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“The earlier theoretical developments, due to Neyman and Pearson, let the

statistician into the scientific experiment at the beginning (planning stage)

and at the end (evaluation stage), but the new sequential approach requires
statistics during the entire experiment, thus it becomes an integral part of the

whole process.”

Barnard, G.A.



Abstract

Data with multiplesources of variability are common in statistics. They arise in
various areas of statistical appplications including quality control, clinical trials,
and other related fields. Any monitoring system in such situations will need to
account not only for the withi_n-item variability but the item-to-item variability
as well. Yashchin(1994, 1995)4, using a nested random effects model, developed
a monitoring scheme for the mmean and variance parameters of the model based
on cumulative sums and the likelihood ratio approach with a tolerance level.

His method was illustrated w-ith data on manufacturing of integrated circuits.

The objective in this thesiis is to present an alternative monitoring scheme
for the parameters of the saame model. The method is built on sequential
testing of composite hypotheses, Gombay(2000b). Specifically, the approach is
based on a truncated sequenttial testing without tolerance level with the help
of generalized likelihood ratios. Strong points of this method are also compared
to those of competing methoads via simulation. The method will be illustrated

using the integrated circuit d ata of Yashchin(1995).



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Sequen-
tial Tests for Monitoring Parameters of a Nested Random Effects
Model submitted by Eshetu Getachew Atenafu in partial fulfillment of the

requirements for the degree of Master of Science in Statistics.

Dr. Byron Schmuland Committee Chair

R fﬂwﬁ o

Dr. Edit Gombay  Supervisor

Dr. Ming J. Zuo Committee Member

Date: .Awysjr. 16 2000



[ dedicate this thesis to :
unknown of his being alive or not, Getachew Atenafu (father)
the late mother Tera Waktolo and

the late brother Teshome Getachew



Acknowledgements

Thanks to the Almighty God, author of my being, source of my might, strength,
and wisdom; with whom “nothing is impossible,” who has made all things pos-

sible in my life and brought me to a successful completion of this program.

[ am very grateful to my supervisor, Dr. Edit Gombay, for leading me to
the research field of this thesis, and for her many helpful and thoughtful com-
ments, discussions and suggestions throughout the preparation of this thesis.

Without her guidance, this thesis would have been impossible.

Thanks also go to the Department of Mathematical Sciences, University of
Alberta, for providing me the opportunity to study here and offering me Teach-
ing/Research Assistantship during my stay and specially to Marion Benedict
for her kindness and patience, I enjoyed during my stay. [ would like to express
my appreciation to the faculty members of the department who provide me with
many interesting courses in Statistics and Mathematics. Special thanks go to
my Teaching Mentor Dr. Giseon Heo, for her unreserved guidance in the pro-
cess of Teaching Assistantship, to all my friends and class mates, in particular
Endawoke Yizengaw, Alemayehu Berga, Eshetu Tesfaye, Abebaw Belay, Lucio
Beyere, Alex De Leon and Abdulkadir Hussein for their unpayable help.



[ am also greatly indebted to my Edmonton family, Girma Abera, Tigist
Mekonnen, Girma Hailu and Fatuma Ousman who welcomed me, gave me
their time and encourage me in all aspects of life. I would also like to thank
the Church Fathers and parishioners of Debre Selam Medhane Alem Orthodox
Tewahedo Church for nourishing my faith all these years, to Dr. Alebachew,
Dr. Shiferaw, Dr. Atakilty, Dr. Getu, Wubishet, Mesfin, Beniam, Yohannes,
Negash, Abebe, Lidetu and :cheir families, Aklilu, Bereket, Molla, Getye, Elsa
and Meseret for sharing me their experience. Without them life could have

been more difficult.

[ express my gratitude to my thesis committee members: Dr. Byron Schmu-

land and Dr. Ming J. Zuo, for the time they spent in reading my thesis.

Last but not least, my sincerest gratitude to my family Atsede Getachew,
Solomon Getachew, Samson Getachew, Firehiwot Getachew, Medhin Gebre
Egzi, Kassahun Tewolde Berhan, Tigist Tewolde Berhan, Tesfahun Tewolde
Berhan, Yenenesh Mammo, Mesfin Tadesse, Derib Tadesse, Assefa Mekonnen,
Ejigayehu Demissie, Tigist Yilma for their prayer and encouragement. I am
greatly indebted to Tirfe Demissie, Wakshum Mekonnen, Seble Deribe, Se-
blework Tayachew and their families for support, prayers, encouragement and

taking care of my family affairs all these years that I have been out here.

To you all and numerous others that I have not mentioned, [ say
THANK YOU AND GOD BLESS YOU.
“AMESEGINALEHU, EGZIBHER YIBARKACHIHU::”



Contents

1 Introduction 1
1.1 Two-factor Nested Design . . . . . .. .. .. ... .. ..... 2
1.2 Description of a Test Based on the Likelihood Ratio . . . . . . . 4
1.3 The Model and Likelihood Ratio Test . . . . . . . ... ... .. 5

1.3.1 Analysis of Variance, ANOVA . . . .. ... .. ..... 6

2 The Sequential Method 9
2.1 Review of the Sequential Likelihood Ratio Test . . .. . . . .. 9
2.2 Description of the New Sequential Test . . . . .. ... .. ... 13
2.3 The Average (Expected) Sample Number (ASN) Function of a

Sequential Test. . . . .. . ... . ... ... 14
2.4 The Sequential Likelihood Ratio Test . . . . . . ... ... .. 15
2.4.1 Conditions as a Framework of the Test . . . . . . . . .. 15
242 Test Results . . . . . .. . . ... ... L. 16

3 Monitoring Parameters 17
3.1 The Model Being in an Exponential family . . . . . .. ... .. 17
3.2 Check of the Conditions to the Theory . . . . . . ... .. ... 18
3.3 Monitoring the Mean . . . . ... . ... ... .......... 21
3.4 Monitoring Variance . . . .. .. ... .. ... 25

3.4.1 Monitoring Error Variance, ¢ . . .. .. ... .. ... 25
3.4.2 Monitoring Class Variance , 0% - - « -« « .« o . ... 28
3.4.3 Monitoring Subclass Variance, 03 . . . . . .. .. ... 33

3.4.4 Monitoring all the Variances Simultaneously . . . . . .. 38



Simulation on Some Selected Procedures 41

4.1 Monitoring the Mean . . . . . . . . .. ... ... L. 42
4.2 Monitoring Variance . . .. ... . .. ... .00 49
4.2.1 Monitoring Error Variance o> . . . . . ... .. ... .. 49
4.2.2 Monitoring Class Variance 63 . . . . . ... ... ... 56
4.2.3 Monitoring Subclass Variance, 0% . . . ... ... ... 63
Application and Conclusion 80
5.1 Application . . . . .. ... o oo 80
5.2 Monitoring the Mean . . . . . ... ... ... ... ... .. 31
5.2.1 Monitoring Error Variance, 0% . . .. ... ... .... 84
5.2.2 Monitoring Lot Variance, o . . . .. ... ... .... 87
5.2.3 Monitoring o2 Wafer Variance . ... ... . ... .. 89
5.2.4 Monitoring all the Variances Simultaneously . .. . .. 93

5.3 General Discussion and Conclusions . . . . . . . ... ... ... 95
Analytical solution for cubic equation 102
Approximations of the Tests under the Alternative H, 106
B.1 Monitoring 0% . . . . . . .o e e e e e 106
B.2 Monitoring 04 - . . .« o it e e e 107
SPLUS code for the Simulation 108
C.1 For Monitoring Mean, . . . .. . ... ... ... ...... 108
C.2 For Monitoring error variance, 2 . . . . . . . ... . ... ... 110
C.3 For Monitoring class variance, 03 . . . . - - - . .. . ... ... 112
C.4 For Monitoring subclass variance, 03 . . - . . . .. . ... ... 116

Data used for the Application 121



List of Figures

4.1

4.3

4.4

4.5

4.6

4.7

4.8

5.1

Plot of the powers of TEST1, truncated sequential test, and
fixed sample size test in monitoring the Mean pn. . . . . . . ..
Plot of the powers of TEST?2, truncated sequential test, and
fixed sample size test in monitoring the Mean . . . . . . . ..
Plot of the powers of TEST1, truncated sequential test, and
fixed sample size test in monitoring the Error Variance o2 . . . .
Plot of the powers of TEST2, truncated sequential test, and
fixed sample size test in monitoring the Error Variance o2 . . . .
Plot of the powers of TEST1, truncated sequential test, and
fixed sample size test in monitoring the Class Variance 0% . . . .
Plot of the powers of TEST2, truncated sequential test, and
fixed sample size test in monitoring the Class Variance 6% . . . .
Plot of the powers of TEST1 truncated sequential test and fixed
sample size test in monitoring the Subclass Variance 6 . . . . .
Plot of the powers of TEST?2 truncated sequential test and fixed

sample size test in monitoring the Subclass Variance o . . . . .

Plot of the Weighted Test Statistics (TEST2) versus number of
lots used to test in detecting a change of Mean p Lot-wise. . . .
Plot of the Weighted Test Statistics (TEST2) versus the Number

of Lots used to test in detecting a change of Lot Variance o7 .

79

97

93



List of Tables

4.3

4.4

4.5

4.8

4.9
4.10

4.11

4.12

ANOVA table for Nested Random Effect Model (B nested in A)

The F-ratio values and expected mean squares . . . . . . . . . .

Simulation result to monitor Mean under TEST1, truncated at
a=30 . . . . e e e e e e e e e e e

Simulation result to monitor Mean under TEST1, truncated at

Simulation result to monitor Mean under TEST1, truncated at
a=200 . . . . . . e e e e e e e e e e e e e
Simulation result to monitor mean under TEST2 , truncated at
a=30 . . . . e e e e e e e e e e e e
Simulation result to monitor Mean under TEST?2, truncated at
a=b0 . . . . e e e e e e e e e e e e e
Simulation result to monitor Mean under TEST?2, truncated at
a=200 . . . . . .. e e e e e e e e e e e e e e e
Power of a fixed sample size test of Mean that corresponds to
TESTL. . . . . . o i e e e e e e e e e e e e
Power of a fixed sample size test of Mean that corresponds to
TEST2. . . . . e e e e e e e e e e e e e e
Power of different tests of the mean . . . . . . . . . ... ...
Simulation result to monitor Error Variance under TEST1, trun-
catedata=30 . . . . . . . . . .
Simulation result to monitor Error Variance under TESTI, trun-
catedata=50 . . . . . . . . .o L.
Simulation result to monitor Error Variance under TESTI1 ,

truncated at a=200 . . . . . . . . . .. ... e

=1 =~

43

43



4.13

4.14

4.15

4.16

4.17

4.18

4.19

Simulation result to monitor Error Variance mean under TEST2,
truncated at a=30 . . . . . .. . . ... oL Lo
Simulation result to monitor Error Variance under TEST2, trun-
catedata=50 . . . . . . . . ... L.l
Simulation result to monitor Error Variance under TEST2, trun-
catedat a=200 . . . . . . ... .o oL
Power of a fixed sample size test of Error Variance that corre-
sponds to TEST1.. . . . . . .. . . ... ... ... ...
Power of a fixed sample size test of Error Variance that corre-

Simulation result to monitor Class Variance under TEST1, trun-
catedata=30 . . . . . . ...l Lol
Simulation result to monitor Class Variance under TEST1, trun-
catedata=50 . . . . . .. .. L L L
Simulation result to monitor Class Variance under TEST1, trun-
cated at a=200 . . . . . . . .. . Lo
Simulation result to monitor Class Variance under TEST?2, trun-
catedata=30 . .. . . . . .. L.
Simulation result to monitor Class Variance under TEST?2, trun-
catedata=50 . .. . . . . ... Lo
Simulation result to monitor Class Variance under TEST2, trun-
cated at a=200 . . . . . . . .. ..o
Power of a fixed sample size test of Class Variance that corre-
sponds to TEST1.. . . . . . .. .. . ... ...
Power of a fixed sample size test of Class Variance that corre-

Simulation result to monitor Subclass Variance under TESTI,
truncated at a=30 . . . . . .. .. ... L.
Simulation result to monitor Subclass Variance under TEST1,
truncated at a=50 . . . . . .. . . ..o oo
Simulation result to monitor Subclass Variance under TEST1,
truncated at a=200 . . . . . . . . . ... ..o
Simulation result to monitor Subclass Variance under TEST?2,

truncated at a=30 . . . . . . . .. ...

=1

[}

Ut

58

58

59

59



4.30 Simulation result to monitor: Subclass Variance under TEST?2,
truncated at a=50 . . . . . . . . ... ..o
4.31 Simulation result to monitor- Subclass Variance under TEST2,
truncated at a=200 . . . . . . . . .. .. ..o
4.32 Power of a fixed sample size test of Subclass Variance that cor-
responds to TEST1. . ... . ... . ... ... ...
4.33 Power of a fixed sample size test of Subclass Variance that cor-
responds to TEST2. . . .. .. ... ... ... ... ... ...

5.1 Splus program output for te=sting the Mean using TEST1 and
TEST2 . . . . . . o o e e e e e e e
5.2 Continuation of Table 5.1 for testing the Mean using TEST1
and TEST2 . .. . . . .. . . . . .
5.3 Splus output for testing o2 using both TEST1 and TEST2.
5.4 Continuation of Table 5.3 program output for testing o2 using
both TESTI and TEST2. . . . .. ... ... ... ... ....
5.5 An Splus program output foer testing of using both TESTL
and TEST2. . . . . . . . . . e
5.6 Continuation of Table 5.5: -program output for testing o7
using both TEST1 and TESTT2. . ... ... ... .......
5.7 An Splus program output fo.r testing o2 using both TESTIL
and TEST2. . . . . . ... . . e
5.8 Continuation of Table 5.7 : program output for testing o,
using both TEST1 and TES™T2. . ... ... ... .......
5.9 An Splus program output fozr testing all the Variances simulti-

neously using TESTL. . .. ... ... .. ... ... .....

D.1 Data used in the Applicatiom. . . . . . . . . . .. ...
D.2 Continuation Table D.1 Data used in the Application. . . . . .



Chapter 1

Introduction

Nested Random Effects is a model which has applications in various fields.
One such is in statistical process control, where a sequence of measurements are
used to monitor the level of parameters that are indicators of quality. Yashchin
(1994, 1995) considered this model and discussed the use of cumulative sums
and likelihood ratios respectively, to check whether IBM’s manufacturing of
chips is conforming to some prescribed target. Other application include mon-
itoring of measurements describing the health of patients in medical trials,
where due to ethical considerations sequential procedures have to be imple-

mented.

The analysis on the sequential procedure is a method of statistical inference
whose distinguishing feature is that the number of observations required by the
procedure is not determined in advance of an experiment. The decision to ter-
minate the experiment depends, at each stage, on the results of observations

previously made.

The organization of this thesis is as follows. In this Chapter, we review
and discuss the model and give the likelihood approach test. In Chapter Two,
review and introduction of the sequential likelihood ratio test will be presented.
It also gives the conditions and results of the new test procedure. In Chapter
Three, algorithms will developed for monitoring each of the four parameters in-

dividually, and for the three variance components simultaneously. In Chapter

1



Four, the result of a simulation study and comparison with those of compet-
ing methods will be presented. In Chapter Five, the applications of the new
method on the published data of Yashchin (1995) is laidout followed by Discus-
sion and Conclusion. The Appendicies contain the algorithm of solving cubic
equation analytically, approximations of the test under the alternative hypoth-
esis of change, which allow power approximations for any specific alternative.

Splus code for the simulation is also included in this part.

The next sections on this Chapter will give a brief description of a two-
factor Nested Random Effects Model, introduce the generalized likelihood ra-
tio of Neyman and Pearson for a given composite hypotheses, and give the
ANOVA table to check the significance of each variance.

1.1 Two-factor Nested Design

In an ordinary factorial study, in which every level of one factor appears with
each level of every other factor, the factors are said to be crossed. A different
situation occurs when factors are nested. Consider the following situation to
see the difference.

A large manufacturing company operates three regional training schools
for mechanics, one in each of its operating districts. Each school has two in-
structors each of whom teaches classes of about 15 mechanics in three-week
sessions. The company was concerned about the effect of the schools (factor
A) and instructors (factor B) on the learning achieved. Here the study is not
an ordinary two-factor study. The reason is that the instructor in one school
did not teach in the other schools. The experimental design for these train-
ing schools involves an incomplete factorial arrangement of a special type, in
which each level of factor B (instructor) occurs with only one level of factor A

(school). Factor B is therefore said to be nested within factor A.

In certain multifactor experiments the levels of one factor, say factor A, are

similar but not identical for different levels of another factor, say factor B. Such

[SV]



an arrangement is called a nested or hierarchical design, with levels of factor
B nested under the levels of factor A. For example, consider a company that
purchases its raw material from three different suppliers (refer to the book of
Montgomery (1997), Design of Experiments for further detail). The company
wishes to determine if the purity of the raw material is the same from each
supplier. There are four batches of raw material available from each supplier,
and three determinations of purity are to be taken from each batch. Since
every level of factor B does not appear with every level of factor A, there can
be no interaction between A and B. This is a two-stage design, with batches
nested under suppliers. The company may wish to determine if the variability
in purity is attributable to differences between suppliers. The company may
also wish to determine the quality of the raw materials knowing there is a vari-

ability within each supplier etc.

In a two-factor nested design we consider nested designs involving two fac-
tors, one of which is nested within the other. For consistency, consider the
case in which b of factor B is nested within each factor A, say a factors, where

both factors are random.

Model
Let Xijir denote the Lkt observation when factor A is at i** level and factor

B at the j** level. Assume also that there are IN observations for factor com-
bination, i.e., k=1,2.....IN and that i=1,2,...,a, j=1,2,...,b. The observations

have the following structure:
Xije = p + i + By + €ijk

where p is a constant (grand mean), o; is the i** random effect of factor A, G
is the j** random effect of factor B, nested under i** factor A, and ¢ is the
random error. Here a is the number of levels of factor A, b is the number of
levels of factor B nested in each factor A and N is the number of observations

under each factor B nested in factor A.

Assumptions

oa; ~ N(0,6%) Bjty ~ N(0,0%) and ejp ~ N(0,0%) (1.1.1)

and all three are uncorrelated.



1.2 Description of a Test Based on the Likeli-
hood Ratio

Let X1, X, ..., X» be a sequence of independent, identically distributed random
variables with parameters:

e CRE, neQ CRP, d>1, p>0,and O =Q; X y, where 0 is the
parameter vector of interest, n is the nuisance parameter vector, d and p are

integers. For the hypotheses:
H,:6=0,, n€Qy vs. H :0#6,, n€l, (1.2.1)

the generalized likelihood ratio test statistic of Neyman and Pearson (1928) is
given by:

_ supneﬂzn?zlf(xii 0o, 77)
" suPneq, oea, IS (2 0:1)

Yashchin (1995) used the likelihood ratio in various forms to monitor change

A (1.2.2)

in the variance components, treating all other parameters of the model as
nuisance. A different generalized likelihood ratio is proposed in this study. The
theoretical background to the new procedures was developed in Gombay (1996,
1997, 2000a), where the behavior of the generalized likelihood ratio process was
analysed in the presence of nuisance parameters. The implementation of them
for sequential testing is described in Gombay (2000b), where it was also shown
that Wald’s method of sequential testing cannot, in general, be extended to
situations, where nuisance parameters are present. Hence we cannot hope to
control both types of error simultaneously in the present problem as it was
done in Wald’s (1947) scheme. Instead, we will use Neyman-Pearson type
tests where « , the level of significance (Type I error) is under control. In the

current study o denotes the probability of stopping the process unnecessarily.



