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Abstract 1 

Triangle completion is a task widely used to study human path integration, an important 2 

navigation method relying on idiothetic cues. Systematic biases (compression patterns in the 3 

inbound responses) have been well documented in human triangle completion. However, the 4 

sources of systematic biases remain controversial. We used cross-validation modeling to 5 

compare three plausible theoretical models that assume that systematic errors occur in the 6 

encoding outbound path solely (encoding-error model), executing the inbound responses solely 7 

(execution-error model), and both (bi-component model), respectively. The data for cross-8 

validation modeling are from a previous study (Qi et al., 2021), in which participants learned 9 

three objects’ locations (one at the path origin, that is, home) very well before walking each 10 

outbound path and then pointed to the objects’ original locations after walking the outbound 11 

path. The modeling algorithm used one inbound response (i.e., response to the home) or multiple 12 

inbound responses (i.e., responses to two non-home locations and the home) for each outbound 13 

path. The algorithm of using multiple inbound responses demonstrated that the bi-component 14 

model outperformed the other models in accounting for the systematic errors. This finding 15 

suggests that both encoding the outbound path and executing the inbound responses contribute to 16 

the systematic biases in human path integration. In addition, the results showed that the 17 

algorithm using only the home response could not distinguish among these three models, 18 

suggesting that the typical triangle-completion task with only the home response for each 19 

outbound path cannot determine the sources of the systematic biases.  20 

 21 

Keywords: path integration; encoding-error model; execution-error model, cross-validation; 22 

triangle completion 23 
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Public Significance Statements 1 

The cross-validation modeling of this study demonstrated that human systematic errors in 2 

returning to the path origin after walking an outbound path came from both encoding the 3 

outbound path and executing the return path, which unified two opposite models in the literature, 4 

the encoding-error model attributing the errors to encoding the outbound path solely and the 5 

execution-error model attributing the errors to executing the return path solely.  6 

 Demonstrating that cross-validation algorithm using multiple responses but not that 7 

using home response only for each outbound path could determine the bi-component model, this 8 

study also provides important contributions to the research methods to study human path 9 

integration.  10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 



 4 

1. Introduction 1 

Path integration is the navigation process that employs idiothetic cues (i.e., 2 

proprioception, vestibular, and optic flow) and integrates the distances traveled and angles turned 3 

during motion so that navigators can continuously update their position and heading with respect 4 

to fixed reference locations in space (Etienne et al., 1996; Mittelstaedt & Mittelstaedt, 1982). The 5 

fixed locations can be the origin of the path traveled (e.g., the nest for an animal who is out for 6 

foraging) or remembered important locations in the environment (e.g., the grocery store for a 7 

human individual who will visit later after traveling from home to office). Thus, path integration 8 

plays an important role in navigation, especially when allothetic cues (e.g., visual landmarks) are 9 

scarce or navigation occurs in darkness (Klatzky et al., 1998). 10 

Path integration is ubiquitous among mobile animals, including ants (Müller & Wehner, 11 

1988), bees (Collett & Collett, 2000), rodents (Etienne & Jeffery, 2004), birds (Saint Paul, 1982), 12 

mammals (Mittelstaedt & Mittelstaedt, 1980), and humans (Loomis et al., 1999). Critically, path 13 

integration has been suggested as one important means of constructing spatial knowledge of the 14 

environment (Gallistel, 1990). By tracking the path lengths and turn angles, and linking routes 15 

between known places, path integration enables one to acquire a labeled graph that incorporates 16 

local metric information (Chrastil & Warren, 2014; Warren et al., 2017) or a cognitive map that 17 

includes globally consistent metric information (Jacobs & Schenk, 2003; Wang, 2016). 18 

Path integration is not an error-free process. Errors in path integration can be 19 

accumulated quickly with the increase of the complexity of the path, for example with the 20 

increase of the number of legs in a path (Kelly et al., 2008; Rieser & Rider, 1991). Previous 21 

studies using triangle-completion tasks have found that the human participants’ homebound 22 

behavior exhibits systematic distortion (Kearns et al., 2002; Klatzky et al., 1999; Loomis et al., 23 
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1993). In the triangle-completion task, participants walked an outbound path, which consists of 1 

two linear segments and a turn angle between them, and then returned to or pointed to the origin 2 

of the outbound path (Klatzky et al., 1998; Loomis et al., 1993). Participants’ responses of the 3 

inbound path (i.e., homing vector) include the turn angle and path length. Participants usually 4 

overshot small values, and conversely, undershot large values, showing a compression pattern 5 

relative to the correct values of both turn angle and path length. This systematic distortion was 6 

distinguished from random errors (Chrastil & Warren, 2017; Harootonian et al., 2020). 7 

A compression pattern relative to the correct values has been widely and long reported in 8 

magnitude judgments of various types of stimuli including size, weight, brightness, loudness, and 9 

duration (Stevens & Greenbaum, 1966). Stevens and Greenbaum (1966) referred to the 10 

compression pattern as the regression effect and attributed the effect primarily to participants’ 11 

tendency to shrink the judgment range under their control. Other researchers attributed the 12 

compression pattern to the stimulus range controlled by experimenters (e.g., Teghtsoonian & 13 

Teghtsoonian, 1978). Petzschner and Glasauer (2011) proposed a Bayesian model to explain the 14 

compression pattern in reproducing a previewed distance or angle. Participants in their study 15 

walked a distance to approach a visible target or turned an angle to face a visible target. They 16 

then reproduced the distance or angle without the presence of the target. The results showed that 17 

participants biased their reproduced magnitudes towards the mean of the previewed magnitudes. 18 

Hence, participants not only used the perceived magnitudes in the specific trial but also used the 19 

prior distribution of the magnitudes (Harootonian et al., 2022; McNamara & Chen, 2021). The 20 

prior knowledge could be learned from past trials (see also Harootonian et al., 2020). Note that 21 

other studies suggested that prior knowledge could be primarily determined by experiences 22 

outside the experiment (e.g., categorical information, Huttenlocher et al., 1991).  23 
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A strict Bayesian approach assumes that separate estimates of the true value (prior or 1 

perceived magnitude) are combined in judgment but do not change the representation of the 2 

perceived magnitude (Zhang & Mou, 2017). Hence, the representation of the perceived 3 

magnitude should be free of compression. However, to explain the compression pattern reported 4 

in the triangle-completion task, researchers proposed that compression could occur both in 5 

executing the inbound path (Chrastil & Warren, 2021) and in encoding the outbound path (Fujita 6 

et al., 1993; Harootonian et al., 2020). The latter proposal implies that participants might use the 7 

Bayesian inference in encoding rather than in response. Thus, examining the sources of the 8 

compression pattern reported in triangle completion is not only theoretically important in human 9 

navigation but also in broad fields of experimental psychology. 10 

Performing the triangle-completion task requires three cognitive stages (Fujita et al., 11 

1993). The initial stage involves sensing the traversed path and forming internal representations 12 

of leg lengths and turn angles, referred to as the encoding process. In the second stage, the 13 

internalized representations are employed to compute the desired inbound responses (i.e., 14 

inbound path length and turn angle), referred to as the integration process. Ultimately, the 15 

desired inbound response is executed, referred to as the execution process. The important yet 16 

inconclusive theoretical question is which stage or stages the systematic errors originate from 17 

(Chrastil & Warren, 2021; Fujita et al., 1993; Harootonian et al., 2020). Answering this question 18 

is important to advance our understanding of the nature of human path integration. 19 

One intuitive answer is that systematic errors in the inbound path length and turn angle 20 

originated from the execution process. However, Klatzky, Loomis, and their colleagues (Fujita et 21 

al., 1993; Klatzky et al., 1999; Loomis et al., 1999) provided innovative insights that systematic 22 

errors in encoding the outbound path can also well explain the systematic errors appearing in the 23 
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inbound path length and turn angle. Their influential model, the encoding-error model, assumes 1 

that while the systematic errors originate from encoding the outbound path, the subsequent 2 

processes, i.e., computing the desired inbound responses via cognitive trigonometry and 3 

executing it, are free of systematic errors (Fujita et al., 1993).  4 

There are three important theoretical contributions of the encoding-error model. First, it 5 

indicates that counter-intuitively the systematic errors appearing in response measures may not 6 

originate from execution and instead from encoding. Second, it suggests that human path 7 

integration may significantly differ from animal path integration. Animals may only represent 8 

and update the homing vector but do not encode the outbound path in memory (e.g., Benhamou 9 

& Séguinot, 1995; Etienne & Jeffery, 2004; Wehner et al., 1996). This type of spatial updating is 10 

referred to as continuous updating. In contrast, spatial updating with encoding of the outbound 11 

path in memory is referred to as configural updating (He & McNamara, 2018; Loomis et al., 12 

1999; Wiener et al., 2011). Hence, while researchers hypothesize that animal path integration is 13 

continuous updating (Wiener et al., 2011, p. 62), the encoding-error model suggests that human 14 

path integration is configural updating. Last, the encoding-error model suggests that humans can 15 

develop configural knowledge of the outbound path. This configural knowledge is different from 16 

route knowledge because the configural knowledge can support a novel short-cut between two 17 

points on the outbound path and thus is more like a survey (map-like) knowledge. Therefore, 18 

path integration can be a means to develop map-like knowledge (Gallistel, 1990). 19 

More specifically, the encoding-error model stipulates that there are two linear functions, 20 

the encoding function of leg lengths and the encoding function of turn angles, which determine 21 

the encoded values from the actual values of the outbound path. Each encoding function has two 22 

parameters, the slope, and the intercept. Therefore, for each given outbound path, the 23 
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corresponding internal representation of the path can be described by the encoding functions. As 1 

a result, the desired inbound response can be calculated from the encoding functions assuming 2 

no systematic bias in the integration process. Given that the desired inbound response is executed 3 

without systematic bias, the encoding-error model can predict the participants’ inbound response, 4 

at least on average. Fujita et al. (1993) fit the encoding-error model with empirical data of 5 

triangle completion. They estimated the parameters of the encoding functions by minimizing the 6 

discrepancy between the model’s predictions and participants’ actual responses to the path 7 

origins. For both functions, the slope tended to be smaller than 1 and the intercept tended to be 8 

larger than 0, showing a compression pattern of the encoded values relative to the correct values. 9 

Moreover, the modeling results showed that the encoding-error model fit the data very well. The 10 

performance of the encoding-error model was still impressive when data from other studies were 11 

applied, suggesting that encoding distortion captured the path integration errors under a variety 12 

of situations (Klatzky et al., 1999; May & Klatzky, 2000; Péruch et al., 1997; Wartenberg et al., 13 

1998).  14 

However, the demonstration that systematic distortion can be attributed to the encoding 15 

component (Fujita et al., 1993) does not exclude the possibility that systematic distortion can 16 

also be attributed to the execution component alone (referred to as the execution-error model). 17 

Intuitively, an execution-error model stipulating that execution errors follow a compression 18 

pattern (a linear function to predict the response values from the correct values with a slope less 19 

than 1 and an intercept larger than 0) can readily explain the observed compression pattern of the 20 

response values relative to the correct values. Thus, it is challenging to dissociate the encoding-21 

error model from the execution-error model empirically. We speculate that due to this challenge, 22 

Fujita et al. (1993) did not contrast the encoding-error model with the execution-error model to 23 
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prove the relative superiority of the encoding-error model. Although testing the encoding-error 1 

model is theoretically critical, no other modeling work had been conducted to further test the 2 

encoding-error model until two recent studies reported by Harootonian et al. (2020) and Chrastil 3 

and Warren (2021).   4 

Harootonian et al. (2020) still assumed that systematic errors occur in the encoding 5 

process rather than in the integration or execution process, similar to the original encoding-error 6 

model. However, they proposed that the systematic errors primarily occur in encoding the leg 7 

lengths but not in encoding the turn angles whereas the original encoding-error model claimed 8 

systematic errors in both leg lengths and turn angles of the outbound path. Furthermore, different 9 

encoding functions were used for the lengths of the first and the second legs whereas the original 10 

encoding-error model used one common function for both legs. They fit their model and the 11 

original encoding-error model to data in a triangle-completion task in which participants returned 12 

home after walking an outbound path on an omnidirectional treadmill. The model comparison 13 

results showed superior performance of their model over the original encoding-error model. 14 

However, as designed to examine variants of the encoding-error model, this study still cannot 15 

distinguish between the encoding-error model and the execution-error model.  16 

More relevantly, Chrastil and Warren (2021) tested models of encoding errors solely, 17 

execution errors solely, and both types of errors. In their study, participants did both simple tasks 18 

