
An Empirical Investigation of Software Merging
Challenges

by

Mehran Mahmoudi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c⃝ Mehran Mahmoudi, 2018

Abstract

With the rise of distributed and global software development, branching has

become a popular approach that facilitates collaboration between software

developers. Similarly, forking, the practice of cloning an entire repository

and creating an independently modified variant of it, is also common. One

of the biggest challenges that developers face when employing these practices

is dealing with integration problems such as merge conflicts. Conflicts occur

when inconsistent changes happen to the code. Resolving these conflicts can

be a cumbersome task as it requires prior knowledge about the changes in each

of the versions that are going to be merged.

In this thesis, we investigate merge conflicts in different integration contexts

to understand what causes them, and we identify possible directions to help

developers in the integration process. We perform two empirical studies, each

with a different focus.

In our first empirical study, we focus on understanding the integration chal-

lenges and improvement opportunities in independently modified variants of a

repository. As a case study, we investigate the Android operating system and

a community-based variant of it, LineageOS. We analyze changes made in

LineageOS versus changes made in the original development of Android. By

investigating the overlap of different changes, we also determine the possibility

of having automated support for merging them. Our findings show that 83%

of subsystems modified by LineageOS are also modified in the next release of

Android. By taking the nature of overlapping changes into account, we assess

ii

the feasibility of having automated tool support to help phone vendors with

the Android update problem. Our results show that 56% of the changes in

LineageOS have the potential to be safely automated.

In our second empirical study, we focus on the relationship between refac-

toring changes and conflicts. Previous studies have proposed techniques for fa-

cilitating conflict resolution in the presence of refactorings. However, the mag-

nitude of the impact that refactorings have on merge conflicts has never been

empirically evaluated. We study almost 3,000 well-engineered open-source

Java software repositories and investigate the relation between merge conflicts

and 15 popular refactoring types. Our results show that refactoring operations

are involved in 22% of merge conflicts, which is remarkable taking into account

that we investigated a relatively small subset of all possible refactoring types.

Furthermore, certain refactoring types, such as Extract Method, tend to

be more problematic for merge conflicts. Our results also suggest that conflicts

that involve refactored code are usually more complex, compared to conflicts

with no refactoring changes.

iii

Preface

Chapter 4 of this thesis has been published as M. Mahmoudi, S. Nadi, “The

Android Update Problem: An Empirical Study,” Proceedings of the 15th In-

ternational Conference on Mining Software Repositories.

Chapter 5 of this thesis was a collaboration with Dr. Nikolaos Tsantalis

from Concordia University and Dr. Sarah Nadi, my advisor. This chapter has

been published as M. Mahmoudi, S. Nadi, N. Tsantalis, “Are Refactorings to

Blame? An Empirical Study of Refactorings in Merge Conflicts,” 26th IEEE

International Conference on Software Analysis, Evolution and Reengineering.

This work was funded through the Natural Sciences and Engineering Re-

search Council, NSERC.

iv

To my mother

For always being supportive of my academic career,

even when I decided to move 10,000 kilometers away from my hometown.

v

Acknowledgements

First of all, I would like to thank my advisor, Dr. Sarah Nadi. Her guidance

and advice was truly helpful and essential during the course of my studies. In

times when I made mistakes, or I was simply lost, she always gracefully and

patiently helped me learn where I had gone wrong and how I could correct my

path.

I would like to thank my mother and my sister, for being supportive of me

and my decisions. Moving to Canada and pursing my Master’s degree would

have been considerably more difficult, if not impossible, without their love and

support.

Finally, I would like to thank my friends Amir, Benyamin, Sara, Erick,

Arash, and Pouneh for all the memorable moments that we have had through-

out the past two years. I was lucky to be around such amazing people.

vi

Contents

1 Introduction 1
1.1 Integration Challenges in Independently Modified Variants . . 3

1.1.1 Motivation . 3
1.1.2 Study Overview . 3

1.2 Refactorings and Merge Conflicts 4
1.2.1 Motivation . 5
1.2.2 Study Overview . 7

1.3 Thesis Contributions . 8

2 Related Work 9
2.1 Software Merging . 9
2.2 Software Product Lines (SPLs) 10
2.3 Software Evolution . 11

2.3.1 API Migration . 12
2.3.2 Refactoring . 12

3 Background 14
3.1 Software Merging . 14

3.1.1 Merging in Git . 14
3.1.2 Merge Conflict . 15

3.2 Android . 16
3.2.1 Android Architecture 16
3.2.2 Android Subsystems 18
3.2.3 LineageOS . 18

3.3 Software Evolution . 18
3.3.1 Detecting Refactoring Changes 19
3.3.2 Detecting Other Code Changes 19

4 The Android Update Problem 21
4.1 Methodology and Tool Chain 23

4.1.1 Step 1: Identify All Methods 24
4.1.2 Step 2: Populate Changesets 24
4.1.3 Step 3: Map Changesets 27

4.2 Study Setup . 32
4.2.1 Identifying comparison scenarios 32
4.2.2 Downloading repositories & identifying subsystems . . 33
4.2.3 Performing the analysis 33

4.3 Results . 33
4.3.1 Frequently Modified Subsystems 33
4.3.2 Overlapping Changes 35
4.3.3 Overall Feasibility of Automation 38

4.4 Discussion . 41
4.4.1 ‘Possible’ Categories 42

vii

4.4.2 ‘Not Possible’ Categories 45
4.4.3 ‘Might Be Possible’ Categories 45

4.5 Threats to Validity . 46
4.5.1 Construct Validity . 46
4.5.2 Internal Validity . 46
4.5.3 External Validity . 47

4.6 Summary . 48

5 Refactorings and Merge Conflicts 49
5.1 Methodology . 51

5.1.1 Overview . 51
5.1.2 Step 1: Detecting Conflicting Regions 53
5.1.3 Step 2: Detecting Evolutionary Changes 54
5.1.4 Step 3: Detecting Refactorings 55
5.1.5 Step 4: Detecting Involved Refactorings 55

5.2 Evaluation Setup . 57
5.2.1 Repository Selection 57
5.2.2 RefactoringMiner Settings 58
5.2.3 Running Environment 58

5.3 Results . 58
5.3.1 Descriptive Statistics of Collected Data 58
5.3.2 How often do merge conflicts involve refactored code? . 60
5.3.3 Are conflicts that involve refactoring more difficult to

resolve? . 61
5.3.4 What types of refactoring are more commonly involved

in conflicts? . 65
5.4 Threats to Validity . 69

5.4.1 Construct Validity . 70
5.4.2 Internal Validity . 71
5.4.3 External Validity . 71

5.5 Summary . 72

6 Conclusion 73

References 75

viii

List of Tables

3.1 Refactoring types detected by RefactoringMiner 19

4.1 Mappings of changesets and the feasibility of automation in a
comparison scenario . 28

4.2 Java subsystems in each comparison scenario 32
4.3 Most changed subsystems in AN and LinOS 34
4.4 Heat map of average proportion of change types across all com-

parison scenarios . 36

5.1 Stored code ranges for each refactoring type 56
5.2 Statistics for merge scenarios, merge conflicts, and refactorings 59
5.3 Wilcoxon signed-rank paired test results between overall and in-

volved refactorings. When involved refactorings are more than
overall refactorings, the direction of difference is ↑, and ↓ oth-
erwise. Statistically significant results (p < 0.05) are shown in
bold, with highlighted rows being specifically of interest. . . . 68

ix

List of Figures

1.1 A sample merge conflict caused by a refactoring operation . . 6

3.1 An overview of a merge scenario. Each labeled line represents
a branch, and the black-dotted commits constitute the merge
scenario . 15

3.2 Android platform architecture [3]. Image used in accordance to
Creative Commons 3.0 Attribution License 17

4.1 An overview of a comparison scenario in a given subsystem.
The three versions within the dashed area are those used in the
comparison scenario. 23

4.2 An overview of our tool chain for identifying and comparing
changes in a comparison scenario. Each square corresponds to
a step and the oval below it is the tool used in that step. . . . 24

4.3 Example method in AO from SystemUI subsystem that went
through different body-only changes in AN and LinOS 39

4.4 (a) Percentage and (b) count of LinOS changed methods, cat-
egorized by feasibility of automated merging into AN for each
comparison scenario. 40

5.1 An overview of our methodology for detecting involved refac-
torings . 52

5.2 Distribution of conflicting region size with and without involved
refactorings . 62

5.3 Number of evolutionary commits per merge scenario with and
without involved refactorings 64

5.4 Percentage of each involved refactoring’s type per project . . . 66

x

Chapter 1

Introduction

Version control systems (VCSs), which keep track of the software development

history, have become an essential component of modern software development.

With the increase of distributed and global software development [50], [53],

additional coordination tools and processes have been introduced to facilitate

collaborative software development.

A common example of such practices is branching, which is particularly

popular in large software systems. A branch is an instance of the source code.

In this approach, developers create multiple development branches and apply

their changes in parallel. Developers might decide to follow a branch-based ap-

proach for different reasons. Microsoft published a comprehensive guide [18] on

different reasons teams follow a branch-based workflow. These reasons include

isolating development work, bug fixes, and releases. In a survey of software

practitioners, Phillips et al . [82] confirmed that branch-based development is

indeed popular.

Another common practice in collaborative software development is forking.

It is the practice of cloning an entire repository and creating an independently

modified variant of it [85]. Some web-based source-code hosting services, such

as GitHub and Bitbucket, offer systematic support for forking existing repos-

itories. Developers working on forked repositories often need to integrate and

sync up their code base with the original repository. Web-based services assist

developers in the integration process by providing a graphical user interface to

compare the status of both repositories. Nonetheless, developers may choose

1

not to use such services and perform the integration manually, especially if

they have not forked the repository using these services to begin with.

While both branching and forking have several advantages such as allowing

better separation of concerns and enabling parallel development [97], they still

come at the cost of integration challenges [17]. Once a developer has completed

the intended work in a given branch, they need to merge their changes with

the rest of the team’s work. In the case of forking, developers often need to

sync up with the latest changes in the main repository to make sure their clone

reflects the most recent changes. We refer to any of these situations as a merge

scenario.

In any given merge scenario, merge conflicts may arise, because of incon-

sistent changes to the code. Previous studies have shown that up to 16% of

merge scenarios lead to conflicts [19]. Developers have to resolve such conflicts

before proceeding, which wastes their time and distracts them from their main

tasks [71]. A recent study that focused on practitioners’ perspectives on merge

conflicts shows that one of the things developers struggle most with when re-

solving conflicts is understanding why the conflict occurred, especially in the

context of more complex conflicts [70].

In this thesis, we investigate merge conflicts in different integration contexts

to understand the kind of code changes that cause conflicts, and we identify

possible directions to help developers in the integration process. We perform

two empirical studies each with a different focus: (i) understanding the inte-

gration challenges in independently modified variants of a repository and (ii)

investigating the relationship between refactoring changes and conflicts. In

our first empirical study, we investigate the Android operating system which

is notorious for having multiple cloned variants that often lag behind. As part

of our results for that study, we find that refactorings make up the majority

of changes that have the potential to be automatically integrated, and are

currently causing conflicts. Therefore, we study refactoring changes in more

detail and at a larger scale in our second empirical study. More specifically,

we study a large number of repositories and investigate the relation between

refactoring changes and merge conflicts.

2

1.1 Integration Challenges in Independently

Modified Variants

Challenges that developers face in independently modified variants of a repos-

itory could be more comprehensive compared to those in branch-based de-

velopment. This is because developers who work on forked projects often do

not belong to the original repository’s development team. A good example of

this situation is Google’s open-source mobile operating system (OS), Android.

Using the Android Open Source Project (AOSP), phone vendors are able to ac-

cess Android’s source code, clone it, and implement their own changes, such as

device specifications and drivers [3]. When a new version of AOSP is released,

phone vendors need to obtain the new version and re-apply their modifications

to it.

1.1.1 Motivation

Due to the complexity of the migration task that phone vendors face, the ma-

jority of devices that use Android may not run on the most recent version right

away. Based on data collected by Google in July 2017 [5], 27% of Android-

based devices run an Android version that is at least three years old, which is

especially problematic for security updates [92], [93].

The above adoption lag motivated us to study the update and integration

process in Android. We propose a methodology for evaluating the challenges

and difficulties that vendors face when they try to integrate their independently

modified variant of Android with a new version, and we investigate automation

opportunities.

1.1.2 Study Overview

To investigate automation opportunities, it is imperative to first have an un-

derstanding of the changes that vendors make versus those that Android de-

velopers make, and whether these changes overlap.

Thus, in this study, we focus on understanding the nature of the changes

that occur in a large software system such as Android when compared to

3

an independently modified version of it. If we understand the nature of the

changes on a semantic level (e.g ., add method argument), we can identify

current tools and techniques that can address them, or identify technology

gaps that need to be filled.

Since we do not have access to proprietary vendor-specific code, we use

a popular community-based variant of Android, LineageOS, as a proxy for

a vendor-based version of Android. For each subsystem in AOSP, we track

12 types of method-level changes in the source code using a combination of

existing code-evolution analysis tools. We are interested in changes in two

directions. First, between an old version of Android and its subsequent new

version. Second, between the old version of Android and the independently

modified LineageOS version that is based on that old Android version.

We then analyze and discuss all possible combinations of change types for

the two computed sets of changes. For example, a method in an old version

of Android is renamed in the new Android versions, while it is moved in the

corresponding LineageOS versions. Based on our discussions, we determine

whether automation is possible for a given combination of types of changes.

We then estimate the proportion of changes that can potentially be automated.

Our results show that on average, 56% of LineageOS changes have the

potential to be automated when integrating AOSP’s changes. However, for

28% of the cases, developer input would be needed. The automation feasibility

of the remaining 16% depends on the specifics of the change.

This study was published in Proceedings of the 15th International Confer-

ence on Mining Software Repositories [65]. We discuss this study in detail in

Chapter 4.

1.2 Refactorings and Merge Conflicts

Our findings from our empirical study on Android suggest that the majority

of method changes that can be automated are those that remain identical in

the new version of Android and are changed in LineageOS. Textual merge

tools can already handle these kinds of changes and automatically merge them.

4

The remaining types of changes that have the potential to be automatically

automated are those with refactorings. However, our findings at this point are

based on only one case study. Hence, our second empirical study focuses on

the relationship between refactoring changes and merge conflicts on a large

scale.

Fowler et al. [43] define refactoring as “a change made to the internal

structure of software to make it easier to understand and cheaper to modify

without changing its observable behavior”. Refactoring is used to enhance the

software with regards to reusability, modularity, extensibility, maintainability,

etc. [72]. It is also utilized in software reengineering [29], which involves the

examination and alteration of a subject system to reconstitute it in a new form

and the subsequent implementation of the new form.

An example of how a refactoring operation might be involved in a merge

conflict is shown in Figure 1.1. Here, Alice moves function foo() from Foo.java

to FooHelper.java, while Bob adds the line x += 2; to foo’s implementa-

tion in its original place in Foo.java. The figure shows the resulting conflict

in Foo.java, when Bob tries to merge his code with Alice. As shown, the

resulting conflict in Foo.java shows that the whole function is deleted in one

branch, but modified in the other; the number of conflicting lines reported is

also large (the size of the whole function foo). Given that previous research

shows that developers look at the number of conflicting lines as a means of

assessing how much time and effort resolving a conflict would take [70], Bob

would mistakenly think that this is a complex conflict that would take him

lots of time to understand and resolve, especially since he is not aware that

he also needs to look at FooHelper.java to understand what happened. In

reality, the conflict is actually simple: Alice moved the function (a refactoring

operation) while Bob added an extra piece of code to it. A simple resolution

would be to add the extra piece of code to the new location of the function.

1.2.1 Motivation

The example in Figure 1.1 demonstrates how refactorings may complicate the

merging process. In our empirical study on Android in Chapter 4, we propose

5

Merged Version
Foo.java

...
++<<<<<<< refs/bob
+ foo() {
+ int x = getX();
+ x += 2;
+ int y = getY();
+ calcDist(x, y);
+ }
++=======
++>>>>>>> refs/alice
...

Alice
Foo.java

...
­ foo() {
­ int x = getX();
­ int y = getY();
­ calcDist(x, y);
­ }
...

Alice
FooHelper.java

...
+ foo() {
+ int x = getX();
+ int y = getY();
+ calcDist(x, y);
+ }
...

Bob
Foo.java

...
 foo() {
 int x = getX();
+ x += 2;
 int y = getY();
 calcDist(x, y);
 }
...

Figure 1.1: A sample merge conflict caused by a refactoring operation

6

strategies for handling such conflicts. Dig et al . [33] proposed merging tech-

niques in the presence of refactorings. Other researchers focused on improving

code matching and resolution precision in software merging by considering

specific types of refactorings, such as renamings [6], [61].

Researchers agree that refactorings may potentially complicate a merge

scenario. However, how often does this occur in practice? Do refactorings

actually result in more complex conflicts? Understanding the relationship be-

tween refactoring and merge conflicts on a large scale is important to drive

researchers’ efforts in the right direction. This is why we perform a compre-

hensive empirical study to investigate this relationship.

1.2.2 Study Overview

As opposed to related work that looked at a small number of repositories [33]

or at a couple of refactoring operations [6], [61], our second study in this

thesis analyzes close to 3,000 GitHub repositories and uses a state-of-the-art

refactoring detection tool. To the best of our knowledge, this is the first

large-scale empirical study on the relationship between refactorings and merge

conflicts.

We find that 22% of merge conflicts involve refactoring, which is remark-

able taking into account that we investigated only 15 refactoring types while

refactoring books describe more than 70 different types [43]. This shows that

refactoring changes end up being involved in a considerable portion of merge

conflicts, and suggests useful potential for refactoring-aware merging tech-

niques.

Furthermore, we find that conflicts that involve refactorings are more com-

plex than conflicts with no refactoring. This reaffirms the necessity of tools and

techniques that can assist developers in the merging process in the presence

of refactorings.

Our results also show that when adjusted for their overall frequency, refac-

toring types affect conflicts at different rates. Extract Method refactorings

are involved in more conflicts than their typical overall frequency, while the

majority of refactoring types are involved in conflicts less frequently. This is

7

bad news for current refactoring-aware merging techniques that rely on “un-

applying” refactoring operations and calls for more sophisticated approaches.

This study was published in the 26th IEEE International Conference on

Software Analysis, Evolution and Reengineering. We discuss this study in

details in Chapter 5.

1.3 Thesis Contributions

The findings of this thesis shed light on the integration challenges for indepen-

dently modified variants of a system (through a case study of Android) and

pave the road for refactoring-aware merging tools. Concretely, the contribu-

tions of this thesis are:

• A methodology for analyzing method-level changes between an inde-

pendently modified variant of a repository and the original repository,

including a breakdown of the overlap between these changes and the

feasibility of automation for each category, and a discussion of the suit-

ability of current tooling for the task.