1.3 The Model and Likelihood Ratio Test

The model was given by:

1=1,2,...,a
Xijk = p + i + By + € 7=12,...,b
c=1,2,...N
and from the assumptions above in (1.1.1):
for the Mean
E[Xij]) = Elu+oi+8i + el
= p+ Elai] + E[Bj»)] + Eleil
= W, (1.3.1)

and for the Variance

Var(Xie) = Var(p+ ai + Bi + €ijr)
Var(a;) + Va’r‘(ﬁj(;)) + Var(eijr)

= 0%+ oh+a? (1.3.2)

Put 02 =02 + 0} +0°

Therefore, it will be appropriate to deduce that:
Xijk ~ ZV(,u,O'z) (1.3.3)

In this case, our parameter of interest is § = pu and the nuisance parameters

are, 04, 0%, o2. The hypotheses to be tested are:
Hy:p=p, , c2>0 wvs.

H :p#p , 62>0



1.3.1 Analysis of Variance, ANOVA

The analysis of variance for the above model can be obtained by decompos-
ing the total deviation (Xijx — .T(_) as follows. The complete analysis and
construction of ANOVA can be found in Montgomery (1997).

(Xije — X)) = (Xe. = X))+ (X — Xi) + (Xije — Xij) (1.3.4)

where the expressions on the right hand side of equation (1.3.4) gives:

(Xije — X..) the total deviation

(X:;.—X.) A’s main random effect

(X5 — X;:.) Specified B’s random effect when A at :** level and

(X:ijk — Xi;.)  the residual. Upon squared equation (1.3.4) and summed over

all observations, all cross product terms will drop out to give:
SSTO =S5SA+SSB,+ SSE (1.3.5)

where
a b

SSTO = ZZZ (Xije — X_.)?

=1 j=14k=1

SSA=bNY (X:. - X_)?
t=1
a b .
SSBa=N> > (X; -X..)?

=1 j=1

SSE = ZZZ(XUL _—'—fJ ZZZ%M

i=1j=1 k=1 i=1 j=1 k=1
and obtain the ANOVA Table 1.1 for this Nested two-factor Effects study
to compare whether the variability is significant or not at each level of the
experiment.
The appropriate test statistic and the expected mean squares are also given
in Table 1.2.



Source Sum of Squares d.f Mean Square

Factor A BNYE (X —X.)? a-1 MSA= i—f'%
Factor B| NY&, S, (Xi —Xi)? a(b-1) | MSB(A) = =2
Error ¢ T TN (X — Xi5)? | ab(N-1) | MSE = 3235,

TOta‘l Z?:l _l‘;zl ZQI':L(Xijk - Y---)z a'bN_l

Table 1.1: ANOVA table for Nested Random Effect Model (B nested in A)

Test for F* Expected mean square
Factor A | 77450 | ©°+0b6Noh + Nog
[SB N
Factor B “'—Ms% o? + Noj
Error o?

Table 1.2: The F-ratio values and expected mean squares



The results of this test are:

reject the hypothesis, that the variation due to factor A is not significant, if
the F* value of factor A is greater than the prescribed value of F with

the appropriate degree of freedom and a given type one error, .

reject the hypothesis, that the variation due to factor B is not significant, if
the F* value of factor B is greater than the prescribed value of F with

the appropriate degree of freedom and a given type one error , a.

Yashchin (1995) stressed that conventional estimation procedures developed for
Nested experiments may turn out to be inappropriate in situations involving
process control. As a remedy to these, he developed CUSUM schemes (1994),
and likelihood ratio methods (1995) for monitoring parameters of interest under
the Nested Random Effects Model. He also verified that, the latter approach
has advantages when it is important to maintain a low rate of false alarms

despite the presence of nuisance parameters.



Chapter 2

The Sequential Method

This chapter will present review of the sequential likelihood ratio test, introduce
the notion, and state the conditions as a framework and the results for the

newly designed sequential likelihood ratio test.

2.1 Review of the Sequential Likelihood Ratio
Test

According to the historical note of Wald (1945), the first idea for a sequential
test procedure, i.e., a test for which the number of observations is not deter-
mined in advance but is dependent on the outcome of the observations as they
are made, goes back to H.F. Dodge and H.G. Romig (1929), who constructed
a double sampling procedure. According to this scheme, the decision whether
or not a second sample should be drawn depends on the outcome of the obser-
vations in the first sample. Whereas this method allows for only two samples,
Bartky (1943) devised a multiple sampling scheme for the particular case of
testing the mean of a binomial distribution. His scheme is closely related to
the test procedure that results from the application of the sequential proba-
bility ratio test to this particular case. The reason that Dodge and Roming
introduced their double sampling method, and Bartky his multiple sampling

scheme was, of course, the recognition of the fact that they require, on the



average, a smaller number of obse=rvations than “single” sampling.

The occasional practice of desmgning a large-scale experiment in successive
stages may be regarded as a fore-runner of sequential analysis. The idea for

such chain experiments was brieflsy discussed by Hotelling (1941).

The problem of sequential anallysis arose in the statistical research group of
Columbia University in connectionn with some comments made by Captain G.L.
Schuyler of the Bureau of Ordnanece, Navy Department. Milton Friedman and
W. Allen Wallis recognized the gweat potentialities and the far-reaching con-
sequences that sequential analysiss might have for the further development of
theoretical statistics. In particular-, they conjectured that a sequential test pro-
cedure might be constructed which could control the possible errors committed
by wrong decisions exactly to the= same extent as the best current procedure
based on a predetermined number= of observations. At the same time it would
require, on the average, a substamtially smaller number of observations than
the fixed number of observations meeded for the current procedure. Friedman
and Wallis also exhibited a few exsmmples of sequential modifications of current

test procedures resulting, in some cases, in an increased efficiency.

The clear formulation of the peroblem initiated Wald’s interest (1947) and
lead him to developing sequentiall probability ratio test, SPRT(1947), which
then led to the development of Sequential Probability Ratio Test, SPRT in
April 1943.

Further advances in the theozry of the SPRT were made in 1944. The
operating characteristic (OC) curwe of the SPRT for the case of a binomial dis-
tribution was found by Milton Frieedman and George W. Brown (independently
of each other), and slightly earlier- by C. M. Stockman.

In the late forties then the nsew theory of sequential hypothesis testing
had been published in a book forrmat, due to Abraham Wald (1947). In the
Neyman-Pearson testing theory tkere are two hypotheses, the null hypothesis,

H, and the alternate hypothesis, .H,. For the decision the two choices are:

10



a) reject H, in favor of H; or
b) do not reject H, in favor of H;.

In this decision there is direct control over « = P(Type [ error) = P(reject
H, when it is true), but we have no control over § = P(Type Il error) = P(do

not reject H, when H; is true), and hence 3 is of secondary importance in this

theory.

In contrast, Wald’s sequential testing theory gives three options to the de-

cision maker.

a) accept H (reject H,)
b) accept Hp (reject Hi)
c) continue sampling as not enough evidence in data for conclusion.

In Wald’s procedure we have simultaneous control over & = P(Type I error)
and B = P(Type II error), which makes it superior to the Neyman-Pearson ap-
proach in this respect. Furthermore, his procedure is optimal if the criterion is
to come to a quick decision. Yet, Wald’s theory is not as widely applied today
because it can be used essentially only in case both H, and H; are simple hy-
pothesis. This is not the decision problem we face most of the time in practice.
In fact, Wald (1945) (pp. 119) pointed out that the theory of sequential hy-

pothesis with no restrictions on the possible values of the unknown parameier

is not as simple.

There were efforts made to extend Wald’s testing scheme to composite
hypotheses, but with limited success. The first such attempt was by Wald
himself, who considered composite hypotheses which were composite because
of the presence of nuisance parameters. He suggested using weight functions
on the range of nuisance parameters and integrated out so that the composite
hypothesis became, in fact, a simple one in terms of the parameter of interest.
However, Govindarajulu (1975), (pp. 121) pointed out that it is not always pos-
sible to find the appropriate weight functions proposed by Wald (1945, 1947)

because no general method is available for choosing the weight functions. Also

11



Whetherill and Glazerbrook (1986), (p- 52) remark that this approach has not
been successfully applied.

Another approach was using transformations which reduce the two hypothe-
ses to simple ones in terms of some other, related transformed parameters. The
most successful application of this is the sequential t-test of Barnard and Rush-
ton (1950, 1952). Cox (1952) generalizes this approach by finding conditions
and transformations which give a factorization of the likelihood function that
leads to the cancellation of terms with nuisance parameters in the likelihood
ratio. But it has no major application in sequential testing other than the

sequential t-test.

The next approach to sequential testing in the presence of nuisance parame-
ters is based on asymptotics developed by Bartlett (1946), Cox (1963), Breslow
(1969) and Joanes (1972). It considers the likelihood ratio, or an asymptotically
equivalent statistic, under contiguous alternatives and uses Wald’s approach to

sequential testing.

Sequential likelihood ratios that are derived from Wald’s (1947) approach
minimize the average sample number, and have an extensive literature (c.f.
Lorden (1971), Moustakides (1986), Basseville and Benveniste (1936), Sieg-
mund (1985)). If we use the generalized likelihood ratio process as defined in
equation (1.2.2), the optimality property is different, as the power is maximized
now (c.f. Bahadur (1966), Brown (1971)). These two different optimality cri-
teria are discussed and demonstrated in sequential tests by Gombay (2000b).

Those conclusions are valid in sequential change detection.



2.2 Description of the New Sequential Test

The sequential method of testing a null hypothesis, H, , to be used, may be
described as follows: A rule is given for making one of the following two deci-

sions at any stage of the experiment (at the m** trial for each integer value of m)

1. to reject the hypothesis H,
2. to continue the experiment by making an additional observation.

Thus, such a test procedure is carried out sequentially. On the basis of the
first two observations, one of the aforementioned two decisions is made. If the
first decision is made, the process is terminated. If the second decision is made.
a second trial is performed. Again, on the basis of the first three observations,
one of the two decisions is made. If the second decision is made, a third trial is
performed, and so on. If we introduce a truncation point n, then if decision 1
has not occurred by trial n, then we decide that H, cannot be rejected. The
process is continued until either the first decision is made or arrived at trun-
cation point. The number of observations required by such a test procedure is

a random variable, since the value depends on the outcome of the observations.

For each positive integral value m, m > 2, we shall denote by M, the
totality of all possible samples (z1,Z2,....Zm) of size m. We shall also refer
to M,, as the m-dimensional sample space. A rule for making one of the two
decisions at any stage of the experiment can be described as follows. For each
integral value m, the m-dimensional sample space is split into two mutually
exclusive parts, RL _,, Rm_i. After the first two observation (z1,z2) have
been drawn, H, is rejectedif (z;,z;) liesin R} or a third observation is made
otherwise. If the second decision is made and other observation z3 is drawn
, H, is rejected, or a fourth observation is drawn, according as the observed
sample (z,Z2,z3) liesin R} or R,. If (z1,z2,z3) lies in Ry, a fourth
observation z4 is drawn and one of the two decisions is made according as
(z1, T2, Z3,Z4) liesin R} or Rz, and so on. This process is stopped, when, and
only when, either the first decision is made. or first decision has not occurred

up to the truncation time n, where in the later case we decide H, cannot be

13



rejected.
Thus, a sequential test is completely defined by defining the sets
Rl

m—17

Rm_1 for all positive integral value m, m > 2. Since R _ R
are mutually exclusive and add up to the sets M, , any of the two sets

Rl

m—11?

in the other one.

R._1 consists of precisely of all those samples which are not contained

2.3 The Average (Expected) Sample Number
(ASN) Function of a Sequential Test.

At any stage of the experiment the decision to terminate the process depends
on the results of the observations made so far. We shall denote by N the num-
ber of observations required by the sequential test, which is a random variable.
Carrying out the same sequential test procedure repeatedly, we shall obtain,
in general, different values of N. Of particular interest is the expected value
of N (the average value of N in the long run, when the same test procedure
is applied repeatedly). For any given test procedure the expected value of N
depends only on the distribution of X. Since the distribution of X is determined
by the parameter point 8, the expected value of N depends only on 6 .

14



2.4 The Sequential Likelihood Ratio Test

Let X;, X5, ..., Xur be a sequence of independent, identically distributed ran-
dom variables with density belonging to the exponential family distributions,
that is,

log f(z; %) = T(z)¥T + S(z) — A(w), v=(0,7), T(z)= (T4 (z), TP(z))
where v €Q, € Q, C R, n€Q CRP, d>1, p>0,and Q@ =0Q,XQ,.
In our discussion @ is the parameter vector of interest and 7 is the nuisance

parameter vector, d and p are inteegers. The two hypothesis were also given by:

H,:0=20,,n€ H, :0#6,,n€8,

2.4.1 Conditions as a Framework of the Test

Let T, be a neighborhood of point (8,,7n), and let I'; be a neighborhood of the
d+p dimensional interval spanned by end points (#,,7) and (8;,m1) where n
is the true value of parameter , 8, is the value of the parameter ¢ under the

alternative hypothesis, and 7, is defined as the solution of the equation

VaA(61,m) = E[TP(X)] .
Consider the conditions:
(C1) V,Aand V A are continuous and equations
VyA(0o,m) = b
VyA(p) =a

have unique solutions for a € ; C R**?, be [, C R?, and
inv (V4A) , inv (V,A) are Lipschitz continuous of order one in each vari-

able 0;,7;,1=1,2,...,d,7 = 1,2,...,p.

(C2) Matrices VfrzA(Ho,n),Vf,le(w) are positive definite, and are Lipschitz

continuous of order one in all arguments.



(C3) WA(#)) exist and are bounded in ' C R**? . 1i,j, k=1,2,.....d+p

(C4) E[|T;(X0)["] < oo for 1 < j < d+ pfor some v > 2

2.4.2 Test Results

Whenever the conditions (C1-C4) are satisfied, one can use the likelihood ra-
tio for sequential testing. The derivation of the tests below, and some selected
theory can be found in Gombay (1996, 1997, 2000). If the hypotheses are
defined by equation (1.2.1), and we use the likelihood ratio given in equation
(1.2.2), then the following two truncated sequential procedures can be per-

formed. The point of truncation is denoted by M.

TEST1. Stop and reject H, at the first k, when —2log A > CV{(a, M),

k=2,...,M, where critical value CV{(a,n) is:

(— log(—log(1 — a)) + b(M))?
2log log M

CVi(a, M) =

3

for a , the level of significance,
b(M) = 2log log M + %logloglog M — log F(%) , and

D(z) = / Ty levdy, z > 0
0
TEST2. Let d=1. Stop and reject H, at the first k when —QNL—'[log/\k >

CVa(a) for k=2,....M, where CV;(«) is the critical value obtained from

the relation

A& (=) (w2 +1)?
l-e= w,§)2k+1e”’p( 8(CVa(a))?

16



Chapter 3

Monitoring Parameters

In this chapter, the controlling mechanisms of the parameters for the two
factor Nested Random Effects Model is developed. It starts by showing that

the distribution belongs to the exponential family.

3.1 The Model Being in an Exponential family

For the Nested Random Effect Model defined earlier, let there be a classes and

b subclasses with N replicates each.

Model
1=1,2....,a
Xijk = p + o + By + €ijk 7=1,2,...,b (3.1.1)
t=1,2 N

and y is a constant.
With the basic assumptions in (1.1.1)

2 2 2 2 2
Xijk ~ N(u,0.), whereo. =04 +og+o° ,

then the density function for variable X with parameters mean p and variance

o? will be:

-1 2 P <
eXP{Qaz(C’? —#)‘} (3.1.2)

1
2

x; ’Gx =
f(z; p,0%) oot

17



Taking the natural logarithm of both sides:

. 2y _ _1 2 L 2
log f(z;p,00) = —§log(27r0'.) - gg(l‘ —u)
= —llo (2w) — —l—lo (02) — L(:172 —2uzx + p?)
= 3 glam 3 glo. 203 2u L
1 1 1 , 2
= ;'L_L—z-:z: ~ 503 2? — = log(2r) — 5 log(o2) — % (3.1.3)
Let Ty(z) =2, Ty(e) =27, 0 =%, and 7= sothat of =—4%
and then equation (3.1.3) can be expressed as:
log £(z;6,7) = (Ty(2), Ta())(8,m)T — A(0,m) (3.1.4)

where A(8,7) = log(2w) — %log(—?.'r]) — % which shows that the density

function belongs to the exponential family.
Without loss of generality, let’s assume p, =0 , hence the hypotheses in p,
and p will be reduced to

H,:0=0; n<0, vs. H:0#0, n<0 (3.1.5)

3.2 Check of the Conditions to the Theory

This section verifies that the conditions (C1-C4) of section 2.4.1 are satisfied

and presents the application of the results developed in section 2.4.2.

From equation (3.1.3), the logarithm of the density function in terms of

and n , we see that:

1
A(0,n) = = log(27) — 5 log(—27n) — —.

| =

For the hypothesis to test given in equation (3.1.5), and to apply the new the-
ory developed one needs to justify the smoothness conditions (C1-C4). The

verification looks like this:

(C1)
0 —1 62
Va,A(l,n) = %A(ﬁ,ﬂ) =3 + pms

18



Then under the null hypothesis one finds that:

-1
V,,A(H = 0,7]) = E = 0’2
which is continuous and has a unique inverse for o2 > 0.

Again taking the gradient in both parameters one will get:

= 7
Vendlm=| T = | 2)
—5pt 1z o+ u
Given any values a; and a; where a; > a? such that V,,,)A(8,7) = (a1, az) ,
then p = a;,02 = a, —a? which is a unique solution for the mean and variance.
Therefore unique values of § and n will exist. Moreover the functions and their
inverses are continuous at these values a; and a, .

To check the Lipshitz condition consider:

~1  #\"! 4n? 1
I .= | — + — = -
nv VA6, 7) (‘277 + 4772) 0> —2n o2+ p?
Taking this equation as a function of  for fixed n
4n?
fO.n) = — 5
4n? 4n?
1 1
= 4n? —
g 62 —2n 62 —2nq
67 — 62
= 4 2 2 1
@ 2@ =)
4n?
= @@y TR0
< M|0, -6y ,
for some M,
41?16, + 0,

<M ,
(62 — 2n)(637 — 2n)

19



which gives Lipshitz condition in the parameter 8,
For fixed 8

4 2 4 2
1£(8,m) — £(6,72)] & 12

6% —2m, E — 212

— 4 n: (02 — 2n3) — (6% —2ny)
(62 — 21 )(6% — 2°n,)
_ 4 Ini0? —2nin; — 36 4 2nin|

(62 —2n1)(0% — 2-1p2)
{(n} —n3)0% + 12m1m2(Cn2 — )}
(02 —2m,)(62 — 2m3)
< Min, — ml

= 4

for some .
4((m + 12)0? + 2|mina|)

(62 = 2m)(6% — 22)
which implies again that, it is Lipshitz in the variable n too. Thus the first
condition (C1) is satisfied.

