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Abstract A stage-structured model of integrodifference equations is used to study the asymptotic neutral6

genetic structure of populations undergoing range expansion. That is, we study the inside dynamics of7

solutions to stage-structured integrodifference equations. To analyze the genetic consequences for long term8

population spread, we decompose the solution into neutral genetic components called neutral fractions.9

The inside dynamics are then given by the spatiotemporal evolution of these neutral fractions. We show10

that, under some mild assumptions on the dispersal kernels and population projection matrix, the spread11

is dominated by individuals at the leading edge of the expansion. This result is consistent with the founder12

effect. In the case where there are multiple neutral fractions at the leading edge we are able to explicitly cal-13

culate the asymptotic proportion of these fractions found in the long-term population spread. This formula14

is simple and depends only on the right and left eigenvectors of the population projection matrix evaluated15

at zero and the initial proportion of each neutral fraction at the leading edge of the range expansion. In16

the absence of a strong Allee effect, multiple neutral fractions can drive the long-term population spread,17

a situation not possible with the scalar model.18
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1 Introduction22

There are a wide array of observational (Cullingham et al. 2011), empirical (Liebhold et al. 1992; Lubina23

and Levin 1988), and theoretical studies (Li et al. 2009; Lui 1989a; Weinberger 1982) for the spatial spread24

of populations by range expansion. Over the last decades, theoretical studies about range expansion mainly25
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focused on the asymptotic speed of propagation of the expanding population or the profile of invasion26

(Hastings et al. 2005). Spatial models in population genetics have also been developed for studying the27

spread of an advantageous gene in a population (Lui 1982a,b, 1983; Weinberger 1978, 1982). Recently,28

much effort have been invested to understand the genetic consequences of range expansion (Hallatschek29

and Nelson 2008; Roques et al. 2012). Indeed, range expansions are known to have significant effects on30

genetic diversity (Davis and Shaw 2001; Hewitt 2000). For instance, if range expansion occurs through31

successive founder effects, genetic diversity is likely to decrease. However, empirical and theoretical studies32

have shown that many mechanisms may reduce or reverse the loss of diversity in an expanding population33

(Pluess 2011). In particular, the presence of an Allee effect (Roques et al. 2012) which reduces the per-capita34

growth rate at low density, the occurrence of long distance dispersal events (Bonnefon et al. 2014; Ibrahim35

et al. 1996), or the existence of a juvenile stage (Austerlitz and Garnier-Géré 2003) may promote neutral36

genetic diversity in traveling waves of colonization. In this work, we are interested in the neutral genetic37

dynamics of a stage-structured population undergoing range expansion.38

It is well known that the structure of the population is important for understanding the asymptotic39

dynamics. For example, individuals often must undergo a maturation period before they can produce off-40

spring. For discrete population models, the dynamics of the life history traits have typically been structured41

according to age, Leslie matrix (Leslie 1945), or developmental stage, Lefkovitch matrix (Lefkovitch 1965),42

but matrix models can be easily generalized to include other physiological characteristics. It is also com-43

mon for sessile species to typically have a motile stage in their development, such as seed dispersal in plant44

populations (Howe and Smallwood 1982) and larval dispersal in marine environments (Levin 2006).45

Our study considers a stage-structured integrodifference equation describing range expansion for a46

population of the form:47

ut+1(x) =

∫ ∞
−∞

[K(x− y) ◦B(ut(y))] ut(y) dy, (1)

where ut(x) corresponds to the population density at time t and location x. The population is structured48

into m stages, whose densities are given by ut(x) = [u1,t(x), . . . , um,t(x)]. Each stage distribution changes49

in time and space through the successive effects of dispersal, described by the dispersal matrix K = [kjl],50

and the demography, embodied in the population projection matrix B(u) = [bjl(u)] which takes into51

account density-dependence. The succession of the reproduction stage and dispersal stage is described by52

the Hadamard product ◦ (element-wise multiplication of matrix). This model allows the different stages to53

spread, reproduce, and interact in a variety of ways that cannot be captured by scalar models (Neubert and54

Caswell 2000). More precisely, if we consider stage j, where j = 1, . . . ,m, then its density, uj,t(x), satisfies55

the following equation56

uj,t+1 =

∫ ∞
−∞

m∑
l=1

kjl(x− y)bjl(u1,t(y), . . . , um,t(y))ul,t(y) dy (2)

where kjl(x−y) dy is the probability that an individual transitioning from stage l to stage j disperses from57

the interval (y, y+ dy] to location x, and the function bjl is the per-capita production of stage j individuals58

from stage l individuals. Such a model has been used to describe epidemic spread (Lui 1989b), biological59

invasions (Bateman et al. 2017; Veit and Lewis 1996), and critical domain size (Lutscher and Lewis 2004).60

The model (1) is biologically valid if the stages are chosen in a way such that the life history and61

dispersal parameters vary within stages as little as possible. In some cases this is easy; for example, a62

division between juvenile and adult individuals is normally determined by the ability to reproduce. In other63

cases, the division may not be so clear, and partitions may be difficult to decide. Fortunately, there are64

algorithms that can be used to minimize errors associated with partitioning a population into distinct stages65

(Moloney 1986; Vandermeer 1978). If the division of population structure is modeled using a continuous66

variable such as size or mass, and there is no natural break point to structure the population into distinct67

stages then an integral projection model may be more appropriate (Easterling et al. 2000).68

The goal of this work is to understand the neutral genetic patterns of structured populations. Neutral69

genetic markers are genes that have no direct effect on individual fitness. Even though this type of gene70

tells us nothing about the adaptive or evolutionary potential of a population, neutral genetic markers can71

be used to understand processes such as gene flow, genetic drift, migration, or dispersal (Holderegger et al.72

2006). It has also been shown by simulations that high levels of neutral genetic diversity can be correlated73

with increased allelic richness at loci under selection (Bataillon et al. 1996). Our analysis will be focused74

on the inside dynamics of stage-structured integrodifference equations.75

This paper is organized as follows. Section 2 is dedicated to providing necessary background material76

for understanding the main results. Within this section, we break it into two subsections: Section 2.177
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provides background to the analysis of inside dynamics and the stage-structured integrodifference equation78

used in our analysis and Section 2.2 lays out four of the major assumptions made about the demographic79

and dispersal processes. In Section 3, we provide asymptotic results regarding population structure. This80

section is broken into three parts. Section 3.1 covers the inside dynamics of neutral fractions not present81

at the leading edge, Section 3.2 discusses the inside dynamics of neutral fractions that are located at the82

leading edge, and Section 3.3 contains proofs for our main theorems. To complement the analytical results,83

numerical simulations are given in Section 4. Finally, in Section 5, we discuss the modeling technique,84

results, numerical simulations, and implications of our work.85

2 Materials and methods86

2.1 Inside dynamics87

To study the neutral genetic distribution of a population, we consider the inside dynamics of the population.88

The term inside dynamics refers to the inside structure of the population rather than the total density.89

The key assumption in the analysis of inside dynamics is that all individuals grow and disperse in the90

same manner, differing only with respect to neutral genetic markers. In other words, all individuals in the91

population have the same fitness. This allows us to split up the population into distinct subgroups called92

neutral fractions with which we track the spatiotemporal evolution of these subgroups.93

Inside dynamics have been studied for reaction-diffusion equations (Garnier and Lewis 2016; Garnier94

et al. 2012; Roques et al. 2012), delay reaction-diffusion equations (Bonnefon et al. 2013), integro-differential95

equations (Bonnefon et al. 2014), and integrodifference equations (Lewis et al. 2018; Marculis et al. 2017).96

In these works, the subject for analysis was a scalar population model. Indeed, to date, there is only one97

study of the inside dynamics of systems of equations. This study concentrated on the analysis on a diffusive98

Lotka-Volterra competition system (Roques et al. 2015). Our mathematical contribution to this area of99

research is to extend the analysis of inside dynamics to stage-structured integrodifference equations.100

