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Aostract_

" This study examined one of the most useddtechnidues in
stru;:ural dynamics testing - Experimental Modal Analysis
(EMA) . This analysis determines;structuraldmodal parameters
i.e. natural-frequencies, damping‘factorsuandrthe S
characteristic mode shapes of the predomynant modes -of
v1brat10n from measured transfer functionidata; |

' Once these dynamlc parameters were known, they could be
compiled 'into a modal model of the structure. Mod1f1cat1ons>
.in the form of additions (or removai) of ass, stiffness, or
damplng could then be implemented analythally to predict
‘the dynamlc behavior of the modified structure. ThlS o
mathematical technique called Strucural Dynamics
‘Modification (SD&), allows for the ana;ytical eyaluatgon“of
the dynamic effects of modifications-thereby dispensiné with
experimentation'with actual physical modificationsf;

 The first half of this study fnvolvedtthe vaiidation'

- and necessary software development for calibrated é;A and
SDM. In the ‘second half, EMA and SDM were’ comblned and thelr
vaccuracy-together was evaluated,.Thls flrst involved the
construction of a:modal mode 1 from a calibrated EMA on a
testjstructure,‘Then using the modal model and SbM; |
predicted modification results wereiobtained and compared to

results from an EMA onftﬁe corresponding pnysically modified

structure.
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1. INTRODUCTION .

1.1 FEA,EMA and SDM

An important consideration in the design and operation

i

of mechanical structures and machines is a knowledge of

"their dynamic characteristics. These characteristics are

determined by the interaetion of the mass, elastic and
damping properties of the system and can be expressed
through modal paremeters; These modal parameters include the
damping, natural frequencies and mode shapes/of the
predominant modes of vibration and can be found either
analytically or experimentaliy. Once known, the modal
pasameters can be compiled to form a complete system dynamic‘
model or modal model. This model then allows the predieuion
of the dynamic response of the structure or machine due to
any applled set of forces.

Simple systems can be described by continuous models
where the modal parameters are derived from the formulation

of one or more differential equations. Often however, the

complexity of the systeﬂ is such that approximatiqns such as

| .
discretization of a continuous structuré 1s used. In this

case, the actual system is modelled by a set of discrete
masses or rigid bodies coupled by sprlngs and’ dampers
Appllcatlon of the basic eguations of dynamlcs w1ll then

result in a system of second order differential.equations

which can be solved simultaneously for the hodal parameters,

e



Mpre recently for complex structures, the dynamics have
been calculated by means of Finite Element Analysis (FEA)
(for example Zienkiewicz [32]). FEA involves the
discretization of a mechanical structure into small
elements. The structures‘dynamic equations are then
assembled as a combination of the individual elements
‘equations ofwmotion and bqundaryc;onditions. To accurately
model the structure, ﬁany elements and thus hundreds or
thdusands of degrees-of-freedom may be required. Because of
the size:eﬁazcomplexity of these models, they can be
expensive eﬁdxtime consuming to both develop and use. In
addition, it is often found that due to an insufficient
number of elemegts and unrepresentative boundary conditions
that thelmodel‘does hot_accurately'describe the actual
Situation. Because ef these problems, validation of
analytical models is often performed using experimental
dynamic testing. o [

One of the mosgﬂpopular ferms of dynamlc testing 1in
recent years is Exﬁ%f&mental Modal Analysis (EMA). For a
detailed explanation of the subject see Richardson [24].
This analysis is based on obtain%ng“simultaneous excitarion
and response measureﬁents at points of interest on the
structure. By d1v1d1ng the Fomrier transform of the response
by the Fourier transform of the exc1tatlon, a transfer
function between the various response and excitation points

is forme”. The modal parameters are then extracted by curvelr

fitting an analytical expression to the experimentally



determined transfer functions. The modal'parameters can then
be compiled to form an experimental modal model.

