
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a wide variety of platforms, such as x86, ARM, PowerPC, and WebAssembly.

The LLVM optimiser, named opt, is a popular target for compiler research of

all varieties, seeing advancements in various areas like register allocation [49],

[57], pointer analysis [30], [63], and polyhedral optimisation [6], [26]. The

framework has also been adopted by several large companies who have based

their own products off the ever-improving set of open-source tools. Two exam-

ples of such products are IBM’s XL C/C++ compiler and Nvidia’s CUDA®

compiler.

2.3.1 LLVM’s Intermediate Representation

The main pillar upon which the LLVM’s compilation pipeline is built is its IR.

An IR is a programming language in its own right, though its intended use

is a frontend-language-agnostic and backend-target-agnostic intermediary lan-

guage. In this way, all frontends may target their lowering toward producing

a single shared language and all backends may consume a single shared lan-

guage to produce their platform specific assembly. Given this shared middle

point, it is easy to create an optimiser which both consumes and produces the

single intermediate language. Thus, any combination of high-level language

and destination platform may benefit from new or improved optimisations in

the optimiser.

LLVM IR is known for being strongly typed and maintaining much of the

high level type information from the original input. It can also be annotated

with large amounts of debugging information all while remaining easily seri-

alisable. A critical feature of the IR is that it is in Static Single Assignment

(SSA) form.

SSA was formalised by Cytron et al. [14] though its use was seen as a

side effect in previous works [5], [60]. Efficient methods for its construction

followed shortly after [11], [15]. Intuitively, the main property of a program

in SSA form is that each variable in the program text (static) is assigned to

exactly once (single assignment); this property does not preclude executing an

assignment multiple times at runtime, potentially with different values.
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int foo(int a) {
int x = a + 2;
int y = x + 10;
x = y * 4;
return x;

}

Listing 2.1: An simple example C
program, pre-conversion to SSA.

define i32 @foo(i32 %a) {
entry:
%x.1 = add i32 %a, 2
%y.1 = add i32 %x.1, 10
%x.2 = mul i32 %y.1, 4
ret i32 %x.2

}

Listing 2.2: The same simple pro-
gram, converted to LLVM IR in
SSA format.

A simple C program, shown in Listing 2.1 is converted to the SSA format

in Listing 2.2 via a simple renaming scheme. The first reference to a variable

is suffixed with a one, and all future references increment the counter by one.

This process continues for the entirety of a function body, regardless of any

control flow. There are further complications in the construction algorithm in

the presence of control flow but because the process presented in this thesis

functions within a single basic block, this explanation is left to Cytron et al.’s

work. This format is significantly more conducive to analysis and optimisation

than the source language, allowing for a much easier data flow analysis.
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Chapter 3

Related Work

The sections below present work related to separate facets of this thesis. Each

section contains text derived from work currently under revision [41].

3.1 Matrix Multiplication

In a seminal work, Goto and van de Geijn detail a layered approach to im-

prove cache and vector-register utilization on CPUs [24]. Using this approach,

modern linear-algebra libraries, such as Eigen and OpenBLAS, achieve high

performance on HPC workloads. Goto and van de Geijn show that modelling

both L2 cache and Translation Lookaside Buffer (TLB) — and not only L1

cache as considered earlier — is crucial for cache performance. Their work

is seminal because it publicly explained practical strategies for optimal cache

and vector register utilization on CPUs; these strategies were previously only

available in proprietary libraries. The layered strategy features two stages:

(1) blocking input matrices and packing tiles of these blocks in such a way

that tiles lay in main memory in the order that they will be accessed; and

(2) computing a small GEMM at the register level. Kuzma et al. [41] is the

first work to create a compiler-only code generation for the layered approach

and adapts blocking, tiling, and packing to create a data layout that is suit-

able for computing with MMA and to also improve utilization of the L3 cache.

This thesis is an in-depth presentation of the method behind (2).

Gareev et al. [22] implement tiling and packing within Polly [25], [26] with-

out the need for an external library or automatic tuning. Their approach with

10



a hand-optimized x86 SSE kernel reports performance on par with BLIS on

Intel Sandy Bridge. When not relying on an assembly kernel, their pass uses

the default LLVM vectoriser that delivers only a small speedup over naïve

code. The work in this thesis presents a compiler-only kernel that can replace

Gareev et al.’s SSE kernel or the default LLVM vectoriser on POWER10. Fur-

thermore, this work is more modular and can be reused by new passes or other

code generation paths as a drop-in inner-kernel.

Uday Bondhugula presents an implementation of the BLAS strategy within

the emerging MLIR framework [10]. He demonstrates that blocking, packing,

register tiling, and unroll/jam yields code that achieves 34% of OpenBLAS’

performance on Intel’s Coffee Lake [10]. Bondhugula also implemented a cus-

tom vectorisation pass to replace the default LLVM vectoriser thus reaching

91% of the performance of OpenBLAS. This work also shows the weakness of

the default LLVM vectoriser. As well, because LLVM IR is a dialect within

MLIR, using LLVM IR intrinsics is inherently an accessible method of imple-

menting an inner kernel in MLIR.

Carvalho et al. introduce KernelFaRer, a robust pattern recognition system

that can identify matrix-multiplication patterns in the LLVM IR level and can

replace the matrix multiplication with library calls [12]. While this approach

can lead to speedups on the order of 1000s in comparison with non-optimized

code, it has the drawback of requiring the use of libraries in a computer sys-

tem that may not have them installed. Moreover, their experimental results

indicate that, for smaller matrices, the overhead of invoking functions in the

libraries leads to performance degradations. The solution in this thesis is or-

thogonal to KernelFaRer. The pattern recognition in KernelFaRer can identify

GEMM kernels at the intermediate-level representation and then replace the

inner-most kernel with the solution presented here.

3.2 Code Generation for New Hardware

When presenting the ILLIAC IV, one of the first SIMD machines, Barnes

et al. advocated that data parallelism would be crucial for progress [8], citing
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matrix operations as a critical target [40]. Nearly 50 years later, Barnes’ direc-

tion culminated in the inclusion of vector extensions in all mainstream CPUs

such as IBM’s VSX [34], Intel’s AVX-512 [37], and ARM’s NEON/SVE [7]. Al-

though fast vectorisation is powerful, matrix-multiplication performance could

be improved further with specialized hardware units. This possibility is now

realized with the introduction of what Domke et al. have dubbed “matrix en-

gines” [16], now available in IBM’s MMA [34], Intel’s AMX [37], and ARM’s

NEON/SVE [7]. This thesis, in the same vein as Barnes et al., focuses on

bringing high performance to new hardware facilities.

3.3 Other Matrix Engines

The advent of the “general purpose” GPU quickly saw study and performance

analysis of matrix computations [19], [42]. This evolved into implementa-

tions of matrix multiplications on GPUs: manually [46], through libraries like

BLAS [54], and through frameworks such as DistME [29]. Matrix multipli-

cation is also central to the design of hardware for tensor-operation accelera-

tion such as Google’s Tensor Processing Unit [38], Nvidia’s Tensor Core [50],

and Huawei’s Cube Unit [47]. Performance evaluations of GEMM in tensor

hardware are difficult to find because the studies of these devices focus on

the benchmarking of various flavours of neural network [38], [70]. Matrix-

multiplication acceleration in standalone accelerators is not the focus of this

thesis.

It is difficult to find works explicitly discussing the outer product because

kernels are often described in terms of Goto and van de Geijn’s work. How-

ever, a work by Naohito Nakasato [53] and another by Wu Jing and Joseph

Jaja [73] both explicitly mention the use of the outer product to compute ma-

trix multiplication. Both of these works use a GPU for their implementation

while this work focuses on the emerging field of on-chip matrix engines.

Yu et al. implement a rank-one update algorithm on the GPU, but their

research focus is improving the performance of bilinear pooling [75]. Their

work aims to replace another method of singular value decomposition via an
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iterative method requiring many matrix-matrix multiplications by using the

outer product. The work presented in this thesis aims to improve matrix-

matrix multiplication on the CPU using rank-r updates.

Pal et al. introduce an outer product accelerator designed for sparse-matrix

multiplication [56]. Their design, called OuterSPACE, is an external acceler-

ator focused on alleviating the memory issues associated with sparse matrix-

matrix multiplication. The algorithm presented in this thesis uses MMA as

an accelerator for dense matrix-matrix multiplication. Despite the focus of

this thesis on matrix multiplication, MMA is not at all limited to dense op-

erations. Work by Gu et al. develops a memory-efficient algorithm for sparse

matrix-matrix multiplication using the outer product that may prove to be an

excellent match with MMA [27].

3.4 Performance Evaluation

Robust performance benchmarking is critical for the evaluation of vector ex-

tensions. While there is extensive performance evaluation of matrix multipli-

cation on vector extensions for Intel architectures [3], [31], [32], to the best of

the author’s knowledge, similar studies do not exist for the PowerPC or ARM

platforms. Moreover, the introduction of matrix engines is recent in all plat-

forms and therefore only simulated or theorized performance estimates exist

for AMX, SVE, or MMA [16], [58]. Therefore, this work is among the first to

present performance evaluation of a matrix engine on actual hardware.
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Chapter 4

Matrix Multiplication

Matrix multiplication is used extensively in many fields of Science that rely

on HPC, including several fields within physics [39], biology [2] and chem-

istry [72]. It is also possible to simulate quantum computing processes using

matrix multiplication [77]. Moreover, many neural-network operations are

based on matrix-matrix or vector-matrix multiplication [9], [59].

Due to its simple structure, tight loop layout, but potentially long execu-

tion time, matrix multiplication is well positioned for improvements through

modifications to both software and hardware. Seminal research, such as that

by Goto and van de Geijn [24], has resulted in high-performance software im-

plementations, including the extensively used linear-algebra libraries Eigen [28]

and OpenBLAS [74]. These implementations often outperform naïve versions

of matrix multiplication by hundreds or thousands of times, turning hours of

work into seconds or less. This speedup is possible through the use of hardware

features, such as SIMD, and code transformations, such as loop blocking and

data packing. Understanding matrix multiplication and how it is implemented

is critical to achieving these improvements.

4.1 Inner and Outer Product

In the most abstract sense, matrix multiplication is a very simple operation

to implement. As long as each element of A is multiplied with the correct

element of B and the result is accumulated to the correct element of C, the

order in which these operations happen does not matter. Thus, the simplest
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× =

A B C

(a) Inner product.

× =

A B C

(b) Outer product (rank-one update).

Figure 4.1: Example matrix-matrix multiplication computation styles.

implementation of matrix multiplication can be written as in Listing 4.1.

1 for i=0 to M, j=0 to N, k=0 to D do
2 C[i, j] += A[i, k] * B[k, j]

Listing 4.1: Pseudocode implementing matrix multiplication as simply as pos-
sible.

The order in which the loops are executed does not affect the output of

the algorithm on the condition that each combination of i, j, and k is reached

exactly once. However, mathematically speaking, choosing a certain order for

the loops will produce functionality resembling certain common mathematical

operations. A given order for the loops leads to matrix multiplication via the

inner product, which is the classic method taught in linear algebra courses,

while a different order leads to matrix multiplication via the outer product.

While both choices arrive at the same final result, the efficacy with which they

arrive can vary significantly, as is discussed later in Section 4.3 and Section 4.4.

4.1.1 The Inner Product

As taught in the classroom, matrix multiplication can be computed by repeat-

edly applying the inner product. The inner product takes two vectors and

produces a single scalar value. Specifically, it is defined as the summation of

the pair-wise products of two vectors (e.g. v ·w = v1w1 + v2w2 + . . .+ vDwD).

Within the context of matrix multiplication, the inner product is used to

compute a single cell of C from a row of A and a column of B. More concretely,

given the computation C
(M×N)

= A
(M×D)

× B
(D×N)

, the inner product computes the

cell ci,j by taking the inner product of the ith row of A and the jth column of
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B (Figure 4.1a). In this way, matrix multiplication is composed of one inner

product for each cell of C.

We can see this process in the following implementation of matrix multi-

plication:

1 for (uint64_t i = 0; i < M; ++i)
2 for (uint64_t j = 0; j < N; ++j)
3 for (uint64_t k = 0; k < D; ++k)
4 C[i][j] += A[i][k] * B[k][j];

Listing 4.2: A basic matrix multiplication via inner product.

Referring back to Listing 4.1, the loop order has been concretised to (i, j, k).

In order to implement the mathematical process outlined above, the loops on

lines 1 and 2 of Listing 4.2 select the cell from C, the row of A, and the

column of B that will be used. The innermost loop on line 3 implements the

inner product by multiplying elements from the chosen vectors in A and B

and then reducing them into the chosen cell of C. One can thus view the

implementation in Listing 4.2 as a loop over i and j that selects an output cell

and repeatedly calls an inner product function. Therefore, with the choice of

loop order (i, j, k), matrix multiplication can be conceptualised as shown in

Listing 4.3.

1 for i=0 to M, j=0 to N do
2 C[i, j] = innerProduct(A.row(i), B.column(j))

Listing 4.3: A basic matrix multiplication via inner product broken into logical
concepts.

4.1.2 The Outer Product

Matrix multiplication can also be computed through repeated application of

the outer product. In contrast to the inner product, the outer product takes

two vectors and produces a matrix. Specifically, given v and w that have

lengths m and n respectively, the outer product produces an m × n matrix

where cell (i, j) is the product of vi and wj (Figure 4.1b).

Where, given a vector from A and and a vector from B, the inner product

fully computes a single cell, the outer product partially computes every cell of
16



the output C. Moreover, each vector of A and B is used only once. Specif-

ically, given the computation C
(M×N)

= A
(M×D)

× B
(D×N)

, matrix multiplication

is computed by taking the outer product of column k of A and row k of B

and summing the resulting partial matrices. Because the dimension D dictates

both the number of columns in A and the number of rows in B, the full matrix

multiplication can be computed by performing a total of D outer products.

Using Listing 4.1 as a model, this process implements matrix multiplication

with a loop order of (k, i, j):

1 for (uint64_t k = 0; k < D; ++k)
2 for (uint64_t i = 0; i < M; ++i)
3 for (uint64_t j = 0; j < N; ++j)
4 C[i][j] += A[i][k] * B[k][j];

Listing 4.4: A basic matrix multiplication via outer product.

Here, the loop on line 1 selects a column from A and a row from B while

the loops on lines 2 and 3 compute the outer product of those vectors. Thus,

in a tranformation similar to the one between Listing 4.2 and Listing 4.3,

Listing 4.4 can be rewritten like so:

1 for k=0 to D do
2 C += outerProduct(A.column(k), B.row(k))

Listing 4.5: A basic matrix multiplication via outer product broken into logical
concepts.

Rank-r Updates

Some mathematical operations, such as lower-upper factorization, depend on

a changing data set, updating a model as new data points are added [62].

This update process is performed by taking a matrix derived from the model

and updating it with the outer product of two vectors. Because the result of

the outer product of two vectors, a matrix, will always be of rank one, this

operation is called a rank-one update.1 Matrix multiplication can be com-

puted in the same way by updating a zeroed-out matrix with outer products
1All rows and columns are a linear combination of one vector. For example, given M =

vwT all columns in M are a multiple of v.
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(the rank-one update), eventually arriving at a fully computed multiplication:

C1 = 0;Ck+1 = Ck + A∗,kBk,∗. With this model, the outer-product matrix

multiplication in Listing 4.5 is rewritten as such:

1 for k=0 to D do
2 rankOneUpdate(C, A.column(k), B.row(k));

Listing 4.6: Matrix multiplication using rank-one update.