Recall the stage-structured population model in (1). Separating the initial population up into distinct101

neutral fractions, we obtain the initial condition102

u0(x) =
n∑
i=1

vi0(x), (3)

where vi0(x) ≥ 0 is the initial population density for neutral fraction i and n is the finite number of neutral103

fractions. An illustration of this decomposition can be seen in Figures 1(a) and 2(a). By assuming that104

individuals in each neutral fraction grow and disperse similarly, we obtain the following system of equations:105

vit+1(x) =

∫ ∞
−∞

[K(x− y) ◦B(ut(y))] vit(y) dy, i = 1, . . . , n, (4)

where ut(y) =
∑n
i=1 vit(y). Throughout the remaining sections, we use the superscript i to denote the106

neutral fraction and, when not written in vector form, subscript j to denotes the stage. Note that the107

number of neutral fractions, n, and the number of stages in the population, m, need not be the same108

(n 6= m). Also, observe the model given in Equation (4) is natural extension of the scalar model to a system109

of recursions (Marculis et al. 2017). Thus, it can be expected that many of the results proven for the scalar110

equation can be extended to systems of cooperative equations. This is the approach we take in what follows.111

2.2 Demographic and dispersal assumptions112

For each of our main theorems, we make five assumptions regarding Equations (3)-(4). The first three as-113

sumptions are related to the population projection matrix, the fourth assumption is related to the dispersal114

kernel, and the fifth and final assumption is related to the decay of the initial conditions. In this section,115

we outline the first four assumptions related to the demography and dispersal of the population.116
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Population projection matrix117

We begin with looking at the population projection matrix B(u). Here, we outline three assumptions about118

the population projection matrix. The population projection matrix describes reproduction, survival, and119

interactions between stages. As a projection matrix, its entries should be nonnegative:120

A1 : The matrix B(u) is nonnegative for any u ∈ (0,∞)m.121

Moreover, we can see from (1) that 0 is a steady state of the problem. Define122

B0 := B(u)
∣∣
u=0

. (5)

Notice that B0 is the population projection matrix evaluated at u = 0. We will assume that this steady123

state is unstable. More precisely, we assume:124

A2 : B0 is a primitive matrix, that is there exists k > 0 such that Bk
0 is positive, and its dominant125

eigenvalue, λ1, is greater than 1, λ1 > 1.126

Finally, we assume that there are no Allee effects. That is:127

A3 : B(u) is bounded by its linearization at the steady state 0, B(u)v ≤ B0v for all v ∈ (0,∞)m.128

Dispersal kernel129

In our model, we assume that individuals in the population may disperse at long distance but those events130

are rare in the following sense:131

Definition 1 A dispersal kernel, k(x), is called thin-tailed if there exists a ξ > 0, such that132 ∫ ∞
−∞

k(x)eξ|x| dx <∞. (6)

A dispersal kernel that is not thin-tailed is called a fat-tailed dispersal kernel, and in this case, the long133

distance dispersal events become frequent, which leads to different behaviors for some solutions, such as134

accelerating waves. Many of the classical mathematical results for (1), such as traveling wave solutions135

and the asymptotic speed of propagation, rely on the assumption that the dispersal kernel is thin-tailed. A136

common dispersal kernel that we consider throughout our work is the Gaussian probability density function:137

k(x;µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (7)

where µ is the mean shift in location and σ2 is the variance in dispersal distance. In the following sections,138

we use the following shorthand notation to denote that the dispersal kernel is Gaussian by k is N(µ, σ2).139

In what follows, we will make one of two assumptions about the dispersal kernels.140

A4 : Each kernel, kjl(x− y), is thin-tailed.141

A4′ : Each kernel, kjl(x− y), is N(µ, σ2).142

From above, we see that our fourth assumption provides a condition on the dispersal kernels. In both cases,143

we assume, at a minimum, that every dispersal kernel is thin-tailed in order to calculate the asymptotic speed144

of propagation. The above assumption implies that we are not considering a population with accelerating145

waves (Kot et al. 1996).146

Asymptotic speed of propagation147

Under the previous assumptions A1-A4 we can deduce from the work of Lui (1989a) that solutions of (1)148

will spread to the right with an asymptotic spreading speed c greater than or equal to a critical spreading149

speed c∗ > 0 for appropriately chosen initial conditions. Moreover, the critical spreading speed c∗ can be150

computed explicitly by the following formula151

c∗ := min
0<s<s+

1

s
ln ρ(s), (8)

where ρ(s) := ρ(H(s)) > 1 is the dominant eigenvalue of H(s) defined by152

H(s) := M(s) ◦B0. (9)
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The moment generating function matrix M(s) is calculated by applying the reflected bilateral Laplace153

transform to the dispersal kernel matrix K and is defined by154

M(s) :=

∫ ∞
−∞

K(x)esx dx. (10)

Since the entries of the dispersal kernel matrix, kjl, are thin-tailed by Assumption A5, this matrix is well155

defined over (0, s+) where s+ ∈ (0,∞]. Throughout our analysis, we let s0(c) be the smallest positive root156

of the equation157

cs = ln(ρ(s)) for c ≥ c∗. (11)

We know that s0(c) exists because ρ(s) is log convex; see Lemma 6.4 by Lui (1989a). In particular, when158

each kernel is Gaussian, kjl is N(µ, σ2), then we have an explicit formula for the asymptotic speed of159

propagation given by160

c∗ =
√

2σ2 ln(λ1) + µ, (12)

where λ1 is the dominant eigenvalue of B0 and we can explicitly compute s0(c) to be161

s0(c) =
c− µ+

√
(c− µ)2 − 2σ2 ln(λ1)

σ2
. (13)

The technical details for the asymptotic speed of propagation are provided in Appendix A.162

3 Main results163

Henceforth, we assume that the structured population, ut(x), satisfies (1) with an initial condition u0(x).164

With such initial condition, the population is spreading to the right with an asymptotic speed of propaga-165

tion, c, greater than or equal to c∗, given by formula (8). We first consider neutral fractions that are not166

present at the leading edge of the solution and then afterwards consider neutral fractions that are at the167

leading edge of the expanding population.168

Our fifth and final assumption places a requirement on the initial conditions for the neutral fractions.169

This requirement is closely connected to the decay rate of the solution for the population and determines170

whether or not an individual is at the leading edge of the population spread. In particular, we know that171

the traveling wave solution for the linearized equation is given by an exponential function and the decay172

rate defines the leading edge of the population. The technical details of whether or not a neutral fraction173

is located at the leading edge is defined in the statement of our main theorems. We do not explicitly174

write these out here, but rather save them for the statement of our theorems because this assumption takes175

different forms based on our assumptions. We are now ready to present our first two theorems, that provides176

sufficient conditions for when the density of neutral fractions converges to zero in the moving half-frame.177

3.1 Inside dynamics not at the leading edge178

Theorem 3.1 Let us assume that A1-A4 hold true. Let vit(x) be a neutral fraction satisfying (4) with179

initial condition vi0(x) satisfying (3) that is not present at the leading edge of the expanding population, in180

the sense that181

A5 : x2vi0(x)es0(c)x ∈ L1(R) ∩ L∞(R) for a given c ≥ c∗.182

Then, for any A ∈ R, the density of neutral fraction i, vit(x), converges to 0 uniformly as t → ∞ in the183

moving half-frame [A+ ct,∞).184

In summary, Theorem 3.1 provides sufficient conditions for neutral fractions in the population to ap-185

proach zero asymptotically. This result implies that the only neutral fractions that will contribute to the186

spread of the population are those that are initially at the leading edge. In this scenario, we observe an187

extreme founder effect for the population spread. For this proof, see Section 3.3.188