M >

(C2) One easily finds that for ¥ = (8, 7)

=1 b 2 ‘ 2
Viaw)=| m W |- T =
/i - 2 - )
ﬁf 2,7% - 29,73 2u0? 20t —+ 4uo?

lv?;pzA(’l,b)I = 20% + 4p?0* — 4p®0* =20% >0 and QC2 is satisfied .

(C3)
To see the boundedness of the third total derivative
T AGm) =0, A = =
063 ’ Tognogr n?’
A3 3 2 2
5—:2—85/4(9,17) = 730—, and 587—75.4(9,17) = 77—31 + %zj
All exist and bounded in the coordinate plane.
(C4)

E|T(X)]" = E|XT
Considering the moment generating function of a norm al distribution with

mean z and variance o2, which is given by:

M(t) = elrttzt?ad) (3.2.1)
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and using the fact that

E[X"] = d’L[f’(t_) (3.2.2)
dt t=0
we obtain for v =4
— dM(2) — 2y ( o (ut+3t5202) —
E[‘X] o dt t=0 - (,u + ta.‘)(e o ) t=0 - ,U
2 d 2y ¢ (ut+Le202) 2 2
ElX? = — [(u+ o)D) =oltp
t=0
d 9 L142,2 ” 142,2
E[X?] = T [d:e(“t+2t D (4 to?)?(elttat -))] _
= 3uo? +p’
and
d 1,22
4 - & 2 ;2 213 (o (ut+1t202)
BIX] = g [(otu+ ol + (ut tol)7) (B3]

= 30t +6p*c? +ut

We see that for v =4, £|X|" is bounded and hence we can apply the results
of the theorem to test the hypotheses given in equation (3.1.5).

3.3 Monitoring the Mean

For the model given in the first section, with the basic assumptions in (1.1.1),
it was shown X;r ~  N(u,02) . The objective is to test the hypothesis
in (3.1.5). Without loss of generality let’s assume p, = 0 (Otherwise one can
subtract the mean from each data and proceed) . Let X = & Shm Xk
be the mean of the data in j** sub-class and ¢** class and let

¥, — 1 b N o o 1 b . 1 b N T B ot I v
Xi. = pv Ligm1 L=t Nijk = ity 2j=1 Bi)FHin j=1 k=t Cidk = § 2j=1 X ij.



be the mean of the data in z** class. Then, from the normality of X;;z’s , one

easily verifies that:

E[X:] = EXi] = n
- 1 1
Var[X;] =%+ Zo% + Waz
- 1
Var[X;] =oc5+05+ Naz
which implies
— 1 1
¥ o~ N o? 4 —g2 4 ——? 33
X;. N(p, 05 + AL + Nl ) (3.3.1)
- 1
Xy, ~ N(p,0h+05+ 7\702) (3.3.2)
From (3.3.1), let 63 + ok + ;350> = 7 ., be the nuisance parameter. Hence

the hypotheses to be tested will be: H, : p =0, n >0 wvs. H;:pu#
0, n>0. It then follows from equation (3.3.1) that the density of X, is:

F(U:, gy ) = (27m) 72 excp {—%(Ui —#)2} (3-3.3)

<

where U; stands for the random variable X;_. The likelihood function (for

n=2.3,4,...,a) will be the following.

L(p.n) = (2mn) % exp {—;1; ij(U; — u)z}

lu,n) = log (L(u,n))
= —Jlog (2m) = -3 (Ui = )* - (33.4)

=i =1
When y¢ # p, the maximum likelihood estimator of the mean will be found

by solving the equation for px in:

_8_ (u,m) =0 evaluated at p = f

ou
12 .
= —=> (Ui —p)=0
T’i:l
. 1 & 1 &K=
$ﬂ=;ZUz:;Z- 1

= ,[L = U-n (33.5)



Where U, = L 7%, U; Ly X
Similarily, the maximum hl\ehhood estima.tor of the nuisance parameter 7

can be found by solving

ai ¢(p,n) =0 evaluatedat n =17, and g =4 =U,
n
1
gt 57 LU= Ty =

n (=1

S = N U-T (336)
=1

Using the maximized likelihood function (on the estimators found from
equations (3.3.5) and (3.3.6)) we will have:

A A ~ Y 1 L -
L{g, ) = (277 2exp{—;7—Z(Uf—Un)2}
(zwﬁn)‘%exp{—g} : (3.3.7)

When p, = 0, to get the maximum likelihood estimator for the nuisance

parameter 7 , we solve the equation for n in :
— ¢(po,n) =0 evaluated at n =17,
an
l k3
> -t ; —0
o= = 3 (Us — o)’ (3.3.8)
n i=1

Using the maximized likelihood function (on g = p, and the estimator found

from equation (3.3.8)):



A N 1 &
L(ttor o) = (270) 2exp{—9ﬁ > (Ui — p0)?}
=Yoo =1
"\ n 9 ¢
= (ri) Fexp{—2} (3:3.9)

From equations (3.3.7) and (3.3.9) and from the likelihood ratio for n classes,

n=2, 3, ..., a, one can easily get:

Lo, 770)
L(f, 1)

= (’7_) (3.3.10)

where 7, = > 30 (U; — U,)? and #, =137 (Ui —po)?. Then

T n

—2log A, = —2log {(7—") ]
ey

An

n=2,..,a (3.3.11)

We choose a as a truncation point and then according to the test results in

section (2.4.2) lead to the following procedures.

Test 1
Start testing for n=2 and reject H, whenever the result —2log A, >
CVi(a,a) , where —2log A, is the one obtained in equation (3.3.11)
and CVi(a,a) as defined in Test 1 of section 2.4.2 and conclude that
a difference is detected in favor of H; . Otherwise proceed testing
after increasing the size by 1 (i.e. n — n + 1) and do the updated
analysis. Repeat the procedure until the result —2logi, > CVi(a,a)
is obtained for some n < a or obtaining n = a before the required
inequality. In the later case support the claim that there is no evidence

of difference in favor of H,.



Test 2
Start testing for n=2 and reject H, if —2%log), > CV3(c), where
CVa(a) as defined in Test 2 of section 2.4.2 and conclude that a difference
is detected in favor of H; . If not proceed testing after increasing the size
by 1 (i.e. n = n+1) and do the updated analysis. Repeat the procedure
until the result —2ZlogA, > CVi(c) is obtained for somen < aor
obtaining n = a before the required inequality. In the later case support

the claim that there is no evidence of difference in favor of H,.

3.4 Monitoring Variance

As derived earlier Var(X;1) = 0% + 0% + 02 =02

From Yashchin (1995):
2 1 b ! — .
9; = mZZ(‘ ik — X))

1=l k=1

1.
— EZIS‘?j (3.4.1)
J:

estimates o2 , at the i® level of factor A, where

N N
2 1 1

G = Xijr — X)) X =<2 Xije
S5 N—lkzzzl( it = Xii.) TN &R

3.4.1 Monitoring Error Variance, o2

The hypothesis to be tested is :
H,: 0*=0¢? ws. Hy: c*#0} (3.4.2)

Consider the statistic,

6’?=Z1 b(N—-l ZZ(XUL

J=1 k=1
an estimator of o2 . Then, from the fact that Xjj’s are normal random
variables, and E[X;;: — p]? = 0? the distribution theory give us the result:
2

~9 o 2
- ~ —_—Y b IV —]_ 3
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where x?(b(N — 1)) stands for a chi-square distribution with b(N-1) degrees

of freedom. So the density of 6?2 = Z; can be obtained by transformation.

I

f(z,0) = —Pl6? <] (34.3)

v v v
log ()—2) ~z5os+ (5 = 1)log= —log r(§)]

Y log(—0) + ~0+H(z)] (3.4.4)

e e

[
rm e

where § = —3% , H(z) = (§ — 1)logz — log ['(3). It can clearly be seen that
the distribution function is a member of exponential family and one can easily
verify that the conditions C1-C4 are met. Hence we can apply our result for
the test of the Hypotheses mentioned in equation (3.4.2).

Mle from n observations (in our case n classes) will be obtained as:

00) = v, [“8"21n(—6) + Z:6 + H(Z:)] . Solving for the value of ¢ that
maximizes the log likelihood, we get:
de(6) - nb(N — 1)
e i = 0, = ————L
26 |, 0~ 35 Z,

and then from the invariance property of maximum likelihoods one gets the

result
n

1‘—1] LkEk=1

o)

Using the value of the assumed variance under the null hypothesis of the test
one will find the result
= b’—- Zi7 00
== HZ"‘ il - ) (3.4.6)
Hi:l Hj:]_ f(Z‘i’ 971-)

which is a one dimensional test statistic with no nuisance parameter. Then,

n

expressing -2 log A, in terms of the original parameters, we obtain:

—2logAn = —QZ[Ing(Zivo'o) log f(Z:,0 n)]

i=1
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n v v v v
- 25| (Fretp - 73g) - (Sotaip) -5
T v
— z [v (log(‘)é_2 loc( 2 ) +vZ; (—— - —)]
=1 ““n g, o,

2 1 1 n
= nvlog (Z—;) +v(;—2-—-—2> ZZ,

=1

~1
~—

n

= nb(N —1) [log (7—2) + % - 1)} , (3.4.
2

where Z, = 062 as defined earlier. Then, the results in section (2.4.2

lead to the following procedures.

Test 1
Start testing for n=2 and reject H, whenever the result —2log A, >
CVi(a,a) where —2log), is the one obtained from equation (3.4.7)
and CVi(a,a) as defined in Test 1 of section 2.4.2 and conclude that
a difference is detected in favor of H; . If not, proceed testing after
increasing the size by 1 (i.e. n = n + 1) and do the updated analysis.
Repeat the procedure until the result —2logd, > CVi(a,a) is
obtained for some n < a or until getting n=a without obtaining the
required inequality. In the later case support the claim that there is no

evidence of difference in favor of H,

Test 2
Start testing for n=2 and reject H, if —2Zlog), > CV3(«a) where
CVa(a) as defined in Test 2 of section 2.4.2 and conclude that a difference
is detected in favor of H, . If not proceed testing after increasing the size
by 1 (i.e. n = n+1) and do the updated analysis. Repeat the procedure
until the result —2Zlogh, > CVi(«) is obtained for somen < a
or until n=a without obtaining the required inequality. In the later case

support the claim that there is no evidence of difference in favor of H,

o
=1



3.4.2 Monitoring Class Variance , o3

Given the model that was defined earlier by:

Xijk = p+ a; + B + €k j=1,2,..b

which measure of k** unit on j** subclass and ** class with assumptions

in equation (1.1.1), where:

th class

o; - random effect of the 7
Bju) - nested effect of gt subclass in the i** class and
€:jx - random noise and,

parameters of interest willbe p, g4, 0. 0.

Suppose we intend to monitor the variability o%

i.e., our interest is in testing the hypotheses:

H, : 0% = 0% wvs. H : 0} # o} (3.4.8)
Consider
. 1 b N
< i..‘:mgg‘ 1]/:—,U+az+ 2‘81(7)_’-6/\[22_:6‘1]‘
1=1 k=1 =1 k=
As derived earlier, E[X; ] =u
and Var (X)) = 0} + {0} + g0° = 0% + {(0B + ).
Hence if we put X; = U;, then from the normality of the random variable

X;jr's we arrive at:

2
U: ~ N(p, 0%+ 30+ %) = Np,oh +38) . where £ = o +%. In
this case the parameter of interest is o and nuisance parameters y a.nd £.

Again from normality we conclude that :
1 & — .
62 = ——=> (Xy. —U)
b - 1 =1

is independent of U; for each i. For the random varxiable X = V Z:k_ Xijk »
EX; —p? =0k + % =¢.



Hence from distribution theory:

b—1)62
_(—_f) .~ Xy (3.4.9)

for a chi-square distribution with (b-1) degrees of freedom. Let ¥; = &7, then

the density function of Y can be found as :

fly) = %Pmsm
d [(b—) (b—l)y}

<
& - €

_ [b-1 y(b—1)
- ( ¢ )f< ¢ )
_ [b-1 1 y(b—1)\ = _yb-1)
_(€>P(b—-—1)2°—2—‘( ¢ ) ex"{ 2 }
b—1\7T 1 e, y(b—1)
() ™o {5

From the independence property, the joint density of U; and Y; will be:

exP {—2(([;::‘);)} (b Y 1) N exp{ . (6-1)} b—s
VLG R r (%)

the likelihood function for n observations, n=1,2,3, ..., a then will be:

f(U’ Y—;/’L’o-‘247§) =

(Ui—p)?
2 n | €XP {_2(0’2 -:-Li)} b—1 = er{ 5 (b L b—3
L(,LL, T4- 5) = H = 9 b1 (yl) 2
=1 | 2m(ci+ %) 2€ r (‘g—)

and the log likelihood,
2o —(U; —p)? Yi(b—1) (b—l)
o u, o, = { ( — — log 2

1 L .
~3 log(o + 76} + W(XD)

- b—1 b—3\ &
= =~ i=1

<
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is a function of the Y;’s only.
To get the maximum likelihood estimates for n classes ( n==2, 3, 4, ..., a):
-1 ” , (b—1) &~
p, 0%, = — U; —u)? — Y —
(1.0%:8) = 5751g > (Ui —p) TS

i=1

(n(b) 1)) log 26 — 7 log(o, + 7€) + W(¥3) (3.4.10)

Obpo28)| o= LS0 = T
o =z = 0 =i, = ~ ; Ui = Un
9(f, 0%, €) _ _ (Ui —p) 2,
——T"i—_lai=&a = 0 = 0'4 + f = n (3.4.11)
¢ -2 b(ffA bf) iz g ‘ £ bloi + 36
2 5(0_4 5€)? £

(3.4.12)
When o2 is estimated by ¢% , and g, =U, then

z—l_(U )

n

1
ch + 35
and then the mle é of € in equation (3.4.12) requires onlyw

né—iY;-:O:} SV =

=1 =1

~

zlr—*

When ¢% =03, , and i = U, then equation (3.4.12) beecomes:

0 = @30 —Ta) —néi ok, +38) + (b= 1o, + ) (—né + 1)

i=1 i=1

. 2
= & [Z(Ui ~Ta)? - naio} - €+ (-1 (Z Y- "f) [”"l 20+ %]

i=1

3 [Zn:([/} ~U,)? - naﬁo] - —5 +(b-1) [bor4 Y%

=1

n 2 n n 3
+2§0ioZYi+%ZY;—nba_j°ZY —2n€%0%, — Tf}
i=1

t=1 i=1
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= §3(—n) + &2 i(U; - Un)z — noﬁo + -b;];f: Y; —2n(b — l)oﬁo
i=1 b

i=1

¢ ((b —1)(203, 2 ¥ - nba;io)) +o(b—1)o}, 3oV
=1

=1

(U —TU-)? —1—
= &+ (—Z“‘(U; Ua) (2b—1)05, — b-t - 1Yn) £
+[(6 = 1)(boh, — 203, 7)]| € — b(b— 1)o7} Y (3.4.13)
where Y, = -1— Z Y;
n =1

Which reduces to solving the cubic equation in & . At £ = 0 , the right
hand side becomes —b(b — 1) Y, which is less than zero and by taking
sufficiently large £ , as & dominates others , the right hand side will be
positive and hence one can be sure of the existence of a positive real root.
Then, using the given informations and the method of solving the roots of
cubic equation given in Appendix A , we will have for the coefficients of the
equation 3+ C1E2 + Co6 +C3=0:

n - —U,)? —1—
C, = -— =1 (Ui Usx) + (26— 1)0.‘2% — bT]"Yn
n
C, = (b—1)(bo}, —20% Y,) and
Cs = —bb—1)04.Ya (3.4.14)

Hence for a given a_ﬁo and the data, one can substitute those values, calculate
the values of Q, R and D~ and determine the solution. If there are more
than one positive real solution to the cubic equation one has to take the value
which maximizes the likelihood in (3.4.10).

Let this value be denoted by éo , then for n observations (n classes in our

case)
n 1 :1= Ui_—' )2
= < b
b—1 b—1\ &K
—%——)Iog?{ - ( 5 ) ;Yi'*‘ W (Y:)

which is not a member of the exponential family. Referring Gombay (1996)

and the verification above for the unique existence of mle’s under H, , one can
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use the generalized likelihood ratio. Also under H; , referring Appendix B,

the consistency of the test follows.

( ~ T (U;=Un)? \ Al
nlog(o}, + $6) + 2=l 4 (b — 1) log(26,)+
_ bl Y —2W(Y)) if 03 =a%
"‘2e(Un,O'2’§)=< < nl—l_ 7 ’ . n-o._
A n (log Zi: (Zx—Un)2> + 1 + (b—“ ].) log (22?1 Y.)) +
| n(b— 1) —2W(Y;) , otherwise
then follows:
—2logAn = —2(Un, 02 ,&) +20U,, 62 €
Ao A4
2 1g n T 2
= n ].Og T:.(OpAo + bé) - + 1:].([/’z . gn) —n +
% (Ui — Un) (0% + &)

né Y ) e
n(b—1)log ( = Yz) +(b-1) ( : n) (3.4.15)
The next step then will be to apply the test.

The results in section (2.4.2) lead to the following procedures.

Test 1
Start testing for n=2 and reject H, whenever the result —2log A, >
CVi(a,a) where —2log A, is the one obtained from equation (3.4.15)
and CVi(a,a) as defined in Test 1 of section 2.4.2 and conclude that
a difference is detected in favor of H; . If not, proceed testing after
increasing the size by 1 (i.e. n — n + 1) and do the updated analysis.
Repeat the procedure until the result —2logh, > CVi(a.a) is
obtained for some n < a or until getting n=a without obtaining the
required inequality. In the later case support the claim that there is no

evidence of difference in favor of H, .