• The first research work to discuss the Android update problem, i.e., the

problem of integrating vendor-specific changes with AOSP updates. We

use the Android update problem as a case study of our methodology,

where we analyze the 8 latest releases of AOSP versus their community

modified counterparts.

• An empirical study on almost 3,000 open-source Java repositories to

investigate the role of refactoring operations in merge conflicts.

• A methodology for detecting refactorings in evolutionary changes that

lead to merge conflicts.

• Open-source implementation of our methodology for both studies [45],

[46], to facilitate verification and replication efforts.

8

Chapter 2

Related Work

In this chapter, we discuss previous work in the literature related to the topics

of this thesis. We categorize related work into 3 categories: Software Merging,

Software Product Lines, and Software Evolution.

2.1 Software Merging

While branch-based development and forking are common practices in software

engineering, integration challenges for software merging remain a drawback.

There are multiple studies that propose new merging techniques to reduce

the manual integration labor as well as to decrease the likelihood of merge

conflicts. According to the seminal survey by Mens [71], software merging

tools can be categorized by how they represent software artifacts.

Text-based merge tools are language-independent and consider software

artifacts as text-files [14], [64]. Because of their line-based approach, these

tools cannot handle simultaneous changes to the same lines. The conflicts we

study in this paper, as reported by Git, are based on text-based merge tools.

Syntactic merge tools are more advanced since they take into account the

syntax of software artifacts [21], [78]. These tools can ignore unimportant

conflicts such as code comments or line breaks. While these tools can ensure

that the merged program is syntactically correct, they cannot prevent semantic

conflicts.

Semantic-based merge tools overcome these type of conflicts by employing

ASTs, dependency graphs, program slicing, and denotational semantics [7],

9

[8], [15], [16], [24], [55], [99].

Operation-based merge tools, which are a flavor of semantic-based tools,

consider changes between versions as operations. Nishimura et al . [77] pro-

posed a tool that assists developers with merge conflicts. Their approach re-

duces the burden of manual inspection for developers by replaying fine-grained

code changes related to conflicting class members. Dig et al . [33] proposed

MolhadoRef, a software configuration management system that is aware of

refactoring operations. MolhadoRef merges two software revisions by in-

verting the refactoring operations, performing a textual merge, and replaying

the refactoring operations. However, they did not empirically study how of-

ten refactorings cause conflicts, and how effective their approach is on a large

scale.

In addition to improving software merging algorithms themselves, some re-

searchers proposed continuously running or merging developer changes in the

background to warn developers about potential conflicts before they actually

occur [19], [31], [49]. Furthermore, some researchers performed empirical stud-

ies to predict merge conflicts [1], [62] or to understand practitioners’ views on

conflicts [70].

Finally, there are a number studies that investigate collaborative software

development in the context of forked repositories and pull-request model [47],

[48], [102]. These studies mainly focus on whether a pull-request would be

integrated or rejected by a reviewer from a code change perspective and do

not take into account merge conflicts.

2.2 Software Product Lines (SPLs)

The idea of consolidating independently evolved versions of a software system,

or forking, is also related to the SPL domain. Various studies and tools have

been proposed to identify commonalities and variability between source code of

multiple software versions and consolidate them in an SPL (e.g ., [35], [38], [40],

[87]). As opposed to traditional merging, the goal with SPLs is to integrate

the variants but keep them configurable such that it is possible to choose any

10

of the existing behavior.

There are a number of studies on forked repositories that investigate dif-

ferent aspects. For example, Ray et al . [85] investigated the sustainability

of forked repositories by studying 18 years of the BSD product family his-

tory. They find that forked projects require significant maintenance effort.

Moreover, Businge et al . [22] studied reuse practices to identify families of

cloned Android applications and find that code propagation is not common

among them. However, to the best of our knowledge, there is no study that

investigates the integration challenges in cloned variants of the Android OS.

We would like to note that there is existing work that studies techniques

and requirements for providing a dynamically updatable operating system [10],

[11]. Obviously, if Google decides to change the Android architecture to sup-

port such dynamic updates on all levels of the OS, then the update problem

that we discuss in Chapter 4 would be solved. However, we look at the current

state of the Android OS and address the Android update problem from the

perspective of phone vendors, not from the perspective of the OS owners.

2.3 Software Evolution

In our first empirical study in Chapter 4, we investigate the integration chal-

lenges in an independently variant of the Android OS. Understanding how a

software system evolves over time, especially in the context of collaborative

software development, can provide more details about the integration chal-

lenges that developers face.

A lot of work focused on identifying types of changes that occur during

software evolution [20], [56], with varying goals and underlying techniques.

Some of the most notable goals that previous studies followed include finding

factors for successful software reuse [89], validating hypotheses for successful

open-source development [34], predicting future changes [23], [101], etc. How-

ever, to the best of our knowledge, there is no software evolution study that

discusses integration challenges in cloned variants of a software system by com-

paring semantic changes between cloned variants and the original repository.

11

Our empirical study in Chapter 4 relies on several existing tools and tech-

niques in software evolution, such asChangeDistiller [41], SourcerCC [88],

and RefactoringMiner [94] to get a comprehensive set of method-level

changes. Details about the tools we use are given in Chapter 3.

We now discuss API migration and refactoring, two topics in software

evolution that are related to this thesis, in more details.

2.3.1 API Migration

The techniques used to identify changes during software evolution have often

been used as a basis for updating client projects if a library API they use

changes. For example, Xing and Stroulia [100] develop Diff-CatchUp based

on UMLDiff to automatically recognize API changes and propose plausible

replacements to obsolete APIs. Similarly, Dagenais and Robillard [28] develop

SemDiff, which tracks and analyzes the evolution of a framework to infer

high-level changes and recommend adaptive changes to client applications.

Previous work showed that API migration is a prevalent problem in An-

droid, where app developers do not generally keep up with the pace of API

updates and often use outdated APIs [69]. Linares-Vásquez et al . [63] also

study Android’s public APIs and find out that using unstable and fault-prone

APIs negatively impact the success of Android apps. There are similar addi-

tional studies on Android public APIs [69]. However, our first empirical study

in Chapter 4 does not focus only on updates to public APIs used by clients, but

rather involves analyzing the evolution of independently maintained versions

of a piece of software.

2.3.2 Refactoring

In our second empirical study in Chapter 5, we investigate refactoring opera-

tions and merge conflicts. Refactoring is a change made to the internal struc-

ture of software to make it easier to understand and cheaper to modify without

changing its observable behavior [43]. Researchers have used refactoring de-

tection tools to study how software evolves in the presence of refactorings.

For example, how refactorings impact bugs [12], [98], software quality [13],

12

or regression testing [84]. Other researchers studied why and how refactorings

happen [59], [75], [79]. However, to the best of our knowledge, there is no study

that investigates the relationship between refactorings and merge conflicts.

There are a number of refactoring detection algorithms and tools in the

literature [30], [32], [42], [44], [60], [76], [83]. However, most of these tools

have low precision and/or recall, need a similarity threshold to determine if

two parts of the code are related, and require two fully-built versions of the

software as an input in order to utilize type-binding information from the com-

piler. Aiming to mitigate such problems, Tsantalis et al . [94] recently proposed

a tool, named RefactoringMiner, which we use in this work. Refactor-

ingMiner does not require predefined similarity thresholds, operates at both

commit level and file level, and achieves a high accuracy rate (a precision of

98% and recall of 87%).

13

Chapter 3

Background

In this chapter we explain some background information related to this thesis.

We introduce terms and definitions we use in the thesis, tools we use in our

work, as well as systems we analyze.

3.1 Software Merging

Using multiple branches in a source control system is a common practice in

software development that serves a variety of purposes [9], [97]. At one point,

developers need to integrate the changes from the different branches, and this

is done by merging the corresponding branches. Since we focus on repositories

that are maintained with Git in Chapter 5, we now explain merging in Git

in more details.

3.1.1 Merging in Git

Almost all merge tools that are currently available, including the one utilized

by Git, employ three-way merging techniques [71]. In three-way merging, two

versions of a software artifact are merged by making use of an additional third

version, which is often called the base version.

Figure 3.1 illustrates a typical merge scenario. When merging two branches,

Git attempts to merge the most recent commit in each branch. We refer to

these commits as merge parents. As a base version in a merge scenario, Git

uses the most recent commit that both merge parents can be derived from,

referred to as the common ancestor. The result of the merge is stored in a

14

master

feature A

P1
feature A1

P2
feature A2a

feature A2

Common
Ancestor

Development Time

Merge
Commit

Figure 3.1: An overview of a merge scenario. Each labeled line represents a
branch, and the black-dotted commits constitute the merge scenario

merge commit. A merge commit can be identified from the Git history, since

it has two or more parents (namely P1 and P2 in the example of Figure 3.1),

unlike typical commits that have one parent.

3.1.2 Merge Conflict

Based on the nature of the merge scenario, a textual three-way merge tool,

such as the one used by Git, might not be able to automatically merge the

two versions of a file. For a given conflicting merge scenario, Git can report

conflicts across multiple files. Git categorizes conflicts into 6 types:

• add/add: When both merge parents add a new file with same name, but

with different contents.

• content: When both parents apply different changes to the same file, in

the same location.

• modify/delete: When P1 modifies a file, while P2 deletes it.

• rename/add: When P1 renames a file, and P2 adds a new file with the

same name.

• rename/delete: When P1 renames a file, and P2 deletes it.

• rename/rename: When both parents rename a file to different names.

15

The first two types are at the content level, while the other four are at the

file level. Content level conflicts could be caused by more than one location

in the conflicting file. Git reports these conflicting locations by annotating

them with <<<, ===, and >>> markers as shown in Figure 1.1. We call each of

these annotated locations a conflicting region.

3.2 Android

In our first empirical study in Chapter 4, we study the Android OS. As back-

ground, we now introduce Android’s architecture, its subsystems, and the

community-based variant of it we used, LineageOS.

3.2.1 Android Architecture

As shown in Figure 3.2, the Android software stack architecture consists of

several layers [3]. Each layer has a different functionality and is written in a

specific language. The lowest layer is the Linux Kernel level. Phone vendors

are expected to include device drivers for their hardware in this layer. On

top of the Linux Kernel, there is the Hardware Abstraction Layer (HAL).

This layer defines a standard interface for hardware vendors to implement and

allows Android to be agnostic to lower-level driver implementations. Phone

vendors are responsible for interaction between the HAL implementation and

their device drivers in the Kernel layer.

While development in HAL and the Linux Kernel is done in C/C++,

higher-level layers such as the System Apps and Java API Framework use

Java. Phone vendors may apply changes to these layers for various reasons,

such as adding new functionality or building their ecosystem’s look and feel.

The Android source code is maintained in multiple repositories that col-

lectively build up the source-tree. A list of these repositories is maintained in

a repository called Android Platform Manifest [4].

16

Figure 3.2: Android platform architecture [3]. Image used in accordance to
Creative Commons 3.0 Attribution License

17

3.2.2 Android Subsystems

Since we need to understand which parts of the Android OS are modified, it

would be useful to divide the Android source code into different subsystems.

In application development for Android, each folder that contains an Android-

Manifest.xml file is compiled and built into a .apk file, which is later installed

on the phone. Conveniently, all parts of Android that are implemented in Java

are considered as apps, meaning that they have an AndroidManifest.xml file in

their source and are packaged into .apk files. Considering this fact, we decided

to define the notion of an Android Java subsystem as a folder that contains an

AndroidManifest.xml file.

3.2.3 LineageOS

Because phone vendors do not make the source code of their customized An-

droid OS version publicly available, we need a proxy for a vendor-specific

Android variant. There are a number of community-based Android OS vari-

ants available. Since most of them are open source, it is possible to use them

as a proxy for a modified vendor-specific version of Android for our research

purposes. LineageOS [26], [52] is a popular alternative operating system for

devices running Android. It offers features and options that are not a part of

the Android OS distributed by phone vendors. These features include native

Android user interface, CPU overclocking and performance enhancement, root

access, more customization options over various parts of the user interface, etc.

In 2015, LineageOS had a large user base [52] and a community of more than

1,000 developers. It is actually a continuation of CyanogenMod, a project

that was discontinued in December 2016 and that continued under the new

name, LineageOS.

3.3 Software Evolution

In this section, we introduce the different tools that we use in later chapters

to track source code changes between two versions of a software.

18

Code Element Refactoring Type

Package Change Package

Type
Extract Superclass/Interface

Move Class, Rename Class

Method

Extract Method, Extract & Move Method

Inline Method, Pull Up Method

Push Down Method, Rename Method

Move Method

Field Pull Up Field, Push Down Field, Move Field

Table 3.1: Refactoring types detected by RefactoringMiner

3.3.1 Detecting Refactoring Changes

Tsantalis et al . [94] recently proposed a refactoring detection tool, named

RefactoringMiner, which we use in this work. Table 3.1 shows the 15

refactoring types that RefactoringMiner is able to detect in different gran-

ularity levels. It has two modes of operation: (1) comparing two given files or

folders to detect refactorings in them or (2) detecting refactorings in a given

Git commit. It has a precision of 98% and a recall of 87%.

For our first study in Chapter 4, we use RefactoringMiner in file mode.

For our second study in Chapter 5, we use it in commit mode.

3.3.2 Detecting Other Code Changes

Code change detection tools assist researchers in software evolution analysis

by identifying source code changes over several versions of a program.

Spoon [81] is a open-source tool for analyzing Java source code. It creates

an Abstract Syntax Tree (AST) for a given Java project. An AST is a tree

representation of the abstract syntactic structure of a source code. We use

Spoon for identifying all methods in a Java project and generating unique

signatures for them.

SourcererCC [88] is a token-based clone detection tool with a high re-

ported rate of 90% recall (100% for certain benchmarks) and 83% precision.

It is designed for detecting both exact and near-miss clones in large-scale

19

projects. We use SourcererCC for identifying identical methods between

two versions of a source code.

ChangeDistiller [41] is a tool for extracting source code changes based

on AST differencing. The reported precision and recall rates of ChangeDis-

tiller are 78% and 98%, respectively. We use ChangeDistiller to find

changes to a method’s arguments between two versions of the source code.

20

Chapter 4

The Android Update Problem

In this chapter, we present our first empirical study on integration challenges

in Android.

Google’s open-source mobile operating system (OS), Android, is used by

the majority of phone vendors [67] and currently has approximately 80% of

the market share of smart phones around the world [96]. Using the Android

Open Source Project (AOSP), phone vendors are able to access Android’s

source code, and can implement their own device specifications and drivers [3].

Since Android is open source, phone vendors can add their own enhancements,

including new hardware capabilities and new software features.

When a new version of AOSP is released, phone vendors need to obtain

the new version and re-apply their modifications to it. Due to the complexity

of this task, the majority of devices that use Android may not run on the most

recent version right away. Based on data collected by Google in July 2017 [5],

27% of Android-based devices run an Android version that is at least three

years old, which is especially problematic for security updates [92], [93].

The process of re-applying changes from an independently modified version

of Android to a newer version of Android is a time-consuming and manually

intensive task. While developers can use a mix of Application Programming

Interface (API) migration and software merging tools to help them with the

process, we are not aware of any single off-the-shelf tool that can be used

to automatically accomplish this merging task. However, before attempting

to automate this task, we first need to understand the changes that vendors

21

make versus those that Android developers make, and whether these changes

overlap.

In the study presented in this chapter, we focus on understanding the

nature of the changes that occur in a large software system such as Android

when compared to an independently modified version of it. If we understand

the nature of the changes on a semantic level (e.g ., add method argument), we

can identify current tools and techniques that can address them, or identify

technology gaps that need to be filled. We focus on the Java parts of AOSP

since Google recently announced the introduction of Project Treble [2], [66]

which allows easier update of the hardware-specific parts implemented in C

through a new architecture of these layers. However, this does not solve the

problem of vendor-specific Java changes in AOSP itself.

Since we do not currently have access to proprietary vendor-specific code,

we use a popular community-based variant of Android, LineageOS, as a

proxy for a vendor-based version of Android. For each subsystem in AOSP,

we track the method-level changes in the source code using a combination

of existing code-evolution analysis tools: SourcererCC [88], ChangeDis-

tiller [41], and RefactoringMiner [94]. We are interested in changes in

two directions. First, between an old version of Android and its subsequent

new version. Second, between the old version of Android and the indepen-

dently modified LineageOS version that is based on that old Android version.

We first analyze the types of changes that have occurred in both directions. We

then analyze the intersection of the two computed sets of changes to estimate

the proportion of changes that can potentially be automated. Specifically we

answer the following research questions:

S1-RQ1 Which parts of Android are frequently modified in AOSP vs. Lin-

eageOS? Understanding the commonalities between the subsys-

tems that are modified in AOSP and LineageOS sheds light on

the extent of the Android update problem.

S1-RQ2 What are the overlapping types of changes between AOSP and Lin-

eageOS modifications? Knowing what subsystems are commonly

22

Android Old
(AO)

Android New
(AN)

LinOS LinOS (latest
commit)

Time

Android Changes

LinOS Changes

Based on

AO→AN
 Changeset

AO→LinOS
 Changeset

Figure 4.1: An overview of a comparison scenario in a given subsystem. The
three versions within the dashed area are those used in the comparison sce-
nario.

co-modified in AOSP and LineageOS, while helpful, is not enough

per se. In this RQ, we dive deeper and explore what types of method

changes often happen in AOSP vs. LineageOS.

S1-RQ3 How feasible is it to automatically re-apply LineageOS changes to

AOSP? Assessing the feasibility of automatic integration of indepen-

dent modifications with AOSP provides useful insight for phone ven-

dors, as well as developers of other similar forked software projects.

4.1 Methodology and Tool Chain

Figure 4.1 shows the relation between the evolution of LineageOS with re-

spect to AOSP. A new LineageOS version is created based on a given An-

droid version, Android Old (AO) in this case. Developers then evolve this

LineageOS version to add their own customization to the original Android

version it is based on. The final state of these customizations would be in the

latest commit of LineageOS (LinOS). Simultaneously, Android developers

are modifying Android to eventually release a new version, Android New (AN).

We call the group of three versions required to compare Android changes to

the LineageOS changes (i.e., AO , AN , and LinOS) a comparison scenario.

23

Figure 4.2: An overview of our tool chain for identifying and comparing
changes in a comparison scenario. Each square corresponds to a step and
the oval below it is the tool used in that step.

These three versions are surrounded by the dashed box in Figure 4.1. For

each comparison scenario, we identify all subsystems that belong to AO and

track their evolution through AOSP and LineageOS changes. We focus on

changes at the method level, because the method-level provides a concrete and

self-contained granularity level that we can reason about, and it has been used

in many software evolution studies [56].

