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ABSTRACT

One possible solution to the automobile traffic congestion
and high accident rates prevalent in urban areas is the development
of an automated personal-vehicle system. Research which has been
carried out into this and related topics is reviewed in the first
' part of this thesis.

The requirements of an automatic longitudinal control
gystem for personal vehicles.are outlined and several previously-
developed controllers are examined. Optimai control theory is then
used to design feedback controllers for two and three-vehicle type
vehicle-following systems. Dynamic behaviour of these systems
corresponding to different performance criteria is studied by means
of analogue simulation.

The criterion for asymptotic stability of a string of
vehicles is presented and it is shown that all of the optimal systems
developed in this thesis are asymptotically stable. Effects of a time
delay on string stability are also investigated.

A simulated vehicle-following experiment using the human
operator as a link in the automatic system is capable of only slightly
sub-optimal performance and has the advantage of yielding the im-

plementation of the vehicle-following system economically feasible.
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CHAPTER 1

INTRODUCTION

1.1 The Role of Transportation in Modern Society

It is generally agreed that transportation is one of the
many social and technological problems which will require a major
expenditure of human and economic effort in the closing decades of
the twentieth century. 'Until now, the development of new methods of
transporting people and goods has not kept pace with the social
changes which have taken place in most industrialized countries since
1900, The growing urbanization of the population of these countries
has been the main cause of the decreased efficiency of existing modes
of transportation, For instance it 1s estimatedll]* that by 1990,
85% of the population of the United States will live in essentially
urban areas. It should immediately be realized that in certain areas
of that country, and others including Canada, this percenthge will be
even greater.

Gibsonll] has divided transportation into four categories
according to distance travelled with corresponding methods for moving
people most efficiently. These are shown in Table 1.1, The latter
two modes have received considerable attention and will in the near
future be highly developed. This will result in short terminal-to-

terninal transit times over long distances. The additional departure

& Numbers in [ ] refer to references listed at the end of the Chapter.
References are listed in the order in which they appear in the text.
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Average Speed

Distance (miles) Mode (m.p.h.)

50 to 150 personal vehicle 50
high speed
75 to 750 ground transportation 250
(HSAT)

50 to 2500 jet plane 500

guper-sonic
2000 to 6000 transport 1500
(SST)

Table 1.1 A Classification of Transportation

According to Distance Travelled
point-to-terminal and terminal-to~destination times will however re-
main relatively long unless the former two modes of transportation
pecome more highly developed. Thus the two most important links in
the overall global transportation system outlined in Table 1.1 are
the development of a computer-controlled, hybrid, personal-vehicle
system for intracity travel and a high speed ground transportation
system (HSGT) for intercity movement. At the present time substantial
effort is being made to develop HSGT systems which are technologically
and economically feasible. Examples of such modern HSGT systems are
San Francisco's BART systemlz], Japan's New Tokaido Line[3] and those
envisioned by several major cities around the world,

Por several reasons, HSGT systems do not appear to be a

complete solution to the traffic congestion problem in urban areas.



From the human standpoint, the desirability of a personal vehicle
with its intrinsic convenience and flexibility cannot be denied. Un-

fortunately, the present-day automobile is not suited to the task of

_transporting large numbers of people in high-density urban areas. It

is gtill best suited to recreational motoring for which it was origin-
ally conceived. In fact, Michaele[al has estimated that a single HSGT
guideway is capable of a passenger flow rate which would be 15 times
that of a single lane of automobile roadway. In addition, the auto-
nobile has shown itself to be relatively unsafe compared to other modes
of transportation and to be the cause of much of the air and other
pollution experienced in many areas. Despite these disadvantages it
has been estimatedls] that 90% of the passenger miles accumulated in
the United States in 1966 was attributable to the private automobile.
Hence it would appear that efforts ghould be directed toward the de-
velopment of a personal vehicle vhich would have increased safety
features and would cause less traffic congestion and pollution without
sacrificing the attractive aspects of the automobile such as flexibility
and privacy.

The problem of pollution is best golved by the elimination
of the internal combustion engine used in today's automobiles. Great
difficulty has been experienced in developing an alternative propul-
gion unit which is as compact, gerviceable and which exhibits the de-
sirable dynamic properties of the conventional engine. 1f a system
vere envisioned in which the vehicles received power from the roadway
in some form, then a more gatisfactory personal vehicle could be de-

veloped. The problems of reducing congestion and increasing safety of



travel are mutually opposed. If congestion is to be reduced, traffic
flow rates must be increased (by increasing the average vehicle speed
and concentration). This however, is likely to result in reduced
safety of travel,especially in the case of the conventional automobile.
Hence some form of automatic longitudinal control of the personal
vehicle will be required to increase its efficiency without sacrificing
safety. This subject will be pursued in some detail later in this
thesis (Chapters 2 and 3).

It is also important to recognize that as a first step in
improving longituQinal control of automobiles, driver-aids might be
provided to supply more accurate information about the state of
adjaéent vehicles (such as position and velocity) to the vehicle
operator. This type of system might be termed a semi-automatic or a
driver-aided system, This type of system will also be considered
later in this thesis (Chapter 4).

1.2 The Requirements of an Automatic Longitudinal Control System

for the Personal Vehicle

The personal vehicle {ntroduced in the previous section
could take several forms depending on the requirements imposed by the
environment in which it would be used, It is evident that in order to
be useful under a variety of conditions the vehicle ghould be capable
of being controlled both manually and automatically.

Regardless of the exact form of the personal-vehicle system,
geveral requirements pertaining to its longitudinal control are funda-
mental. We shall assume that the vehicles operate on a single lane of
roadvay and that some form of lateral and steering control is provided

either automatically or manually. The following set of requirements
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are similar to those given by Fenton and Bender[6] but have been some-

what enlarged upon here.

1.

3.

al

The system must be capable of maintaining a particular.separa-
tion between adjacent vehicles. We shall term the distance
from a particular point on one vehicle to the same point on
the adjacent vehicle (say, the distance betﬁeen the front
bunpers) the headway. In order to achieve a high traffic flow
rate, the headway should be made as small as possible for some
fixed velocity. The requirement to maintain a scheduled head-
way 1s closely related to the requirement of maintaining zero
relative velocity between adjacent vehicles.

gach vehicle in a string of vehicles must be stable with res-
pect to the motion of the vehicle directly ahead, That is,
pounded perturbations in the motion of one vehicle must re-
sult in bounded perturbations in the motion of the vehicle
directly behind, We shall term this requirement that of

local stability.

Pertu;bations in the motion of any vehicle in a string must

be attenuated as they propagate down the string., We shall
tern this requirement that of asymptotic stability.

The application of large accelerating and decelerating forces
to the vehicles must be limited in the 1nte§es; of passenger
comfort. In any case the magnitude of these forces must not
exceed the capabilities of the vehicle.

The ahove descriptive statement of requirements will be put

{nto mathematical form when the design of an automatic vehicle-following

gysten {8 fornulated in Chapter 2.
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1.3 Background (A General Survey of Related Research)

Before attempting to outline the scope of this thesis, it
vill be useful to review in a general way the work done so far in
the areas of HSGT systems, traffic models, car-following systems and
studies related to the human operat;r as part of a vehicular control
system. Further reference to certain of the above areas of research
will be made in later chapters when deemed useful,

1) High Speed Ground Trangportation Systems

Many of the techniques and results developed for the auto-
patic longitudinal control of HSGT systems are applicable to the
control of a more tightly coupled personal-vehicle system. Other
aspects of HSGT systems will not be discussed here but can be found
in the literature[2’3’7].

The use of modern control theory to design longitudinal
HSGT control systems was initiated in the United States in 1964 at
the Massachusetts Institute of Technology (M.I.T.) under a directive
from and supported by the United States Department of Commercels].
These studies included many aspects of HSGT systems such as vehicle
aerodynamics, propulsion, vehicle-guideway interactions, human factors,
scheduling, network configuration, computer control, communications,
and dynamics and control of vehicle groups. It is the last-mentioned
category which has application to the work reported in this thesis.

An early result reported by researchers Athans and Levine
at M.1.T. was concerned with the design of an optimal error regulator
[9,10].

for a string of high-speed trains The requirements of & control

system for a string of trains travelling on a single, straight, level




guidevay were put in the form of a quadratic cost functional and the
feedback gains for the optimal error regulator solved for by use of
optimal linear regulator theory. The resulting system when sinulated
appeared to perform in the desired manner. A scheme for merging two
train systems was also investigated[lll. This scheme made use of

the optimal feedback system developed earlier for single guideway use.
These error-regulating systems required the continuous transmission
of the velocity and position of each vehicle to every other vehicle
in the system, To simplify the communication system somewhat, sub-
optimal forms of the original regulator (in which data was trans=
mitted only between adjacent vehicles) were studiedllz]. This re-
gulted in a reduction in the number of feedback loops required. Sim-
ulation studies indicated that the performance of the sub-optimal
system was only glightly inferior to that of the optimal system. With
the idea of further reducing the conmunication system requirements,

Levis and Athans developed an optimal sanpled-data control system for

high-speed trains[13]. In this system, the position and velocity of

each vehicle is measured once every T geconds, The accelerating and
decelerating forces applied to each vehicle are held constant during
the sampling period. In general, there is a trade-off between the

size of sampling period (which governs channel capacity, band-width,

etc. of the communication system) and system performance.

Anderson and Pownerlla’lsl have investigated the optimal
sanpled-data control of high-speed trains in the presence of state
peasurement noise and random disturbances. Use was made of the dis-

crete form of the Kalman estimator together with an optimal sampled-



data feedback system similar to that used by Athans and Levis.

Peppard and Gourishankar[16] have considered the addition
to the cost functional of a term penalizing the system for excessive
jerk or time rate of change of acceleration. The resulting system
was shown to exhibit a smoother change ‘in acceleration which 1s de~
sirable for passenger comfort.

Melzer and Kuo[17] have developed a general theory for the
optimal control of linear systems comprised of infinite identical
objects. The method has been applied to the case of an infinite
number of trains and the structure for the control system obtained.

The research described up to this point has centred around
the concept of using a linear optimal control system to regulate the
position and velocity of each vehicle in the HSGT system. This ap-
proach requires the use of a quadratic cost functional since other
forms of performance index would result in a monlinear controller,

A wider range of problems associated with HSGT systems 1s considered
by Hajdu et al.[18] including headway and speed control, merging,
station control, and emergency procedures.

i1) Car Pollowing and Traffic Flov Models

In order to successfully design an automatic motion control
system for strings of personal vehicles, it is necessary to under-
gtand the nature of present-day traffic flow especially with regard
to its limitations in the areas of flow rates and safety of travel.
The study of the motion of closely-grouped strings of automobiles
vwhen no passing Is permitted (single-lane traffic)can be made in two

ways:




1. For long strings of vehicles, meagsurements can be made of

the concentration (cars per unit length of roadway) and the
flow rate (cars per unit time past a point on the roadway).
If these measurements are made over sufficient distances

(say % mile) and sufficient time (say the time required for

i mile length of vehicles to pass a given point), a steady-

state flow vs. density relation can pe determined. Generally

the flow rate will be zero for zero concentration and for the
"jan" or bumper-to-bumper concentration, reaching a maximum
for some intermediate concentration, The optimum velocity
at which the maximum flow rate occurs ig also of interest.
From the experimental data, equations relating flow and den-
sity can be empirically postulated.

The second approach to the_study of traffic flow is by use
of car-following models. Car following is a term applied to
the mode of traffic flow in which the motion of each vehicle
in a string is determined by the motion of the vehicle im-
mediately ahead. Car-following models can be tested either
experimentally or by deriving the steady-state flow vs, den-
sity relation corresponding to a particular model. This re-
lation should agree with the measurements made on actual

traffic flow.

Tvo equations relating traffic flow and concentration which

have been proposed are the following:

Greenshields' equation:

q= 2ck(l - k/kj)m] (L.1)
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Greenberg's equation:
q = ck 1n(kj/k)[20] (1.2)

where ¢ is the flow rate, ¢ is the optimum speed at which q 1s a
maximum, k is the concentration and kj is the jam concentration.
These two relationships are plotted in Figure 1.1 for values of

¢ = 17.2 m.p.h, and kj = 228 cars per mile. From experimental data
taken by Greénshieldsllg] and by Edie and Foote in the tunnels of
New York City[zll, Greenberg's equation seems to give the best des-

cription of traffic flow.

In a car-following law, each vehicle in a string of vehicles

is assumed to follow a differential-difference equation. Such a law
(22]

was first proposed by Pipes . Extensions to this law by Chandler, .

Herman and Montrolllza] and Gazis, Herman and Pottslza] have resulted

{n a car-following lew of the form

;n+1(t +1) = alz (0 = 7, (0)] (1.3)

vhere in(t) and én+l(t) are the velocities of the nth and (ntl)th
cars in the string, ;n+1(t +T) is the acceleration of the (nt+l)th
car at time t plus a time lag T and a is a proportionality coefficient
which can either be a constant or 8 function of the position of the
two vehicles (l.e. a = constant or @ ® ao/(zn - zn+1)). The latter
value makes (1.3) nonlinear and yields a reciprocal spacing car-
following model. Car-following experiments have ghown the reciprocal
spacing model to give the best agreement with the collected data. The
assumption of u = constant i not very realistic since it yields a

car-following law which is {ndependent of spacing between vehicles.
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The traffic flow vs. demsity relation derived from the

reciprocal spacing car-following model is
q= aok ln(kj/k) (1.4)

which is identical with Greenberg's law if o is set equal to c, the
gpeed for maximum flow[zal. Table 1,2 shows values of ¢ obtained by

Edie[25] and values of do calculated from this data and from car-

following experiments carried out by Gazis et al.[zal.
“ a, (m.p.h.) ¢ (m.p.he)
Lincoln Tunnel (Edie) 20 17
Holland Tunnel (Edie) 18 15
Queens Tunnel (Edie) 22 | 25
CM Test Track (Gazis et al.) 27 -
1

Table 1.2 Experimental Values for Optimum Velocity (c)
and a, of the Reciprocal Spacing Law

It is interesting to observe at this point that the car-
following law not only describes the microgeopic movements of in-
dividual vehicles in the string but also by implication the macrogeopic
relationship between flow and concentration for the entire string.

The above car-following laws also give values of a and T
for which a vehicle in a string will become unstable relative to the
motion of the vehicle directly ahead (local instability) and for which

a disturbance propagating down a string of vehicles will not be damped
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out (asymptotic instability), The constant-n and the reciprocal
gpacing laws have been examined in this light by Herman, Montroll,
[26] (27]

Potts and Rothery and by Komitani and Susaki

For the constant-o model the condition for local stability
is aT < 1/e and for asymptotic stability is of < %. A typical value
for the time lag T has been found to be about 1.5 seconds. Numerical
analysis of the reciprocal spacing model indicates that traffic obey-
ing this car-following law would exhibit slightly greater local and
asymptotic stability.

Several other methods of modelling traffic flow have been
proposed. Lee[28] has introduced the idea of a memory function to
describe the way in which a driver of a vehicle processes the in-
formation which he receives from the lead vehicle. Cosgriff‘zg] has
used an asymptotic approximation to a car-following law as well as
introduced the use of frequency-domain (transfer function) techniques
to analyze asymptotic stability. Unwin and Duckstein[30] have used
a phase plane analysis to study the stability of a reciprocal spacing
type car-following model.

(31]

Gazis has suggested a variational formulation of a car-
following model in which the driver attempts to minimize a function

of the form

T f{[v - BE et +uty - vl e (1.5)

where v = F(y) gives the desired relationship between the velocity

v and the spacing y, a is the vehicle acceleration, Yy 18 the desired

velocity and ) and j are weighting factors. This approach seems
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promising in the light of receat research into the nature of the human

operator as an optimal controller. This work will be discussed further

later in this chapter.
4i1) Automatic Car-Following Systems

Essentially, two approaches have been taken in the develop~
ment of methods to improve the characteristics of a string of auto-
mobiles. In each case the object has been to increése the flow rate
on a roadway and at the same time to {ncrease the safety of travel.
One approach has been directed toward developing methods to aid the
driver in his task of longitudinal control. The methods include the
design of devices to collect and display information on the relative
motion between the driver's vehicle and that directly ahead, as vell
as new control devices. The above techniques, which will be referred
to as driver aids,constitute an {ntermediate stage between the con-
ventional automobile and a fully-automatic vehicle. Considerable
work has also been done in designing and testing fully-automatic long-
itudinal control systems for automobiles. Some of the more important
results of this latter approach will be reviewed here.