Experlmental modal models have several advantages over
the analytical. The number of degrees-of-freedom (m) in the
finite element model dictates the models size of m x m. d
Therefore, m, or hundreds to thousands of simultaneous
equations must be solved. Although the solution results in m
modes, the large majority -oftthem are outside the frequency
range of interest. In the experimental case, the curve fit
results in n modes in the required range. Thus the model
size can be con51derably smaller (n x n). This means that
for the experimental model, computation is faster, memory
requirements are less, and thus a smaller computer can be
used The second advantage is that an experimental model
represents the actual structure. The third is that an
experimental model can be obtained for structures too
-complex to be easily modelled analytically.

The combination of analytical and experimental
analysis, when possihle, represents a most powerful tool in
assessing a structures dynamics. By direct comparison
between the experimental and analytical modal model,
shortcomings or errors in each can.be detected. It then
becomes possible to either re-model pdrtions of the finite
element model or re- measure data at particular p01nts on the
structure to form a set of more consistent results,

,Once the modal model is acceptable, the effects of

I3

proposed changes to the structure to either optimize the

\
Y
\
\\
\
\

\
\ o

\

\
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dynamic behavior_of alter it to alleviate problems can be
examined using a techniaue called Structural Dynamics
Modification (SDM). This‘technique developed by engineers at
Structural Measurement Systems Inc., is outlined in some
detail in Formenti and Welaratna [6]. SDM uses either an
experimental or énalytical model to analytically evaluateL
the effects of modifications to the strtucture in the form of
stiffgners, dampers or point m;!ges. The technique is very
concise and thus numerous modification proposals can be
investigated quickly.vThis fact takes on immense importance
especially in' FEA. Because of the complexity of the
structure usually modeLléd, placement and amount 6f
modification is nof obvious and thus the evaluation of
modifications can involve a fair amount of trial and error.
To alter and run a finite element model for each change can
be fime consuming and expensive. However, by first finding a
salient change quickly and easily using SDM, the finite
element model could then be run to further detai% the effect
of the paiticular modification. . '
“

1.2 Theéis Outline

The fundamental objective of this study was to extend
the basic EMA ésftware package developed by Fyfe [7] to
ehable SDM. Thiéainvolves further software development as

well as transfer function calibration and the introduction

of the SDM technique. .



Chapter two summarizes modal ‘analysis and the
relationsﬁip between theory and experiment. Also included is
the method of extracting modal parameters from transfer
function data. Further theoretical investigation§ extend the
concepts to the SDM technigue and its development using:the
.modal modél;’ . . '

Chapter tﬁree discusses the practical aspects of using
EMA and SDM. These considerations include the relevant
vfundamentals of signal analys{s and hardware requirements in
relation to data acquisition and data processing.iThis leads
into a discussion of the curve fitting process and transfer
function calibration. As well, practical considerations of |
the SDM technigue involve the use of the Néwfon-Raphson
technique in determining the modified structure eiggnvalﬁeﬁ.

The fourth chapter discusses the results obtained from
the separate validatién and combinea evaluétioﬁ of
calibrated EMA and SDM. As the aécuracy pf the predicted
dynamic effects of modifications on a structure using SDM
depends on -the accuracy of modal parameter estimates
obtained'ﬁsing caiibrated EﬁA results, this chapter first
examines modal parameter estimation accuracy by compéring
results obtained from an EMA on a free-free beaﬁ to those
prédiéted from theory. SDM accuracy was'checked by making
various analytical,modificafions to the theoretical model
for the free-free beam and comparing these to the

corresponding theoretical results. To evaluate the

combination of EMA and SDM, modal parameters were obtained



for a test structure in which the modal parameters were
obtained only from EMA. Then using SDM, predictions of the
modified dynamics for mass,‘stiffness and\damping changes
were compared to EMA results obtained from|the physically
modified structure for each-modification. \

The iast chapter briefly summarizes magy of the

results, assumptions and improvements as well as future

considerations.