(e.g., distance or angle reproduction tasks) and triangle-completion tasks. They used data of 19 

reproduction tasks to estimate the parameters of the encoding and execution functions for 20 

triangle-completion tasks. Then the three models, using the corresponding functions (e.g., an 21 

encoding-error model used the encoding functions), generated the predictions for the inbound 22 

response errors in the triangle-completion task. The results of the model comparison showed that 23 
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the execution-error model performed better than the encoding-error model. Furthermore, the 1 

model including both types of errors did not perform better than the execution-error model. 2 

These results suggest that the observed systematic errors in inbound responses were sufficiently 3 

explained by the systematic errors in executing the inbound path, but not by the systematic errors 4 

in encoding the outbound path. The finding of Chrastil and Warren (2021) is theoretically 5 

important as it is the first modeling work clearly indicating that systematic errors in the human 6 

triangle-completion task are not solely contributed to the encoding errors, undermining the key 7 

argument of the encoding-error model (Fujita et al., 1993).  8 

However, the finding of Chrastil and Warren (2021) could not decisively lead to the 9 

conclusion that systematic errors in inbound responses are primarily attributed to systematic 10 

execution errors either. One critical concern is whether the reproduction tasks that Chrastil and 11 

Warren (2021) employed could truly measure parameters for the pure encoding and execution 12 

functions. In particular, in their reproduction tasks, participants walked a distance or turned an 13 

angle (encoding path). After being stopped by a sound, they reproduced the distance or the angle 14 

(response path). By assuming that there were only systematic encoding errors in the encoding 15 

path or only systematic execution errors in the response path, Chrastil and Warren separately 16 

estimated the parameters of the encoding and execution functions from the reproduction tasks. 17 

However, their assumption may be inaccurate because there could be both systematic errors in 18 

encoding and execution (Chrastil & Warren, 2014).   19 

Chrastil and Warren (2021) also measured the distance error in a blind-walking task. 20 

They then subtracted the errors in the blind-walking task from the errors in the reproduction task 21 

to get the pure encoding function. Specifically, in blind-walking, participants perceived an 22 

egocentric distance visually and then walked an equivalent distance while being blindfolded 23 
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(Chrastil & Warren, 2014). Assuming that there were no systematic encoding errors in 1 

perceiving an egocentric distance visually and considering that the response path was the same in 2 

the blind walking and the reproduction task, Chrastil and Warren attributed the difference of the 3 

errors in these two tasks to the pure encoding errors. Nevertheless, visual perceiving distance 4 

may introduce systematic encoding errors. Previous research suggested that there is a 5 

calibration/recoupling between locomotor displacement and the visually perceived distance 6 

(Rieser et al., 1990; 1995), hence systematic encoding errors in locomotion may also occur in 7 

visual perceiving distance. Consequently, these methods were not perfect to estimate either 8 

encoding or execution functions if there were indeed both systematic encoding and execution 9 

errors. In addition, one may be also wondering whether the functions derived from the 10 

reproduction tasks are the same as those used in a much more complicated triangle-completion 11 

task.  12 

Therefore, the sources of systematic biases in the inbound responses of the triangle-13 

completion task are still not clear. The primary purpose of the current study was to further test 14 

the sources of systematic biases. Adopting a model cross-validation approach (Arlot & Celisse, 15 

2010; Refaeilzadeh et al., 2009), we tested three models: the encoding-error model, the 16 

execution-error model, and a bi-component model with both encoding and execution biases. We 17 

used the data of the triangle-completion task from Qi et al. (2021) for both model fitting and 18 

model validation. In the step of model fitting, we used half data to estimate the parameters of 19 

different models (i.e., encoding functions for the encoding-error model, execution functions for 20 

the execution-error model, and both functions for the bi-component model). In the step of model 21 

validation, we compared the performance of the three models in explaining the other half data. 22 

Because we estimated the parameters of encoding/execution functions directly using the data of 23 
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the triangle-completion task, we avoided the issues of estimating encoding/execution functions 1 

from other independent tasks (e.g., reproduction tasks) discussed above. 2 

Note that in a typical triangle-completion task, participants had one inbound response 3 

(i.e., homing vector) for each outbound path. Mou and Zhang (2014) indicated that from only 4 

one inbound response, researchers cannot correctly recover (or calculate) participants’ 5 

representations of their positions and orientations that guide their inbound responses at the end of 6 

the outbound path. They argued that many possible pairs of position and orientation 7 

representations at the end of the outbound path could lead to the same homing vector. Because 8 

position and orientation representations at the end of the outbound path are not only the outcome 9 

of the represented outbound path but also determine the desired inbound responses, we 10 

conjectured that from one inbound response, we could not determine the represented outbound 11 

path and desired inbound responses. Mou and Zhang (2014) further demonstrated that from 12 

multiple inbound responses, they could calculate participants’ representations of their position 13 

and orientation at the end of the outbound path (see also Qi et al., 2021; Zhang & Mou, 2017; 14 

Zhang et al., 2020). Following this result, we conjectured that from multiple inbound responses 15 

for one single outbound path, we could determine the represented outbound path and the desired 16 

inbound responses and then could estimate the encoding and execution functions. Unlike the 17 

typical triangle-completion task in which participants only need to make a single response (i.e., 18 

the homing vector), participants in Qi et al. (2021) were required to indicate multiple locations 19 

(including home location) that they had learned before walking a two-segment path. Thus, using 20 

the data from Qi et al. (2021), the current study validated models using multiple inbound 21 

responses for each outbound path. 22 
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2. Current study 1 

2.1 Description of the data 2 

The data used for model fitting and model validation in the current study came from the 3 

path integration conditions of the four experiments in Qi et al. (2021)1. Figure 1 illustrates the 4 

path configurations and object arrays used in the four experiments of Qi et al. (2021). The 5 

experimental task was conducted in an immersive virtual environment. Participants in Qi et al. 6 

(2021) learned the locations of three objects (i.e., A, B, and C in Figure 1) while standing at the 7 

origin O (i.e., the home location). O overlapped with either B or C across experiments. After 8 

learning, the objects disappeared. Participants traveled along the two outbound legs, i.e., OT and 9 

TP. At the endpoint of the outbound path (i.e., P), participants reported the three objects’ 10 

locations (including home location) by pinpointing the locations individually on the floor using a 11 

virtual stick in different cue conditions. Relevant to the current study, participants in the path 12 

integration condition only had iditothetic cues. There were 28 participants in each of the four 13 

experiments (112 participants in total). Each participant completed 8 outbound paths (three 14 

responses for each path) in the path integration condition. 15 

 As depicted in Figure 1, the length of the outbound path can be 0.9 m or 1.8 m. And the 16 

turn angle on the outbound path can be -20º, ±50º, -70º, ±80º, ±100º, 110º, ±130º, or 160º 17 

relative to the direction along the first outbound leg OT (reference direction). Clockwise is 18 

positive. 19 

 
1 The primary purpose of Qi et al. (2021) was to investigate how people combine self-motion and landmark cues to 
find home and non-home goal locations. Qi et al. (2021) did not examine the sources of systematic errors of path 
integration. 
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 1 

Figure 1. The schematic of outbound path configurations and locations of target objects in four 2 

experiments (a, b, c, and d corresponding to experiments 1, 2, 3, and 4 respectively) of Qi et al. 3 

(2021). O is the learning location and A, B, and C are the three target locations. An outbound 4 

path is comprised of origin O, turning point T, and end point P. The values of turn angles 5 

(positive if participants turned right from the direction of OT) and leg lengths are superimposed 6 

on each outbound path. 7 



 15 

 1 

2.2 The compression pattern of the response inbound path length and turn angle 2 

The response measures include the inbound path length and the inbound turn angle for 3 

each target location (A, B, and C in Figure 1). Figure 2 depicts examples of the response 4 

measures for a target location overlapping with the origin (home target, O) and for a non-home 5 

target (A).   6 

 7 

 8 

Figure 2. Illustrating the response measures of the current study. O and A are the correct 9 

locations of two targets whereas Oresp and Aresp  are the response locations of two targets (O is the 10 

home, A is a non-home target). 𝛽O	and	𝛽A are the correct inbound turn angles for the targets O 11 

and A. 𝛽Oresp	and	𝛽Aresp are the response inbound turn angles for the targets O and A. 12 

 13 
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The response inbound path length (e.g., POresp) is the length between the end of the 1 

outbound path (i.e., P) and the response target location that the participant pinpointed using a 2 

virtual stick (e.g., Oresp). The response inbound turn angle (e.g., 𝛽Oresp) is the angular difference 3 

between the participant’s heading at P (i.e., the direction of TP) and the direction from P to the 4 

response target location (e.g., Oresp).  The correct inbound path length (e.g., PO) is the length 5 

between the end of the outbound path (i.e., P) and the correct target location (e.g., O). The 6 

correct inbound turn angle (e.g., 𝛽O) is the angular difference between the participant’s heading 7 

at P (i.e., the direction of TP) and the direction from P to the correct target location (e.g., O). In 8 

the rest of this paper, we will only use O to represent all target locations regardless of whether it 9 

is the home location or non-home location. 10 

Figure 3A plots the response inbound path length (including all three target objects for 11 

each outbound path) as a function of correct inbound path length, yielding a linear regression line 12 

(the yellow line with markers in Figure 3A) with a slope less than 1 and a positive intercept (y = 13 

0.633x + 2.201, r = .243). That is, participants tended to overshoot the small distances that they 14 

were supposed to produce and reversely, tended to undershoot the large distances. Figure 3B 15 

plots the response inbound turn angle as a function of the correct inbound turn angle, yielding a 16 

linear regression line with a slope less than 1 and a positive intercept (y = 0.864x + 28.257, r 17 

= .632). That is, participants overturned small angles and underturned large angles. Overall, 18 

consistent with previous research (Klatzky et al., 1990; Loomis et al., 1993), the current study 19 

confirmed a compression pattern relative to correct values of the inbound responses in triangle 20 

completion. Note that the regression line did not cross with the diagonal line (y = x) at the mean 21 

of x, referred to as bias to the mean, for either length (mean = 2.5m) or angle (mean = 129º). 22 

Instead, participants overestimated all correct lengths and angles (referred to as bias to the upper 23 
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extreme). Findings of bias to the extremes rather than bias to the mean were reported in previous 1 

studies (e.g., Chrastil & Warren, 2020, Figure 7A for length; Harootonian et al., 2020, for angle 2 

and length; Klatzky et al., 1999, Figure 3 for angle; also see Stevens & Greenbaum, 1966 for a 3 

variety of different stimuli). The results of biases to the extreme could occur because participants 4 

might use the prior distribution of the encoding values and response values from their 5 

experiences prior to the experiment (Klatzky et al., 1999) as well as from their experiences in the 6 

prior trials (Harootonian et al., 2020; Petzschner & Glasauer, 2011).  Specifically, participants in 7 

the current study might have the overall bias to point to their back (categorical information about 8 

the prior, Huttenlocher et al., 1991) because 80% of the correct angles (2156/2688) were larger 9 

than 90º (see Figure S1). In addition, Mou and Zhang (2014) suggested that participants might 10 

overall overestimate the inbound lengths using a virtual stick for pointing responses because the 11 

length of the virtual stick might be underestimated in virtual environments, which might partially 12 

explain the bias to the upper extreme for length.  13 

 14 

 15 



 18 

Figure 3. (A) The response inbound length as a function of the correct inbound length. (B) The 1 

response inbound turn angle as a function of the correct inbound turn angle. The diagonal lines in 2 

red (y = x) indicate the perfect inbound response. The yellow lines indicate the regression lines. 3 

Each dot indicates one individual pair of predicted and response values from all three targets and 4 

all 896 outbound paths (2688 dots in total). 5 

 6 

2.3 Specifications of individual models 7 

To examine the sources of the compression patterns of inbound responses relative to the 8 

correct values, we formulated three theoretically plausible models (i.e., the encoding-error 9 

model, the execution-error model, and the bi-component model). In addition, we also included a 10 

baseline model that assumes no systematic bias and used the correct values as the predicted 11 

values for the inbound responses. 12 

2.3.1 The encoding-error model 13 

The encoding functions of the outbound path length and the outbound turn angle 14 

comprise a set of 4 parameters, 2 for each function. 𝜃!_#$%&, 𝜃!_'$%& are the slope and the intercept of 15 

the linear function for encoding the outbound path length whereas 𝜃(_#$%& , 𝜃(_'$%& 	are the slope and 16 

the intercept of the linear function for encoding the outbound turn angle. Same as the original 17 

encoding-error model, 𝜃!_#$%&, 𝜃!_'$%& are used for both the first and second legs of the outbound 18 

path. Thus, the encoded values of leg length 𝐿$ and turn angle 𝛼$ 	can be represented with these 19 

parameters, 20 

𝐿$ = 𝜃!_#$%& × 𝐿 + 𝜃!_'$%&,                                                                                                                    (1) 21 

𝛼$ 	= 𝜃(_#$%& × 𝛼 +𝜃(_'$%&,                                                                                                                     (2)                22 
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where L and 𝛼 are the correct length and turn angle of the outbound path, respectively (see 1 

values in Figure 1).  2 

As depicted in Figure 4A, hypothetical participants encode outbound segment L1, L2, 3 

and turn angle 𝛼	as	𝐿)$,	𝐿*$,	and 𝛼$. According to Formulas 1 and 2, 𝐿)$ = 𝜃!_#$%& × 𝐿1 + 𝜃!_'$%&, 4 

𝐿*$ = 𝜃!_#$%& × 𝐿2 + 𝜃!_'$%&, 𝛼$ 	= 𝜃(_#$%& × 𝛼 + 𝜃(_'$%&.  5 

In a Cartesian coordinate system, by means of theorems of trigonometry, the encoded 6 

outbound path can be represented in terms of vectors, 𝑂𝑇$///////⃗  = !!"
!)