It is not necessary for a complicated model to update itself one data point

at a time. Should, for example, two data points become simultaneously avail-

able, two rank-one updates can be performed at the same time. Updating with

two rank-one updates means summing two rank-one matrices; by definition,

the summation of two rank-one matrices creates a rank two matrix.2 There-

fore, this operation can now be described as a rank-two update. This same

logic extends to creating updates with greater ranks, giving rise to the rank-r

update.3 Revisiting the process in Listing 4.6, this repeated rank-one update

process is apparent. The loop simply performs D rank-one updates, implying

that the algorithm can be once again reinterpreted in the form of one rank-D

update like so:

1 // Assumption: A, B are arrays of D vectors
2 rankRUpdate(C, A, B, /*rank*/ D);

Listing 4.7: Matrix multiplication using rank-r update.

4.2 State of the Art

Matrix multiplication, as a critical operation in many applications, has been

the focus of optimisation research for decades. Simple insights into matrix

multiplication have enabled better data usage, both spatially and temporally.

Contemporary libraries and their overall frameworks are derived from seminal

work by Goto and van de Geijn [24]. More recent work [66], [76] have improved
2Given matrices M1,M2 ∈ Rm×n, each rank one, then each matrix has vi, its only basis

vector. If v1 ̸= v2, then M1 +M2 has two basis vectors v1, v2, implying M1 +M2 has rank
two.

3Common notation is rank-k update; it is changed to rank-r update in this work so as
to avoid confusion with k in other uses.
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upon that seminal work, but the overall structure remains the same. Each of

these works aim to improve the portability to new architectures by providing a

more modular approach for the micro kernel. This includes a work by Low et

al. which shows that the tuning parameters of the kernels for each architecture

can be derived analytically from the architecture specification [48].

Goto and van de Geijn’s work concludes that matrix multiplication should

be implemented in a layered approach. Each of these “layers” is typically one

or more loops that perform some function before executing the enclosed layer.

It can be convenient to think of each of the upper layers as a function with a

nested function call within it. The innermost layer in this view performs the

most basic computation on which the entire operation is built, essentially a

small and fast matrix multiplication. The surrounding layers are concerned

with the optimisation of data movement and layout.

Typically, the layered approach consists of two layers: (1) the blocking

strategy responsible for breaking up the computation combined with the pack-

ing strategy responsible for optimising data movement between memory and

cache as well as data layout within the cache (called the outer kernel or macro

kernel); and (2) the computation strategy responsible for data movement be-

tween cache and register as well as for producing the actual result (called

the inner kernel or micro kernel). This work focuses on building a modu-

lar innermost layer and therefore the outer layer is explained only briefly for

completeness.

4.3 The Outer Kernel

There are two operations that are critical to the function of the outer kernel:

blocking and packing. Blocking takes an operation and breaks it into smaller

pieces, focusing on computing output in a piecewise manner rather than all at

once. Division is necessary because matrix sizes found in applications are often

much larger than what can fit in a cache memory. Even with this division, the

distance between elements within different rows or columns can cause cache

conflicts or TLB misses. To increase the spatial locality of accesses, packing
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takes an operand matrix and copies a block of data into a smaller buffer

where all elements fit in cache simultaneously, allowing for faster access times.

Packing can also improve the data access pattern for a more efficient inner

kernel, as discussed later in Section 4.3.1.

The outer kernel is a delicate dance between blocking and packing. If the

blocking factor is too large (i.e. many small blocks) then there is an excessive

amount of data movement, requiring packing more often and having less reuse

of each packed element. However, when the blocking factor is too small (i.e.

few large blocks) then blocks no longer fit in cache – in the worst case, causing

page faults – and packing is ineffective. The dimensions of the blocking, and

therefore the packing, can be determined analytically [48] and are dependent

on the sizes of all levels of the cache present on the target architecture (L1,

L2, L3 on modern consumer machines, uncommonly L4).

Goto and van de Geijn address blocking, caching, and TLB issues in their

work by devising three ways of breaking up both operand and output matrices.

When blocking, each new blocking loop breaks up a single dimension of the

matrix multiplication. Dividing one dimension of a matrix produces a panel :

a section with one long dimension and one short dimension. Further dividing

a panel produces a section with two short dimensions called a block. Only two

of the three dimensions (M , D, N) are blocked while the third is the inner

most loop’s iteration variable. This process produces
(︁
3
2

)︁
= 3 different choices

for the innermost loops.4 Different combinations of blocking orders also induce

different packing choices that change which of A, B, and C are packed into L1

and L2 cache.

4.3.1 Blocking and Packing for Cache

The primary concern when blocking and packing for cache is optimising L2

cache bandwidth. When dimensions M and N are blocked, the innermost

loop multiplies a panel by another panel, producing a block. This breakdown

is affiliated with the inner product because it multiplies two panels, which

resemble vectors, while producing a block, which resembles a cell. According
4“Three choose two”.
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to Goto and van de Geijn’s proposed method, with this breakdown, C will

be packed in L2 cache. Unfortunately, because GEMM is an accumulating

operation (e.g. C += AB), C must be read from cache, accumulated into,

and then written back. When either A or B are packed into L2 cache, as is

the case in the other breakdowns, there are only read operations from the L2

cache. Therefore, the inner-product method is less bandwidth efficient because

it requires both a read and a write from L2 cache.

An implementer can choose between the remaining two methods (blocking

M and D or blocking D and N) based on the storage order of C. Within

each of these methods, the order in which D and the second dimension are

blocked creates two options. One of these options is considerably better than

the other; to demonstrate, without loss of generality, consider the method that

blocks M and D and iterates N .

Given that A is already packed in L2 cache, the first option, which blocks

D then M , (1) streams C to and from memory and (2) packs B in L1 cache.

Given again that A is packed in L2 cache, the second option, which blocks

M followed by D, (1) streams B from memory and (2) computes C in a

temporary in L1 cache which is eventually unpacked and merged with C in

memory. The operations labeled (1) in each option can be assumed to have

negligible impact because they can be pipelined with computation. However,

the operations labeled (2) are effectively overhead. By virtue of the unpacking

and merging of C being a more complex operation, the first option is concluded

to be superior. The same logic can be applied to the method which blocks D

and N by substituting N for M and swapping which of A and B are packed

in L2 cache, arguing that packing D then N is superior.

Blocking and Packing for Registers

The dimensions chosen to maximise cache usage are likely to be too large for

the registers to handle, thus an additional set of loops can be added to block

for registers. These loops only block the pre-packed buffers in memory and

do not perform any packing themselves. Instead, when packing for the cache,

the order in which data is packed is modified. Rather than packing in the
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same order relative to the original data, data is organised such that these sub-

matrix register arguments are contiguous. Packing in this way results in only

a single data copy and allows loads to register for calculation to be contiguous

in memory, improving hardware prefetching effects.

Practicality

Naïve matrix multiplication (i.e. Listing 4.1) does not perform blocking nor

packing; such a case can be viewed as a “bare” inner kernel, without an outer

kernel. Given small matrices as operands, this lack of blocking and packing is

often the correct choice. The overhead resulting from the data movement in

the outer kernel is designed to be overshadowed by the speedup gained from

improved cache performance. When input and output data are already small

enough to be entirely resident in cache, the effort made to pack and block is

shown to be an unnecessary expense.

However, given large matrices, lacking a blocking and packing layer is dis-

astrous for performance. With sufficiently large matrices, every load will result

in a cache miss because the requested data will have been expelled from the

cache by a more recent load simply by the pigeonhole principle. In the worst

case, these issues are compounded with TLB misses as well. Therefore, while a

single, optimised inner kernel is always critical to performance, it is important

for library implementers or compiler designers to consider the size of the data

when possible and offer multiple outer-kernel data-management strategies.

4.4 The Inner Kernel

The inner kernel is focused on maximising performance. Whether the compu-

tation itself has small dimensions or a larger computation has been blocked and

packed, the inner kernel should be as tight and as efficient as possible. There-

fore, the implementation of the inner kernel must consider optimisations such

as loop unrolling and instruction rescheduling to improve operation pipelin-

ing. The instruction cache capacity, instruction issue rate, and functional

unit availability must also be taken into account. First, however, the product
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operation used to implement the inner kernel must be carefully chosen.

4.4.1 Inner Product vs Outer Product

Matrix multiplication’s inner kernel is implementable through two operations:

inner product and outer product. Both operations arrive at the same des-

tination albeit via different processes. At the end of the computation, both

methods will have performed exactly the same number of multiplications and

additions. In a hypothetical machine with unlimited resources, including vec-

tor registers of unlimited length, they would also perform the same number of

stores and loads. In such a theoretical framework, at least in terms of com-

putations performed, neither method can be said to be better. However, in a

practical machine, it is impossible to load the entirety of a long row or column

into vector registers in order to fully compute a portion of the matrix.

Long dimension lengths make tiling a necessity. Tiling, as discussed in

Section 4.3.1, breaks the overall multiplication into smaller, more manageable

computations. As discussed in that same section, on the macro scale, Goto

and van de Geijn conclude that an inner-product-based tiling results in more

costly data movement, making it a poor choice for the implementation of the

outer kernel.

When considering the inner kernel, the inner-product approach also makes

poor use of SIMD capabilities. Computing the inner product requires a hori-

zontal reduction (or tree reduction): the reduction of all the lanes of a vector

register into a single scalar element. Computing a partial result in this man-

ner reduces the effectiveness of SIMD by creating a scalar value. SIMD was

created specifically to alleviate the bottleneck associated with working with

scalar values; reverting to scalars should therefore be avoided when possible.

The outer product, on the other hand, uses a vertical reduction (or element-

wise reduction) that allows partial products to be accumulated simultaneously

in all lanes of the destination vector register.
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(a) Block times panel.
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A

×

B

(b) Panel times block.

Figure 4.2: The two possible implementations for the inner kernel viewed
mathematically.
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(b) Panel times block.

Figure 4.3: The two possible implementations for the inner kernel as computed
by using broadcasting and FMA instructions.

4.4.2 Goto and van de Geijn’s Methodology in the Inner
Kernel

Goto and van de Geijn’s methodology continues to be present within the inner

kernel of libraries. As in the outer kernel, rather than implementing matrix

multiplication in terms of the inner product, which some ISAs have directly

supported for years5, matrix multiplication is implemented through the mul-

tiplication of a combination of a block and a panel. While for the outer

kernel a short dimension is optimally several hundred elements wide and a

long dimension is the full extent of one of the matrix dimensions, the inner

kernel must operate with registers. Therefore, a “short” dimension is typically

a single element and a “long” dimension is the length of the vector register.

Figure 4.2a and Figure 4.2b show, in the mathematical sense, what both com-

binations of block and panel multiplication look like if a vector register can

hold four elements.

Next is a discussion of the typical library implementation of these concepts
5For example, the DPPS or DPPD instructions that were introduced in x86 SSE 4.1 in

2008.
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A

×

B

(a) Extending block times panel.

C

+=

A

×

B

(b) Extending panel times block.

Figure 4.4: Extending Goto and van de Geijn’s inner kernel techniques to
outer product.

using SIMD techniques in a simple but flawed outer product followed by a

presentation of a method to resolve these flaws through an improved version

of the outer product.

Emulating the Outer Product with SIMD Instructions in Libraries

Figure 4.3a and Figure 4.3b show how the outer product is emulated using

an architecture’s SIMD capabilties. First, the block’s single element is broad-

casted to each lane of a vector register. The elements of the panel are then

loaded into a different vector register. Once both registers are ready, a Fused

Multiply-Add (FMA) instruction multiplies the two vector registers together

and accumulates the result into a third vector register representing a panel in

C. This process is more effective than using the inner product because multi-

ple output values are accumulated at the same time in each lane of the vector.

However, in a kernel that is supposed to be as tight as possible, cycles are

lost to duplicating values. Furthermore, the kernel should also use resources

as effectively as possible, however, the duplicated values use all lanes of a vec-

tor, effectively reducing a vector register back to a single scalar, nullifying the

benefits of SIMD.

Improving the Design

To improve upon this design, it must first be reexamined. In choosing this

method, the implementer is performing a C
(1×n)

= A
(1×1)

× B
(1×n)

or C
(n×1)

=

A
(n×1)

× B
(1×1)

matrix multiplication. While it is tempting to view this oper-

ation as a traditional inner-product, a different point of view can be more
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beneficial. Instead, this multiplication can be regarded as a degenerate case of

an outer product where one of the operand vector’s length is one. With this

understanding, the direction for improvement becomes apparent. The dupli-

cation issue can be resolved by replacing the duplicated values with unique

values, extending the outer product’s shortened dimension, bringing it closer

to Figure 4.1b. Doing so stacks more of these operations, as shown in Fig-

ure 4.4. A dashed box represents one vector register, with each element therein

being a distinct element from the matrix rather than a single broadcasted ele-

ment. Given a register that could contain the much larger output data in the

dot-dashed boxes, the overhead of broadcasting can be completely removed

and the computational throughput of the operation quadrupled. Chapter 5

shows how this improvement can be implemented using POWER10’s MMA.

4.4.3 Implementation

Having looked at which kernel to implement, the direction for the implemen-

tation must be decided. As discussed previously, libraries often have kernels

handwritten in assembly. Kernel writers must implement all optimisations by

hand. In doing so, they must review CPU properties as well as consider the

design of their outer kernel to determine to what degree an optimisation will

affect the hardware. Historically, with great effort, this process has produced

excellent results.

Unrolling the kernel to a larger degree allows for greater opportunities in

instruction rescheduling as well greater use of available registers. Computa-

tions can be moved closer to loads to enable pipelining as well as interleaved

to hide stalls due to occupied functional units. Future iterations that would

load the same data can also be moved such that the values are still in register

and can be reused, reducing register pressure and stores.

However, all of these optimisations, and others, are readily available in

a compiler, often implemented generically and with great care regarding ap-

plicability and benefit analysis. For example, the kernel can be written in

terms of scalars, allowing the compiler to vectorise the kernel automatically.

Automatic vectorisation means obvious optimisations such as using the best
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available vector load and store instructions as well as unrolling to allow for

pipelining of loads. Less obvious issues are also solved automatically: han-

dling operations that may have dimensions that are not a multiple of vector

register automatically creates additional code pathways that make use of vec-

tors at half width or less, eventually reducing down to scalar computation.

Issues that are impossible to solve for handwritten kernels without writing an

entirely new kernel, such as new instructions added to an ISA, are also im-

mediately solved because the compiler knows which architecture to compile

for and can use any instruction available on that architecture. Therefore, a

kernel written within the compiler can be written at a higher and more generic

level, as in an IR, and achieve the same, or better, performance. It is for this

reason that Chapter 6 presents a method built fully within a compiler without

a handwritten kernel.

4.5 Summary

This chapter delves in-depth into the intricacies of matrix multiplication, an

operation that seems quite simple at first glance. First to consider are the two

main ways in which matrix multiplication can be computed: inner product

and outer product. Both are implemented using the same set of loops and

operations and arrive at the same answer, but their performance can vary

drastically based on transformations applied when optimising.