All the systems developed so far have veen designed to meet
the requirements outlined in section 1.2. Hajdu et al.lla] have out-
lined three alternative feedback schemes which will result in an auto-
matic linear controller for regulating the position and velocity of
a string of vehicles. These alternatives are:

1. Relative velocity and relative position feedback.
2, Actual velocity and relative position feedback.

3. Actual velocity and actual position feedback (measured with

respect to a fixed reference).
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Alternative 3 is generally undesirable since no information on the
state of the vehicle directly ahead is transmitted to the following
vehicle. Consequently; emergency stopping procedures could not be
implemented. Alternative 1 results in a control law of the form

Z

ntl Kv(zn ) zn+1) ¥ Kd(zn T %l T h) (1.6)

where z) and 2 41 O the positions of the nth (lead) and (n+l)th
(following) vehicles respectively, h 1s the desired headway and Kv

and Kd are feedback gains. It can be shown that a sinusoidal dis-

turbance in the motion of the nth vehicle will result in an increased
amplitude of disturbance in the motion of the (ntl)th vehicle for
frequencies w < (2Kd)k. This would result in asymptotic instability
of a string of vehicles governed by (1.6).

Alternative 2 would result in a control law of the form

2. =K B) (1.7)

o1 * Kl ™ Zt) Kl

n 24l ”

where v .. 1s an on-board velocity reference for the following

ntl
vehicle. A string of vehicles based on control law (1.7) will be
asymptotically stable for sz > 2Kd. In general a combination of
alternatives 1 and 2 will result in a stable system for the proper
choice of the gains KV and Kd.

(6,32]

Fenton and Bender have considered a system with a

control law

= Kv(zn - zn+1) + Kd(Ah - klzn -kz ) (1.8)

2o+l 2°ntl

for which they have determined the conditions for asymptotic stability.
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They also showed that in order to achieve high traffic flow rates,
operation near the limit for asymptotic stability would: be required.
This is due to the vehicle time constant T which is defined as the
time required for the vehicle to reach 63.2% of its fina} velocity
value for a command step change in velocity. This was found to

range from 8 to 40 geconds. The necessary condition for asymptotic
stability was shown to be (kl + k2) > 0,787 1 and hence for opera- '
tion with small {ntervehicular spacing (i.e. (kl + k2) < 1), it would
be necessary to reduce T to 1 second or less. The system governed by

(1.8) was tested in an actual vehicle for various values of Kv, Kd

“and k =k, +k,. It was concluded that in order to achieve high flow

1 72
densities and to simplify the nature of the control system, it was

desirable to uge only relative velocity feedback {nformation (Kd = (),
The headway would then be fixed by other factors such as string
velocity. When headway feedback was used, it was found that a very
responsive vehicle was required and the resulting changes in velocity
vere detrimental to passenger comfort.

The preceding results can also be found in [33] which is a
collection of results of the work done at Ohio State University con-
cerning longitudinal control systems for automobiles. Reference to
specific sections of this report will be made in later chapters of
this thesis.

The longitudinal control systems developed at Ohio State
University were tested by Bender and Fenton by using sinusoidal and
other deterministic disturbances in the motion of the lead vehicle.

In practice, disturbances generated within 3 string of vehicles are

2.
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stochastic in nature. The nature of the "noise” associated with
vehicles attempting to maintain a constant velocity has been invest-
igated by Montrolllza]. Roeca[35] has studied the response of queues
of automatically controlled vehicles to various types of random dis-
turbances. Controllers were designed to optimize queue response to
these disturbances.

The results reported above do not indicate methods to
measure vehicle-spacing or methods of transmitting position and vel-
ocity information between vehicles. Although this area of invest-
igation is not related to the main topic of this thesis, it is useful
to be avare that the type of detection scheme employed will to some
extent govern the type of control system used and vice-versa, For
example, if the headway detection is by means of sensors placed at
fixed intervals along the guideway, a control system requiring con-
tinuous headway information could not be implemented.

While the automatic systems described above indicate con-
siderable improvement in the performance of a car-following system
as against the conventional automobile, these schemes cannot be im-
plemented overnight or in a single sweep., The transition to automatic
systems must be gradual and compatible at all times with the present
roadway system. Hence several intermediate steps between the conven-
tional automobile and the fully-automated personal vehicle must be
developed. Even the fully-automatic vehicle will be required to operate
in a manual mode on roads with light traffic., Por this reason, several
{nvestigators have attempted to improve the performance of the human

operator while driving a vehicle in the car-following mode.
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Fenton[36] has pointed out that the first step in the trans-
g ition from the conventional automobile to an automatically controlled
system of vehicles is the elimination of the accelerator-brake pedal
system which is not optimal from a human-factors viewpoint. Fenton[37]
{ and Fenton and Montano[38] have tested a control stick with a built-in
i tactile aiding deéice to control steering, acceleration and braking

in a simulated car-following situation., The aiding device is in the
form of a "finger" mounted in the head of the control stick. The out-
ward-inward movement of the finger supplies the driver with informa-
tion about headway or a linear combination of headway and relative
velocity, Results indicated a substantial reduction in relative
velocity and headway variance particularly for the case when both
headway and relative velocity information are supplied to the driver.
The above results were gained from a simulated car-following situa-
tion and were compared with those obtained using a conventional auto-

mobile. The use of a control stick appears to have the following

advantages:

1. Difficulties involved in manual-to-automatic driving control
. and vice-versa are minimized.
| 2, The effective human reaction time for braking is sizeably

reduced.

3. A driver aid (the tactile finger mentioned above) can be

readily incorporated into the control device.
The main disadvantage of such a controller is the lack of public
acceptance and this must be weighed rather heavily.

Other types of displays such as audible and visual types can

be uged to supply information to the driver of a conventidnal
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automobile. Bierley[39] used meters to supply visual information
about headway or headway plus relative velocity to the driver. It
vas found that the latter type of display resulted in a reduced head-
way variability in actual car-following experiments.

‘The simplest form of driver aid which is currently in use

{s the tail-light system on the conventional automobile, Safford,
Rockwell and Bénasiklao’al’azl have investigated the effect of add-
itional information supplied to the driver of a following vehicle "
by the addition of lights to the rear of the leading vehicle. Effects
of various colours have also been considered. Results indicate that
almost any change from the current rear lighting system results in

van improvement in the performance of the driver.

Krenek and Rockwe11[43] have studied the effects of changes
in the automobile dynamics on a driver's longitudinal control per-
formance. Results from actual driving tests {ndicate that perform-
ance can be significantly improved by matching a particular operator
to a specific carburettor-accelerator linkage characteristic.

{v) The Human Operator in a Control System

The development of driver-aids as reported in the previous
section has been based largely on experimental research., Since most
of the experiments have been performed under actual driving conditions,
the results are at once meaningful and implementable. However, it is
possible that better aids could be developed by using known {nforma-
tion concerning the characteristics of the human operator engaged in
tracking tasks. A brief description of several proposed models of

the human operator performing a tracking task follows.
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1. Describing-function model

A continuous describing-function model of the human operator
performing a compensatory tracking task is based on the assumption
that the nonlinear response of the human operator can be approximated
by a linear equation plus a "remnant". In compensatory tracking the
operator attémpts to reduce to zero the difference between a forcing
function and the output of the controlled element as ghown in
Figure 1.2, The remnant {ncludes all components of the operator's
response which are not.linearly correlated with the input. Typical
of the large amount of significant research done in determining the
form of the describing function model is the work of McRuer et aZ.[QQ].
The Laplace transform model representing ghe 1inear portion of the
operator's response in tracking systems 1s most often expressed in
the form

Ke °(1 + ;)

H(s) = (1.9)
(1+ TNB)(l + TIs)

where K = operator gain
1 = reaction time delay
TL = ]lead time constant

TN = peuromuscular lag time constant

TI = compensatory lag time constant

This model is only a description of the input-output character-
igtics of the human operator and does not attempt to describe human
processes. The time delay 1 {s 0.15 sec. ¢+ .03 sec, for most comp-

ensatory tracking. The neuromuscular lag TN varies with the dynanic

.characteristics of the 1imb in relation to the controller and on the
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bandwidth of the signal received by the operator. Observed values
range from 0.1 sec. (high bandwidth signals) to 0.5 sec. (low band-
width signals).

N The remainder of terms in H(s) represent thé operator's
compensation for the characteristics of the controlled element and
the forcing function. These terms thus vary widely .from system to '
system and may change with time as the result of human operator learn-
ing, adaption, etc. The gain K is the human operator's primary
adjustment coefficient and when tracking random-appearing signals is
nearly inversely proportional to the input bandwidth (gain-bandwidth
product = 1.5 Hz.). As indicated above, the nature of H(s) depends
to a large extend on the dynamics of the controlled element, Elkind
and Miller[45] have studied the adaptive characteristics of the human
operator when the controlled system is time varying.

2. Sampled-data model

Evidence of a sampling behaviour in tracking records led
several 1nvestigators[46’a7] to attempt to model the human operator
as a sampled-data system. Observed intermittency in the operator's
response is of the order of 2 to 3 Hz. Bekey[46] has proposed the
inclusion in the linear transfer function (1.9) of a first-order hold

circuit of the form
-T s 2
((Tps + l)lTp] ((1-e P)/s} (1.10)

vhere Tp ig the sampling period. The output ig initially proportional
to the input at the previous sampling period and changes in proportion

to the rate of change between the preceding two samples. The outputs
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from this discrete model appear to approximate experimental data more
closely over a wider range of input frequencies than the describing-
function model described earlier. Bekey[aal has considered an adap-
tive sampled-data model in which the sampling rate and gain are
adjustable.

3. Optimal control models

These models assume that in a tracking task the human operator
performs in a near-optimum manner with respect to some performance
criterion. Blank and Schumacher[agl represented the operator by a
linear optimal feedback system with a quadratic performance index.
Various optimal controllers were gimulated and their performance com-
pared with that of the human operator performing compensatory tracking.
The transfer function for the optimal feedback system chosen to re-
present the operator was shown to approximate that given by (1.9).
Another approach used by Obermayer and Hucklerlso] involved the deter-
mination of the performance index to which the system described by
(1.9) is optimal. The model obtained by this inverse optimal control
problem approach does not take into account the instrument-sampling
behaviour, the time delay and observation limitations of the human
operator.

Baron, Kleinman and Levison[51'52’53] have proposed a math-
ematical model of the human operator which includes descriptions for
instrument monitoring and information processing by the operator. A
block diagram of the optimal model discussed in (53] is shown in
Figure 1.3,

The controlled element dynamics are non-t ime-varying and

the output of this plant is governed by the output from the manipulator
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and the input disturbances. The latter are considered to be random
(Gaussian white noise) in nature. The limitations of the human
operator are modelled by a time delay 1 and an additive observation
noise. The equalization network includes a Kalman estimator for
providing a least mean squared estimate of the displayed states in
the presence of observation noise and a least mean squared predictor
to compensate for the time delay T. Also included in this block 18
a linear optimal controller which produces a command control output.
Effects of motor noise and neuromuscular dynamics are imposed on this
control before the manipulator is activated to produce an input to the
controlled element, The mathematical details of the development of
the components of the equilization network are described by Kleinmanlsa
w1erenga[55] has investigated an optimal pilot model based on
the above block diagram by considering the inverse filter and control
problem. The frequency response of the resulting system was found to
éive good agreement with that determined experimentally.

Several good review articles concerning the human operator

as an element in a control system can be found in the litera-
ture[56’57’58’59].

1.4 Scope of the Thesis

The purpose of the preceding discussion was intended to put
the topic of this thesis into perspective as far as the general field
of automatically and manually-controlled ground transportation systems
is concerned. Also, the requirements of an automatic longitudinal
vehicle control system were presented in order to show the direction

in which the bulk of the regsearch in this area has been directed.

]
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In Chapter 2, car-following pehaviour of traffic and car-
following models of traffic flow will be gunmarized, Relative
velocity and headway feedback type automatic systems will be discussed
with emphasis placed on the stability characteristics of vehicle
strings. The optimal control approach to car following will then be
{ntroduced and compared with the more clagsical approach discussed
earlier, Optimal control systems for two and three-vehicle type car-
following will be developed and ;heir dynamic behaviour examined and
compared.

In Chapter 3, asymptotic stabiliiy of vehicle strings will

be defined and the conditions for such stability obtained. Asymptotic

stability of two and three-vehicle type strings will be examined in
the frequency and time domaing. The effect of a transport time lag
on asymptotic stability will also be considered.

In Chapter 4, a geni-automatic (or driver-aided) form of the
optimal system previously developed will be discussed. Experimental
results obtained from simulated car-following gituations will be
presented, Comparison of the performance of the automatic and driver-
aided systems will be made,

A summary of results and conclusions as well as suggestions

for future research will be pregented in Chapter 5.
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CHAPTER 2

AUTOMATIC OPTIMAL CAR-FOLLOWING SYSTEMS

2.1 The Limitations of Conventional Traffic Flow

In Chapter 1 it was shown that once the motion of an in-
dividual vehicle in a string with respect to the vehicle directly ahead
1g described by a mathematical model, then the flow vs. density char-
acteristics of the string of vehicles can accurately be predictedf In
other words, the microscopic properties of the individual vehicles in
the string determine its macroscopic behaviour, The above ig true only
{f each vehicle in the string is exhibiting car-following behaviour
(that is, its motion is affected only by that of the preceding vehicle).
If a gap between two vehicles becomes large enough, the coupling between
them will become negligible and the motion of the trailing vehicle will
be governed by factors other than the motion of the leading vehicle
such as the maximum allowable speed, the road conditions, etc.

The car-following models discussed in Chapter 1 are based on

the idea that a driver of a vehicle responds to a stimulus according

to the relation

Driver response = Driver sensitivity x Stimulus

(1}

The reciprocal spacing model of Gazis, Herman and Potts

is given by

Uo
znﬂ(tﬂ‘) = W [zn(t)-znﬂ(t)] (2.1)
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where zn(t) and zn+1(t) are the positions of the nth (leading) and
(n+l)th (trailing) vehicles res?qgtively, T ig a time lag and dots denote
differentiation with respect to time, The response of the driver is
thus in the form of an acceleration; the sensitivity varies inversely
with the spacing between vehicles; and the stimulus is the relative
velocity between the two vehicles.

It has been shown[2’3] that the condition for the local stab-

1lity of a vehicle string using the linear car-following model
zn+l(t+T) = a[zn(t) - zn+1(t)] (2.2)

ig oT < 1/e where a and T are defined earlier and e is the Napierian
bage. For the nonlinear model of (2.1), the condition for local stab-
i1ity of the vehicle string can be assumed to be very nearly the same.
An approximate value of the lower limit for the headway between
adjacent vehicles in a locally stable string is obtained by equating
the sensitivity terms in (2.1) and (2.2) with aT = 1/e. This minimum

headway is then

zn(t) - zn+l(t) = %: = g.Te (2.3)
From Chapter 1 we recall typical values for g, and T to be 20 m.p.h.
and 1.5 seconds respectively which when substituted into (2.3) yields
a minimm headway of 44 feet. Allowing say 14 feet for the length
of each vehicle, this would correspond to a separation of about 30 feet
petween vehicles. Thus it is evident that both the flow rate and
safety of travel are 1imited by the driver's sensitivity and the effect-
fve time lag T. Two main objectives {n designing an automatic car-

{ollowing system are thus to regulate the motion of a string of vehicles
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so that intervehicular spacing can be small (this would increase the
flow rate) and to ensure that the string is stable under this condi-
tion (this would increase the safety of travel). Depending on ;he
propulsion-guideway system employed, an automatic system coulé.aléo
be made to reduce the air and noise pollution to levels lower than now
existing (for example, if an electric propulsion system was employed).

2.2 Velocity and Position Feedback in Automatic Car-Following Systems

Before discussing the nature of tﬂe optimal feedback system
proposed in this thesis, it 1is useful to look at some general character-
igtics of automatic car-following systems. As was shown in Chapter 1
there are two basic alternatives as far as the feedback of information
from one vehicle to another is concerned, The first of these we ghall
term a "relative-motion feedback” type system which results in a cogtrol

law of the form

2

" 2 Kv(zn - zn+1) + Kd(zn -z h) (2.4)

vhere z and 241 are the positions of two adjacent vehicles in a
string of vehicles, ﬂ is the desired headway (front bumper-to-front
bumper distance) and Kv and Kd are gain factors. The subscript n
refers to the leading vehicle and ntl to the trailing vehicle. The
resulting feedback system {s shown in Figure 2.1,

By differentiating (2.4) with respect to time and taking the

Laplace transform we get (for zero initial conditions for the variables)

532n+l(s) = szxv[zn(s) - zn+1(s)1 + k2 (s) - zn+1(s)] (2.5)

From (2.5) we obtain the transfer function
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nth
VEHICLE | Zj

L+l

(n+1)th

VEHICLE | 2n4

FIGURE 2.1 Block Diagram of a "Relative-Motion
Feedback” Car-Following System Des-
cribed in the Text
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Zn+l(8) . s(Kd + Kvs)
Z (8)

(2.6)

2
s(s” + Kvs + Kd)

For frequency response studies we let s = ju and write (2.6) as

2,22 4
|Zn+1(w)| Ky + K

T T .