Test 2

Start testing for n=2 and reject H, if —2%logl, > CVa(a) where
CVz(e) as defined in Test 2 of section (2.4.2) and conclude that a differ-
ence is detected in favor of H; . If not proceed testing after increasing
the size by 1 (i.e. n — n + 1) and do the updated analysis. Repeat
the procedure until the result —2ZlogA, > CVi(e) is obtained for
some n < a or until n=a without obtaining the required inequality. In
the later case support the claim that there is no evidence of difference in
favor of H,

3.4.3 Monitoring Subclass Variance, ¢%

Given the model:
Xijr = 1+ a; + Bji) + €ijks

with the basic assumptions given in equation (1.1.1). The hypotheses to be

tested here are :
H, : 6% = o5, vs. H : o0 # op, (3.4.16)

For any class i, and j=1,2,....b
E[Xy] = p, and B[Xy —pl* = o +x0® = &
Then, as each of the X;;;’s is a normal random variable, we conclude that for

each 1,
X o~ N(f). Let Y; = E%I—Z?-:l(.—‘f;j_ —U;)? = &2 that is an estimator
of o% + %o’z = £ where U; = %Z?ex X;;.. Then from equation (3.4.9)
L_EI—)Z‘; Xts—1) and from the density of y; :
b—1 b—1 o
log fuly) = ~ 5y - 5 log 26 + F(y) (3.4.17)

Where F(y) is a function of y only which doesn’t depend on the parameter.
Again consider,

b

%= b(N ZZ(‘ ae -

]—1 k=1
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For any i and j, then E[X;;x] = g , and E[Xjx —p]> = o? | then from

distribution theory we will get
N-1)Z: xi( n-1) and from the density of Z; we derive:

b(N —1 (N -1 o
log fz.(z) = — ( 557 )z — ( 5 ) log206° 4+ H(z) (3.4.18)
and Z; , and equations (3.4.17) and

From the Independence of Y;
(3.4.18) we can write the joint density as:

fri.z(y, z) = fr.(y) * fz.(2)

For n observations (n = 2, 3, 4, ..., a):
Uog,0*) = logI] fri,z.(Yi, Zi) = D [log fvi (i) + log f2.(Z:)]
=1 =1

<

[ b'l) ‘—(b—gl—)log‘2§+F(Y:-)

=1
N -1 BN —
_5 )Z _ _ D jog 202 + H(Z{)]

202 2
b s o?
— (___) Z Y — (b ) log (‘2(0?3 + A—f))

7( Og + =1
b(z\ — 1) S 7z - ) )Iog 202 + Q(Y:, Z:) (3.4.19)

<

=1

where F(Y;), H(Z;) and @Q(Y;, Z:;) are functions of the data only and are
independent of the parameters. To get the mle:

(2. o2 b — n n(b—1
("+ﬁ)1025=&2 0 = 22},—_1(,, )~

do% 5 2063 + %)% i 2(68 + %)

2 , O 1 &
= 7 _— = - Y: 4.2

Again
Olop,o®) _ b=l gy -l MV -D¢ > 7

do? - 2N(o% + ‘17—5‘)2 el 2N (0% + 02 20

(3.4.21)

nb(N —1)
202
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When o} is estimated by o3, we have from (3.4.20),

o? 1 & —
0'1231 + N = ;g Y; =Y, and then,
b—1 5 Xn: il Gl — will be reduced to zero,
2N (o, + F) =1 {)N(O-Bl )
and (3.4.21) reduces to
6% = ;ll-znjz,- = Z, (3.4.22)
=1

When o% =03, equating (3.4.21) to zero results in:

0 = [5—1 S’: ~—n(b—1)(0‘23°+—/-i—1_-0'2)]+

i=1
n

b(N —1) [Z Z; — 77.0'2] N(og, + /—1\702)2

=1

= Sb-1)3 Vi—n(b—1) (a}‘;o«# + ;—,o—“) + [b(N ~0> 7z

=1 i=1

1 .
bn(N — 1)0'2] [NU4B° + =t + 20,2300'2]

N
) i n(b— 1) v
= o*b—1) ZYf —n(b— 1)0’2300'4 — —LN—J—JG +bN(N — 1)0'4302 Zi+

=1 © =1

N — i 9
————b(/ 1)0'423;—{-‘26(N - l)UZBOG‘ZZi —

T
N =1 =1

bnN(N — 1)o*cy, — bn—(/\lfv——)a —2bn(N — 1)o%
n(b — bn(N —1
= 0'6[—— (N b _ n(/N )]—i-cr‘* [(b—l);?’i—n(b—l)ago—{—

BN —1) & n
BN 1) $ 7, — abn( - 1)0,290] L o? [’2b(N C1)od S Zee

=1 =1

baN(N —1)oh,] +6N(N — 1)op, 3 Z:

=1

N BN —1) —
= a'6+ [(b—l)(Y o)+———(1 N )(Zn—-zNago) ot +
N 977 2 4 2 ] 7 4
—7 [b(N- 1) (2Zn0%, — Nog,)| o* + 7 (ON(V — 1)Z.0,)
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which reduces to solving a cubic equation in ¢?. At & =0 , the right
hand side becomes 1= Nb L (bN(N —1)Z,04,) which is less than zero, as (1-Nb)
< 0, and by taking sufficiently large & ,as 6° dominates the others , the
right hand side will be positive and hence one can be sure of the existence of
a positive real root.
Then using the given informations and the method of solving the roots of cubic
equation given in Appendix A , we will have for the coefficients of the equation
X3+C1X2+C2X+C3=0:

N b(N —
Cl = [ — Nb [(b— ].)(Y —O'B )+—(—N,—)'(Zn —'?..ZVO’ZBO)
C: = —N/Vb [6(N — 1) (2Zn03, — Nop,)|  and
N
Ca = T3 bN(N —1)Z0op,) (3.4.23)

Hence for a given a;"’go and the data, one can substitute the values, calculate
the values of Q, R and D~ and determine the solution. If there were more
than one positive real solution to the cubic equation one has to take the value

which maximizes the likelihood given in equation (3.4.19).

Then using the result obtained in Appendix A, one can solve and get the
solution to this equation which maximizes the likelihood.
Let this value be denoted by, &2 .

Hence for n observations (n classes in our case)

n (b—1) 1
-2 (Y)) = ——1 — o9 —
23" log fr.(Y) T ? "Yi+n(b—1)log2(ck + Va +ZLF(}

{ (b—1) (s + nlog2(oh, + £62)) + Ty F(¥)

i=1

°

n(b—1) +n(b—1)log 2%, Yi + £k, F(Y)

where the first is under H, and the second is under H; . Also,

23 log fz.(Z:) = b—(%——I)ZZ +nb(N — 1) log 2(c?) ZH(Z

=1 =1
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b(’\’l)z Z; + nb(N —1)log252 + 30, H(Z;)
nb(]\/_l)—}-nb/’\—l)log T i+ HZ

under o3 =03, and under estimation respectively. Then.

—2log )\, = —2/(c} .52%) + —2£(63.57)
™ Y’ 2 + %*2
= (b—1) [—-——Uz‘-l s - n] +n(b—1)log ("(“B; ;.f’”) +

B, T N%o i=1

BN —1 )[ *-‘Z +nlog (——”fz—ﬂ (3.4.24)

o =1

Then the results in section 2.4.2 and similar procedure in the earlier section.

lead to the following procedures.

Test 1
Start testing for n=2 and reject A, whenever the result
—2log A, > CVi(a,a) where —2log), is the one obtained from

equation (3.4.24) and CVj(a.a) as defined in Test 1 of section 2.4.2 and
conclude that a difference is detected in favor of H; . If not, proceed
testing after increasing the size by 1 (i.e. n — n+1) and do the updated
analysis. Repeat the procedure until the result —2logA, > CVi(e.a)
is obtained for some n < a or until getting n=a without obtaining the
required inequality. In the later case support the claim that there is no

evidence of difference in favor of H,

Test 2
Start testing for n=2 and reject H, if —2ZlogA, > CVz(a) where
CVy(a) as defined in Test 2 of section 2.4.2 and conclude that a difference
is detected in favor of A . If not proceed testing after increasing the size
by 1 (i.e. n — n+ 1) and do the updated analysis. Repeat the procedure
until the result —22logA, > CVy(a) is obtained for somen < a
or until n=a without obtaining the required inequality. In the later case

support the claim that there is no evidence of difference in favor of H,



3.4.4 Monitoring all the Variances Simultaneously

In this case we are to monitor all the variance components ¢3, ¢ and o?

simultaneously and hence our number of parameters of interest is d=3.
The Hypotheses to be tested are:

H, : (¢%,08,0%) = (04,.08,,02) Vs.

H, : (0%,0%,0%) as a group is not equal to (0},,0%,.02) .
Now consider the joint density of (U;, Z;, Y:) , where

R 1 &
i g 3 iz_ (V;_U12:0127
bNZZ Ik b—ljzz:l s Uy =a

J=1 k=1
Z; = (X: w— Vi) =0f where V;=—) Xiu
b(N— D= ’ 3 NG

Being independent of each other, their joint density will be
fU;, Z:,Y:) = f(U;)* f(Z:)*= f(Y;) and then the loglikelihood will be the sum
of the individual loglikelihoods. i.e., for n observations:

u,05,03,0%) = > log (U + 3 log f(Z) + 3 log J(¥)

i=1

. n 9 ]_ ]. 2 Z?—I(U —lu)
= —3 log(oy + boB TN ) 2(c} + 30k + 5502
n(b_l) 2 l b—l L -
—_— 2 -~ 52 | 1 _2y :
) log 2(op + VJ ) 7(0’ + —0’2) ;Yx
(N —1 2 b(NV
U a2 M2y 2 Zi+ QUL 2, Y)

2

<

(3.4.25)

where Q(U;, Z;,Y;) is a function of the data only and doesn’t depend on any
of the parameters. In the present problem the nuisance parameter is only .

The maximum likelihood estimates will be obtained as usual,

Mpotnoho®) o . _ L&, _ o
5 ez =0 =>4 = ngU = T

ae(,uv 0-47 O-Baa- )

[ evaluated at @ = U,
do?
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1—1(U U ) n

:-‘(O-A + b B + WUZ)Z )( + GB + bNO-Z)
1 1

= 64 + Eag + b—vor = - Z(U U.,) (3.4.26)
=1

ae(ﬂ’ &.247 037 2) | a
Sy

0 = evaluated at g = U,
aO'B
- z—-l(U U.)’ n b1 i Y:
T 2b(6% + :0% + [,NUZ)2 26(6% + 368 + x0?) (63 + xo)2 o l
n{b—1)
2(6% + 71\702)
1 T
:>5%+W:02 = —ZY,
< =1
S B ) .
0 = ag(#’054’33’0 )[;,z evaluated at g = U,
o2
_ t—I(U U, )2 _ n (b—1)3 7,
 2bN(6%+ Lok + o 2)2 26N (63 + 163 + ;562) ' 2N(6% + Va-)?
b—1 -1 & nb(N —1
— nfz 1)”2 + — )ZZz— (. — )
2N (6% + v62) 5 20
1 n
52 = — Z; 3.4.27
=23 (3.4.27)
Then:
—2log\, = —2(f1,0%,,08,.02) +2(i,65, &123, &%)
1 1 L (U U. )2
— 2 _ — g2 + z 1
n log(GAo + baBo + bz\f o) (O_AO + ba_Bo + blvo_g)

1 b— 1 i
+n(b—1)log2(cg, + —af) + T

b(N —
+nb(N — 1) log202 + ———= { ZZ —n—

O

n log (%i(U, —Un)2> —n(b—1) (1 + log (—i—ii’,)) -

nb(N — 1) (l + log (%i Zi)> (3.4.28)
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(BTl ) i (i)
Zi:l(Ui - Uﬂ-)

oio'*'%o%o'{‘mdg
- n(c?3 + Lto2
L gzl/i‘*‘n(b—l) (—l—i—log( ( Bon ;f: a)))+

b—1
2 —
98, T N5 i=1 i=I

n

£ : 2
BN — 1) (_%Z_ —n +nlog ( Z”°Z_>) (3.4.29)

o =1

Now once the data and hypothesized values of the variance components are

available, then one can apply TEST1 procedure to test the hypothesis. That is,

Test 1
We will start testing at n=2 and reject whenever the result —2log A, >
CVi(e,a) where —2log ), is the one obtained from equation (3.4.29) and
CVi(a,a) as defined in Test 1 of section 2.4.2 and conclude that a difference is
detected in favor of H; . If not, proceed testing after increasing the size by 1
(i.e. n = n + 1) and do the updated analysis. Repeat the procedure until the
result —2logA, > CVi(a,a) is obtained for some n < a or until getting
n=a without obtaining the required inequality. In the later case support the

claim that there is no evidence of difference in favor of H, .
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Chapter 4

Simulation on Some Selected

Procedures

Given the Nested Random Effect Model,

1=1,2,...,a
Xijk = p + o + By + €k j=1.2,..b
c=12,.., NV

where u is a constant, with the basic assumptions given in equation (1.1.1).
Consider testing the hypotheses:
Hy: p=po =0wvs. Hi: p#po -
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4.1 Monitoring the Mean

According to our result in the previous chapters U; = Mvag:l ZQ;L Xijk
follows a normal distribution with mean g and nuisance parameter

n =0} + 310+ 0> .

The maximum likelihood estimates based on n observations (n classes) found

in Chapter 3 were:

n n

. 1 = \2
ZUi 3 nnZEZ(Ui—Un)-' -

=1 =1

ﬂan—nz

S|

The test statistic is

: =1 (Ui — po)? )
—2log A, = nlog (Z?:]_(U—i—ﬁn)2> . (4.1.1)

For o = 0.05 , the critical values in TEST1 are CV,(0.05,30) = 9.9968,
CV,(0.05,50) = 10.2235 and CV(0.05,200) = 10.7530. As d=1 we also get
CV,(.05) = 5.0176.
Using the test statistics in equation (4.1.1) and our test procedure, Tables
4.1, 4.2 and 4.3 present results obtained from Monte Carlo experiments, where
each case was repeated 2000 times, truncated at a=30 , a=50 and a=200,
respectively. Also Tables 4.4 , 4.5 and 4.6 present results obtained in Monte
Carlo experiments using TEST2, where each case was repeated 2000 times and
truncated at a=30 , a=50 and a=200, respectively. In the tables ASN stands
for Average Sample Number, SD is the observed standard deviation of the
distribution of the sample numbers.

The data was generated for values o = 28 | o2 = 380 = 5% =
alternative nean u, € {0.0,0.2,0.4,0.6,0.8,1.0} ,

N (the number of random data in each subclass)=4, and

1800
4900

b (the number of random subclass in each class) =2 under the nested random
effects model defined earlier, for each table. The last column in each table

presents the power of the test under fixed sample size test using ASN.



U1 ASN | SD Observed | Fixed sample size
POWER | Test with power
0.0 | 27.7510 | 10.3991 | 0.0860 n=28, 0.0500
0.2 |[27.4015 | 10.9384 | 0.1175 n=28, 0.1849
0.4 | 25.2050 | 12.9820 | 0.2965 n=26, 0.5318
0.6 | 21.3875 | 13.8748 | 0.5970 n=22, 0.8035
0.8 | 15.9655 | 12.9500 | 0.8815 n=16, 0.8925
1.0 | 12.3470 | 10.2014 | 0.9785 n=13, 0.9501

Table 4.1: Simulation result to monitor Mean under TEST1, truncated at a=30

L1 ASN |SD Observed | Fixed sample size
POWER. | Test with power
0.0 | 45.8395 | 13.2104 | 0.0670 n=46, 0.0500
0.2 |45.1280 | 13.4327 | 0.1430 n=45, 0.2687
0.4 | 38.4920 | 16.2032 | 0.4700 n=39, 0.7047
0.6 | 26.9355 | 15.4043 | 0.8765 n=27, 0.8765
0.8 |17.234 | 10.9192 | 0.9925 n=18§, 0.9242
1.0 }12.4830 | 7.3201 | 1.0000 n=13, 0.9501

Table 4.2: Simulation result to monitor Mean under TEST1, truncated at a=50
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7 ASN SD Observed | Fixed sample size
POWER | Test with power

0.0 | 186.9135 | 120.2199 | 0.0715 n=187, 0.0500

0.2 | 149.5335 | 165.8609 | 0.4390 n=150, 0.6878

0.4 |61.4905 [ 101.7056 | 0.9960 n=~62, 0.8829

0.6 | 30.1200 [ 47.3008 | 1.0000 n=30, 0.9076

0.8 | 18.9360 | 28.9855 | 1.0000 n=19, 0.9366

1.0 | 13.0680 | 18.4173 | 1.0000 n=13, 0.9501

Table 4.3: Simulation result to monitor Mean under TESTI1, truncated at

a=200

75 ASN | SD Observed | Fixed sample size
POWER | Test with power
0.0 | 29.6595 | 2.6697 | 0.0510 n=30, 0.0500
0.2 | 28.9200 | 4.3811 | 0.1695 n=29, 0.1898
0.4 | 25.8790 | 7.5154 | 0.5420 n=26, 0.5319
0.6 | 21.6580 | 8.1592 | 0.8545 n=22, 0.8035
0.8 | 17.4565 | 6.7909 | 0.9790 n=18, 0.9242
1.0 | 14.8415 | 5.1649 | 0.9990 n=15, 0.9721

Table 4.4: Simulation result to monitor mean

a=30
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K1 ASN |[SD Observed | Fixed sample size
POWER | Test with power
0.0 | 49.4310 | 3.1188 | 0.0530 n=>50, 0.0500
0.2 | 46.9295 | 6.5416 | 0.2680 n=47, 0.2784
0.4 | 38.4260 | 9.8619 | 0.7620 n=39, 0.7047
0.6 | 28.9720 | 8.2639 | 0.9775 n=29, 0.8982
0.8 | 22.7350 | 5.5886 | 1.0000 n=23, 0.9697
1.0 | 19.1535 | 4.1116 | 1.0000 n=19, 0.9918

Table 4.5: Simulation result to monitor Mean under TEST?2, truncated at a=50

L1 ASN SD Observed | Fixed sample size
POWER | Test with power

0.0 | 198.1330 | 21.3473 | 0.0445 n=198, 0.0500

0.2 | 149.6220 | 82.2036 | 0.7670 n=150, 0.6878

0.4 | 82.5100 | 44.9043 | 1.0000 n==83, 0.9539

0.6 | 57.6825 | 23.5122 | 1.0000 n=>58, 0.9955

0.8 | 45.1850 | 15.2607 | 1.0000 n=45, 0.9997

1.0 | 38.2305 | 11.2344 | 1.0000 n=39, 1.0000

Table 4.6: Simulation result to monitor Mean under TEST2, truncated at

a=200
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Power calculation for fixed sample size test of mean

For a sample U; ~ N(u,,n) and sample size n, we have,

U, ~ N(to, 2} and hence for a type [ error « , type Il error 8 and alternate

mean u; , we have the relation:

a = P(reject H,|H, is true ), which then implies
1—a = P(accept Hy|H, is true)

U, — o
l—a = PFg ( a2 < \/_( \/77,[ ) <Z(l.-—a/2))

The power of the test is 1 — 3 . and hence
8 = P(retain H,|H; is true )
B = Py ( oz < \/_( \/ﬁ < Z(I—a/2))

U, 1 1 0
= Py (a/2<\/_( \/ﬁ'u) \/_(# \/——'U)<Z(1—a/2))

— K1 — Ko (Un — 1) 731
- (ff”"’“f ViR G =
= (\/—”‘

\/_ + Za/g < ZHI \/_/- l\/_ + Z(l—a/2)) (4.1.2)

For pt, = 0,7 = 1, = 0.05 , and using the above formula one can calculate the
power of a test for different sample size. For TEST1 and TEST?2, truncated at
a=30, Tables 4.7 and Table 4.8 present the results obtained of the power for

+ Z(l—a/Q))

different sample size respectively.