By making a stronger assumption on the dispersal kernels, we are able to relax Assumption A5 on the189

initial conditions in Theorem 3.1. In particular, for the next theorem we assume that all dispersal kernels190

are Gaussian with the same mean and variance as given by Assumption A4′ and the assumption on the191

initial condition becomes a simple integrability condition.192
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Theorem 3.2 Let us assume that A1-A3 and A4′ hold true. Let vit(x) be a neutral fraction satisfying (4)193

with initial condition vi0(x) satisfying (3) that is not present at the leading edge of the expanding population,194

in the sense that195

A5′ :
∫∞
−∞ e

c−µ
σ2

yvi0(y) dy <∞ for a given c ≥ c∗.196

Then, for any A ∈ R, the density of neutral fraction i, vit(x), converges to 0 uniformly as t → ∞ in the197

moving half-frame [A+ ct,∞).198

In summary, Theorem 3.2 provides the same result as Theorem 3.1 but with different assumptions on199

the dispersal kernels and initial conditions. That is, Theorem 3.2 provides sufficient conditions for when200

the neutral fractions do not contribute to the population spread. Under Assumption A5′ , we see that the201

leading edge is determined by the decaying exponential e−
c−µ
σ2

x. This condition is much different than those202

given by Assumption A5 in Theorem 3.1. As in the previous theorem, we also observe here that the only203

neutral fractions that will contribute to the spread of the population are those that are initially at the204

leading edge. For this proof, see Section 3.3.205

The proof of Theorem 3.1 is more complicated than that of Theorem 3.2, even though the method of206

proof and conclusions are the same. The difference is due to the assumptions made about the dispersal207

kernels. In Theorem 3.1 we assume the dispersal kernels are thin-tailed and must use the definition of the208

inverse reflected bilateral Laplace transform. In Theorem 3.2 we assume all dispersal kernels are Gaus-209

sian with the same mean and variance. This assumption simplifies the proof because convolving Gaussian210

distributions results in another Gaussian.211

If the initial conditions are all compactly supported, then all neutral fractions will satisfy Assumption212

A5 and A5′ respectively in Theorems 3.1 and 3.2. If the initial conditions decay according to the traveling213

wave solution, then all neutral fractions except those at the leading edge will satisfy Assumption A5 and214

A5′ in Theorems 3.1 and 3.2 respectively. This means that the only neutral fractions that we will see in215

the moving half-frame are those that were initially at the leading edge. However, Theorems 3.1 and 3.2 do216

not tell us anything about these neutral fractions.217

3.2 Inside dynamics at the leading edge218

In the next theorem, we look at initial data that decay slower than Assumption A5′ in Theorem 3.2. Here219

we are able to calculate the asymptotic proportion of each neutral fraction provided we move at the slowest220

speed c∗.221

Theorem 3.3 Let us assume that A1-A3 and A4′ hold true. Let vit(x) be a neutral fraction satisfying (4)222

with initial condition vi0(x) satisfying (3) that is present at the leading edge of the expanding population,223

in the sense that for c = c∗224

A5′′ : vi0(x) =
(
pi0 ◦ r

)
e−

c−µ
σ2

x, where pi0 is the initial proportion for neutral fraction i in each stage, r is225

the right eigenvector of B0 corresponding to λ1.226

Then, for any A ∈ R, the density of neutral fraction i, vit(x), asymptotically approaches a proportion, pi,227

of the traveling wave for the linear equation as t→∞ in the moving half-frame [A+ ct,∞). That is,228

lim
t→∞

vit(x0 + ct) = e−
c−µ
σ2

x0rpi (14)

for x0 ≥ A. Moreover, the proportion can be calculated to be the scalar229

pi = `
(
pi0 ◦ r

)
(15)

where ` is the left eigenvector of B0 corresponding to λ1 with ` normalized by
〈
`T , r

〉
.230

Theorem 3.3 provides a formula for the asymptotic proportion of neutral fractions based on the initial231

distribution at the leading edge of the population. The formula is simple because it depends only on the232

right and left eigenvectors of B0 and the initial proportion of neutral fractions. This theorem characterizes233

the fate of neutral fractions at the leading edge. One drawback to this theorem is that it is only valid234

for initial conditions that decay at a specific rate, e−
c−µ
σ2

x, with a solution that moves at a specific speed,235

c = c∗. The reason why we cannot prove this theorem for c > c∗ and a slower decay rate for the initial236
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condition is because we do not have an explicit formula for the spreading speed c > c∗. For this proof, see237

Section 3.3.238

It is also important to note that A5′′ in Theorem 3.3 is not completely biologically realistic since the239

population grows without bound as x → −∞. However, this type of initial condition is needed based240

on the construction of our sub-solution and super-solutions. It may be possible to relax this assumption241

by studying the nonlinear operator and considering a more biologically realistic class of initial conditions.242

Next, we present the proofs of Theorems 3.1-3.3 in Section 3.3. For a comprehensive review of the necessary243

mathematical material needed in the proofs of the theorems, we direct the reader to Appendix B.244

3.3 Proofs of the main theorems245

Proof of Theorem 3.1246

Proof For simplicity, we drop the superscript i in (4) and focus on a single neutral fraction. Our equation247

of interest is248

vt+1(x) =

∫ ∞
−∞

[K(x− y) ◦B(ut(y))] vt(y) dy. (16)

Let249

w0(x) =
Ce−s0(c)x

1 + x2
(17)

where C = κφ and φ is the eigenvector of H(s0(c)) with dominant eigenvalue ρ(s0(c)). From Lemma B.1,250

we know that w0(x) is an upper bound for v0(x). By Assumption A3, we know that B(ut(y))v ≤ B0v for251

all v ≥ 0. Hence, we can construct a super-solution wt(x) that satisfies the following equation252

wt+1(x) =

∫ ∞
−∞

[K(x− y) ◦B0] wt(y) dy (18)

with initial condition given by (17). By iterating we can write the solution to the above system as the t-fold253

convolution254

wt(x) = [K(x− y) ◦B0]∗tw0(y). (19)

Applying the bilateral Laplace transform255

Wt(s) = [M(s) ◦B0]tW0(s) (20)

= [H(s)]tW0(s). (21)

Recall that s0(c) is the smallest positive root of sc = ln(ρ(s)) for c ≥ c∗. Then, the inverse transform as256

defined in Appendix B, see (130), yields257

wt(x) =
1

2πi
lim
R→∞

∫ s0(c)+iR

s0(c)−iR
[H(s)]tW0(s)e−sx ds (22)

=
1

2π

∫ ∞
−∞

[H(s0(c) + iω)]tW0(s0(c) + iω)e−(s0(c)+iω)x dω (23)

for c ≥ c∗. In the moving frame we have258

wt(x0 + ct) =
1

2π

∫ ∞
−∞

[H(s0(c) + iω)]tW0(s0(c) + iω)e−(s0(c)+iω)x0e−(s0(c)+iω)ct dω. (24)

Using the results from Lemma B.1, see Appendix B for details, we are able to write the initial condition in259

terms of a Fourier transform that is known. This is seen as follows,260

W0(s0(c) + iω) =

∫ ∞
−∞

w0(x)e(s0(c)+iω)x dx (25)

=

∫ ∞
−∞

w0(x)es0(c)xeiωx dx (26)

= F
[
w0(x)es0(c)x

]
(−ω) (27)

= Cπe−|ω| (28)
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for all ω ∈ R. Recall that C = κφ. This gives261

wt(x0 + ct) =
1

2π

∫ ∞
−∞

[H(s0(c) + iω)]tCπe−|ω|e−(s0(c)+iω)x0e−(s0(c)+iω)ct dω (29)

=
1

2

∫ ∞
−∞

[H(s0(c) + iω)]t κe−s0(c)ctφe−|ω|e−(s0(c)+iω)x0e−iωct dω. (30)

Since s0(c)c = ln(ρ(s0(c))), we have262

wt(x0 + ct) =
κe−s0(c)x0

2

∫ ∞
−∞

[H(s0(c) + iω)]t e− ln(ρ(s0(c)))tφe−|ω|e−iωx0e−iωct dω (31)