2. THEORETICAL ASPECTS
A COntinuqué, elastic structure can be discretized into
a system of lumped parametér elements. Thg motion of this
system can be approximated by a set of s%multaneous linear
second order differentialfequations. In the time domiin,
these egquations would be of the form: | J
' /

M1 (3 + [C] (0 + [K] (x} = {f) (2.1)

where [M], [C] and [K] are the mass, damping and stiffness.
matrices, assumed‘td be real and symmetrié, {f} is the
applied force vector and {x} is the resulting displacement

vector.

2.1 Modal,Anaiysis Theo}y
Taking the Laplace transform of- equation (2.1) and

. > . . . e o .
assuming zero initial conditions gives:

(] s2 + (€] s + [KI] x(s)} = £F(s)}

which can also be written as:

[B(s)] {x(s)} = {f(s)} | (2.2)

where: [B(s)] =.[M] s%+ [C] s + [K]

The matrix [B(s)] is called the system matrix and its
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inverse is referred to as the transfer matrix, [H(s)]:

[H(s)] >[a(sn M—Eﬁ—&}} EENERY

Equation (2.2) and equation (2}3) thus lead to:"

s

e)] 160 - 0 R 2.

The Laplace variable, s, is complex and can;thus be

represented by its real and imagidary parts as s = 0 + jw.

Theréfore, an s-plane can be‘defined where o is referred to
aé‘the“damping axis and jw as the frequency axis. The
transfer functlon matrix [H(s)] is complex since it is a
function of s, ‘and therefore 1ts magnitude can be plotted on
the s-plane. At particglar points on the-s-plane called

poles, the magnitude of the transfer function goes to

: ) .
infinity. The poles occur as complex conjugates where each

pair represents a particular resonance or mode of vibration.

As a result, for an n ﬁegree-Of-freedom system, there are
n-pole pairs descriBing the damping and freguency of n -’
modes(,Each pole pair can be expressed at a particular mode

(k) as:
Pe = o I PR o I

X - N
, .

where: 's' denotes the complex conjugate, o, is the damping

coefficient (neéative for stable systems) and w, is the

'/Sl
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P]

natural frequency.’ %

From equation (2.3) %t is.clear thatkthe elements of
tH(s)] are ration;l-funct;ons in s. Therefore théy may be-
v;itten in partial fraction form as: ' |

SR o
o Bd 1 [ ] -, ] . (2.5)

A e R

where: [a,] is a complex residue matrix containing spatial
- A

: e N . X .
behavior 1nformat1?n at each mode.

Premultipling equation (2.5) by (s-p,)TB(s)Igives: -

| | 2 2n’ [ak]
}sfnnqﬂHM71=“‘pﬂm“£§r?'p%

\

\\
. . . .\/ g AN . ’ . R
At a mode, s = p.. Substituting ‘this eXpression into .the
. . . ’ \\
previous one results in:

d

[B(p, )30, ] = ©

©

’byi[B(s)] instead, that:

[a, 1[B(p,)] = 0

Therefore, the rows and columns of [a,] must be linear

combinations of homogenous solution vectors {u,} such that:
. - ¥

[B(p, )] {u,} = {0}

—
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The {u,} vectors are defined as the mode“shape at the pole,

e

Px. The rows and columns of [a,], must thenpbe a scalar

multiple of ‘the vectors {u,}. Thus the matrix [a,] can be

expressed as:

. | [ak] = Ak{uk} {Uk} | . (2.6) o

where 'T' denotes the transpose and-ay is a complex scalar.