Figure 4.2 shows the steps we follow in our tool chain in order to analyze

a comparison scenario. It consists of three main steps that are applied to

each subsystem in the comparison scenario. We now explain each of these

steps. Our tool chain, which is a combination of pertaining third-party tools

and some custom tooling, is implemented in Java and Python and is available

online [45].

4.1.1 Step 1: Identify All Methods

We use Spoon [81] to generate the Abstract Syntax Trees (ASTs) of all Java

files in the three versions of a subsystem. Using the ASTs, we extract a

signature for each method that uniquely identifies it. This gives us a set of all

methods in each of the three versions of a subsystem.

4.1.2 Step 2: Populate Changesets

We call the set of method changes between two given versions of a subsystem

a changeset. In this step, we want to populate two changesets, one between

AO and AN and one between AO and LinOS . Our tooling receives the AO ,

AN , and LinOS versions of a subsystem as input and populates these two

24

changesets. We now describe the type of changes a method can undergo and

the tooling we use to detect the change. When discussing the changes, we

break down methods into signature and body. A method signature includes

the package and class it is located in, its name, arguments, and return type.

The method body is the implementation of the method. Changes to these two

entities are not mutually exclusive, however, meaning that a method could be

changed in both ways.

Identical Methods

Identical Methods are those that do not have any changes in neither their

signature nor body. To identify identical methods, we use SourcererCC [88]

with 100% similarity threshold to look for exact clone pairs on the function

level.

Refactoring Changes

Generally speaking, a refactoring change is a change that does not semantically

alter the source code. In refactoring changes, the method signature is changed,

although the body could be the same, depending on the type of refactoring.

We consider the most common types of refactorings:

• Method Move: Class or package name of a method is changed.

• Method Rename: A method’s name is changed.

• Method Inline: A method is removed and its body is moved to the place

it was originally called from.

• Method Extraction: Part of a method (m1) is moved to a newly created

method (m2), and m2 is called from m1.

• Argument Rename: A method argument’s name is changed.

• Argument Reorder: The order of arguments is changed.

25

We use RefactoringMiner1 to detect refactoring changes at the method

level between different versions of a subsystem. At the time of this study,

RefactoringMiner could detect the first four refactorings in the above list,

but could not detect argument rename or reorder. To detect these two types

of refactorings, we use ChangeDistiller [41], which extracts source code

changes based on tree differencing.

Argument Changes

There are other types of argument changes that would not be considered as

refactoring changes. These include adding a new argument or deleting one,

as well as changing an argument’s type. We use ChangeDistiller [41] to

detect these three types of argument changes and add them to the respective

changesets under the argument change category.

Body-only Changes

A method could have changed between two versions of a subsystem, but does

not belong to any of the above categories. We already covered changes that

can only affect a method’s signature (method move, method rename, argument

rename, and argument reorder) or both its signature and body (method in-

line, method extraction, and argument changes). Body-only changes include

methods that have the exact same signature between two versions of their

subsystem, but have modified bodies.

For each of the two changesets, we implement our own tooling to search

for methods in the AO version of the subsystem that have not been paired

with a method in the related version. Between these unmatched methods, we

look for pairs with matching signatures. Such pairs of methods will definitely

have different bodies; otherwise, they would be identical and would have been

discovered by SourcererCC when identifying identical methods. We add

such methods to the body-only change category.

1https://github.com/tsantalis/RefactoringMiner, used as of commit 85dba96

26

https://github.com/tsantalis/RefactoringMiner
https://github.com/tsantalis/RefactoringMiner/tree/85dba96463146229c9699449fc53587a5ace2610

Unmatched Methods

Given two versions of a system, a method that exists in the old version might

have undergone large changes that prevent existing tools from matching it

with the corresponding method in the new version. The method could have

also been simply deleted. We use a simplified heuristic where if we exhaust

our search for a match for a method by going through all the above change

types, we categorize this method as unmatched.

4.1.3 Step 3: Map Changesets

After acquiring the two changesets AO to AN and AO to LinOS , we develop

custom tooling that maps method changes that have the same signature in

AO from one changeset to the other.

This mapping allows us to understand the extent and nature of overlap-

ping changes. Table 4.1 shows the potential overlapping changes to the same

method, by considering all the possible combinations of changes. Column and

row labels represent types of changes in each changeset.

The next step is to understand if integrating each category of overlapping

change can be automated. To determine this, we consider the nature of the

changes and categorize each cell based on the possibility of automatically in-

tegrating both changes without needing input from the developer. Green cells

indicate that automation is possible. This means that it is possible to develop

a tool chain that utilizes a combination of state-of-the-art tools and techniques

in order to automatically merge these change types, without needing any input

from the developer in order to combine the simultaneous changes from both

sides. Red cells indicate cases where complete automation is not possible, be-

cause developer input is needed. In other words, for part of the code changes,

a tool needs to pick one side or another and such a decision should be left

up to the developer. Yellow cells indicate potential problems: depending on

the details of the change, automation may or may not be possible. We have

not included the identical change type between AO and LinOS in the table,

because there are no changes to apply on AN for those methods.

27

A
O

→
L
in

O
S

C
h
an

geset

Method Move

Method Rename

Method Inline

Method Extract

Argument Rename

Argument Reorder

Argument Add

Argument Remove

Argument Type Change

Body-only

Unmatched

AO →AN Changeset

Id
en
tical

P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le

M
eth

o
d
M
ove

M
igh

t
B
e
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le

M
eth

o
d
R
en
am

e
P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le

M
eth

o
d
In
lin

e
N
ot

P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
P
ossib

le
N
ot

P
ossib

le

M
eth

o
d
E
x
tract

N
ot

P
ossib

le
P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le

A
rgu

m
en
t
R
en
am

e
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
P
ossib

le
M
igh

t
B
e
P
ossib

le
P
ossib

le
M
igh

t
B
e
P
ossib

le
M
igh

t
B
e
P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le

A
rgu

m
en
t
R
eord

er
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
P
ossib

le
P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le

A
rgu

m
en
t
A
d
d

P
ossib

le
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le

A
rgu

m
en
t
R
em

ove
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le

A
rgu

m
en
t
T
y
p
e
C
h
an

ge
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le

B
o
d
y
-on

ly
P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
P
ossib

le
P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
M
igh

t
B
e
P
ossib

le
N
ot

P
ossib

le

U
n
m
atch

ed
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le
N
ot

P
ossib

le

T
ab

le
4.1:

M
ap

p
in
gs

of
ch
an

gesets
an

d
th
e
feasib

ility
of

au
tom

ation
in

a
com

p
arison

scen
ario

28

We start by discussing our reasoning across the first row, last row, and

last column of Table 4.1 as they have the same color across. If a method in

AN is identical to AO , then we can safely automatically apply any change

from LinOS . This is why the whole first row is green, with the exception

of the last cell. This leads us to discussing the last row and last column.

If a given method is unmatched in either changesets, then we conservatively

assume that this is an integration that cannot be automated, and mark the cell

as red. The simplest example is if the method gets deleted in one changeset

but not the other. However, there may be more complicated types of changes

that our tooling could not map. Therefore, we choose the more conservative

assumption that these changes cannot be safely automated. Note that with the

exception of the cell in the bottom right corner, all cells across the diagonal

are marked as yellow, since if the same type of change is applied in both

change sets, the feasibility of automation depends on the particular case. For

example, if both change sets include an argument or method rename, then the

integration of the changes can be automated if both change sets used the same

destination name. On the other hand, if the destination names are different,

then developer intervention is needed to decide which name to choose. We

now discuss our reasoning for the color choice of the remaining cells, column

by column, without repeating the reasoning for the first row, last row, last

column, and diagonal in the table.

AO → LinOS Method Move. This column looks at cases where the

method was moved in LinOS . If the method was inlined in AN , then it no

longer exists and thus cannot be automatically moved, resulting in a red cell.

If part of the method was extracted in AN , then a tool cannot automatically

decide whether it should create the extracted method in the same location

as that in AN or if the extracted method should also be moved to the new

location in LinOS . Because this requires the developer’s decision, we color

this cell red. If the arguments or body of the corresponding method in AN

are changed, the move change from LinOS could still be easily applied in AN

since the move operation does not interfere with any of these types of changes.

AO → LinOS Method Rename. This change is very similar to Method

29

Move. Thus, the coloring of most cells follows the same reasoning. The only

exception is Method Extract in AN . If a method was extracted in AN and

was renamed in LinOS , a tool will not face the same question about where

should it move the extracted part. The method will be extracted in the same

location as AN and then renamed similar to LinOS ; thus this cell is colored

green. When automating the integration of this change to AN , all calls to the

method in AN should also be updated.

AO → LinOS Method Inline. If a method is inlined in LinOS , it means

that its body was copied to all its call sites that existed in AO , and the method

itself has been removed. In this change, the implementation of the method is

not altered, therefore, if there has been a body-only change in AN , we can still

apply this change to the inlined code. However, any other type of change in AN

that alters the method’s signature cannot be easily automatically integrated.

For example, assume that some argument got removed from the method’s

signature, applying this change to the inlined body of the method may not be

that straightforward since it would require removing parts of the code in which

the old method got inlined, an operation that is best left to the developer’s

judgment. The same logic applies to the methods that were inlined in AN ,

hence the (AO → AN Method Inline) row is also mostly red.

AO → LinOS Method Extract. This change occurs when part of the

method’s implementation in AO is moved to a newly created method in LinOS .

If the method is moved in AN , a tool would not be able to automatically

determine where to create the extracted method and the choice depends on

the developer’s decision. Since method extract affects a method’s body, a tool

would not be able to automatically apply the change in cases where AN also

altered the body (those marked in red). All the other change categories do

not alter a method’s body, and thus, can be automatically integrated.

AO → LinOS Argument Rename. Argument renames can be auto-

matically reapplied to AN in most cases. The only exceptions are when an

argument is added or removed in AN , since the changed argument could po-

tentially have the same name of the renamed argument in LinOS . We mark

these cases as yellow.

30

AO → LinOS Argument Reorder. This change type is similar to the

previous argument rename. The only difference is when a new argument is

added or removed in AN . In this case, a tool cannot automatically determine

how to reorder the arguments in the presence of a new argument or absence

of a previously present argument. We mark both these cases as red.

AO → LinOS Argument Add and Remove. We discuss both these

columns together since their reasoning is similar. When a new argument is

added or an old one is deleted, a method’s body is often altered as well to

reflect the change. Therefore, if the method body is also modified in AN

through any type of change, it is not possible to automatically reapply the

changes from both change sets. If an argument is renamed in AN , it would be

a problem if the same argument is removed in LinOS . We will face a similar

problem if the new argument name in AN is the same as the new argument

added in LinOS . Hence, we mark both these cases as yellow.

AO → LinOS Argument Type Change. We assume that when an

argument type change happens in LinOS , the body is also changed. Argu-

ment type changes can be automatically reapplied for changes in AN that

only affect the method’s signature, i.e. method rename, method move, and ar-

gument reorder. Although argument rename in AN mostly likely changes the

method body, a tool can still automatically reapply the argument type change

in LinOS , because argument rename is merely a refactoring change than can

be reapplied even if other parts of the body are changed. Other change types

in AN involve non-trivial changes in the method’s body that are likely to cause

conflicts with argument type change in LinOS , so they are colored red.

AO → LinOS Body-only. The reasoning for this change type is very

similar to the previous case, since we assume an argument type change also

means a change in the method’s body. The only difference is for the case

where the method is inlined in AN . The body-only change from LinOS can

be re-applied by simply removing the old inlined version of the method and

re-performing the inline operation with the new body from LinOS .

31

Comparison scenario AO AN LinOS # of subsystems

CS1 4.2.2 r1 4.3.1 r1 cm-10.1 208

CS2 4.3.1 r1 4.4.4 r1 cm-10.2 219

CS3 4.4.4 r2 5.0.2 r1 cm-11.0 275

CS4 5.0.2 r1 5.1.1 r1 cm-12.0 346

CS5 5.1.1 r37 6.0.1 r1 cm-12.1 355

CS6 6.0.1 r81 7.0.0 r1 cm-13.0 381

CS7 7.0.0 r14 7.1.2 r1 cm-14.0 392

CS8 7.1.2 r36 8.0.0 r1 cm-14.1 398

Table 4.2: Java subsystems in each comparison scenario

4.2 Study Setup

In this section, we explain the setup we use for running our methodology from

Section 4.1 on AOSP and LineageOS.

4.2.1 Identifying comparison scenarios

We consider the eight latest LineageOS versions in our study. To identify a

comparison scenario, we need the AOSP version each LineageOS version is

based on and the subsequent version of AOSP that it will need to be updated

to. Each version of LineageOS is based on a corresponding version of AOSP,

but it is not necessarily based on the first release of that AOSP version. Lin-

eageOS does not modify all of the repositories used in AOSP. Since these

repositories are still required to build the source tree, LineageOS fetches

them from the AOSP servers. Fortunately, the exact AOSP version and re-

lease number for those unmodified repositories is mentioned in the manifest file

for LineageOS that contains the list of required repositories. We assume that

the repositories that LineageOS modifies are also based on this documented

release number, because it only makes sense for LineageOS developers to in-

clude the unmodified AOSP repositories from the same version that modified

repositories were based on; otherwise, incompatibilities may occur.

32

4.2.2 Downloading repositories & identifying subsystems

We are only interested in the mutual repositories between each version of Lin-

eageOS and its corresponding AOSP version, since there is no point in study-

ing repositories in LineageOS that do not have a corresponding repository

in AOSP and vice versa. After processing the manifest file that contains the

list of required repositories for each version of LineageOS, our tooling auto-

matically downloads the mutual repositories between LineageOS and AOSP.

It recursively searches all sub-folders for AndroidManifest.xml, and considers

such folders as subsystems. Table 4.2 shows the number of Java subsystems

we analyzed for each comparison scenario.

4.2.3 Performing the analysis

For each comparison scenario, we apply our methodology from Section 4.1.

For each subsystem in every comparison scenario, we produce an output file

that consists of the number of methods in each of the three versions of a given

comparison scenario (AO , AN and LinOS), as well as the number of methods

in each overlapping category of changes, similar to Table 4.1.

4.3 Results

We now answer our three research questions.

4.3.1 Frequently Modified Subsystems

In order to better understand the kind of changes AOSP or LineageOS un-

dergo, our first step, reflected in S1-RQ1, is to look at the frequently modified

subsystems. Table 4.3 shows the number of changed subsystems by LinOS and

AN in each comparison scenario. Column 2 shows the number of changed sub-

systems in AN , column 3 shows the number of changed subsystems in LinOS ,

and column 4 shows the number of mutually changed subsystems between AN

and LinOS as well as the percentage with respect to LinOS .

Table 4.3 shows that the vast majority of subsystems changed by LinOS

are also changed by AN . On average across the comparison scenarios, approx-

33

Comparison Number of changed Number of changed Number of mutually

scenario subsystems in AN subsystems in LinOS changed subsystems

CS1 51 23 20 (86.96% of LinOS)

CS2 49 26 22 (84.62% of LinOS)

CS3 74 34 31 (91.18% of LinOS)

CS4 79 36 27 (75.0% of LinOS)

CS5 88 40 36 (90.0% of LinOS)

CS6 102 61 54 (88.52% of LinOS)

CS7 74 34 23 (67.65% of LinOS)

CS8 84 33 26 (78.79% of LinOS)

Average 75 36 30 (83.33% of LinOS)

Table 4.3: Most changed subsystems in AN and LinOS

imately 83% of the subsystems changed by LinOS are also changed by AN .

This high number illustrates the extent of the Android update problem. How-

ever, the fact that a subsystem has been modified in LinOS and AN does not

tell us anything about the nature or extent of these changes. To better under-

stand the changes that subsystems undergo, we extract the five most changed

subsystems in LinOS and AN for each comparison scenario. We find that

there are at least two mutually changed subsystems between AN and LinOS

in all comparison scenarios. This suggests that AOSP and LineageOS devel-

opers often apply a large number of changes to the same Android components.

To better understand why developers need to change these subsystems, we

further investigate two subsystems that seem to be commonly modified by

both AOSP and LineageOS developers, SystemUI and Settings.

SystemUI

This subsystem is responsible for core user visible components that are gen-

erally accessible from any app, e.g . the status bar and volume control sliders.

The status bar can be expanded by dragging it down from the top of the screen.

It provides useful features such as the list of notifications and quick settings.

Since it is frequently used by Android users, it makes sense that AOSP devel-

opers frequently make changes to it. Many of LineageOS-specific features

are implemented in this subsystem, e.g ., customizable quick settings. In Sec-

tion 4.3.2, we discuss a method change sample from this subsystem which

demonstrates how LineageOS modifies the code to implement new features.

34

Settings

The Settings subsystem is the interface that lets users reconfigure different set-

tings in their Android device. There are several options available in Settings,

often grouped into categories such as Connectivity or Display. AOSP devel-

opers often change this subsystem to amend new features and improve the

user interface of existing items within each category. Settings in LineageOS

includes all options from AOSP, plus some additional LineageOS-specific

items that allow users to further customize their device. For example, there

is an option under the Battery category in LineageOS for profiling CPU us-

age. Users can change this option to determine the workload on the CPU and

subsequently its battery usage.

Answer to S1-RQ1: On average, 83% of the subsystems modified by LinOS
are also modified by AN . Settings and SystemUI are the two most commonly
co-modified subsystems.

4.3.2 Overlapping Changes

In S1-RQ2, we further study the types of changes that happen in mutually

changed subsystems to better understand the nature of changes that are ap-

plied by AOSP developers, versus LineageOS developers. To analyze this, we

calculate the number of method changes and their types among all subsystems

for each comparison scenario. Table 4.4 shows the average proportion of each

change type across all comparison scenarios. The rows and columns, as well as

the text colors, correspond to those in Table 4.1, making each cell correspond

to an overlap cell in Table 4.1. The number in each cell indicates the percent-

age of the corresponding change overlap with respect to the total number of

changes in LinOS , as an average of all comparison scenarios. Let us take the

AO →LinOS :Body-only and AO →AN :Body-only cell as an example. The

number in the cell indicates that on average, 16.09% of all methods that are

changed in LinOS had body-only changes in both LinOS and AN . For easier

visualization, the table is drawn as a heat map, where the grayscale intensity

of the cell background corresponds to the percentage value in the cell.