 × 𝑂𝑇/////⃗ , and 𝑇$𝑃$////////⃗  = 𝐿*$×  +","---------⃗

||+","---------⃗ 	||
 . 7 

 Where the 2𝑇$𝑃$////////⃗ 2 is the length of the vector of 𝑇$𝑃$////////⃗ .		 +","---------⃗

||+","---------⃗ 	||
  equals to the unit vector (a 8 

vector with the length of 1) with the direction of the vector 𝑂𝑇/////⃗  being rotated by the angle of 𝛼$. 9 

Accordingly, the participants consider themselves standing at 𝑃$ and facing the direction 10 

of ℎ$, same as the direction of 𝑇$𝑃$////////⃗ . To pinpoint the target location, they intend to produce the 11 

desired inbound vector 𝑃$𝑂///////⃗ , which consists of the desired inbound turn angle 𝛽$ and the desired 12 

inbound path length 𝐿1$: 13 

𝑃$𝑂///////⃗ 	 = - (𝑂𝑇$///////⃗ + 𝑇$𝑃$////////⃗ 	),                                                                                                                 (3) 14 

𝛽$ = dir (𝑃$𝑂///////⃗ ) – (dir 6𝑂𝑇/////⃗ 7 + 𝛼$	),                                                                                               (4)   15 

𝐿1$  = 2𝑃$𝑂///////⃗ 2.                                                                                                                                  (5) 16 

Where the dir (𝑃$𝑂///////⃗ ) is the direction of 𝑃$𝑂///////⃗  and dir 6𝑂𝑇/////⃗ 7 is the direction of 𝑂𝑇/////⃗ . The direction of 17 

a vector is specified by the angular distance from a fixed reference direction in the virtual 18 

environment (e.g., the UP direction in Figure 1) to the vector. Where the 2𝑃$𝑂///////⃗ 2 is the length of 19 

the vector of 𝑃$𝑂///////⃗ . 20 
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As there is no systematic bias in executing the inbound path based on the assumptions of 1 

the encoding-error model, the participants are able to implement the desired inbound path length 2 

and turn angle without bias (e.g., 𝐿2 = 𝐿1$, 𝛽2 = 𝛽$ in Figure 4A) while standing at P and facing 3 

the direction of h actually. Thus, the predicted response vector 𝑃𝑂32$4//////////////⃗  can be given by 4 

𝑃𝑂32$4//////////////⃗  = 𝐿1$ 	× ,5#$"%----------------⃗

||,5#$"%----------------⃗ 	||
 ,               (6) 5 

where ,5#$"%----------------⃗

||,5#$"%----------------⃗ 	||
  equals to the unit vector with the direction of the vector 𝑂𝑇/////⃗  being rotated 6 

by the angle of (𝛼	+ 𝛽$). 7 

We then get the predicted response location Opred. 8 

𝑂32$4 = P + 𝑃𝑂32$4//////////////⃗  .                                                                                                                    (7) 9 

Where Opred and P represent the coordinates in the Cartesian coordinate system used in Qi 10 

et al. (2021), where the direction of UP in Figure 1 is y positive and the direction of RIGHT in 11 

Figure 1 is x positive. 12 

Thus, following Formula 1-7, the coordinates of the predicted response location Opred can 13 

be expressed in terms of parameters 𝜃!_#$%&, 𝜃!_'$%&, 𝜃(_#$%&, and 𝜃(_'$%&, and several constants (e.g., L1, 14 

L2, and 𝛼) for each path.  15 



 21 

 1 

Figure 4. Illustration of predictions of different models. In each panel, the outbound path of a 2 

participant, O-T-P (solid black), consists of lengths L1 and L2 and turn angle 𝛼. H is the 3 

participant’s heading at the end of the outbound path. The prediction of the participants’ inbound 4 

path, POpred (solid blue indicating inbound responses without systematic errors or solid green 5 

indicating inbound responses with systematic execution errors), consists of length 𝐿2 and 6 

inbound turn angle 𝛽2. Opred is the predicted location of O. (A) the encoding-error model. The 7 

encoded outbound path, O-Te-Pe (blue dotted), consists of lengths L1e and L2e and turn angle 8 
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𝛼e, which are determined by the encoding functions. ℎ$ is the encoded heading at the end of the 1 

outbound path. The desired inbound responses are free of execution errors (i.e., 𝐿2 = 𝐿1$ and 2 

𝛽2 	= 𝛽$). (B) the execution-error model. The outbound path is free of encoding errors (𝛼$ = 𝛼 3 

and 𝑃$ = P). The inbound responses (𝐿2 and 𝛽2) are solely determined by the execution functions. 4 

(C) the bi-component model. The inbound responses (𝐿2 and 𝛽2) are determined by the 5 

systematic errors in encoding (blue dots) according to the encoding functions and in execution 6 

(green solid) according to execution functions.  7 

 8 

2.3.2 The execution-error model 9 

The execution-error model assumes that the process of encoding is independent of the 10 

systematic bias and the navigators estimate their self-localization (i.e., 𝑇$ = T and 𝑃$ = P in 11 

Figure 4B) accurately. 12 

The execution functions for inbound path length and angle have 2 parameters, 13 

respectively. While 𝜃!_#$6$ 	and 𝜃!_'$6$ 	are the slope and intercept for the inbound path length, 𝜃(_#$6$ 	 14 

and 𝜃(_'$6$ 	are the slope and intercept for inbound turn angle.  15 

The executed values of inbound length 𝐿2 and turn angle 𝛽2 (see Figure 4B) can be 16 

represented as: 17 

𝐿2 = 𝜃!_#$6$ × 𝐿1$+ 𝜃!_'$6$,                                                                                                                          (8) 18 

𝛽2 = 𝜃(_#$6$ × 𝛽$ + 𝜃(_'$6$,                                                                                                                  (9) 19 

where 𝐿1$ and 𝛽$ 	equal to the correct length L3 and turn angle 𝛽 for the inbound path, 20 

respectively, because there is no systematic error in encoding the outbound path. 21 

Therefore, the predicted response vector 𝑃𝑂32$4//////////////⃗  can be calculated according to Formula 22 

10: 23 
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𝑃𝑂32$4//////////////⃗ 	= 𝐿2 	× ,5#$"%----------------⃗

||,5#$"%----------------⃗ 	||
.	                                                                                                             (10) 1 

Where ,5#$"%----------------⃗

||,5#$"%----------------⃗ 	||
  equals to the unit vector with the direction of the vector 𝑂𝑇/////⃗  being 2 

rotated by the angle of (𝛼	+ 𝛽2). 3 

As a result, the predicted location Opred can be calculated by Formula 7. 4 

2.3.3 The bi-component model 5 

Since the bi-component model presumes that both the encoding and execution processes 6 

contribute to systematic errors, it incorporates the previously described encoding functions for 7 

the outbound path and execution functions for the inbound path (see Figure 4C). 8 

Specifically, Formula 1 through 5 still holds in encoding the outbound path and 9 

estimating the desired inbound response, i.e., 𝐿1$ 	and 𝛽$, for the current model. Formula 8-10 10 

still holds when executing the desired inbound response through the execution functions. As a 11 

result, Formula 7 can be used to calculate the model’s predicted response location Opred. 12 

2.3.4 The baseline model 13 

The baseline model presumes no systematic bias in both encoding and execution stages, 14 

i.e., the slopes are one and the intercepts are zero for all the encoding functions and the execution 15 

functions. Thus, the baseline model directly used the correct values of the target locations to 16 

predict participants’ response locations (Opred = O). 17 

Note that Harootonian et al. (2020) showed the influence of the immediately preceding 18 

trial. Participants tended to bias the encoded distance of the current trial towards the encoded 19 

distance of the previous trial (e.g., a larger distance in the previous trial would lead to 20 

overestimation of a short distance in the current trial), which indicates that the Bayesian prior of 21 

the true value assimilates the information of the immediately preceding trial. According to the 22 
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three models interested in the current study (encoding-error model, execution-error model, and 1 

bi-component model), a Bayesian prior could be considered in encoding the outbound path, 2 

executing the inbound path, or in both, predicting history effects in different processes. To 3 

simply the model comparison, we did not add parameters of the history effect to the models in 4 

the current study. 5 

2.4 Cross-validation for models without considering participant variable 6 

We conducted cross-validation for models without considering participants’ differences 7 

in their compression patterns in either encoding or response functions. Therefore, one value of 8 

each parameter (e.g., eight free parameters, 𝜃!_#$%&, 𝜃!_'$%&, 𝜃(_#$%&, 𝜃(_'$%&, 𝜃!_#$6$, 𝜃!_'$6$,	𝜃(_#$6$, and 𝜃(_'$6$ 9 

for the bi-component model) was estimated for all participants. 10 

For each model, the technique of 5 times of 2-fold (5 × 2) cross-validation (Alpaydm, 11 

1999; Dietterich, 1998) was employed for the computational modeling of the response locations. 12 

To be specific, the original dataset (all 896 outbound paths, 8 paths × 4 experiments × 28 13 

participants for each experiment) was partitioned randomly into two equal subsamples, S1 and 14 

S2, with 448 outbound paths each. One subsample (e.g., S1) was assigned to the model training 15 

to estimate the model parameters, and the other (e.g., S2) was used for the model validation. 16 

Then, the two subsamples were swapped, that is, S2 was used for model training and S1 was the 17 

subsample to test the model performance. The above random subsampling and cross-validation 18 

operations were repeated 5 rounds. Each half of the dataset was applied to both model fitting and 19 

validation in each round. Afterward, model performance in model validation can be averaged 20 

across the ten folds (5 × 2 folds) to obtain a more robust estimation of the model performance by 21 

reducing the impact of sampling (partitioning) errors. 22 
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The process of modeling was carried out using two different algorithms. One only used 1 

the data of the home response location for every outbound path, as in the previous typical 2 

triangle-completion studies, whereas the other used all three response locations for every 3 

outbound path. As we speculated above, only using the response to the home for every outbound 4 

path, cross-validation modeling may not distinguish the three models (single-component models 5 

and the bi-component model). In contrast, using the responses to three locations for every 6 

outbound path, cross-validation modeling may distinguish the three interested models.  7 

2.4.1 Model fitting 8 

The functions of each model were determined (i.e., the parameters of 𝜃𝑠 were estimated) 9 

by making the models’ predictions (Opred) as closely as possible to the participants’ responses 10 

(Oresp). The discrepancy was measured by the mean squared error (MSE) between the predicted 11 

and response locations across all outbound paths and all targets (3 for the algorithms using 12 

multiple response locations and 1 for the algorithms using home response locations only) in 13 

training subsamples (the data used for model fitting): 14 

MSE = )
%
 ∑ [6𝑂6'

32$4 − 𝑂6'
2$#37

*
+	6𝑂7'

32$4 − 𝑂7'
2$#37

*
]%

'8) ,                                                            (11)    15 

where the (𝑂6'
32$4 , 𝑂7'

32$4) is the predicted location based on the model, (𝑂6'
2$#3, 𝑂7'