Substituting- equatlon (2 6) 1nto equatlon (2. 5) yields:

e

o n A {u }{u A tw )T |
- Kok Tk k kK
[H(S)]'-kzl l: S5, ' Tsow ] (2.7)

Equation (2.6) and (2.7) show thatfevery row aég;column of
the residue matrix and thus the transfer fufction matri?, is
comprlsed of the mode shape vector mult1pl1ed by a different
element of 1tself.¢Therexore, only one row or column is
needed at each mode. Equatlon (2 7) also shows that the
transfer functlon matrlx can be built entirely from the
modal parameters (natural frequency, damplng factor and mode
shapes) and that it completely-descrlbes the modal modelf

Further‘reductiqnfbf the‘protlem can'ge accomplished by‘
computing the Laplace transform along the ftequency axis
where s = jw. This subclass of the Lablace transferm called
the Fourier-transform results in a particular type of °
transfer fiinction referred to as the frequency response
function.tsince tne transfer function is represented"
analytically, the\thire s-nlane can be generated»from the

. . .\\ .

N
\.



-y . B i i .
frequency response function if required.

In order’ to measure .the frequency response functlon it
Jis possible to rewrite equation (2 4) in matrix form

Assumlhg a two_gegree:of—freedom system_thls_results in:

["n(s) “12(5)] (0N x(s)) e
"21(s) Mgl L (fAs) T st

o %

where s = jow.

Since only one row or column of the transger function

matrix is required, consideration of the first equdtion in
_ s ‘

equation (2.8) serves as an example:

x](s) = h]](s)fl(s) + hIZ(S)fZ(S) , ‘ \ (2.93
| | A
To form the first row of the transfer function matrlx,.
the. response is measured only at the first p01nt while the.
_ exc1tat10n is applied and measured at one point at a time to
all points of interest. The\first‘element in the first row
can be found by exc1t1ng the structure at the flrst p01nt

~while 51multaneously measurlng the response at the first

901nt. Equation (2.9) then gives:

- X, (w) ! ' o
hyy(w) = —(GT hyp(w) = hyy(s) |
1 S = jw

.r‘

The second element in the first row can be found by exciting
the structure at the second po1nt whlle simultaneously

: measurlng the rﬁfponse at the flrst'p01nt Thus equatlon
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(2.9) éives:_ . s
h'lz(“’) = W h]z(w) = h'lz(s) ) .
- x . s = Jjuw '

Any other row or columncan be built in a similar manner and’
.

each elemént=is;£otmed from taking the Fourier'tfahsform of
the géspénse and dividing By the Fourier transform of thg
exciﬁ&tioﬂ fércg; | .
The ﬁodal parameters é}n tﬁen be estimated from the
measured frequenéy rgéponse function by curve f;tting géch‘
transfer function in a row or éolumn of | thd transfer

functidn matrix using equation (2.5) qu s'= jw. This curve

. f1tt1ng process is discussed in the follow1ng chapter.

,‘/
As will be shown 1n the next section of thls chapter,

structural modlflcatlons are accompllshed by a coordinate
transformation to modal coordxnates; Thus the folloy;ng “
describeskthe fofmulation of the modal matrices derived from
the modal‘pa}ametéfg." a

Since only one row or columr o; the residiue matrix [a.]
is féquiredy consider for exéﬁple the jth coluﬁn..From

eqyation (2.6): - S -

{a, 53 = Adudugg = Ayl j ‘ (2.10)
|

] , :
where u,; is the jth element of {u.}.

'Thg;scalén,‘Ag;"éan be expressed from equationt (2.10)
/- . P

it
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|°k_1| | ({akj} {akj ; o
T/2 2.1

A =
kT gl oy 5l Huh)

where | | denotes -the vector magnltude.‘
The value of A, clearly depends on the normallzatlon of

th; modal vector {u,}. Assuming measurements are avallable

from the jth row or jth column of the transfer function

-

matrix, the modal vector may be shown as:

{u } = aT_ - o ” (2.12)
kid :

[ : ) - . v » ' " 0 . . .

wherk a,;;.is the jth cow, jth column element of [a.]. \{\

R

Equation (2.12) can be rearranged into:

a = —-—J—Iak.'l o R
kid . ‘lukl ‘ ¢
Substitﬁting.into equation (2.11) and recognizing that uy;

is equal ‘to uhftyfgives the simplified expréssion:

Ak = akjj

‘Recognizing that A, has the dimensions, sec/mass, and from

)

the assumption that the. mass, stlffness and damplng matrices
areureal Richardson and Potter [26] defined the modal mass,
damping and‘t;ffness as: o ' v

-
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" " TRFE * Py -

P ¥ P

€, *
- kAP * APy

pkp*

- : T RPE AR
0 .