The modern approach to optimising matrix multiplication divides the op-

eration into two levels of work. The first layer, the outer kernel, focuses on

efficient manipulation of the memory hierarchy. This goal is achieved through

the use of a blocking and packing strategy derived from seminal work by Goto

and van de Geijn.

The inner kernel focuses on optimising the computation of matrix mul-

tiplication given the small amount of data provided by the outer kernel at

each invocation. Goto and van de Geijn’s influence extends into this layer

as well, where they state that the inner product is an inefficient method for

computing matrix multiplication. Despite indications that an outer-product
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based method is superior, implementation within libraries must rely on em-

ulation via SIMD methods. However, this method of emulation contains a

piece of the outer product in it. To improve upon the SIMD method, a new

hardware extension is required. Chapter 5 presents an implementation of that

improvement.
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Chapter 5

Matrix Math Assist

POWER10’s MMA is what is being called a “matrix engine” [16]. Specifically,

it is a facility in the CPU whose function is computing matrix multiplication.

Matrix engines have appeared in multiple architectures, though their imple-

mentation and design choices differ. Likewise, the algorithm for optimally

making use of each of these architectures differs. While this work focuses on

MMA, a discussion of the differences in these architectural implementations

follows in Section 5.3.

MMA adds a new architectural feature alongside the matrix engine: eight

accumulator (ACC) registers. Accumulators and the new instructions for in-

teracting with them enable the efficient matrix-matrix multiplication outlined

in Section 4.4.2. Much of the content in this section can be found through-

out the POWER10 ISA document though some of it comes as insight from

engineers at IBM or external sources.

MMA’s design is built around the choice to compute the outer product

instead of the inner product. As discussed in Section 4.4.1, the inner product

is inferior when compared with the outer product. MMA eschews the overhead

revealed at the end of Section 4.4.2 by directly providing the outlined outer

product capabilities along with the large register necessary for holding the

result data.
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5.1 Accumulator Assembly and Disassembly

An accumulator, in almost all interactions with MMA, can be thought of

as a single register consisting of 4× 4 32-bit elements. Accumulators may be

assembled (initialised) in three manners: (1) set to zeroes (xxsetaccz, Set Acc

to Zero) (2) constructed from four consecutive Vector-Scalar Registers (VSRs)

(xxmtacc, Move To Acc) and (3) a multiplication instruction that does not

accumulate (see Section 5.2). When constructing from VSRs, each VSR is

moved into the ACC and becomes one row of the resulting accumulator.1

In its current iteration, accumulator n is the logical grouping of four 128-

bit VSRs (VSR[4n:4n+3]) into a single register. As such, the four underlying

registers used to construct the accumulator are unavailable for use while the

accumulator is in an assembled state. For example, VSR[0:3] are unavailable

while ACC[0] is assembled. This blocking effect also applies to the underlying

registers when assembling an accumulator to zeroes.

Blocking the underlying registers is viewed as a reasonable restriction in

POWER10. However, the ISA is written such that if, in future versions of

the hardware, the blocking restriction is removed, no changes will need to be

made to the ISA.

The reverse operation to assembly is disassembly (xxmfacc, Move From

Acc). Disassembly moves each row from the accumulator into the same vector

registers used for construction. Therefore, as before, the first row of ACC[0] is

placed into VSR[0], the second row is placed into VSR[1], etc.

5.2 Matrix Multiplication in MMA

Table 5.1 shows all seven of the data types usable with MMA. Instructions

are given three arguments: an accumulator and two VSRs. Considering the

simplest example, single-precision floating point, a four-element row or column

fills the entire VSR (32bits× 4 = 128bits). Thus, two length-four vectors are
1Viewing the vectors as rows is intuitively convenient, but relatively arbitrary in reality.

See Section 6.3.5 for use as columns.
2Google’s Brain floating point format [69].
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Instruction Input Type Output Type Input Dim. Smallest Computation
xvi4ger8 i4 i32 4× 8 C

(4×4)
= A

(4×8)
× B

(8×4)

xvi8ger4 i8 i32 4× 4 C
(4×4)

= A
(4×4)

× B
(4×4)

xvi16ger2 i16 i32 4× 2 C
(4×4)

= A
(4×2)

× B
(2×4)

xvf16ger2 half float 4× 2 C
(4×4)

= A
(4×2)

× B
(2×4)

xvbf16ger2 bfloat162 float 4× 2 C
(4×4)

= A
(4×2)

× B
(2×4)

xvf32ger float float 4× 1 C
(4×4)

= A
(4×1)

× B
(1×4)

xvf64ger double double 4× 1 C
(4×2)

= A
(4×1)

× B
(1×2)

Table 5.1: A description of MMA instructions investigated. Input dimension
is transposed for second argument.

multiplied in an outer product, creating the computation C
(4×4)

= A
(4×1)

× B
(1×4)

.

Recalling Section 4.1.2, this operation is a rank-one update to the accumulator.

Halving the size of the type to 16 bits means the argument VSRs are

underutilised at half capacity. Accumulators cannot be expanded and are

always 4 × 4 matrices of 32-bit elements. Thus, to increase utilisation of

VSRs, the number of elements contained in each VSR is doubled resulting

in doubling the number of rows or columns in a VSR. Therefore, when using

16-bit values, the calculation performed is C
(4×4)

= A
(4×2)
× B

(2×4)
, now performing

a rank-two update to the accumulator. The same logic applies for eight- and

four-bit types, computing rank-four and rank-eight updates respectively.

5.2.1 Arguments in Register

Once the instruction is performing a rank-two update or greater, the order of

the elements in the register must be considered. The POWER ISA specifies

that the first argument must have elements in row-major order while the second

argument must have elements in column-major order. This enables simple

circuit pathways where, for a rank-r update, element (i, j) in C accumulates

with the inner product of the r-length group of elements in A at offset i × r

and in B at j × r.3

3Typical matrix notation uses one-indexing; this example uses zero-indexing.

31



A

B

(a) Arguments for an i16 matrix
shown contextually.

A

B

(b) Arguments for an i16 shown
in VSR.

Figure 5.1: Element ordering in types smaller than float demonstrated using
i16.

-p -n
p- C ′ = C + AB C ′ = −C + AB
n- C ′ = C − AB C ′ = −C − AB

Table 5.2: MMA accumulation computations by instruction suffix. C is the
accumulator before accumulation while C ′ is the accumulator after accumula-
tion.

Figure 5.1a shows an example for i16. A and B are divided by dark lines

according to their access order while lighter lines divide the elements within

the vector. The first two elements of the operand from A, highlighted by

diagonal lines, form a row while the first two elements from B, highlighted by

dots, form a column.

In Figure 5.1b, the arguments are shown laid out in a VSR. The VSR is

divided using dark and light lines in the same way as Figure 5.1a to show how

the element positions are translated to a VSR. The inner product of these two

two-element vectors, from A at offset 0×2 = 0 and from B at 2×2 = 4 in their

respective VSRs, are accumulated with the value in C at (0, 2), highlighted in

a crosshatch pattern.

5.2.2 Instruction Variants

An instruction without a suffix (first column of Table 5.1) will both assemble

the given accumulator and overwrite it with the outer product of the two

VSRs. Afterward, to accumulate into the accumulator, each data type has a
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“family” of instructions offering different semantics. Four instruction suffixes

are available: pp, pn, np, nn. The p and n stand for positive and negative

respectfully. The first character specifies the sign of multiplication (i.e. ±AB)

while the second specifies the sign of the accumulator (i.e. ±C). The possible

computations are shown in Table 5.2. Computations with 16-bit integers have

an additional suffix, s, which replaces the regular overflow semantics with

saturating semantics (e.g. 0xFFFF + 1 = 0xFFFF).

In combination with any of the suffixes, a single prefix exists: pm. This

prefix indicates a “prefixed masked” instruction. These instructions take an

additional three arguments, each of which is a mask that enables fine-grain

control over the accumulation. Each of the masks allows disabling of one of

the following: (1) any of the rows of the accumulation (2) any of the columns

of the accumulation or (3) any of the ranks of the accumulation. Masks

disable only the application of computed values to the accumulator, not the

calculation; therefore, the execution time of a masked instruction is the same

as that of an unmasked one.

5.2.3 Double Precision Differences

When all other computations produce a 32-bit value, essentially gaining pre-

cision or remaining at the same precision, it would be unreasonable to force

computations with 64-bit values to lose precision. Therefore, when working

with double-precision floats, accumulators become 4 × 2 arrays rather than

the usual 4 × 4. The change in data size affects the argument VSRs as well:

a single VSR now fits only two values. Thus, in order to compute a rank-one

update, the first dimension requires four values, spread across two registers,

while the second dimension now requires two values in a single register.

5.3 Matrix Engine Comparison

Currently, three prominent matrix engines exist, but, given the current im-

portance placed on matrix multiplication, it is unlikely that this list remains

small. Furthermore, each of the architectures have been designed in their own
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Architecture Location Product
Style

Arg/Dest Supported Types

Power10
MMA

core outer VSR/ACC i4, i8, i16,
bfloat16, half,
float, double

x86 AMX off-core inner Tile i8, bfloat16
ARM

NEON/SVE
core inner Vector register i8, bfloat16,

float, double

Table 5.3: Comparison of features currently offered by cpu-based matrix en-
gines.

way with extensibility in mind implying that the richness and diversity of fea-

tures is sure to improve as well. The features of these three matrix engines are

summarised in Table 5.3.

The x86 architecture has placed a strong focus on matrix multiplication by

developing AMX. It is an off-core accelerator dedicated specifically to matrix

multiplication. Furthermore, the accelerator makes use of an entirely new

register file consisting of eight large (16 × 64 bytes) registers dubbed “tiles”.

The architecture supports only inner product computations and uses tiles as

both arguments and destinations . While it supports less types than MMA, it

does support two important types for artificial-intelligence workloads: i8 and

bfloat16.

ARM’s NEON and SVE do not focus on matrix multiplication, providing

them instead as a small part of a larger vector extension. The facility is

implemented on-core and does not provide any new registers, relying on the

architecture’s already-present vector registers. These two factors, combined

with an inner-product style computation mean relatively small computation

sizes when compared with MMA or AMX. NEON, like AMX, supports i8 and

bfloat16 while SVE adds support for float and double.

5.4 Summary

This chapter presented the new MMA extension in POWER10. The extension

adds a new type of register called an accumulator which can be used to compute

matrix multiplication using the outer product. Moreover, a total of seven types
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are supported, several of which perform multiple outer products in a single

instruction, increasing efficiency. Finally, this chapter compared MMA with

the matrix engines available in other ISAs.
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Chapter 6

Implementation Methodology

This chapter discusses the contributed implementation of a high-performance

and library-free matrix-matrix multiplication algorithm which makes use of

MMA. Due to its implementation in the LLVM compiler framework, the

method has immediate performance-enhancing potential on the POWER10

platform.

6.1 Intrinsics in LLVM

An intrinsic is a function available in an IR and is therefore not directly avail-

able in higher-level languages. Select intrinsics are available in higher-level

languages in the form of a builtin, though no builtins are used in this work.1

These functions’ most important role is to symbolise the concept of a com-

mon operation in a representation that must be lowered to many disparate

forms while maintaining efficiency and correctness. They are therefore not

platform-specific but their lowering may be if the semantics necessitate it or

if the maintainer wants to provide a more efficient version. For example, the

LLVM intrinsic llvm.vector.reduce.add.* may be generically lowered to a

series of vector operations at the IR level, or, if the ISA provides a reduction

instruction, it could be lowered more efficiently by the backend.
1Some compilers use this terminology differently; the definitions given here are the defi-

nitions according to LLVM.
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declare i32 @llvm.smax.i32(i32 %a, i32 %b)
declare <4 x i32> @llvm.smax.v4i32(<4 x i32> %a, <4 x i32> %b)

Listing 6.1: A set of basic intrinsic declarations [21].

6.1.1 Intrinsic Format

Within LLVM IR, intrinsics appear simply as external function declarations

whose names are prefixed with “llvm.”. Names within LLVM are permitted

to contain periods, a feature that intrinsics use to mangle families of intrinsics.

Families arise from the need to provide generic intrinsics to a strongly typed

language where overloading is not allowed. For instance, consider the llvm.

smax.* intrinsic which takes two signed integers of the same type and returns

the largest. The LLVM documentation uses the “.*” suffix to represent the

mangled portion of the name. An actual definition will replace the asterisk

with a type name; if the function is generic in multiple places (return value,

arguments) then the other type names will be appended and separated with

more periods. The llvm.smax.* intrinsic only has one generic type. Listing 6.1

shows a declaration that uses a scalar 32-bit integer, typed and mangled as

i32, as well as one that uses a length-four vector of 32-bit integers, typed as

<4 x i32> and mangled as v4i32.

6.2 The llvm.matrix.multiply.* Intrinsic

The llvm.matrix.multiply.* intrinsic existed prior to this work and war-

rants a brief explanation to provide context [21]. The intrinsic has three

generic types: the return-value type and the type of the two input matri-

ces. Each of the three matrices is typed as flattened vectors and therefore

the signature requires three extra arguments to describe the dimensions as in

C
(M×N)

= A
(M×D)

× B
(D×N)

.

The original implementers required that input dimensions be statically

known constants. As well, those familiar with the analogous BLAS routines

may notice that arguments describing data-access order are conspicuously ab-
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1 declare <128 x float>
2 @llvm.matrix.multiply.v128f32.v40f32.v80f32(
3 <40 x float>, <80 x float>, i32, i32, i32
4 )
5
6 define void @foo() {
7 ; Declaration and construction of %A and %B...
8 %C = call <128 x float>
9 @llvm.matrix.multiply.v128f32.v40f32.v80f32(

10 <40 x float> %A, <80 x float> %B, i32 8, i32 5, i32 16)
11 )
12 ; Function continues...
13 }

Listing 6.2: An example declaration and usage of the
llvm.matrix.multiply.* intrinsic.

sent. The original interface assumes that all input matrices have a column-

major access order. Users may include a specific flag in their compiler invoca-

tion to change this setting to row-major order.

The original implementation also includes one other significant constraint:

the intrinsic does not use pointers and must be called with the input matrices

already loaded from memory into a virtual register. Each value in LLVM’s SSA

IR exists in a virtual register; there is an infinite number of virtual registers and

each virtual register has infinite width. Values which are loaded from memory

into a virtual register will be broken up by the backend code generator to fit

the available hardware registers. Thus it is possible to load a matrix with a

certain access order from memory and then implement a process to reorder

the elements to the opposite access order before calling the intrinsic, though

the process will add considerable overhead. Hence, while it is possible to use

matrices with different access orders in memory, they must be transformed

to have matching access orders before calling the llvm.matrix.multiply.*

intrinsic. Listing 6.2 provides an example declaration and invocation of the

intrinsic which computes C
(8×16)

= A
(8×5)

× B
(5×16)

.

During lowering, the call statement is replaced with a series of LLVM IR
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vector operations by the LowerMatrixIntrinsics pass. This version of the

lowering is what is referred to as the default “vectorisation” method. Because

the dimensions of the operation are known statically, the computation is com-

pletely unrolled: no loops will be generated. Such a lowering is ideal because it

removes the need for loop analysis and allows later passes to further vectorise

or pipeline the operation. This property makes it ideal for creating small and

efficient kernels focused on rapid computation.