2$#3) is the 16 

response location, and n is the number of data points.  17 

Then using Matlab’s fminsearch function, we found the value of parameters that 18 

minimize the MSE for each model. The fminsearch function can detect the minimal value of an 19 

objective function (e.g., MSE) by means of various optimization algorithms. To boost the 20 

possibility of locating a global minimum rather than a local one for the objective function, the 21 

search ran 500 iterations and each time started with random initial values of parameters. After 22 
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500 iterations, the fitting procedure located the minimum of MSE at an optimal solver, and this 1 

solver was the set of best-fitting parameters. 2 

Table1 summarizes the averaged ten-fold results of fitting different models to response 3 

data, including parameters and fitting performance, using two distinct algorithms (see 4 

Supplementary Materials and Table S1 for results of individual folds). These parameters would 5 

be held for the subsequent model validation.  6 

For brevity, the encoding-error model is referred to as Model 1, the execution-error 7 

model as Model 2, the bi-component model as Model 3, and the baseline model as Model 0 8 

(abbreviated as M1, M2, M3, and M0, respectively in the following sections).  9 

The fitting performance of a specific model M is evaluated by the squared root of the 10 

MSE (RMSE), the percentage of the variance of the baseline model explained by the individual 11 

model (Partial R2 = 1- 9:;	<=	9
9:;	<=	9>

), and the maximum log-likelihood (MaxLogL). 12 

To calculate the maximum log-likelihood, we assumed that the deviations of the 13 

predicted locations from the response locations (𝑂6'
32$4 − 𝑂6'

2$#3, 𝑂7'
32$4 − 𝑂7'

2$#3),	referred to as 14 

the locational residuals, were from a bivariate normal distribution with zero means (𝜇 = (0,0)) 15 

and undetermined covariance matrix (Σ). The maximum log-likelihood of the locational residuals 16 

were calculated by Formula 12 (Jordan, 2003; Taboga, 2021): 17 

MaxLogL = log [( )
√*@

)
&%
× 𝑒A

&'
(  × DΣEDA

'
( 	].                                                                               (12)    18 

Where c is the dimension of the data (c = 2 for the locational residuals), and n refers to 19 

the number of the data points (n = 498 × 3 for the algorithms of using multiple locations and n = 20 

498 for the algorithms of using the home response locations only). ΣE is 21 
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F
	)
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2$#37		6𝑂7'
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G from 1 

each individual models. DΣED is the determinant of the matrix. 2 
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Table 1 4 

Model fitting performance using multiple locations (upper) or only home response locations 5 

(lower). Parameters are estimated slopes and intercepts of encoding functions (𝜃!_#$%& and 	6 

𝜃!_'$%& for length, 𝜃(_#$%& and 𝜃(_'$%& for angle) and execution functions (𝜃!_#$6$ and 𝜃!_'$6$ for length, 	7 

𝜃(_#$6$ and 𝜃(_'$6$ for angle) for all four models in the model fitting. The RMSE, maximum log-8 

likelihood, and partial r-squared are goodness-of-fit measures. M0 = the baseline model, 9 

M1=the encoding-error model, M2 = the execution-error model, M3 = the bi-component model.  10 

 
 
 

Model 

Multiple response locations 
 Parameters   5×2 Fitting  
𝜃!_#$%& 𝜃!_'$%& 𝜃(_#$%& 𝜃(_'$%& 𝜃!_#$)$ 𝜃!_'$)$ 𝜃(_#$)$ 𝜃(_'$)$ RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.178 -5961.9 0 
M1 1.04 0.48 0.79 18.38 1 0 1 0 3.076 -5882.2 0.063 
M2 1 0 1 0 0.70 1.29 0.78 41.11 3.054 -5865.2 0.077 
M3 0.82 0.78 0.84 20.42 0.69 1.10 0.82 34.21 3.017 -5831.5 0.099 

 
 
 

Model 

Home response locations only 
 Parameters   5×2 Fitting  
𝜃!_#$%& 𝜃!_'$%& 𝜃(_#$%& 𝜃(_'$%& 𝜃!_#$)$ 𝜃!_'$)$ 𝜃(_#$)$ 𝜃(_'$)$ RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.805 -1867.1 0 
M1 0.68 0.67 0.45 23.43 1 0 1 0 2.620 -1815.5 0.128 
M2 1 0 1 0 0.42 2.10 0.47 84.21 2.625 -1816.8 0.124 
M3 2.53 3.94 0.48 26.20 0.73 0.11 1.18 12.55 2.618 -1815.0 0.129 

  11 

Table 1 shows that the bi-component model (M3) is the best model according to the three 12 

goodness-of-fit measures numerically when all three response locations were included in the 13 

model fitting. In contrast, although the three interested models (M1-M3) are better than the base 14 
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model (M0), they could not distinguish from each other when only the home response locations 1 

were included in the model fitting. However, the superiority of the bi-component model (M3) 2 

using all three response locations might be attributed to the fact that the bi-component model 3 

(M3) has more free parameters than the encoding-error model and the execution-error model 4 

(M1 and M2). This issue could be addressed by some model selection criteria (e.g., AIC, Akaike, 5 

1973 or BIC, Schwarz, 1978) that penalize free parameters to be estimated. This issue could also 6 

be addressed by cross-validation which applied the estimated parameters to independent data 7 

(i.e., test subsamples) so that there is no free parameter in any models. The current study used the 8 

second approach. We still conducted AIC and BIC analyses for the training subsamples as some 9 

readers might be interested (see Supplementary Materials and Table S3). 10 

2.4.2 Model validation 11 

In each round of cross-validation (five rounds in total), after fitting models to each 12 

training subsample (S1 or S2), we evaluated the generalizability of models using the 13 

corresponding test subsample (S2 or S1). Table 2 shows the averaged validation performance 14 

over ten test subsamples after performing the cross-validation five times for all four models (see 15 

Supplementary Materials and Table S2 for results of individual folds). 16 

More specifically, for each model, the estimated parameters derived from each training 17 

subsample were applied to predict the response locations for the corresponding test subsample 18 

that were not involved in estimating the parameters. The residuals between the predicted and 19 

response locations were used to calculate the RMSE, maximum log-likelihood, and partial r-20 

squared. 21 

 22 

Table 2 23 
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Model validation performance using multiple locations (upper) or only home response locations 1 

(lower). Parameters are the same as in Table 1 from model fitting. The RMSE, maximum log-2 

likelihood, and partial r-squared are generalizability measures, which were calculated by 3 

applying the parameters to the test subsamples.  4 

 
 
 

Model 

Multiple response locations 
 Parameters   5×2 Validation  
𝜃!_#$%& 𝜃!_'$%& 𝜃(_#$%& 𝜃(_'$%& 𝜃!_#$6$ 𝜃!_'$6$ 𝜃(_#$6$ 𝜃(_'$6$ RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.178 -5961.9 0 
M1 1.04 0.48 0.79 18.38 1 0 1 0 3.085 -5889.9 0.058 
M2 1 0 1 0 0.70 1.29 0.78 41.11 3.060 -5868.9 0.073 
M3 0.82 0.78 0.84 20.42 0.69 1.10 0.82 34.21 3.031 -5843.6 0.090 

 
 
 

Model 

Home response locations only 
 Parameters   5×2 Validation  
𝜃!_#$%& 𝜃!_'$%& 𝜃(_#$%& 𝜃(_'$%& 𝜃!_#$6$ 𝜃!_'$6$ 𝜃(_#$6$ 𝜃(_'$6$   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.805 -1867.1 0 
M1 0.68 0.67 0.45 23.43 1 0 1 0 2.632 -1819.2 0.120 
M2 1 0 1 0 0.42 2.10 0.47 84.21 2.633 -1819.1 0.119 
M3 2.53 3.94 0.48 26.20 0.73 0.11 1.18 12.55 2.634 -1819.8 0.118 

 5 

Table 2 indicates that the bi-component model (M3) is the best model according to the 6 

three generalizability measures when all three response locations were included in the model 7 

evaluation. In contrast, although the encoding-error model, execution-error model, and the bi-8 

component model (M1, M2, and M3) are better than the baseline model (M0), they could not 9 

distinguish from each other when only the home response locations were included in the model 10 

evaluation.  11 

These conclusions were quantified by the maximum likelihood ratios (LRs) analysis. 12 

Because all models have the same number of free parameters for the test subsamples, LRs can be 13 

directly calculated from the MaxLogLs without adjustment due to difference in parameter 14 

numbers. Table 3 summarizes the results.  15 
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 1 

Table 3 2 

Maximum likelihood ratio (LR) between models (row model over column model) in model 3 

validation using multiple locations (left) or only home response locations (right). 4 

 
 Multiple response locations  Home response locations only 

 
LR M0 M1       M2 M3         M0 M1 M2 M3 
M1 1.86 × 1031**     6.70 × 1020**    
M2 2.31 × 1040** 1.25 × 109**    7.55 × 1020** 1.13—   
M3 2.37 × 1051** 1.28 × 1020** 1.02 × 1011**   3.66 × 1020** 0.55— 0.49—  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 5 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  6 

 7 

The results of the maximum likelihood ratio shown in Table 3 demonstrate that there is 8 

strong evidence in favor of the bi-component model (M3) over the encoding-error model (M1) 9 

and the execution-error model (M2) when the cross-validation included multiple response 10 

locations, whereas there was no clear evidence favoring any models when the cross-validation 11 

included only home response locations.  12 

Furthermore, we adopted Alpaydin’s 5×2cv combined F test to examine the differences 13 

in models’ performance (Alpaydm, 1999, see also Raschka, 2018). To compare the results of two 14 

competing models, the difference in the value of RMSE (dRMSE) between them was calculated, 15 

generating 5 × 2 difference matrices (RMSEs of ten-folds in validation of each model are listed 16 

in Table S2). 𝑑'
B was used to denote the dRMSE value on the jth (j = 1, 2) fold of the ith (i = 17 

1, …, 5) round in a difference matrix and 𝑑'
CDE denotes the averaged RMSE difference in the ith 18 

round, 𝑑'
CDE = (𝑑') + 𝑑'*) / 2. 19 
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Then the estimated variance of the difference for the ith round is given by 1 

𝑠'* =6𝑑') −	𝑑'
CDE7* +	6𝑑'* −	𝑑'

CDE7*.                                                                                         (13)    2 

The F statistic is calculated as: 3 

𝑓 = 
∑ ∑ G4)

*H
((

*+!
,
)+!

*∑ #)
(,

)+! 	
,                                                                                                                         (14)    4 

which approximately follows an F distribution with (10, 5) degrees of freedom.  5 

Table 4 summarizes the mean dRMSE of all pairs of the models and the corresponding 6 

significance of Alpaydin’s F-test. Consistent with the results indicated by Table 3, when three 7 

locations’ data were included (left panel), the results show that the bi-component model 8 

(RMSEM3 = 3.031) significantly outperforms the encoding-error model (RMSEM1 = 3.085, p 9 

< .001) and the execution-error model (RMSEM2 = 3.060, p = .02) in predicting the actual 10 

responses. The execution-error model presents significantly better performance than the 11 

encoding-error model (p < .01). All the three interested models have substantially better 12 

predictive performance than the baseline model (RMSEM0 = 3.178, all p values < .001). 13 

By contrast, when only the data of home response locations were used in the cross-14 

validation (right panel), there was no significant difference in RMSE among M1, M2, and M3 15 

although RMSEs in these three models, approximately 2.63, were significantly smaller than that 16 

of the baseline model (M0) (RMSEM0 = 2.805, all p values < .01). 17 

 18 

Table 4 19 

Alpaydin’s F-test examining the differences in RMSE (dRMSE) between models (the row model 20 

minus the column model) when using multiple locations (left) or only home response locations 21 

(right).  22 
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Multiple response locations 

 Home response locations only 
 

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 
M1   -.093∗∗     M1  -.174∗∗∗    
M2 -.118∗∗∗ -.025∗∗    M2  -.172∗∗∗ .001—   
M3  -.147∗∗ -.056∗∗∗ -.029∗   M3  -.171∗∗∗ .002— .001—  

Note: Asterisks denote significant dRMSE (***p < .001; **p < .01; *p < .05) and a dash (—) 1 

indicates non-significant dRMSE. 2 

 3 

Figure 5 visually presents locational residuals of model validation. We calculated the 4 

mean predicted locations of each target (three for multiple response locations or one for home 5 

only) in each outbound path (32 in total) across the ten folds of the test subsamples based on 6 

different models. We also calculated the mean response location of the target across participants 7 

who replaced this target. The locational residual of one target for one model is the difference 8 

between the mean predicted location based on this model and the mean response location of the 9 

target across participants (mean predicted location – mean response location). 10 