=
κe−s0(c)x0

2

∫ ∞
−∞

[H(s0(c) + iω)]t (ρ(s0(c))−tφe−|ω|e−iωx0e−iωct dω. (32)

Since ρ(s0(c)) is the dominant eigenvalue of H(s0(c)) with eigenvector φ,263

wt(x0 + ct) =
κe−s0(c)x0

2

∫ ∞
−∞

[H(s0(c) + iω)]t [H(s0(c))]−t φe−|ω|e−iωx0e−iωct dω. (33)

Applying the matrix norm and using the sub-additive property, we find that264

‖wt(x0 + ct)‖ ≤ κe−s0(c)x0

2

∫ ∞
−∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥∥[H(s0(c))]−t

∥∥∥ ‖φ‖e−|ω| ∣∣∣e−iωx0

∣∣∣ ∣∣∣e−iωct∣∣∣ dω (34)

=
κe−s0(c)x0

2

∫ ∞
−∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥∥[H(s0(c))]−t

∥∥∥ ‖φ‖e−|ω| dω. (35)

We can also see that265

|H(s0(c) + iω)| = |M(s0(c) + iω) ◦B0)| (36)

=

∣∣∣∣∫ ∞
−∞

[K(x) ◦B0]e(s0(c)+iω)x dx

∣∣∣∣ (37)

=

∣∣∣∣∫ ∞
−∞

[K(x) ◦B0]es0(c)x (cos(ωx) + i sin(ωx)) dx

∣∣∣∣ (38)

= I, (39)

where I is defined to be266

I :=

√(∫ ∞
−∞

[K(x) ◦B0]es0(c)x cos(ωx) dx

)2

+

(∫ ∞
−∞

[K(x) ◦B0]es0(c)x sin(ωx) dx

)2

. (40)

By the Cauchy-Schwarz inequality, using a similar technique as in Theorem 3 of (Marculis et al. 2017),267

I <

∫ ∞
−∞

[K(x) ◦B0]es0(c)x dx (41)

= M(s0(c)) ◦B0 (42)

= H(s0(c)) (43)

for ω 6= 0. From the above calculation we can conclude that |H(s0(c) + iω)| < H(s0(c)) for ω 6= 0.268

Consequently, ρ (|H(s0(c) + iω)|) < ρ(s0(c)) for ω 6= 0. By Gelfand’s formula,269

lim
t→∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ 1

t = ρ(|H(s0(c) + iω)|) and (44)

lim
t→∞

∥∥∥[H(s0(c))]−t
∥∥∥ 1
t

=
1

ρ(s0(c))
. (45)

Thus, for ω 6= 0, we can choose ε > 0 such that (ρ(|H(s0(c) + iω)|) + ε)
(

1
ρ(s0(c))

+ ε
)
< 1. Therefore,270

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥∥[H(s0(c))]−t

∥∥∥ < 1 (46)
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for large t and271

lim
t→∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥∥[H(s0(c))]−t

∥∥∥ = 0. (47)

From (35) and the dominated convergence theorem,272

lim
t→∞

‖wt(x0 + ct)‖ ≤ κe−s0(c)x0

2

∫ ∞
−∞

lim
t→∞

∥∥∣∣[H(s0(c) + iω)]t
∣∣∥∥ ∥∥∥[H(s0(c))]−t

∥∥∥ ‖φ‖e−|ω| dω (48)

= 0. (49)

Therefore, for any A ∈ R and c ≥ c∗,273

lim
t→∞

max
[A,∞)

wt(x+ ct) = 0. (50)

Since w was constructed as a super-solution, we can conclude that274

lim
t→∞

max
[A,∞)

vt(x+ ct) = 0. (51)

The proof of Theorem 3.1 is complete. ut

Proof of Theorem 3.2275

Proof For simplicity, we focus on a single neutral fraction and drop the superscript i. By Assumption A3,276

B(ut(y))v ≤ B0v for all v ≥ 0, we can use a comparison principle to show that a new sequence wt(x)277

defined by278

wt+1(x) =

∫ ∞
−∞

[K(x− y) ◦B0] wt(y) dy (52)

is always greater than the solution to any neutral fraction vt(x) with the same initial condition, w0(x) =279

v0(x). By iterating we can write the solution to Equation (52) as the t-fold convolution280

wt(x) = [K(x− y) ◦B0]∗tw0(y). (53)

Taking the bilateral Laplace transform281

M[wt(x)](s) = [M[K(x)](s) ◦B0]tM[w0(x)](s). (54)

Since all of the dispersal kernels are Gaussian, we know thatM[K(x)](s) = e
σ2s2

2
+µs1 where 1 is a matrix282

of all ones. Then,283

[M[K(x)](s) ◦B0]tM[w0(x)](s) =

[
e
σ2s2

2
+µs1 ◦B0

]t
M[w0(x)](s) (55)

=

[
e
σ2s2

2
+µsB0

]t
M[w0(x)](s) (56)

= e
σ2ts2

2
+µts [B0]tM[w0(x)](s) (57)

= [B0]tM
[

1√
2πσ2t

e−
(x−µt)2

2σ2t

]
(s)M[w0(x)](s) (58)

= [B0]tM [(Kt ∗w0)(x)] (s) (59)

where Kt is N(µt, σ2t). From (54)284

M[wt(x)](s) = [B0]tM [(Kt ∗w0)(x)] (s). (60)

Applying the inverse bilateral Laplace transform,285

wt(x) = [B0]t(Kt ∗w0)(x) (61)

= [B0]t
∫ ∞
−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t w0(y) dy (62)
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In the moving half-frame [A+ ct,∞) with c ≥ c∗ we have286

wt(x0 + ct) = [B0]t
∫ ∞
−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t w0(y) dy. (63)

From (12), we know that c∗ =
√

2σ2 ln(λ1) + µ, expanding the exponent, yields287

(x0 + ct− y − µt)2

2σ2t
=

(x0 − y)2

2σ2t
+

2(c− µ)t(x0 − y) + (c− µ)2t2

2σ2t
(64)

≥ (x0 − y)2

2σ2t
+
c− µ
σ2

(x0 − y) + ln(λ1)t. (65)

Thus,288

wt(x0 + ct) ≤ [B0]t√
2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
c−µ
σ2

(x0−y)e− ln(λ1)tw0(y) dy (66)

=

[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
c−µ
σ2

(x0−y)w0(y) dy. (67)

Since x0 ≥ A and e−
(x0−y)2

2σ2t ≤ 1, we have289

wt(x0 + ct) ≤
[
B0

λ1

]t
e−

A(c−µ)
σ2

√
2πσ2t

∫ ∞
−∞

e
c−µ
σ2

yw0(y) dy. (68)

From Lemma B.2, see Appendix B for details, we know that290

lim
t→∞

[
B0

λ1

]t
= r`, (69)

where r and ` are the right and left eigenvectors of B0 corresponding to λ1 respectively with ` normalized
by
〈
`T , r

〉
to account for the scaling in r. Note that r` is a m×m matrix since r is m× 1 and ` is 1×m.