35

A
O

→
L
in

O
S

C
h
an

geset

Method Move

Method Rename

Method Inline

Method Extract

Argument Rename

Argument Reorder

Argument Add

Argument Remove

Argument Type Change

Body-only

Unmatched

AO →AN Changeset

Id
en
tical

0.28%
0.4%

0.06%
1.25%

0.11%
0.1%

2.09%
0.31%

0.35%
50.19%

8.21%

M
eth

o
d
M
ove

0.0%
0.01%

0.0%
0.0%

0.0%
0.0%

0.0%
0.0%

0.0%
0.05%

0.0%

M
eth

o
d
R
en
am

e
0.0%

0.03%
0.0%

0.01%
0.0%

0.0%
0.04%

0.0%
0.0%

0.21%
0.06%

M
eth

o
d
In
lin

e
0.0%

0.0%
0.01%

0.0%
0.0%

0.0%
0.0%

0.0%
0.0%

0.06%
0.01%

M
eth

o
d
E
x
tract

0.0%
0.0%

0.0%
0.1%

0.0%
0.0%

0.03%
0.01%

0.01%
0.69%

0.02%

A
rgu

m
en
t
R
en
am

e
0.0%

0.0%
0.0%

0.01%
0.0%

0.0%
0.02%

0.0%
0.0%

0.03%
0.0%

A
rgu

m
en
t
R
eord

er
0.0%

0.0%
0.0%

0.0%
0.0%

0.0%
0.01%

0.0%
0.0%

0.02%
0.0%

A
rgu

m
en
t
A
d
d

0.04%
0.0%

0.0%
0.03%

0.0%
0.0%

0.18%
0.01%

0.0%
0.32%

0.1%

A
rgu

m
en
t
R
em

ove
0.0%

0.0%
0.01%

0.02%
0.0%

0.01%
0.07%

0.03%
0.0%

0.25%
0.03%

A
rgu

m
en
t
T
y
p
e
C
h
an

ge
0.0%

0.0%
0.0%

0.0%
0.0%

0.0%
0.02%

0.01%
0.02%

0.1%
0.04%

B
o
d
y
-on

ly
0.07%

0.05%
0.01%

0.46%
0.0%

0.03%
0.42%

0.09%
0.02%

16.09%
0.7%

U
n
m
atch

ed
0.02%

0.07%
0.01%

0.15%
0.02%

0.01%
0.46%

0.12%
0.02%

8.43%
6.67%

T
ab

le
4.4:

H
eat

m
ap

of
average

p
rop

ortion
of

ch
an

ge
ty
p
es

across
all

com
p
arison

scen
arios

36

The heat map suggests that the majority of the methods that are changed

in LinOS have body-only changes (Body-only column). Out of these methods,

most of them remain identical in AN . Specifically, 50.19% of the methods that

were changed in LinOS have body-only changes in LinOS but remain iden-

tical in AN . This is good news for automatically integrating LinOS changes

into AN , because there are no overlapping changes in AN . Combining this

information with the information in Table 4.3, it seems that while there is a

very high overlap in terms of changed subsystems, there is less change overlap

at the method level.

Given that on average almost half the methods changed in LinOS (50.19%)

remain identical in AN , we further investigate this cell from Table 4.4. We

search for the subsystem with the most number of changes in this particu-

lar category, across all comparison scenarios. The packages apps Bluetooth

subsystem in CS7 matches this criteria. Out of 602 LinOS changes in this

subsystem, 508 of them remained identical in AO and had body-only changes

in LinOS . We randomly sample 20 of these 508 methods and manually inspect

them. We realize that for 17 of these methods, there is either a new line added

for logging an activity, or an existing line of code regarding a log message was

edited. This suggests that the relatively higher number of body-only changes

to methods in LinOS in CS7 may be because of a new decision towards more

thorough logging.

As Table 4.4 shows, the next highest category of changes is the body-only

changes in both LinOS and AN . To better understand this category, we again

search for the subsystem with the most changes in this category. It turns

out to also be packages apps Bluetooth, but this time in CS8 with 170 such

changes. Upon further inspection, we realize that similar to the previous case,

most of these changes consist of adding a line for logging an activity in LinOS ,

while a different body change has happened in AO .

In order to find a more interesting example, we picked the subsystem with

the second most number of changes for this category. We find SystemUI for

CS6 with 163 such changes. We look for changes that reflect different body-

only change overlaps. Figure 4.3 shows code snippets from a sample method

37

in AO that has gone through body-only changes in both AN and LinOS .

The code snippet provides an interesting insight on what kind of changes

LineageOS and AOSP make. This method belongs to the BatteryMeter-

View.java class which is responsible for displaying the battery status in the

status bar. The method is called when the instance of the class is destroyed. In

AO , first the super method is called. Then, a receiver is unregistered. In the

next line, the class is removed from the list of callbacks in BatteryController.

Finally, an observer is unregistered. In AN , the statements that unregister

the receiver and the observer are deleted. However, calls to the super method

and BatteryController remain unchanged and two new lines are added. Upon

further inspection, we find out that the new lines are related to new features in

the new version of AOSP. In LinOS , similar to AN , the call for unregistering

the observer was removed. However, unlike AN , the call to BatteryController

was also removed and the statement for unregistering the receiver was not

removed. A new statement was added in LinOS that removes the class from

the list of callbacks in BatteryStateRegistar class. After exploring the code, we

find out that BatteryStateRegistar is LineageOS’s replacement for AOSP’s

BatteryController and adds new options for customizing the battery icon style,

something that is not implemented in AOSP.

Answer to S1-RQ2: On average, 50% of changed LinOS methods have
body-only changes in LinOS and remain identical in AN . Methods with
body-only changes in both LinOS and AN make up an average of 16% of
changes in each comparison scenario.

4.3.3 Overall Feasibility of Automation

S1-RQ3 looks at the more general scale, where we are interested to know

the percentage of all LinOS changes that have the potential to be automati-

cally integrated into AN . Based on Table 4.1 and our reasoning behind each

cell explained in Section 4.1.3, we divide the aggregated analysis results for

each comparison scenario into three categories based on the potential for au-

tomation: Possible (Green), Might Be Possible (Yellow), Not Possible (Red).

Figure 4.4 visualizes the aggregated results of the analysis for each comparison

38

: LinOS

public void onDetachedFromWindow() {

super.onDetachedFromWindow();

+ mAttached = false;

getContext().unregisterReceiver(mTracker);

- mBatteryController.removeStateChangedCallback(this);

- getContext().getContentResolver().

- unregisterContentObserver(mSettingObserver);

+ if (mBatteryStateRegistar != null) {

+ mBatteryStateRegistar.removeStateChangedCallback(this);

+ }

}

: AO

public void onDetachedFromWindow() {

super.onDetachedFromWindow();

getContext().unregisterReceiver(mTracker);

mBatteryController.removeStateChangedCallback(this);

getContext().getContentResolver().

unregisterContentObserver(mSettingObserver);

}

: AN

public void onDetachedFromWindow() {

super.onDetachedFromWindow();

- getContext().unregisterReceiver(mTracker);

mBatteryController.removeStateChangedCallback(this);

- getContext().getContentResolver().

- unregisterContentObserver(mSettingObserver);

+ mDrawable.stopListening();

+ TunerService.get(getContext()).removeTunable(this);

}

Figure 4.3: Example method in AO from SystemUI subsystem that went
through different body-only changes in AN and LinOS .

39

(504)

(471)

(163)

(1461)

(925)

(579)

(1374)

(2337)

(763)

(1481)

(509)

(462)

(1882)

(606)

(351)

(1883)

(131)

(201)

(376)

(112)

(95)

(1215)

(794)

(645)

44.3%

41.4%

14.3%

49.3%

31.2%

19.5%

30.7%

52.2%

17.1%

60.4%

20.8%

18.8%

66.3%

21.3%

12.4%

85.0%

 5.9%

 9.1%

64.5%

19.2%

16.3%

45.8%

29.9%

24.3%

0%

25%

50%

75%

100%

CS1
CS2

CS3
CS4

CS5
CS6

CS7
CS8

Comparison scenario

P
er

ce
nt

ag
e Status

Might Be Possible

Not Possible

Possible

(a)

504

471

163

1461

925

579

1374

2337

763

1481

509

462

1882

606

351

1883

131

201

376

112

95
1215

794

645

(44.3)%

(41.4)%

(14.3)%

(49.3)%

(31.2)%

(19.5)%

(30.7)%

(52.2)%

(17.1)%

(60.4)%

(20.8)%

(18.8)%

(66.3)%

(21.3)%

(12.4)%

(85.0)%

(5.9)%

(9.1)%

(64.5)%

(19.2)%

(16.3)%
(45.8)%

(29.9)%

(24.3)%

0

1000

2000

3000

4000

CS1
CS2

CS3
CS4

CS5
CS6

CS7
CS8

Comparison scenario

C
ou

nt

Status

Might Be Possible

Not Possible

Possible

(b)

Figure 4.4: (a) Percentage and (b) count of LinOS changed methods, cat-
egorized by feasibility of automated merging into AN for each comparison
scenario.

40

scenario. As the plot suggests, the majority of changes in LinOS can automat-

ically be re-applied onto AN for most of comparison scenarios. On average,

out of all LinOS changes across each comparison scenario, 56% (median: 55%)

of them belong to the Possible category, 28% (median: 26%) belong to the Not

Possible category and the remaining 16% (median: 17%) belong to the Might

Be Possible category.

Answer to S1-RQ3: On average, 56% of LinOS changes have the potential to
be automatically merged into AN . An average of 28% would need developer
intervention, while automation might be possible for the remaining 16%.

4.4 Discussion

This empirical study is a first step towards investigating the complexity of the

Android update problem, and the potential for providing automated support

for it. While we were mainly interested in the Android OS, given its size and

prevalence, the methodology we used for investigating the problem can be used

in other contexts. Our tool chain can be used to investigate the changes that

happened in any Java software family where various variants of the software

may exist and updates in one direction often need to be made.

In specific to the Android update problem, our empirical investigation

showed that while many subsystems are simultaneously modified in LineageOS

and AOSP, as many as 63%, on average, of the methods changed in Lin-

eageOS are not changed in AOSP. This is good news for solving the Android

update problem. If we generally look at all the non-problematic categories

in Table 4.1, an average of 56% of method-level changes in LineageOS can

potentially be automatically integrated with AOSP changes with every new

release. Our analysis of potential for automation was based on numerous dis-

cussions by the author of this thesis and another researcher involved in the

work, Dr. Sarah Nadi, on whether a tool can handle the merge or integration

without the developer’s input. We relied on the semantics of the change to

decide on the categorization of the overlap. This is because, as noted in the

introduction, there currently does not exist a single off-the-shelf tool that can

41

correctly and efficiently handle all the types of changes we discussed in this

chapter. In order to advance the state of the art and to develop tools and

methods that can handle real-world integration and merge problems, such as

those illustrated by the Android update problem studied, we dedicate the rest

of this section to discuss how we envision using or extending current tooling

or techniques to help with the Android update problem, as well as similar

problems in other domains or contexts. It is worth mentioning that when dis-

cussing types of changes, we consider each of them to be atomic. For example,

when discussing methods that were moved, we assume no other type of change

were applied to these methods.

4.4.1 ‘Possible’ Categories

In this section, we discuss how a practical tool could merge the categories of

change in Table 4.1 that have the potential to be automatically merged. The

techniques discussed here resemble a three way merge, with AO being the

base and AN and LinOS being the other two branches. The idea is that a

tool should apply both sets of changes, from AN and LinOS , to AO . We only

discuss the table cells with unique combinations of AN and LinOS change

types. For example, if we discuss the (AO → AN Method Move) and (AO

→ LinOS Method Rename) cell, we do not discuss the (AO → AN Method

Rename) and (AO → LinOS Method Move) cell.

AO → AN Identical. We first consider the methods that were refactored

in LinOS (i.e. the method was moved, renamed, inlined, extracted, or its

arguments were renamed or reordered). Since the method remained identical

in AN , a simple textual merge, e.g ., by Git, would be enough to apply the

change to that specific method. However, a more thorough way of merging the

change is to apply the actual refactoring to make sure that references to the

method can be updated accordingly. Since the change detection tools we use,

i.e., RefactoringMiner and ChangeDistiller, can already identify the

exact type of refactoring that occurred, refactoring parameters can be provided

to existing refactoring engines, e.g ., in Eclipse [36] or IntelliJ IDEA [54], to

automatically apply the change.

42

Next, we discuss those methods that have an argument change in LinOS

(i.e. a new argument was added, and old argument was removed, or the type

of an argument was changed). Using textual merge tools, the entire method in

AN could be replaced with its corresponding method in LinOS . At this point,

the change is merged with no textual conflicts. However, to avoid compilation

errors, references to the method also need to be updated. This can be done

using static analysis, where all calls to the method could be found and up-

dated to match the new method signature. In the case of argument deletion,

updating the references is straightforward. In the case of argument addition,

a candidate parameter can be added to the method call by statically finding a

variable with the right type in that context. This is obviously a heuristic that

may not always work correctly. Another option is to use executable trans-

formations that are extracted from change distilling, similar to the technique

suggested by Stevens and De Roover [91]. This way, we can extract an exact

transformation script from the change detected in LinOS , and execute the

exact transformation on AO .

Finally, we consider the methods that have changes only in their bodies in

LinOS . Textual merge tools can simply be used to execute the merge. Since

there are no changes in the method’s signature, there is no need to find and

update the calls to the method. However, there may be a risk of test failures

due to the updated functionality.

AO → AN Method Move. The change detection tools we use can pro-

vide the refactoring parameters for the method move in AN . These parameters

can be passed to a refactoring tool to reapply the method move to AO . Now, if

the same method underwent an argument rename or argument reorder change

in LinOS , the extracted refactoring parameters from the LinOS change can be

updated to reflect the new location of the method. A refactoring engine can

be then used to reapply the LinOS change to the method in its new location

in AO . If the change in LinOS was adding or removing an argument, changing

an argument’s type, or a body-only change, textual merge tools can be used

to replace the entire method in its new location with the new implementation

from LinOS . Finally, the tool can utilize static analysis to update all references

43

to the updated method.

AO → AN Method Rename. Similar to the previous category, the

tool can extract the refactoring parameters for the rename in AN . Using a

refactoring engine, this change can be applied to the original method m1 in

AO . Now, if part of m1 was extracted to m2 in LinOS , textual merge can

be used to integrate m2 into AO . Next, the modified body of m1 in LinOS

can be replaced with its implementation in AO . If m1 had a different change

type in LinOS , it can be merged to AO similar to what we discussed in the

previous category.

AO → AN Method Inline. Suppose that AN inlined the body of

m1 into m2. In this case, only body-only changes to m1 in LinOS can be

automatically integrated. Textual merge can be used to integrate the LinOS

body-only changes of m1 into AO . The refactoring parameters from the AN

inline change can then be extracted. These parameters include the signature

and position of m2 that m1 was inlined into. Using the extracted paramters, a

refactoring engine can then be used to inline the updated m1 into m2 in AO .

AO → AN Method Extract. Suppose that part of m1 was extracted

into m2 in AN . Two corresponding refactoring changes in LinOS can be au-

tomatically integrated: argument rename or argument reorder. A tool could

first apply the refactoring change from LinOS to m1 in AO . The refactoring

parameters for the method extract change from AN can then be provided to

a refactoring engine to extract the now updated body of m1 in AO into m2.

AO → AN Argument Rename. This change type could be merged if

the LinOS change type is either argument reorder, argument type change, or

body-only change. The tool can first merge the LinOS change into AO using

textual merge tools. If there were any changes to the arguments in LinOS , the

refactoring parameters related to the argument rename change in AN should

be updated to reflect the change from LinOS . Next, the argument rename

change can be applied using a refactoring engine and the new refactoring

parameters.

AO → AN Argument Reorder. If the method’s change type in LinOS

is body-only, the new implementation can be replaced in AO using textual

44

merge tools. Then, the method’s signature in AN , that includes the new

ordering of arguments, could be replaced with the signature in AO . If the

method’s change type in LinOS is argument type change, it can be applied to

AO using textual merge tools. Next, the refactoring parameters related to the

argument reorder change in AN should be updated to reflect the new argument

type LinOS . Using a refactoring engine and the new refactoring parameters,

the arguments can be reordered.

4.4.2 ‘Not Possible’ Categories

Unlike the previous category, the merging process of the methods in this cat-

egory cannot be fully automated. This is mainly because the integration of

the two changes in AN and LinOS can only be completed based on the devel-

oper’s decision. For example, if a method is deleted in AN and it is moved in

LinOS , it is hard to automatically decide if the method should be added back

to AN or if the method move should be ignored since the method is deleted.

A completely different resolution may also be decided by the developer. For

example, she may decide to move the functionality in the refactored LinOS

method to a different method in AN . One option would be to at least cre-

ate some analysis that would calculate potential options and show a preview

of these options to the developer. Once the developer decides, the change

resolution can potentially be automatically applied.

4.4.3 ‘Might Be Possible’ Categories

For these categories, automation depends on the details of the change. For

example, for a method in AO that had one of its arguments renamed in AN and

a new argument was added to it in LinOS , automation might not be possible.

More specifically, if the name of the new argument in AN is the same as the

new name of the renamed argument in LinOS , automation is not possible.

However, if this is not the case, a tool may be able to automatically merge

these changes. Another case consists of methods in AO that have undergone

the same type of change in both AN and LinOS . Integration of such changes

can only be automated if the changes are identical. For example, if a method

45

in AO was moved in both AN and LinOS , we can consider it as a change with

possible automation only if it was moved to the same location in both AN and

LinOS . A practical solution to changes in this category is to create a list of

all change combinations and determine the conditions under which they can

be merged automatically.

4.5 Threats to Validity

In this section, we discuss possible threats to the validity of this study.

4.5.1 Construct Validity

Construct validity is concerned with actually measuring the attribute that

one intends to measure [58]. In this study, we only cover changes on the

method-level. Although there are other types of changes such as changes

to classes and their attributes that we are missing, we believe that methods

provide a good balance between fine-grained changes and at the same time a

meaningful evaluation unit. Evolution studies at the method level have also

been performed in several previous work [56].

In our categorization of method changes, we do not consider composite

change types. For example, if a method is renamed and also has a change in

its body, we only label it as a Method Rename.

Our methodology does not take access level modifiers into account. How-

ever, because the static analysis tool that we used, Spoon, can identify access

level modifiers, they can be added to our methodology in the future.

In Section 4.2.2, we find mutual repositories between AOSP and Lin-

eageOS by looking for exact name matches. Doing so, we would miss repos-

itories in LineageOS that were based on AOSP and later renamed.

4.5.2 Internal Validity

Internal validity is concerned with the effect of additional factors on an ob-

served behavior or attribute [37]. The correctness of the method-level changes

we identify relies on the recall and precision of the tools we use: Sourcer-

46

erCC, RefactoringMiner, and ChangeDistiller. The tools we use are

well established and have been previously used in several studies [68], [90].

Additionally, all tools have high reported recall and precision rates, which we

provided in Section 3.3.