In a similar fashion one can calculate the other powers and compare them
with the current test results. Routine calculations are omitted from this paper
and for simplicity the results are presented side by side in the table of simulation
results.

Table 4.9 reproduces the simulation results of Siskind (1964), on the two-
tailed t test. Other tests suggested by Cox and Bartlet (1972) for the sequential
testing of composite hypotheses are also included in this table as found in
Joanes(1972).
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pr n —pivm+ Zapp —piVr+ Ziaoasz B POWER
0.0 28 -1.9600 1.9600 0.9500 0.0500
0.2 28 -3.0183 0.9017 8151 0.1849
0.4 26 -3.9996 -0.0796 0.4682 0.5318
0.6 22 -4.7742 -0.8542 0.1965 0.8035
0.8 16 -5.1600 -1.2400 0.1075 0.8925
1.0 13 -5.5656 -1.6456 0.0499 0.9501

Table 4.7: Power of a fixed samplesize test of Mean that corresponds to TEST1.

pr 0 —pmim A Zaja —pivn+ Zaayyy B POWER
0.0 30 -1.9600 1.9600 0.9500 0.0500
0.2 29 -3.0370 0.8829 8102 0.1892
0.4 26 -3.9996 -0.0796 0.4682 0.5318
0.6 22 -4.7742 -0.8542 0.1965 0.8035
0.8 18 -5.3541 -1.4341 0.0758 0.9242
1.0 15 -5.8330 -1.9130 0.0279 09721

Table 4.8: Power of a fixed samplesize test of Mean that corresponds to TEST2.



w1 | Siskind | Barnard | Wald | Bartlett | Cox
0.0 | 0.0400 | 0.0250 0.0150 | 0.036 0.1400

0.2 | 0.0683
0.4 | 0.2543
0.6 | 0.6371
0.8 | 0.8867

1.0 | 0.9500 | 0.9630 0.9650 | 0.9650 0.9640

Table 4.9: Power of different tests of the mean

Summary
The most striking result of TEST?2 is that, the test statistics gave a probability

of rejecting H, : p = 0, when in fact © = 0 is true, which is very close to
the nominal chosen value 0.05, among all other tests presented so far. Fur-
thermore, TEST2, the weighted version of the test, is more sensitive for any
amount of departures from H, and hence gave us strong power, starting from
i = 0.4 even for an early truncation of a=30 and 50. This power also gets
close to unity very fast, as the departure from the null hypothesis increases,
compared to others. Therefore, to control small rates of false alarms in the
process control test, and at the same time to get a better power compared to

others, TEST?2 will be appropriate and efficient test to use.

For large truncation size, say a=50, TEST1 also gave greater power when
compared to fixed sample size test, results of Siskind and all others listed in
Table 4.9, as the departure from the null hypothesis increases. Figures 4.1 and
4.2 show the plots of powers TEST1 and TEST?2 in monitoring the Mean with

the respective fixed sample size test.
Although the comments were on a trial using just one set of hypotheses,

whose random variable has variance of unity, some results using different vari-

ance reveal a very similar pattern to the proportion of mean to standard devi-
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ation. We therefore do not give details of the results for these trials.

4.2 Monitoring Variance

4.2.1 Monitoring Error Variance o2

The hypotheses to be tested are:

H,: c*=0% = 1vs. Hy: c*#7? (4.2.1)

th

From the previous chapter considering the natural estimator in the i** class:

1 2 4 2
—Z’—b(N—l gg gk

with the help of standard theory it is found that:

2
2 (o

o; o~ mx2(b(l\f—l)) .

where x2(b(N — 1)) stands for a chi-square distribution with b(N-1) degrees

of freedom and the maximum likelihood estimate of 0> was found to be
n 2

-~ 1 n . .
on = nb(N TEN 1) & S Xk — = ;g Z: | (4.2.2)

=1 j=I1 k=1

with the test statistic

o? VA
—2 n = N — =2 . . L2
log A nb(! 1) [log (Zn) + p 1)} : (4.2.3)
where Z, = &2 as defined earlier.

n

Then using the test statistic in equation (4.2.3) and our test procedure, Ta-
bles 4.10 , 4.11 and 4.12 present results obtained in Monte Carlo experiments
using TEST1 with & = 0.05 , where each case was repeated 2000 times, trun-
cated at a=30 , a=50 and a=200, respectively. Also the Tables 4.13 , 4.14 and
4.15 present results obtained in Monte Carlo experiments using TEST?2, where
each case was repeated 2000 times, truncated at a=30 , a=50 and a=200, re-
spectively. The data was generated for values, alternative error variance,

o? €{0.6,0.8,1.0,1.2,1.4,16}, o3 =30 o3 =30 N =4andb=2
for each table.
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o? ASN |SD Observed | Fiixed sample size
POWER | Test with power
0.6 | 15.8965 | 10.6900 | 0.9465 n=16, 0.9365
0.8 | 28.1085 | 7.4094 | 0.1710 n=28, 0.5037
1.0 [ 29.8370 | 2.7594 | 0.0080 n=30, 0.0500
1.2 | 28.4975 | 6.8468 | 0.1300 n=29, 0.4224
1.4 | 22.1535 | 12.3141 | 0.6130 =22, 0.7965
1.6 | 14.5325 | 11.8133 | 0.9265 =15, 0.8916

Table 4.10: Simulation result to monitor Error Variance under TEST1, trun-

cated at a=30

a? ASN |SD Observed | Fixed sample size
POWER | Test with power
0.6 | 15.5100 | 7.9413 | 0.9995 n=16, 0.9365
0.8 | 42.5210 | 12.2968 | 0.3880 n=43, 0.6976
1.0 | 49.6750 | 3.3808 | 0.0120 =50, 0.0500
1.2 | 44.5390 | 11.4667 | 0.2590 n=45, 0.5829
1.4 | 26.7370 | 14.6458 | 0.8760 n=27, 0.8662
1.6 | 14.5265 | 9.0479 | 0.9980 n=15, 0.8916

Table 4.11: Simulation result to monitor Error Variance under TEST1, trun-

cated at a=50
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o? ASN SD Observed | Fixed sample size
POWER | Test with power

0.6 | 16.1745 | 20.3025 | 1.0000 n=16, 0.9365

0.8 | 72.1060 | 102.7921 | 0.9890 n=72, 0.9017

1.0 | 197.6750 | 49.5130 | 0.0155 n=198, 0.0500

1.2 | 95.8295 | 135.7224 | 0.9230 n=96, 0.8762

1.4 | 29.5585 | 46.8333 1.0000 n=30, 0.8968

1.6 | 15.3015 | 23.5816 | 1.0000 n=16, 0.9034

Table 4.12: Simulation result to monitor Error Variance under TEST1

cated at a=200

o? ASN |SD Observed | Fixed sample size
POWER | Test with power
0.6 | 15.6895 | 5.8040 | 0.9950 n=16, 0.9365
0.8 |26.4905 | 6.9996 | 0.4985 n=27, 0.4885
1.0 | 29.7125 | 2.3565 | 0.0465 n=30, 0.0500
1.2 | 27.2970 | 6.4968 | 0.3805 n=28, 0.4112
1.4 | 20.6510 | 9.0067 | 0.8455 n=21, 0.7793
1.6 | 15.2410 | 6.9715 | 0.9900 n=16, 0.9084

. trun-

Table 4.13: Simulation result to monitor Error Variance mean under TEST?2,

truncated at a=30
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o? ASN |SD Observed | Fixed sample size
POWER | Test with power
0.6 | 20.0900 | 4.7553 | 1.0000 n=20, 0.9763
0.8 | 39.5925 | 9.6213 | 0.7160 n=40, 0.6642
1.0 | 49.6380 | 2.2330 | 0.0405 n=>50, 0.0500
1.2 | 42.1965 | 9.4602 | 0.5785 n=42, 0.5555
1.4 | 27.5705 | 9.1438 | 0.9695 n=28, 0.8772
1.6 | 19.4035 | 5.9165 | 1.0000 n=20, 0.9543

Table 4.14: Simulation result to monitor Error Variance under TEST2, trun-

cated at a=50

o} ASN SD Observed | Fixed sample size
POWER | Test with power

0.6 | 39.2035 | 12.8177 | 1.0000 n=40, 0.9999

0.8 | 85.1445 | 45.9506 | 0.9995 n=85, 0.9437

1.0 | 197.9440 | 23.0165 | 0.0445 n=198, 0.0500

1.2 | 98.6710 | 63.1420 | 0.9910 n=99, 0.8855

1.4 | 53.2760 | 26.8816 | 1.0000 n=>54, 0.9892

1.6 | 37.3845 | 16.8004 | 1.0000 n=38, 0.9985

Table 4.15: Simulation result to monitor Error Variance under TEST?2, trun-

cated at a=200




Power for fixed sample size test of Variance

For a sample 6% = Z; = b(—NI_T)}:l}zl Sl (Xije — Xii)?

we already have the result,

=~ x? = Gamma(v/2,2) where v = b(N —1)
and Gamma(a, B) is given by

1
[(a)Be

and moment generating function, mgf :

% le™ B 0< z<o0, a,8>0

f(zla, B) =

M(t) = E [e] = (l_lmf Lt < %

i

Hence, if we put X; = ”;Z;L ~ Gamma(v/2,2) then

vf2
My, (t) = (1 - Ot) and
Misyx(t) = E [eézx‘] =]1FE [eFX'] ..... from independence
=1
1 1%
= [1 21] ....... identical distribution

!
3
Q
\
N
()
é
)
N
2|
\l/
N’

— VZn v62 nv 2
X, = > > ™~ Gamma (—, —)
o o 2 n
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o} n %G (%.2) EGu-am(%2) 8 POWER
0.6 16 7.3732 13.0208 0.0635 0.9365
0.8 28 5.9823 9.1867 0.4963 0.5037
1.0 30 4.8247 7.3015 0.9500 0.0500
1.2 29 4.0048 6.1040 0.5776 0.4224
1.4 22 3.3146 5.3797 0.2035 0.7965
1.6 15 2.7353 4.9223 0.1084 0.3916

Table 4.16: Power of a fixed sample size test of Error Variance that corresponds

to TESTL.

For a type I error a and type Il error 8 , with alternate variance o? ,

a = P(reject H,|H, is true) and then
l1—a = P(retain H,|H, is true)
v62
l—a = (GQ/Q < o2 < G(l—a/2))
~2

'UO'
,3 = PH; (Ga/2< e <G(1_a/2))

e

o2 22 2
) v6: ol
%Ga/2 <—=< —G(l—a/2))
o2 o2
= PH1 ( gGa/Z < GH[ ;G(l—a/Z)) (-1:25)
51 g1
where G,/2 stands for the (e/2)**  quantile in the Gamma distribution with
parameters, nv/2 and 2/n respectively. For 0, = 1,a = 0.05 , and using the
above formula one can calculate power for different sample size. For TEST1 and

TEST?2, truncated at a=30, Tables 4.16 and 4.17 gives the power for different

sample sizes respectively.
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o} 0 AG.p(%2) HCGi.p(%2) 8 POWER
0.6 16 7.3732 13.0208 0.0635 0.9365
0.8 27 5.9561 9.2192 0.5115 0.4885
1.0 30 4.8247 7.3015 0.9500 0.0500
1.2 28 3.9882 6.1245 0.5888 0.4112
1.4 21 3.2933 5.4069 0.2207 0.7793
1.6 16 2.7650 4.8828 0.0916 0.9084

Table 4.17: Power of a fixed sample size test of Error Variance that corresponds

to TEST2.

Summary
It is clear from the results of Tables 4.13, 4.14 and 4.15 that TEST2 gives a

power, very close to the nominal level 0.05 under the null hypothesis H, : p; =

Lo - In addition TEST2 produces a strong power for controlling small rates of
false alarms except for o7 = 1.2 truncated at a=30.

TEST1 is also more powerful than the fixed sample size test except for
|o? — 1| < 0.2 for an earlier truncation of a=30. As the sample size (class
number in this case) increases TEST1 outperforms the fixed sample size test.
There is also a rapid increase in the power of the test as truncation point is
increasing. Figures 4.3 and 4.4 respectively show the plots of powers TEST1
and TEST?2 in monitoring the Error Variance with the respective fixed sample

size test.
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4.2.2 Monitoring Class Variance 0%

The hypotheses to be tested are:

H,: 6i=0% = 1lvs. H : o} #05%, (4.2.6)

2-4

Considering the statistics,
Us = g Dot Shoa Xign ~ N(u,od 305+ %)) = Ny 0% +36) and
YVi=6t=¢ Z']’-___l(XU, —U:)? ~ #%1x}_1) . and using independence of U;
with Y; , the mle’s were,
1—'1(U U )

n

£ =

S| -

ﬁ=—20’i=[_jn * a{i‘{‘

ni

£ = L5%,Y: =Y, when all were estimated and €, a solution of the cubic

equation:

X34+ C1X? 4+ CyX + C3 =0 under the condition o5 = c}_,where

n T2 1
CI — _Zz:l(U;L Un) + (?.b _ 1)0_310 _ b b 1Y'n
C, = (b—1)(boy, —205,Ys) and
C3 = —b(b— I)O':io?n

The test statistics was also given by:

. n(o}, + 1) (U = Ta)
—2logd. = nlog (zr_l(U U, )2 )+( o Ty )T
né,

n(b—l)log( —1Y> +(b—1) (%—n)

Tables 4.18, 4.19 and 4.20 present results obtained in Monte Carlo exper-
iments using TEST1 with @ = 0.05 . Each case was repeated 2000 times,
truncated at a= 30 , a=50 and a=200, respectively. Also Tables 4.21, 4.22
and 4.23 presents results obtained in Monte Carlo experiments using TEST2,

where each case was repeated 2000 times, truncated at a=30 , a=50 and a=200,
respectively. The data was generated for values , alternate class variance,

o% € {0.4,0.6,0.8,1.0,1.2,1.4,1.6} ,0% = 3%, 0% = 3555, N =4 and

b =2 for each table, under the nested random effects model defined earlier.
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o, | ASN |SD Observed | Fixed sample size
POWER | Test with power
0.4 |18.2985 | 13.2852 | 0.8350 n=19, 0.9993
0.6 | 24.8260 | 13.2768 | 0.3135 n=25, 0.9299
0.8 |26.7400 | 12.1978 | 0.1375 n=27, 0.3536
1.0 | 28.1170 | 9.6688 | 0.0735 n=28, 0.0500
1.2 127.9565 | 9.8766 | 0.0875 n=28, 0.3238
1.4 |25.7730 | 11.6182 | 0.3355 n=26 0.7612
1.6 | 15.0970 | 7.6089 | 1.0000 n=15, 0.8191

Table 4.18: Simulation result to monitor Class Variance under TEST1, trun-

cated at a=30

%, | ASN |SD Observed | Fixed sample size
POWER | Test with power
0.4 | 20.0505 | 11.2843 | 0.9980 n=20, 0.9996
0.6 | 36.3195 | 16.2752 | 0.6230 n=37, 0.9836
0.8 | 44.7735 | 14.0283 | 0.1415 n=45, 0.5473
1.0 | 46.1115 | 12.8196 | 0.0870 n=46, 0.0500
1.2 | 45.9070 | 12.5559 | 0.1185 n=46, 0.4769
1.4 | 33.6610 | 13.1885 | 0.9830 n=34, 0.8583
1.6 | 15.5250 | 5.3980 | 1.0000 n=16, 0.8413

Table 4.19: Simulation result to monitor Class Variance under TESTI, trun-

cated at a=50
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o4, | ASN SD Observed | Fixed sample size
POWER | Test with power

0.4 | 20.7210 | 27.0376 | 1.0000 n=21, 0.9997

0.6 | 44.2560 | 55.4333 | 1.0000 n=45, 0.9969

0.8 | 147.2210 | 155.4789 | 0.6365 n=148, 0.9714

1.0 | 185.4255 | 124.9882 | 0.0795 n=186, 0.0500

1.2 | 142.4605 | 141.8622 | 0.8400 n=143, 0.9083

1.4 | 36.0960 | 32.6491 1.0000 n=36, 0.8763

1.6 | 16.4050 13.1140 | 1.0000 n=17, 0.8610

Table 4.20: Simulation result to monitor Class Variance under TEST1, trun-

cated at a=200

%, | ASN |SD Observed | Fixed sample size
POWER | Test with power
0.4 | 18.2870 | 3.8503 | 0.9985 n=19, 0.9993
0.6 | 24.8035 | 5.1314 | 0.7525 n=25, 0.9299
0.8 | 28.8155 | 3.2261 | 0.1800 n=29, 0.3768
1.0 |29.7360 | 1.5816 | 0.0465 n=30, 0.0500
1.2 | 29.3150 | 2.4930 | 0.1220 n=30, 0.3418
1.4 | 22.8710 | 3.6144 | 1.0000 n=23, 0.7123
1.6 | 15.5925 | 2.0326 | 1.0000 n=16, 0.8413

Table 4.21: Simulation result to monitor Class Variance under TEST2, trun-

cated at a=30
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c%, | ASN |SD Observed | Fixed sample size
POWER | Test with power
0.4 | 24.0765 | 4.5515 | 1.0000 n=24, 0.9999
0.6 | 33.3525 | 7.2169 | 0.9965 n=34, 0.9817
0.8 | 47.0960 | 6.2025 | 0.2835 n=47, 0.5663
1.0 | 49.4595 | 2.9490 | 0.0470 n=>50, 0.0500
1.2 | 47.5110 | 5.6652 | 0.2680 n=48, 0.4925
1.4 | 29.6210 | 4.4287 | 1.0000 n=30, 0.8153
1.6 | 20.1835 | 2.3396 | 1.0000 n=20, 0.9076

Table 4.22: Simulation result to monitor Class Variance under TEST2, trun-

cated at a=50

o4, | ASN SD Observed | Fixed sample size
POWER | Test with power

0.4 | 48.6420 | 10.9343 | 1.0000 n=49, 1.0000

0.6 | 69.7945 | 17.5511 | 1.0000 n=70, 1.0000

0.8 | 126.9985 | 41.4501 | 1.0000 n=127, 0.9462

1.0 | 197.8625 | 19.4951 | 0.0490 n=198, 0.0500

1.2 | 119.2130 | 29.9477 | 1.0000 n=120, 0.8557

1.4 |59.7300 | 11.4738 | 1.0000 n=60, 0.9783

1.6 | 40.0495 | 6.4500 | 1.0000 n=40, 0.9954

Table 4.23: Simulation result to monitor Class Variance under TEST?2, trun-

cated at a=200
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Power for fixed sample size test of Lot Variance

Consider the model with n classes, b subclasses and IN data in each subclass.

EXijx—plP=05+0p+0> =1

. - n b N Xix—Xn)?
and from standard theory it is shown that for §2 = ===t b =‘T§\’Fj‘1( k=X n) .

with

(nbN —1)5?
n
for a chi-square distribution with nbN-1 degrees of freedom.