Thus since
∫∞
−∞ e

c−µ
σ2

yw0(y) dy < ∞ by Assumption A5′ and (69) we have wt(x0 + ct) → 0 uniformly

as t → ∞ in [A,∞). Recall that wt(x) was a constructed as a super-solution, 0 ≤ vt(x) ≤ wt(x). This
implies the uniform convergence of vt(x) → 0 as t → ∞ in the moving half-frame [A + ct,∞). The proof
of Theorem 3.2 is complete. ut

Proof of Theorem 3.3291

Proof For simplicity, we focus on a single neutral fraction and drop the superscript i. Using the fact that292

B(ut(y))v ≤ B0v for all v ≥ 0 we can use a comparison principle to show that a new sequence wt(x)293

defined by294

wt+1(x) =

∫ ∞
−∞

[K(x− y) ◦B0] wt(y) dy (70)

is a super-solution to any neutral fraction vt(x) with the same initial condition w0(x) = v0(x). By iterating295

we can write the solution to Equation (70) as the t-fold convolution296

wt(x) = [K(x− y) ◦B0]∗tw0(y). (71)

Taking the bilateral Laplace transform297

M[wt(x)](s) = [M[K(x)](s) ◦B0]tM[w0(x)](s). (72)

Since all of the dispersal kernels are Gaussian, we know thatM[K(x)](s) = e
σ2s2

2
+µs1 where 1 is a matrix298

of all ones. Then, we can see that299

[M[K(x)](s) ◦B0]tM[w0(x)](s) =

[
e
σ2s2

2
+µs1 ◦B0

]t
M[w0(x)](s) (73)

=

[
e
σ2s2

2
+µsB0

]t
M[w0(x)](s) (74)

= e
σ2ts2

2
+µtsI [B0]tM[w0(x)](s) (75)

= [B0]tM
[

1√
2πσ2t

e−
(x−µt)2

2σ2t I

]
(s)M[w0(x)](s) (76)

= [B0]tM [(Kt ∗w0)(x)] (s) (77)
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where Kt is a diagonal matrix with N(µt, σ2t) entries and I is the identity matrix. Thus, we have300

M[wt(x)](s) = [B0]tM [(Kt ∗w0)(x)] (s). (78)

Then applying the inverse transform yields301

wt(x) = [B0]t(Kt ∗w0)(x) (79)

= [B0]t
∫ ∞
−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t w0(y) dy (80)

In the moving half-frame [A + ct,∞) with fixed A ∈ R, consider the element x0 + ct with c = c∗ =302 √
2σ2 ln(λ1) + µ where λ1 is the dominant eigenvalue of B0 as given by (12). By rewriting wt(x) in this303

moving half-frame we have304

wt(x0 + ct) = [B0]t
∫ ∞
−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t w0(y) dy. (81)

Expanding the exponent, yields305

(x0 + ct− y − µt)2

2σ2t
=

(y − x0)2

2σ2t
+

(c− µ)(x0 − y)

σ2
+

(c− µ)2

2σ2
t. (82)

Thus,306

wt(x0 + ct) =
[B0]t√
2πσ2t

∫ ∞
−∞

e−
(y−x0)2

2σ2t e−
(c−µ)(x0−y)

σ2 e−
(c−µ)2

2σ2
tw0(y) dy (83)

=

[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(y−x0)2

2σ2t e−
(c−µ)(x0−y)

σ2 e

[
− (c−µ)2

2σ2
+ln(λ1)

]
t
w0(y) dy. (84)

Since c = c∗ =
√

2σ2 ln(λ1) + µ, we have that307

wt(x0 + ct) =

[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(y−x0)2

2σ2t e−
(c−µ)(x0−y)

σ2 w0(y) dy. (85)

From Assumption A5′′, w0(y) = (p0 ◦ r) e−
c−µ
σ2

y. Thus,308

wt(x0 + ct) =

[
B0

λ1

]t
(p0 ◦ r) e−

(c−µ)
σ2

x0
1√

2πσ2t

∫ ∞
−∞

e−
(y−x0)2

2σ2t dy (86)

=

[
B0

λ1

]t
(p0 ◦ r) e−

(c−µ)
σ2

x0 . (87)

From Lemma B.2, see Appendix B for details, we know that309

lim
t→∞

[
B0

λ1

]t
= r` (88)

where r and ` are the right and left eigenvectors of B0 corresponding to λ1 respectively where ` is normalized310

by
〈
`T , r

〉
. Thus,311

lim
t→∞

wt(x0 + ct) = lim
t→∞

[
B0

λ1

]t
(p0 ◦ r) e−

(c−µ)
σ2

x0 (89)

= r` (p0 ◦ r) e−
(c−µ)
σ2

x0 (90)

= e−
(c−µ)
σ2

x0rp. (91)

From the above calculations, we find that the super-solution approaches a proportion, p, of the traveling312

wave for the linear equation where p = ` (p0 ◦ r). We now move onto our sub-solution. For any 0 < ε� 1,313

δ is chosen such that (1− ε)B0δ = B(δ)δ and we define314

(Bsub(u; ε))jl :=

{
(1− ε) (B(u))jl if (B(u))jl is constant

βjl(u; ε) if (B(u))jl is non-constant,
(92)
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where315

βjl(u; ε) :=

{
(1− ε) (B0)jl for 0 ≤ u < δ

(B(u))jl for u ≥ δ.
(93)

Then,316

zt+1(x) =

∫ ∞
−∞

[K(x− y) ◦Bsub(ut(y); ε)] zt(y) dy (94)

with z0(x) = v0(x) is a sub-solution of vt(x) by the comparison principle since Bsub(u; ε)v ≤ B(u)v for317

all v ≥ 0. Define c(ε) :=
√

2σ2 ln((1− ε)λ1) +µ where (1− ε)λ1 is the dominant eigenvalue of the constant318

matrix (1 − ε)B0. In the moving half-frame [A + c(ε)t,∞) with fixed A ∈ R, choose x0 large such that319

ut(y) in (94) satisfies ut(y) < δ for all t where y ∈ [x0 + c(ε)t,∞). Then by the definition of Bsub(u; ε)320

zt+1(x0 + c(ε)t) =

∫ ∞
−∞

[K(x0 + c(ε)t− y) ◦ (1− ε)B0] zt(y) dy. (95)

By iterating we can write the solution to (95) as the t-fold convolution321

zt(x0 + c(ε)t) = [K(x0 + c(ε)t− y) ◦ (1− ε)B0]∗t z0(y). (96)

Since we assumed that all of the dispersal kernels are Gaussian, by repeating calculations done previously322

we find that323

zt(x0 + c(ε)t) = [(1− ε)B0]t
∫ ∞
−∞

1√
2πσ2t

e−
(x0+c(ε)t−y−µt)2

2σ2t z0(y) dy (97)

=
[(1− ε)B0]t√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 e−
(c(ε)−µ)2

2σ2
tz0(y) dy (98)

=

[
(1− ε)B0

(1− ε)λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 e

[
− (c(ε)−µ)2

2σ2
+ln((1−ε)λ1)

]
t
z0(y) dy

(99)

=

[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 e

[
− (c(ε)−µ)2

2σ2
+ln((1−ε)λ1)

]
t
z0(y) dy. (100)

Since c(ε) =
√

2σ2 ln((1− ε)λ1) + µ,324

zt(x0 + c(ε)t) =

[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 z0(y) dy. (101)

Note that the integrand in (101) is nonnegative and integrable. Using Fatou’s lemma we fix t and let ε→ 0,325

giving326

zt(x0 + ct) = lim inf
ε→0

zt(x0 + c(ε)t) (102)

= lim inf
ε→0

[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 z0(y) dy (103)

≥
[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

lim inf
ε→0

e−
(x0−y)2

2σ2t e−
(c(ε)−µ)(x0−y)

σ2 z0(y) dy (104)

=

[
B0

λ1

]t
1√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
(c−µ)(x0−y)

σ2 z0(y) dy. (105)

From Assumption A5′′, z0(y) = (p0 ◦ r) e−
(c−µ)
σ2

y. Thus, by the same calculations used in (86)-(87) for the327

super-solution328

zt(x0 + ct) ≥
[
B0

λ1

]t
(p0 ◦ r) e−

(c−µ)
σ2

x0 . (106)

From Lemma B.2, see Appendix B for details, we see that329

lim
t→∞

[
B0

λ1

]t
= r`, (107)
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where r and ` are the right and left eigenvectors corresponding to λ1 respectively where the ` is normalized330

by
〈
`T , r

〉
. Thus,331

lim
t→∞

zt(x0 + ct) ≥ lim
t→∞

[
B0

λ1

]t
(p0 ◦ r) e−

(c−µ)
σ2

x0 (108)