(Kd-w ) + Kv W
Note that if the leading vehicle undergoes a periddic disturbance in
position, the magnitude of this disturbance will be amplified by the

trailing vehicle for 0 < w < (ZKd)k.

If all pairs of adjacent vehicles
in the string exhibited such behaviour, the system would become
asymptotically unstable. For the special cases for which Kd = () and
Kv = 0, the system will ﬁe asymptotically stable for all frequencies
of disturbance.

Alternative 2 of Chapter 1, namely the scheme which involves

the feedback of relative position only, results in a control law of

the form
z24 " Kv(vs - zn+1) + Kd(zn "2 h) (2.8)

vhere Ve is a fixed on-board velocity reference for the trailing vehicle

For this case, the transfer function corresponding to (2.6) is

Zn+l<8) o Kd (2.9)
Z_(s) 2 )
n s +Ks+K
v d

which can be written in the standard form

2

zn+l(s) . wo
Zn(s) sz + ustuw 2
0 ()

(2.10)
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where W, ig the resonant frequency and ¢ is the damping factor. In
this case the system will be asymptotically stable for periodic dis-
turbances in the motion of the leading vehicle fdr

K

[ = ——"—11 > 0.7072 . (2.11)
2(ky)

The control law tested by Fenton and Bender[A] 1s
24" Kv(zn - zn+l) + Kd(Ah - klzn - k22n+1) (2.12)

where Ah is the incremental change in the headway between vehicles

(ah = SRR h). For this system, the transfer function is given

by
Zn+1(s) Kd + s(l(v - del)
7 (5) ) (2,13)
n g + s(Kv + deZ) + Kd
which can be written as
1
2 @ Geoth
nt+l 0
7 (3) =3 (2.14)
n 8y Bgy
2w
w 0
)
K K +Kk
2 . d o Y d 2
where u © = K, Bu, * TTKK. and =
v d1l 0 d

It can be shown that this system will exhibit asymptotic

stability for periodic disturbances in the motion of the leading vehicle

for

2 (2.15)

(¢ - (2—:)213’3 0.7072

This {s clearly an improvement over the control law in alternative 1

where asymptotic stability was frequency-dependent.
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The above examples of control strategies for an automatic
car-following system give some indication of the effect of veloclity
and/or position feedback on the behaviour of a controlled vehicle in a
system of two vehicles in a car-followiné node, In the remaining
gections of this chapter a differenf approach will be presented‘to deter-
mine the control strategy and nature of the feedback information sup-
plied to the controlled vehicle. This -approach will involve the solu-
tion of an "optimal control problem". The performance index to be
minimized will be chosen so as to reflect the requirements outlined in
Chapter 1 for an ideal personal-vehicle control system.

The optimal control problem will be formulated in two ways.
First, a string of vehicles will be considered to consist of over-
lapping units of two vehicles each. In each unit, the trailing vehicle
will be the "controlled vehicle" and the leading vehicle will be the
"controllihg vehicle" in the sense that changes in its motion will affect
the trailing vehicle but not vice-versa. An optimal controller will be
derived for the trailing vehicle of this two-vehicle unit and the dynamic
performance of the unit will be studied for a variety of cost functionals
to evaluate the merits of several different feedback schemes.

The optimal control problem will then be formulated using a
basic unit of three consecutive vehicles in a string. The middle vehicle
will be the "controlled vehicle" in this case. Its motion will be affect-
ed by the motion of the vehicles directly ahead and behind. The optimal
controller for the middle vehicle will be derived and the dynamic per-
formance of the three-vehicle unit will be studied and compared with

that of the two-vehicle unit.
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The application of the control strategies developed for
both the two and three-vehicle units to a string of many vehicles will
be pursued in the following chapter. The asymptotic stability char-
acteristics of these strings will also be considered at that time,

2.3 A Two-Vehicle Optimal Car-Following Unit

2.3.1 Mathematical Development

The following will describe the design of an optimal controller
for a basic unit consisting of two adjacent vehicles in a string (say
the nth and (n+l)th vehicles).

The nth vehicle is the "leading" vehicle and the (ntl)th is

the "following" vehicle. The basic unit is shown in Figure 2.2.

) HEADWAY
h{t)
(n+1)th Zna (1) n th Zn(t)
VEHICLE [ VEHICLE >
|
Za4(t) Znt)
>
DIRECTION OF MOTION

PIGURE 2.2 Two-Vehicle Basic Car-Following Unit
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The following assumptions apply to the two vehicles in

question:
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1. Both vehicles have identical dynamics (weight, drag, accelera-

tion and deceleration characteristics).

9. Both vehicles are operating on a single lane of straight and

level roadway. (Since we are attempting to control only

longitudinal motion we must assume some other system is avail-

able for lateral control).

3. The two vehicles are operating under steady state conditions
and undergo small perturbations in velocity about a desired
velocity Vgr

4, The moiion of the leading vehicle is random in nature (zero-

mean, Gaussian, white noise) and is the result of driver

{nattentiveness, road surface irregularities, wind variations,

etc.

The notation to be used for the motional variables of the two

vehicles is outlined in Table 2.1. The motion of the {n+l)th vehicle is

described by the following differential equation:

(t) = £ ,.(t) - dn+l(én+1;t) (2.16)

P Zntl l

where m is the mass of the (mtl)th vehicle, fn+1(t) is the applied
force and dn+l ig the drag force.

The drag force on a vehicle is generally a function of the

square of the vehicle velocity plus some rolling friction as given by

dlz;t) = £+ udiz(c) (2.17)
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Variahle nth (leading) vehicle (n+1)th (following) vehicle
pogition zn(t) , zn+l(t)
velocity zn(t) zn+1(t)
gcheduled velocity A Vg
scheduled . . . .
positioz at time. zn(t) AN zn(o) Zn+1(t) =yt Zn+1(°)
scheduled - .
headway b zn(O) zn+1(0)

Table 2.1 A Summary of the Notation Used for the
, Motional Variables of the Two-Vehicle Unit

where fr {s the rolling friction and Ly is the drag coefficient. Since
we have assumed that variations from the scheduled velocity v, are

small, we can linearize the drag force about v according to the fol-
1lowing relation:

4 (i) = dpy ) Bz 4 (®) = ) (2.18)

where y is a linear drag coefficient. This linearization is illustrated

in Figure 2.3.

We procede now to define the “error" states of the (ntl)th

vehicle.

xn+1’1(t) = zn+1(t) - zn+l(t) (2.19)

xn+1'2(t) " in*l,l(t) = z'n+1(t) - Vs (2.20)

We can now rewrite (2,16) as
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DRAG
FORCE

dn*l vs)*
DA et SLOPE L
I-'-Izn+l'VsI .

dn+] (Vs)"’ —————————————

ACTUAL
FUNCTION

LINEARIZATION

| vELOCITY
s Zn#l

I
I
I
|
|
|
|
I
|
I
I
I
I
|
V.

PIGURE 2.3 Linearization of the Drag Force
About the Scheduled Velocity v
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mn+lzn+1(t) } [fn+l(t) B dn+l(vs)] B u[zn+1(t) ) vs] (2.21)
Setting un+1(t) = fn+1(t) - dn+1(vs)’ we can write

mn+1xn+l,2(t) ) un+1(t) - xn+l,2(t) (2.22)

We can term un+1(t), the difference between the applied force and the
drag force at velocity v_, as the "control" applied to.fhe (ntl)th
vehicle.

The term un+1(t) represents the force that is actually
applied to the (ntl)th vehicle. In practice, however, it must be
remembered that a propulsion system is present on each vehicle and
un+1(t) is the desired output of this propulsion system. The dynamics
of the (ntl)th vehicle as used in this thesis do not include the pro-
pulsion system. The input received by the propulsion system is in
practice say u;+1(t). For purposes of this discussion, we will assume
that either the input-output transfer function of the propulsion
system is unity (i.e. LT u;+1) or equal to o so that U " ou;+1.
In any case, in the remainder of this discussion we shall be concerned
vith U only.

Equations similar to (2.19) and (2.22) can be written for
the nth vehicle, The state equations for the two-vehicle unit can

then be written as

K (8) = ¥y (®)

. B u (t)
an(t) T an(t) * m
;(n+l,l(t) = %41,
- u_,,(t)
" ..l ol
xn+1,2(t) m xn+1,2(t) M (2.23)
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which when written in matrix form become

x(t) = A x(t) + B u(t) (2.26)
where
- )
Fo 1 0 0 0 oT
0 -% 0 0 i 0
A= B=
o 0 0 1 0 0
0 0 -k o+
mn m
L. - e -
xnl T
X un
x= A2 and u-=
X, 1 |
Xatl,2 (2.25)

Th. objectives of an automatic car-following system as
outlined in Chapter 1 can now be put in the form of a quadratic cost
functional of the form

m

I f‘“["nl“’ g 1 # 8l = 1y O
0

2 2 2 2
Hopx (8 +o X () Py¥ar 1 (8 0¥ n41,2¢t)

2
+H%%Q+yfmﬁﬂ]ﬂ (2.26)

vhere a, 8, 01' pz, 03, pa, Yl and Yz are non-negative weighting
factors. This cost functional can be interpreted as follows:

1. Since the term (xn1 - xn+1’l) = zn(t) - zn+l(t) -

[zn(t) - zn+1(t)l = h(t) - h where h(t) is the headway
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at time t, the inclusion of the first term in (2.26) penalizes

the system for deviations of the actual headway from the

i
w
o
b
B
I
i
S
i
B
:
i
I

desired headway.

2. The term (xn2 - xn+1’2) = zn(t) - zn+l(t) which is the rela-

tive velocity between the two vehicles. Thus the inclusion

of the second term in (2.26) penalizes the system for devia-

™

o et b S T TS

tions from zero of the relative velocity.
3. The next four terms in (2.26) serve to penalize the system

for deviations of the position and velocity of both vehicles

from their desired values.

i 4, The last two terms are the square of the forces applied to
the two vehicles and hence are proportional to the energy
input to the respective vehicles. Thus the inclusion of
these two terms in (2.26) serves to penalize the system for
application of large accelerating and decelerating forces

which could result in passenger discomfort.

1 The cost functional (2.26) can be rewritten as
T ; T ’
J = J [x'(t)Q x(t) +u (t)R u(t)]de (2.27)
0

where T denotes matrix transpose and

o -
cx+p1 0 -0 0
0 Bw, 0 B n 0
Q= and R= (2.28)
-0 0 abs 0 0 ¢
2
L0 -f 0 B+ﬂa
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Q and R will be chosen to be positive definite matrices. The objective
18 to find the control u*(t) which minimizes (2.27) subject to (2.24).
Here the initial value x(0) is assumed to be known but x(=) is un-
specified.

It is useful to examipe the engineering significance of the
infinite time interval of the cost functional. Since the final time
is not specified, the cost expression does not include a terminal cost
term, The terminal time is set equal to » for the following reasons:
First, we wish to ensure that the state will remain near zero after an
iﬁitial transient interval and, second, we wish to avoid specifying an
arbitrarily large terminal time.

We can now procede to use linear regulator theory of optimal
control to derive u*(t). This well-known theory has been used by

(6]

Levine and Athansm and Peppard and Gourishankar' * to design optimal
controllers for high-speed trains, A detailed exposition of this
theory can be found in most textbooks on optimal control such as (7).

The theory is summarized here for the convenience of the reader.

Given the controllable® linear time-invariant system
x(t) = A x(t) + B u(t) (2.29)

and the cost functional

J'% jlg%ﬂgiﬂ)+ﬁ%ﬂﬁﬂhﬂdt (2.30)
4]

where u(t)ignot constrained, Q and R are positive definite matricies,

then a unique optimal control exists and is given by

* Por a definition of controllability see (7], p. 200.
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Y% x(t) (2.31)

w(t) =-RB
where K is the constant positive definite matrix which is the solution

to the matrix algebraic equation

X4 - N+ RBRBK - Q7 0 (2.32)

The minimum cost J* is given by
1T v
J[x(t)] =5 [x ()X x(t)) (2,33)

For the two-vehicle car-following unit, the optimal control
.vector u*(t) can be found for a particular form of cost functional
(2.27) and specific values of A and B in (2.24).

2.3.2 Dynamic Performance

In this subsection the results of a study of the dynamic
performance of the optimally-controlled two-vehicle basic unit will
be reported. This study was carried out by simulating the optimal
system on the PACE 231 analogue computer of the University of Alberta,
Electrical Engineering Department for a variety of cost functionals
obtained by assigning different values to the weighting factors in the
cost functional (2.26).

In this study, each vehicle was assumed to have a weight of
1220 1bs. and a linear drag coeffictent u of 1.7 1bf./ft./sec. These
values were chosen to be both reasonable and convenient.

The following seven different general forms of cost functional

(2.26) vere examined, These will be referred to as systems type lto7.

2

. . . 2 2
Type 1: J1 j[a(xnl xn+1,1) + 100u‘,l + 0.1un+1]dt (2.34)
0
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5 N = - 2 - 2 2
L Type & J, J.[u(xnl xn+1’1) + (xn2 xn+1’2) + 100y
°
: + 0.1
: . un+1]dt (2.35)
i
; mype 3 1= | 1B(x , - % o tom e 0l e (2.36)
% pe o n2 o+l n *“Tntl '
% 0

. 0 R
Type 4 J, J [0y = gy, ¥ B0~ Ko, 100
o]

2
+ 0.1un+1]dt (2.37)

. i i 2 i 2 2
Type &: J5 J.[a(xnl xn+1,1) 4 e(xn2 xn+1’2) + 100un
0

2
+ 0.lun+1]dt (2.38)

o

, o . 2 . 2 2
Type 6: g J.[(xnl xn+1’1) + (xn2 xn+1’2) + 100u
0

2 2
4 0.1un+1 + paxn+1’2]dt (2.39)

@

L ) 2 ) 2
Type 7, J (g = Xy, * g ™ Fe 2 F 1%
o]

2

2 2
+ 0.1un+1 + °3xn+1,1]dt (2.40)

It should be noted that in all the above cost functionals,
the expenditure of control energy, unz(t), by tﬁe leading vehicle is
penalized 1000 times more heavily than that by the following vehicle.
This is to ensure that the two-vehicle unit behaves in a true car-

following manner in the sense that only the following vehicle reacts

to the motion of the leading vehicle and not vice-versa. This Is
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equivalent to saying that for all the systems studied, un*(t) = 0.}

Instead of solving the algebraic Riccati equation (2.32)

directly, the corresponding differential equation

K(t)h - ATK() + R(OBRBK(D) - @ = K(b) (2.4)

was solved for each of the cost functionals shown above. This was
done on the IBM 360/67 digital computer at the University of Alberta.
The IBM subroutine RKGS (Fourth-order Runge-Kutta) was used. The
solution }_Q of (2.32) was taken to ble the steady-state solution of

(2.41) with initial condition K(0) = 0.