~ X*(nbN —1)

For a type I error o and type I error 3 , with alternate variance o3, , so

2

2 and n =03, +0p, +02, we have the

that if we let, n, = 03, + 0, + 0

relation:

a = P(reject H,|H, istrue) and then
l1—a = P(retain H,|H, is true)

—1)52
= Py, <x§/2 < (rON = 1)5n _ 12 )

X(1-a/2)
B = PH[ <X2/2 <

Mo

(nbN — 1)52
— < X{iar2)

Mo 2 (nbN — 1)5721 Mo o
= Py <—/a < ——— < —X{(i-a
'\ Xaf2 m m (1—a/2)
Mo 2 2 Mo 2 5 =
= P|—=x5n <> < —X _a,,> 4.2.7
(771 Xaj2 < XH, ™ X(1-a/2) ( )
Simulation is done for 62 = 4/36 , ¢4, =1, 0, =9/36 , and a =
0.05 , then using the above formula one can calculate power for different sample
sizes. For TEST1 and TEST2, truncated at a=30, Tables 4.24 and 4.25 give

the power for different sample sizes respectively.
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o5, n ;i%xa_a,z)(sn—l) a—ﬁ’%mxilz(Sn—l) 8 POWER
0.4 19 334.2623 212.5800 0.0007 0.9993
0.6 25 339.8274 229.1757 0.0701 0.9299
0.8 27 322.3555 223.6618 0.6464 0.3536
1.0 28 266.2520 183.5300 0.9500 0.0500
1.2 28 247.3653 172.6975 0.6762 0.3238
1.4 26 171.8503 113.9461 0.2388 0.7612
1.6 15 111.1077 67.8077 0.1809 0.8191

Table 4.24: Power of a fixed sample size test of Class Variance that corresponds

to TEST1.

o3, n ;f%x?l_aﬁ)(Sn—l) ﬁ%xi/g(Sn—l) B POWER
0.4 19 334.2616 212.5802 0.0007 0.9993
0.6 25 339.8274 229.1757 0.0701 0.9299
0.8 29 322.3555 223.6618 0.6232 0.3768
1.0 30 283.7128 198.0734 0.9500 0.0500
1.2 30 247.3653 172.6975 0.6582 0.3418
1.4 23 171.8503 113.9461 0.2877 0.7123
1.6 16 111.1077 67.8077 0.1587 0.8413

Table 4.25: Power of a fixed sample size test of Class Variance that corresponds

to TEST2.
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Summary
As in the earlier cases, TEST?2 gave the power very close to 0.05, which is the
nominal level, under the null hypothesis Ho : ¢4 = o3, . We also observe
from the tables that TEST?2 gives more powerful result for all |05, — 1{ > 0.2,
even at an earlier truncation of a=30, and 50. One also sees that by using

truncation a=50, the power of the test at 0%, = 1.2 and ¢}, = 0.8 is greater

than the corresponding power by using truncation a=30 in both tests. And in
fact, a dramatic increase in power and better performance in testing a change
for any amount of departure from the null hypothesis was demonstrated in
Tables 4.20 and 4.23 by increasing the truncation to a=200. Figures 4.5 and
4.6 respectively show the plots of powers TEST1 and TEST2 in monitoring

the Class Variance with the respective fixed sample size test.



4.2.3 Monitoring Subclass Variance, 0%

The hypotheses to be tested are:

H,: oy =053, = lvs. Hy: op # 05, (4.2.

N
(020]
g

Considering the statistics,
b a2
Z b(N 1) ZJ_]. Z 1(‘ ijk — Vj)2 ~ mxg(z‘l—l) and
;=62 =50 (X —Ui)? ~ -b—ETX?b—I) , and independence of Y; with
Z; , we found from chapter 3 that,

62= 137 7, =7, when all were estimated , and §° is a solution of

the cubic equation:

X34+ C X2+ CX +C3=0 under 0% =03 ,where
B Bo

N b(N
C: = T— N5 [(b —1)(Yn—03)+ (————)(Z — 2No? )]
N —
Cy, = ] _j Vi [b(N —-1) (22710’230 - ZVO’EO)] and
N _
= V Vf - n 4
Cs 1_Nb(bz (! 1)Z.03,)

The test statistics was also given by:

noys n(0’2 0-2)
' L Y: Bo N
—2log An (b—].) {W—n] +n(b—1)log ( Z?:[ Y, +

S Z; ng2
BN —1) | &=L 2 1 = 4.2,
(1 ) [ 52 n + nlog s 7, ( 9)

Using the test statistics in equation 4.2.9 and the test procedure, Tables

4.26 , 4.27 and 4.28 present results obtained in Monte Carlo experiments using
TEST1, where each case was repeated 2000 times, truncated at a= 30 , a=50
and a=200, respectively. Also the Tables 4.29, 4.30 and 4.31 presents results
obtained in Monte Carlo experiments using TEST2, where each case was re-

peated 2000 times, truncated at a=30, a=50 and a=200, respectively. The data

was generated for values o2 = ggg , 04 =32 alternate subclass variance,
o3, € {0.4,06,1.0,1.4,2.0,2.2,2.6,3,4} N =4 and b =2, for each table.

63



o | ASN |SD Observed | Fixed sample size
POWER | Test with power
0.4 |26.1105 | 9.5252 | 0.3835 n=26, 0.7363
0.6 | 28.8570 | 6.2848 | 0.0880 n=29, 0.3256
1.0 |[29.6935 | 3.6966 | 0.0160 n=30, 0.05300
1.4 |29.1520 | 5.4425 | 0.0635 n=29, 0.2554
2.0 |24.4365 | 11.9463 | 0.4210 n=25, 0.6706
2.2 | 22.1080 | 13.0637 | 0.5690 n=22, 0.7247
2.6 | 18.3180 | 13.3729 | 0.7630 n=19, 0.8140
3.0 | 15.0940 | 12.7399 | 0.8780 n=15, 0.8311
4.0 |9.9460 | 9.6586 | 0.9810 n=10, 0.8527

Table 4.26: Simulation result to monitor Subclass Variance under TESTI,

truncated at a=30

64



op, | ASN | SD Observed | Fixed sample size
POWER | Test with power
0.4 | 35.9815 | 19.3266 | 0.7055 n=36, 0.8742
0.6 | 46.2115 | 13.9853 | 0.1855 n=47, 0.5195
1.0 |49.1890 | 8.1295 | 0.0210 n=49, 0.0500
1.4 | 47.1630 | 13.0779 | 0.1170 n=47, 0.3607
2.0 | 33.0065 | 22.8966 | 0.6885 n=33, 0.7728
2.2 | 28.7400 | 22.1780 | 0.8150 n=29, 0.8210
2.6 | 21.7720 | 19.4630 | 0.9390 n=22, 0.8591
3.0 | 16.6640 | 16.3753 | 0.9815 n=17, 0.8677
4.0 | 10.1720 | 10.6175 | 0.9980 n=10, 0.8527

Table 4.27: Simulation result to monitor Subclass Variance under TEST1,

truncated at a=50
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op | ASN SD Observed | Fixed sample size
POWER. | Test with power

0.4 | 42.7985 | 39.3245 | 1.0000 n=43, 0.9395

0.6 | 109.386 | 94.8817 | 0.8935 n=110, 0.9010

1.0 | 196.5925 | 42.1943 | 0.0225 n=197, 0.0500

1.4 | 146.3060 | 105.3196 | 0.5855 n=147, 0.7681

2.0 | 45.7125 | 54.6818 | 0.9995 n=46, 0.8800

2.2 | 34.9365 | 42.5916 | 1.0000 n=35, 0.8730

2.6 | 23.2785 | 27.6899 | 1.0000 n=24, 0.8832

3.0 | 17.3575 | 21.1367 | 1.0000 n=18§, 0.8830

4.0 | 10.9345 | 13.7553 | 1.0000 n=11, 0.8784

Table 4.28: Simulation result to monitor Subclass Variance under TESTI,

truncated at a=200
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o3, | ASN |SD Observed | Fixced sample size
POWER | Tesst with power
0.4 | 23.6570 | 7.4960 | 0.7820 n=24, 0.6936
0.6 | 28.1625 | 5.3600 | 0.2975 n=28, 0.3142
1.0 | 29.8170 | 1.6957 | 0.0445 n=30, 0.0500
1.4 | 28.6525 | 4.8899 | 0.2020 n=229, 0.2554
2.0 | 23.6915 | 9.1418 | 0.6685 n=224, 0.6555
2.2 | 21.7100 | 9.7032 | 0.7700 n=22, 0.7247
2.6 | 18.6290 | 9.6042 | 0.8975 n=19, 0.8140
3.0 | 16.2370 | 8.6067 | 0.9610 n=H7, 0.8677
4.0 | 12.4155 | 6.8910 | 0.9935 n=03, 0.9177

Table 4.29: Simulation result to monitor Subclass Variance under TEST2,

truncated at a=30



o, | ASN |SD Observed POWER | Fixed sample size
POWER Test with power
0.4 | 32.4025 | 8.3724 | 0.9610 n=33, 0.8505
0.6 | 43.4190 | 8.4534 | 0.5330 n=44, 0.4893
1.0 | 49.5300 | 2.6212 [ 0.0465 n=50, 0.0500
1.4 | 46.4325 | 7.1609 | 0.2965 n=47, 0.3607
2.0 | 33.6800 | 11.1612 | 0.8555 n=34, 0.7834
2.2 |29.6645 | 10.2590 | 0.9415 n=30, 0.8319
2.6 | 24.2290 | 8.9002 | 0.9890 n=25, 0.8938
3.0 | 20.4845 | 7.3742 | 0.9975 n=21, 0.9197
4.0 | 15.5085 | 5.3884 | 1.0000 n=16, 0.9547

Table 4.30: Simulation result to monitor Subclass Variance under TEST2,

truncated at a=50
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ok, | ASN SD Observed POWER | Fixed sample size
POWER Test with power

0.4 |65.2100 | 29.2752 | 1.0000 n=66, 0.9944

0.6 | 107.9625 | 74.2668 | 0.9895 n=108, 0.8952

1.0 | 198.1770 | 28.0004 | 0.0405 n=198, 0.0500

1.4 | 137.4665 | 106.1866 | 0.8455 n=138, 0.7436

2.0 | 66.4150 | 49.0975 | 1.0000 n=67, 0.9601

2.2 | 57.6490 | 40.6837 | 1.0000 n=>58, 0.9745

2.6 | 45.6520 | 30.4387 | 1.0000 n=46, 0.9871

Table 4.31: Simulation result to monitor Subclass Variance under TEST2,

truncated at a=200

Power for fixed sample size test of Subclass Variance

For a sample 62 = Y; = ﬁzgﬂ(yﬁ_

TT7 \2 X 1 N -
—_ U,) , where X ig. = T\TZk=1 .X;jk

Ui=¢ g’-=1 X;;. we already have the result,
b—1)Y;
(_——f_)— ~ X(25_1) = Gamma((b—1)/2,2) where € = ¢5 + /N

Then using a moment generating function as we did in earlier sections applied

on the estimator 62 =Y, we arrive at:

(b—1)Y, (b—1)52 n(b—1) 2 )
£ = 7 ~ Gamma —s (4.2.10)
Using type I error @ and type II error 3 , with variance ¢}, under the

alternative, and with & = o}, % ,and m = 0'231 + i:é we will have the

N
relation:
a = P(reject H,|H, is true) and then
1 —a = P(retain Hy|H, is true)
b—1)62
l—a = Py, (Ga/2 < (—5—)— < G(l—a/2)>
(2]
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b, 0 ZiipCr (3:2) = hapCi-ar (2.2) 8 POWER
04 26 1.1575 3.5053 0.2637 0.7363
0.6 29 0.8646 2.4635 0.6744 0.3256
1.0 30 0.5597 1.5660 0.9500  0.0500
1.4 29 0.4069 1.1593 0.7446 0.2554
2.0 25 0.2762 0.8557 0.3294 0.6706
2.2 22 0.2400 0.8038 0.2753  0.7247
2.6 19 0.1921 0.7086 0.1860 0.8140
3.0 15 0.1491 0.6545 0.1689 0.8311
4.0 10 0.0878 0.5536 0.1473 0.8527

Table 4.32: Power of a fixed sample size test of Subclass Variance that corre-

sponds to TEST]I.

PHl (Ga/g <

PHL (éo-Ga/g <
&1

~ < Gi—a/2)

(b —1)62 )

€o

b—1)G? o
(___&. < é"G(l—a/'Z))

&1 €1

Py, (g_oGa/Z <Gy, < §'O—G(1-—a/2)>
1

3

(4.2.11)

where G,/2 stands for the (o/2)* quantile of the Gamma distribution with

parameters, n/2 and 2/n respectively. For ¢ =1, 62 =4/9 a =0.05, and

using the above formula one can calculate power for different sample sizes. For
TEST1 and TEST?2, truncated at n=30, Tables 4.32 and 4.33 give the power.



ob, 0 apGar (3.2) 7 tipCu-am (3.2) 5 POWER
0.4 24 1.1233 3.5656 0.3064 0.6936
0.6 28 0.8542 2.4811 0.6858 0.3142
1.0 30 0.5597 1.5660 0.9500 0.0500
1.4 29 0.4069 1.1593 0.7446 0.2554
2.0 24 0.2720 0.8632 0.3445 0.6555
2.2 22 0.2400 0.8038 0.2753 0.7247
2.6 19 0.1921 0.7086 0.1860 0.8140
3.0 17 0.1589 0.6343 0.1323 0.8677
4.0 10 0.1041 0.5143 0.0823 0.9177

Table 4.33: Power of a fixed sample size test of Subclass Variance that corre-

sponds to TEST2.

Summary
As expected TEST2 gave the probability of type I error very close to the nom-

inal level 0.05. Moreover, the test gives strong power than its corresponding
fixed sample size starting from o} = 2.0 (63, = 1) , even for an early
truncation of a=30. In general, we have seen from the tables that both tests
give more powerful test than the corresponding fixed sample size test procedure
for reasonable deviations of the true parameter. In particular TEST2 is more
appropriate test in controlling any departure from the null hypothesis. An in-
crease in truncation size gives better performance in detecting any departures
with high power compared to all competing tests presented so far.

Figures 4.7 and 4.8 respectively show the plots of powers TEST1 and
TEST?2 in monitoring the Subclass Variance with the respective fixed sample

size test.
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Figure 4.1: Plot of the powers of TEST1, truncated sequential test, and fixed

sample size test in monitoring the Mean p .
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Figure 4.2: Plot of the powers of TEST2, truncated sequential test, and fixed

sample size test in monitoring the Mean f .
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Figure 4.3: Plot of the powers of TEST1, truncated sequential test, and fixed

sample size test in monitoring the Error Variance o2 .
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Figure 4.4: Plot of the powers of TEST2, truncated sequential test, and fixed

sample size test in monitoring the Error Variance o2 .
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Figure 4.5: Plot of the powers of TEST1, truncated sequential test, and fixed

sample size test in monitoring the Class Variance ¢ .
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Figure 4.6: Plot of the powers of TEST2, trruncated sequential test, and fixed

sample size test in monitoring the Class Vamiance ¢ .
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Figure 4.7: Plot of the powers of TEST1 truncated sequential test and fixed

sample size test in monitoring the Subclass Variance ¢ .
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Figure 4.8: Plot of the powers of TEST2 truncated sequential test and fixed

sample size test in monitoring the Subclass Variance o% .
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Chapter 5

Application and Conclusion

5.1 Application

Consider a specific situation arising from the process of manufacturing inte-
grated circuits ( or chips) used in computers. Chips are typically processed
as part of a wafer, which is a thin disk about 20 cm in diameter. Each wafer
contains approximately 200 square-shaped chips. Only at their final stages
of processing are the wafers diced to produce individual chips. For most of
the production process (which can take months), wafers are handled in lots.
For example, when a given tool is used to perform one of hundreds of steps
required to turn a raw wafer into a set of chips, the whole lot is processed as
a single unit. A typical lot contains about 20 wafers. Our discussion focuses
on a specific step of the process that deposits a thin layer of silicon oxide onto
the surface of a wafer. To accomplish this step, the lot is placed inside a ma-
chine and, after being processed for a specific period, is taken out for various
measurenments and further processing by different machines down the line. In
this step it is very important to assure the correct thickness of the oxide layer
as well as its uniformity, so as to prevent electrical defects or degradation in
the performance of the final product.

In the process of monitoring, a sample of R=2 wafers is selected from every
lot, and then N=4 measurements of film thickness are made on each of these
wafers. The target mean oxide thickness is u = 1,000 A. The historically
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acceptable variance components were of = 3,600 A? , o =900 A? , and
o2 =400 A2 .

The model was also given by:

Xirn =H + Li + Wr(i) “+ €irn j = ].,2’ ceny R (5.1.1)

where it is assumed that L; ~ N(0.0%), W, ~ N(0,0%) ,and

€irn ~ N(0,0%) are independent random variables with corresponding vari-
ances as the second parameter. L; is called factor A random effect, W,
nested random effect of factor B within the i** level of factor A, while ¢€;n
is the random error term of the n®* observation within the ** level of
factor A and r(Z)** level of factor B. This example was discussed by Yashchin
(1994 and 1995) and analysed using Cusum Technique and Likelihood Ratio
Methods. We now proceed to analyze the data with the Sequential Likelihood

Ratio method developed in earlier chapters and compare them.

5.2 Monitoring the Mean

Given are 240 measurenments of the thickness of the oxide layer in 30 lots, 2
wafers from each lot and 4 observations on each wafer.
The hypotheses to be tested are H, : £ =1000, ws. H;:p #1000 .

The estimator for the mean within " lot is
R N 12 4
Uim e S5 Xim =35 Xim
r'—‘]. n=1 8 r=1 n=1

which is normal with mean g and variance n = o?+3i0%, + 30> as a nuisance
parameter.
The maximum likelihood estimates are:

- 1 k 4 k
A=Uk g‘zzzxtrn 3 T]I\. Z(U Uk

?*Ir—-*
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and the test statistic
o5 (U: — 1000)2
S (Ui — Ug)?

with critical values CV4(0.05,30) = 9.9968 , CV5(0.05) = (2.24)® . Using
TEST1 and TEST?2, corresponding results are presented in Tables 5.1 and 5.2.