These kernels, because fully unrolling them creates a large amount of code,

cannot be used to compute large matrix multiplications. For example, un-

rolling a kernel for C
(128×128)

= A
(128×128)

× B
(128×128)

takes several minutes of com-

pilation time and results in an IR file slightly larger than a gigabyte with over

12 million lines. Producing a binary from such a large kernel has never been

accomplished due to the inordinate compilation time. Therefore, wrapping the

kernel in an outer kernel, which breaks down the operation while efficiently

handling memory movement, is a necessity. For further discussion see Sec-

tion 4.3 or for a functional implementation and deeper discussion see the work

by Kuzma et al. [41].

6.3 An Alternate Lowering Using MMA

We look to implement an improvement to this lowering on the POWER plat-

form using MMA. Content in Section 6.3.1, Section 6.3.3, and Section 6.3.4 is

derived from work the work by Kuzma et al. [41].

This work focuses on a lowering for floating point values when computing

C
(8×16)

= A
(8×5)
× B

(5×16)
. The 8× 16 output size is exactly the output dimensions

produced when fully utilising the architecture’s available accumulators. This

property makes it the ideal size for the intrinsic’s role as a tight inner kernel.

Nevertheless, these restrictions create a simple scenario enabling a founda-

tional understanding of this thesis’ core algorithm; removing these restrictions

is discussed in Section 6.3.3, Section 6.3.4, and Section 6.3.5.
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Figure 6.1: Division of ATile and BTile into operands and COutput into MMA
accumulators.

6.3.1 Base Case

In addition to the software constraints described in Section 6.2, an efficient

MMA lowering must take into account the following hardware constraints:

1 eight accumulators are available per thread and for each accumulator that

is used, the usage of four VSRs are blocked; 2 there are 64 VSRs, thus if eight

accumulators are used, there are 32 VSRs remaining to contain data from input

matrices; 3 two multiply-and-accumulate outer-product instructions can be

issued per single cycle; 4 the issue-to-issue latency for the same accumulator

is four cycles; and 5 spilling an accumulator to memory is an expensive

operation because it requires an instruction to disassemble the accumulator

into four VSRs, four vector store instructions and, later, four vector load

instructions.

Figure 6.1 illustrates how COutput is divided into portions that are assigned

to the MMA accumulators. ATile, BTile, and COutput are represented in

two dimensions to illustrate the position of the elements in the matrices. Each
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small square in the figure represents one 32-bit element of a matrix. A circled

number indicates that the corresponding portion of COutput is assigned to

that accumulator number. When the intrinsic is executed each accumulator

computes D outer products using an MMA outer-product instruction. The two

tones of gray colour in Figure 6.1 illustrate that a strip of ATile and a strip of

BTile are used for the accumulation of each portion of COutput. Each strip is

reused for all of the accumulations in the same row or column of accumulators.

Each outer-product computation needs two four-element operands, one from

ATile and one from BTile. These operands are surrounded by dashed lines

for the two accumulations highlighted in gray. The arrows indicate how the

loop indices in Algorithm 6.1 iterate for the example in the figure.

Algorithm 6.1 describes the lowering of the intrinsic computation for MMA.

This is the algorithm within the compiler that produces LLVM IR, not the

code executed on the target machine. The produced code is discussed in

Section 6.3.2.

The compile-time constants V and H (used on lines 8, 10, 12, 13) specify

the layout of the accumulators for the computation. Given constraint 1 , the

largest amount of data reuse can be obtained when V = 2 and H = 4 or vice

versa (see Figure 6.1). The only other configuration with full accumulator

usage (V = 1, H = 8 or vice versa) uses more operand registers for a single

accumulation – nine instead of six – and demonstrates reuse along only a

single axis. These constants in the compiler generalise the lowering and make

it applicable to future architectures where the ideal arrangement to increase

data reuse may be different from the 2 × 4 arrangement in the POWER10

processor.

First, on line 2, an MMA intrinsic is chosen based on the element type of

the operation (e.g. float, i32).2 Next, an array is created to contain the even-

tual output (line 3) followed by assembling zeroed-out accumulators (line 4).

The following loop (line 5) iterates from 0 to D − 1, extracting operands and
2This is an operation internal to the matrix multiplication meaning all negations have

been applied prior to the intrinsic. Therefore, the positive multiply, positive accumulate
variant is always chosen.
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Algorithm 6.1 Algorithm for lowering llvm.matrix.multiply.* with
MMA.
1: function llvm.matrix.multiply.*(ATile, BTile, N , D, M)
2: MMAIntrinsic ← intrinsic chosen based on element type
3: COutput ← M ×N empty array
4: Accs ← V ×H ACCs assembled and initialised to zero
5: for k = 0 to D − 1 do
6: AOps ← V empty vector operands
7: BOps ← H empty vector operands
8: for v = 0 to V − 1 do
9: AOps[v] ← Extract operand at ATile[v× 4][k]

10: for h = 0 to H − 1 do
11: BOps[h] ← Extract operand at BTile[h× 4][k]
12: for v = 0 to V − 1 do
13: for h = 0 to H − 1 do
14: createCall(MMAIntrinsic, Accs[v][h], AOps[v], BOps[h])
15: Disassemble ACCs and store VSRs into COutput
16: return COutput

performing accumulations. For each value of k, using the accumulator assign-

ment shown in Figure 6.1, the algorithm extracts two operands from ATile

(lines 8-9) and four operands from BTile (lines 10-11). For k = 0 the operands

are extracted from the leftmost column of ATile and from the topmost row of

BTile in Figure 6.1. The algorithmic presentation in Algorithm 6.1 uses the

notation ATile[v × 4][k] and BTile[h × 4][k] to denote the index where

operand vector starts. These operands are extracted to virtual IR registers;

the actual VSRs to be used will be determined later by a register-allocation

pass.

In Figure 6.1 each operand is formed by four elements and, once extracted,

occupies one 128-bit VSR. Given constraints 1 and 2 , with the choice of

D = 5, there are enough non-blocked VSRs to contain all the thirty operands

needed for the computation illustrated in Figure 6.1. Thus, laying out the

accumulators in this 2 × 4 pattern maximises the reuse of values loaded into

the VSRs: operands extracted from ATile are reused four times and operands

extracted from BTile are reused two times.

Once this iteration’s operands are extracted, the algorithm then iterates
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over the accumulators (lines 12-13) and creates a call to the MMA intrinsic

(line 14), computing a single accumulation in each. Following constraint 3 ,

two outer-product instructions can be issued each cycle. Four pairs of accu-

mulators can be scheduled before circling back to the first pair, thus satisfying

constraint 4 . The assignment of a portion of COutput to a single accumula-

tor eliminates the need to spill accumulators, thus increasing the performance

according to constraint 5 .

6.3.2 The Resulting IR

As discussed in Section 6.2, the fully unrolled IR code for the lowering of an

intrinsic can be extremely long. Listing 6.3 presents the code resulting from

unrolling C
(8×16)

= A
(8×1)
× B

(1×16)
. The result has been simplified but preserves the

process presented in Algorithm 6.1. The listing shows all operations starting

from the initialisation of the accumulators to the disassembling. The matter

of storing vectors to memory is easily addressed and so is left out for brevity.

First, on line 1 of Listing 6.3, a call to the Power PC (PPC) intrinsic

xxsetaccz.3 Only a single assembly is required in the IR because the IR

is in SSA form. Because the intrinsic takes no arguments and is function-

ally pure4within the IR, the result of multiple repeated calls are seen by the

optimiser as identical and will be removed by a Common Subexpression Elim-

ination (CSE) pass. Therefore, it is up to the register allocation pass to

later recognise the need for and to provide multiple simultaneous accumula-

tors. Thus, all operations begin from the “same” zeroed out accumulator, at

least within the IR.

The <512 x i1> return type of xxsetaccz normally refers to a 512-length

vector of one-bit integers. However, backend developers have co-opted the

type to represent an MMA accumulator when certain flags are set. There also

exists a separate type which represents a VSR for use with MMA intrinsics
3The latest version of the algorithm begins from a non-accumulating outer-product in-

struction (Section 5.2) instead of a xxmtacc or xxsetaccz (Section 5.1). The xxsetaccz
remains in this listing to connect with Algorithm 6.1.

4A pure function is one which: (1) has no side effects (e.g. writes to memory) and
(2) returns the same output given the same input.
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1 %ACC = call <512 x i1> @llvm.ppc.mma.xxsetaccz()
2 %ATile.0_0 = shufflevector <8 x float> %ATile, <8 x float>

undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
3 %ATile.0_4 = shufflevector <8 x float> %ATile, <8 x float>

undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
4 %BTile.0_0 = shufflevector <16 x float> %BTile, <16 x float>

undef, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
5 %BTile.0_4 = shufflevector <16 x float> %BTile, <16 x float>

undef, <4 x i32> <i32 4, i32 5, i32 6, i32 7>
6 %BTile.0_8 = shufflevector <16 x float> %BTile, <16 x float>

undef, <4 x i32> <i32 8, i32 9, i32 10, i32 11>
7 %BTile.0_12 = shufflevector <16 x float> %BTile, <16 x float>

undef, <4 x i32> <i32 12, i32 13, i32 14, i32 15>
8 %ACCProd.0_0.0 = call <512 x i1> @llvm.ppc.mma.xvf32gerpp(<512 x

i1> %ACC, <4 x float> %ATile.0_0, <4 x float> %BTile.0_0)
9 %ACCProd.0_1.0 = call <512 x i1> @llvm.ppc.mma.xvf32gerpp(<512 x

i1> %ACC, <4 x float> %ATile.0_0, <4 x float> %BTile.0_4)
10 ...
11 %ACCProd.1_3.0 = call <512 x i1> @llvm.ppc.mma.xvf32gerpp(<512 x

i1> %ACC, <4 x float> %ATile.0_4, <4 x float> %BTile.0_12)
12 %ACCDis.0_0 = call { <4 x float>, <4 x float>, <4 x float>, <4 x

float> } @llvm.ppc.mma.disassemble.acc(<512 x i1>
%ACCProd.0_0.0)

13 %ACCDis.0_1 = call { <4 x float>, <4 x float>, <4 x float>, <4 x
float> } @llvm.ppc.mma.disassemble.acc(<512 x i1>
%ACCProd.0_1.0)

14 ...
15 %ACCDis.1_3 = call { <4 x float>, <4 x float>, <4 x float>, <4 x

float> } @llvm.ppc.mma.disassemble.acc(<512 x i1>
%ACCProd.1_3.0)

Listing 6.3: An example lowering of the llvm.matrix.multiply.* intrinsic
for a 8× 1× 16 computation.
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but its use was removed from Listing 6.3 to facilitate reading.5

Line 2 shows the extraction of the first operand from ATile via a shuffle

instruction. Conceptually, the shuffle instruction takes two equally sized vector

operands, logically concatenates them, and labels each element from 0 to 2N .

A third argument, the shuffle mask, is a vector of integers corresponding to

labels defining which element from the concatenation should be in the output

vector’s same position. For example, with two four-length vectors as arguments

and a mask of <i32 7, i32 3, i32 0>, a shuffle would produce a three-

element vector starting with the second vector’s final element followed by the

first vector’s final and first elements. Furthermore, the special value undef

can be used to replace one of the input vectors to allow easily manipulation

of the elements of a single vector. Selecting an element from the undef vector

results in undefined behaviour.

Thus, using a shuffle, line 2 combines ATile and undef and extracts the

first four elements of ATile; the result variable is named ATile.0_0 indicating

the vector starts at (0, 0). The next four elements are extracted on line 3 for

the second operand vector. All four operand vectors are extracted from BTile

in a similar process on lines 4-7.

Outer products and accumulations begin on line 8 and end on line 11. Each

operation takes an accumulator as the first argument and multiplies the two

extracted operands found in the second and third arguments. The xvf32gerpp

intrinsic returns a value with type <512 x i1>, the accumulator type. This

represents the input accumulator with the operation accumulated on top. In

this first iteration, the zeroed out accumulator will be duplicated for each op-

eration. In the next iteration of accumulations, the returned accumulators

will be used as the first argument. This process continues with each accumu-

lation, creating a chain of return values to arguments, effectively showing the

accumulation process.

Finally, each of the accumulators are disassembled between lines 12 and
5VSRs are represented by <16 x i8>, a 16-element vector of bytes. In the true result

IR, shuffles produce four-element vectors of floats which are bit-casted (same bit-width) to
the VSR type which is then consumed by the intrinsics.
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15. The disassembly intrinsic takes an accumulator and returns a vector of

four length-four float vectors representing the accumulators underlying VSRs

after disassembly. The code which follows the disassemblies can extract each

of the vectors and store them directly to memory.

6.3.3 Other Data Types

The presentation so far has assumed 32-bit data types where each operand VSR

contains four elements and an MMA instruction computes a rank-one update.

As discussed in Section 5.2, halving the data-type size doubles the number

of elements in each VSR and therefore doubles the rank of the update. The

packing of more elements into a single VSR and the accumulation of multiple

outer products by a single MMA instruction requires changes to Algorithm 6.1.

Let r be the number of outer products performed by an MMA instruction —

i.e. the rank of the update. Now the step size of the loop on line 5 must be

r because, in Figure 6.1, r rows of a vertical section of BTile and r columns

of horizontal section of ATile are packed into each VSR. The extraction of

operands on lines 9 and 11 is now a strided access. For instance, for r = 2

(16-bit data types), four consecutive elements are extracted both from row k

and from row k+1 to form the 128-bit VSR. The length of D must increase by

r times to provide enough data to populate the VSRs. The effect is that more

partial-product accumulations can be computed per micro-kernel invocation

given the same number of assemblies and disassemblies because the number of

multiplications per outer product increases by r.

For the double-precision floating-point data type, an accumulator contains

4 × 2 64-bit elements. The operand extracted from ATile is placed into a

combination of two VSRs that each contain two elements, collectively four,

while the operand extracted from BTile, now only two elements, is placed

into a single 128-bit VSR. Therefore, for double-precision floats, the value of

N should be reduced by half to reflect the number of VSRs available. With

this reduction, an ATile tile occupies 16 VSRs and a BTile tile also occupies

16 VSRs. The extraction of operands into vector registers in lines 9 and 11 of

Algorithm 6.1 must be changed accordingly.
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6.3.4 Arbitrary Values for M , D, N

Until now, the algorithms have used values of M , N , and D selected such that

a micro kernel with the accumulator arrangement shown in Figure 6.1 could be

computed with a single set of assemble and disassemble instructions. However,

the implementation of Algorithm 6.1 in LLVM must handle any llvm.matrix

.multiply.* intrinsic created by any compilation path and thus must handle

arbitrary values for M , N and D.

To handle larger values of M and N , the micro-level code-lowering al-

gorithm has an additional outer double-nested loop that logically divides the

COutput tile into 8×16-element sections as shown in Figure 6.1. Each of these

sections can then be handled as shown in Algorithm 6.1. The disadvantage of

an input size that spans multiple accumulator sections is that the extraction

of data into vector registers becomes more complex. For example, consider

a 32-bit data multiplication as shown in Figure 6.1 but with the values of N

and M double of what is shown in the figure. The rows of ATile and BTile

shown in Figure 6.1 are now a portion of the rows of larger tiles and the data

extraction must gather the correct data into the vector registers that will be

used by the accumulators. This data gathering adds additional code and may

impact access locality if the tiles are large enough.