We additionally manually sampled several of their findings to verify that

the tools work as expected. The only issue we faced was with SourcererCC,

where we found that it misses some Java files during its indexing, and so does

not report clones in these files which would lead to inaccuracies in identifying

identical changes. However, we could not identify the reason for this. We

implemented a workaround for this problem by performing a string comparison

between each pair of candidate methods for the body-only change type. If the

comparison reveals that the methods are identical, we add them to the identical

change type (instead of incorrectly considering them as body-only change).

4.5.3 External Validity

External validity is concerned with whether we can generalize the results out-

side the scope of our study [37].

We used LineageOS, an open-source community-driven Operating Sys-

tem based on AOSP, in our study. While we cannot generalize our findings to

all other phone vendors, our methodology can be applied to other variants of

Android, such as proprietary code of phone vendors. Moreover, LineageOS

has a large number of active users (50 million in 2015) and a community of more

than 1,000 developers. We believe that these qualities render LineageOS as

a suitable alternative to a mainstream phone vendor for the purposes of our

study. Additionally, the findings of our study already illustrate the problems

that arise when independently modified versions of the same software system

need to be merged. When searching for subjects, we did consider other vari-

ants of Android that are actively maintained, but ruled them out for different

reasons. AOKP has a considerable number of users, but is based on Lin-

eageOS. MIUI [73]’s source code was not entirely publicly available. While

Paranoid Android [80] is fully open-source, we found that it does not have

as many releases as LineageOS. Also, the number of changes in each release

47

were considerably lower than those in LineageOS.

Finally, we do not actually perform any merging or integration, and ac-

cordingly, we do not analyze if our anticipated automation may lead to build

or test errors. Given the size of Android, any merge attempt using current

tools would most likely result in a considerable number of conflicts and resolv-

ing them is a daunting task. This is why we decided to first study the nature

of changes that occur. Our results show what kinds of change overlap occur

in practice, and can be used to guide efforts in improving automation tools.

Future work can investigate existing textual merge tools such as Git, existing

structural merge tools [7], [8], as well as the combination of tools mentioned

in Section 4.4 to practically apply the integration and analyze the results [36],

[54], [91], [94].

4.6 Summary

In this chapter, we presented the first empirical study of this thesis, which

discussed the Android update problem. The problem occurs when a new

version of the Android OS is released, and phone vendors need to figure out

how to re-apply their proprietary modifications to the new version. We used

LineageOS, a community-based variant of Android, as a proxy for a phone

vendor. Our results show that when taking the semantics of the changes into

account, the majority of overlapping changes between LineageOS and AOSP

(56%) have the potential to be automatically merged. We discussed concrete

automation opportunities for all categories of change overlaps. Our results

are a useful first step for solving the Android update problem, and also for

solving the general problem of integrating independently modified variants of

a software system. The tooling we used is open-source and can be applied to

investigate overlapping changes in any Java system.

48

Chapter 5

Refactorings and Merge
Conflicts

There are several types of conflicts and various reasons why a conflict can

occur [71]. Textual conflicts are those that occur when simultaneous changes

occur to the same lines in a file, and are the type of conflicts that popular

VCSs such as Git detect. For example, one developer may have added a new

variable declaration foo at line 10 of a given file, while the other developer has

added another variable declaration bar at the same line. When Git tries to

merge both changes, it cannot decide which variable declaration should appear

at that line.

As shown in Figure 1.1, refactoring operations have the potential to cause

complex textual conflicts. In our empirical study on Android in Chapter 4, we

proposed strategies for handling such conflicts. There have been a few other

studies that investigated how to deal with refactorings during merging. For

example, Dig et al . [33] previously argued that since refactorings cut across

module boundaries and affect many parts of the system, they make it harder

for VCSs to merge the changed code. They proposed refactoring-aware merg-

ing, with the argument that if a merging tool understands the refactorings

that took place, it may be able to automatically resolve the conflict and save

the developer’s time. In the example in Figure 1.1, their proposed approach

would “unapply” the refactoring (i.e., keep foo in its old place), apply the

new changes to it (i.e., add the new code), and then as a last step, re-apply

the refactoring. Other researchers focused on improving code matching and

49

resolution precision in software merging by considering specific types of refac-

torings, such as renamings [6], [61].

While the above studies propose techniques to deal with refactorings dur-

ing merging, there have not been any large-scale empirical studies investigating

the relationship between refactorings and merge conflicts in the first place. Re-

searchers agree that refactorings may potentially complicate a merge scenario.

However, how often does this occur in practice? Do refactorings actually result

in more complex conflicts? For example, Dig et al.’s refactoring-aware merg-

ing [33] was never evaluated on a large scale. Their technique cannot handle

common refactorings such as Extract Method. This is because contrary

to refactorings such as Rename Method, Extract Method refactorings

touch method bodies as well as signatures, hence making it difficult to “un-

apply” them. If Extract Method refactorings are not often involved in

merge conflicts, then this is not a main limitation. However, if the opposite is

true, then more effort should be invested into improving and extending such

refactoring-aware tools.

Understanding the relationship between refactoring and merge conflicts on

a large-scale is important to drive researchers’ efforts in the right direction.

This study presents the first large-scale empirical study on the relationship

between refactorings and merge conflicts. As opposed to related work that

looked at a small number of repositories [33] or at a couple of refactoring oper-

ations [6], [61], our study analyzes close to 3,000 GitHub repositories and uses

the state-of-the-art refactoring detection tool, RefactoringMiner [94]. In

order to understand the relationship between refactoring and merge conflicts,

we break down our investigation into the following research questions.

S2-RQ1 How often do merge conflicts involve refactored code? Understand-

ing the extent of the impact that refactorings have on merge conflicts

would determine the practicality of tools and techniques that assist

developers in resolving conflicts that involve refactorings.

S2-RQ2 Are conflicts that involve refactoring more difficult to resolve? In

order to understand how problematic refactorings are, knowing how

50

often they are involved in conflicts is not enough per se. A compari-

son between conflicts that involve refactorings and those that do not

will help us better understand differences in complexity.

S2-RQ3 What types of refactoring are more commonly involved in conflicts?

Refactoring-aware merging techniques that rely on “unapplying”

refactoring operations would be rendered inefficient if refactoring

types that cannot be easily “unapplied”, such as all the extract op-

erations, happen to be involved in conflicts frequently.

5.1 Methodology

Our goal is to determine whether refactoring changes are involved in conflicts

that occur in Java files. Investigating the relationship between refactorings

and conflicts on the commit level or file level may be misleading, since the

presence of a refactoring may not be related to the resulting conflict in that

commit or file. Therefore, in our work, we investigate the relationship between

refactorings and merge conflicts on the conflicting region level, because it pro-

vides more accurate results than other coarse-grained analysis approaches.

The remainder of this section explains this approach in detail.

5.1.1 Overview

Figure 5.1 shows an overview of the steps we follow in our methodology for

analyzing a given repository. After identifying merge scenarios with conflicting

Java files, we detect all conflicting regions for each scenario. Since we are

looking for refactorings that were involved in a conflicting region, we first find

all commits after the common ancestor that touched that region, for each

merge parent. Next, we use RefactoringMiner to detect all refactorings

that happened in those commits. Using the location information reported by

RefactoringMiner for refactoring operations and by Git for conflicting

regions, we then determine whether a given refactoring was involved in the

historical evolution of the conflicting region. All the information we gather in

51

4. Detecting Involved Refactorings

3. Detecting Refactorings

2. Detecting Evolutionary Changes

1. Detecting Conflicting Regions

Find Conflicting Regions Find Merge Commits

@@­65,1 +65,1@@
­int a;
+int a = 2;

MC

@@­73,1 +73,2@@
+float f = .2;
 int a;

CA

P1

P2

Commit 1, Commit 2, ...

RefactoringMiner

Evolutionary Change
for file1 in Commit 1

Method Rename
Lines 90 to 98 on file1
Lines 90 to 98 on file1

Refactoring
in Commit 1

+

Evolutionary Change
for file1 in Commit 2

Refactoring
in Commit 2

+

@@@­65,1 ­73,2 +78,5@@@
++<<<<<<< HEAD
 +int a = 2;
++=======
+ float f = .2;
+ int a;
++>>>>>>> refs/branch

@@­65,1 +65,1@@
­int a;
+int a = 2;

Push Down Attribute
Lines 73 to 73 on file1
Lines 46 to 48 on file2

@@@­65,1 ­73,2 +78,5@@@
++<<<<<<< HEAD
 +int a = 2;
++=======
+ float f = .2;
+ int a;
++>>>>>>> refs/branch

@@­73,1 +73,2@@
+float f = .2;
 int a;

Commit 2

Commit 1

Figure 5.1: An overview of our methodology for detecting involved refactorings

52

this process is stored in a MySQL database. Our approach is implemented

as a Java tool, which is publicly available [46].

5.1.2 Step 1: Detecting Conflicting Regions

We identify all merge scenarios by finding merge commits in the Git history.

Merge commits are commits that have multiple parents. In this work, we fo-

cus on merge commits that have only two parents, and record them in our

database. We then replay the merge scenario as follows. We first detect the

merge parents for each merge commit from the Git history. We then checkout

P1, and use the git merge command (with default parameters) to merge P2

into it.
git checkout P1

git merge P2

By doing so, we can learn (i) whether a given merge scenario is conflicting, as

well as (ii) the conflict details, in case it is a conflicting merge scenario. This

step is essential because the Git history does not contain such information.

If a merge scenario is conflicting, the git merge command will report the

list of conflicting files, as well as their conflict type (See Section 3.1.2). Us-

ing this list, we record the conflicting Java files and their conflict type to the

database, if any. For Java files with content conflict type, we detect all con-

flicting regions by using the git diff command. When in a conflicting state,

this command will report all conflicting regions, along with the corresponding

location of each region in both merge parents. Because this command reports

a few lines before and after the conflicting region, we use the -U0 parameter

to remove these extra lines. We record this information in the database.

git diff -U0

Step 1 in Figure 5.1 shows an example of the conflicting region produced by

running the above git diff command. The three pairs of numbers between

the @@@ symbols denote the conflicting region. The first pair of numbers corre-

sponds to the region in P1, while the second pair corresponds to P2. The third

pair of numbers is the conflicting region in the conflicting merged file with the

markers. In each pair, the first number is the line number where the region

53

begins and the number after comma is the length of that region. Because we

are interested in the location of the conflicting region in each merge parent,

we only record the first two pairs of numbers for each conflicting region.

5.1.3 Step 2: Detecting Evolutionary Changes

In the next step of our methodology, we track the historical evolution of a

given conflicting region between the common ancestor and each merge parent.

Using this information, we can determine if a refactoring was involved in any

of these evolutionary changes which later led to a conflict. We use the git log

command to perform this task. git log is a useful and versatile command

thanks to the different parameters it accepts1. Using the -L parameter along

with a revision range, it will report all commits in the revision range that have

touched the given file in the specified location. For a given conflicting region,

we run git log once for each merge parent, with the -L parameter set to the

corresponding location of the conflicting region in that parent (extracted in

Step 1), and the revision range set between that merge parent and the common

ancestor. For example, the revision range P2..P1 includes all commits that

are reachable from P1 and not reachable from P2, which is equivalent to the

commits between P1 and the common ancestor of P1 and P2.
git log -L startP1,endP1:file P2..P1

git log -L startP2,endP2:file P1..P2

This command outputs all commits that have touched the specified location

as well as the corresponding location information for each commit. In our ex-

ample in Figure 5.1 (Step 2), running the above commands returns the black-

dotted commits. We call these commits evolutionary commits since they are

involved in the evolution of the conflicting region. The rectangles connected

to these commits contain the reported location information. The two number

pairs between the @@ symbols correspond to the location of the conflicting

region before and after that commit, respectively. For the top commit, for

example, the conflicting region can be found at line number 60 before this

commit, and at line 65 after this commit. We save this information in the

1https://git-scm.com/docs/git-log

54

https://git-scm.com/docs/git-log

database.

5.1.4 Step 3: Detecting Refactorings

In this step, we use RefactoringMiner2 to detect the refactoring operations

taking place in the commits that were involved in the evolution of conflicting

regions (i.e., in the evolutionary commits identified in Step 2). In addition

to the refactoring type, RefactoringMiner reports the files and the exact

code ranges (with line numbers) that were touched by a refactoring operation.

We store at least two code ranges for a refactoring change: one code range

corresponds to the refactored code element before refactoring, and the other

corresponds to the element after refactoring. Table 5.1 provides a summary of

the code ranges we store in the database for different refactoring types.

5.1.5 Step 4: Detecting Involved Refactorings

In the final step of our methodology, we identify the refactorings that have

affected the evolution of conflicting regions. In other words, we are trying to

determine if a refactoring touched an evolutionary change that later lead to a

conflict. Using the code range information that we have for both refactorings

(Step 3) and evolutionary changes to conflicting regions (Step 2), we determine

if there is an overlap between them. We consider a refactoring and evolution-

ary change as overlapping if they have at least one line in common, either in

their old-commit code ranges or in their new-commit code ranges. For exam-

ple, line numbers 34:40 and 38:44 are overlapping while line numbers 34:40

and 42:57 have no overlaps. We call such refactorings that have overlapping

code ranges with an evolutionary change involved refactorings, since they are

involved in the changes that are related to the conflicting region. In the ex-

ample of Figure 5.1, Step 4 shows that the refactoring in commit #1 would

not be considered as an involved refactoring, while the refactoring in commit

#2 would be considered so.

2https://github.com/tsantalis/RefactoringMiner, used as of commit 46c80ad

55

https://github.com/tsantalis/RefactoringMiner
https://github.com/tsantalis/RefactoringMiner/tree/46c80ad748297c029c2f5f448f49a4a575f2ea4f

C
o
d
e
E
le
m
e
n
t

R
e
fa
cto

rin
g
T
y
p
e

S
to

re
d

C
o
d
e
R
a
n
g
e
C
o
rre

sp
o
n
d
in
g
to

O
ld

C
o
m
m
it

N
e
w

C
o
m
m
it

P
ackage

C
h
a
n
g
e
P
a
c
k
a
g
e

ty
p
e
d
eclaration

s
in

old
p
ackage

ty
p
e
d
eclaration

s
in

n
ew

p
ackage

T
y
p
e

E
x
t
r
a
c
t
S
u
p
e
r
c
l
a
ss/

In
t
e
r
fa

c
e

sou
rce

ty
p
e
d
eclaration

(s)
ex
tracted

ty
p
e
d
eclaration

M
o
v
e
C
l
a
ss,

R
e
n
a
m
e
C
l
a
ss

refactored
ty
p
e
d
eclaration

refactored
ty
p
e
d
eclaration

M
eth

o
d

E
x
t
r
a
c
t
M
e
t
h
o
d
,
E
x
t
r
a
c
t
&

M
o
v
e
M
e
t
h
o
d

sou
rce

m
eth

o
d
d
eclaration

sou
rce

an
d
ex
tracted

m
eth

o
d
d
eclaration

s

In
l
in
e
M
e
t
h
o
d

target
an

d
in
lin

ed
m
eth

o
d
d
eclaration

s
target

m
eth

o
d
d
eclaration

P
u
l
l
U
p
M
e
t
h
o
d
,
P
u
sh

D
o
w
n
M
e
t
h
o
d
,

refactored
m
eth

o
d
d
eclaration

refactored
m
eth

o
d
d
eclaration

R
e
n
a
m
e
M
e
t
h
o
d
,
M
o
v
e
M
e
t
h
o
d

F
ield

P
u
l
l
U
p
F
ie
l
d
,
P
u
sh

D
o
w
n
F
ie
l
d
,
M
o
v
e
F
ie
l
d

refactored
fi
eld

d
eclaration

refactored
fi
eld

d
eclaration

T
ab

le
5.1:

S
tored

co
d
e
ran

ges
for

each
refactorin

g
ty
p
e

56

5.2 Evaluation Setup

In this section, we explain the setup we use for exploring the relation between

refactorings and conflicts, based on the methodology from Section 5.1.

5.2.1 Repository Selection

The first step of our evaluation setup is to determine the set of Git repositories

we will run our analysis on. GitHub is a source-code hosting service that

contains over 85 million software repositories.3 Many software engineering

researchers use GitHub to obtain a set of repositories and analyze them for

their studies [27], [47], [51], [57], [86], [95], [103]. However, considering the

public nature of GitHub, including random repositories without employing a

filtering process could lead to misleading findings. For example, many students

use GitHub to upload the source code of their course works and programming

assignments. Ideally, we want the conclusions of our study to be indicative of

how refactorings affect merge conflicts in realistic development setups.

Munaiah et al. [74] studied GitHub repositories and proposed two classi-

fiers (Score-based and Random Forest) that determine whether a given reposi-

tory is a well-engineered software project. Based on their results, the Random

Forest classifier has a higher precision rate. Using their dataset of 1,857,423

repositories, we filter out projects that are not labeled as well-engineered by

the Random Forest classifier. Additionally, given the focus of our work, we

only consider repositories that are implemented in Java. In our final filtering

step, to further ensure the quality of the repositories we pick, we only include

repositories with 100 or more stars on GitHub. This leaves us with a dataset of

2,955 repositories, which we use for our study. However, we find that 30 repos-

itories from this list are no longer accessible with the provided GitHub URL,

and so we exclude them from the analysis. Thus, we run our methodology on

the final list of 2,925 repositories.

3https://github.com/features

57

https://github.com/features

5.2.2 RefactoringMiner Settings

When using RefactoringMiner, we find that some commits may take

longer to process, sometimes leaving the process to hang. Given the scale of

our study, we need to ensure that the analysis terminates in a timely manner.

Accordingly, we enforce a timeout of 4 minutes on RefactoringMiner. If

RefactoringMiner does not terminate within 4 minutes on a given commit,

we terminate the process and skip this commit.

5.2.3 Running Environment

For running the analysis, we used 12 threads on a machine with 16 CPU cores

at 3.4GHz, 128 gigabytes of memory, a solid-state storage device, and a 1

Gbps Internet connection. Each thread runs the entire process for a repository.

Analyzing all repositories took a total of 27 hours.

5.3 Results

In this section, we report the results of running our methodology from Sec-

tion 5.1 on the 2,925 repositories described in Section 5.2. When running the

analysis, we find that one repository (platform frameworks base4) took a much

longer time to process, due to its unusually high number of merge scenarios:

this repository has 281,251 merge scenarios, while all other projects in our

dataset have 729,060 combined. We decided to skip this repository in our

analysis because this uncommon irregularity might skew our results. Thus, all

the results provided in this section are based on the analysis of the remaining

2,924 repositories. We first report some descriptive statistics of the data col-

lected, and then proceed to answer each of the research questions we presented

in the introduction.