Figure 5A, employing multiple response locations, reveals clear differences in predictive 11 

performance among all these models. In particular, the bi-component model achieves more 12 

centric dots and a smaller area of 95% density contours of the residual distributions compared 13 

with other competing models, indicating that it is capable to predict the actual responses of the 14 

participants more accurately. By contrast, Figure 5B, employing only the home response 15 

locations, shows that apart from the baseline model, the performance of the other three models is 16 

not distinguishable (the dots of various colors are mixed up and the ellipses overlap). 17 

 18 
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Figure 5. Visualizing the differences (locational residuals) between mean response locations and 1 

mean predicted locations from different models using (A) multiple response locations or (B) only 2 

home response locations. The open circle with a cross at (0, 0) indicates the response location, 3 

the coordinate of which varied in real experiments but is set to (0, 0) as a reference. Individual 4 

dots represent coordinates of the locational residuals for all targets (96 targets in A and 32 in B). 5 

Ellipses indicate the 95% density contours of the bivariate normal distributions with zero means 6 

(𝜇 = (0,0)) and covariance matrix (Σ) of the locational residuals according to the baseline model 7 

(green), encoding-error model (red), execution-error model (blue), and bi-component model 8 

(black), respectively. 9 

 10 

2.4.3 Model recovery 11 

The results of 5 × 2 cross-validation indicated that the bi-component model was the best 12 

model to predict the response locations. Furthermore, although the algorithm of using all three 13 

objects can dissociate the bi-component model from the encoding-error and execution-error 14 

models, the algorithm of using only home response locations cannot. Because both these 15 
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conclusions are dependent on the cross-validation methods used in the current project, these 1 

conclusions will be significantly strengthened if the cross-validation methods used in the current 2 

project can be shown to distinguish the true model from other models using the simulated 3 

response locations produced by each of the three models (the encoding-error, execution-error, 4 

and bi-component models).  5 

For each model (i.e., the true model), we generated simulated response locations for all 6 

ten subsamples (5 × 2 folds). Using the corresponding parameters derived from model fitting 7 

using multiple objects (e.g., the values for M1, M2, and M3 in the upper table of Table 1), we 8 

calculated the predicted locations for all three targets for each of the 448 outbound paths in each 9 

subsample. Using the corresponding RMSE in the upper table of Table 1, we generated random 10 

noises for both dimensions (x and y) of all predicted locations from a normal distribution (𝜇 = 0, 11 

σ = IJKL
√*

). Each simulated response location is then the sum of the predicted location and the 12 

noise. We applied both algorithms of 5 × 2 cross-validation (using multiple response locations or 13 

using only home response locations) to the simulated response locations and examined whether 14 

the generalizability measure (i.e., LR) in the model validation could distinguish the true model 15 

from other models. We created 100 sets of simulated response locations and conducted 5 × 2 16 

cross-validation for all of them2.  17 

The frequency of successfully distinguishing the true model from other models could also 18 

indicate the discriminability of the cross-validation methods. For each true model, we calculated 19 

the likelihood ratio between any two models for each of the 100 simulations and classified the 20 

likelihood ratios into different categories (see details in Supplementary Materials and Figure S2). 21 

 
2 Note that it takes about 3.5 hours to finish 5 × 2 cross-validation for each simulation subsample using all three 
response locations of each outbound path. 
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Figure 6 presents the confusion matrix in model recovery. The best model was determined only 1 

when it had likelihood three times higher than both other two models. The results showed that 2 

the algorithm of using multiple response locations can successfully distinguish the true model 3 

from other models. Occasionally the algorithm could not find the best model (i.e., no model had 4 

likelihood three times than both other two models) (e.g., for true model M2, 18% chance of 5 

failure to find the best model). However, in the most time, the algorithm recovered the true 6 

model (98% for true model M1, 82% for true model M2, and 100% for true model M3) and 7 

never recovered any distracting models. By contrast, the algorithm of using home response 8 

locations cannot clearly distinguish the true model from other models. In most cases, the 9 

algorithm could not find the best model (with a rate larger than 49%). Consequently, the 10 

algorithm could recover the true model at a low rate (23% for true model M1, 50% for true 11 

model M2, and 7% for true model M3). The algorithm also at times recovered distracting 12 

models. 13 

 14 

 Figure 6. Confusion matrices in model recovery using multiple response locations (left) or 15 

home response locations only (right). The number in each cell indicates the frequency of the 16 

recovered model being the best model. NoRecoved means that no best model was recovered by 17 

the algorithm. 18 



 36 

 1 

2.4.4 Similarity of parameters’ values estimated from real and simulated response locations  2 

The algorithm using multiple response locations estimated 16 parameters (four 3 

parameters for M1, four for M2, and eight for M3, see Table 1) based on participants’ response 4 

locations. Similarly, this algorithm could also estimate 16 parameters based on simulated 5 

locations produced by each true model. The similarity between the estimated parameters based 6 

on real and simulated response locations should reflect the similarity between real and simulated 7 

response locations, thus indicating the closeness between the true model that produced the real 8 

response locations and each model. The model closest to the true model should be the best 9 

model. The similarity between parameters based on real response locations and simulated 10 

response locations from different models were illustrated by Figure 7 (see exact parameters in 11 

Table S4. The parameter distance was shortest when the simulated locations were produced by 12 

M3 (RMSE = 9.44, 6.8, and 1.5 for M1, M2, and M3 respectively). The parameters based on 13 

simulated locations from M3 explained the largest proportion of the total variance of the 16 14 

parameters based on real response locations (r2 = 1 − 9:;
MC2

 , r2 = .46, .72, and .99 for M1, M2, 15 

and M3 respectively). The rates of likelihood of M3 over other models were larger than 3.33 × 16 

1010 (logL = -58.64, -53.38, and -29.15 for M1, M2, and M3 respectively). Therefore, the 17 

similarity between real and simulated response locations from M3 was largest, indicating M3 18 

was the best model. 19 
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 1 
Figure 7. Illustrating the similarity of estimated parameters based on real data and simulated 2 

data from different models. The diagonal lines in green (y = x) indicate the ideal outcome that 3 

the parameters derived from real data are perfectly recovered from simulated data. Open dots 4 

depict the individual pairs of values of parameters based on real and simulated response locations 5 

for each model. 6 

 7 

2.4.5 Predictive performance on the response error of participants  8 

In addition, we compared the predictive performance of different models in terms of 9 

participants’ response error (inbound path length or turn angle), consistent with previous studies 10 

(Chrastil & Warren, 2021; Fujita et al., 1993). We conducted the following analyses of the mean 11 

predicted locations of targets across the ten-fold test subsamples, which were used in model 12 

validation. The predicted inbound path (𝑃𝑂,2$4//////////////⃗ ) was calculated from the testing position (P) to 13 

the predicted location (Opred) based on each model. The predicted error (inbound path length or 14 

turn angle) was defined as the difference between the predicted and correct values for each target 15 

and each unique outbound path (32 different types of paths, 8 in each of the four experiments). 16 



 38 

The individual response error (inbound path length or turn angle) was defined as the difference 1 

between the response and correct values. The mean response error for each target and each unique 2 

outbound path was the average of the individual response errors across participants for the specific 3 

target and the specific outbound path.  4 

Figure 8 illustrates the mean predictive performance of different models in terms of 5 

inbound length error and angle error. It shows that the bi-component model (M3) had the highest 6 

correlation coefficients for both inbound length (see rs in Figure 8A) and angle errors (Figure 8C) 7 

when the cross-validation included multiple response locations of each outbound path. 8 

Nevertheless, the correlation coefficients of the three models were comparable when the cross-9 

validation only included the home response location of each outbound path (see rs in Figure 8B 10 

and Figure 8D). 11 

 12 
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 1 

Figure 8. Illustrating the predicted errors in inbound path length (panels A and B) and turn angle 2 

(panels C and D) as a function of the mean response errors using multiple response locations or 3 

only home response locations. The diagonal lines in red (y = x) indicate the ideal outcome that 4 

the response errors are perfectly predicted. The yellow lines indicate the regression lines. Open 5 

dots depict the individual pairs of predicted errors and mean response errors across participants, 6 
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for each object, and for each path (32 paths in total), according to the encoding-error model 1 

(M1), execution-error model (M2), and bi-component model (M3), respectively. 2 

 3 

The likelihood ratios were computed to compare the models’ performance in predicting 4 

inbound length errors and angle errors. Following Glover and Dixon (2004), the likelihood ratio 5 

of favoring Modeli over Modelj (i.e., 𝜆'B) can be computed as  6 

𝜆'B = K
)A2*

(

)A2)
(L

'
(
,                                                                                                                           (15)   	7 

where the 𝑟'* and 𝑟B* are squared mean correlation coefficients from Modeli and Modelj in Figure 8 

8, indicating the variance that is explained by Modeli and Modelj, respectively, and n is the number 9 

of data points. In the current example, n equals 96 (i.e., 32 paths × 3 response locations) for taking 10 

multiple response locations or equals 32 (i.e., 32 paths × 1 response location) for taking only home 11 

response locations into the cross-validation.  12 

The results of likelihood ratios for the three competing models are reported in Table 5. For 13 

both length and angle errors, the method of employing multiple response locations demonstrates 14 

compelling evidence (i.e., five out of six likelihood ratios of over 100) that the bi-component model 15 

is superior to the encoding-error and execution-error models in describing mean response errors. 16 

However, no clear evidence (i.e., no likelihood ratios of over 2) is presented by employing only 17 

home response locations, showing that it cannot distinguish between models in terms of predictive 18 

power. 19 

 20 

Table 5 21 
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Maximum likelihood ratios (𝜆) for competing models (row model over column model) in 1 

predicting inbound path length errors (left) and turn angle errors (right) using multiple locations 2 

or only home response locations. 3 

 

Length errors  Angle errors 
Multiple response 

locations 
Home response 
locations only 

 Multiple response locations Home response 
locations only 

𝜆  M1   M2 M3  M1  M2 M3       M1 M2 M3 M1 M2 M3 

M1              
M2  0.8   0.5—   113.1**   1.6—   

M3  161.5** 203.9**  1.0— 1.9—  5.6 × 1011** 

 

4.9 × 109** 

 

 0.7— 0.5—  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 4 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  5 

 6 

2.5 Groups of participants differing in compression pattern of the response  7 

In the cross-validation described above, we did not consider the participant variable. For 8 

each model, we estimated the best model parameters being applied to all participants. However, 9 

participants might differ in the compression pattern (i.e., some had a strong compression pattern 10 

whereas others had a weak compression pattern), so the best model parameters for each group 11 

might be significantly different from each other. Therefore, the conclusions on a model 12 

comparison based on the best model parameters for all participants and based on the best model 13 

parameters for each group of participants might not be consistent. We considered the variability 14 

of participants’ responses in their triangle completion and classified participants into two groups 15 

based on the compression pattern of the inbound responses.  16 

As illustrated in Figure 9, the participants showed variations in their compression pattern 17 

(e.g., the slopes of the regression lines) of the inbound responses. The dots inside the blue box in 18 

Figure 9C-D represent the participants who showed a compression pattern (i.e., with a slope 19 
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between 0 and 1, and intercept larger than 0) or had strong compression whereas the dots outside 1 

the blue box represent the participants who did not show compression pattern or had weak 2 

compression. Considering compression patterns in both length and angle, we could also divide 3 

participants into four groups based on both (47 in strong for both, 13 in weak for both, 22 in 4 

strong for angle and weak for length, 30 in weak for angle and strong for length). However, we 5 

might not be able to conduct meaningful 5 × 2 cross-validations for all four groups, especially 6 

the group with only 13 participants. Hence, we divided participants into two groups instead of 7 

four so that we had enough participants in each group for 5 × 2 cross-validations. 8 

Across the regression lines of individual participants, the correlation coefficient (r) was 9 

significantly higher in the inbound turn angle (Figure 9D) than in the inbound path length 10 

(Figure 9C) (mean r = 0.65 for angle and mean r = 0.39 for length), t (111) = 6.36, p < .001, 11 

Cohen’s dz = .60. Moreover, the number of participants showing significant correlations (p 12 

≤ .05) was significantly larger in the regression for inbound turn angle (Figure 9D) than for the 13 

inbound path length (Figure 9C) (61 participants for angle and 22 participants for length, sharing 14 

5 participants with significant correlations in both), McNemar’s χ2 (1) = 16.01, p < .001. Hence, 15 

the compression patterns of individual participants in terms of inbound turn angle were much 16 

more reliable than in terms of inbound path length. Consequently, we classified the participants 17 

into two groups according to their compression on the inbound turn angle: the strong 18 

compression group (69 participants showing compression) and the weak compression group (43 19 

participants showing no compression). Moreover, the distribution of participants in compression 20 

groups in terms of length was independent of in terms of angle (χ2 (1) = .03, p = .86), indicating 21 

that the strong and weak compression groups only based on angle had similar proportions of 22 

participants with strong and weak compression in length. Therefore, the strong compression 23 