Arbitrary values for D are implicitly handled in Algorithm 6.1. The loop

on line 5 unrolls the loop as many times as is necessary to perform all accu-

mulations. Thus the number of loads and outer products performed changes

automatically as D increases or decreases. The only restriction is that when

smaller data types are used and the rank r of the update does not perfectly

divide D, the final accumulation will not have enough data to fill the argument

registers. In this case, a masked instruction (see Section 5.2.2) must be used

to disabled the unused ranks of the input arguments.

6.3.5 Arbitrary Access Order

The code-lowering algorithm also supports inputs and outputs in any access

order through modifications to the functions that extract operands and store
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Figure 6.2: Demonstration of transposition access-order modification on data
in register..

the results in the accumulators to memory.

As shown in Section 5.2.1, operands in VSR from ATile must always be in

row-major order while operands from BTile must always be in column-major

order. Without loss of generality, consider extracting an operand from ATile.

Using the notation from Section 6.3.3, the final operand VSR must be a row-

major 4× r matrix. Given a column-major matrix argument to the intrinsic,

one can extract r length-four vectors from the columns and then interleave

(also called zip) them to produce the VSR. The interleaving essentially converts

the data access order from column major to row major. If the operand matrix

is row major, one can also extract four length-r vectors from the rows and then

concatenate to produce the VSR. Extracting operands from BTile follows the

same logic, except that arguments are column-major and the extraction logic

for column-major and row-major matrices are exchanged.

Accumulators can change orientations using a simple mathematical theo-

rem: given matrices X, Y, Z, if Z = XY then ZT = Y TXT . In order to apply

this theorem to MMA, first consider Figure 6.2. The top left of the figure

shows a matrix M in row-major order (MRM) as well as its data laid out

in register (1, 2, 3, 4). The bottom left shows M mathematically transposed

(MT
RM) while the top right shows M laid out in memory after changing to a

column-major access order (MCM). Examining the in-register representation

of MT
RM and MCM shows that either transposing the matrix or reorganising its

underlying access order produces identical data layouts in register (1, 3, 2, 4).

Furthermore, combining the two transformations to produce a transposed M

with column-major access order (MT
CM) results in the original data layout in
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register, as shown in the bottom right of Figure 6.2. This proves the lemma

that MRM is equivalent to MT
CM and that MCM is equivalent to MT

RM in regards

to data in register.

The final goal of this proof is to show that there is a simple method by which

an accumulator can produce untransposed data in column-major order when

the default is row-major. Section 5.2.1 shows how the first argument to an

MMA outer-product instruction must be in row-major order while the second

argument must be column-major order. Therefore, the original equation can

be annotated with access orders like so: ZRM = XRMYCM . Applying the

theorem above produces ZT
RM = Y T

CMXT
RM . First, consider the right side

of the equation. The first argument must still be in row-major order and the

second must be in column-major order for the outer product to produce correct

results. By the previously proven lemma, a transposed matrix of one access

order is equivalent to the untransposed matrix in the opposing order in regards

to data in register. Thus, the equation can be simplified to ZT
RM = YRMXCM .

Recall that the first outer-product argument must be in row-major order and

the second must be in column major order. This simplification shows that after

swapping the arguments, each argument’s in-register data is already organised

correctly for the outer product instruction.

Now, considering the left side of the equation, the end goal is to produce

an untransposed Z in column-major order. By the same lemma, the left side

can be simplified to produce ZCM = YRMXCM . This completes the proof that

simply by swapping the order of the register operands to the MMA outer-

product instruction, the data-access orientation of the accumulator is changed

without transposing the result matrix.

6.4 Summary

This chapter presented a compiler-only method for the code generation of a

high-performance matrix-multiplication kernel. It first introduced LLVM in-

trinsics and their format with a specific focus on the llvm.matrix.multiply.*

intrinsic. This particular intrinsic serves as the starting point for the gener-
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ation of the matrix-multiplication kernel. As an example, the intrinsic’s pre-

existing vectorisation lowering serves to introduce the usage and constraints

of the intrinsic.

Then, the chapter discussed how the implementation of the intrinsic can

produce code targeting a matrix engine, specifically MMA. The examination

of an 8×16 kernel formed by float elements serves as the computation’s base

case, demonstrating how arguments are extracted from input matrices and

how accumulators can be used to efficiently produce the computation results.

The resulting IR is briefly examined in order to show its effectiveness before

examining the methods through which the limitations in the base case can be

lifted.

The first limitation present in the base case is the lack of usage of the other

types supported by MMA. This limitation is lifted through modifications to

the loops that extract arguments as well as new logic to place multiple sets of

elements into a single VSR. Next, the chapter addressed the dependence on

the 8×16 kernel output dimensions as well as an arbitrarily large D dimension.

Larger kernel outputs are handled simply by breaking up the problem into tiles

that resemble the base case; all computation remains exactly the same. An

arbitrarily large D dimension is implicitly handled in the presented method;

the only change is that a larger number of loads and outer products are exe-

cuted. Finally, the issue of arbitrary data access order is resolved. For input

matrices, handling a different access order is simply a matter of extracting

values from the correct place in the input data and using a shuffle instruction

to create an argument that matches the outer product’s expected input. For

output matrices, this chapter presented the argument that simply exchang-

ing the outer-product argument positions can change the data access order,

allowing the kernel to write the output matrix without loss in performance.
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Chapter 7

Evaluation

This chapter presents an evaluation of the implementation developed in Chap-

ter 6. The results presented also represent one of the first evaluations of

POWER10’s MMA facility. The evaluation was performed on a first-silicon

version of POWER10 and, as such, the frequency may be different than what

will be featured in commercially available versions. The results presented

in this chapter are expected to be representative of the hardware that will

eventually be available to consumers but the performance of the commercial

machines may differ. Possible changes between this version and commercial

versions include clock frequency, firmware updates or even silicon updates.

7.1 Experimental Setup

This section presents details on resources and processes that are necessary to

produce the results in Section 7.2 and onwards.

7.1.1 Machine Details

The experimental platform is a pre-commercial IBM POWER10 machine that

was made available through a research collaboration with IBM. The processor

is not yet available to the public but relevant details are presented in Table 7.1.

The listed core counts are per socket while the thread counts are per core.

Only the L1 caches are listed as all tested matrices collectively fit within the

L1 cache. The machine runs Linux with a 64-bit kernel at version 5.10.0-

17496-g41bc5268c5e8.
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IBM POWER10
Cores/Threads 15/8

L1i cache 48KiB
L1d cache 32KiB
Frequency 4.00 GHz

Table 7.1: POWER10 experimental environment machine statistics.

7.1.2 Compilation

All binaries are compiled with Clang version 13.0.01at the highest optimisation

level (-O3) and are tuned to the processor (-mcpu=pwr10). All executions are

also single threaded; parallelism exists only in the form of SIMD instructions.

Because support for POWER10 was not available in mainstream LLVM

when this work began, it has been implemented as part of IBM’s variant of

LLVM which did have support for MMA instructions. This variant contains

several platform-specific optimisations to improve POWER code; all of these

specific optimizations have been disabled so that results are representative of

mainstream LLVM.

7.1.3 Experimental Methodology

Every measurement presented in this chapter was produced using the Google

benchmark library [23].2 A single measurement is the result of timing the

execution of a kernel many times until statistical stability is obtained. The

framework implements a method of measuring a kernel by placing it in a loop

whose exit condition is dynamically determined by the benchmark being exe-

cuted. Algorithm 7.1 summarises the algorithm for determining the iteration

count.

The body of function RunBenchmark is an infinite loop that exits only

when the results are statistically stable. Every iteration of the loop calls the

function RunNIterations. RunNIterations executes and times the tested

kernel iters times and returns statistics. These statistics are passed to the

function ShouldReportResults that decides if the results of the latest set of
1At time of writing this is a development version.
2At commit ab74ae5e104f72fa957c1712707a06a781a974a6.
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Algorithm 7.1 Algorithm for dynamically determining a statistically stable
kernel timing loop iteration count.
1: minTime = 1e9 ▷ 1× 109 ns →1 s
2: function ShouldReportResults(Results r)
3: return (r.iters >= 1e9) || (r.totalCpuTime >= minTime)
4: function PredictItersNeeded(Results r, iters)
5: multiplier = minTime * 1.4 / r.totalCpuTime
6: isSignificant = (r.totalCpuTime / minTime) > 0.1
7: multiplier = isSignificant ? multiplier : 10
8: nextIters = min(round(iters * multiplier), 1e9)
9: return nextIters

10: function RunBenchmark(Results r)
11: iters = 1
12: while true do
13: results = RunNIterations(iters)
14: if ShouldReportResults(results) then
15: reportResults(results)
16: return
17: iters = PredictItersNeeded(results, iters)

kernel executions have reached stability. Stability is reached when the kernel

has executed more than a maximum iteration count (one billion iterations) or

the total time spent executing on the CPU (totalCpuTime) is longer than a

threshold (minTime, one second). The framework’s default minTime is set at

half a second; the value was doubled to one second in each experiment in this

chapter to simulate a longer running matrix multiplication with many inner

kernel executions.

If ShouldReportResults returns false, then a new iteration count is de-

cided using PredictItersNeeded. PredictItersNeeded, in conjunction with

ShouldReportResults, tries to find the number of iterations that will cause

the sum of CPU execution time to be between minTime and 1.4 × minTime.

For benchmarks with variable execution times, this target window is an im-

portant part of conservatively determining statistical stability according to the

minimum execution time. Aiming for close to or equal to minTime can result

in less than minTime CPU execution time in the final set of kernel executions

which can in turn return unstable results. The framework thus aims to overes-

timate the number of required iterations to ensure that execution time meets
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Figure 7.1: Experiment measurement production methodology.

or exceeds minTime.

To implement this strategy, PredictItersNeeded first creates a multiplier

that, if the kernel execution time is very consistent, would perfectly scale

the total execution time to be 1.4 × minTime. Next, the function decides

if the previous total execution time was a significant portion of the desired

minTime (more than 10%). If it was a significant portion, then the multiplier

is unchanged, with the assumption that iters × multiplier iterations is

enough for the total execution time to be greater than minTime. Otherwise,

if the total time was not significant, the multiplier becomes ten. Finally, the

chosen multiplier is applied to the original iteration count to produce the next

iteration count – up to a maximum of one billion iterations – and the process

is restarted.

Thus, because the execution time of the kernels presented in this thesis are

very consistent, a reasonable summary of the process is as follows: (1) execute

the kernel with one iteration; (2) if the total execution time of step one is less

than a tenth of a second, repeat step one with ten times the iterations, else

go to step three; (3) determine a multiplier using 1.4/cpuTimeprev; (4) execute

the kernel itersprev × multiplier times; (5) produce results. As mentioned

before, because the execution times of the tested kernels are very consistent,

the total execution time of the final set of kernel executions is roughly 1.4

seconds. The final iteration count used in this process is named n for future

reference.

One measurement is the result of executing RunBenchmark once. In Fig-

ure 7.1, producing one measurement corresponds to a single of the lower braces

labeled “RunBenchmarki”. A total of 25 measurements are produced in this

way, corresponding to the upper brace in Figure 7.1, to reduce the impact of
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system fluctuations in any execution. Repetitions vary n slightly because the

timing iterations may produce slightly different overall times, changing the

final multiplier.

Each measurement produces two values alongside the iteration count: the

mean CPU execution time and the mean of the number of cycles required

by each kernel execution. Vertical bars in plots represent the mean number of

cycles and the attached error bars represent the 95% confidence interval across

the 25 repetitions. Tables accompany each plot with mean iteration count

(n), mean CPU time, mean number of cycles, and their respective confidence

intervals.

As an extra precaution against system fluctuations, all kernels execute in

a random order, producing a single measurement before having their order

reshuffled. Specifially, the process is as follows: (1) shuffle all kernels; (2) exe-

cute RunBenchmark for each kernel once, producing a single measurement for

each kernel; (3) repeat (1) and (2) until 25 measurements have been produced.

7.1.4 Human-Crafted Assembly Code

The following sections compare matrix-multiplication-kernel assembly code

generated by the compiler backend with human-crafted assembly code. Mor-

eira et al. describe both the human-crafted assembly code kernel created by

a team of IBM engineers and the methodology for producing that kernel [52].

They present information about MMA as well as early results comparing

the performance of several kernels when compiled with MMA and VSX on

POWER10 and POWER9. The kernels used for comparison in this thesis

are updated and improved versions that were provided by the authors of that

report.

7.1.5 Types Missing From Analysis

The performance analysis in this section does not include the types i4 and

bfloat because of limitations in the backend code generator and the microker-

nel code generation for double is not within the scope of this thesis. The i4

and bfloat types use the same IR code-generation code paths and the same
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logic as every other type except double. Thus, the code generated for them

is likely to be functional and as performant as the code for these other types.

However, while translating to assembly, the backend produces incorrect code

for i4 or an error when using bfloat. Both issues have been acknowledged

by the developer team and will be fixed in future versions of LLVM.

For double, the addition of a new operand to the instruction, as described

in Section 5.2.3, cause a significant divergence in code-generation logic that

otherwise applies to all other types usable with MMA. Within the scope of this

thesis, the development efforts focus on an algorithm that worked for six of

the seven types. The method presented in Chapter 6 applies to double but its

lowering implementation will require changes in relation to the original code.

7.2 Caveats

There are some unexpected performance results reported in the experiments

detailed in the remaining sections of this chapter. The unexpected performance

is caused either by issues in the backend code generator or by limitations

inherent to the compilation framework, both of which are outside of the scope

of this thesis.

Before presenting the results, this section discusses some of the causes for

the unexpected performance results. These uncovered issues are addressable

in the future and represent opportunities for improving code generation for

the entire POWER software stack. The presented MMA kernel is a new type

of kernel never before seen by the backend and therefore the assembly code

generation has not had the opportunity to be tuned as other kernels have had.

Only after stripping away bottlenecks present in the naïve kernel can one learn

about new issues that are still to be addressed by the backend design team.

7.2.1 Spilling

In compiler terminology, a live value is a value that may be used by a statement

in the future. Ideally, once a value is brought from memory into a register or it

is computed and placed into a register, it should remain in the register until it
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is dead — a value is dead when it is guaranteed that it will never be used again.

However, there are often not enough registers available in an architecture to

keep all live values in register. Therefore, the compiler performs analysis to

decide how to judiciously select some live values to be temporarily spilled to

memory in order to temporarily free registers for new values. Thus, spilling

occurs when a new value must be placed in a register but all registers at

that point in the program have a live value. For small matrix-multiplication

kernels, all values may be resident in register simultaneously or may only be

used once and thus do no remain live across future loads. Efficient spilling

requires careful scheduling but in the case of MMA the problem is made more

difficult by the following issues.