5.3.1 Descriptive Statistics of Collected Data

Table 5.2 provides a summary of the collected data after running our method-

ology on our set of 2,924 repositories, including the mean and standard de-

4https://github.com/android/platform_frameworks_base

58

https://github.com/android/platform_frameworks_base

Total
of Corresponding Per Repository

Repositories Mean SD

Merge Scenario 729,060 2,606 279.76 1,690.83

Conflicting Merge
63,826 1,753 36.40 144.36

Scenario (CMS)

CMS with Java Conflicts 36,988 1,424 25.97 91.82

Conflicting Region 258,956 1,403 184.57 767.38

Evolutionary Commit 657,726 1,396 471.15 2,073.24

Refactoring in
248,652 1,136 218.88 783.61

Evolutionary Commits

Table 5.2: Statistics for merge scenarios, merge conflicts, and refactorings

viation for each metric. We find that 2,606 of the repositories we analyzed

contained merge scenarios (a total of 729,060 merge scenarios), out of which

1,753 repositories had at least one conflicting merge scenario (a total of 63,826

conflicting merge scenarios). Out of those, 1,424 repositories had at least one

conflicting merge scenario (CMS) that included a conflicting Java file (a total

of 36,988 CMSs with conflicting Java files). Since not all conflict types can

have conflicting regions, a fewer number of repositories, 1,403, have conflicting

regions (a total of 258,956 conflicting regions). Furthermore, 1,396 of those

repositories have historical evolutionary changes for their conflicting regions,

with these changes occurring in a total of 657,726 commits. We explain the

discrepancy between the number of repositories with conflicting regions and

repositories with evolutionary commits in Section 5.4.1. The results we present

in the rest of this section are thus based on the 1,396 repositories for which

we were able to extract historical evolutionary changes for their conflicting

regions. Note that the last row in Table 5.2 shows the number of refactoring

operations detected by RefactoringMiner in evolutionary commits.

As an additional data point not shown in the table, the 36,988 conflicting

merge scenarios with Java conflicts we collected contain 157,422 conflicting

Java files. The conflicts in these Java files can belong to any of the conflict

types discussed in Section 3.1.2. Out of these, 99,846 files (i.e., 63%) are

59

content conflicts. This suggests that content conflicts, which is the focus of

our work, represent the majority of conflicts that developers face in practice.

5.3.2 How often do merge conflicts involve refactored
code?

Data used for RQ

We answer this RQ by checking whether a code change that led to a conflict

involved a refactoring change. As explained in Section 5.1, we use the term

involved refactoring to describe a refactoring that happened in an evolution-

ary change and which overlaps with the conflicting region. A conflicting merge

scenario can have multiple conflicting regions. If at least one of the conflict-

ing regions in a conflicting merge scenario contains involved refactorings, we

consider that merge scenario as one that contains involved refactorings.

Findings

We find that there are 8,155 conflicting merge scenarios that contain involved

refactorings. We know from Table 5.2 that there is a total of 36,988 merge

scenarios with conflicting Java files, which means that 22% of these merge sce-

narios involve refactorings. On the conflicting region level, we find that 28,670

(i.e., 11%) of the 258,956 conflicting regions from Table 5.2 have involved

refactorings.

Answer to S2-RQ1: 22% of merge scenarios with at least one conflicting
Java file involve refactorings. More precisely, 11% of conflicting regions have
at least one involved refactoring.

Implications

Since there are no previous studies that investigated the extent of refactorings

in merge conflicts, or other types of semantic code changes in merge conflicts,

we have no point of reference to compare our findings to. However, previous

work by McKee et al. [70] showed that when resolving merge conflicts, practi-

tioners’ top needs include: (a) understanding the code involved in the merge

conflict, and (b) tools to help them explore the project history during the pro-

60

cess of resolving conflicts. While 22% might not seem like a high number, and

we cannot conclude that refactorings are involved in the majority of merge

conflicts, our findings provide good news for addressing practitioners’ requests

from McKee et al.’s study. Since refactoring detection in commit history has

now become precise and scalable, this means that, based on our results, re-

searchers can provide developers with tools to explore the history and interpret

changes in a little less than a quarter of conflicting merge scenarios, thus help-

ing them to resolve conflicts faster. On the level of a given conflicting scenario,

such tool support can be provided for approximately 11% of the conflicting re-

gions. It should be emphasized that in our study, we considered only a subset

of all possible refactoring types, because RefactoringMiner supports only

15 out of the 72 refactoring types described in Fowler’s catalog [43]. We con-

jecture that the aforementioned percentages would be potentially even larger

if more refactoring types were considered.

5.3.3 Are conflicts that involve refactoring more diffi-
cult to resolve?

Data used in RQ

Previous work on software merging used the number of conflicting lines as a

measure of the complexity of a conflict [7], [8]. Recent work also confirms

that the number of conflicting lines is one of the top factors that affects the

developers’ perception of the difficulty of a conflict [70]. Based on the above

previous work, we use the number of conflicting lines, in other words the size

of conflicting region, as a proxy for describing the difficulty of a merge conflict.

As an additional measure of difficulty, we also look at how refactorings can

affect the number of evolutionary commits for conflicting merge scenarios.

Since program comprehension is a traditionally complex and time consuming

task [25], we assume that the more evolutionary changes a merge scenario has,

the more complex resolving a merge conflict will be, since more changes need

to be understood.

61

With Involved Refactorings Without Involved Refactorings

101

102

103

104

105

Co
nf

lic
tin

g
Re

gi
on

 S
ize

Figure 5.2: Distribution of conflicting region size with and without involved
refactorings

62

Findings

Figure 5.2 shows the size of all conflicting regions in our study. The left box

plot contains conflicting regions with involved refactorings, while the right

box plot contains the remaining conflicting regions. The orange lines mark

the median and the green triangles show the mean. The figure shows that

there are a few conflicting regions without refactorings that are larger than

any conflicting region with refactoring (those with >10,000 lines). However,

this does not hold on average. The mean and median for conflicting regions

with involved refactorings are 39.63 and 12 respectively. The same values

are lower for conflicting regions without involved refactorings, with a mean

and median of 26.63 and 7, respectively. The unpaired Wilcoxon rank-sum

test shows that these distributions are statistically different (p-value = 0.00).

Additionally, a 95% confidence interval for the difference between the two

population medians is between 3 and infinity, suggesting that the median of

the size of conflicting regions with involved refactorings is at least 3 lines larger

than the median size of the remaining conflicting regions. For measuring the

effect size, we use r = Z/sqrt(N) where Z is the test statistic and N is the

number of samples [39]. The effect size is 0.14 which can be interpreted as

small.

Figure 5.3 shows the distribution of the number of evolutionary commits for

each conflicting merge scenario. The left box plot contains conflicting merge

scenarios with at least one involved refactoring change in their evolutionary

commits. The right box plot contains the remaining conflicting merge scenar-

ios. Similar to Figure 5.2, the orange line shows the median and the green

triangle marks the mean. As Figure 5.3 suggests, conflicting merge scenar-

ios with involved refactorings have a larger number of evolutionary commits

(median: 5%, mean: 10.43%) compared to conflicting merge scenarios with

no involved refactoring changes (median: 2%, mean: 3.46%). Furthermore,

the Wilcoxon rank-sum test shows that this difference is significant (p-value

= 0.00). Using the r = Z/sqrt(N) formula, we find that the effect size is 0.34

which can be interpreted as medium.

63

Conflicting Merge Scenarios
with Involved Refactorings

Conflicting Merge Scenarios
without Involved Refactorings

100

101

102

103

Nu
m

be
r o

f E
vo

lu
tio

na
ry

 C
om

m
its

Figure 5.3: Number of evolutionary commits per merge scenario with and
without involved refactorings

64

Answer to S2-RQ2: Conflicting regions that involve refactorings tend to be
larger (i.e., more complex) than those without refactorings. Furthermore,
conflicting merge scenarios with involved refactorings include more evolu-
tionary changes (i.e., changes leading to conflict) than conflicting merge
scenarios without involved refactorings.

Implications

Our findings show that conflicting regions that involve refactoring operations

are indeed more complex than conflicting regions without involved refactor-

ings. While 3 extra conflicting lines may not seem like a big difference, recall

that the median size of a conflicting region is already small (7 lines), so 3

lines represents an almost 50% increase. Additionally, our results suggest

that resolving merge conflicts with involved refactorings may be more diffi-

cult, since they typically involve more evolutionary changes for the developer

doing the resolution to understand. Our findings provide great motivation for

refactoring-aware merging tools and techniques that can help developers in the

merging process.

5.3.4 What types of refactoring are more commonly in-
volved in conflicts?

Data Used for RQ

We consider 15 types of refactorings in our work. Not all of them necessar-

ily occur with the same rate, and each refactoring type might impact con-

flicting regions differently. Understanding how often each refactoring type

affects merge conflicts is important for any future tool support, especially for

refactoring-aware merging tools and techniques [33].

When looking for differences in the distribution of each refactoring type

among all involved refactorings, it is important to take into account the “typ-

ical” distribution of refactorings types as well, i.e., how often each refactoring

type occurs in general. This way, we can observe if there are any discrepancies

between the distribution of a given refactoring type among involved refactor-

ings vs. in general. Specifically, it would be interesting to find the refactoring

types that appear more often as involved refactorings when compared to their

65

Change Package
Extract And Move Method

Extract Interface
Extract Method
Extract Superclass Inline Method

Move And Rename Class
Move Attribute
Move Class

Move Method

Pull Up Attribute
Pull Up Method
Push Down Method Rename Class
Rename Method

0%

20%

40%

60%

80%

100%

Percentage of Refactorings with Corresponding Type

Overall
Involved

F
igu

re
5.4:

P
ercen

tage
of

each
in
volved

refactorin
g’s

ty
p
e
p
er

p
ro
ject

66

general distribution. Such cases indicate particularly problematic refactorings

that are involved in merge conflicts. However, in our methodology, we do

not collect information about all refactorings that happen in each repository.

As described in Section 5.1.4, we detect refactoring operations only in evolu-

tionary commits. Since not all detected refactoring operations are involved

refactorings, we use the distribution of all detected refactorings in all evolu-

tionary commits as a proxy for the general distribution of refactorings in our

data.

Findings

Figure 5.4 shows how common each refactoring type is across all projects. It

provides two different distributions for each refactoring type: involved refac-

torings and overall refactorings. Every project has two data points in each

violin plot, representing a refactoring type. The y-axis is the percentage of

refactorings corresponding to the refactoring type. The width of each plot

at a given percentage shows the number of projects with that percentage.

For example, suppose a project has a total of 5 refactorings in its evolution-

ary commits, two Rename Method refactorings and three Move Class

refactorings. Also, assume that the two Rename Method refactorings are

involved in conflicting regions. This project will be represented by 30 data

points in the figure, two points for each refactoring type. For the violin plots

corresponding to involved refactorings, all of the points for this project will

have a value of zero, except the point corresponding to Rename Method

which will be 100%. For the violin plots corresponding to overall refactorings,

the points for Rename Method and Move Class will have a value of 40%

and 60%, respectively, and the points for the remaining refactoring types will

be zero.

We use a two-sided paired Wilcoxon signed-rank test to compare the dis-

tributions of overall refactorings and involved refactorings, for each refactoring

type. We use a Benjamini & Hochberg (BH) p-value adjustment measure to

account for multiple comparisons, and use α = 0.05. We use the r value for

effect size, which is recommended by Fields [39] for the Wilcoxon signed-rank

67

Refactoring Type
Direction of

p-value
Effect Size

Difference (r = Z/sqrt(N))

Change Package ↑ 0.093 0.035

Extract & Move Method ↓ 0.187 0.028

Extract Interface ↑ 0.000 0.081

Extract Method ↑ 0.000 0.119

Extract Superclass ↑ 0.017 0.054

Inline Method ↓ 0.304 0.022

Move & Rename Class ↓ 0.000 0.209

Move Attribute ↓ 0.000 0.210

Move Class ↓ 0.000 0.324

Move Method ↓ 0.000 0.182

Pull Up Attribute ↓ 0.000 0.141

Pull Up Method ↓ 0.000 0.131

Push Down Method ↓ 0.000 0.086

Rename Class ↓ 0.000 0.198

Rename Method ↓ 0.000 0.233

Table 5.3: Wilcoxon signed-rank paired test results between overall and in-
volved refactorings. When involved refactorings are more than overall refac-
torings, the direction of difference is ↑, and ↓ otherwise. Statistically significant
results (p < 0.05) are shown in bold, with highlighted rows being specifically
of interest.

68

test. We interpret it as small (≥ 0.1), medium (≥ 0.3), and large (≥ 0.5) [39].

To find the direction of the difference, we compare the means and interquar-

tile ranges of the distributions. We show the results in Table 5.3. The third

column shows that 12 refactoring types have p-values lower than 0.05 (high-

lighted in bold), meaning that involved and overall refactorings in these types

have a different distribution.

Out of these 12 types, involved refactorings have higher percentages for Ex-

tract Interface, Extract Method, and Extract Superclass. How-

ever, the effect size is negligible for Extract Superclass and Extract

Interface and is small for Extract Method.

Answer to S2-RQ3: Extract Method is more involved in conflicts than
its typical overall frequency, with a small effect size. Extract Interface
and Extract Superclass are also more involved in conflicts, but with
negligible effect sizes.

Implications

Our results suggest bad news for existing refactoring-aware merging tools.

As mentioned in the introduction of this chapter, Dig et al.’s undo/redo tech-

nique [33] cannot handle extract refactorings. This calls for more sophisticated

refactoring-aware merging tools that can handle such cases.

With the exception of Move Class, the effect size of the remaining refac-

torings in the other direction is small. The larger effect size for Move Class

might have to do with the fact that Git detects file move and rename op-

erations. Since a Java public class is represented in a single file, the Move

Class refactoring is essentially a file move operation for public Java classes.

Now, if a class is moved in one branch, while its content was edited in another

branch, Git can automatically merge the content change since it is aware of

the move. Hence, a fewer number of Move Class refactorings end up being

involved in conflicts, based on our region-based methodology.

5.4 Threats to Validity

In this section, we discuss possible threats to the validity of this study.

69

5.4.1 Construct Validity

Construct validity is concerned with actually measuring the attribute that one

intends to measure [58].

In Table 5.2, the number of repositories with evolutionary commits is less

than the number of repositories with conflicting regions. Upon further investi-

gation, we found that about 4% (11,312 out of 258,956) of conflicting regions

do not have corresponding evolutionary commits. After manual sampling, we

found that this occurs for merge scenarios that contain nested merge scenar-

ios within their evolutionary changes. Since we do not go back and examine

the previous histories of these nested merge commits, it means that for some

conflicting regions, we miss the changes that may have caused the conflict,

if those changes were caused by a merge commit. However, since we ana-

lyze every merge scenario in a repository, the inner merge scenarios will be

individually analyzed and we will collect their evolutionary commits and cor-

responding refactorings. Any missed involved refactorings, because of these

nested merge cases simply means that our reported stats are a lower bound of

the actual involvement of refactorings in merge conflicts.

When looking for merge commits, we only consider merge commits with

two parents, while in reality a merge commit can have more than two parents.

However, merge commits with more than 2 parents happen rarely in practice.

In our methodology, we looked for refactoring operations that were involved

in evolutionary commits that led to conflicts. However, it is not easy to deter-

mine whether an involved refactoring indeed caused a conflict, or even more

so, whether it was the sole cause of that conflict. This is because refactorings

are usually interspersed with other type of changes [75]. As a result, determin-

ing whether a conflict was caused by a refactoring or other changes that were

tangled with the refactoring is a difficult task. This is why we conservatively

say that these refactorings were involved in conflicts and refrain from claiming

that they directly caused the conflicts.

70

5.4.2 Internal Validity

Internal validity is concerned with the effect of additional factors on an ob-

served behavior or attribute [37].

Any inaccuracies in our tooling may lead to wrong results. To mitigate

that, we use the state-of-the-art refactoring tool, RefactoringMiner, which

has high precision. Additionally, we manually reviewed samples of our results

throughout our experiments. In terms of our methodology for calculating

involved refactorings, we manually validated samples of our results and also

publish our tooling and findings in our online artifact page [46] to facilitate

reproducability.

As mentioned in Section 5.2, when using RefactoringMiner to detect

refactorings in a given commit, we employ a 4-minute timeout. We keep a

record of every time RefactoringMiner takes more than 4 minutes and

the process is terminated. Out of 115,911 commits that we analyzed with

RefactoringMiner, only 949 of them (0.81%) reached this timeout. This

is a very small percentage and does not pose a serious threat to the validity

of our results.

5.4.3 External Validity

External validity is concerned with whether we can generalize the results out-

side the scope of our study [37].

Our study focuses only on Java projects. By limiting our subject systems

to well-engineered software projects, we made our results more indicative of

realistic development setups. However, since we were limited to open-source

software systems and we did not have access to closed-source enterprise Java

projects, we cannot claim that our findings can be generalized to all Java

software systems. Nonetheless, the large number of subject systems we use

(almost 3,000) suggest that our findings are common in open-source projects.

Finally, RefactoringMiner is able to detect only 15 refactoring types

out of the 72 refactoring types described in Fowler’s catalog [43], so we cannot

generalize beyond the refactoring types we consider. However, the investigated

71

refactoring types are among the most frequently applied types [76]. We conjec-

ture that a study considering a larger set of refactoring types would possibly

find an even stronger involvement of refactoring operations in merge conflicts.

5.5 Summary

In this chapter, we presented our second empirical study on refactoring changes

and merge conflicts. This study, to the best of our knowledge, is the first large-

scale empirical study to understand the relationship between refactorings and

merge conflicts. We studied almost 3,000 well-engineered open-source Java

repositories. Our results show that refactoring operations are involved in 22%

of merge conflicts. Moreover, we find that conflicts that involve refactorings

are often more complex. Our findings suggest that merging tool support that

understands refactoring can have a positive impact in practice, while existing

tools that rely on reverting refactoring operations during merging may need

improvement.

72

Chapter 6

Conclusion

In this thesis, we performed two empirical studies to understand the challenges

that developers face in software merging and identify possible directions to help

them overcome these problems.

We first investigated the integration challenges in forked repositories. We

focused on the Android update problem. The problem occurs when a new

version of the Android OS is released, and phone vendors need to figure out

how to re-apply their proprietary modifications to the new version. This leads

to late adoption of the new version of Android by phone vendors, which may

lead to problems associated with using an outdated version of the OS, such as

security vulnerabilities.

By studying eight versions of a community-based variant of Android called

LineageOS, which we use as a proxy for a phone vendor, we analyzed the

details and overlap of the changes applied in LineageOS versus those in

Android. Based on the semantics of the changes, we categorized whether the

overlapping changes have the potential to be automatically integrated or not.