The optimal control strategy can then be found from (2.31)

which. can be rewritten as

ut(t) = - LAx*(t) (2.42)
where L* = - _!g'lng. The optimal feedback system is shown in Figure

2,4, The optimal feedback gains Ll*, L2*, L3* and L4* are given by

~

k k
LA e o2 Lt . .
1 my, 2 my,
(2.43)
L*--m . L*--l(z—['
3 my, 4 m,

Table 2.2 gives a listing of these gains for variations in the weight-
ing factors in each of the seven cost functionals,

The analogue simulation diagram is shown in Pigure 2.5.
Each of the seven systems corresponding to the various feedback gains

given in Table 2.2 was subjected to two tests as described below:

 This fact could be taken into account in the problem formulation by
defining suitable state variables.
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nth VEHICLE
A e -
Xn2 !
DlSTURBANCE?) l/-r.n n %_ xnl!
|| S+ E/m) |
| == _ ]
-
L |
CONTROLLER ——>! Q N
- . e !
Un+ < l
“
|
|
o e
|
e

FIGURE 2.4 Block Diagram of Two-Vehicle
Optimal Peedback System
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ﬁ:em Type 1‘1* L2* L3* Lb*
la(om1) -3.061 | -23.49 3.161 23.49
2a(a=1) -3,161 | ~-23.69 3,161 23.69
2b (0=5) -7.067 -36.05 7,067 36.05
2¢(a=10) -9,995 | -43.13 9.995 43,13
2d(a=100) -31.76 -78.05 31,76 78.05
2e (a=500) -70.74 | -117.2 70,74 117.2
2 (4=900) -94,87 -136.0 94,87 136.0
3a(f=1) 0 -1.890 0 1,890
3b(8=5) 0 -5.570 0 5,570
3c(f=10) -0 -8.440 0 8,440
" 3d(B=100) 0 -29,95 0 29.95
4a(pul) -3.161 ~23,69 3,161 23,69
4b(p=100) -3.161 | -38.43 3.161 38,43
e ($=1000) -3.160 | -10L.4 3,160 101.4
4d(8=1600) 3,160 | -125.8 3.160 125.8
4e(g=105) -1.768 | -998.0 1768 | 998.0
5a(asf=l) -3.161 | =23.69 3,161 23.69
5¢(amg=10) -9.995 ~44,13 9.995 44,13
5d(a=p=100) || -31.61 -83.84 31.61 83.84
Se(amg=1000) || -99.95 | -171.4 99.95 171.4
6alp;=0) || -3.161 | -23.69 3.161 23.69
6b (94=20) -3.159 -21.35 3,159 26. 34
6c (P4=100) -3,143 -38.80 3,143 13,61
6d (04=1000) =271 | -100.1 2711 48.13
7a(P30) -3.161 -23.69 3,161 23.69
Tb(P3=.5) -3.872 -26.35 2,544 16.20
7c(P3=2) -5.471 -31.59 1,800 9,684
7d(°3#10) -10.49 -4k, 2 0.9455 3,787
Te(p3#50) -22.58 -65.60 0.4412 1,245

Table 2.2 Tabulation of Feedback Gains for

the Two-Vehicle Unit
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Test 1 The position error of the lead vehicle was made to undergo a

gtep change. Although not very realistic, this type of per-

5 .
&

e
)
"
3
.
[

turbation 18 useful in determining the local stability and
dynamic behaviour of the system under extreme conditions.

Test 2 The position and velocity errors of the lead vehicle were made

to vary in a pseudo-random manner. The velocity error for the
lead vehicle was generated by adding sinusoids of frequency

0.1 Hz,, 0.07 Hz., 0.04 Hz., 0,015 Hz, and 0.005 Hz. The position
error varied as the integral of éhis sum, A test duration of

60 sec. was used. The pseudo-random signals were identical for
each test. The analogue simulation diagram for the generation

of the pseudo-random signal is given in Figure 2.6.

Results of Test 1

Systems type 1 and 2 exhibit nearly identical step response
as can be seen by comparing the feedback gains for systems la and 2a.
The gains become essentially identical for a > 1 and hence gain values
for system 1 are not given except for a = 1. Figure 2.7 shows the

variation with respect to time t of the position error, (t), and

Xat,1

; the velocity error, X4 2(t) of the following vehicle for a unit step
’

change in xnl(t)(xnz(t) = 0 for all t) for system la. The steady-state

headway error is zero which is desirable, This is a result of the head-

way deviation term in the cost functional Jla'

Figure 2.8 shows the step response of system 2 for headway

deviation weightings of a = 1, 10 and 100, The effect of increasing a

is to shorten the rise time of xn+1’1

the maximum velocity error and acceleration or deceleration required of

(t) at the expense of increasing
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the following vehicle. The actual values of relative velocity between
vehicles and the force on the (ntl)th vehicle are dependent on the
magnitude of the step change in LT

We have seen that the inclusion of the relative velocity

term (xn2 - xn+1,2)2 in the cost functional Jla has little effect on
the position error step response of the following vehicle. This is due
to the fact that zero headway error implies a zero relative velocity
between vehicles. That the converse is not trué can be seen from the
values of the feedback gains for system 3. In this system we are penal-
izing only for relative velocity error. Hence there is no feedback

of position information to the following vehicle (Ll* = L3* = ()), This
18 equivalent to saying that the following vehicle will be unaware of 8
deviation in headway from the desired value as long as the relative
velocity of the two vehicles 18 zero.

In system type 4, the effect of large weighting on the relative
velocity term in the cost functional is examined. The effect is only
noticeable for very large B at which point due to the limiting effect
on the maximum value of xn+1’2(t), the position error step response
becomes very slow and more heavily damped. This effect is shown in
Pigure 2.9 for B = 1000.

For system type 5 weighting on both the headway deviation
and relative velocity terms in the cost functional was varied equally.
'l'his produced the same effect as rqducing the weighting on the following
vehicle control energy for system 2a. Figure 2,10 shous the step res-
ponse of the following vehicle for a = 8 = 100, The response is nearly

identical to that of system 2d in which a = 100, £ = L.

ot R i B, £
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The cost functional for system 6 is essentially that of
system 2a with the addition of the term 04x§+1,2(t). From Figure
2.11, it can be seen that this additional penalty on velocity error
of the following vehicle produces an effect similar to that of in-
creasing the weighting on the relative velocity temm in the case of
system 4.

The cost functional for system 7 i identical to that of
system 2a with the addition of the term pax§+1’1(t). From Figure
2,12 it can be seen that the effect of increasing Py is to increase
the steady-state headway deviation. This, in general, is undesirable.

In summarizing the above comments on the results of test 1,

it can be said that three elements of system behaviour can be affected

by cost functional manipulation, These are rise time, damping and
steady-state headway deviation. It can also be seen that these elements
can be altered in more than one way. The responses obtained for the
various forms of cost functional J2 (or Jl) are generally desirable

from the point of view of smoothness of response, Zero gteady-state

headway error and adjustable rise time.

Results of Test 2

The test signals used for xnz(t) and xnl(t) for this test
are shown in Figure 2.13. The remaining figures in this gubsection
ghow the variation with respect to time of xnl(t), xn+1’1(t). xnl(t) -
xn+1'1(t), xnz(t), xn+1’2(t), xn2(t) - xn+1'2(t) and un+1(t). The

duration of the test was 60 seconds.
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FIGURE 2.11 Position and Velocity Error Response of the
(n#1)th Vehicle for a Step Change in Position
Error of the nth Vehicle (Systems 6c and 6d)
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FIGURE 2.12 Position and Velocity Error Response of the
(n+1)th Vehicle for a Step Change in Position
Error of the nth Vehicle (Systems 7b and Te)
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PIGURE 2.13 Pseudo-Random Signals Used for the Position
and Velocity Errors of the nth Vehicle for

Test 2
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Figures 2.14, 2.15 and 7.16 show the results for systems
2a, 2c and 2d respectively (o= 1, 10 and 100). As in the case of
the step response tests on these systems, it can be seen that better
headway regulation results as the headway error is penalized more
and more but at the expense of increased peak velocity error and
control fo;ce on the following vehicle. It ghould be noted however
‘that better regulation of relative velocity between the two vehicles
does result for increased d.

Results for systems 3a, 3c and 3d are ghown in Figures
2,17, 2,18 and 2.19 respectively ( Ba 1, 10 and 100). It can be
seen that a large value of B must be used in order to achieve proper
headway regulation. The behaviour for g = 100 1s similar to that
exhibited by system 2 with & =1, B= 1,

Figure 2.20 illustrates the behaviour of system ¢ with
g = 1000. Although the step response of this system did not appear
to be as desirable as that of system 2a ( 8= 1), its headway reg-
ulation and relative velocity control are much more effective when
the system is subjected to a low frequency variation in the motion
of the lead vehicle.

Figure 2.21 (system 6d) shows the effect of the addition
to the cost functional of a larger weighting on the velocity error
of the following vehicle as compared to system 2a. Velocity error
xn+1'2(t) is reduced throughout the run but headway regulation de-

teriorates significantly.
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The behaviour of system 7b is shown in Figure 2,22, As in
the cage of the step response test, it can be seen that the penaliza-

tion of the position error of the following vehicle results in de-

graded headway error regulation.

Summary of Tests 1 and 2

The results of tests 1 and 2 on the two-vehicle optimal
car-following unit emphasize the fact that it is difficult to devise
a desirable performance index for such a system purely from the
qualitative specifications (as given in Chapter 1). The use of two
quite different testing procedures on a gimulated model of the system
gives a great deal of insight into the dependence of car-following
behaviour on tﬁe nature of cost functional or performance criterion
used to evaluate its performance.

From the various cost functionals considered here, it seems
undesirable to penalize the system for position or velocity errors
of the following vehicle (refer to results for systems 6 and 7). It
also ;ppears undesirable to penalize the system for non-zero relative
velocity while neglecting headway error (system 3). The exact values
of weighting factors for systems 2, 4 or 5 to be chosen in the design
of an automatic car-following system would depend on the exact spec-
{fications of the system. AS stated earlier, the above tests indicate
only the nature of the behaviour of the optimally-controlled two-
vehicle unit and do not indicate how a string of many vehicles optimally
controlled by the same strategy will behave in an asymptotic sense.

This will be discussed in Chapter 3

e o o e F o e e e it ot AL St T
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2,4 A"Three-Vehicle Optimal Car-Following Unit

9.4.1 Mathematical Devélopment

In this section the car-following problem will be formulated
in a different way, A string of automatically-controlled vehicles
travelling on a straight roadway will be agsumed to consist of over-
lapping units of three vehicles each. A typical three-vehicle unit
{s shown in Figure 2.23. The (n-1)th and (ntl)th vehicles will be
termed the "trailing" and "{eading" vehicles. respectively. The nth
vehicle is the "controlled” vehicle. The motion of this vehicle will
pe affected by both the vehicle ghead and that behind. The assumptions
and mathematical development of the equations of motion for the three-
vehicle unit parallel those of the two-vehicle unit described in section
9.3, The state equations for the three-vehicle unit can be written

(using the same notation as in Section 2,3) as

xn-l,l(t) } xn'loz(t)
un-l(t)
(0 + ==

X

..k
01,28 = 7 ael,2
xnl(t) u xnz(t)
- u (t)
N =L )
an(t) m an(t) ¥ m

X118 %4120

un+1(t)

: Lk o
X120 R NTIPLL (2.44)

which as before can be written i{n matrix form as

i(t) = Ax(t) + B u(t) (2.45)

e
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i where
i 0 1 0 0 0 0
% 0o <L o0 0 o 0
: 6 0 0 1 0 0
: A= (2.46)
i 0o 0 o0 <L o o
S m
| 0o 0 0 0 o0 1
!
' 0 0 0 0 0 -k
: B
0 0 o.T
. L g o
§ m
1
g 0 0 0
3 0 = 0
| m
| 0 0 0
: 0 0 1
m
- -
1,1
X - o
n'1,2
un-l
xn1
x® and us= u (2.48)
X
n?
un+l
xn+1,1 - -
Xat1,2

The objectives of an automatic car-following system given in
Chapter 1 can again be put in the form of a quadratic cost functional

vhich is similar to that of equation (2.26).
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I '[ {altxn+1’1(t) -x 01 4ok (0) - xn_l,l(m2
0

2 2
+ Bllxn+1,2(t) - %, + Bylx () - xn_l’z(t)]

2 2 2 2
+ 0y * 05y (8) + 10 (8 * 1y, (0
fyal (6 b de (2.9)
3n-1 )

The philosophy underlying the choice of fhié cost functional
as a performance index is the same as that for the two-vehicle unit.
In this case, the system is penalized for headway and velocity devia-
tions from desired values between the nth vehicle and that ahead and
behind. In order to ensure that the nth vehicle reacts to the motion
of the leading and trailing vehicles but not vice-versa, the control
forces un_l(t) and un+1(t) must be made zero. This condition can be

very nearly approximated by setting Y= > Y in cost functional

(2.49).
Equation (2,49) can be written in the form of (2.27), namely
T T
Js= J [x°Qx + u Ruldt (2.50)
0
where
o4 0 - 0 0 0
0 Bl 0 -61 0 0
-a 0 ata,bp 0 -a 0
Q- 1 121 2 (2.51)
0 -8 0 81+82+02 0 -8,
0 0 -a, 0 e, 0
B 0 0 0 -82 0 82-‘
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Y 0 0
and R= |0 Y 0 (2.52)

We are now in a position to solve for the optimal control

gf(t) which minimizes (2.49) for particular values for the matricies

of A, B,  and R.
2.4.2 Dynamic Performance

In this subsection the results of a study of the dynamic
performance‘of the optimally-controlled three-vehicle basic unit will
be reported. The optimal system was gimulated using a PACE 231
analogue computer for a variety of weighting factors in the cost
functional (2.49). As in the two-vehicle study, each vehicle was
assumed to weigh 3220 lbs. and have a linear drag coefficient i of

1.7 1bf./ft./sec. The following three basic cost functionals were

investigated.

Type 1 (Headvay Type):

2 2
o) J lay gy 1 = ) 90 % )
0

42 2

42
+ 10 U + O.lun +10 u_ }dt

1
(2.53)
Type 2 (Veloeity Type):

2
% J (800041, * )+ Byl ™ ¥ 2
0

2

42 2 42
+10 U + 0.1un +10 un_l]dt

(2.54)
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Type 3 (Combined):

o

. L2 N A
Y3 J [0y Oy, ™ R0 F 0%y ™ %, 1) By 0 7 )
0

2
2 42 2 42
+ Bz(xn2 xn—1,2) +10 Ui + 0.1un +10 un_l]dt

(2.55)

2 2
The expenditure of control energy un+1(t) and un_l(t) by
the trailing and leading vehicles was penalized in all cases a factor
of 105 times greater than that by the "controlled" vehicle. This

approximates the condition
* * \
u(t) = v (t) (2.56)

As a result of (2.56), only the controlled vehicle will react to dis-
turbances in the motion of any of the three vehicles.

The optimal control strategy for the three-vehicle unit is
obtained by solving an algebraic Riccati equation as in the two-vehicle
case. The resulting control for the nth vehicle 1s of the form.

*
X

ntl, 1 (t)

TR *
u (t) L1 (t) + L2 X

n+l,2

% L]
+ L3 xnl(t) + LA xnz(c)

+ 1. 11(t)+L6*x () (2.57)

5 n-1, n-1,2

The closed loop optimal control system for the three-vehicle
unit is shown in Pigure 2.24, Table 2.3 gives the values of the optimal
feedback gains for the three groups of cost functionals given by (2.53),
(2,54) and (2.55). The analogue simulation diagram for the closed loop

systen is shown in Figure 2.25.
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1| o, L L, Ly L, Lg L
o 1 22| was| -aam| e85 | 223 | 113
bl 10 7.071| 25.75 | 14,24 | -5L.51 | 7,070 [ 25.75
¢ | 100 29,3 | 46,44 | -46.72 | -92.89 | 22.36 | 46.44
a 1 0 1.562] 0 -3,084| 0 1,542
b| 10 0 6,272 0 -12.56 | o0 6.272
c| 100 0 21,53 0 -43.05 | 0 21.53
3 .
alﬂaznl
a 2.2% | 14.29 | -4.672| -28.59 | 2.236 [ 14.29
B.=B,=1 .
1" )
a1=a2=1
' 2.2% | 15.71 | -4.472 | -31.43 | 2,23 [ 15.71
81"82510
ufufl
c 2.2% | 26.06 | -64.472 | -52.13 | 2.236 | 26.06
B,=8,=100

Table 2.3 Tabulation of Feedback Gains for
the Three-Vehicle Unit

Figures 2.26 to 2.30 show the results of simulating the nth
vehicle to have, first, an initial offset in position error and,
second, an initial offset in velocity error. These figures thus give
gome indication as to the manner in which the controlled vehicle re-
stores itself to the equilibrium position from an initial offset
condition.

Figure 2.26 shows the position error for the nth vehicle as
a function of time for three systems of type 1. As was the case with

the two-vehicle unit, increased weighting on the headway deviation
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term in the cost functional results in a reduced transient response
time accompanied by higher velocity and gfeater expenditure of control
energy.

Figure 2,27 shows the velocity error of the nth vehicle for
an initial positive offset, Again, the response time is shortened by
inéreased penalization of headway error.

Figure 2.28 shows the velocity error of the nth vehicle for
three systems of type 2. Comparison with the same test on system 1
(Figure 2,27) indicates that system 2 exhibits a greater degree of
damping while retaining the variable rise time feature, It should be
noted, however, that like two-vehicle system 3, this system will not

respond to position errors as long as the relative velocity between

*

3 and

vehicles is zero, This is the result of feedback gains Ll*, L
LS* being zero (see Table 2.3).