 44 

group had strong compression in angle and average compression in length whereas the weak 1 

compression group had weak compression in angle and average compression in length. 2 

 3 
Figure 9. Each line indicates the linear regression of response values on the correct values for 4 

one participant in terms of inbound path length (A) and turn angle (B), respectively. (C-D) 5 

illustrate the slope-intercept, correlation coefficient (i.e., r-value), and its significance (i.e., p-6 
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value) of the linear regression relationship in terms of inbound path length (C) and turn angle 1 

(D), respectively. 2 

 3 

 We conducted model validation for each group using the model parameters estimated in 4 

the model fitting described in section 2.4.1 (see details in Supplementary Materials and Tables 5 

S5-S8). Model validation based on the parameters from the algorithm using multiple locations 6 

showed that all the three models (M1-M3) even performed worse than the baseline model (M0) 7 

for the weak compression group (negative Partial R2 in Table S5) although the bi-component 8 

model (M3) was still the best model for the strong compression group. These findings suggest 9 

that the best model parameters for all participants might not be appropriate for the weak 10 

compression group. Therefore, it is important to conduct cross-validation for each group and 11 

then calculate the overall model performance. 12 

2.6 Cross-validation for different groups 13 

We conducted 5 × 2 cross-validations for each group of compression. As we primarily 14 

used model validation performance in model comparison, we did not report the fitting results of 15 

two compression groups for the interest of brevity (see Supplementary Materials Table S9 for the 16 

averaged fitting performance across ten folds). 17 

2.6.1 Model validation  18 

As illustrated in Tables 6, 7, and 8, the algorithm using home response locations only 19 

could not differentiate the three models (M1-M3) regardless of the compression group.  20 

The algorithm using multiple response locations showed different model comparison 21 

results for the strong and weak compression groups. For the strong compression group, 22 

generalizability measures in Table 6, likelihood ratios in Table 7, and the results of Alpaydin’s F-23 
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test on dRMSE in Table 8 (also see Table S10 for RMSEs of individual folds) all suggest that the 1 

bi-component model (M3) was the best. By contrast, for the weak compression group, none of 2 

the generalizability measures, likelihood ratios, or Alpaydin’s F-test on dRMSE could 3 

differentiate the four models including the baseline model.  4 

 5 

Table 6 6 

Model validation performance for the strong (upper) and weak (lower) compression groups. 7 

Parameters are estimated from model fitting for each corresponding group. The RMSE, maximum 8 

log-likelihood, and partial r-squared are generalizability measures, which were calculated by 9 

applying the parameters to the test subsamples.  10 

 Strong compression group 

 
Model 

Multiple response locations  
 Parameters   5×2 Validation  
𝜃!_#$%& 𝜃!_'$%& 𝜃(_#$%& 𝜃(_'$%& 𝜃!_#$)$ 𝜃!_'$)$ 𝜃(_#$)$ 𝜃(_'$)$ RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.382 -3770.4 0 
M1 1.14 0.49 0.79 15.45 1 0 1 0 3.214 -3692.0 0.096 
M2 1 0 1 0 0.60 1.86 0.68 58.50 3.125 -3645.5 0.146 
M3 0.64 1.19 0.88 18.69 0.57 1.76 0.72 52.07 3.084 -3623.2 0.168 

 
    
Model 

Home response locations only  
Parameters   5×2 Validation  

𝜃!_#$%&	 𝜃!_'$%&	 𝜃(_#$%&	 𝜃(_'$%&	 𝜃!_#$)$	 𝜃!_'$)$	 𝜃(_#$)$	 𝜃(_'$)$	   RMSE  MaxLogL Partial R2 
M0 1 0 1 0 1 0 1 0 3.037 -1190.9 0 
M1 0.84 0.58 0.46 18.64 1 0 1 0 2.738 -1139.7 0.186 
M2 1 0 1 0 0.44 2.42 0.50 81.24 2.745 -1140.7 0.182 
M3 2.88 0.84 0.43 12.46 0.72 0.86 1.51 12.50 2.743 -1140.5 0.183 

 Weak compression group  
 

 
Model 

Multiple response locations  
 Parameters   5×2 Validation  
𝜃!_#$%&	 𝜃!_'$%&	 𝜃(_#$%&	 𝜃(_'$%&	 𝜃!_#$)$	 𝜃!_'$)$	 𝜃(_#$)$	 𝜃(_'$)$	 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.817 -2169.2 0 
M1 0.86 0.46 0.80 21.2 1 0 1 0 2.814 -2169.3 0.002 
M2 1 0 1 0 0.85 0.46 1.00 2.96 2.816 -2170.0 5.48E-04 
M3 0.81 0.56 0.80 21.9 0.92 0.17 1.04 -1.73 2.810 -2168.3 0.005 
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Model 

Home response locations only  
 Parameters   5×2 Validation  
𝜃!_#$%&	 𝜃!_'$%&	 𝜃(_#$%&	 𝜃(_'$%&	 𝜃!_#$)$	 𝜃!_'$)$	 𝜃(_#$)$	 𝜃(_'$)$	   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.379 -662.8 0 
M1 0.51 0.69 0.44 33.0 1 0 1 0 2.329 -657.0 0.041 
M2 1 0 1 0 0.44 1.43 0.44 84.44 2.328 -656.9 0.042 
M3 1.54 11.7 2.25 17.8 0.58 0.06 2.24 17.13 2.342 -659.1 0.029 

 1 

 2 

Table 7 3 

Maximum likelihood ratio (LR) between models (row model over column model) in model 4 

validation for the strong (upper) and weak (lower) compression groups using multiple locations 5 

(left) or only home response locations (right). 6 

 Strong compression group  

 Multiple response locations  Home response locations only 
LR M0 M1 M2 M3  M0 M1 M2 M3 
M1  1.06 × 1034**    1.64 × 1022**    
M2  1.72 × 1054**  1.62 × 1020**   6.03 × 1021** 0.37—   
M3  8.03 × 1063** 7.58 × 1029** 4.66 × 109**  7.84 × 1021** 0.48— 1.30—  

 Weak compression group  

 Multiple response locations  Home response locations only 
LR M0 M1 M2 M3  M0 M1 M2 M3 
M1  0.88—     322.58**    
M2  0.43— 0.49—    370.37**  1.15—   
M3  2.50— 2.84— 5.81*   40.32**  0.13* 0.11*  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 7 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  8 

 9 

Table 8 10 

Alpaydin’s F-test examining the differences in RMSE (dRMSE) between models (the row model 11 

minus the column model) for the group with strong (upper) and weak (lower) compression 12 

patterns when using multiple locations (left) or only home response locations (right).  13 
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Strong compression group 

Multiple response locations  Home response locations only 
dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 
M1   -.168∗∗     M1  -.299∗∗    
M2 -.257∗∗∗ -.125∗∗    M2  -.292∗∗ .007—   
M3  -.298∗∗∗ -.13∗∗∗ -.041∗   M3  -.294∗∗∗ .005— .002—  

Weak compression group 

Multiple response locations  Home response locations only 
dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 
M1 .003—     M1  .050—    
M2 .001— -.002—    M2  .051— -.001—   
M3 .007— -.004— -.006—   M3  .037— .014— .014—  

 1 

 We also compared the overall performance of all models by combining the locational 2 

residuals of the two compression groups (see Tables 9-11 for generalizability measures, 3 

likelihood ratios, and the results of Alpaydin’s F-test). Figure 10 visually illustrates the locational 4 

residuals of individual targets achieved by different models using the two algorithms. All results 5 

suggest that the bi-component model was the best based on the cross-validation using multiple 6 

response locations whereas there was no best model based on the cross-validation using home 7 

response. 8 

  9 

Table 9 10 

The overall performance of model validation of the two compression groups using multiple 11 

locations (upper) or only home response locations (lower). Parameters are the weighted average 12 

of the best parameters for each group (weighted by the numbers of participants in different groups). 13 

The RMSE, maximum log-likelihood, and partial r-squared are generalizability measures, which 14 

were based on the combined locational residuals of the two compression groups.  15 

 
 

Multiple response locations 
 Parameters   5×2 Validation  
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Model 𝜃!_#$%& 𝜃!_'$%& 𝜃(_#$%& 𝜃(_'$%& 𝜃!_#$6$ 𝜃!_'$6$ 𝜃(_#$6$ 𝜃(_'$6$ RMSE MaxLogL Partial R2 
M0 1 0 1 0 1 0 1 0 3.179 -5964.5 0 
M1 1.03 0.48 0.79 17.64 1 0 1 0 3.069 -5878.0 0.067 
M2 1 0 1 0 0.70 1.32 0.81 37.18 3.012 -5828.4 0.102 
M3 0.71 0.95 0.85 19.91 0.70 1.15 0.84 31.41 2.984 -5803.2 0.118 

 
 
 
Model 

Home response locations only 
 Parameters   5×2 Validation  
𝜃!_#$%& 𝜃!_'$%& 𝜃(_#$%& 𝜃(_'$%& 𝜃!_#$6$ 𝜃!_'$6$ 𝜃(_#$6$ 𝜃(_'$6$   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.805 -1868.3 0 
M1 0.72 0.63 0.45 24.14 1 0 1 0 2.591 -1807.2 0.146 
M2 1 0 1 0 0.44 2.04 0.48 82.47 2.595 -1807.9 0.143 
M3 2.37 5.03 1.13 14.50 0.66 0.55 1.79 14.28 2.600 -1809.7 0.141 

 1 

 2 

Table 10 3 

The overall results of the maximum likelihood ratio (LR) between models (row model over 4 

column model) in model validation using multiple locations (left) or only home response 5 

locations (right). 6 

 
 Multiple response locations  Home response locations only 

 
LR M0 M1 M2 M3  M0 M1 M2 M3 
M1  3.86 × 1037**     3.47 × 1026**    
M2  1.29 × 1059** 3.35 × 1021**    1.69 × 1026** 0.49—   
M3  1.08 × 1070**  2.80 × 1032** 8.36 × 1010**   2.74 × 1025** 0.08** 0.16*  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 7 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  8 

 9 

Table 11 10 

The overall results of Alpaydin’s F-test examining the differences in RMSE (dRMSE) between 11 

models (the row model minus the column model) when using multiple locations (left) or only 12 

home response locations (right).  13 
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Multiple response locations 

 Home response locations only 
 

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 
M1   -.110∗     M1  -.214∗∗    
M2 -.167∗∗∗ -.057∗∗    M2  -.210∗∗ .004—   
M3  -.195∗∗∗ -.085∗∗∗ -.028∗   M3  -.207∗∗ .008— .003—  

Note: Asterisks denote significant dRMSE (***p < .001; **p < .01; *p < .05) and a dash (—) 1 

indicates non-significant dRMSE. 2 

 3 

 4 

 5 

Figure 10. Visualizing the differences (locational residuals) between mean response locations 6 

and mean predicted locations from different models using (A) multiple response locations or (B) 7 

only home response locations. The open circle with a cross at (0, 0) indicates the response 8 

location, the coordinate of which varied in real experiments but is set to (0, 0) as a reference. 9 

Individual dots represent coordinates of the locational residuals for all targets (96 targets in A 10 

and 32 in B). Ellipses indicate the 95% density contours of the bivariate normal distributions 11 

with zero means (μ = (0,0)) and covariance matrix (Σ) of the locational residuals according to the 12 
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baseline model (green), encoding-error model (red), execution-error model (blue), and bi-1 

component model (black), respectively. 2 

 3 

2.6.2 Model recovery using varied values of parameters across participants 4 

 In the model recovery described above (see section 2.4.3), we used the fixed values of 5 

model parameters for all participants (Table 1) to produce simulated locations based on each true 6 

model. The simulation results indicated that the algorithm using multiple objects could recover 7 

the true models very well whereas the algorithm using home locations could not recover the true 8 

models (see Figure 6 for the confusion matrix). As participants showed different compression 9 

patterns (Figure 9), it is important to examine whether the algorithms can still recover the true 10 

model when varied values of model parameters are used to create simulated locations (below we 11 

refer to it as model recovery with varied parameter values and refer to the previous one as model 12 

recovery with fixed parameter values). Note that we conducted 5 × 2 cross-validations for strong 13 

and weak compression groups to address the issue of participants’ differences in the compression 14 

pattern. Unfortunately, 5 × 2 cross-validation is not feasible for each participant. Conducting 15 

model recovery with varied parameter values is especially important as it can further address the 16 

issue of participants’ differences in compression patterns. If we demonstrate that 5 × 2 cross-17 

validations using the multiple response locations can recover the true model in model recovery 18 

with varied parameter values, our conclusion based on 5 × 2 cross-validations using the multiple 19 

response locations should also be able to recover the true model using participants’ response 20 

locations. 21 

Same as the model recovery with fixed parameter values, we still created 100 sets of 22 

simulated response locations from each model and conducted 5 × 2 cross-validations for all of 23 
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them in conducting model recovery with varied parameter values. Difference from the model 1 

recovery with fixed parameter values, we used varied values for each of the intercept and slope 2 

parameters. Specifically, we sampled each parameter from a uniform distribution with a mean 3 

same as the fixed value of the model parameters in model recovery with fixed parameter values 4 