Our results show that both LineageOS and Android often change sim-

ilar parts of the OS. We find that the subsystems related to the settings in

Android as well as the user interface are mutually changed by LineageOS

and Android. On the other hand, when taking the semantics of the changes

into account, we find that the majority of overlapping changes (56%) have

the potential to be automatically merged. We discussed concrete automation

opportunities for all categories of change overlaps.

73

This study is a useful first step for solving the Android update problem,

and also for solving the general problem of integrating independently modified

variants of a software system. Researchers can use our tool chain and employ

our methodology to other variants of Android, or other similar independently

modified projects. This enables them to analyze the frequency and type of

changes that are applied to an independently modified repository vs. the

main repository it was forked from.

Future research can investigate the integration solutions we discussed in

practice. This can lead to the implementation of practical tools that can

assist developers when they face integration challenges.

Our results suggest that apart from changes that are currently automati-

cally integrated by textual merge tools, refactoring changes comprise the ma-

jority of changes that have the potential to be automatically integrated. This

lead us to study the relationship between refactorings and merge conflicts in

more details.

We performed, to the best of our knowledge, the first large-scale empirical

study to understand the relationship between refactorings and merge conflicts.

We studied almost 3,000 well-engineered open-source Java repositories. Using

RefactoringMiner, we detected refactoring operations that were involved

in merge conflicts.

Our results show that refactoring operations are involved in 22% of merge

conflicts. We also find that conflicts that involve refactorings are often more

complex. Furthermore, we find that existing tools that rely on reverting refac-

toring operations during merging may need improvement, since the Extract

Method refactoring is involved in more conflicts than its typical frequency.

This study provides empirical motivation for future research in refactoring-

aware software merging and shows that merging tool support that understands

refactoring can have a positive impact in practice. Such tool support can vary

from helping the developer understand the changes that led to the conflict to

automatically resolving the conflict for them.

74

References

[1] P. Accioly, P. Borba, L. Silva, and G. Cavalcanti, “Analyzing conflict
predictors in open-source Java projects,” in Proceedings of the 15th
International Conference on Mining Software Repositories, ACM, 2018,
pp. 576–586. 10

[2] R. Amadeo, Google’s “Project Treble” solves one of Android’s many
update roadblocks, https://arstechnica.com/gadgets/2017/05/
google - hopes - to - fix - android - updates - no - really - with -

project-treble/, Accessed: 2017-08-25. 22

[3] Android Platform Architecture, https://developer.android.com/
guide/platform/, Accessed: 2018-11-27. 3, 16, 17, 21

[4] Android Platform Manifest, https://android.googlesource.com/
platform/manifest, Accessed: 2017-08-16. 16

[5] Android Platform Versions, https://developer.android.com/about/
dashboards/index.html, Accessed: 2017-07-30. 3, 21

[6] L. Angyal, L. Lengyel, and H. Charaf, “Detecting renamings in three-
way merging,” Acta Polytechnica Hungarica, vol. 4, no. 4, 2007. 7, 50

[7] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with auto-
tuning: Balancing precision and performance,” in Proceedings of the
27th IEEE/ACM International Conference on Automated Software En-
gineering, ser. ASE 2012, Essen, Germany: ACM, 2012, pp. 120–129,
isbn: 978-1-4503-1204-2. doi: 10.1145/2351676.2351694. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351694. 9, 48, 61

[8] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistruc-
tured merge: Rethinking merge in revision control systems,” in Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ser. ESEC/FSE
’11, Szeged, Hungary: ACM, 2011, pp. 190–200, isbn: 978-1-4503-0443-
6. doi: 10.1145/2025113.2025141. [Online]. Available: http://doi.
acm.org/10.1145/2025113.2025141. 9, 48, 61

[9] B. Appleton, S. Berczuk, R. Cabrera, and R. Orenstein, “Streamed
lines: Branching patterns for parallel software development,” in Pro-
ceedings of PloP, vol. 98, 1998. 14

75

https://arstechnica.com/gadgets/2017/05/google-hopes-to-fix-android-updates-no-really-with-project-treble/
https://arstechnica.com/gadgets/2017/05/google-hopes-to-fix-android-updates-no-really-with-project-treble/
https://arstechnica.com/gadgets/2017/05/google-hopes-to-fix-android-updates-no-really-with-project-treble/
https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://android.googlesource.com/platform/manifest
https://android.googlesource.com/platform/manifest
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://doi.org/10.1145/2351676.2351694
http://doi.acm.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141

[10] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless ker-
nel updates,” in Proceedings of the 4th ACM European Conference
on Computer Systems, ser. EuroSys ’09, Nuremberg, Germany: ACM,
2009, pp. 187–198, isbn: 978-1-60558-482-9. doi: 10.1145/1519065.
1519085. [Online]. Available: http://doi.acm.org/10.1145/1519065.
1519085. 11

[11] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva, O. Krieger, R. W.
Wisniewski, and J. Kerr, “Providing dynamic update in an operat-
ing system.,” in USENIX Annual Technical Conference, General Track,
2005, pp. 279–291. 11

[12] G. Bavota, B. D. Carluccio, A. D. Lucia, M. D. Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in 2012 IEEE 12th International Working Conference on Source Code
Analysis and Manipulation, Sep. 2012, pp. 104–113. doi: 10.1109/
SCAM.2012.20. 12

[13] G. Bavota, A. D. Lucia, M. D. Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality
and refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14,
2015, issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.
2015.05.024. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121215001053. 12

[14] B. Berliner et al., “CVS ii: Parallelizing software development,” in Pro-
ceedings of the USENIX Winter 1990 Technical Conference, vol. 341,
1990, p. 352. 9

[15] V. Berzins, “Software merge: Semantics of combining changes to pro-
grams,” ACM Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1875–
1903, Nov. 1994, issn: 0164-0925. doi: 10.1145/197320.197403. [On-
line]. Available: http://doi.acm.org/10.1145/197320.197403.

9

[16] D. Binkley, S. Horwitz, and T. Reps, “Program integration for lan-
guages with procedure calls,”ACM Trans. Softw. Eng. Methodol., vol. 4,
no. 1, pp. 3–35, Jan. 1995, issn: 1049-331X. doi: 10.1145/201055.
201056. [Online]. Available: http://doi.acm.org.login.ezproxy.
library.ualberta.ca/10.1145/201055.201056. 10

[17] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, ser. FSE
’12, Cary, North Carolina: ACM, 2012, 45:1–45:11, isbn: 978-1-4503-
1614-9. doi: 10.1145/2393596.2393648. [Online]. Available: http:
//doi.acm.org/10.1145/2393596.2393648. 2

76

https://doi.org/10.1145/1519065.1519085
https://doi.org/10.1145/1519065.1519085
http://doi.acm.org/10.1145/1519065.1519085
http://doi.acm.org/10.1145/1519065.1519085
https://doi.org/10.1109/SCAM.2012.20
https://doi.org/10.1109/SCAM.2012.20
https://doi.org/https://doi.org/10.1016/j.jss.2015.05.024
https://doi.org/https://doi.org/10.1016/j.jss.2015.05.024
http://www.sciencedirect.com/science/article/pii/S0164121215001053
http://www.sciencedirect.com/science/article/pii/S0164121215001053
https://doi.org/10.1145/197320.197403
http://doi.acm.org/10.1145/197320.197403
https://doi.org/10.1145/201055.201056
https://doi.org/10.1145/201055.201056
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/201055.201056
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/201055.201056
https://doi.org/10.1145/2393596.2393648
http://doi.acm.org/10.1145/2393596.2393648
http://doi.acm.org/10.1145/2393596.2393648

[18] Branching strategies with TFVS, https://docs.microsoft.com/en-
gb/azure/devops/repos/tfvc/branching-strategies-with-tfvc?

view=vsts, Accessed: 2018-10-24. 1

[19] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive de-
tection of collaboration conflicts,” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Founda-
tions of Software Engineering, ser. ESEC/FSE ’11, Szeged, Hungary:
ACM, 2011, pp. 168–178, isbn: 978-1-4503-0443-6. doi: 10 . 1145 /

2025113.2025139. [Online]. Available: http://doi.acm.org/10.
1145/2025113.2025139. 2, 10

[20] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards
a taxonomy of software change,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 17, no. 5, pp. 309–332, 2005. 11

[21] J. Buffenbarger, “Syntactic software merging,” in Software Configura-
tion Management, J. Estublier, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 153–172, isbn: 978-3-540-47768-6. 9

[22] J. Businge, O. Moses, S. Nadi, E. Bainomugisha, and T. Berger, Clonebased
variability management in the android ecosystem, 2018. 11

[23] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” in 11th IEEE International Software Met-
rics Symposium (METRICS’05), Sep. 2005, 9 pp.-29. doi: 10.1109/
METRICS.2005.28. 11

[24] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving
semistructured merge,” Proceedings of the ACM on Programming Lan-
guages, vol. 1, no. OOPSLA, 59:1–59:27, Oct. 2017, issn: 2475-1421.
doi: 10.1145/3133883. [Online]. Available: http://doi.acm.org/
10.1145/3133883. 10

[25] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989. 61

[26] CyanogenMod, https://web.archive.org/web/20161210001826/
http://cyanogenmod.org/, Accessed: 2016-12-10. 18

[27] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
Github: Transparency and collaboration in an open software reposi-
tory,” in Proceedings of the ACM 2012 Conference on Computer Sup-
ported Cooperative Work, ser. CSCW ’12, Seattle, Washington, USA:
ACM, 2012, pp. 1277–1286, isbn: 978-1-4503-1086-4. doi: 10.1145/
2145204.2145396. [Online]. Available: http://doi.acm.org/10.
1145/2145204.2145396. 57

77

https://docs.microsoft.com/en-gb/azure/devops/repos/tfvc/branching-strategies-with-tfvc?view=vsts
https://docs.microsoft.com/en-gb/azure/devops/repos/tfvc/branching-strategies-with-tfvc?view=vsts
https://docs.microsoft.com/en-gb/azure/devops/repos/tfvc/branching-strategies-with-tfvc?view=vsts
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1145/2025113.2025139
http://doi.acm.org/10.1145/2025113.2025139
http://doi.acm.org/10.1145/2025113.2025139
https://doi.org/10.1109/METRICS.2005.28
https://doi.org/10.1109/METRICS.2005.28
https://doi.org/10.1145/3133883
http://doi.acm.org/10.1145/3133883
http://doi.acm.org/10.1145/3133883
https://web.archive.org/web/20161210001826/http://cyanogenmod.org/
https://web.archive.org/web/20161210001826/http://cyanogenmod.org/
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396

[28] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” in Proceedings of the 30th International Confer-
ence on Software Engineering, ser. ICSE ’08, Leipzig, Germany: ACM,
2008, pp. 481–490, isbn: 978-1-60558-079-1. doi: 10.1145/1368088.
1368154. [Online]. Available: http://doi.acm.org/10.1145/1368088.
1368154. 12

[29] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-oriented Reengineer-
ing Patterns. Square Bracket Associates, 2009, isbn: 9783952334126.
[Online]. Available: https://books.google.ca/books?id=1aUGAgAAQBAJ.

5

[30] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” in Proceedings of the 15th ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Appli-
cations, ser. OOPSLA ’00, Minneapolis, Minnesota, USA: ACM, 2000,
pp. 166–177, isbn: 1-58113-200-X. doi: 10.1145/353171.353183. [On-
line]. Available: http://doi.acm.org/10.1145/353171.353183.

13

[31] P. Dewan and R. Hegde, “Semi-synchronous conflict detection and res-
olution in asynchronous software development,” in ECSCW 2007, L. J.
Bannon, I. Wagner, C. Gutwin, R. H. R. Harper, and K. Schmidt, Eds.,
London: Springer London, 2007, pp. 159–178, isbn: 978-1-84800-031-5. 10

[32] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated de-
tection of refactorings in evolving components,” in Proceedings of the
20th European Conference on Object-Oriented Programming, ser. ECOOP’06,
Nantes, France: Springer-Verlag, 2006, pp. 404–428, isbn: 3-540-35726-
2, 978-3-540-35726-1. doi: 10.1007/11785477_24. [Online]. Available:
http://dx.doi.org/10.1007/11785477_24. 13

[33] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-
aware configuration management for object-oriented programs,” in Pro-
ceedings of the 29th International Conference on Software Engineering,
ser. ICSE ’07, Washington, DC, USA: IEEE Computer Society, 2007,
pp. 427–436, isbn: 0-7695-2828-7. doi: 10.1109/ICSE.2007.71. [On-
line]. Available: http://dx.doi.org/10.1109/ICSE.2007.71. 7, 10, 49, 50, 65, 69

[34] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project: A repli-
cation case study of open source development,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 481–494, Jun. 2005, issn: 0098-
5589. doi: 10.1109/TSE.2005.73. 11

[35] S. Duszynski, J. Knodel, and M. Becker, “Analyzing the source code
of multiple software variants for reuse potential,” in Proceedings of the
18th Working Conference on Reverse Engineering (WCRE ’11), Oct.
2011, pp. 303–307. doi: 10.1109/WCRE.2011.44. 10

78

https://doi.org/10.1145/1368088.1368154
https://doi.org/10.1145/1368088.1368154
http://doi.acm.org/10.1145/1368088.1368154
http://doi.acm.org/10.1145/1368088.1368154
https://books.google.ca/books?id=1aUGAgAAQBAJ
https://doi.org/10.1145/353171.353183
http://doi.acm.org/10.1145/353171.353183
https://doi.org/10.1007/11785477_24
http://dx.doi.org/10.1007/11785477_24
https://doi.org/10.1109/ICSE.2007.71
http://dx.doi.org/10.1109/ICSE.2007.71
https://doi.org/10.1109/TSE.2005.73
https://doi.org/10.1109/WCRE.2011.44

[36] Eclipse refactoring support, https : / / help . eclipse . org / neon /

topic/org.eclipse.jdt.doc.user/concepts/concept-refactoring.

htm, Accessed: 2017-08-25. 42, 48

[37] R. Feldt and A. Magazinius, “Validity threats in empirical software
engineering research-an initial survey.,” in SEKE, 2010, pp. 374–379. 46, 47, 71

[38] W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake, “Variant-
preserving refactorings for migrating cloned products to a product line,”
in Proceedings of the 24th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER ’17), Feb. 2017, pp. 316–
326. doi: 10.1109/SANER.2017.7884632. 10

[39] A. Field, J. Miles, and Z. Field, Discovering statistics using R. Sage
publications, 2012. 63, 67, 69

[40] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in Proceedings of the 30th IEEE International Conference on
Software Maintenance and Evolution (ICSME ’14), Sep. 2014, pp. 391–
400. doi: 10.1109/ICSME.2014.61. 10

[41] B. Fluri, M. Wuersch, M. PInzger, and H. C. Gall, “Change distill-
ing:tree differencing for fine-grained source code change extraction,”
IEEE Transactions on Software Engineering, vol. 33, no. 11, pp. 725–
743, Nov. 2007, issn: 0098-5589. doi: 10.1109/TSE.2007.70731. 12, 20, 22, 26

[42] S. R. Foster, W. G. Griswold, and S. Lerner, “Witchdoctor: IDE support
for real-time auto-completion of refactorings,” in 2012 34th Interna-
tional Conference on Software Engineering (ICSE), Jun. 2012, pp. 222–
232. doi: 10.1109/ICSE.2012.6227191. 13

[43] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley, 1999, isbn: 0-201-48567-2. 5, 7, 12, 61, 71

[44] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling manual and
automatic refactoring,” in Proceedings of the 34th International Confer-
ence on Software Engineering, ser. ICSE ’12, Zurich, Switzerland: IEEE
Press, 2012, pp. 211–221, isbn: 978-1-4673-1067-3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337249. 13

[45] Github artifact page, https://github.com/ualberta-smr/Android-
Update-Analysis. 8, 24

[46] Github artifact page, https://github.com/ualberta-smr/
RefactoringsInMergeCommits. 8, 53, 71

79

https://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/concepts/concept-refactoring.htm
https://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/concepts/concept-refactoring.htm
https://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/concepts/concept-refactoring.htm
https://doi.org/10.1109/SANER.2017.7884632
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/ICSE.2012.6227191
http://dl.acm.org/citation.cfm?id=2337223.2337249
https://github.com/ualberta-smr/Android-Update-Analysis
https://github.com/ualberta-smr/Android-Update-Analysis
https://github.com/ualberta-smr/RefactoringsInMergeCommits
https://github.com/ualberta-smr/RefactoringsInMergeCommits

[47] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014,
Hyderabad, India: ACM, 2014, pp. 345–355, isbn: 978-1-4503-2756-5.
doi: 10.1145/2568225.2568260. [Online]. Available: http://doi.
acm.org/10.1145/2568225.2568260. 10, 57

[48] ——, “An exploratory study of the pull-based software development
model,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014, Hyderabad, India: ACM, 2014, pp. 345–
355, isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568260. [On-
line]. Available: http://doi.acm.org/10.1145/2568225.2568260.