Framework Vector Loads

The implementation described in Chapter 6 is integrated within a preexisting

framework that provides the default vectorisation lowering method described

in Section 6.2. This framework contains data structures to support operations

with matrices. These data structures transform the load of a single long vec-

tor representing a flattened matrix into several vector loads representing the

matrix’s column or row vectors, depending on the original access order. For

example, a floating-point column-major matrix A
(4×2)

is originally represented

by <8 x float> and then transformed into two <4 x float> column-vector

loads. After the transformation, these load instructions in the IR remain con-

secutive and occur before any computation. An examination of the assembly

code generated by the backend reveals that such a program is translated by the

backend into assembly that brings all of the matrix’s elements to registers im-

mediately and consecutively. Given that (1) the matrix may be larger than all

available registers; or (2) some registers may contain values from other matri-

ces, many of the loaded values are immediately spilled back to memory. These

values must be reloaded later when they are needed, effectively tripling the

time spent on memory accesses. Memory operations are considerably slower

than MMA operations, even though the values may be going to and from the

L1 cache, and thus the runtime of the kernel becomes dominated by memory
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Figure 7.2: The effect of load sinking on float and i16 matrix multiplications.

operations.

This spilling issue must be resolved by the backend scheduler: the scheduler

needs to move loads closer to the point in the program that contains the first

use of the loaded value to reduce register pressure by using a technique called

“load sinking.”3 Load sinking may not reduce register pressure in many other

programs, but in the case of this matrix-multiplication kernel it certainly does.

A workaround for the spilling that results from unsunk loads, which can be

used until the backend scheduler improves, consists of modifying the IR by

further breaking up the vector loads into smaller vector loads and sinking

these smaller loads closer to the first use of the loaded values.

In preparation for the performance evaluation in this thesis, a short tar-

geted IR transformation was implemented using this tactic. Its goal was to

produce results that are more representative of the code that will be gener-

ated by a final production-ready backend. Consider the pair of bars labeled

“8 × 8 × 16” ( C
(8×16)

= A
(8×8)

× B
(8×16)

) for float (left) in Figure 7.2. This ma-

trix size represents the best-case scenario for such an optimisation for three
3The backend design team is currently investigating how to implement this change to

the scheduler.
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Type Size Load
Sinking

n
(millions)

CPU Time
(ns)

Cycles

float small no 25.6± 0.62 54.84± 1.39 219.11± 5.57
float small yes 97.3± 0.14 14.44± 0.05 57.67± 0.19
float large no 2.1± 0.05 654.30± 14.86 2614.07± 59.39
float large yes 2.4± 0.05 596.81± 13.12 2384.39± 52.42
i16 small no 91.4± 0.04 15.31± 0.00 61.18± 0.02
i16 small yes 80.4± 0.15 17.42± 0.01 69.61± 0.03
i16 large no 3.4± 0.02 415.63± 2.21 1660.53± 8.85
i16 large yes 2.2± 0.00 627.73± 2.19 2507.92± 8.75

Table 7.2: The effect of load sinking on float and i16 matrix multiplications.
See Figure 7.2 for graphical presentation.

reasons: 1 A’s eight-element column-vector load can be broken up into two

four-element vector loads, each of which fills an entire VSR (similar logic ap-

plies to B’s rows); 2 only a single load is necessary to create an outer-product

operand (rank-one update); and 3 each operand is used only once during the

accumulation step (2 + 4 = 6 registers live at once). Given such a perfect

case, the runtime of the original version (labeled “No Load Sinking” in Fig-

ure 7.2, first row in Table 7.2) is roughly quartered in the optimised version

(“Load Sinking”, second row). If the operation were to have more accumula-

tions, then this gap should continue to grow as more and more spills would be

required in the unoptimised version.

However, by examining the bars labeled “8 × 8 × 16” for i16 (right) in

Figure 7.2 one can see that for smaller types load sinking actually causes a

slight slowdown (Table 7.2, rows 5 and 6). This slowdown can be attributed to

the invalidation of properties 1 and 2 : loading an i16 operand no longer

fills an entire register and two loads are necessary to create an operand for

i16 (rank-two update). In fact, the assembly produced without load sinking

is much closer to the handwritten version because it loads multiple vectors

into a single register and uses this register as a source for multiple shuffle

instructions. Loading multiple vectors into a single register is possible because

the IR of the version without load sinking has all of vectors being loaded

simulataneously. When lowered by the backend, this single contiguous load is
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automatically broken into register-sized pieces that are then, importantly, also

spilled in the same format. Thus when the VSRs are reloaded, they contain

two i16 vectors. The load-sinking version avoids spills by breaking the single

contiguous load into individual vector loads, removing the IR opportunity to

have the loads merged. It is possible for the backend to recombine the loads

but this recombination has yet to be observed in any kernel compilation. These

individual vector loads increase register pressure and each loaded VSR is used

in a single shuffle instruction. The performance degradation because of load-

sinking in this case is small only because the overall register pressure has been

decreased by halving the element width.

Operand Spilling and Rematerialisation

After addressing the load-sinking issue in this way, another, separate but re-

lated, issue appears. As can be seen from the pair of bars labeled “32×8×32”

for float in Figure 7.2, the same fix that produced significant speedup for a

smaller kernel has significantly reduced effectiveness for a larger kernel. An

examination of the assembly reveals that the large number of loads that led

to spills at the beginning of the kernel prior to sinking the loads are indeed no

longer there. However, while there are no spills throughout the body of the

smaller kernel, the larger kernel has multiple spills or reloads per set of outer

products. The issue here is that, for the larger kernel, property 3 no longer

holds true.

Consider the example in Figure 7.3. The figure shows an example large

kernel (16 × 32) in the style of Figure 6.1; to illustrate how spills occur, the

figure does not divide individual elements nor does it show B. On the right,

darker lines divide the output into blocks of accumulators while the lighter lines

divide blocks into the eight accumulators as in Figure 6.1. Each of the smaller

boxes on the left represents an operand composed of four float elements used

in an outer-product computation.

An example operand from A, highlighted by parallel diagonal lines, must

be used in the accumulation of the first set of accumulators, highlighted by

a crosshatch pattern. In the computation of the smaller kernel in Figure 7.2,
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D

Figure 7.3: Demonstration of operand reuse in large kernels.

this value is now dead. The larger kernel, however, must use the value again

in computing the second set of accumulators, highlighted by a dotted pattern.

According to constraint 5 in Section 6.3.1, spilling an accumulator is ex-

pensive, and therefore an efficient solution must finish computing a block of

accumulators before moving on to a different area of the matrix. Doing so

requires that every operand along the dimension D be brought to a register

before any operand can be reused with a new block of accumulators. For

instance, an accumulator layout like that in Figure 7.3 requires six operand

registers for each accumulation to be performed. Using only the 32 registers

available while the accumulators are assembled, if D ≥
⌈︁
32
6

⌉︁
= 6, then there is

not enough space for all values to remain in registers. And thus the cause for

the multiple spills and reloads throughout the computation becomes apparent:

operands from A that are still live are being forced out of registers and the

compiler is choosing to spill them.4

This code generation evokes the well-studied compiler technique “remate-

rialisation”. Essentially, the compiler analysis must answer the question “is

it more efficient to store a value to memory and retrieve it later (spill) or to

recompute it later using the same process?”

In the case of floats, producing the operand is a simple load and therefore,

if an operand must be evicted from its register, rematerialising the value is

a simple load. Thus, the compiler’s choice to spill the operand is incorrect

and, because spills are saved on the stack, not only is it wasting memory by
4The issue is identical for operands of B, though the reuse distance is greater.
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duplicating the value, it is also potentially evicting values from the cache.

Regardless, the larger kernel’s execution, optimised or not, is significantly

influenced by memory operations, though the gains from reducing the initial

spills still have significant impact.

For smaller data types, however, spilling is the correct choice. Materialising

an i16 involves two loads and at least one instruction to shuffle the loaded

data together. Reproducing the value after spilling becomes a simple load,

significantly reducing register pressure and required memory bandwidth. Both

the original version and the load-sinking version correctly choose to spill their

values instead of rematerialising them. As with float, the increased number

of memory operations explains the significant increase in execution time for

the larger i16 kernel in Figure 7.2, but it does not, however, explain the

large difference between the two version. The next section investigates this

discrepancy.

Smaller Types

While the issues affecting float matrices presented above remain roughly

identical for double-typed operations, small data types have a separate source

of slowdown. The difference in performance is actually an exacerbation of an

already-discussed issue, namely the invalidation of properties 1 and 2 . For

i16, in the load-sinking version, a single 64-bit double-word load instruction

loads four i16 elements at the same time, filling only half of a vector register.

The original version loads 16 elements at a time using 256-bit vector-pair

loads, meaning that the load-sinking version quadruples the number of loads

required to load the values needed for the computation (excluding loads from

the original spilling issue). Changing the scheduling to remove the unnecessary

loads and stores resulting from spilling would likely lead to a much more

significant performance gap between the two versions.

This issue extends to the other data types, which perform rank-two, -

four, or -eight updates. The issue is aggravated when the number of memory

requests increases because of the shrinking data width that requires more vec-

tors for shuffling. For example, where, for i16, the load-sinking version takes
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roughly 114% of the execution time of the original version, the same compar-

ison for i8 shows that the load-sinking version takes 292% of the execution

time of the original version.

A more complicated load breaking and sinking strategy may counteract this

slowdown, but only to a certain degree. Combining certain loads – for exam-

ple two four-element i16 column loads, making a full VSR – would decrease

register pressure because the upper and lower halves of the register can be

used in separate shuffles. However, this load combination still does not quite

match the 256-bit paired-vector load in terms of memory-request efficiency. It

is impossible for smaller types to use this 256-bit load because the columns of

A are consecutive: the paired-vector load would load values that are not used

until the second row of accumulator blocks, inevitably introducing new spills.

The issue worsens for i8 and i4 where the eight consecutive vertical el-

ements fill less and less of a VSR. For larger kernels, the smaller data types

thus imply a increasing number of loads, further diluting the speedup gained

from MMA.

7.2.2 Shuffling

For data types smaller than 32 bits, producing the appropriate operand for a

rank-r update requires several vectors be merged via shuffling. The POWER

ISA offers several methods to move vector elements, ranging from register

shifting and rotating combined with masking to efficient vector upper and

lower half merges based on data type size. Transforming IR statements in an

efficient code for shuffling is an involved design process.

There are a multitude ways to express the same shuffling operation in

IR, each depending on multiple implementation choices made throughout the

process. Certain variants are interpreted by the backend and translated to

efficient code while others are interpreted very conservatively. This discrepancy

in translation can be the difference between an idiomatic assembly of several

instructions, often close to Moreira et al.’s handwritten version, and the same

process being expressed in hundreds or thousands of instructions, often with

spills throughout. Several factors that lead shuffling to cause performance
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degradation are discussed below.

Data Type: half

The i16 and half types have identical widths: a halfword. Because CPUs

and their accompanying ISAs are type-agnostic and sensitive only to the width

of a data element when implementing vector shuffles, shuffle code in the IR

that differs only in choice of 16-bit type should produce identical assembly.

However, the assembly code currently generated by the compiler backend for

i16 executes roughly six vector loads and six vector permute instructions to

produce all operands for a single accumulation in a full 2 × 4 accumulator

layout. For half, the generated assembly code has gone from six instructions

to almost 150 instructions because the computation is partially scalarised by

moving elements from vector registers to general-purpose registers and back

again.

This explosion in code size is most apparent in the calculation epilogue

where, in the IR, the accumulators are disassembled and stored to memory.

First, the resulting accumulator vectors are truncated to the output data type.

They are then concatenated together into an output flattened matrix and

stored to memory. Concatenation is also achieved through shuffling and there-

fore experiences the same conservative code generation as before. The added

truncation operation worsens the effect. All told, in the assembly code cur-

rently generated for half, the epilogue is roughly ten times the length of the

same operation for i16.

Data Type: i4

The POWER10 ISA has instructions that merge vectors at a per-byte granu-

larity, but not at a sub-byte granularity as is required for i4 code generation.

Therefore, to shuffle a vector of i4 elements using the same IR code generation,

the backend generates significantly less performant code that includes vector

rotations and scalarisation, with single bytes being moved individually to and

from general purpose registers. The consequent slowdown negates much of the

speedup that could be achieved via the MMA rank-eight update.
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7.2.3 Solutions

This section presents potential solutions to the performance degradations un-

covered by the experimental evaluation. The successful integration of these

and other ideas in the compiler requires further investigation and cooperation

with backend developers.

Spilling

The simplest solution to the spilling issues is for developers to focus on using

only small kernels and, indeed, this is not so unreasonable a proposal as one

might perceive it at first. LLVM requires that valid IR code is always able

to be lowered to assembly. However, it does not require that the generated

code be as performant as possible, as is demonstrated by the above issues with

shuffling i4 vectors. Choosing to avoid larger kernels may seem like a defeatist

notion but is actually a tried-and-true approach to performance in compilers:

make the common case fast.

The average user interacts with a compiler through a high-level language,

not its IR. Thus, the frontend will choose the fastest solution to implement a

user’s code; if the fastest implementation is a small kernel encapsulated by an

outer kernel then that is what will be chosen. With this notion, optimisation

can be focused on this most common case for which a solution is known. A

larger inner-kernel will always remain usable but it will be less performant.

Furthermore, the most performant library implementations focus on using

small unrolled assembly kernels, often computing kernels with dimensions of

four to eight elements. These small kernels are then surrounded by memory-

managing outer kernels as described in Section 4.3. This strategy is used by

Kuzma et al. [41] while using the inner kernel presented in this thesis with

results comparable to libraries that feature kernels written in assembly. Thus,

using only smaller kernels can be seen as a well-worn path to performance.

If a larger kernel must be used, significant investigation must be done to

test load scheduling, value rematerialisation, load breaking, and, if necessary,

load recombination. It is unlikely that such a solution will be found within
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the IR because (1) it is in SSA form which often folds identical values together

without consideration for the times when a value is live; and (2) for better

or worse, the backend does not have to respect IR operation order. Such a

solution will have to be found in the backend.

Shuffling

Unlike issues with spilling, it is likely that performance degradations caused

by misbehaving shuffles can be solved by creating type-specific shuffling code.

While injecting the proposed solution code into the original vectorisation

framework is possible, it would be much more effective to first refactor the

framework so that such a modification is easier.

For half vectors, it may be possible for the compiler to generate code in a

similar fashion as is done for i16 simply by reinterpreting data as i16 via casts

and manipulating the data in this state. The cast is not a conversion, simply

a reinterpretation of the bits in a register and it is meaningful only within

the LLVM framework. Such casting should produce no new instructions. The

data can be casted back to half at no cost when it needs to be used in

a computation. In theory, this casting produces much better assembly but

may also trigger a very conservative response in the back-end of the compiler,

worsening the code significantly with scalar element movement derived from a

perceived conversion hazard.

The sub-byte granularity of i4 vectors poses a different problem. Perfor-

mant shuffling code for i4 in the same style as the larger types is an impos-

sibility. Instead, clever use of bitwise operations must explicitly be used to

implement efficient element extraction and movement. Bitwise operations can

be applied across an entire vector register, removing the need for scalarisation

and improving register usage by reducing the number of required intermediate

registers.

Evaluation Disclaimer

The load-sinking and shuffling code transformations are not applied to any

of the experimental evaluations presented in the remaining sections of this
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chapter because no tested transformation positively affected all cases. Ad-

vantaging one type or one size of kernel would give a distorted view of the

performance that can be achieved in the machine. Thus, all test cases use

identical IR generation logic and are equally advantaged and disadvantaged in

code generation.