—2log A = klog ( ) k=2,3,4,...,30 (5.2.1)

According to Table 5.2, a significant difference is observed by TEST2 at
0.05 level. The difference was detected at the 26®* lot againist the hypothe-
sized value of mean = 1000 A. By designing a mixed likelihood ratio control
scheme, Yashchin (1995) concluded that, the area |x — 1000] > 80 will be
declared rejectable. However none of our estimates satisfy the inequality to

support his claim.



k=sample size | 1 -1000 | -2 log \; | Weighted version
2 5.000 0.0275 0.0018
3 -7.9167 0.1198 0.0120
4 -6.2500 0.1323 0.0176
5 -14.7500 | 0.8215 0.1369
6 -24.3750 | 2.0268 0.4053
7 -7.1429 0.1162 0.0271
8 3.2813 0.0251 0.0067
9 8.7500 0.2072 0.0622
10 7.1250 0.1688 0.0563
11 9.6591 0.3637 0.1334
12 13.7500 | 0.8041 0.3217
13 15.2885 1.1416 0.4947
14 17.7679 1.7005 0.7936
15 15.6667 1.4942 0.7471
16 14.7656 1.5060 0.8032
17 19.7794 | 2.4890 1.4104
18 16.8056 1.9311 1.1587
19 15.9868 1.9422 1.2301

Table 5.1: Splus program output for testing the Mean using TEST1 and TEST?2
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k=sample size | £ -1000 | -2 log A\ | Weighted version
20 15.3750 1.9871 1.3247
21 18.7500 2.8898 2.0229
22 20.9659 3.7318 2.7366
23 21.2500 | 4.1624 3.1912
24 22.8125 5.0187 4.0149
25 23.0500 5.5223 4.6019
26 23.5096 6.1478 5.3281

Table 5.2: Continuation of Table 5.1 for testing the Mean using TEST1 and
TEST?2
5.2.1 Monitoring Error Variance, o2
The hypotheses to be tested are:
H, : 0> = 400 ws. H : o # 400.

Considering the estimator of o2 at the i** level of a lot

1 2 4 o 1 2
o? = EZ (Xien = Xir)? = 5 > SE. (5.2.2)
r=1ln=1 ~ r=1
1 4 ]. 4 _
where X;. = 1 Z irn and 5'2 =3 E(X,-m — X )2,
n=1 ~ n=1
The mle of the parameters o? becomes
1 k 2 4
= o7 22 2 (Xirm = X )? (5.2.3)
t=1r=1n=1

and the test statistic is:
4 k < 1 1
—2log A¢ = 6k log ( OO) + ZZ Z(X,m — X (-— — 72) (5.2.4)
t=1 r=1n=1 400
The test statistic in (5.2.4), produces the result presented in Tables 5.3 and
5.4 for a given data in Appendix D.
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k=sample size | &} -2 log A\ | Weighted version

2 137.5000 | 4.9391 0.3293
3 229.1667 | 2.3388 0.2339
4 208.3333 | 4.1558 0.5541

5 205.8333 | 5.3694 0.8949
6 246.5278 | 3.6111 0.7222
7 265.4762 | 3.0925 0.7216
S
9

292.1875 | 2.1378 0.5701
347.6352 | 0.5065 0.1520

10 372.0833 | 0.1533 0.0511
11 392.8030 | 0.0108 0.0040
12 363.8889 | 0.3124 0.1249
13 408.6538 | 0.0180 0.0078
14 386.6071 | 0.0482 0.0225
15 386.1111 | 0.0555 0.0278
16 370.0521 | 0.2833 0.1511
17 371.8137 | 0.2658 0.1506
18 357.4074 | 0.6595 0.3957
19 353.2895 | 0.8437 0.5343
20 372.9167 | 0.2881 0.1921

Table 5.3: Splus output for testing o? using both TEST1 and TEST?2.



k=sample size | &2 -2 log A\ | Weighted version
21 370.8333 | 0.3522 0.2465
22 364.2045 | 0.5624 0.4124
23 362.5000 | 0.6472 0.4962
24 356.9444 | 0.8994 0.7195
25 377.1667 | 0.2541 0.2118
26 375.1603 | 0.3139 0.2720
27 367.9012 | 0.5513 0.4962
28 377.9762 | 0.2644 0.2468
29 384.1954 | 0.1395 0.1349
30 381.2500 | 0.2042 0.2042

Table 5.4: Continuation of Table 5.3 program output for testing o3

both TEST1 and TEST2.

using

From Tables 5.3 and 5.4 we can see that, there is no significanct difference in

the variance due to error.
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5.2.2 Monitoring Lot Variance, o}

The hypotheses to be tested are:
H,: o} = 3600 ,vs. H of # 3600

For the random variables, U; = ézz_l Sie1 Xijk ~ N(u,o ) , Y=
22_1(71']' —U;)? |, where Xij. =1 ZL_ gk . E=02+ }la
the mle‘s of the parameters are fix = ¢ Z

estimators without restriction gives fk =z lel Y; = Y and 6% +0.56 =
S (WUi=Tx)?
2

and estimators when ¢ = 3600 gives éo is the solution of the third degree

equation:

E+CE2+Cré+C3=0

Here C; = —2umtUUsl | 3600 _ 0547, |

Cy = 2 % 3600% — 7200Y ¢ , and Cs = —2%36002Y

and the test statistics is:

k(3§00 +0.5 % éo)) L ( i (ue — Ux)® k) n
(Ui — U2 (3600 + 0.5¢,)

fo ?k .
k1l k — k=23,..3 (5.2.
8 (YL> N (fo l) ’ 0 )

Using the test statistics in equation 5.2.5, the result presented in Tables 5.5

—2logAr = klog(

(W1
[Q™)
Ut
N

and 5.6 are obtained.

According to the result in Tables 5.5 and 5.6 and according to the decision
rule, there is a suffcient evidence to conclude that there is a difference in the
variance between lots from the hypothesized value of 3600 A% | i.e. o} #
3600 A2 . However by using a RLR, Regenerative Likelihood Ratio, control
scheme Yashchin (1995) arrived at the result that the variance component o7

is in control.
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k=sample size | & -2 log A\ | Weighted version
2 1540.6250 | 0.4550 0.0303
3 1172.7431 | 1.0005 0.10001
4 868.7500 | 2.0255 0.2701
5 756.1875 | 2.5062 0.4177
6 1092.3177 | 2.1659 0.4332
7 2637.3724 | 0.2389 0.0557
8 3063.4521 | 0.0800 0.0213
9 2959.5486 | 0.1337 0.0401
10 2677.3594 | 0.3311 0.1104
11 2477.7247 | 0.5657 0.2074
12 2455.2083 | 0.6552 0.2621
13 2251.3591 | 1.0198 0.4419
14 2141.8925 | 1.3129 0.6127
15 2043.3056 | 1.6471 0.8236
16 1926.8982 | 2.1182 1.1297
17 2214.2896 | 1.4461 0.8194
18 2178.3372 | 1.5773 0.9464
19 1986.1972 | 2.1508 1.3622
20 1893.2969 | 2.6262 1.7508

Table 5.5: An Splus program output for testing o7

TEST2.
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using both TEST1 and



k=sample size | &7 -2 log A\ | Weighted version
1 2014.2113 | 2.3074 1.6152
1984.8625 | 2.4882 1.8247

[\

o
o

23 1895.9918 | 2.9880 2.2908
24 1793.3919 | 3.4570 2.7656
25 1695.4475 | 4.0852 3.4044
26 1485.2788 | 5.0961 4.4167
27 1402.3834 | 5.7993 5.2194
28 1412.3007 | 5.8310 5.4423

Table 5.6: Continuation of Table 5.5: program output for testing o7 using

both TEST1 and TEST2.

5.2.3 Monitoring o2 Wafer Variance

The hypotheses to be tested are: H, : o2 = 900 wvs. H; : o2 # 900

w w

We use random variables: ¥; =62 = §=1(7ij. —U;)? , and
Zi = §Ti Tkt (Xije — Xi3)? = 6}, where
Xij. =it X, € =0l + 30 . It was found that the mle's of the

parameters to be:

under no restriction : 62 =15, 7; = Z and 6% +0.2507 =Y
and for the case of, 02 = 900 : &2 is the solution of the third degree
equation:

(6?)2 + Ci(6?)? 4+ Co(0?) + C3 =0 where
4r — —
Ci=—= (¥ —900) + 1.5(Z; — 8+ 900)]

4

Cz=—‘—7'

[6(1800Z — 4 900%)]
4 -
C3 = —?(24 * 900 Zk) .
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The test statistics is:

Vi 900 + 0.2552)
2log e = k|t 1) 4kl 299
8 " (900 +0.2562 ) Frlog ( Ye +

7 ~2
6.12,' [&—: -1 + 10g (_;__o_)] k= 27 37 ) 30 (5‘2’6)
° k

The results of application of the test statisitcs in equation (5.2.6), for the given
data in Appendix D are given in Tables 5.7 and 5.8 .

According to the results in Tables 5.7 and 5.8 and according to our decision
rule, there is no suffcient evidence to conclude that o2 # 900 . For this
parameter Yashchin (1995) arrived at the conclusion that there is unfavorable
change in 02 . In fact, he also gave the rejectable level as 2 > 2,515. And

according to this level and our estimate of o2, , in Tables 5.7 and 5.8, we arrive

at the conclusion of no significant difference.
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k=sample size | 62 -2 log A\ | Weighted version
1 958.3333 | 0.0018 0.0001
2 496.8750 | 0.2664 0.0178
3 672.9167 | 0.1006 0.0101
4 533.8542 | 0.4033 0.0538
5 872.9167 | 0.0021 0.0003
6 710.7639 | 0.1340 0.0268
7 756.8452 | 0.0853 0.0199
8 657.0313 | 0.3004 0.0801
9 567.5926 | 0.6643 0.1993
10 516.0417 | 1.0207 0.3402
11 496.4015 | 1.2430 0.4582
12 454.3403 | 1.7696 0.7079
13 487.9808 | 1.5376 0.6663
14 508.4821 | 1.4840 0.6925
15 503.4722 | 1.6397 0.8199
16 471.7448 | 2.1298 1.1359
17 441.0539 | 2.6846 1.5213
18 541.5509 | 1.5750 0.9450
19 688.4868 | 0.5087 0.3222
20 646.1458 | 0.7905 0.5270

Table 5.7: An Splus program output for testing o2 using both TESTL and

TEST2.
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k=sample size | 62 -2 log Ar. | Weighted version
21 644.9405 | 0.8398 0.5878
22 694.8864 | 0.5476 0.4016
23 669.8370 | 0.7367 0.5648
24 799.0451 | 0.1340 0.1072
25 813.5833 | 0.1001 0.0834
26 1079.6474 | 0.3791 0.3285
27 1110.3395 | 0.5320 0.4788
28 1165.3274 | 0.8470 0.7906
29 1155.2443 | 0.8140 0.7869
30 1289.3750 | 1.8275 1.8275

Table 5.8: Continuation of Table 5.7 :

both TEST1 and TEST?2.

program output for testing o

2
w

using



5.2.4 Monitoring all the Variances Simultaneously

The hypotheses to be tested are:

H, : (o},02,0%) = (3600, 900, 400) wvs.

H, : (0%,02,0%) as a group is not equal to (3600, 900, 400) .
Considering the joint density of (U;, Z;,Y:) , where U; , Z; , and Y;

are defined in the previous sections, we found the mle’s as:
pr=Ur , 62=2Z, , 62 =Y —0.250°

1§ 2 2
67 = = > (Ui —Ug)? — 0.50%, — 0.012506°

and the test statistic:

(U —Ug)? ( k(4100)
—2log A\, = iz ( —k) +kl ,_
o8 ( 4100 )T C\T 2/ "

Y 1000
k — —
oo+ (2] +
Zy 400
6k |— —1+1 —_
oo (2]
The number of parameters of interest is d=3, so C'V{(0.05,30) = 13.9429 . For
the given data the test statistics in equation (5.2.7) give, the result presented
in Table 5.9.
According to the result in Table 5.9 and our decision rule, there is no suff-

cient evidence to reject H,. Figures 5.1 and 5.2 show the plot of —2 (3%) log A\r

k=2.3....,30 for these two cases, together with the @« = 0.05 level critical value.

Summary

In the previous section we have seen the computer output of the new test im-
plemented using SPLUS programming language. We tested all four parameters
individually, and then the three variance components simultaneously. Of all
the parameters tested the mean shows a significant difference from its target
value g, = 1000 A at 0.05 level of significance. Also, the variance component
due to lot effect, o2 , show us a change from its target value o = 3600 A at

0.05 level of significance.
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k=sample size | -2 log \; k=szample size | -2 log A\t
2 5.7872 3 3.5397
4 6.8155 5 7.9377
6 6.0784 7 3.4956
8 2.6159 9 1.4165
10 1.6595 11 2.0087
12 3.0065 13 2.8118
14 3.1395 15 3.6824
16 4.9829 17 4.8346
18 4.2043 19 3.7829
20 4.0396 21 3.8335
22 3.8970 23 4.7380
24 4.6938 25 4.6183
26 5.5487 27 6.5671
28 6.5338 29 2.8135
30 4.2559

Table 5.9: An Splus program output for testing . all the Variances simultineously

using TEST1.
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5.3 General Discussion and Conclusions

When the problem of sequential analysis arises, as shown in the introduction
part of this thesis, there was a conjecture by Milton Friedmand and W. Allen
Wallis (refer Wald’s (1947) pp. v), after recognizing the great potentialities of
sequential analysis for theoretical statistics. Their statement was, a sequential
test procedure might be constructed which would control the possible errors
committed by wrong decisions exactly to the same extent as the best current
procedure based on a predetermined number of observations. At the same
time it would require a substantially smaller number of observations than fixed

sample size test.

Different authors attempted to verify the conjecture in testing a hypothe-
ses with varying degree of success, in the presence of a nuisance parameter.
In fact, they gave the basis point for further research. In this study a trun-
cated sequential analysis for a Nested Random Effects Model was developed
and tested, that will accommodate nuisance parameters. The method shown

here is shown to be more powerful.

The tables contain figures about the performance of the fixed sample size
tests with sample size equal to the average sample number, ASN, taken to the
next possible integer value, for those ASN’s whose decimal digit greater that
or equal to two tenths. Otherwise the integer part only. The new tests outper-
form both the sequential t-test and fixed sample size test at parameter values
where the power is large. The study also showed that, likelihood ratios can be
used sequentially to the Neyman-Pearson framework and TEST1, TEST2 can
be applied to solve many problems. These test procedures are more powerful

at the expense of greater stopping time.
The study has also demonstrated the considerable increase in power of
TEST2 by the use of the weight function. In fact, the tradeoff is increased

stopping time, worthwhile paying only in case the two hypotheses are close.

In general, the new monitoring procedures are very simple to perform, and
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easily accommodate nuisance parameters in sharp contrast to existing proce-
dures, so the question of robustness in terms of chosen nuisance parameter
values does not even arise. No tolerance limits have to be selected, while it
was the case in Yashchin’s work, and any size of departures from the target
can be detected, if the process is monitored long enough. The likelihood ratio
used here has an optimal power properties. In fact, the price for this is greater

average sample number compared to the Wald-type use of likelihood ratio.
The increase in power is dramatic at the expense of much greater stopping

time. Hence users have to choose the procedure based on their criteria of

optimality.
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Figure 5.1: Plot of the Weighted Test Statistics (TEST2) versus number of

lots used to test in detecting a change of Mean p Lot-wise.
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Figure 5.2: Plot of the Weighted Test Statistics (TEST2) versus the Number

of Lots used to test in detecting a change of Lot Variance o7 .
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Appendix A

Analytical solution for cubic

equation

Suppose the cubic equation
$3+C]_:I}2+CQI+C3 = 0 (A.Ol)

is given and we want to solve the equation for x if there are real solutions.

By putting

3C, — C?

5 , , and D~ = Q>+ R?

(A.0.2)
Tester (1997), outlined that D~ will be the value that determines the domain
of the roots of equation (A.0.1)

R =

o - 9C,Cy — 27C5 — 2C3
5

4

1) If D <0 , all roots are real and unequal.
2) If D =0 , all roots are real and at least two are equal.

3) If D >0 , only one root is real and two are imaginary.
a) If D >0 , theroots are given by:

{a;l=5+:r—§c1 (0.3

Tz = —5(S+T)—zC1 Liv3(S—T)

102



where $§ = (R+VD")? and
= (R—\/D‘ﬁ and 1 =+v—1

b) If D =0 |, then S=T and the imaginary components disappear. Then
the roots will be:

o3 — —%(S-i—T)—éCl

c) If D <0 , the roots are given by:

2/—Q cos ( + 1‘70") -1iC
v—Q cos ( + 940") - 1iC (A.0.5)
T3 = \/Tcos( ) - 3iC

where cosf =

Ty =

o

Ty =

V=
Example: Solve:
i) (z4+3)° =0 i) (z—1)(z°+2z+4) = 0

iii) (z—2)(2*+52+46) =0 iv) (z—1)(z+2)? = 0

i) For this particular problem, as it is expressed as a power of a linear factor

that can be solved easily, we see that the unique real root is -3.

Also (z+3)° = z3+92% +27z + 27, and then C; = 9, C2,=27 , and C3=27
Then using the equation (A.0.2) we have:

3C, — C?
Q@ = —g 2
3x27—-9
- ___9____0
R = 9C,C, — 27C5 — 2C}
54
_ 9*9*27—-27*‘27—2*93_
- 54 =0
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and D =S =T = 0. The root in both formulas then will be
;1 = —iC; = —3 which was really the unique result we have got= earlier.

ii) As the problem is simplified in a form of a product of a lineasr term and
quadratic term, one can see that the real value that satisfies the equation is
only the number 1.

Also, using the equation (A.0.2) we have:
(z —1)(z2+2z +4) = 28+ 2%+ 2z — 4, then C;=1, C;=2, C3=—4

0 = 3x2—12 _ i R - 9C,Cy — 27C5 — 2C3}
9 g’ 54
. 9%1%x24+4%27T—2x12
- 54
62
Y

and hence,
=\ 3 2 2N 2
- _ 3 2 __ (2 Q) _<_@)
b ‘Q+R—(9) +<27 =\a7) >0
Then the equation has only one root.
1 1 L
T = S+T—§01=(R+VD‘)5+ R—VD')K—'

(
UM
27 27 27 27 3

= 1

which is again the answer found earlier.

iii) The given equation can be written as (z —2)(z +2)(z+3) =0 so that
the values that satisfy the equation are 2, -2, and -3. Also, using the equation
(A.0.2) we have:

(z —2)(z? + 5z + 6) = > + 3z% — 4z — 12 , then C,=3, C;=-4, an:d C3=-12.

~12-9 7 _
Q=——9—‘——§ and R-‘——'3

™3 100

The we will have three distinct real roots. For cos§ = -V
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2, = 2/=Qcos (£ +120°) —iC; =2
T, = 2/—Q cos (% + 240°) - %Cl = -3
z3 = 2/—Q cos (g—) —3:Cr=-2

the same solutions, found before.
iv) Since the equestion is given in factorized form, the solutions to these
equation are 1 and -2.
Also, using the equation (A.0.2) we have:
(z —1)(z +2)? =23+ 322 —4 , then C,;=3, C,=0, and Cz=-4.

Q:s—c—bg;c—'iz——l, R=1 and D" =0

The the roots will be:
1
1 1

that gives which are the same roots identified from the factorized form of the

equation.



Appendix B

Approximations of the Tests

under the Alternative H;

B.1 Monitoring ¢%

The log likelihood function of the monitoring variables (62 , §2) which is

given by:

i - (i) el o)
N =1 =
b(N— 1) ZZ ”b(N—) 202 + Q(Y, Z:) (B.1.1)

where F(Y;), H(Z;) and Q(Y:, Z;) are functions of the data only which do

not depend on any of the parameters, doesn’t belong to the exponential family

of distributions. Hence we can not apply the result of sections (2.4.2). Instead,
we have the following Theorem.
Let 0%, denote the value of variance component o3 after change.