(i.e., the parameters illustrated in Table 1). The range of the uniform distribution for slope 5 

parameters was twice the distance between the mean slope and 1 (i.e., the upper limit). The range 6 

of the uniform distribution for intercept parameters was twice the distance between the mean 7 

intercept and 0. For example,	𝜃!_#$%& in M3 (a slope parameter in Table 1) was sampled from a 8 

uniform distribution U (0.82 - |1	–	0.82|, 0.82 + |1	–	0.82|). 𝜃(_'$6$ in M3 (an intercept parameter 9 

in Table 1) was sampled from a uniform distribution U (34.21 - |0	–	34.21|, 34.21 + |0	–	10 

34.21|). As a result, we created 112 samples for each parameter of each model and then assigned 11 

them randomly to 112 participants. Using the outbound paths and target locations of each 12 

participant, we created the simulated response locations based on each model by applying the 13 

assigned values of model parameters. 	14 

Figure 11 presents the confusion matrix in model recovery (frequency in each category of 15 

likelihood ratio in model validation was reported in Supplementary Materials Figure S3.). The 16 

results showed that the algorithm of using multiple response locations upon most occasions can 17 

successfully distinguish the true model from other models (64% for true model M1, 84% for true 18 

model M2, and 100% for true model M3). By contrast, the algorithm of using home response 19 

locations cannot clearly distinguish the true model from other models. In most cases, the 20 

algorithm could not find the best model (with a rate larger than 55%). Consequently, the 21 

algorithm could recover the true model at a very low rate (12% for true model M1, 28% for true 22 
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model M2, and 9% for true model M3). Moreover, the algorithm also at times recovered 1 

distracting models. 2 
 Figure 3 

Figure 11. Confusion matrices in model recovery using multiple response locations (left) or 4 

home response locations only (right). The number in each cell indicates the frequency of the 5 

recovered model being the best model. NoRecoved means that no best model was recovered by 6 

the algorithm. 7 

 8 

2.6.3 Similarity of parameters values estimated from real and simulated response locations  9 

The similarity between parameters based on participants’ response locations and based on 10 

simulated locations from different models was illustrated in Figure 12 (see exact parameters in 11 

Supplementary Materials and Table S11). The parameter distance was shortest when the simulated 12 

locations were produced by M3 (RMSE= 8.59, 6.82, and 1.13 for M1, M2, and M3 respectively). 13 

The parameters based on simulated locations from M3 explained the largest proportion of the total 14 

variance of the 16 parameters based on participants’ response locations (r2 = 1 − 9:;
MC2

 , r2 = .56, .72, 15 

and .99 for M1, M2, and M3 respectively). The ratios of likelihood of M3 over other models were 16 

larger than 2.97 × 1012 (logL = -57.11, -53.41, and -24.69 for M1, M2, and M3 respectively). 17 
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Therefore, the similarity between participants’ response locations and simulated locations from 1 

the bi-component model was the largest, suggesting the bi-component model was the best. 2 

 3 

Figure 12. Illustrating the similarity of estimated parameters based on real data and simulated 4 

data from different models. The diagonal lines in green (y = x) indicate the ideal outcome that 5 

the parameters derived from real data are perfectly recovered from simulated data. Open dots 6 

depict the individual pairs of values of parameters based on real and simulated response locations 7 

for each model. 8 

 9 

2.6.4 Predictive performance on the response error of participants based on best parameters for 10 

each group 11 

We compared the predictive performance of different models in terms of inbound length 12 

error and angle error, using the best parameters for each group. The predicted error and the mean 13 

response error (in terms of inbound path length or turn angle) for each target and each unique 14 

outbound path were defined and calculated in the same way mentioned above (2.4.5).  15 

Figure 13 illustrates the mean predictive performance of different models in terms of 16 

inbound length error and angle error. Table 12 shows that the bi-component model (M3) had the 17 
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highest correlation coefficients for both inbound length (Figure 13A) and angle errors (Figure 13C) 1 

when the cross-validation included multiple response locations of each outbound path. 2 

Nevertheless, the correlation coefficients of the three models (Figure 13B and Figure 13D) were 3 

comparable when the cross-validation only included the home response location of each outbound 4 

path. 5 

 6 
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 1 

 Figure 13. The overall performance of the predicted errors in inbound path length (panels A and 2 

B) and turn angle (panels C and D) as a function of the mean response errors using multiple 3 

response locations or only home response locations. The diagonal lines in red (y=x) indicate the 4 

ideal outcome that the response errors are perfectly predicted. The yellow lines indicate the 5 

regression lines. Open dots depict the individual pairs of predicted errors and mean response 6 

errors across participants, for each object and each path (32 paths in total), according to the 7 
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encoding-error model (M1), execution-error model (M2), and bi-component model (M3), 1 

respectively. 2 

 3 

Table 12 4 

Maximum likelihood ratios (𝜆) for competing models (row model over column model) in 5 

predicting inbound path length errors (left) and turn angle errors (right) using multiple locations 6 

or only home response locations. 7 

 

Length errors  Angle errors 
Multiple response 

locations 
Home response 
locations only 

 Multiple response locations Home response 
locations only 

𝜆  M1 M2 M3  M1 M2 M3       M1 M2 M3 M1 M2 M3 

M1              
M2  9.2 *   0.5—   95.3**   1.2—   

M3  232.2** 25.2**  1.3— 2.8—  2.1 × 1010** 2.2 × 108**  1.3— 1.1—  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 8 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  9 

 10 

3. Discussion 11 

The primary purpose of the current study was to identify the possible sources of the 12 

systematic biases in human path integration. We used model cross-validation to compare three 13 

plausible theoretical models (the encoding-error model, the execution-error model, and the bi-14 

component model) in explaining the systematic errors of the inbound responses when 15 

participants only had idiothetic cues in the path integration conditions of Qi et al. (2021). There 16 

are two important findings. First, cross-validation modeling using all three inbound responses for 17 

each outbound path indicated that the bi-component model outperformed the encoding-error 18 

model (Fujita et al., 1993) and the execution-error model (Chrastil & Warren, 2021). This 19 
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finding suggests that systematic biases in human path integration occurred in both encoding the 1 

outbound path and executing the desired inbound responses. Second, modeling using only the 2 

home response for each outbound path failed to distinguish among these three models.  3 

To the best of our knowledge, the current study provided the first modeling evidence 4 

indicating that there are systematic biases in both encoding the outbound path (path lengths and 5 

turn angles) and in executing the desired inbound responses (path lengths and turn angles) in the 6 

triangle-completion task. The finding of both encoding and execution biases unified the 7 

encoding-error model (Fujita et al., 1993) and the execution-error model (Chrastil & Warren, 8 

2021) into the bi-component model. 9 

Although the finding of the current study appears to challenge the encoding-error model 10 

by undermining its assumption that there is no systematic bias in execution, it supports the key 11 

theoretical claims of the encoding-error model (Fujita et al., 1993; Klatzky et al., 1999; Loomis 12 

et al., 1993; Loomis et al., 1999). According to the encoding-error model (one version of the 13 

configural updating models), people encode the configuration of the outbound path by encoding 14 

the leg lengths and turn angles between legs. People calculate the inbound response based on the 15 

remembered outbound path. Therefore, the systematic biases (compression patterns) in encoding 16 

the outbound path should lead to the appearance of systematic biases in the inbound responses. 17 

The evidence of systematic encoding errors (i.e., the encoding functions of the bi-component 18 

model) provided by the current study is consistent with these claims. Note that although Fujita et 19 

al. (1993) showed that the encoding-error model well explained the compression patterns in the 20 

inbound responses, it could not remove the possibility that the compression patterns in the 21 

inbound responses were caused solely by the systematic biases in executing the inbound 22 



 59 

responses. Thus, we believe that the current study indeed provides clearer evidence for the 1 

encoding biases by separating the encoding biases from the execution biases. 2 

The current evidence of systematic execution errors is in line with the past studies 3 

(Bakker et al., 1999, 2001), which demonstrated systematic inaccuracies in simply producing 4 

specific angles. Specifically, the participants in Bakker et al. (1999) were required to produce 5 

cardinal angles (e.g., 90º, 180º, 270º) around a point under different combinations of sensory 6 

feedback. Note that in this task participants did not need to encode the angles by locomotion or 7 

visually but were only informed of the angles verbally. The significant undershoot pattern in all 8 

conditions would reflect the systematic errors in execution. 9 

Chrastil and Warren (2021) provided the first modeling evidence to indicate that there are 10 

systematic execution errors in the triangle-completion task. They separately estimated the 11 

encoding functions and the execution functions from reproduction tasks (the simple translation 12 

and rotation tasks) by assuming that there were only encoding biases or execution biases. They 13 

argued that if people only have systematic biases in encoding but not in execution, the encoding 14 

functions estimated from the reproduction task should well explain the systematic errors in the 15 

triangle-completion task. Their modeling results showed that the discrepancy between the 16 

predicted and observed inbound responses was greater when the predicted values were only 17 

based on the encoding functions than when the predicted values were only based on the 18 

execution functions. Thus, these results suggested that there were systematic execution errors. 19 

However, it is not clear whether the encoding functions or execution functions from the simple 20 

translation and rotation tasks are the same as those functions in the triangle-completion task. The 21 

current study, using cross-validation modeling, estimated encoding functions and execution 22 

functions in the triangle-completion task using half of the data measured in the triangle-23 
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completion task per se, instead of using other independent and simpler tasks (e.g., reproduction 1 

tasks in Chrastil & Warren, 2021). Therefore, the current study avoided the issues of assuming 2 

that the encoding functions or execution functions from the reproduction tasks are the same as 3 

those functions in the triangle-completion task. As the current study still showed that there are 4 

systematic biases in execution, separately from encoding biases, it provided clearer evidence for 5 

execution biases, one of the key claims of the execution-error model.  6 

Chrastil and Warren (2021) also showed that the model with both encoding functions and 7 

execution functions did not outperform the model with only execution functions. In contrast, the 8 

current study indicated that both encoding biases and execution biases contributed to the biases 9 

in inbound responses. This discrepancy might occur because these two studies used different 10 

methods of estimating the encoding functions and execution functions. Chrastil and Warren 11 

(2021) estimated the encoding functions and the execution functions from reproduction tasks by 12 

assuming that there were only encoding biases or execution biases. They then used these 13 

encoding and execution functions in the model with both encoding and execution biases. 14 

However, the best parameters of encoding functions in the model with both biases may differ 15 

from the best parameters of encoding functions in the model with only encoding biases. 16 

Similarly, the best parameters of execution functions in the model with both biases may differ 17 

from the best parameters of execution functions in the model with only execution biases. By 18 

contrast, the current study estimated the encoding functions and the execution functions for the 19 

bi-component model independently rather than simply borrowing the encoding functions 20 

estimated for the encoding-error model and the execution functions estimated for the execution-21 

error model. As shown in Tables 1 and 2, the parameters of encoding functions in the encoding-22 

error model (M1) differ from the parameters of encoding functions in the bi-component model 23 
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(M3). The parameters of execution functions in the execution-error model (M2) also differ from 1 

the parameters of execution functions in the bi-component model (M3).  2 

The finding that the bi-component model was the best is not attributed to more free 3 

parameters of the bi-component model than the other two models. In model validation, as the 4 

models were validated using the other halves of the data (test subsamples), the numbers of free 5 

parameters were the same for all three models. The likelihood ratio still showed the superiority 6 

of the bi-component model (see Table 3, left sub-table for multiple response locations). 7 

Furthermore, the findings of cross-validation modeling using the simulated response locations 8 