7.3 Data Access Orders

As discussed in Section 4.3, packing is very important for matrix-multiplication

performance. An important part of packing, beyond choosing dimensions, is

the choice of data access order. Section 5.2.1 shows that MMA is sensitive to

the access order of elements in VSRs and, therefore, also sensitive to the access

order of the matrices in memory from which values are loaded into registers.

7.3.1 Setup

When using an unmodified version of LLVM, the access orders of A, B, and C

are tied together and must be equal. Thus two test cases, one all-column-major

(C = C× C) and another all-row-major (R = R× R), constitute the baseline

for the experiment. In order to test the performance of the hypothesised

best mix of orientations, further modifications to the lowering framework were

performed to enable the mixing of orientations for the MMA lowering strategy.

With this possibility enabled, two cases are added to the comparison: both use

the proposed optimal layout for A and B but vary the layout of C (C = C×R

and R = C× R)

Each kernel uses a 2× 4 accumulator setup and, therefore, in keeping with

the suggestion in Section 7.2.3, uses a small 8 × 16 output. The inner most

dimension of the kernel is 32, making the overall computation C
(8×16)

= A
(8×32)

×

B
(32×16)

. An inner dimension of 32 requires 32 accumulations but smaller data

types perform rank-r updates, effectively reducing the number of operations

required to compute the kernel. It may seem that 32 accumulations is relatively

large, but work by Kuzma et al. [41] determines that, even given the poor

load scheduling, up to 128 accumulations per kernel gives good speedup, with
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performance plateauing with any more accumulations. Given the discussion

in Section 7.3.2, more accumulations implies more opportunities for a “good”

orientation to outperform a bad orientation, effectively highlighting differences

in performance.

7.3.2 Expectation

A column-major orientation data layout for A should be optimal. For float,

a VSR, which is a row-major 4 × 1 matrix according to the ISA, is indistin-

guishable from a single column of four elements when loaded from memory.

Thus, if A is laid out in column-major order, an operand can be created with

a single load and no waste. However, if A is laid out in row-major order, it

is likely that D ̸= 1 and thus the elements in the first column of A are not

consecutive in memory. Therefore, to create an operand, four loads must be

issued, one for each element of the operand. Further overhead is incurred to

move elements into the vector register either from scalar registers if four scalar

loads were issued or to shuffle elements from four vectors that were loaded.

Thus, a column-major order layout is highly preferred. The same logic can be

applied to B, except that a row-major orientation is preferred.

For smaller types, the logic is more complicated because the byte length of

the overall loaded data also shrinks. In the interest of not repeating much of

the discussion in Section 7.2, the same logic as above can be applied while ac-

knowledging that as register usage efficiency decreases speedups also decrease.

An interesting point of discussion exists for types i8 and i4 whose in-

register dimensions are 4 × 4 and 4 × 8 respectively. With two i4 elements

packed into a byte, an eight-element vector only occupies four bytes and, there-

fore, i8 and i4 require loading four four-byte vectors to provide the elements

to fill a VSR. Thus, four loads must be issued when extracting operands from

either a row-major or a column-major order matrix. In this case, either ori-

entation is acceptable when operands are being built in isolation. However, if

several operands are being built simultaneously, loads can be combined to in-

crease efficiency. The need for shuffle instructions does not decrease, only the

indices from which shuffles extract elements in a vector change. This is com-
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Type Order n
(millions)

CPU Time
(ns)

Cycles

float C = C× C 10.7± 0.04 130.96± 0.47 523.21± 1.86
float R = R× R 13.8± 0.33 100.21± 0.33 400.36± 1.32
float C = C× R 17.6± 0.33 79.64± 1.50 318.18± 6.01
float R = C× R 18.0± 0.30 77.92± 1.31 311.31± 5.21
i16 C = C× C 22.0± 0.04 63.79± 0.14 254.86± 0.57
i16 R = R× R 27.7± 0.06 50.64± 0.12 202.32± 0.49
i16 C = C× R 31.5± 0.10 44.48± 0.15 177.70± 0.59
i16 R = C× R 31.5± 0.08 44.44± 0.11 177.57± 0.44
half C = C× C 11.6± 0.00 120.50± 0.03 481.41± 0.11
half R = R× R 5.5± 0.00 256.06± 0.18 1023.01± 0.71
half C = C× R 2.0± 0.01 691.33± 4.31 2762.04± 17.23
half R = C× R 3.2± 0.03 438.00± 4.54 1749.89± 18.12
i8 C = C× C 37.9± 0.03 36.98± 0.02 147.75± 0.10
i8 R = R× R 40.8± 0.44 34.38± 0.39 137.36± 1.57
i8 C = C× R 41.8± 0.19 33.50± 0.15 133.82± 0.61
i8 R = C× R 41.8± 0.20 33.49± 0.16 133.79± 0.64

Table 7.3: The effect of matrix access order on performance. See Figure 7.4
for graphical presentation.

bination transformation is only possible if access orders match the expected

access orders for larger types, i.e. column major for A and row major for B.

This change can have a small, but noticeable, impact on the results.

The initial expectation is that C should be stored in row-major orientation.

This is simply because the simplest method of using MMA places the operand

from A as the first argument and the operand from B as the second argu-

ment in the outer product instruction. When used in this way, the elements

in the accumulator are oriented in a row-major fashion and, after disassem-

bling, there is no extra work required before storing the underlying vectors to

memory. Transposing the output so that it can be stored into a column-major

output-matrix requires extra shuffles. However, the theorem discussed in Sec-

tion 6.3.5 states that reversing the order of the arguments causes the result in

the accumulator to be equivalent but in a column-major order. Thus, either

access order can be used for C without loss of performance.
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Figure 7.4: The effect of matrix access order on performance.

7.3.3 Analysis

Figure 7.4 and Table 7.3 show the effect of matrix access order on performance.

For float, i16, and i8, the numbers are inline with the performance hypothe-

sised in Section 7.3.2 (see below for discussion of half). The two order-locked

variants (C = C × C and R = R × R) perform worse than the two variants

with optimal layouts (C = C×R and R = C×R). Furthermore, between the

third and fourth bars, representing the two kernels whose A and B are laid

out optimally but with differing access orders for C, varying the access order

of C has no perceptible effect on performance.

Excluding half, there is a noticeable difference in performance between
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the two access-order-locked variants, R = R× R and C = C× C, represented

in the first two columns of the plots. Based on the discussion in Section 7.3.2,

the source of the discrepancy can be derived easily. Given that the order

of C does not affect performance, the difference must be found in A and B.

In each case, the access order of either A or B matches the preferred order

while the access order for the other matrix does not. Because B is twice

the size of A, when B has an incorrect data layout, the generated assembly

performs a significantly greater number of inefficient loads than when A has an

incorrect layout. Examining the generated assembly shows that for float, the

column-only variant executes roughly 450 more instructions of “setup” (loading

and shuffling values) before executing the first outer-product instruction; the

generated code is effectively identical afterwards. This gap lessens as types

become smaller due to the smaller overall amount of bytes being loaded, but

the difference in performance remains.

Evaluating half

As discussed in Section 7.2.2, half and i16 can and should be manipulated

in exactly the same manner. The only difference in their generated assembly

should be the outer-product instruction which interprets a register as a half

or as an i16. The POWER ISA indicates that the two different outer product

instructions also have identical latencies. Thus, given identical load, store, and

shuffle schedules along with identical outer-product latencies, the performance

of the two types should be identical in every instance.

However, given the results in Figure 7.4, it is clearly not the case that i16

and float are identical in terms of performance. The most performant case

for half, C = C×C, still requires roughly three times the cycles of i16’s least

performant cast, also C = C × C. Results for half that do not follow the

anticipated trend are a common thread in this chapter and are caused by a

code length explosion due to extremely conservative assembly code generation

(see Section 7.2.2). For this reason, performance can be expected to drastically

increase and trends expected to follow that of i16 when this issue is resolved.

Such a change is thus likely to invalidate any of the results presented for half
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in this and future experiments. Results for half will continue to be presented

for completeness.

7.4 Varied Accumulator Layout

The layout of accumulators can significantly affect the performance of a ker-

nel. Both the input and output memory efficiency as well as the in-register

performance can degrade due to a suboptimal layout.

7.4.1 Setup

Intuitively, leaving an accumulator unused means unused functional units and

therefore wasted performance; thus, any layout which aspires to be a con-

tender for best performance must use all eight accumulators. The implemented

framework does not allow for irregularly shaped layouts. Combining these two

restrictions creates four test cases: two rectangular layouts, 2 × 4 and 4 × 2,

and two linear layouts, 1× 8 and 8× 1.

Again, using the logic of Section 7.2.3, the kernel size is fit to the accumu-

lator layout. The dimensions of a kernel are, therefore, four times the length

of the same dimension of the accumulator layout (e.g. layout 8× 1 has kernel

dimensions 32×4). As in the previous experiment, each kernel performs 32 ac-

cumulations, though smaller types perform fewer outer-product instructions.

Therefore, the overall kernel size is C
((V×4)×(H×4))

= A
((V×4)×32)

× B
(32×(H×4))

where

V and H correspond to the number of vertical and horizontal accumulators in

the layout as described in Section 6.3.1. Additionally, using the result from

Section 7.3, all kernels use a R = C× R layout for their matrices.

7.4.2 Expectation

A layout and its transpose (2 × 4 and 4 × 2, 1 × 8 and 8 × 1) are expected

to have equal performance. An accumulation consists of: loads from A; loads

from B; shuffles for each if necessary; and finally computation of the outer

product. Transposing a layout means swapping the number of loads from A

and B, hence, the overall number of loads remains the same. The number of
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shuffles and outer products also remain the same because the same number of

operands must be produced for the same number of outer-product accumula-

tions. Thus, the total work remains the same and therefore the performance

should be identical. Any difference in performance will certainly indicate a

missed opportunity in one of the compilations.

The highest factor of reuse for the eight accumulators available in POWER10

MMA occurs for the 2 × 4 layout and its transpose 4 × 2 (see Section 6.3.1)

with operands from one matrix being reused four times and an operand from

the other matrix being used twice. These layouts reduce register pressure by

requiring only six operands to be live before performing eight consecutive ac-

cumulations. With 32 registers available, using only six of these registers per

accumulation allows for the operands needed for future accumulations to be

brought to registers ahead of time or even for multiple sets of accumulations

to be performed without intervening loads.

However, the argument in Section 6.3.1 is made under the assumption that

the most efficient schedule for outer-product instructions is a large set of loads

followed by as many outer products as possible. In this case, the rectangular

layouts should be more performant because they require less operands per

accumulation (six instead of eight) and therefore allow more accumulations to

be setup simultaneously. If it is not the case that a group of loads followed

by outer products is the most performant option, and instead interleaving

loads with outer products is more performant, then either set of layouts can

potentially be more performant, as long as the latency for the larger number

of loads required to setup the linear layout can be effectively hidden.

An important cause for slowdown is also the difference in raw element

count between linear and rectangular layouts. A rectangular layout loads a

total of 8 × 32 + 16 × 32 = 768 elements while a linear layout loads a total

of 4× 32 + 32× 32 = 1152 elements. Both the rectangular and linear layouts

result in 128 elements each with 32 accumulations applied, albeit in different

orientations. This is an important consideration for an outer kernel which,

when using a rectangular layout, can pack less elements to achieve the same

throughput or pack the larger number of elements (if it can afford it) and
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Figure 7.5: The effect of accumulator layout on performance.

receive 48 accumulations instead of 32. In this experiment, the lower number

of total loads should result in a smaller execution time for the rectangular

layouts.

7.4.3 Analysis

Figure 7.5 and Table 7.4 show the effect of accumulator layout on perfor-

mance. The results for each of float, i16, and i8 follow the expectation in

Section 7.4.2 that both rectangular layouts (2 × 4, 4 × 2) have similar per-

formance and both linear layouts (1 × 8, 8 × 1) have similar performance.

However, where i16 and i8 agree with the theory that rectangular layouts

should outperform linear layouts, float shows opposing results.

An initial analysis of this difference may hypothesise that, for float, the
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Type Layout n
(millions)

CPU Time
(ns)

Cycles

float 2× 4 17.8± 0.30 78.91± 1.34 315.27± 5.34
float 4× 2 16.1± 0.23 87.01± 1.25 347.62± 5.00
float 1× 8 29.5± 0.30 47.56± 0.47 190.00± 1.88
float 8× 1 29.7± 0.33 47.21± 0.53 188.61± 2.13
i16 2× 4 31.5± 0.07 44.45± 0.10 177.59± 0.38
i16 4× 2 32.4± 0.10 43.22± 0.13 172.67± 0.52
i16 1× 8 23.2± 0.24 60.40± 0.62 241.30± 2.47
i16 8× 1 21.8± 0.22 64.25± 0.63 256.70± 2.50
half 2× 4 3.2± 0.03 436.14± 4.18 1742.47± 16.70
half 4× 2 3.2± 0.04 439.36± 5.97 1755.33± 23.86
half 1× 8 3.2± 0.05 438.08± 6.38 1750.21± 25.50
half 8× 1 3.2± 0.06 438.61± 7.87 1752.32± 31.46
i8 2× 4 41.8± 0.20 33.51± 0.16 133.87± 0.64
i8 4× 2 41.4± 0.11 33.79± 0.08 135.02± 0.32
i8 1× 8 25.3± 0.01 55.31± 0.02 220.98± 0.08
i8 8× 1 24.8± 0.02 56.50± 0.05 225.75± 0.18

Table 7.4: The effect of accumulator layout on performance. See Figure 7.5
for graphical presentation.

1× 8 layout and its transpose had found a better load schedule or that it had

activated hardware such as the stream prefetcher in a way that was not possi-

ble with the data types that loaded less data overall. It is true that the code

generator found a better schedule, though not in the way that was anticipated.

Instead, changing the the source and usage of operand registers has simplified

the backend code generator’s analysis, likely its liveness analysis, allowing it to

find ways to reduce register interference and better manage the live values in

order to create a simpler load schedule. This simplification has resulted in the

removal of the initial spills present in every test case presented so far. In fact,

given the kernel laid out for it, the assembly is very close to the handwritten

assembly from Moreira et al., lacking only the small code transformations to

combine 128-bit vector loads which use consecutive addresses into a paired-

vector 256-bit load. For comparison’s sake, activating the load-sinking code

transformation for the rectangular layouts produces assembly resembling al-
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most exactly the assembly in the tested linear layouts.5 By examining the

assembly for the rectangular test case with load sinking, however, it is easy to

see that the total number of vectors loaded between accumulations is less than

that in the linear layout. In both cases the only instructions present are the

loads and the outer products which means there are no instructions with which

to hide a stall due to load latency. Thus it can be expected that equivalently-

scheduled float testcases would follow the expected trend because, with less

loads, there is less likely to be a load-based stall. Following the results in

Figure 7.2, fixing the spilling issue for the float rectangular layouts should

quarter the number of cycles required. Such a decrease in the 2× 4 and 4× 2

bars would cause the float plot to follow the same trend as i16 and i8.

Regarding i16 and i8, the shuffles necessary to build operands serve to

add extra complication to the liveness analysis and thus the same simplified

schedule cannot be found for the linear layouts. Therefore, both the rectan-

gular and linear layouts are affected by spills and can be compared directly.