Figures 2,29 and 2.3 show the position and velocity errors
respectively for three systems of type 3. System 3a is nearly identical
to system la (as was system la to 2a in the two-vehicle case). Increas-
ed weighting on the relative velocity term in the cost functional has
the effect of slowing the position error response and reducing the

peak value of velocity exhibited by the nth vehicle.

2.5 Comparison of the Two and Three-Vehicle Systems

From examination of the simulation results for the two and
three-vehicle systems, several observations can be made:
1. The structure of the cost functional for both systems was the
same and thus one would expect the systems to exhibit similar

dynanic behaviour for similar weighting factors in the cost
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FIGURE 2.28  Velocity Error Response of the nth Vehicle

(Systems 2a, 2b and 2c) to an Initial Offset
in Velocity Error
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functional, This is indeed true as indicated in the previous
section.

The tests reported above only explore the local behaviour of
the respective units and say 1ittle about-the string behaviour
(see Chapter 3). It is evident that both systems exhibit local
stability of the controlled vehicle. This is true for all cost
functionals and is a consequence of the inherent stability of
the optimal state regulator used as the feedback control
gystem.

Implementation of the three-vehicle system would require a
communication system of approximately twice the capacity of
that required to implement the two-vehicle system. That is,
each vehicle in a string would receive velocity and position
information from both the vehicle ahead and that behind.

It would seem that information received from a vehicle behind
would be useful under some circumstances. One such case 18
{11ustrated in Figure 2,31, Here the position errors of the
(ntl)th and (n-1)th vehicles have constant values of 1.0 and
-0.5 units respectively. The control action of the nth vehicle
results in a constant position error of 40.25 units as a steady-
gtate condition, This results in equal spacing between the
three vehicles. In the case of the two-vehicle system this
type of behaviour would not be observed. Thus if a vehicle

in a string had some positive position (or velocity) error,

the vehicles ahead would show no change of state. This is an
undesirable characteristic from the safety standpoint. The

above-noted behaviour 18 closely tied in with the asymptotic
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FIGURE 2.31

Position Error Response of the nth
Vehicle to Offset in the Position
grrors of the (n-1)th and (n+1)th
Vehicles
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pehaviour of the two systems which will be discussed in the
following chapter.

Both systems developed in this chapter could be nodified to
make use of optimal sampled-data control theory. The method
used would parallel that of Levis and Athans[B] who have in-
vestigated the optimal sanpled-data control of high-speed
trains. A sampled-data car-following system would have the
advantage of being compatible with position-sensing devices
placed on the roadway at discrete intervals, The continuous
gensing of vehicle separation would require the use of radar

or other similar technique.
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CHAPTER 3

ASYMPTOTIC STABILITY OF OPTIMALLY-CONTROLLED

STRINGS OF VEHICLES

3,1 Introduction

In Chapter 2, the optimal controliers for two and three-
vehicle basic car-following units were derived. The dynamic behaviour
of the optimally-controlled units was studied by means of analogue
computer gimulation for a variety of cost functionals. It was pointed
out that, in order to.be useful in a practical situation, the optimal
control strategies developed for the basic units must be applied to a
gtring of many vehicles. This can be done by considering a string of
vehicles to be made up of overlapping two or three-vehicle subsystems
as the case may be.

A question which often arises in optimal control studies is
concerned with the stability of the optimally-controlled systems, As
is well known, there are geveral definitions of stability, In the
present study, we will be concerned with the asymptotic stability of
an optimally—controlled string of vehicles. It will be recalled from
the discussion in Chapter 1 that asymptotic stability refers to the
manner in which perturbations in the motion of one vehicle in a string
are propagated down the string. A quantitative and more precise de-
finition follows:

Defn: Consider a string of vehicles travelling along a roadway. Sup-

pose one of the vehicles (say the nth) experiences a perturbation
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in its motion. The string of vehicles is said to be asymptotic-
ally stable if the position of the (n+1)th vehicle (the vehicle
immediately behind the nth vehicle) does not exceed the position

of the nth vehicle, In other words

2

n+1(t) E-Zn(t) for all t (3.1)

where z indicates the position of a vehicle measured with respect

to a fixed coordinate system.

In terms of position error, (3.15 can be written

B X1 (8 2, (0 & xy(0) 2 (t) (3.2)
o Xn+1,1(t) - %, () f.;n(t) - ;n+l(t) (3.3)
xn+l,1(t) B xnl(t) <h (3.4)

where ; 1s the scheduled position, h is the scheduled headway and the
position errors, X, ,, are as defined in Chapter 2, Theoretically, h
can approach zero although in practice it can never be less than the
vehicle length.
In order to make the determination of the asymptotic
stability of the optimally-controlled strings more convenient, an-
alysis will be carried out in the frequency domain. Cosgriffll]

has shown that a necessary and sufficient condition for asymptotic

stability expressed in the frequency domain is
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xn+l l(jw)

\Gn+1(jm)| = XD <1 foralluandn (3.6)
n

where xn+1,1(jm)-and an(jm) are the Fourier transforms of the posi-
tion errors of the (m+l)th and nth.vehicles respectively., Details

of the proof of (3.6) are given in Appendix 3-1. If for a given
string of vehicles, a general expression for the transfer function
Gn+1(j o, valid for all n, can be found, ghen the asymptotic stability
of the string can be determined without actually gimulating the
vehicle string. When the string consists of a large number of vehicles
this is an important advantage.

In Section 3.2 the asymptotic stability of three classical
car-following feedback systems considered by other investigators will
be reviewed in the light of the frequency domain definition given above.

In Section 3.3 the asymptotic stability of a string of four
vehicles optimally controlled according to the strategy developed for
the two-vehicle basic unit will be studied, Some preliminary results
of this study are reported in {21, The position error transfer func-
tion between any two vehicles in the string will be derived and the
frequency response of the system exanined for violation of the defini-
tion given in (3.6). The study uill be carried out using the various

cost functionals considered in Chapter 2.

In Section 3.4 a similar study will be carried out using the
control strategy developed for the three-vehicle basic unit. The
results for a given cost functional will be verified by gimulation of

a string of five vehicles.

In Section 3.5 the effects of a time delay in the control
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loop on the asymptotic behaviour of an optimally-controlled vehicle
gtring will be investigated by analogue computer simulation of a four-
vehicle string based on the three-vehicle basic unit.

The chapter concludes with a discussion in gection 3.6 of
the results reported in the preceding gections of the chapter.

3.2 Asymptotic Stability of Three Classical Car-Follogigg_?eedback

Systems

In Chapter 1, three alternative classical feedback control
gystems for the automatic control of vehicle strings were discussed.
In Chapter 2, the transfer functions relating the positions of success-
ive vehicles in a string were developed. The conditions for which
periodic disturbances in the motion of one vehicle would be attenuated
as they propagated down the string were derived, It can easily be seen
that these conditions are the same a8 those dictated by equation (3.6)
to guarantee asymptotic stability of a string of vehicles, The control
lavs, transfer functions and asymptotic stability requirements for the
three classical systems are presented belov.
1. Relative Motion Car-Following System

(a) control lmi:

241" Kv(zn - zn+1) + Kd(zn "z h) (3.7
(b) magnitude of tranfer function:
2 22
| | |Zn+1(w)| Kd +Kvw
G B ———— B
n+1(w) |Zn(w)|

(3.8)
22

0<u< (zxd)’i (3.9)
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5. Relative Position Car-Following System

(a) eontrol la:

Zntl ; Kv(vs ) zn+1) ¥ Kd(zn T T h) (3.10)

(b) magnitude of transfer funetion:

)}
%
Kd2 '
l6 @] = T (3.11)
d o) v v
(¢) eriterion for asymptotic stability:
K X .
—Lp 2 07072 (3.12)
2(Kd)

3, Bender and Fenton[3] Car-Following System

(a) control law:

T R ) Ry(zy = Zgp "D % " kyZo4p)

:
(b) magnitude of transfer function:

2 22
Kd + (Kv - del) W

[OI (3.14)

2,2 22
(Kd-w) +(Kv+de2)w

(¢) eriterion for asymptotic stability:

(, + Ky’ ®, - kg?|
- > 0,702 (3.15)

4Kd 4Kd

The criteria for asymptotic gtability for the above systems

vere obtained by applying the requirement given by (3.6) to the transfer

function magnitude equations (3.8), (3.11) and (3.14). Exanination of

the above criteria indicates that the relative motion feedback system
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s not asymptotically stable according to (3.6) since |Gn+1(m)| is not
less than or equal to unity for all w. The relative position and
Bender and Fenton feedback systems are asymptotically stable providing
the feedback gains satisfy the relafions (3.12) and (3.15) respgctively.
Thus in designing a car-following system of either of these types, two
factors would influence the choice of feedback gains. First, oﬁe would
choose gains which woulq result in the desired dynamic behaviour of a
two-vehicle component of the string and second, one would check whether
or not this choice resul;ed in asymptotic stability of the entire
vehicle string. Some compromise might be necessary to énsure both
asymptotic stability and the desired dynamic behaviour of the string.

3.3 Asymptotic Stability of an Optimally-Controlled Vehicle String

Using the Two-Vehicle Basic Unit

The manner in which the control strategy developed for the
two-vehicle unit can be applied to a multi-vehicle string will now be
considered. The optimal feedback system for the two-vehicle unit is
ghown in Figure 2.4. It should be remembered that the control force
on the leading vehicle must be made nearly equal to zero by choice of
appropriate weighting factors in the cost functional for the system.
The block diagram for the two-vehicle unit (in a simplified form) is

shown in Figure 3.1, The feedback gain matricies are given by

Lt Xk * r %
L Ly L, L, L L (3.16)
"I T *
where L1 . L2 , L3 and La are given by (2.43) and the vehicle state
vectors by
*al *at1,1
X" X1 ® (.17
b X

n2 ntl,?2
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Unsy | (n+1)th |Xn# nth |2n
VEHICLE VEHICLE

FIGURE 3.1 A Simplified Block Diagram of
the Two-Vehicle Basic Unit

By overlapping three of the two-vehicle units shown in
Figure 3.1, a four-vehicle string of optimally-controlled vehicles
can be formed as shown in Figure 3.2. The control force for the first
vehicle 1s dependent only on its own state (as if the vehicle ahead
of it exhibited no error dn position or velocity). Since each pair of
vehicles in the string exhibits the car-following behaviour of the two-
vehicle basic unit, the local stability of the system is assured.
Knowing the vehicle dynamics and the optimal feedback gains, it is now
possible to write a transfer function relating the position errors of
any two successive vehicles. This transfer function will be identical
between all pairs of vehicles, The signal flow graph for the two-

vehicle unit of Figure 3.1 is shown in Figure 3.3. Using Mason's Rule,
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Baged on the Two-Vehicle Unit

FIGURE 3.3

Signal Flow Graph for an
Optimally-Controlled Two-
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the transfer function Gn+1(jm) can be written

-L */
xn+1,1(jw) 3 /"

Gn+1(jw) "X 1(jw) - L * -1 * (3.18)
- " S Y

w = Jul )

mn m m

From Table 2.2, it can be seen that for all the systems considered,

*
both Ll* and L2 are negative. Hence the transfer function (3.18)

: Ly %
1s that of a second order systgm with resonant frequency u, = Cj%—)

- *
R B
and damping factor ¢ = (m - -;;0/2(—;;—1 . Equation (3.18) can then

be written in the form

*
L3 /m
6,00 = = (3.19)

2
w, - + jm(2§w0)

Table 3.1 gives the values of G(0), ¢ and wa for the various systems

-corresponding to Table 2.2 Since system type 3 has no position error
feedback (Ll* 2 L3* = (), thg definition of asymptotic stability used
here is not applicable and hence no data 1s given for this case.

From Table 3.1 it can be seen that the maximum value of
|G(jw)| evaluated at w = 0 for any system is unity. Also the lowest
damping factor is 0.7072, the condition for maximally-flat frequency
response. Hence it can be concluded that system types 1 to 7 satisfy
requirement (3.6) and thus are asymptotically stable. It was con-
cluded from the tests reported in Chapter 2 that system types 2 and 4
best met the requirements of an automatic car-following system. The
remainder of the discussion in this gection will therefore be confined

to these two systenms.

The magnitude of the transfer function |G(ju)| for these two

104
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Ei System Type G(0) ¢ "
- la(s=1) .0 ] 0.707 | 0.178
. 2a(a=1) 1.0 | 0707 | 0.178
- 2b(0=5) Lo | 0707 | 0.266
. | 2¢(a=10) 1.0 | 0.707 | 0.316
( 2d(4=100) 1.0 | 0.707 | 0.564
‘ 2e(a=500) 10| 0,707 | 0.840
26(=1000) [ 1.0 | 0.707 | 0.974
Ja(B=1) - - -
3(B=5) - - -
3c(B=10) - - -
3 (=100) - - -
ta(=1) 1.0 | 0707 | 0.178
ib(g=100) | 1.0 | L1z | 0.78
be(s=1000) || 1.0 | 2.90 | 0.178
w(e=1600) | 1.0 | 359 | 0.78
ke(B=10°) 1.0 {377 0.133
5a(a=f=1) 1.0 | 0.707 | 0.178
Se(as=10) | 1.0 | 0.725 | 0.316
Sd(asg=100) || 1.0 | 0.760 | 0.562
Se(asg=1000) | 1.0 | 0.865 [ 1.00
@ baloge0) | L0 | 0.707 [ 0.178
| 6b(p;=20) 10 | 0.817 [ 0.178
| beloe100) | L0 | L | 0177
6d(py=2000) || 1.0 | 3.28 | o0.166
7a(py=0) 1.0 | 0.707 | 0.178
Thpp=0.5) | 0.656 [ 0.707 | 0.197
7e(p42) 0.328 | 0.707 | 0.23
7d(p4210) 0.00 | 0.707 | 0.3
Te(p4=50) 0.0195 | 0.707 | 0.475

Table 3.1 Tabulation of ¢ and w, for a String
of Vehicles Based on the Two-Vehicle
Unit
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gystems is plotted vs. frequency v in Figures 3.4 and 3.5 respectively.
In Figure 3.4 the effects of varying o on the frequency response is
{1lustrated. As was seen from test 1 in Chapter 2, the effect of in-
creasing o for system type 2 was t& ghorten the response time to a |
step, This islreflected in Figure 3.4 as an inérease in bandwidth for
the transfer function G(jw) when o is increased. It ghould beinoted
that in Table 3.1, varying o does not affect the damping factor. This
is also evident from Figure 3.4, The effect of increasing B for system
type 4 is shown in Figure 3.5, For B < 1600, the effect of increasing
g is to increase the system damping without altering the bandwidth.

For 8 > 1600, the system bandvidth decreases and the damping continues

to increase with increasing B.

3.4 Asymptotic Stability of an Optimally-Controlled Vehicle String

Using the Three-Vehicle Basic Unit

3.4.1 Reasons for Using a Three-Vehicle Controller

Some discussion about the need for considering the three-
vehicle concept especially with regard to the asymptotic behaviour of
vehicle strings may be of interest. Consider the data for system type I
in Table 3.1. The magnitude |G(0)| increases as 0, ig decreased. This
implies that for large values of Pqr the propagation of disturbances
down a string of vehicles would be highly damped which may at first
appear to be highly desirable. However, since the controller is of the
two-vehicle type, any vehicle in the string is unaffected by the motion
of vehicles behind it. The danger of collision can be avoided if and
only if the absolute value of any perturbation in position of 3 vehicle

{s less than the scheduled headway b less the vehicle lenmgth, 1. Thus
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FIGURE 3.4 Magnitude of G(},) vs. Frequency
for Two-Vehicle System Type 2
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high vehicle densities cannot be realized. This is an important
reason for considering a string of vehicles based on the three-vehicle
unit in which each vehicle receives information from both the vehicle
ahead and that behind.

It will be recalled from the discussion in Chapter 2 that by
proper choice of the weighting factors in the cost functional used, the
optimal control gf(t) for the three-vehicle unit was approximated to
be un*(t). A bloék diagram of the resulting optimal feedback system
1s shown in Figure 3.6, In this figure the optimal gain matrices are

given by

* *LE (3.20)
L3 Ll ) .