(multiple response locations) clearly indicated that if the true model was the encoding-error 9 

model (M1) or the execution-error model (M2), the bi-component model (M3) never 10 

outperformed the true model when the simulated locations were created using fixed values of 11 

parameters (Figure 6, upper panel) and seldom outperformed the true model when the simulated 12 

locations were created using varied values of parameters (Figure 11, upper panel).  13 

In addition to using cross-validation, using multiple inbound responses for each outbound 14 

path is also critical to differentiate the bi-component model from the other two models. Different 15 

from the typical triangle-completion task with only one inbound response (i.e., the homing 16 

vector) for each outbound path, the triangle-completion task used in Qi et al. (2021) required 17 

participants to indicate three learned locations (including the home location) during the response 18 

phase. Previous studies indicated that one inbound response may not be able to recover 19 

participants’ encoded positions and headings at the endpoint of the outbound path (e.g., Mou & 20 

Zhang, 2014). As one inbound response can be caused by many possible encoded positions and 21 

headings at the endpoint of the outbound path, this implies that the errors in the inbound 22 

response can be attributed to the encoding biases alone, the execution biases alone, or the 23 
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combination of both. In contrast, multiple inbound responses (multiple target locations) for each 1 

outbound path can recover the participants’ encoded positions and headings at the endpoint of 2 

the outbound path (e.g., Mou & Zhang, 2014; Qi et al., 2021; Zhang et al., 2020). Thus, we 3 

conjectured that the encoding functions and the execution functions can be separated by a cross-4 

validation algorithm using multiple inbound responses (multiple target locations) for each 5 

outbound path. These insights were confirmed by the modeling results based on the empirical 6 

data of Qi et al. (2021) (see Tables 3 and 4) and based on the simulated data (see Figures 6 and 7 

11 and also Tables S4 and S11).  8 

One may argue that the different discrimination abilities of the algorithms using multiple 9 

response locations and using home response locations alone might be attributed to the number of 10 

data points. The number in the former was three times that in the latter. According to Formulas 11 

12 and 15, the likelihood ratio is the proportion of xn (x is the ratio of RMSE, n is the data 12 

number). To address this issue, we calculated √𝐿𝑅-  for the LRs of M3 over M1 (LR31) and M2 13 

(LR32) in model validation using multiple response locations (see Table 3 left, LR31 = 1.28 × 1020	14 

and LR32 = 1.02 × 1011). The results were 5.04 × 106 and 4672.33, which still showed strong 15 

evidence favoring M3. Therefore, the evidence of favoring M3 using multiple response locations 16 

and the lack of evidence of favoring M3 only using home response locations should not be 17 

attributed to the different number of data points. 18 

The current study supported the bi-component model, which considers linear functions to 19 

represent the working mechanisms of both encoding and execution processes, on the basis of 20 

previous research (Chrastil & Warren, 2014; 2021; Fujita et al., 1993; Loomis et al., 1993). 21 

However, we do not claim that there would be an immutable set of parameters for the current 22 

model across all pathways and contexts. Klatzky et al. (1999) reflected that the parameters of the 23 
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encoding functions based on the encoding-error model varied with the values of the outbound 1 

path (e.g., the path lengths of 1-3m or 4-6m). In addition, we admit that the encoding functions 2 

could also vary as Harootonian et al. (2020) showed that encoding functions of turn angles could 3 

be removed from their version of the encoding-error model when participants walked much 4 

longer paths. 5 

Additional studies are needed to examine the applicability of the bi-component model 6 

under various conditions, such as path integration on more complex paths, since navigators may 7 

adopt different navigational strategies depending on the complexity of the path (Klatzky et al., 8 

1990; Wiener et al., 2011; Wiener & Mallot, 2006). On simple pathways, navigators are more 9 

likely to remember the path configuration, and calculate the vector to go home only when needed 10 

(that is, an offline process), which is a configural strategy; On complex pathways, however, 11 

storing the presentation of the path configuration is challenging for navigators, and they tend to 12 

switch to continuously updating the homing vector (that is, an online process), which is a 13 

continuous strategy. Wiener and Mallot (2006) demonstrated that participants pointed homeward 14 

even faster and more accurately as path complexity increased while maintaining the overall path 15 

length, turn angle, and turning direction constant. In addition, an outbound path with path 16 

crossover might also be hard to encode the configuration (Fujita et al., 1993; Klatzky et al., 17 

1990). However, Yamamoto et al. (2014) found that the presence of path crossover in traveled 18 

paths caused little impact on path integration performance. Future studies may test the bi-19 

component model using outbound paths with more turns and path crossover. 20 

We acknowledge that the current study examined the sources of systematic biases in 21 

homing when participants pointed to the targets including the home object. In other studies, 22 

which tackled similar research questions (Chrastil & Warren, 2021; Fujita et al., 1993; 23 
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Harootonian et al., 2020), participants physically walked back home. We do not believe that this 1 

method discrepancy should undermine the conclusion of the current study because of the 2 

following evidence. First of all, although not as often as walking to the origin, pointing to the 3 

origin was still often used in the history of studying human path integration. In a review chapter 4 

on human path integration, Loomis and his colleagues wrote “Other variants of path completion 5 

have had the subject indicate only the direction of the origin from the dropoff point, typically by 6 

pointing to it using a protractor (e.g., Able & Gergits, 1985; Adler & Pelkie, 1985; Baker, 1985; 7 

Gould, 1985; Klatzky et al., 1998; Rieser & Frymire, 1995; Sadalla & Montello, 1989; Sholl, 8 

1989).”  (Loomis et al., 1999, p. 134).  Hence, pointing, in addition to walking, can be used to 9 

study path integration. 10 

Second, to our best knowledge, there is no study showing that walking and pointing to 11 

the origin led to different conclusions about human navigation. Rather, studies using either 12 

pointing or walking showed the same results. Tcheang et al. (2011) showed that participants after 13 

adapting to a smaller vision-locomotion gain (i.e., visual cues indicated a smaller turn angle than 14 

did locomotion), overestimated the inbound turn angle in the following triangle completion task 15 

without vision. This result indicated that participants underestimated the turn angle in the 16 

outbound path because of the smaller gain. Du et al. (2020) replicated this result although 17 

participants in Tcheang et al. (2011) walked to the origin while participants in Du et al. (2020) 18 

pointed to the origin. Hence, underestimating the turn angle in the outbound path led to 19 

overestimating the inbound turn angle regardless of whether the response methods were walking 20 

or pointing. Thus, pointing, in addition to walking, can examine the biases of encoding the 21 

outbound path. 22 
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Can pointing, in addition to walking, be used to examine the biases of executing the 1 

desired inbound path? Walking (including walking forward and turning the body) and pointing 2 

appear to be two different kinds of actions. While walking is gradual (e.g., step by step), pointing 3 

seems more immediate. One may assume that execution biases occur in gradual actions but not 4 

in immediate actions. Following this assumption, one may speculate that pointing has very 5 

minimal execution errors. This speculation sounds reasonable but is inconsistent with the 6 

findings of the current study. The current study demonstrated the compression patterns (slope is 7 

smaller than 1 and intercept is larger than 0) in both inbound path length and inbound turn angle 8 

on the group level and individual levels (Figures 3 and 9). Furthermore, the best model (i.e. the 9 

bi-component model) clearly showed the compression pattern in the execution functions for both 10 

length (𝜃!_#$6$ = 0.69 and 𝜃!_'$6$ = 1.10) and angle (𝜃(_#$6$ = 0.82 and 𝜃(_'$6$ = 34.21) (see Table 1 for 11 

M3 using multiple locations). Therefore, pointing can reflect the execution biases. Hence, there 12 

is no reason to believe that the compression patterns in inbound pointing responses in the current 13 

study were caused by a mechanism different from that caused the compression patterns in 14 

inbound walking responses. 15 

We speculated that one of the reasons why pointing to the origin was less used than 16 

walking to the origin in the research of human path integration is that in real environments, 17 

pointing may generally only indicate the direction of the origin whereas walking can indicate 18 

both direction and distance of the origin. However, nowadays in immersive virtual environments, 19 

participants could point to the exact location of the home with a virtual stick in a relatively small 20 

environment (e.g., up to 6m in Qi et al. (2021), see Figure S1 in the current paper). We argue that 21 

pointing is a more effective way to study human path integration. First, it is fast to collect 22 

participants’ pointing responses than walking responses. Second, there are fewer safety issues or 23 
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space requirements to collect participants’ pointing responses than walking responses. Last, it is 1 

possible to collect several inbound pointing responses for a single outbound path, which is 2 

important as the current study showed that the algorithm using multiple responses could 3 

differentiate models but the algorithm using homing only could not differentiate models.  4 

Participants in the current study pointed to three objects after each outbound path, which 5 

provided a unique opportunity to differentiate models. However, one may be wondering whether 6 

the task of pointing to multiple objects invokes spatial updating mechanisms different from that 7 

used in pointing to the home location only. When people keep track of three objects during 8 

locomotion, they might only be able to update self-to-object vectors and have no extra resources 9 

to update the path configuration at the same time. In contrast, when people only keep track of the 10 

home location, they might have enough resources to update both the self-to-object vector and 11 

path configuration. Hence, participants pointing to three objects in the current study might have 12 

been less likely to have configual updating than those who only had a homing response in the 13 

typical homing studies (Kearns et al., 2002; Klatzky et al., 1999). We appreciated this concern 14 

but argued that this concern had been addressed by the learning procedure in the paradigm of 15 

pointing to multiple objects used in the current study. 16 

Mou and Zhang (2014), when originally introducing the paradigm of pointing to multiple 17 

objects in the inbound phase, acknowledged and addressed the issue of different memory loads 18 

in the paradigms of pointing to multiple objects and pointing to the origin only. They wrote 19 

“participants were allowed enough time to learn the directions of five objects accurately (see 20 

details in Experiment 1 for the evidence). When participants replaced the objects, they used a 21 

visible virtual stick to indicate the positions without any time pressure to ensure that they 22 

executed their responses as accurately as possible.” (Mou & Zhang, 2014, p.557).  Zhang et al. 23 
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(2020) directly compared the paradigm of pointing to multiple objects with the paradigm of 1 

pointing to the home location when they investigated whether the Bayesian cue combination 2 

occurred prior to or during homing. Their results in experiments 1 and 2 showed the same 3 

results, that is no Bayesian cue combination in homing when the second leg of the outbound path 4 

was much longer than the first leg of the outbound path. Furthermore, Lu et al. (2020) showed 5 

that online/offline spatial updating (analogue to continuous/configural updating) was not only 6 

determined by the number of objects to update during locomotion but also by the fidelity of 7 

spatial memory. When the same objects were placed at the same locations across all updating 8 

trials, participants appeared to use offline spatial updating regardless of the number of objects to 9 

update.  10 

Therefore, as long as participants had well-learned target locations before walking the 11 

outbound path in the paradigm of pointing to multiple objects, they used the updating 12 

mechanisms similar to participants in the typical homing paradigm. Participants in the current 13 

study (i.e., Qi et al., 2021) had enough time to learn the three object locations. Furthermore, they 14 

saw the non-home objects at the same locations across all outbound paths so they should have 15 

learned the locations of objects very well. As a result, in addition to execution biases, the current 16 

study showed encoding biases, suggesting that participants in the current study still used 17 

configural updating. 18 

One potential limitation of the current model is presuming minimal systematic integration 19 

errors, as with previously proposed models of path integration (Benhamou & Séguinot, 1995; 20 

Chrastil & Warren, 2021; Fujita et al., 1993; Harootonian et al., 2020). The integration errors 21 

emerge from computing the desired inbound responses based on the internalized representation 22 

of the traversed path. In addition to cognitive maps, humans also build labeled graphs (Warren, 23 
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2019; Warren et al., 2017), and the difference between these two may reflect the involvement of 1 

integration errors. One conjecture is that as the complexity of the outgoing path increases, the 2 

integration errors will subsequently surge (if one keeps using the configural navigation strategy). 3 

Future modeling studies may consider some possible systematic biases in the integration errors 4 

instead of assuming that there were random integration errors. 5 

5. Conclusions 6 

The results of modeling, using multiple inbound responses for each outbound path, 7 

support a bi-component model that incorporates both systematic biases in encoding the outbound 8 

path and executing the desired inbound responses to account for the systematic errors (regression 9 

to mean pattern) in the inbound responses. In addition, the results of modeling using only the 10 

home response for each outbound path could not dissociate the bi-component model from the 11 

encode-error model and the execution-error model. Our findings reconcile the execution-error 12 

model with the encoding-error model of human path integration. Furthermore, the current study 13 

demonstrates that cross-validation modeling using multiple inbound responses for each outbound 14 

path can be a powerful tool to understand human path integration. 15 

  16 
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