= r` (p0 ◦ r) e−
(c−µ)
σ2

x0 (109)

= e−
(c−µ)
σ2

x0rp. (110)

Asymptotically, our sub-solution is bounded below by a proportion of the traveling wave for the linear332

equation where p = ` (p0 ◦ r). Since our super-solution satisfies333

lim
t→∞

wt(x0 + ct) ≤ e−
(c−µ)
σ2

x0rp, (111)

and our sub-solution satisfies334

lim
t→∞

zt(x0 + ct) ≥ e−
(c−µ)
σ2

x0rp (112)

it follows that335

lim
t→∞

vt(x0 + ct) = e−
(c−µ)
σ2

x0rp. (113)

The proof of Theorem 3.3 is complete. ut

4 Numerical simulations336

In this section, we illustrate the theory of Section 3 with a numerical example. All simulations were done337

using the fast Fourier transform technique (Cooley and Tukey 1965). This method is better than classical338

quadrature because it speeds up the numerical process from O(n2) to O(n log(n)).339

We begin with a two-stage population model of juveniles, J , and adults, A. The equations in this model340

are given below,341

J it+1(x) =

∫ ∞
−∞

k(x− y)ζ(1−m)J it (y) dy +

∫ ∞
−∞

k(x− y)f0e
−
∑n
i=1(J

i
t (y)+A

i
t(y))Ait(y) dy,

Ait+1(x) =

∫ ∞
−∞

k(x− y)ζmJ it (y) dy +

∫ ∞
−∞

k(x− y)ζAit(y) dy,

(114)

where342

k(x− y) =
1√

2πσ2
e−

(x−y)2

2σ2 . (115)

The demography in (114) follows a classical model for biological invasions (Neubert and Caswell 2000), but343

we assume Gaussian dispersal to align with the assumptions in our theorems. In (114), ζ is the probability344

of survival to the next generation, m is the probability of maturation from a juvenile to an adult, f0 is the345

number of juveniles produced by an adult in the absence of density-dependent effects. All individuals are346

assumed to disperse according to a Gaussian dispersal kernel. The growth function for adults producing347

juveniles is assumed to be a Ricker type growth function where the nonlinearity depends on the density of348

both juveniles and adults. In the juvenile equation of (114), juveniles can remain juveniles if they survive349

and do not mature and adults from location y can produce juveniles that disperse to location x. In the350

adult equation of (114), juveniles become adults if they survive and mature, and adults remain adults if351

they survive from the previous year.352

Let353

vit(x) =

[
J it (x)

Ait(x)

]
, (116)

K(x− y) =

 1√
2πσ2

e−
(x−y)2

2σ2
1√

2πσ2
e−

(x−y)2

2σ2

1√
2πσ2

e−
(x−y)2

2σ2
1√

2πσ2
e−

(x−y)2

2σ2

 , and (117)

B(ut(y)) =

[
ζ(1−m) f0e

−
∑n
i=1(J

i
t (y)+A

i
t(y))

ζm ζ

]
. (118)
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Then we can write (114) in the matrix and vector notation provided in (4).354

First, let us verify that the assumptions of Theorems 3.2 and 3.3 are satisfied. Recall that Assumptions355

A1-A3 and A4′ are the same for these two theorems. For Assumption A1, it is clear that our population356

projection matrix, B(ut(y)), is nonnegative from (118) since ζ,m, f0 > 0. We can calculate B0 to be357

B0 =

[
ζ(1−m) f0
ζm ζ

]
. (119)

Thus, B0 is primitive. For Assumption A2, the dominant eigenvalue of B0 is greater than one if358

f0 >
(1− ζ)(1− ζ(1−m))

ζm
. (120)

For details of this calculation see Proposition 3.1 of Marculis and Lui (2016). Since e−
∑n
i=1(J

i
t (y)+A

i
t(y)) ≤ 1359

we have B(ut(y))v ≤ B0v for all v ≥ 0 and Assumption A3 is satisfied. Even though our operator is not360

order preserving because of the overcompensation in the Ricker function, Proposition 3.1 in Li et al. (2009)361

suggests that the calculation for the spreading speed should still hold true. Assumption A4′ is clear from362

the definition of (117). Finally, if we assume our initial condition to decay faster than e−
c−µ
σ2

x, then the363

neutral fractions will satisfy Assumption A5′ of Theorem 3.2 and we can see that (114) has a unique positive364

steady state given by365

J∗ =
1− ζ
ζm

A∗ and A∗ = − ln

(
(1− ζ)(1− ζ(1−m))

f0ζm

)
, (121)

see again Proposition 3.1 of Marculis and Lui (2016). In our numerical simulations the only neutral fraction366

that does not decay faster than e−
c−µ
σ2

x is the one at the leading edge because it was chosen to have an367

initial form of the traveling wave solution with c = c∗. It should be mentioned here that since we are368

solving this problem numerically it is solved on a finite domain and this is only an approximation to the369

solution. Therefore, in the moving half-frame, the only neutral fractions that we see are the ones initially370

at the leading edge. The neutral fractions at the leading edge do not satisfy the exact Assumption A5′′ of371

Theorem 3.3, but asymptotically they decay like e−
c−µ
σ2

x. However, the asymptotic proportion calculated372

from Theorem 3.3 agrees with the numerical simulation suggesting that this result should be able to extend373

to a wider array of initial conditions.374

We provide some numerical simulations to see the neutral genetic patterns produced by (114). We begin375

by running a simulation where the juvenile and adult populations have the same initial distribution as seen376

in Figure 1(a). This simulation shows that the spread of both juveniles and adults is dominated by the377

neutral fraction at the leading edge as seen in Figure 1(b). Switching the ordering of the neutral fractions378

behind the leading edge does not affect the asymptotic behavior in the moving frame. This observation is379

consistent with the founder effect. The simulations seen in Figure 1 agree with the results of Theorems 3.2380

and 3.3.381

For our next simulation, we consider the case where the distribution of the neutral fractions of juveniles382

and adults do not appear in the same order. This is seen in Figure 2(a). Here we keep the same initial383

distribution of juvenile individuals as in Figure 1(a), but the initial distribution of adult neutral fractions384

is assorted differently. In Figure 2(a) we can see that initially the neutral fractions at the leading edge of385

the juvenile and adult populations are light gray and red respectively. Figure 2(b) shows the distribution of386

neutral fractions at t = 100. At the leading edge the spread is dominated by the light gray and red neutral387

fractions. This simulation agrees with our theoretical results because Theorem 3.2 and 3.3 suggest that the388

spread should be dominated by the neutral fractions that are initially at the leading edge of the population.389

Again we see that the neutral fractions behind the leading edge do not contribute to the asymptotic spread.390

5 Discussion391

The main objective of this work is to understand the effect that stage-structure has on the neutral genetic392

composition of expanding populations as outlined in Section 1. We derived the model for the inside dyna-393

mics of a stage-structured integrodifference equation in Section 2.1. Section 2.2 describes five of our main394

assumptions related to demography and dispersal. Four of these assumptions are related to the population395

projection matrix and the fifth is related to the form of the dispersal kernel.396

The three main results of the paper are provided in Section 3, with their respective proofs in Section 3.3.397

Theorem 3.1 is our first main result, which provides sufficient conditions for a neutral fraction to converge398
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(a) (b)

Fig. 1 Numerical realization of (114) for the parameter values σ2 = 0.01, µ = 0, ζ = 0.7, m = 0.8, and f0 = 2.5 for
n = 8 neutral fractions. In (a) the plots are the initial conditions for the juvenile and adult populations. Notice that the
distribution of neutral fractions for juvenile and adult populations have the same order. In (b) we plot the densities of the
juvenile and adult neutral fractions at t = 100.