* *
where L. to L, are the optimal feedback gains for the three-vehicle

1 6
unit as tabulated in Table 2.3 and the state vectors are given by

1,1
-1 4

xn-1,2

a1 X+, 1

X1 "
X

n2 xn+1,2

(3.21)
Using two overlapping three-vehicle units of this type, a four-vehicle
string can be formed as shown in Figure 3.7. The first vehicle in the
string behaves as if there were a vehicle ahead of it with a zero error
state while the fourth vehicle behaves as if it sees a trailing vehicle
vith zero error state.
3.4.2 Derivation of the Transfer Function Gn+1(jw)

H3ince each vehicle in a string of vehicles based on the



110

three-vehicle unit receives information about the motion of the vehicle
directly ahead and that directly behind, the transfer function Gn+l(jw)
relating the position errors of the nth and (ntl)th vehicles in the
string will depend on n and the total number of vehicles in the string,
r. The following discussion will deal specifically with a four-vehicle
string for which the signal flow graph 1s given in Figure 3.8. Using
superposition, the block diagram for the string can be reduced to that

ghown in Figure 3.9 where

*
\ L5 /n
6 (Ju) = — : (3.22)
-L - L :
i B S R &
m w jw(m n )
. * *
and L5 + ij6
G = — ; (3.29)
-1 - L
e T S R X
m w o+ jw(m m )

The details of the derivation of the above are supplied in Appendix 3-2.

(n+1)th [Xa# /\Un | nth Xnll | (n=1)th[Xn-)
VEHICLE[ ] VEHICLE VEHICLE

FIGURE 3.6 A Simplified Block Diagram of the
Three-Vehicle Basic Unit
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From (3.22) and (3.23) together with Figure 3.9, the trans-
fer function X1+1,1/X11 can be’ calculated for 1 = 1,2,3, As previously
indicated, the value of this transfer function w%ll depend on 1. Hence
for a string of r vehicles it is difficult to evaluate a general form
for Gi+l(jw). Some useful results can however, be obtained as outlined
in the following subsection.

3.4.3 Some Steady-State Results on Asymptotic Stability

Consider the signal flow graph for a string of r vehicles as
shown in Figure 3.10. Assume that the 1st vehicle exhibits a position
error ;11, this value being independent of the mdtion of the following
vehicles. We would like to know the steady-state (u = 0) position
errors of all the remaining vehiclés in the string. We can calculate

the values of G'(0) and G(0) from (3.22) and (3.23) together with the

feedback gain values given in Table 2.3,

=
~Ne

Eﬂﬁ

nd [ 72
VEHICLE | ]

3d

¢ X
Ul oam |
VEHICLE

VEMICLE[ |

VEHICLE []

e

FIGURE 3.7 Block Diagram of a Four-Vehicle String
Based on the Three-Vehicle Unit
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FICURE 3.9 Reduced Block Diagram for the Four-Vehicle
String Based on the Three-Vehicle Unit
!

6 G G
N NN
--- —YP—a—D—+—0
1 G %1 G %3 G %y

% 1,1 1 X1

FIGURE 3.10 Signal Flow Graph for an r-
Vehicle String Based on the
Three-Vehicle Unit
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*

L5 )
6'(0) = 6(0) = - = ‘ (3.26)
Ly

which for system types 1 and 3 is equal to %. As in the two-vehicle
case, the definition for asymptotic stability does not apply to
system type 2 which has no feedback of position information between

vehicles.

We will assume that for minimum cost at gteady state, the

headway, h, between successive vehicles will be equal (but not

a

necessarily equal to the scheduled headway, h). This can be written

as

lim[xil(t) - x1+1,1(t)]= b for all i (3.25)
torw

We can now calculate the transfer functions

g 09 6
Gr-2(jm) - Xll(jw) - A (3.26)
(r-2)
X, (ju) G (3u)G, (ju)
rl 1 (3.27)

6, (Ju) = (9 y 5

vhere 4 is the determinant for the flow graph of Figure 3.10. We can

now divide (3.27) by (3.26) to obtain

) 6(ju) (3.28)
e w .
Xpop, 1009

Noting that G(0) =%, we can say from (3.25) and (3.28) that
at steady state the last vehicle in the string will have a position
error half that of the second-last vehicle and that all vehicles will

be equally spaced. If the first vehicle moves ;11’ then each vehicle,

-1

{, must move of §11. That is,

e N S e A
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X,,(0)
il _or-i-l
-—————Xu(o) = =0 = Gi-l(o) (3.29)

Since we did not specify the gcheduled headway, %, the

condition for asymptotic stability was reduced to
[Gi_l(jw)l <1, 1=23..r1 (3.30)

Neglecting the transient portion of the string motion, for a change
in position of the first vehicle of §11, the maximum value of Gi_l(O)

will occur for i = 2. We can write

X, (0) X0 .
01(0) =_2_1_- _.,2.1:._.-=L]:. (3.31)

X11(0) ) %11 4

As r + » the value of Gl(O) » 1 and for all other r has a
magnitude less than unity. Thus under steady-state conditions the
three-vehicle system meets the requirement for asymptotic stability
given by (3.30). (That is, (3.30) 1s satisfied for y = 0). In order
to verify (3.30) for all v it would be necessary to solve for Gi—l(jw)
for all i which would become very complex for multi-vehicle strings.
In this thesis we have verified the three-vehicle system to be asymp=
totically stable by simulation of vehicle strings on the analogue
computer and subjecting the first vehicle to a step change in position
error. The results of this study are reported in the next subsection.

For a change in %y of ;11, ve can calculate from (3.29) the

new headway, E, petween vehicles at steady state to be
. X
Fehtt (3.32)

The derivation of (3.32) is given in Appendix 3-3. From (3.32) it can

be seen that the new headway is alvays greater than the original
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scheduled headway for a positive change Ell' For ill a negative
change, collisions will occur for §11 > rﬂ -1 wherg % is the vehicle
length. This is clearly an improvement over the two-vehicle system
for which collisions would occur for ill > h - b
3.4.4 Analogue Computer Simulation of a Vehicle String Based on
the Three-Vehicle Unit
A string of five vehicles based on the three-vehicle opfimal
car-following unit was simulated on a PACE 231 analogue computer and
the lead vehicle simulated to undergo a step change in position error
xll(t). The position and velocity errors of the remaining four vehicles
vere plotted vs. time. Figures 3.11 - 3.16 sﬁow the results for system
types la, 1b and lc. It can immediately be seen that the steady-state
position errors are as predicted by (3.29). That is, for a unit change
in X0 the steady-state values of the position errors for the 2nd, 3rd,
4th and 5th vehicles are 4/5, 3/5, 2/5 and 1/5 respectively. The effect
of increasing o, the weighting on headway error in the cost functional,
isnto shorten the rise time of the system at the expense of slightly
more oscillatory behaviour and greater velocity errors (and hence the
need for greater forces to be applied to the vehicles). All three
systens are asymptotically stable since xil(t) < xi—l(t) for all time t.
Figure 3.17 shows thg effect of penalizing relative velocity
petween vehicles in the case of system type 3c. The damping on the
system is increased and the overall performance is more desirable than
that of system type 1. The velocity errors are also reduced as can be

seen from Figure 3.18. Thus from the standpoint of achieving a damped,

smooth response to a sudden change in the motion of some vehicle in a
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FIGURE 3.12 Velocity Errors for a Five-Vehicle String (System la)
When the Leading Vehicle Undergoes a Step Position
Error Change
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FIGURE 3.14 Velocity Errors for a Five-Vehicle String (System 1b)
When the Leading Vehicle Undergoes a Step Position
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When the Leading Vehicle Undergoes a Step Position
Error Change




20

0 60 8 100
TIME (sqc)

x2alt)
0 \/ ~ Xzalt)
0- \/ A~ X gt

: Xgall)

—

FIGURE 3.16 Velocity Errors for a Five-Vehicle String (System lc)

p—

When the Leading Vehicle Undergoes a Step Position

Error Change

122



123

i

o8ury) 101xd uworirsog daas e soo8aspun aT2ITyYaaA Surpea a3yl
usyM (°¢ pue ©Y swaisAg) BuTals ISTIFUSA—SATL © 03 sSaoaajg UOTITSOJ ZT°€ TEANO14d

A A i A 2

. (>es) awil

ool orvt oclt ool (0]°]

| T T | T

Iﬂlll'“b

Ahv—.nx

@< -

Iﬁﬂlll‘d—.““\\l'l

Ahvpﬁvn

(4)1%x (oot=¢) 3¢

Ahv——X

[

ol



124

| | |

- TIME (sec)

20 40 60

80 100

g ()

"32(')

Xl

-

Xgalt]
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string, the addition of a relatively large weighting on relative
velocity in the cost functional seems desirable.

3.5 Effects of a Time Lag on Asymptotic Behaviour

The above discussion assumes that the error states from
adjacent vehicles can be transmitted accurately and instantaneously
between each vehicle. In actual practice this would not be the case.
Both noise contamination and a time delay would be experienced upon
receiving an error state by some vehicle from another. We will con-
sider the effects of a time delay on the asymptotic behaviour of the
three-vehicle system discussed previously. This time delay is a net
result of sensing, transmission, receiving, processing and mechanical
delays in the control system.‘ The delay thus appears in the control
inputs to the vehicles as shown in Figure 3.19.

A string of four vehicles was simulated on a PACE TR-48
analogue computer and the time delay obtained using a PPP-S digital
computer interfaced with the TR-48.

The leading vehicle was simulated to undergo a step change
in position error at time t = 0 and the position error response of
the remaining three vehicles was recorded for various time delays in
the control inputs. The two systems considered were system type la
and system type 3c.

Figure 3.20 shows the position error response of the second
vehicle for various time delays in the control paths of system type la.
It can be seen that for a delay, L of 2 seconds, the response is
nearly normal (refer to Figure 3.11). The system becomes unstable for

time delays greater than about 2.5 seconds. Figure 3.21 shows the
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FIGURE 3.21 Position Error Response of a Four-Vehicle String
for a 2.5 Second Time Delay (System la)
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position error response for all vehicles in the string for e 2.5
seconds. It can be seen that the error states of adjacent vehicles
are 180° out of phase with one another,

Figure 3.22 shows the position error response of the second
vehicle for system type 3c. It should be recalled that this system
appeared to exhibit more desirable behaviour than did system type la
(see Figure 3.17). However, it appears that system type 3c will not
remain stable for time delays greater than about 1.6 seconds although
performance at M 1.5 seconds is near normal, Figure 3.23 shows the
position error response of all vehicles in the string for " 1.625
geconds.,

From the above, it appears that the three-vehicle systems
can operate satisfactorily with relatively large time delays in the
feedback loops. It is unlikely that the total delay in an automatic
system would exceed 1.5 seconds.

3.6 Summary

In this chapter we have discussed the asymptotié:étability
characteristics of strings of vehicles controlled by several types of
control systems. It was shown that for two types of "classical" feed-
back controllers, the feedback gains must be carefully chosen accord-
ing to the relations given by (3.12) and (3.15). A third system
(relative velocity and position feedback) was shown to be asymptot-
1cally unstable.

In the case of the two-vehicle type optimal car-following
system of Figure 3.2, it was found that the transfer function relating

the position error of any vehicle to that of the vehicle directly
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ahead was of the form

*
L3 /m
Gn+1(jw) = (3.33)

2 2
b, = u + jm(2§mo)

The requirement for‘asymptotic gtability 1is that Gn+l(jm) <1 for
all frequency u and hence the optimal system would be stable for
g > 0.7072 (the condition for maximally flat response). It was shown
(see Table 3.1) that for all the cost functionals examined that
t > 0.7072 and hence the two-vehicle optimal systems all exhibited
asymptotic stability. This is a useful result in that one is free to
choose the relative weighting of the terms within the cost functional
without fear of creating an unstable vehicle string.

In the case of the three-vehicle type optimal system of
Figure 3.7, it was found that the transfer function Gn+1(jm) was de-
pendent on n and on the total number of vehicles in the string. A

general result relating the steady-state position error of the ith

vehicle in an r vehicle string to the position error of the 1st vehicle

was shown to be

X,,(0)
il r-i+l
Xll(O) B (3.34)

Hence for a perturbation in position error of some vehicle in the
string, the remaining vehicles will only move a fraction (given by
(3.34)) of the magnitude of this perturbation. This is in contrast
with the majority of the two-vehicle type optimal systems which had
Gn+1(0) e 1. 1t should be pointed out that a step change in position
error of a vehicle resulting in a steady-state offset in that variable

{s not a realistic sitvation. In practice, variations in the position
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error of any vehicle will be random in nature and probably zero-mean.
Hence we can say that the three-vehicle type system would react less
strongly to random fluctuations in the motion of some vehicle than
would the two-vehicle system, This is desirable when a group of
vehicles sees a positive change in the position error of a vehicle at
the end of the group. If the change is negative then collisions can
oceur if the magnitude of the change is large enough. This is 11lus~-
trated mathematically by equation (3.32), Note however that vehicles
ahead of a vehicle which exhibits a positive perturbation in position
error see a "negative" change in that variable, In the three-vehicle
system, these preceding vehicles react to the perturbation while in
the two-vehicle system they do not. Hence we can conclude that, while
requiring a more complex communications system, the three-vehicle
automatic car-following system is more desirable from the standpoint

of asymptotic behaviour.
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APPENDIX  3-1

A Necessary and sufficient Condition for

Asymptotic Stability of Vehicle Strings

In Section 3.1, the necessary and sufficient condition for

asymptotic gtability of a string of vehicles is stated as

%, (3w
_ ntl,l )
el = |\ G| = 1 (A3-1.1)

where xn+1(jw) and Xn(jm) are the Fourier transforms of the position

errors xn+1(t) and xnl(t) of the (ntl)th and nth vehicles in the string
respectively and Gn+1(jw) {s called the transfer function. Throughout
this discussion we will be concerned with the motion of the (ntl)th

vehicle which 1is the “eontrolled vehicle" in the two-vehicle basic unit

discussed earlier. The proof of (A3-1.1) is outlined in this appendix.

It is based on that by Cosgriff given in (1l.

If the transfer function Gn+1(jw) is identical for all mn,

then

K gy, U0 = [Gn+1(jw)]“ Xy, (9) (A3-1.2)

The magnitude of the transfer function, namely |Gn+1(jm)|, will have
one or more peaks and will approach zero as w = @. As n increases,
the values |Gn+1(jw)|n w111 be concentrated around the peaks of
6 (ol

Initially, it will be assumed that |Gn+1(jw)| has a peak

at w = 0 (vhich is generally the case) and then it will be assumed

that a peak exists at u = ul # 0. The transfer function Gn+1(jw) can
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be approximated by an exponential series around each of its peaks.

For a peak occurring at v = 0, this approximation is

Gn+1(jw)

Gn+1(0)

I T P §
(o2 g = TNy e g

w near 0
where the first factor is the amplitude |Gn+l(jw)/Gn+l(0)| and the
gecond is the phase shift of Gn+1(jw)/Gn+1(0). ‘For n sufficiently
large Cosgriff[ll has shown that the nth power of this ratio can be

approximated by

D I
_cn+l(—0) 2 i (A3-1.4)
ntl

For a peak occurring at w = uy # 0, this approximation can be written

G (Juy | ®

ol '“2(""‘“’1)2 e-jnl(w'wl) eje (A3-1.5)
Gn+1(jw1)

= e
where 8 is the phase of Gn+l(jm1). A similar approximation exists for
the corresponding peak at w = 0y

For asymptotic stability, the perturbation in the position
of the (n+l)th vehicle must be bounded when the disturbance affecting
the first vehicle is bounded. The time response of the (n+1)th vehicle

can be written by means of a convolution integral as

xn+1’1(t) = J{ xll(r) gn+1(t-r)d1 (A3-1.6)

e

where gn+1(t) ig the inverse transform of [Gn+1(jm)]n
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1f the peak of Gn+1(jw) occurs at w = 0, the peak value
of xn+1(t) will occur when xll(t) 1 equal to its bound and is of

long duration., This peak value 1is given by

o

- . - n
1, Py~ 10 e f By (£1E = () (6 (O]
-0
(A3-1.7)
From (A3-1.7) it is immediately obvious that for (x ) to be
ntl,l" pax
bounded .as n + @, Gn+l(0) must be less than or equal to unity., For a
peak occurring at w = uy 1t can similarly be shown that the condition
for (xn+1a1)max
Thus the condition for asymptotic stability can be written

to be bounded as n + = 1is |Gn+l(jw1)|i 1,

|Gn+1(jw)| <1 for all u. (A3-1.8)




e T P T T

136

APPENDIX  3-2

In this appendix, the analysis of the signal flow graph for
a string of four vehicles based on the three-vehicle basic unit
(Figure 3.8) will be presented in detail,

The branch functions of Figure 3.8 are expressed in terms
of the complex frequency s. We would like to obtain the transfer

function

X (s)
(6) = Sl (A3-2.1)

G
ntl ~xn1(s)

for each pair of vehicles (the nth and (n+l)th) in the string where
an and Xn+1,l are the position errors in the frequency domain for
the two adjacent vehicles., Referring to the four-vehicle string of

Figure 3.8 the following transfer function can be defined.