Theorem B.1.1 Under the alternative hypothesis H, , if k > 7

where T 1is the stopping time in detecting a change, then

5 _ (1/2)
» ~logA;cl : Qr K2 (k — 1) — (Vr+1) N(0,1)
k1/2v'r-i{]. 1

= Op(l) k)
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where Brownian motion W and standard normal random variable N are inde-

pendent, and the constant terms are:

Qe = k{-V1(1 — &¢/&k) — Va(l — 05/ 6%)
—2[A(&E 0%) — Al&or- 001}

where Vi, V41 are defined by:

Vi = VarY: = 2Vi (& — 05)°0" /N? + 2V5(0305k (0% + o* /N)

& = (a°/N)™!, A(§,0) = —Vi/log & — V2/(2logb) .
03 = ((v/k)o},. (k — T) ko, +0*/N]
02,.,£% are obtained from the solution of the non-random third degree poly-
nomial equation, and depend on k, 7 in a similar manner as 6% .
So in this case, as well as in the next one, the drift of {—2log Ax } towards

infinity is of order k. The critical value of the TEST is of order (log log M )!/2

where M is the truncation point, so the consistency of the test follows.

B.2 Monitoring o2

The likelihood structure has a similar structure as in the previous section, so

the conclusions are the same, hence its discussion is omitted.



Appendix C

SPLUS code for the Simulation

C.1 For Monitoring Mean, u

pi < — 3.141592653589793238462643383279502884197169399375
a<—30;b<—2;N < —4;sibsq < — (3600/4900)
siwsq < — (900/4900); sisq < — (400/4900)
mua < — ¢(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9); rept < — 2000
sink("normlout”); n < — rep(0,rept) ; cat(”within ”,a,”classes ")
gener < — function(a,b,N,mu,sisq,sibsq,siwsq) {
eijk < — rnorm((a*b*N),0,sisq)
bji < — rnorm((a*b),0,siwsq)
ali < — rnorm(a,mu,sibsq)
alphal < — ali[ali=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10)]
alpha2 < — ali[ali:c(ll,ll,12,12,13,13,14,14,15,15,16,16,17,17,18,18)]
alpha3d < — a.li[ali:c(19,19,20,20,21,2l,22,22,23,23,24,24,25,25)]
alpha4 < — ali[ali=c(26,26,27,27,28,28,29,29,30,30)]
alphai < — c(alphal,alpha2,alpha3,alpha4)
data < — rep(0,a*b*N)
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for(k in 1:(a*b)) {
data[(N*(k-1)+1):(N*k)] < — eijk[(N*(k-1)+1):(N*k)] + bji[k]+alphai[k]

}

return(data)

}

testl < — function(k)

{
ndata < — ui[l:k]
xbar < — mean(ndata)
datdif < — ndata-xbar
ssqn < — vecnorm(ndata) = 2
ssqden < — vecnorm(datdif) ~ 2
sqnul < — ssqn/ssqden
testl] < — (k*log(sqnul))
return(testl)

}

cvl < — function(n, alpha) {
an < — 2*log(log(n))
bn < — an+.5*log(log(log(n)))-log(sqrt(pi))
cn < — -log(-log(1-alpha))
cvl < — (cn+bn) " 2/an
return(cvl)
}
critval < — cvl(a,0.05)
len < — length(mua)

ca,t(”: = == ===== —= ———— ”)

cat("Mean ASN SD Power”)
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cat(” =)
for(l in 1:len) {
mu < — muall]
for(j in l:rept) {
xijk < — gener(a,b,N,mu,sqrt(sisq),sqrt(sibsq),sqrt(siwsq))
ui < — rep(0,a)
for(k in l:a) {
ui[k] < — mean(xijk[(b*N*(k-1)+1):(b*N*k)])
}
i<-—-1
repeat {
1< =1+l
if(i> a) break
res < — test1(i)
if(res > critval) break
}
nfj] < —1i
}
ndt < — n[n< (a+1)] ; nodt < — rep(a,(rept-length(ndt)))

samp < — c(ndt,nodt); detsiz < — length(ndt); powr < — detsiz/rept

nn ” N

cat(mu, ” 7, mean(samp),” ”, sqrt(var(samp)), ” ”,powr, 7 7)

}
sink()

3 . hd 9
C.2 For Monitoring error variance, o~

sigmanotsq< — 1; sb0< — 3600/400; sw0< — 900/400
sigmasqa< — c(-.1,.1,.4)+sigmanotsq
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rept< — 2000; sink(”sigsimlout”); n< — rep(0,rept)
cat(”within ”,a,”classes ™)
## program to monitor error Variance sigmasquare.

test2< — function(k)

{
sigmah< — 0
zk< — z[1:k]
sigmah< — mean(zk)
partl< — log(sigmanotsq/(sigmah))
part2< — (sigmah/sigmanotsq - 1)
test2< — b*k*(N-1)*(partl+part2)
return(test2)
}
len< — length(sigmasqa)
cat(P============ = - ———— ")

cat(”sigma square ASN SD Power ”)

for(l in 1:len) {

sig< — sigmasqall]

for(j in lirept) {
yijk< — gener(a,b,N,mu,sqrt(sig),sqrt(sb0),sqrt(sw0))
u< — rep(0,a)
for(k in 1:a) { ulk]< — mean(yijk[(b*N*(k-1)+1):(b*N*k)]) }
vij< — rep(0,a*b)
for(k in 1:(a*b)) { vijlk]< — mean(yijk[(N*(k-1)+1):(N*k)]) }
zk< — rep(0,a*b*N)

z< — rep(0,a)

111



for(k in 1:(a*b)) {

ZK[(N* (k1) +1):(N*K)] < — yifk[(N*(k-1)+1):(N*K)]-vij[K] }
for(k in 1:a) { z[k]< — vecnorm(zk[(b*N*(k-1)+1):(b*N*k)])" 2/(b*(N-1)) }
yk< — rep(0.2*b)
y< — rep(0,a)
for(k in 1:a) {

YKI(* (1) +1):(b*k)] < — vif(b*(k-1)+1):(b=k)}-ulK] }
for(k in 1:a) { y[k]< — vecnorm(yk[(b*(k-1)+1):(b*k)])" 2 }
i< -1
repeat {

i< — i+l

if(i> a) break

res< — test2(1)

if(res> critval) break

}
nfjj< — i
}

ndt< — n[n< (a+1)] ; nodt< — rep(a,(rept-length(ndt)))
samp< — c(ndt,nodt); detsiz< — length(ndt); powr< — detsiz/rept
cat(sig, , mean(samp), , sqrt(var(samp)), ,powr)

}
sink()

. [ et 9
C.3 For Monitoring class variance, o}

sigmanotsq< — 400/3600; sb0< — 1; sw0< — 900/3600
sba< — c(-.6,-.4,-.3,-.2,0,.2,.3,.4,.6)+sb0
rept< — 2000; sink(”sigbsimlout”); n< — rep(0,rept)
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cat(”within ”,a,”classes )
#+4 program to monitor class Variance, o}
likeb< — function(ml,k) {
urk< — ufl:k]; yk< — y[1:K]
uk< — urk-mean(urk)
first< — -(vecnorm(uk)” 2) / (2*(sb0+ml/b)) - (b-1)*(sum(yk))/(2*ml)
scond< — -.5%k*(b-1)*log(2*ml)
third< — -.5%k*log(sb0+ml/b)
like< — first+scond+third
return(like)
}
mleb< — function(k) {
urk< — u[l:k]; yk< — y[1:K]
uk< — urk-mean(urk)
A< — -(vecnorm(uk)” 2)/k + (2*b-1)*sb0-(b-1)*(mean(yk))/b
B< — (b-1)*(b*sb0 ~ 2-2*sb0*(mean(yk)))
C< — -b*(b-1)*(mean(yk))*(sb0 ~ 2)
likel< — -10 " (12);like2< — -10 ~ (12);like3< — -10 ~ (12)
liked< — -10 * (12);like5< —-10 ~ (12)
mlel< — 0; mle2< — O;mle3< — 0; mled< — O;mle5< — 0
Q< — (3*B-A ~ 2)/9; R< — (9*A*B-27*C-2*A " 3)/54; D<—-Q " 34+R " 2
if(D> 0) {
S< —sign(R+D ~ .5)*vecnorm(R+D " .5) ~ (1/3)
J< —sign(R-D " .5)*vecnorm(R-D " .5) " (1/3)
mle< — S+J-A/3; return(mle)
}
else {
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if(D==0) {
S< — sign(R+D " .5)*vecnorm(R+D " .5) " (1/3)
J< — sign(R-D " .5)*vecnorm(R-D =5) ~ (1/3)
mlel< — S+J-A/3
mle2< — -.5%(S+J)-A/3
if(mlel> like2< — likeb(mle2 k) }
if(likel > like2) { mle< — mlel }
else { mle< — mle2 }
return(mle)
}
else {
ang< — acos(R/(-Q)" (3/2))
mle3< — 2*((-Q) ~ .5)*cos(ang/3) - A/3
mled< — 2%((-Q) " .5)*cos(ang/3+4*pi/3) - A/3
mle5< — 2*((-Q) " .5)*cos(ang/3+8*pi/3) - A/3
if(mle3> 0) { like3< — likeb(mle3,k) }
if(mle4> 0) { liked< — likeb(mled,k) }
if(mle5> 0) { like5< — likeb(mle5,k) }
if(like3> like4 && like3> like5) {mle< — mle3 }
else {
if(liked> like5 && like4> like3) {mle< — mle4 }
else { mle< — mle5}

}

return(mle)

}

114



testb< — function(k) {
urk< — u[l:k]; yk< — y[1:K]
uk< — urk-mean(urk)
xo< — mleb(k)
fist< — k*log(k*(sb0+xo/b)/(vecnorm(uk)" 2))
scnd< — (vecnorm(uk)” 2)/(sb0+ xo/b) - k
tird< — k*(b-1)*log(xo/mean(yk))
frth< — k*(b-1)*(mean(yk)/xo - 1)
test< — fist+scnd+tird+frth
return(test)
}
critval< — cvl(a*b,0.05)
len< — length(sba)

cat(P======= S )
cat("sba ASN SD  Power ")

cat("== _ e )
for(l in l:len) {

sb< — sbal[l]

for(j in l:rept) {

yijk< — gener(a,b,N,mu,sqrt(sigmanotsq),sqrt(sb),sqrt(sw0))

u< — rep(0,a)

for(k in 1:a) { ulk]< — mean(yijk[(b*N*(k-1)+1):(b*N*k)]) }
vij< — rep(0,2*b)

for(k in 1:(a*b)) { vijlk]< — mean(yijk[(N*(k-1)4+1):(N*k)]) }
zk< — rep(0,a*b*N)

z< — rep(0,a)

for(k in 1:(a*b)) {



AK(N* (k1) +1):(N*k)] < — yifk[(N=(k-1)-H1):(N*k)]-vij[i] }
for(k in 1l:a) { z[k]< — vecnorm(zk[(b*N*(k-1)+1):(b*N*k)])~ 2/(b*(N-1)) }
yk< — rep(0,a*b)
y< — rep(0,a)
for(k in 1:a) {

YR{(*(e-1)+1): (bK< — vij[(b™(k-1)+1):(b=k)-ulK] }
for(k in 1:a) { y[k]< — vecnorm(yk[(b*(k-1)+1):(b™k)])" 2 }
i< —1
repeat {

i< —i+l1

if(i> a) break

res< — testb(i)

if(res> critval) break

}
nfjl< —1
}

ndt< — n[n< (a+1)] ; nodt< — rep(a,(rept-length(ndt)))
samp< — c(ndt,nodt); detsiz< — length(ndt); powr< — detsiz/rept

”n N

cat(sb, ” 7, mean(samp),” 7, sqrt(var(samp)), ” ”,powr, 77)

}
sink()

C.4 For Monitoring subclass variance, o3

sigmanotsq< — 400/3600; sb0< — 1; swl< — 900/3600
sba< — ¢(-.6,-.4,-.3,-.2,0,.2,.3,.4,.6)+sb0
rept< — 2000; sink(”sigbsimlout”); n< — rep(0,rept)

cat(”within ”,a,”classes 7)
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#4# program to monitor subclass Variance, o}

likew< — function(ml, k)

{
zk< — z[1:k]
yk< — y[L:K]
frst< — -(sum(yk))/(2*(sw0+ml/N))
scnd< — -(k/2)*log(2*(sw0+ml/N))
thrd< — (-3*(sum(zk)))/ml
frt< — -3*k*log(2*ml)
like< — frst+scnd+thrd-++frt
return(like)

}

mlew< — function(k) {
zk< — z[1:k]; yk< — y[1:k]
A< — -4/7*(mean(yk)-sw0+1.5%(mean(zk)-8*sw0))
B< — -24/7*(2*sw0*mean(zk)-4*sw0 "~ 2)
C< — -4*24*mean(zk)*sw0 ~ 2/7
likel< —-10 ~ (12);like2< — -10 ~ (12);like3< —-10 © (12)
Q< — (3*B-A "~ 2)/9; R< — (9*A*B-27*C-2*¥A " 3)/54; D< —Q " 3+R " 2
if(D> 0) {
S< —sign(R+D " .5)*vecnorm(R+D " .5) " (1/3)
J< —sign(R-D ~ .5)*vecnorm(R-D " .5) " (1/3)
mle< — S+J-A/3; return(mle)
}

else {
if(D==0) {
S< — sign(R+D " .5)*vecnorm(R+D " .5) ~ (1/3)
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J< — sign(R-D ~ .5)*vecnorm(R-D ~ .5) " (1/3)
mlel< — S+J-A/3
mle2< — -.5%(S+J)-A/3
if(mlel> 0) { likel< — likew(mlel k) }
if(mle2> 0) { like2< — likew(mle2,k) }
if(likel> like2) {
mle< — mlel
}
else {
mle< — mle2
}
return(mle)
}
else {
ang< — acos(R/(-Q) " (3/2))
mlel< — 2*%((-Q) " .5)*cos(ang/3) - A/3
mle2< — 2*%((-Q) ~ .5)*cos(ang/3+4%pi/3) - A/3
mle3< — 2*((-Q) ~ .5)*cos(ang/3+8%pi/3) - A/3
if(mlel> 0) { likel< — likew(mlel,k) }
if(mle2> 0) { like2< — likew(mle2,k) }
if(mle3> 0) { like3< — likew(mle3,k) }
if(likel > like2 && likel> like2) {mle< — mlel}
else {
if(like2> like3 && like2> likel) {mle< — mle2}
else {mle< — mle3}

}

return(mle)
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}

testw< — function(k) {
zk< — z[1:K]; yk< — y[1:K]
sigmal< — mlew(k)
first< — (b-1)*((sum(yk))/(sw0+sigmaQ/N)-k)
scond< — k*(b-1)*log((sw0+sigma0/N)/(mean(yk)))
third< — k*b*(N-1)*((mean(zk))/sigma0 - 1)
frth< — b*(N-1)*k*log(sigmal/(mean(zk)))
test2< — first+scond+third+frth
return(test2)
}

critval< — cv1(a*b,0.05)

len< — length(swa)

cat("’swa ASN SD Power ")

for(l in 1l:len) {

sw< — swall]

for(j in l:rept) {
yijk< — gener(a,b,N,mu,sqrt(sigmanotsq),sqrt(sb0),sqrt(sw))
u< — rep(0,a)
for(k in 1:a) { u[k]< — mean(yijk[(b*N*(k-1)+1):(b*N*k)]) }
vij< — rep(0,a*b)
for(k in 1:(a*b)) { vijlk]< — mean(yijk[(N*(k-1)+1):(N*k)]) }
zk< — rep(0,a*b™N)
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z< — rep(0,a)
for(k in 1:(a*b)) {
zk[(N*(k-1)+1):(N*k)]< — yijk[(N*(k-1)+1):(N*k)]-vij[k] }
for(k in 1:a) { z[k]< — vecnorm(zk[(b*N*(k-1)+1):(b*N*k)]) ~ 2/(b*(N-1)) }
yk< — rep(0,a*b)
y< — rep(0,a)
for(k in 1:a) {
y[(b* (k1) +1)=(b*K)] < — vij{(b=(k-1)+1):(bk)]-ull] }
for(k in 1:a) { y[k]< — vecnorm(yk[(b*(k-1)+1):(b*k)]) " 2 }
i< -1
repeat {
< — i+l
if(i> a) break
res< — testw(i)
if(res> critval) break
}
nfjl< — 1
}
ndt< — n[n< (a+1)] ; nodt< — rep(a,(rept-length(ndt)))
samp< — c(ndt,nodt); detsiz< — length(ndt); powr< — detsiz/rept

n " 7 N n»

cat(sw, ” ”, mean(samp),” 7, sqrt(var(samp)), 7 ”,powr, 7”)

}
sink()
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Appendix D

Data used for the Application

Lot Waferl Wafer2

1 950 930 950 930 | 1010 980 970 980
2 1050 1050 1030 1040 | 1050 1050 1050 1060
3 940 960 940 930 | 1000 980 960 1020
4 990 1020 1020 1000 | 980 990 1000 990
5 980 980 980 1000 | 900 920 910 940
6 900 940 930 930 |[930 930 960 900
7 1050 1070 1100 1070 | 1110 1130 1100 1140
S 1100 1060 1070 1050 | 1070 1090 1110 1060
9 1070 1030 1070 1020 | 1020 1070 1090 1050

10 | 1000 950 1010 970 | 1020 980 990 1020
11 | 1050 1060 1040 1050 | 1060 1030 1010 980
12 | 1950 1060 1060 1060 | 1060 1070 1050 1060
13 | 1050 1010 1080 1090 | 1010 1040 980 1010
14 | 1070 1080 1070 1060 | 1020 1020 1040 1040
15 | 1000 950 960 970 | 980 1000 1010 1020

Table D.1: Data used in the Application.
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Lot Waferl Wafer2

16 990 990 1020 990 | 1000 1010 1000 1010
17 | 1120 1080 1100 1120 | 1100 1090 1070 1120
18 1930 950 930 920 {990 1000 1010 1000
19 1960 960 940 980 | 1020 1050 1060 1040
20 {970 990 1040 1000 | 1000 1040 980 1010
21 | 1100 1120 1120 1080 | 1060 1070 1090 1050
22 | 1040 1020 1040 1050 | 1120 1100 1080 1090
23 | 1030 1050 1010 1060 | 1020 1000 1020 1030
24 {1030 1020 1000 1010 | 1100 1120 1110 1080
25 | 1010 1030 970 1000 | 1030 1100 1030 1060
26 | 1000 960 970 960 | 1090 1120 1080 1100
27 | 1100 1060 1040 108 | 1020 1000 1020 990
28 | 1030 990 1020 980 | 920 920 970 910
29 | 840 3850 830 850 |840 900 910 900
30 | 1040 1060 1060 1070 | 960 930 950 980

Table D.2: Continuation Table D.1

Data used in the Application.