(a) (b)

Fig. 2 Numerical realization of (114) for the parameter values σ2 = 0.01, µ = 0, ζ = 0.7, m = 0.8, and f0 = 2.5 for n = 8
neutral fractions. For these parameters u∗ = (J∗, A∗) = (0.5900, 1.1013). In (a) the plots are the initial conditions for the
juvenile and adult population. Notice that the distribution of the first two neutral fractions is different for juveniles and
adults. The plots in (b) are the densities of the juvenile and adult neutral fractions at t = 100. The neutral genetic pattern
produced here is due to the difference in the initial distribution of neutral fractions for juveniles and adults. The dashed
lines in (b) are calculated from Theorem 3.3, they represent the proportions of red juveniles and adults. Behind the leading
edge the proportions are p2J∗ = 0.3629 for juveniles and p1A∗ = 0.4238 for adults.

uniformly to zero in the moving half-frame. The five assumptions that must be satisfied are as follows: the399

population projection matrix must be nonnegative, the population projection matrix evaluated at zero must400

be primitive and its dominant eigenvalue must be greater than one, the population projection matrix must401

be maximal at the trivial steady state, all dispersal kernels must be thin-tailed, and the initial condition402

must satisfy the decay assumption given in Lemma B.1. It should be noted that the Dirac delta function403

is a thin-tailed dispersal kernel and thus we can consider cases where there is no dispersal between some404

transitions making this theorem very general in terms of the dispersal assumptions.405
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The second main result is Theorem 3.2. Similar to Theorem 3.1, this theorem also shows conditions406

under which each neutral fraction converges uniformly to zero in the moving half-frame. The difference407

with this theorem is that we make a stronger assumption on the dispersal kernels in exchange for a weaker408

condition on the initial condition. In particular, we assume that all dispersal kernels are Gaussian with409

identical means and variances. Due this this assumption, we are then able to relax the decay condition on410

the initial condition of the population to be slightly weaker than is required for Theorem 3.1. The proof411

for Theorem 3.2 is more elegant than the proof for Theorem 3.1. However, this comes at some cost in the412

biological realism of the model since it is not common for all stages and transitions to disperse exactly via413

a Gaussian distribution.414

The final result is given in Theorem 3.3. The first four assumptions of this theorem are the same as415

Theorem 3.2. The fifth assumption assumes that the initial condition decays according to the traveling416

wave ansatz for the linear equation. Under these assumptions, we are able to asymptotically calculate the417

proportion that each neutral fraction approaches in the moving frame. This proportion is dependent on the418

right and left eigenvectors of the population projection matrix evaluated at zero and the initial proportion419

of each neutral fraction at the leading edge. The proof relies on the construction of super- and sub-solutions420

to the system. The super-solution, as expected, is chosen to be the linearization of our operator while the421

sub-solution is defined in a piecewise manner to lie below the nonlinearities. Since all dispersal kernels were422

assumed to be identical Gaussian distributions, the proportion calculated by Theorem 3.3 does not apply423

when some stages and transitions do not disperse in the same way.424

After completion of the mathematical results, we performed some numerical simulations in Section 4425

to compare our analytical results to a reasonable biological model. We chose to look at a classical two-426

stage juvenile adult model where dispersal occurs between all stages and transitions. The first simulation,427

in Figure 1, shows that the spread is dominated by the neutral fraction at the leading edge which is an428

extreme version of the founder effect. However, since we are working with a system of equations, it is429

possible for the initial distribution of neutral fractions in the juvenile and adult stages to be different. This430

is seen in Figure 2(a). As predicted from Theorem 3.2, in Figure 2(b), we see that all neutral fractions,431

except the ones at the leading edge of the juvenile and adult populations, converge uniformly to zero in432

the moving half-frame. The asymptotic proportions for the two neutral fractions that were initially at the433

leading edge of the juvenile and adult populations are given by the formula in Theorem 3.3 and plotted as434

the dashed line in Figure 2(b).435

As expected, some of the same results obtained here are similar to those for the scalar population436

model. That is, Theorem 3.1 and Theorem 3.2 are equivalent to their scalar counterparts, Theorem 3 and437

Theorem 1 respectively, given in Marculis et al. (2017). However, Theorem 3.3 provides a new result for a438

special case of interacting neutral fractions at the leading edge. This is not possible in the scalar population439

model. From this theorem, we see the ability for multiple neutral fractions to contribute to the spread of440

the population. Contributions from multiple neutral fractions to the population spread are only possible441

in the scalar model when there is a strong Allee effect (Marculis et al. 2017). Although we would expect442

similar behavior from our stage-structured model, we are not able to analyze the inside dynamics of a443

stage-structured model with a strong Allee effect. This is due to the requirement that our results for the444

strong Allee effect in scalar systems rely on the operator being compact. For a system of equations the445

necessary theory is more complicated and we were unable to perform this analysis. In the special case446

where all dispersal kernels are Gaussian with the same mean and variance and all entries of the population447

projection matrix have the same strong Allee effect type per-capita growth function, then Theorem 2 given448

in Marculis et al. (2017) can be applied. However, such stringent assumptions would defeat the purpose for449

considering a stage-structured population model because all stages and transitions would grow and disperse450

in the same way, essentially reducing the stage-structured model to a scalar equation.451

The interesting additional feature that the stage-structured population model offers over scalar models452

is the ability to have a different initial distribution of neutral fractions for each stage. This difference can453

lead to multiple neutral fractions driving the spread of the population. Here, we see these dynamics solely454

for the reason that the initial spatial distribution of neutral fractions is different for each stage.455

Several assumptions about the integrodifference dynamics and dispersal kernels limit the applicability456

of the results in this paper. One limitation to the applicability of our work is seen in Assumption A3.457

Here we require that our population projection matrix is maximal at zero. This means that we are not458

considering any kind of demography with Allee effects. In order to prove the asymptotic proportion result459

seen in Theorem 3.3 we make some restrictive assumptions on the dispersal kernels and initial conditions460

in the model. Assumption A4′ in Theorem 3.3 states that all dispersal kernels are Gaussian with the same461

mean and variance. This assumption may be unrealistic for many populations because the reason to use a462

stage-structured population model over a scalar population model is to include differences in demography463
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and dispersal between stages. Assumption A5′′ in Theorem 3.3 makes the assumption that the initial464

conditions are in the form of the traveling wave ansatz for the linear equation. It would be beneficial465

to generalize Theorem 3.3 for initial conditions that are in the form of the traveling wave solution. The466

numerical simulations show that we should be able to relax our sixth assumption in our in theorems to a467

more general class of initial conditions. These simulations are not only useful for verifying our mathematical468

results, but they also provide some insight into opportunities for further mathematical analysis.469

A Asymptotic speed of propagation for a system470

The following Proposition is taken from (Lui 1989a). Let β ∈ Rn be a positive vector. We define471

C = {u = (u1, ..., un) | 0 ≤ u(x) ≤ β, ui(x) : R→ [0,βi]

is piecewise continuous for i = 1, ..., n}.