G'(s) = T3 (A3-2.2)

The signal flow graph required to calculate G'(s) is given in

Figure A3-2.1.

Also define

Xy (8)
Fl(s) = i—-z;; (A3-2.3)
27y ax. =0
11 7 %l
X, . (8)
41
R O]
Xy = by =0 (A3-2.4)

The signal flow graph required to calculate the above two transfer
functions is given in Figure A3-2.2. (The graph for rl is shown and

Fyo= Ty

1



Figure A3-2.1

Figure A3-2.2

Signal Flow Graph Required
to Calculate G'(s)

Signal Flow Graph Required
to Calculate Fl(s) and Fz(s)
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Now define
X..(s)
) N
FS(S) () (A3-2.5)
B0 g =%, =0
11 74l
I (s) _5.]:18_)_ !
3 % X (s) : (A3-2.6)
4l X..=X%X.=0
11 21

P3(s) = Fa(s) and the corresponding signal flow graph is given in

Figure A3-2.3.

%
L L3
/i h
:/ - —\
/ 8 L 8 1\\ 1
x  O—>—0— e i)y
32 21

Figure A3-2.3 Signal Flow Graph Required to
Calculate F3(s) and Fa(s)

The above five transfer functions when taken together com-
pletely describe the motion of any vehicle in the string for a perturb-
ation in the motion of the first vehicle. The motion of the first

vehicle is assumed to be unaffected by the motion of the following




vehicles and hence Xll(s)IXZI(B) =0, Noting that for the three-

vehicle unit, L ¥og *

1

I‘l(s) = I‘z(s) = l‘3(s) = r,.(s) = G(s)

5 and Lz* = L6* (see Table 2,3), we can write

(A3-2

Using superposition, the signal flow graph for the four-

vehicle string can be redrawn as shown in Figure A3-2.4.

51

Figure A3-2.4 Signal Flow Graph for
a Four-Vehicle String

Using Mason's Rule G'(s) and G(s) can be found to be

%
L5 /n
G'(s) = LT %
2.0 M, L
g+ (E-—)5 - —
n n n

A —
ot 4>~\\
T
i,

(A3.28)
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* *
L5 + L6 8
G(s) = - L % L F (A3'2-9)
2,0 4 3
st 4 Loy - =
m m m

Knowing G'(s) and G(s), the transfer function Gn+1(s) given by (A3-2.1)
can be derived for n = 1,2,3, In the case of an r-vehicle string, the

signal flow graph becomes that shown in Figure 3.10.
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APPENDIX  3-3

In this appendix, the relationship between the scheduled
headway, ﬁ, resulting from a change in the position error of the lst

vehicle of ;11 will be derived. In subsection 3.4.3 it was shown

that for a string of r vehicles, each vehicle, i, in the string will

r-i+l

move the fraction of 511. We can now write

h-h-= 2, 7% " (zi_l - zi) (A3-3.1)

or h-h=z -2 2

17 T B ) Ry WD)

Since at steady-state x is equal for all i, let 1 = 1 and

i-1,1 ~ M1

write

-aA- - =A 3 -r;l -
h=h (x11 x21) h + xll(l . ) (A3-3.3)
x
or h=h+-l. (A3-3.4)
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CHAPTER 4

THE ROLE OF THE HUMAN OPERATOR IN A SEMI-

AUTOMATIC CAR-FOLLOWING SYSTEM

4.1 Problems Associated with the Implementation of the Automatic

Optimal Car-Following System

The automatic optimal car-following system described earlier
in this thesis was designed to meet the requirements of a longitudinal
control system for a string of vehicles as outlined in Chapter 1. It
has subsequently been demonstrated that the optimal system meets these
requirements. It nevertheless must be pointed out that implementation
of this system in a one-step manner is not economically or practically
feasible. Some of the problems involved in imp{Fmenting the automatic
car-following system are: |

1. The automatic system is not compatible with the preéent-day high-
way-automobile-driver system. The vehicles required for the auto-
matic system would probably be electrically propelled, receiving
power from the guideway. This would enable the construction of
smaller, lighter vehicles. The vehicles would be equipped with
receiving and transmitting apparatus as well as the necessary
running-gear for automatic lateral control. Communication between
vehicles would probably be handled by waveguides or similar devices
associated with the guidew#y. Devices for position sensing as well
ag for automatic lateral control would also be associated with the
guideway. From the above it can be concluded that implementation

of the automatic system would require replacement of the conven-
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tional automobiles now used on existing highways and extensive

modification of the highways themselves.

2. Emergency situations camnot be handled by the optimal automatic
control system. When an ue;gency condition develops in a string
of vehicles proceeding in steady state along a guideway (for
example, one vehicle may suddenly accelerﬁte or decelerate at a
high and uncontrolled rate), it may be necessary to apply the
maximm available corrective force to the other vehicles in the
string in order to minimize the number of collisions. This can-
pot be done by the optimal controller for two reasons. First,
each vehicle in the optimal system receives motional informaticn
from, at most, the vehicles directly ahead and behind. Thus an
emergency situstion will not be {mmediately detected by all
vehicles in the string. Second, the optimal controller will not
apply the maximum available force to a vehicle since it is designed
to ninimize the expenditure of control energy. Hence, an over-
riding control system (-vbich would monitor the states of all
vehicles in the string) would be required to handle emergency sit-
uations.

3. The automatic longitudinal car-folloving system cannot handle merg-
ing and exiting operations. A merging scheme such as that suggest-

ed by Athans[ll for use vith high-speed trains might be incorporated

into the automatic system only at the cost of a more elaborate sens-
ing and co.mlcitlon systea. The problem of exiting from a veh-

jcle string might perhaps be more essily handled.
Most of the problens mentioned above could be solved by the

{nclusion of the human operator as & Mok in the automatic system. The




role of the human operator would be that of an "inexpensive" but at
the same time adaptive cverriding controller in an otherwise "auto-
matic" system, Such a system, in which the human operator would
handle merging and exiting, emergency situations and possibly lateral
control of the vehicle, would be economically feasible since it could
make use of existiﬁg highways and automobiles. The details of such
a system will be discussed later in this chapter.

In Section 4.2, two main qualities of the human operator,
namely adaptation and optimization, which enhance his usefulness as a
link in an automatic control system will be discussed. In Section 4,3
the tracking performance of the human operator with two types of dis=
plays and two types of controllers will be investigated. Section 4.4
will present the results of a simulated car-following experiment in
which the human operator in the control loop is supplied with informa-
tion about the difference between the states of his vehicle and those
of an optimally-controlled vehicle. In Section 4.5 the general form
of a semi-automatic car-following system based on the experimental
results is proposed.

4,2 Adaptive and Optimization Characteristics of the Human Operator

The human operator possesses two main qualities which enable
him to extend and improve upon the performance of a control system,
These are adaptation and dptimization.

Adaptation: The human has long been recognized as an adap-
tive control system, that is, a systém which will maintain control in
the face of change. The human operator adapts by becoming aware of

some change which requires an alteration in his response pattern., The

144
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information which he receives about this change can be either direct

or inferred, Direct information is gathered either by the unaided

senses or through sensing instruments. Inferred information is obtain~

ed by observing deviation of the system output from that expected.

Normally the operator will employ a combination of both direct and

inferred information. The advantage of direct information is that it

can be predictive, That is, the operator can learn about changes which

will affect control before they actually do so. Since no feedback from

the system output is required, direct information is said to be open

loop in nature, On the other hand, inferred changes in- the system

require closed-loop adjustments often made on a trial basis. As a con-

sequence, this type of adapfation can never be made before the change

being adapted to has affected the system output, When using a combina-

tion of direct and inferred information, the operator will usually infer

a change from the behaviour of the controlled element and then use direct

information to explain the change and so choose a course of action.
Optimization: Optimization, either by an automatic system

or the human operator, implies the existence of some performance criterion

which influences the nature of the control. For the human operator be-

having as an adaptive system, some criterion must exist if he 1s to know

whether or not he has successfully adapted to a change. As Kelleylzl

has pointed out, the optimality of the human operator does not imply the

finding of a solution to a methematically defined criterion function but

rather the exercising of judgement with respect to the many different

criteria relevant to human action.
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4.3 Effects of Display and Controller Characteristics on Human

Operator Tracking Performance

4.3.1 Display and Controller Types

Two different types of displays and two different types of

controllers were tested in order to determine a suitable display-

controller combination for achieving good tracking performance. The

displays considered are:

L

2

Scope display (SD) - The difference between the operator's
;ontroller output and theldriving function (for a compensat-
ory tracking task) is displayed by the horizontal displace-
ment of an oscilloscope beam, This is illustrated in
Figure 4.1(a).

Meter display (MD) - The difference between the operator's
controller output and thé driving function is displayed by
the displacement of a meter needle from a zero-centre posi~-
tion. The meter was adjusted to exhibit approximately
critical damping. The meter display is illustrated in

Figure 4,1(b).

The controllers considered are:

1

2,

Knob-actuated potentiometer controller (KC) - This controller
1s shown in Figure 4.2(a). The controller output is propor-
tional to the angle of rotation from top centre.
Lever-actuated potentiometer controller (LC) - This controller
1g shown in Figure 4.2(b). It is attached to the operator's

arm rest and is operated by the fingers of the left or right

hand.
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[

S

FIGURE 4.1(a) Scope Display in Which Tracking Error is
Proportional to Displacement of Dot From Zero
(Hughes Model 106 "Memo-Corder")

FIGURE 4.1(b) Meter Display in Which Tracking Error is
Proportional to Displacement of Needle

From Zero




RIAURE £.2(x)

PIGURE 4.2(b)

Lever Controller

Knob Controller
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4,3.2 Display Type and Magnification vs. Tracking Performance
For a particular controller sensitivity, it would be expect-
ed that the gain associated with the display device (the display mag-
nification) would have a significant effect on human tracking per-
formance. In order to determine the form of the dependence of track-
ing performance on display magnification and on display type, the
following compensatory tracking experiments were performed: (The
configuration of these experiments is indicated in block diagram form
in Figure 4.3).
1, KC-SD: The sensitivity of the KC was fixed and the magnifica-
tion of the SD varied. For each magnification setting, four
200 second compensatory tracking runs were made. The forcing
function used was the output of a SERVOMEX Model R.G. 77
Random Noise Generator band-limited by a second-order, max-
imally-flat filter with an upper break-point of 0.0625 Hz.
The resulting signal has essentially uniform power output fo
very low frequencies and ;n amplitude distribution approximat-
ing Gaussian with zero-mean. The measure of tracking perform-
ance was taken to be the value of the mean squared tracking
error over the 200 second run. That is,the tracking perform-
ance index is given by

200
P = — f [w(t) -u(t)]2 dt (4.1)
0

where w(t) is the forcing function and u(t) is the output of
the controller. Two test subjects (male, ages 26 and 27) were

{nstructed to maintain, as near as possible, zero error on the
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display.

9, KC-MD: For the same KC sensitivity as used in the 3D experi~
ment above, the same series of runs was made using the MD.
Equal magnification on the two displays was taken to be equal
percentage of full-scale indication for a given input.

Figure 4.4 shows the mean value of P for the four runs at
each magnification using the SD plotted vs, magnification. The mean
squared tracking ;rror and magnification scales are arbitrary but.con-
sistent for all the experiments reported in this chapter. Figure 4.5
shows the mean values of P using the MD normalized with respect to the
corresponding values using the 5D plotted vs. magnification. Figure
4.6 shows the forcing function w(t) and the tracking error [w(t) - u(t)]
plotted vs. time for typical runs at various SD magnifications (subject B).

It can be seen from Figures 4.4, 4.5 and 4.6 that tracking
performance improves significantly for an increase in magnification of
either display from X1 to X5. Further performance improvement with in-
creased magnification is minimal. In addition, both test subjects
found tracking to be more fatiguing at higher magnifications. This
might possibly show up as a reduction in tracking performance if runs
longer than 200 seconds were required. Hence it was concluded that,
for either display type, a magnification of from X2 to X5 was most use-
ful.

It can be seen from Figure 4.5 that tracking performance use-
ing the MD was superior at all magnifications to that using the SD.
Hence the MD was used for all further experiments.

Tabulation of the values of P obtained for each run of the

above experiments is presented in Appendix 4-1.
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4.3.3 Controller Type and Sensitivity vs. Tracking Performance

In order to assess the relative merits of the two types of
controllers previously described and to determine the effect of con-
troller gain (sensitivity) on tracking performance, the following
experiments were performed:

1, KC-MD: For an MD display magnification fixed at X2, two
200 second runs were made by subject A at each of several
KC sensitivities.

2, LC-MD: An experiment similar to that above but using the LC
at various sensitivities was performed by subject B. In -
addition, for a fixed LC semsitivity of X1, MD magnification
vas varied to assess the relative merits of the LC and KC
at each magnification. Four 200 gecond runs were made to
each'magnification by subject B.

Figure 4.7 shows the mean values of P for each set of two
runs plotted vs. KC sensitivity. From this figure there appears to
be an optimum sensitivity for achieving the best tracking performance
(in this case, about 0.5). The test subject reported that tracking was
difficult at low sensitivities due to the necessity of large knob
rotations and difficult at high sensitivities due to the tendency to
over-correct for a display displacement.

Pigure 4.8 shows the mean values of P for each set of two
runs plotted vs. LC sensitivity. Less degradation in tracking perform-
ance at low semsitivities is apparent possibly due to the ease of
moving the LC large distances compared to the KC.

Figure 4.9 shows the mean values of P for each set of four

runs using a X1 LC sensitivity plotted vs, M) magnification. Values
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of P are normalized with respect to the corresponding values obtained
using the KC, It can be seen that performance using the LC is slightly
better than that using the KC. Both subjects expressed a preference
for the LC due to its ease of operation and thus this controller was
used for the remainder of the experiments in this chapter.

Values of mean squared tracking error for each run of the
experiments reported in this subsection are tabulated in Appendix 4-1.

4.4 A Simulated Car-Following Experiment with the Human Operator

The results reborted in the previous section indicate that
the MD-LC configuration results in the best combination of tracking
performance and ease of operagion. This display-controller combina-
tion can now be used in a simulated car-following experiment. Also
keeping in mind the results of the previous experiments, MD magnifica-
tion was adjusted to be in the range of X2 to X5 and LC sensitivity to
be near Xl.

The car-following experiment can be described as follows:

The human operator was required to perforn a compensatory tracking task
which would result in headway and relative velocity regulation between
his vehicle [(n+1)th] and a lead vehicle (nth) simulated to undergo
randon motion. The velocity error was simulated by the output of the
SERVOMEX Random Noise Generator, filtered as described in the previous
gection, while the position error was the integral of the velocity error.
It was also desired that the operator supply a control to the (ntl)th
vehicle which was optimal with respect to some performance index such as
those used for the two;vehicle optimal control system discussed in
Chapter 2. To achieve this goal, the information displayed to the

operator was chosen to be & linear combination of the difference between
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the optimal control (for a particular cost functional) and the operator's
control and the difference between the optimal position error of the
(n+1)th vehicle and the position error of the operator's vehicle, This
1s shown in Figure 4.10 which ie a block diagram of the car-following

experiment.

The displayed information can be written as

D = ot (0 = (0 + 00y (O = xyy (0)] (4.2)

where ¢ is a non-negative weighting factor. For ¢ =0, the operator
receives no feedback of information as to the state of his vehicle.
He will thus attempt only to minimize the difference between his control
and the optimal control.

For values of ¢ of 0, 2, 5, 10 and 20, four 100 second runs

were made by subject B and the mean squared values of (xnl - xn+1’1),

. - - ok -k
(xnl xn+1,l)’ (xn2 xn+1,2)’ (an xn+1,2) and (un+1 un+1)

recorded for each run. Tabulation of these results can be found in
Appendix 4-1. The optimal control scheme chosen was that of two-vehicle
system 2d derived in Chapter 2. The average mean squared values of

(xnl - xn+1’1), (xn2 - xn+1’2) and (um'1 - u:+1) for each set of four
runs are plotted vs. ¢ in Figures 4,11, 4.12 and 4,13 respectively.
Table 4.1 gives the corresponding numerical results. Flgures 4.14,

4.15 and 4.16 show the quantities (xnl - x:+1’1), (xn1 - xn+1’1),

(xn2 - x:+1,2)’(xn2 - xn+1’2), and (u;+1 - un+1) plotted vs. time using
a BRUSH 8-channel recorder for ¢ = 0, 2 and 16 respectively.