10

[49] M. L. Guimarães and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE ’12, Zurich, Switzerland: IEEE Press,
2012, pp. 342–352, isbn: 978-1-4673-1067-3. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2337223.2337264. 10

[50] D. C. Gumm, “Distribution dimensions in software development projects:
A taxonomy,” IEEE Software, vol. 23, pp. 45–51, Sep. 2006, issn:
0740-7459. doi: 10 . 1109 / MS . 2006 . 122. [Online]. Available: doi .
ieeecomputersociety.org/10.1109/MS.2006.122. 1

[51] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit com-
ments in Github: An empirical study,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories, ser. MSR 2014, Hy-
derabad, India: ACM, 2014, pp. 352–355, isbn: 978-1-4503-2863-0. doi:
10.1145/2597073.2597118. [Online]. Available: http://doi.acm.
org/10.1145/2597073.2597118. 57

[52] M. Helft, “Meet Cyanogen, the startup that wants to steal Android
from Google,” Forbes, March, 2015, Accessed: 2017-08-25. 18

[53] J. D. Herbsleb and A. Mockus, “An empirical study of speed and com-
munication in globally distributed software development,” IEEE Trans-
actions on Software Engineering, vol. 29, no. 6, pp. 481–494, Jun. 2003,
issn: 0098-5589. doi: 10.1109/TSE.2003.1205177. 1

[54] IntellJ refactoring support, https://www.jetbrains.com/help/idea/
refactoring-source-code.html, Accessed: 2017-08-25. 42, 48

[55] Jackson and Ladd, “Semantic diff: A tool for summarizing the effects of
modifications,” in Proceedings 1994 International Conference on Soft-
ware Maintenance, Sep. 1994, pp. 243–252. doi: 10.1109/ICSM.1994.
336770. 10

80

https://doi.org/10.1145/2568225.2568260
http://doi.acm.org/10.1145/2568225.2568260
http://doi.acm.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
http://doi.acm.org/10.1145/2568225.2568260
http://dl.acm.org/citation.cfm?id=2337223.2337264
http://dl.acm.org/citation.cfm?id=2337223.2337264
https://doi.org/10.1109/MS.2006.122
doi.ieeecomputersociety.org/10.1109/MS.2006.122
doi.ieeecomputersociety.org/10.1109/MS.2006.122
https://doi.org/10.1145/2597073.2597118
http://doi.acm.org/10.1145/2597073.2597118
http://doi.acm.org/10.1145/2597073.2597118
https://doi.org/10.1109/TSE.2003.1205177
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://doi.org/10.1109/ICSM.1994.336770
https://doi.org/10.1109/ICSM.1994.336770

[56] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, no. 2, pp. 77–131, 2007, issn: 1532-0618. doi:
10.1002/smr.344. [Online]. Available: http://dx.doi.org/10.1002/
smr.344. 11, 24, 46

[57] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining Github,” in Proceed-
ings of the 11th Working Conference on Mining Software Repositories,
ser. MSR 2014, Hyderabad, India: ACM, 2014, pp. 92–101, isbn: 978-
1-4503-2863-0. doi: 10.1145/2597073.2597074. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597074. 57

[58] C. Kaner, S. Member, and W. P. Bond, “Software engineering metrics:
What do they measure and how do we know?” In In METRICS 2004.
IEEE CS, Press, 2004. 46, 70

[59] M. Kim, D. Cai, and S. Kim, “An empirical investigation into the role
of API-level refactorings during software evolution,” in Proceedings of
the 33rd International Conference on Software Engineering, ser. ICSE
’11, Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 151–160, isbn: 978-
1-4503-0445-0. doi: 10.1145/1985793.1985815. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985815. 13

[60] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: A refac-
toring reconstruction tool based on logic query templates,” in Pro-
ceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE ’10, Santa Fe, New
Mexico, USA: ACM, 2010, pp. 371–372, isbn: 978-1-60558-791-2. doi:
10.1145/1882291.1882353. [Online]. Available: http://doi.acm.
org/10.1145/1882291.1882353. 13

[61] O. Leßenich, S. Apel, C. Kästner, G. Seibt, and J. Siegmund, “Renam-
ing and shifted code in structured merging: Looking ahead for precision
and performance,” in 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Oct. 2017, pp. 543–553. doi:
10.1109/ASE.2017.8115665. 7, 50

[62] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen, “In-
dicators for merge conflicts in the wild: Survey and empirical study,”
Automated Software Engineering, vol. 25, no. 2, pp. 279–313, 2018. 10

[63] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R.
Oliveto, and D. Poshyvanyk, “API change and fault proneness: A threat
to the success of Android apps,” in Proceedings of the 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013, Saint
Petersburg, Russia: ACM, 2013, pp. 477–487, isbn: 978-1-4503-2237-9.
doi: 10.1145/2491411.2491428. [Online]. Available: http://doi.
acm.org/10.1145/2491411.2491428. 12

81

https://doi.org/10.1002/smr.344
http://dx.doi.org/10.1002/smr.344
http://dx.doi.org/10.1002/smr.344
https://doi.org/10.1145/2597073.2597074
http://doi.acm.org/10.1145/2597073.2597074
https://doi.org/10.1145/1985793.1985815
http://doi.acm.org/10.1145/1985793.1985815
https://doi.org/10.1145/1882291.1882353
http://doi.acm.org/10.1145/1882291.1882353
http://doi.acm.org/10.1145/1882291.1882353
https://doi.org/10.1109/ASE.2017.8115665
https://doi.org/10.1145/2491411.2491428
http://doi.acm.org/10.1145/2491411.2491428
http://doi.acm.org/10.1145/2491411.2491428

[64] D. Lubkin, “Heterogeneous configuration management with DSEE,” in
Proceedings of the 3rd International Workshop on Software Configu-
ration Management, ser. SCM ’91, Trondheim, Norway: ACM, 1991,
pp. 153–160, isbn: 0-89791-429-5. doi: 10.1145/111062.111082. [On-
line]. Available: http://doi.acm.org/10.1145/111062.111082.

9

[65] M. Mahmoudi and S. Nadi, “The Android update problem: An empiri-
cal study,” in Proceedings of the 15th International Conference on Min-
ing Software Repositories, ser. MSR ’18, Gothenburg, Sweden: ACM,
2018, pp. 220–230, isbn: 978-1-4503-5716-6. doi: 10.1145/3196398.
3196434. [Online]. Available: http://doi.acm.org/10.1145/3196398.
3196434. 4

[66] I. Malchev, Here comes Treble: A modular base for Android, https:
//android-developers.googleblog.com/2017/05/here-comes-

treble-modular-base-for.html, Accessed: 2017-08-25. 22

[67] “Market share alert: Preliminary, mobile phones, worldwide, 2q16,”
Gartner, Aug, 2016. 21

[68] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” Empirical
Software Engineering, vol. 20, no. 1, pp. 176–205, Feb. 2015, issn: 1573-
7616. doi: 10.1007/s10664-013-9282-8. [Online]. Available: https:
//doi.org/10.1007/s10664-013-9282-8. 47

[69] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stabil-
ity and adoption in the Android ecosystem,” in Proceedings of the 29th
IEEE International Conference on Software Maintenance (ICSM ’13),
Washington, DC, USA: IEEE Computer Society, 2013, pp. 70–79, isbn:
978-0-7695-4981-1. doi: 10.1109/ICSM.2013.18. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2013.18. 12

[70] S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software practitioner
perspectives on merge conflicts and resolutions,” in 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
Sep. 2017, pp. 467–478. doi: 10.1109/ICSME.2017.53. 2, 5, 10, 60, 61

[71] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans-
actions on Software Engineering, vol. 28, no. 5, pp. 449–462, May 2002,
issn: 0098-5589. doi: 10.1109/TSE.2002.1000449. 2, 9, 14, 49

[72] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139, Feb.
2004, issn: 0098-5589. doi: 10.1109/TSE.2004.1265817. 5

[73] MIUI, http://en.miui.com/, Accessed: 2018-01-20. 47

82

https://doi.org/10.1145/111062.111082
http://doi.acm.org/10.1145/111062.111082
https://doi.org/10.1145/3196398.3196434
https://doi.org/10.1145/3196398.3196434
http://doi.acm.org/10.1145/3196398.3196434
http://doi.acm.org/10.1145/3196398.3196434
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1109/ICSM.2013.18
http://dx.doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2004.1265817
http://en.miui.com/

[74] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating Github
for engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, Dec. 2017, issn: 1573-7616. doi: 10 . 1007 /

s10664- 017- 9512- 6. [Online]. Available: https://doi.org/10.
1007/s10664-017-9512-6. 57

[75] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, Jan. 2012, issn: 0098-5589. doi: 10.1109/TSE.2011.41. 13, 70

[76] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A com-
parative study of manual and automated refactorings,” in ECOOP 2013
– Object-Oriented Programming, G. Castagna, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 552–576, isbn: 978-3-642-39038-8. 13, 72

[77] Y. Nishimura and K. Maruyama, “Supporting merge conflict resolution
by using fine-grained code change history,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, Mar. 2016, pp. 661–664. doi: 10.1109/SANER.2016.
46. 10

[78] N. Niu, S. Easterbrook, and M. Sabetzadeh, “A category-theoretic ap-
proach to syntactic software merging,” in 21st IEEE International Con-
ference on Software Maintenance (ICSM’05), Sep. 2005, pp. 197–206.
doi: 10.1109/ICSM.2005.6. 9

[79] F. Palomba, A. Zaidman, R. Oliveto, and A. D. Lucia, “An exploratory
study on the relationship between changes and refactoring,” in 2017
IEEE/ACM 25th International Conference on Program Comprehension
(ICPC), May 2017, pp. 176–185. doi: 10.1109/ICPC.2017.38. 13

[80] Paranoid Android, http://aospa.co/, Accessed: 2018-01-20. 47

[81] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A library for implementing analyses and transformations of
Java source code,” Software: Practice and Experience, vol. 46, pp. 1155–
1179, 2015. doi: 10.1002/spe.2346. [Online]. Available: https://
hal.archives-ouvertes.fr/hal-01078532/document. 19, 24

[82] S. Phillips, J. Sillito, and R. Walker, “Branching and merging: An inves-
tigation into current version control practices,” in Proceedings of the 4th
International Workshop on Cooperative and Human Aspects of Software
Engineering, ser. CHASE ’11, Waikiki, Honolulu, HI, USA: ACM, 2011,
pp. 9–15, isbn: 978-1-4503-0576-1. doi: 10.1145/1984642.1984645.
[Online]. Available: http://doi.acm.org/10.1145/1984642.1984645.

1

[83] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in 2010 IEEE International
Conference on Software Maintenance, Sep. 2010, pp. 1–10. doi: 10.
1109/ICSM.2010.5609577. 13

83

https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/SANER.2016.46
https://doi.org/10.1109/SANER.2016.46
https://doi.org/10.1109/ICSM.2005.6
https://doi.org/10.1109/ICPC.2017.38
http://aospa.co/
https://doi.org/10.1002/spe.2346
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://doi.org/10.1145/1984642.1984645
http://doi.acm.org/10.1145/1984642.1984645
https://doi.org/10.1109/ICSM.2010.5609577
https://doi.org/10.1109/ICSM.2010.5609577

[84] N. Rachatasumrit and M. Kim, “An empirical investigation into the
impact of refactoring on regression testing,” in 2012 28th IEEE In-
ternational Conference on Software Maintenance (ICSM), Sep. 2012,
pp. 357–366. doi: 10.1109/ICSM.2012.6405293. 13

[85] B. Ray and M. Kim, “A case study of cross-system porting in forked
projects,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE ’12,
Cary, North Carolina: ACM, 2012, 53:1–53:11, isbn: 978-1-4503-1614-
9. doi: 10.1145/2393596.2393659. [Online]. Available: http://doi.
acm.org/10.1145/2393596.2393659. 1, 11

[86] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study
of programming languages and code quality in Github,” in Proceed-
ings of the 22Nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ser. FSE 2014, Hong Kong, China:
ACM, 2014, pp. 155–165, isbn: 978-1-4503-3056-5. doi: 10 . 1145 /

2635868.2635922. [Online]. Available: http://doi.acm.org/10.
1145/2635868.2635922. 57

[87] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants:
A framework and experience,” in Proceedings of the 17th International
Software Product Line Conference, ser. SPLC ’13, Tokyo, Japan: ACM,
2013, pp. 101–110, isbn: 978-1-4503-1968-3. doi: 10.1145/2491627.
2491644. [Online]. Available: http://doi.acm.org.login.ezproxy.
library.ualberta.ca/10.1145/2491627.2491644. 10

[88] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
erCC: Scaling code clone detection to big-code,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16,
Austin, Texas: ACM, 2016, pp. 1157–1168, isbn: 978-1-4503-3900-1.
doi: 10.1145/2884781.2884877. [Online]. Available: http://doi.
acm.org.login.ezproxy.library.ualberta.ca/10.1145/2884781.

2884877. 12, 19, 22, 25

[89] R. W. Selby, “Enabling reuse-based software development of large-scale
systems,” IEEE Transactions on Software Engineering, vol. 31, no. 6,
pp. 495–510, Jun. 2005, issn: 0098-5589. doi: 10.1109/TSE.2005.69. 11

[90] D. Silva and M. T. Valente, “Refdiff: Detecting refactorings in version
histories,” in Proceedings of the 14th International Conference on Min-
ing Software Repositories, ser. MSR ’17, Buenos Aires, Argentina: IEEE
Press, 2017, pp. 269–279, isbn: 978-1-5386-1544-7. doi: 10.1109/MSR.
2017.14. [Online]. Available: https://doi.org/10.1109/MSR.2017.
14. 47

[91] R. Stevens and C. De Roover, “Extracting executable transformations
from distilled code changes,” in Proceedings of the 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER
’17), Feb. 2017, pp. 171–181. doi: 10.1109/SANER.2017.7884619. 43, 48

84

https://doi.org/10.1109/ICSM.2012.6405293
https://doi.org/10.1145/2393596.2393659
http://doi.acm.org/10.1145/2393596.2393659
http://doi.acm.org/10.1145/2393596.2393659
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
http://doi.acm.org/10.1145/2635868.2635922
http://doi.acm.org/10.1145/2635868.2635922
https://doi.org/10.1145/2491627.2491644
https://doi.org/10.1145/2491627.2491644
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/2491627.2491644
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/2491627.2491644
https://doi.org/10.1145/2884781.2884877
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/2884781.2884877
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/2884781.2884877
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/2884781.2884877
https://doi.org/10.1109/TSE.2005.69
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1109/SANER.2017.7884619

[92] D. R. Thomas, A. R. Beresford, T. Coudray, T. Sutcliffe, and A. Tay-
lor, “The lifetime of Android API vulnerabilities: Case study on the
JavaScript-to-Java interface,” in Proceedings of the 23rd International
Workshop on Security Protocols, 2015. 3, 21

[93] D. R. Thomas, A. R. Beresford, and A. Rice, “Security metrics for
the Android ecosystem,” in Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile De-
vices, ser. SPSM ’15, Denver, Colorado, USA: ACM, 2015, pp. 87–98,
isbn: 978-1-4503-3819-6. doi: 10.1145/2808117.2808118. [Online].
Available: http://doi.acm.org/10.1145/2808117.2808118. 3, 21

[94] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D.
Dig, “Accurate and efficient refactoring detection in commit history,”
in Proceedings of the 40th International Conference on Software Engi-
neering, ser. ICSE ’18, Gothenburg, Sweden: ACM, 2018, pp. 483–494,
isbn: 978-1-4503-5638-1. doi: 10.1145/3180155.3180206. [Online].
Available: http://doi.acm.org/10.1145/3180155.3180206. 12, 13, 19, 22, 48, 50

[95] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Qual-
ity and productivity outcomes relating to continuous integration in
Github,” in Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ser. ESEC/FSE 2015, Bergamo, Italy:
ACM, 2015, pp. 805–816, isbn: 978-1-4503-3675-8. doi: 10 . 1145 /

2786805.2786850. [Online]. Available: http://doi.acm.org/10.
1145/2786805.2786850. 57

[96] J. Vincent, 99.6 percent of new smartphones run Android or iOS, Ac-
cessed: 2017-08-25. 21

[97] C. Walrad and D. Strom, “The importance of branching models in
SCM,” Computer, vol. 35, no. 9, pp. 31–38, Sep. 2002, issn: 0018-9162.
doi: 10.1109/MC.2002.1033025. 2, 14

[98] P. Weißgerber and S. Diehl, “Are refactorings less error-prone than
other changes?” In Proceedings of the 2006 International Workshop on
Mining Software Repositories, ser. MSR ’06, Shanghai, China: ACM,
2006, pp. 112–118, isbn: 1-59593-397-2. doi: 10.1145/1137983.1138011.
[Online]. Available: http://doi.acm.org/10.1145/1137983.1138011.

12

[99] B. Westfechtel, “Structure-oriented merging of revisions of software
documents,” in Proceedings of the 3rd International Workshop on Soft-
ware Configuration Management, ser. SCM ’91, Trondheim, Norway:
ACM, 1991, pp. 68–79, isbn: 0-89791-429-5. doi: 10.1145/111062.
111071. [Online]. Available: http://doi.acm.org/10.1145/111062.
111071. 10

85

https://doi.org/10.1145/2808117.2808118
http://doi.acm.org/10.1145/2808117.2808118
https://doi.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/2786805.2786850
http://doi.acm.org/10.1145/2786805.2786850
http://doi.acm.org/10.1145/2786805.2786850
https://doi.org/10.1109/MC.2002.1033025
https://doi.org/10.1145/1137983.1138011
http://doi.acm.org/10.1145/1137983.1138011
https://doi.org/10.1145/111062.111071
https://doi.org/10.1145/111062.111071
http://doi.acm.org/10.1145/111062.111071
http://doi.acm.org/10.1145/111062.111071

[100] Z. Xing and E. Stroulia, “API-evolution support with diff-catchup,”
IEEE Transactions on Software Engineering, vol. 33, no. 12, pp. 818–
836, Dec. 2007, issn: 0098-5589. doi: 10 . 1109 / TSE . 2007 . 70747.
[Online]. Available: http://dx.doi.org/10.1109/TSE.2007.70747. 12

[101] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predict-
ing source code changes by mining change history,” IEEE Transactions
on Software Engineering, vol. 30, no. 9, pp. 574–586, Sep. 2004, issn:
0098-5589. doi: 10.1109/TSE.2004.52. 11

[102] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries, May 2015, pp. 367–371. doi: 10.1109/MSR.2015.42. 10

[103] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in Github: What can we learn from code review and bug
assignment?” Information and Software Technology, vol. 74, pp. 204–
218, 2016, issn: 0950-5849. doi: https://doi.org/10.1016/j.
infsof.2016.01.004. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0950584916000069. 57

86

https://doi.org/10.1109/TSE.2007.70747
http://dx.doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1109/MSR.2015.42
https://doi.org/https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/https://doi.org/10.1016/j.infsof.2016.01.004
http://www.sciencedirect.com/science/article/pii/S0950584916000069
http://www.sciencedirect.com/science/article/pii/S0950584916000069

	Introduction
	Integration Challenges in Independently Modified Variants
	Motivation
	Study Overview

	Refactorings and Merge Conflicts
	Motivation
	Study Overview

	Thesis Contributions

	Related Work
	Software Merging
	Software Product Lines (SPLs)
	Software Evolution
	API Migration
	Refactoring

	Background
	Software Merging
	Merging in Git
	Merge Conflict

	Android
	Android Architecture
	Android Subsystems
	LineageOS

	Software Evolution
	Detecting Refactoring Changes
	Detecting Other Code Changes

	The Android Update Problem
	Methodology and Tool Chain
	Step 1: Identify All Methods
	Step 2: Populate Changesets
	Step 3: Map Changesets

	Study Setup
	Identifying comparison scenarios
	Downloading repositories & identifying subsystems
	Performing the analysis

	Results
	Frequently Modified Subsystems
	Overlapping Changes
	Overall Feasibility of Automation

	Discussion
	`Possible' Categories
	`Not Possible' Categories
	`Might Be Possible' Categories

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Refactorings and Merge Conflicts
	Methodology
	Overview
	Step 1: Detecting Conflicting Regions
	Step 2: Detecting Evolutionary Changes
	Step 3: Detecting Refactorings
	Step 4: Detecting Involved Refactorings

	Evaluation Setup
	Repository Selection
	RefactoringMiner Settings
	Running Environment

	Results
	Descriptive Statistics of Collected Data
	How often do merge conflicts involve refactored code?
	Are conflicts that involve refactoring more difficult to resolve?
	What types of refactoring are more commonly involved in conflicts?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Conclusion
	References