As explained in Section 7.4.2, the linear layouts were significantly slower. The

lower amount of operand reuse and significantly larger number of required

loads significantly slowed down the execution of the kernels.

7.5 Vectorisation and MMA

The closest compiler-only method to generate generic matrix-multiplication

code is the preexisting vectorised lowering of the llvm.matrix.multiply.*

intrinsic. Thus, that method is used as the baseline for speedup induced by

the implementation of the MMA-targeted intrinsic lowering presented in this

thesis.

7.5.1 Setup

Using the knowledge gained from the previous experiments, this experimental

evaluation uses the optimal settings for the MMA lowering: an R = C×R data
5The load sinking assemblies also contain the more efficient paired-vector loads though

it is likely due to a code-transformation pass ordering issue, not deliberate choice.
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orientation and a 2× 4 accumulator layout.6 This accumulator layout implies

an 8 × 16 kernel output. For consistency, 32 accumulations are performed,

making the overall computation once again C
(8×16)

= A
(8×32)

× B
(32×16)

.

While the vectorisation method performs the same computation, some ele-

ments must be changed. As discussed in Section 6.2, the vectorisation method

supports only all-column-major or all-row-major data layouts; both are tested.

The implementation is based on the outer-product emulation method described

in Section 4.4.2 and depends on this order. Two extra lowering options that

apply only to the vectorisation method have been set: one enables the use

of FMA instructions and the other enables operation fusing. While there is

not a second matrix operation with which to fuse the matrix multiplication,

operation fusing transformation has the side effect of sinking all loads used by

the lowering. Because this lowering uses the outer-product-emulation method,

load sinking does not break up loads in the same way it does for the MMA

lowering, making it always beneficial.

7.5.2 Expectation

The comparison of human-crafted VSX and MMA kernels reported by the

team of IBM engineers indicates that MMA attains approximately a two-

times speedup over the same kernel using VSX [52]. It is unlikely that ei-

ther of the two kernels compared in this experiment achieve the maximum

performance possible because these kernels are automatically generated by

lowering the llvm.matrix.multiply.* intrinsic and were not inspected for

further improvements by a human expert. However, both kernels are equally

disadvantaged when it comes to the initial spilling issue, both are subject to

the same kernel unrolling scheme (i.e. completely unrolled), and both use the

same register-allocation policy. Therefore, any code-improvement opportunity

is either present or missing in both kernels and thus the two-times improve-

ment found by Moreira et al. is a reasonable expectation for this experimental

comparison as well.
6Despite the results for float in Section 7.4.3, the analysis indicates that 2×4 is optimal.

Choosing 2× 4 also ensures that all types are equally disadvantaged by spilling.
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Figure 7.6: Comparison of MMA and vectorised lowerings of llvm.matrix.
multiply.*.

The change in data access order in the vectorised version is not necessarily

a disadvantage. The lowering is already set up to extract vectors from A,

scalars from B, and insert results in to C. All extractions and operations are

created with the vectoriser in mind. The lowering decouples operations from

each other as best as possible, enabling the vectoriser to effectively combine

operations into a single vector operation.

7.5.3 Analysis

Figure 7.6 and Table 7.5 show the effect of MMA on the lowering of the llvm

.matrix.multiply.* intrinsic. The lowering for all four investigated types

are significantly improved by using MMA. Comparing for each type the MMA

lowering and the most performant vectorised lowering, there is a speedup, on

average, of 12.9 times for float, 9.7 times for i16, 3.1 times for half, and

15.8 for i8.

While the speedup for half is likely to be changed due to improvements

for both the vectorised and MMA lowerings, the fact remains that there is still

a significant speedup. Fixing the code generation issues for half should bring

these results to match those presented for i16.
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Type Compilation n
(millions)

CPU Time
(ns)

Cycles

float MMA 18.0± 0.30 77.92± 1.31 311.31± 5.21
float VSX, Columns 1.4± 0.00 1005.16± 0.24 4015.84± 0.96
float VSX, Rows 0.7± 0.00 2077.55± 0.40 8300.11± 1.59
i16 MMA 31.5± 0.08 44.44± 0.11 177.57± 0.44
i16 VSX, Columns 2.8± 0.00 497.98± 0.26 1989.60± 1.02
i16 VSX, Rows 3.3± 0.01 430.18± 1.29 1718.67± 5.14
half MMA 3.2± 0.03 438.00± 4.54 1749.89± 18.12
half VSX, Columns 1.0± 0.00 1340.99± 0.41 5357.58± 1.63
half VSX, Rows 0.8± 0.00 1807.24± 0.22 7220.21± 0.92
i8 MMA 41.8± 0.20 33.49± 0.16 133.79± 0.64
i8 VSX, Columns 2.5± 0.00 555.32± 0.70 2218.66± 2.81
i8 VSX, Rows 2.6± 0.01 530.25± 1.56 2118.45± 6.23

Table 7.5: Comparison of MMA and vectorised lowerings of llvm.matrix.
multiply.*. See Figure 7.6 for graphical presentation.

As for the three remaining types, the large difference in cycle counts be-

tween MMA and the vectorised lowering is due to inefficiencies in the vectorised

lowering rather than exceptional performance increases from MMA. The re-

sults presented by Moreira et al. are likely at, or near, the theoretical peak

performance for MMA and these results do not match them due, in large part,

to the spilling issue. Thus, if these results do not improve upon Moreira et

al., the difference certainly must come from suboptimal code generation for

the vectorised method. Indeed, examining the vectorised lowering’s assembly

code reveals a spill or a reload between nearly every calculation, roughly every

three instructions, even with the load-sinking transformation enabled. The

only improvement, which is inherent to the method and not a result of code-

generation improvement, is the lack of shuffling instructions for the smaller

types.

Regardless of the reason for a particularly slow vectorised schedule, the

results presented here represent the current best intrinsic lowering possible

by the POWER10 code generation backend. Likewise, in spite of the issues

and possible improvements noted in Section 7.2, the results for the MMA

lowering represent a significant and tangible improvement in performance for

matrix multiplication on POWER10. Both methods will improve in parallel
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with general improvements to the backend, but the MMA lowering will always

show a noteworthy improvement over the vectorised version.

7.6 Human-crafted Kernel Comparison

While the vectorised lowering of llvm.matrix.multiply.* is the most com-

parable point of reference when it comes to improving upon compiler-only

methodologies for matrix multiplication, another important point to study is

overall achievable performance. To this end, the investigation looks to com-

parisons with the kernels developed by the IBM engineers [52].

7.6.1 Setup

Because the human-crafted kernels do not fall victim to the spill issues, it is

important to choose reference points that can demonstrate both the current

state of the proposed lowering as well as the future potential within the kernels.

As a result, three points of comparison are chosen.

The first two are the intrinsic lowering for float, one with no transfor-

mations applied and the second with the load-sinking transformation applied.

These two executables demonstrate the current and future state, respectively,

of the proposed methodology.

The final point of comparison is the handwritten single precision floating

point kernel from Moreira et al. Since publishing their work on MMA, the

kernels in question have been improved by the authors and thus are expected

to surpass the performance presented in that work. This experiment compares

against the performance of the newer version of the kernels.

Unfortunately, it is impossible to integrate the handwritten kernel directly

into the benchmarking framework loop due to the explicit use of registers

which results in overwritten values and segmentation faults. Therefore, the

kernel is separated into its own function. This separation, however, means

that the benchmarking framework is timing both the kernel and a function

call, offsetting the timing slightly. To counteract this, a benchmark that times

only a function call was added. The results in Section 7.6.3 for the handwritten
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Name n
(millions)

CPU Time
(ns)

Cycles

No Load Sinking 18.0± 0.30 77.92± 1.31 311.31± 5.21
Load Sinking 35.1± 0.04 39.89± 0.01 159.36± 0.05
Handwritten 31.5± 0.05 41.15± 0.07 164.39± 0.27

Table 7.6: Comparison of default and load-sinking lowerings of llvm.matrix
.multiply.* with a handwritten MMA kernel. See Figure 7.7 for graphical
presentation.

kernel thus report the average of kernelCycles− fnCallCycles.

In all cases, the kernels use float elements with a R = C×R data layout

to compute a C
(8×16)

= A
(8×32)

× B
(32×16)

kernel.

7.6.2 Expectation

Given the results in Figure 7.2, the intrinsic version without load sinking

should be significantly slower than the version with load sinking applied. This

experiment, however, has quadrupled the number of accumulations that were

performed during the analysis performed in Section 7.2. The analysis in the

same section expects the gap between the intrinsic versions to have grown

because a greater number of spills should be avoided by load sinking.

The handwritten kernel should represent the epitome of instruction choice

and scheduling for this matrix-multiplication kernel. With this in mind, it

should be expected that the handwritten kernel outperforms both of the in-

trinsic lowerings. However, previous examinations of the assembly resulting

from a compilation with load sinking has shown that the assembly contains

no spurious instructions, only outer product and load instructions. Therefore,

the intrinsic lowering with load sinking should be very close in performance to

the handwritten kernel.

7.6.3 Analysis

The experiment produced the results in Figure 7.7 and Table 7.6. The dif-

ference between the two intrinsic lowerings is significant as expected, though

the proportion of the difference is unexpected. In Figure 7.2, the load-sinking
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Figure 7.7: Comparison of default and load-sinking lowerings of llvm.matrix
.multiply.* with a handwritten MMA kernel.

version takes roughly a quarter of the cycles that the non-load-sinking version

takes to execute. This proportion was expected to increase as the number of

accumulations increased. Contrarily, the proportion has decreased to about

one half, suggesting that, as accumulations increase, the non-load-sinking in-

struction schedule improves or the load-sinking instruction schedule degrades

performance. A possible explanation is that in the assembly, after the spills

in the non-load-sinking version, load instructions are interleaved much more

freely with outer product instructions than in the load-sinking version, which

has clear distinctions between load and outer-product portions of the code.

This finding points to a potential direction for improvement after the spilling

issues are solved.

When comparing the load-sinking lowering and the handwritten kernel,

the load-sinking lowering performs better than expected. In fact, according to

Table 7.6, the generated kernel outperforms the handwritten kernel by several

cycles. However, upon inspecting the assembly, the instructions emitted in

each kernel are identical and only the registers used differ. This observation

points to a potential great achievement by the code-generation algorithm be-

cause it implies that, once the spilling issues are resolved, the code generated
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by the compiler will be on-par with handwritten code. Given that there is

still the potential for improvements to scheduling that may be derived from

the difference between the two generated lowerings, there is also the potential

that the generated kernel will eventually exceed the performance of Moreira

et al.

While the slight advantage in Table 7.6 remains a significant and promising

result, given that the two assembly codes are nearly identical, it is difficult to

conclude that one truly outmatches the other. It is possible that different

register choices may save several cycles by removing output or write-after-

read dependences, but it is far more likely that the side effects of calling

a function have not been fully accounted for and are adding cycles to the

handwritten kernel’s average cycle count. Overall, the proposed method can

produce a matrix-multiplication kernel that is as performant as a human-

crafted assembly, and that is a great accomplishment in code generation.

7.7 Summary

This chapter presented an in-depth analysis and evaluation of the matrix-

multiplication micro-kernel code-generation strategy presented in Chapter 6.

Beginning the chapter, details of the environment and methodology for each

experiment, for example, creating a cycle measurement using the Google bench-

mark library, are explained.

Following the experimental setup is a discussion of two important issues

that must be addressed in future versions of the assembly-code generator in

the backend: spilling and shuffling. These two issues pervade and influence

each of the experiments that follow.

The first two experiments investigate the optimal parameters for the MMA

micro-kernel. The experiments determine that a rectangular accumulator lay-

out (2 × 4, 4 × 2) coupled with an A matrix in a column-major orientation

and an B matrix in a row-major orientation are the most performant choices.

Furthermore, as anticipated, the orientation of C is shown to have no effect

on performance
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Following these two experiments are two performance comparisons demon-

strating the capabilities of the MMA lowering. First, a comparison with the

vectorised lowering shows between a 3.1 and 15.8 times speedup for all sup-

ported types. A second experiment comparing the code lowered by the com-

piler with a human-crafted kernel shows that the performance of the MMA

lowering takes approximately double the cycle count that the handwritten ker-

nel takes. After applying a load-sinking transformation the cycle counts are

nearly identical, providing strong indication that, once the listed issues in the

backend are resolved, the performance of the kernel will match that of an

expert’s handcrafted solution.
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Chapter 8

Conclusion

Beginning by highlighting code-improvement opportunities that are unrealis-

able while using an external library for computation, this thesis presents a

performant solution to the attractive alternative of a compiler-only path to

generate code to compute matrix-multiplication. A comprehensive review of

state-of-the-art matrix-multiplication micro-kernel implementation strategies

in Chapter 4 reveals an opportunity for significant performance improvements

in the inner kernel. This improvement comes in the form of extending opera-

tion dimensions in order to perform a full 4 × 4 outer-product, an operation

that is supported by POWER10’s MMA extension, as discussed in Chapter 5.

The matrix engine offers significant speedup for matrix multiplication when

compared with previous SIMD methods using VSX. Further insight in the

form of the use of the llvm.matrix.multiply.* intrinsic enables the pro-

posed method to be well positioned to enter common use as a standardised

lowering for any frontend that compiles matrix-multiplication operations.

Chapter 6 details a procedure for emitting a matrix-multiplication kernel in

LLVM IR that makes use of all observations made above. Deep understanding

of the requirements of the hardware and the software led to the creation of sev-

eral constraints that were used to create an efficient and performant lowering

strategy. Each of these constraints is addressed throughout Section 6.3 and

directly influences the lowering algorithm presented in Algorithm 6.1. The im-

plemented lowering generates an efficient kernel for operands of any dimension,

data orientation, and several data types.
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A thorough performance evaluation and analysis of the algorithm follows

in Chapter 7. An investigation and discussion of several shortcomings in the

compiler backend for POWER indicates where performance can be improved

in future iterations of the LLVM framework. Accounting for these deficien-

cies, the remaining experiments narrow kernel parameters to find an optimal

setting. This optimal setting is compared with the closest point of reference:

the vectorised lowering of the same intrinsic which makes use of the POWER

ISA’s SIMD capabilities in VSX. The comparison shows a speedup of at least

3.1 times for half, which is expected to improve drastically with improve-

ments to the backend, up to a maximum of 15.8 times for i8. Moreover, a

human-crafted kernel is only twice as fast as the current best lowering of the

llvm.matrix.multiply.* intrinsic, a significant achievement. Furthering this

comparison, there are strong indications that, after the noted spill issues are

resolved, the handwritten and compiler-generated kernels will have identical

performance.

The contribution of this thesis is part of a methodology that relies on a

multi-level code generation strategy that separates the efficient utilization of

the memory hierarchy at the macro level and the efficient utilization of the

processing units and vector registers in the micro level. The design of the

micro-kernel code generation presented in this thesis uses the llvm.matrix.

multiply.* intrinsic in LLVM as an interface. In the future, this intrinsic

will present an ideal entry point for the implementation of similar method-

ologies for new micro kernels targetting matrix engines in other ISAs. The

combination of the simplicity of switching between kernels when compiling

for different architectures as well as the isntant modularity within a macro

kernel present clear and instantaneous benefits for implementations using this

method. Thus, the methodology presented in this thesis shall be relevant for

these other machine architectures as well.
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