It can be seen from Pigure 4.14 that for ¢ = 0, the quantity

(xnl - xn*l,l) is not kept near zero but is allowed to drift as the
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2 5 ¢ c'g 10 ¢

Variation in Mean Squared Control Error
With Display Weighting Factor ¢

¢

Average Mean Squared Value of the Indicated Quantity

(x

nl-xn+1,1)

0 5170 Average 177 Average 7.12

* * *
1%, 1) | %2 %41,2) ("nz"‘nﬂ,z) (U1 Uy

2 19.4 For 20 0.295 For 20 7.31
5 10.5 Runs = 0.302 Runs = 10.4
10 25.0 5.79 1.74 0.190 33,7
20 33.2 6.49 123.0
Table 4.1 Average Relative Mean Squared Errors For Each

Set of Pour Runs Taken For a Particular Value
of ¢. Values Correspond to Those Plotted in
Figures 4,11, 4.12 and 4.13.
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run progresses., This is because no information is supplied to the
operator about the state of his vehicle. It can also be seen from
this figure that the operator tracks the optimal control very closely.
However, since the control of the operator's'vehicle is open-loop,
any variation in ﬁis control from the optimal will cause (xnl - xn+l’1),
and hence the headway error, to drift from zero,

When ¢ 1s increased to 2 (Figure 4.15), both the headway

*

error (xnl - xn+l,1) and the control difference (un+1 - un+1) are kept
near zero. For ¢ = 16 (Figure 4,16), the vehicle-operator system is

unstable and the quantities (xn1 - xn+1,1), (xn2 - xn+1’2) and

(u:+1 - un+1) are in the form of sinusoidal oscillations increasing
in amplitude with time. For the particular test subject used in this
experiment, the system becomes unstable for ¢ > 9 (approximately) .
Figure 4.17 shows (“:+1 - un+1) plotted vs. time for ¢ = 8, 9 and 11,
We can define the value of ¢ for which the system becomes unstable as
the critical value, ¢c. It is to be expected that since @c is depend-
ent to a large extent on the operator's inherent gain and time delay,
variations in ¢c would occur from operator to operator.

Examination of Figures 4.11, 4.12 and 4,13 would indicate
that the best value of ¢ for achieving near-optimal control of the

operator's vehicle lies between ¢ = 2 and ¢ = 5. The exact value would

depend on the relative importance assigned to each of the three quan-

*
tities (xnl - xn+1’1), (xn2 - xn+1’2) and (un+1 - un+1). That 1is, one

could write a performance index of the form
P [ - e, =y )
1''nl  “ntl,l 2'°a2  “ntl,2

2
* -
+ 03(un+1 un+1) ]dt (4.3)
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where 61, 62, and 63 are non-negative weighting factors. The value
of ¢ chosen for a particular operator would of course have to be less
than ¢c.

The above experiment could be repeated for a different
optimal control scheme (i.e. any of those derived in Chapter 2). It
could also be carried out using a three-vehicle type unit with similar

results,

4,5 Proposal of a Semi-Automatic Car-Following System

In this section, a semi-automatic personal-vehicle car-
following system will be proposed based on the results of the experi-
ments reported in Sections 4.3 and 4.4, A general description of the
gystem is as follows:

1. The vehicles are conventional automobiles with internal com-
bustion, turbine or electric propulsion systems. Lateral
control is accomplished automatically or by the human operator.

9, The vehicles would be operated in the normal manner except
on special sections of roadway where steady-state longitudinal
control 1s desirable to increase the traffic flow rate while
maintaining safety of travel.

3. On the special sections, the human operator would be respons-
{ble for longitudinal control aided by some form of display
(such as the meter display described previously).

From this display, augmented by his normal sense-inputs, the
driver would supply a control force to the vehicle.

1f the displayed information is of the form studied in
Section 4.4, that is, in the case of a tvo-vehicle type system, the

displayed information is given by Equation 4.2, then each vehicle in
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the string will receive information as to the state of the vehicle
directly shead as well as its own. An on-board analogue computer
calculates the error states for the two vehicles, tha; is, the devia-
tions in position and velocity from scheduled values. The analogue
computer also generates an optimal control with respect to a perform=
ance criterion of the form discussed in Chapter 2, This optimal
control is the desired force to be applied to the vehicle in a fully-
automatic system. In the proposed semi-automatic system, the differ-
ence between the optimal control and that supplied by the driver is
displayed together with the difference between optimal position error
and that of the operator's vehicle; The human operator thus attempts
to maintain this difference equal to zero (compensatory tracking) and
thus exert the optimal force on the vehicle. As in Chapter 2, tﬁe
dynamics of the propulsion system are gssumed negligible, At any time
the driver is free to apply whatever control he desires to his vehicle.
This feature enables the operator to make use of his adapﬁive abilities
in emergency situations. Exiting and merging operations would also be
handled by the driver. After leaving the special section of roadway,
normal operation would resume. In this system, the driver would not
necessarily be aware of the performance criterion being used. As was
geen in Chapter 2, the nature of the optimal control strategy is
strongly influenced by the values of the weighting factors in the cost
functional, For a quadratic cost functional, the optimal control is a

linear function of the vehicle states. That is, for the case of the

two-vehicle system,

w(e) = L) (4.4)
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The constant matrix Lf 1g the matrix of optimal feedback gains corres-
ponding to a particular cost functional., This would be built in to
the on-board analogue computer and could be changed depending on the
traffic conditions. For example, a roadside signalling device at the
start of the special section could set the feedback gains of all
vehicles as they entered the section. The choice of gains (i.e, per-
formance criterion) would be a function of the traffic conditions and
could be made by a digital computer, The driver would then supply the
appropriate optimal force to his vehicle by performing a compensatory
tracking task, A simplified representation of the proposed semi-

automatic system is shown in Figure 4.18.
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APPENDIX 4-1

Tabulation of Experimental Results

Reported in Sections 4.3 and 4.4

Run %56 ‘4200 [ (w-u)2 J dt for the indicated magnifications
X1 X2 X5 IXIO X15

1 6.64 3.43 3,15 2.79 2.37

2 6,90 4,13 2,28 3.40 2,75

3 8.56 4,14 | 2.19 2.67 2,44

4 6429 4,96 2,26 2,72 2,25

Mean| 7.10 4,16 2,47 2,89 2.45

Table A4-1,1 Mean Squared Tracking Errors for Subject A

Using the KC and SD at Various Magnifications (Corresponding
to Figure 4.4)

Run %66 '[200 [ (u-u)2 ] dt for the indicated magnifications|
X1 X2 X5 X10 X15

1 11.19 4,71 | 4.18 2.84 2,09

2 11.06 6.54 | 4.12 3,00 -

3 13,78 6,11 | 417 3.35 -

4 8,19 6,63 | 4.87 2,95 -

Mean| 11.0 6,00 | 4,34 3.04 2,09

Table A4-1,2 Mean Squared Tracking Errors for Subject B

Using the KC and SD at Various Magnifications (Corresponding
to Figure 4.4)
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Run L \[ 200 2
200 [ (W=u) J dt for the indicated magnificationg
X1 ) ¢ X5 X10 X15
1 3.78 1,66 1.08 0.934 1,41
2 3088 1071 1010 1o28 -
3 2,54 1.73 1,52 1,18 -
4 2,75 1,49 1.47 1.38 -
Mean 3.37 1.65 1,29 1.19 1,41

Table A4-1,3 Mean Squared Tracking Errors for Subject A
Using the KC and MD at Various Magnifications
(Corresponding to Figure 4.5)

1 200

Run 200 \[ [ (w-u)2 ] dt for the indicated magnifications
X1 X2 X5 X10 X15

1 4,87 3.2 2,35 1.63 1.86

2 4.7 2.86 1.77 1,15 -

3 4.61 3.54 1,63 1.32 -

4 4,75 3.01 1.96 1.59 -

Mean 4,75 3.16 193 1,42 1.86

Table A4-1.4 Mean Squared Tracking Errors for Subject B
Using the KC and MD at Various Magnifications
(Corresponding to Figure 4.5)
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Run L [200 2
. 200 [ (w-u) ] dt (X2 display magnification
X,15 X.2 X3 |X.5 X1 | XLU
l 1-63 1059 1-55 1440 - 2.21
2 1.66 2,04 1.51 | 1.43 - 2.60
Mean| 1,65 1.8 1,53 | 1.42 1,65 2,41

Table A4~1,5 Mean Squared Tracking Errors for Subject A

(Corresponding to Figure 4.7)

Using the MD and KC at Various Sensitivities

Run i /200 2
200 % (w-u) dt (X2 display magnification)
X.5 X1 X2 X3

1 125 135 1,36 2,10

2 1.48 1,58 1.23 2,80

Mean| 1.37 1.47 130 2,45

Table A4=1.6 Mean Squared Tracking Errors for Subject B
Using the MD and LC at Various Sensitivities
(Corresponding to Figure 4,8)
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1 [0
Run 200 -[ { (w-u)2 ] dt for the indicated magn,
X X2 X5 X10 X15
1 4,40 1.90 1.75 1,28 0.846
2 4,23 2,24 2,04 1.28 1.21
3 4,4l 2,04 1.81 1.69 1,36
4 3.99 2,06 1.80 L.37 2,30

Table A4-1,7 Mean Squared Tracking Errors for Subject B
Using the LC and MD at Various Magnifications
(Corresponding to Figure 4.9)

8



1

[
o | 1 ‘00[ (-)2] dt  for the indicated quantity
]
X .-X XX X X X X v
a1 | St T w2 | e e,2 | e M
2529 3.9 0,830 0,181 7.63
1731 6/78 0,388 0.170 6,20
0 | 4493 8.43 2,194 0,159 8.32
11920 3,82 3,637 0,154 6.33
33,0 8.91 0,394 0.161 9,28
27,18 6,31 0,255 0166 7.83
2 | 1116 4069 0,261 0.171 6,83
6,40 6,57 0,268 0,177 5,54
10.51 7.31 0.268 0,169 9,32
13,23 5,61 0,262 0.164 11.67
51 1428 6.84 0.407 0,157 12,60
4,03 5,74 0,270 0.179 7.97
32.12 4.97 2.637 0,172 19.16
13,89 495 0,398 0,175 2.73
101 33,95 5,15 2,565 0,361 43.30
20.15 530 1,%1 0,191 29,48
30.5% 5,06 6,217 0.176 125,07
36.70 675 7,52 0164 134.63
201 4435 b2 8,743 0,201 166,
2.29 4,92 3,421 0,354 89,30

Table A4-1.8 Tabulation of Experimental Results of Simulated Car-
Following Experiment Reported in Section 4.4
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CHAPTER 5
CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

5.1 Summary of Results and Conclusions

In Chapter 1, a review of previous research done in the areas
of high-speed ground transportation systems, traffic flow models, auto-
matic car-following systems and human operator characteristics was
presented, From this review, it was apparent that a possible solution
to the traffic congestion, alr pollution and high accident rate now pre-
valent in urban areas would be the development of an automated personal-
vehicle system using electric propulsion, It was shown that conventional
automobile-driver traffic flow rates are lim?ted by the inherent limita-
tions of the human operator, namely reaction time delay and sensitivity
to relative velocity variations. It was seen that a string of driver-
controlled automobiles could become asymptotically unstable when the
average intervehicular spacing was small, Hence it was determined that
the objectives in the development of a fully-automatic car-following
gystem must be to increase traffic flow rates as well as to increase
safety of travel.

The control requirements for a personal-vehicle car-following
system were also outlined in Chapter 1. Briefly, these are: the main-
tenance of a specified headway between adjacent vehicles, the mainten-
ance of zero relative velocity between adjacent vehicles, the ex%stence
of local and asymptotic stability of the vehicle string and the limit-

ation of the forces applied to each vehicle in the system.
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In Chapter 2, the development of an automatic car-following
system based on state-regulator theory of optimal control was presented.
The state equation (equation of motion) for each vehicle was written in
terns of the error state vector, that is, the difference in that vehicle's
state and the scheduled state. The drag force on each vehicle was linear-
ized about the scheduled operating velocity. Two types of car-following
gystems were developed - a two-vehicle type system in which each vehicle
in the string bases its motion on that of the vehicle directly ahead and
a three-vehicle system in which each vehicle in the string bases its
motion on that of both the vehicle directly ahead and that directly
behind.

For both types of systems, a performance criterion (reflecting
the control requirements) was written in terms of a quadratic cost func-
tional. In its most genmeral form, this functional was devised to penal-
ize the system for deviations from desired headway between vehicles,
non-zero relative velocity between adjacent vehicles, the application of
large forces (and hence large expenditure of control energy) to the
vehicles and the deviation of all vehicle states from the desired values.
For a particular cost functional, it was ghown that the optimal control
for each vehicle i a linear function of the vehicle states. In the
case of a string based on the two-vehicle basic unit, each vehicle was
found to require the feedback of velocity and position errors from the
preceeding vehicle while in the case of a string based on the three-
vehicle basic unit, additional feedback of velocity and position errors
was required from the trailing vehicle,

The dynamic behaviour of both basic units was studied by

simulating the respective optimal feedback systems on an analogue
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computer. The results of these simulations indicated that the basic
wits exhibit local stability for all forms of the general cost func-
tional. Generally, it was found that the weighting assoclated with
the headway deviation term in the cost functional affectsthe response
time bandwidth of the system'while the weighting associated with the
relative velocity term affectsthe damping factor. It was concluded
that the desired dynamic behaviour for a specific application could
be obtained by suitable choice of these weighting factors.

The two and three-vehicle units appeared to exhibit similar
local behaviour and it was felt that the advantages of the three-
vehicle design would lie in the area of string behaviour. This topic,
which 1s closely related to that of asymptotic stability of the vehicle
string, was 1nves;igated in Chapter 3, The requirement for asymptotic
stability of a string of vehicles was found in terms of the frequency-
domain transfer function relating the position of successive vehicles.
The asymptotic stability characteristics of several "classical" feed-
back car-following systems were presented which indicate that these
systems can be unstable for improper choice of feedback gains. For the
two-vehicle optimal system it was shown that the requirement for asymp-
totic stability is met for all forms of the genmeral cost functional.
For the three-vehicle system, the requirement was shown to be met under
steady~-state conditions and string simulations indicated that this
system also exhibits asymptotic stability for all forms of the general
cost functional, It was shown that for the three-vehicle type systenm,
a perturbation in the motion of a vehicle in the string causes less
disturbance in the motion of the following vehicles than for the two-

vehicle type system. In addition, each vehicle in the three-vehicle
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type string reacts to disturbances in the motion of trailing vehicles.
These two factors combine to make the three-vehicle system more desir-
able from the standpoint of travel gafety, It was also shown that the
optimal feedback system can operate satisfactorily with time delays of
greater than one second in the control loop,

In Chapter 4 it was pointed out that the automatic optimal
system, while exhibiting desirable characteristics, was not implement-
able in a one-step manner to replace the present automobile-roadway
systems, Hence, it was concluded that a necessary intermediate step
in automating the private automobile would be the inclusion of the
human driver as a link in a feedback car~following system, By proper
choice of displayed variables, it was shown that the human operator
can control the longitudinal motion of @ vehicle in a near-optimum
manner with respect to the motion of the vehicle directly ahead,

In short, the main contributions of this thesis lie in two
areas. First, it was shown that the problem of controlling the long-
itudinal motion of a string of personal vehicles can be golved by the
application of optimal control theory. The resulting control system
was found to be linear, time invariant, and to exhibit desirable local
and asymptotic characteristics. Second, the feasibility of using the
human operator as a link in the car-following feedback system was in-
vestigated, The preliminary results of simulated car-following experi-
ments indicate that this is a useful concept which should be studied at
greater length under actual traffic conditions.

5.2 Suggestions for Future Research

The communication system requirements imposed by the automatic

and driver-controlled optimal car-following systems must be carefully
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investigated in order to determine the technological feasibility of
implementing such systems.

Since position sensing devices placed along the guideway will
probably be discrete in nature, it would be useful to examine the per-
formance of sampled-data optimal car-following systems corresponding
to the continuous-time systems derived in this thesis, In considering
the implementation of the optimal system, it would also be necessary
to consider the effects of state measurement noise and vehicle non-

linearities on system performance.

An analytical study of the effects of a time delay on

the pefformance of the optimal system would also be useful.

As previously indicated, while the experiments reported in
this thesis indicate that the human operator is capable of near-optimum
control of a vehicle in a simulated car-following situation, experiments
under actual road conditions would have to be undertaken in order to
evaluate the performance of such a system. The asymptotic stability
of a string of automobiles controlled by operators in the above manner

would be of prime consideration.

In the interest of safety, it would be useful to study
the performance of the human operator in handling an emergency

gituation such as a sudden stop of the preceding vehicle.