The operator Q used in our analytical results is given by472

Q[u] =

∫ ∞
−∞

[K(x− y) ◦B(u(y))] u(y) dy. (122)

Proposition A.1 Let Q = (Q1, ..., Qn) : C → C satisfy the following conditions:473

(1) Q[0] = 0 , Q[β] = β, 0 is unstable and β is stable with respect to Q.474

(2) Q is translation invariant and has no other fixed-point besides 0 and β in C.475

(3) Q is monotone or order-preserving in C; that is, if u ≤ v in C, then Q[u] ≤ Q[v].476

(4) Q is continuous in the topology of uniform convergence on bounded subsets of R.477

(5) Let478

(M[u](x))i =

n∑
j=1

∫ ∞
−∞

uj(x− y)mij(y) dy . (123)

be the linearization of Q at 0, where mij(y) ≥ 0 is an integrable function. We assume that479

Q[u] ≤M[u] for all u ∈ C . (124)

(6) The matrix B(s) = (bij(s)), where480

bij(s) =

∫ ∞
−∞

esymij(y) dy (125)

is irreducible for 0 < s < s+.481

Let ρ(s) be the dominant eigenvalue of B(s) and let482

c∗ = min
0<s<s+

1

s
ln ρ(s) . (126)

Then c∗ is the asymptotic speed of propagation of the operator Q in the positive direction in the following sense. Let u0 ∈ C,483

u0 is non-trivial and vanishes outside of a bounded interval in R. Let u t be defined by u t+1 = Q[ut] for t = 0, 1, 2....484

Then for any small ε > 0,485

lim
t→∞

min
x≤t(c∗−ε)

|u t(x)− β| = 0 (127)

and lim
t→∞

max
x≥t(c∗+ε)

|u t(x)| = 0 . (128)

B Mathematical details486

The purpose of this section is to provide the mathematical background needed to prove the theorems in Section 3. One487

tool that is used throughout all of our theorems is the reflected Bilateral Laplace transform.488

Definition 2 Let f : R → R where f is piecewise continuous on every finite interval in R and there exists a M ∈ R+
489

such that |f(x)| ≤ Me−sx for all x ∈ R and 0 < s < s+. Then, the reflected bilateral Laplace transform and its inverse490

are defined to be491

F (s) =M[f(x)] :=

∫ ∞
−∞

f(x)esx dx, and (129)

f(x) =M−1[F (s)] :=
1

2πi
lim
R→∞

∫ γ+iR

γ−iR
F (s)e−sx ds (130)

for 0 < s < s+, where the integration in Equation (130) is over the vertical line, Re(s) = γ in the complex plane and γ is492

greater than the real parts of all singularities of F (s).493
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By using the convolution theorem, the reflected bilateral Laplace transform can be used to write the solution to our494

model in terms of the initial condition. This theorem states that the reflected bilateral Laplace transform of a convolution495

is the product of the reflected bilateral Laplace transforms. That is,496

M[f(x) ∗ h(x)](s) = F (s)H(s). (131)

Note that the reflected bilateral Laplace transform of a probability density function is also referred to as its moment497

generating function.498

Next, we provide results regarding vector and matrix analysis that are relevant to our subsequent analysis. First, it499

should be noted that when we write x ≥ y, the inequality is element-wise. That is, xi ≥ yi for each i. In a similar manner,500

x > y means that xi > yi for each i. For the matrix analysis, the following definitions and proposition are needed:501

Definition 3 Let λ1, . . . , λm be the eigenvalues of a matrix A. Then its spectral radius ρ(A) is defined as:502

ρ(A) := max
i=1,...,m

|λi| . (132)

In other words, the spectral radius of a matrix A is the modulus of the largest eigenvalue.503

Definition 4 A matrix A is called nonnegative, A ≥ 0, if aij ≥ 0 for all i, j .504

Definition 4 states that a matrix is nonnegative if all elements of the matrix are greater than or equal to zero. Next, we505

consider primitive matrices.506

Definition 5 A nonnegative matrix A is primitive if there is a positive integer k such that Ak > 0.507

Another important concept is that of the dominant eigenvalue of a matrix.508

Definition 6 Let λ1, . . . , λm be the eigenvalues of an m ×m matrix A. If |λ1| > |λj | for j = 2, . . .m, then λ1 is called509

the dominant eigenvalue of A.510

Next, we discuss the Perron-Frobenius theorem for nonnegative primitive matrices (Bapat and Raghavan 1997).511

Proposition B.1 (Perron-Frobenius theorem) Let A ≥ 0 be an m×m primitive matrix. Then Ay = λ1y for some512

λ1 > 0, y > 0 where513

(i) The eigenvalue λ1 is algebraically simple.514

(ii) The eigenvalue λ1 is dominant. That is, for any other eigenvalue µ of A, |µ| < λ1.515

(iii) The only nonnegative eigenvectors of A are positive scalar multiples of y.516

By the Perron-Frobenius theorem we know that the spectral radius of a nonnegative primitive matrix is equal to the517

dominant eigenvalue of that matrix; ρ(A) = λ1. In our analysis we also make use of the Jordan canonical form for square518

matrices. We use this decomposition because while a nonnegative primitive matrix is not necessarily diagonalizable, every519

square matrix can none-the-less be written in its Jordan canonical form.520

Definition 7 For any square matrix A, there exists a matrix J such that521

A = PJP−1, (133)

where J is the Jordan canonical form of A. The Jordan canonical form is a block diagonal matrix522

J =

J1 . . . 0
...

. . .
...

0 . . . Jb

 , (134)

where each Ji is called a Jordan block of A. For Jordan block i, the diagonal entries are λi, the superdiagonal entries are523

one, and all other entries are zero.524

Next, we present two lemmas that were used in the proofs of the main theorems. The first lemma was used in Theorem525

3.1 and bounds our initial condition for each neutral fraction i for each stage j, vij,0(x), sufficiently to establish the uniform526

convergence results for the neutral fractions.527

Lemma B.1 Let x→ vij,0(x) satisfy x2vij,0(x)esx ∈ L1(R) ∩ L∞(R), then for each s > 0 there exists a positive constant528

Cj such that529

wij,0(x) =
Cje
−sx

1 + x2
(135)

bounds vij,0(x) for all x ∈ R. Moreover, the Fourier transform of wij,0(x)esx with respect to x is in L1(R) and is given by530

Cjπe
−|ω|. (136)

For the proof of Lemma B.1, we refer the reader to Lemma 1 by Marculis et al. (2017).531

We next provide a lemma that will be used in the proofs of the Theorems 3.2 and 3.3. In particular, we make use of532

the Jordan canonical form and the Perron-Frobenius theorem outlined above.533

18



Lemma B.2 Assume that the matrix B0 is nonnegative and primitive. Let λ1 be the dominant eigenvalue of B0, then534

lim
t→∞

[
B0

λ1

]t
= r` (137)

where r and ` are the right and left eigenvectors corresponding to λ1 respectively with ` normalized by
〈
`T , r

〉
to account535

for the scaling in r.536

Proof Writing B0 in terms of its Jordan canonical form, we have537

lim
t→∞

[
B0

λ1

]t
= lim
t→∞

[
PJP−1

λ1

]t
(138)

= lim
t→∞

PJtP−1

λt1
. (139)

Since J is block diagonal,538

Jt =

Jt1 . . . 0
...

. . .
...

0 . . . Jtb

 . (140)

By the Perron-Frobenius theorem there exists a dominant eigenvalue λ1 of B0 because B0 is nonnegative and primitive .539

The first Jordan block is J1 =
[
λ1
]

and Jt1 =
[
λt1
]
. For Jordan block j of size bj × bj we have540

Jtj =



λtj
(t
1

)
λt−1
j . . .

( t
bj−2

)
λ
t−bj+2

j

( t
bj−1

)
λ
t−bj+1

j

0 λtj . . .
( t
bj−3

)
λ
t−bj+3

j

( t
bj−2

)
λ
t−bj+2

j

...
...

. . .
...

...

0 0 . . . λtj
(t
1

)
λt−1
j

0 0 . . . 0 λtj


(141)

for t ≥ bj − 1. Since |λj | < λ1, using L’Hôpital’s rule, we have541

lim
t→∞

Jtj

λt1
= 0 (142)

for j = 2, . . . , b. Returning to the Jordan canonical form,542

lim
t→∞

Jt

λt1
=

1 . . . 0
...

. . .
...

0 . . . 0

 . (143)

Hence from (139),543

lim
t→∞

PJtP−1

λt1
= P lim

t→∞

Jt

λt1
P−1 (144)

= P

1 . . . 0
...

. . .
...

0 . . . 0

P−1 (145)

= r` (146)

because r is the first column vector of P and ` is the first row vector of P−1. Therefore, from (139) and (146),544

lim
t→∞

[
B0

λ1

]t
= r`. (147)

The proof of Lemma B.2 is complete. ut
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