For,ﬁhe normal mode case (zero damping), the system matrix
is real symmetric and thus A, and py are purely imaginary

and the vector {u,} is .real valued. Therefore:

. I
A = . .

.
.

{u'k} M

As a result, the modal mass, stiffness and damping assume

* the form:

™ T ZAP, - | (2.13)

¢ =0 | o | (2.14)
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(2.15)
k 2 Ak ~ .

and the transfer matrix becomes:

n {u, }u, }
[H(s)] = ¢ [——T———“ k
k=1 m, s + kk:l

j A
g A?.§>Structural Dynamics Modification Theory

| Structurai Dynamics Modification is a technique
developed by Structural Measuremént Systems Inc.. Following
is(ghe adaptation of this technique from Formenti and
Welaratna [6]. ‘ -

The removal of the forcing function from equation (2.1)

represents the %ree motiqﬁ{of a damped systeh expressed as:

[MI{x} + [C){x} + [K]{x} = {0}

=,

Modifications to the system chn be imélehented locally 'icing
évtechnique called Diakoptics or gigenvalue modificatio..
.This technique was initially developed by Kron, [14], Simpson
and Tabarrok [28] and Weissenburger [31] and extended by
Pomazal [18), Hallquist [8] and Hallquisé and Snyder [9].
Local modifications with respect to the physical system

may be shown as: ' S

[aM] = af130}T LaCT =03} [aKD = v
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where a, B and y are the values of the respective changes in
physical units. The vector“{l} locates the change in
physical coordinates.

This procedure allows modifications in the form of
additions or removals of point masses, scalar dampers and/qr
springs applied from a point to ground and scalar dampers
and/or sgriﬁgs applied between two points. This same
procedure also enaples the joining together of substructures
by scalar dampers gnd/or springs.

To illustrate the local modification procedure, a
vsimple 3 DOF discrete system as shown in }igure é.1 can be
used. Since the system coordinates are in a static coupling
form, modifications can be made in physical coordinates in
this case. | |

Letting k= 0, the following stiffness matrix is

generated:.
ky kg k) ok
0 ‘ ”—k3 (kj + k4)

In order to regenerate the original stiffness matrix, the
l¢cal modification procedure can be applied such that k, is
attached from point 1 to ground. Thus, the modification

matrix would be:

[8k] = ky (13137



m;, m; m,
R ] N T
Ch O C2 O Ca O O Cs
m 0 0 3] (c] + cz) -¢, 0
) m, 0 3&2 -¢, (c2 + c3) -Cq
0 0 m %3 0 N .
(ky + ky) -, 0 X, 0
+ -gz (k2 + k3) -k3 X5 = (0
0 -k3 (K3 + k4) X3 Lo
N

Figure 2.1 A Three DOF

System

17
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!

where the {1} vector assumes the form:

and:
ky 0 0
Ky M1 =] 0 0 o0
0 0 o0

Adding this matrix to the k, = 0 matrix regenerates the
original matrix.
Supposing instead that k; = 0, then the following

stiffness matrix would result:

ky O 0
| 0 Ky -53
; 0 -kq (kq + k4)

X
To regenerate fhe original stiffness matrix, the
S~ .

modification wodid take the form:

[8K] = ko (13{1}T

where this time a spring is added between point 1 and point

2 so that the {1} vector would take the form:

m - fa]

o)
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and:
T
kz{l}{l} = -k2 k2 0
0 0 0

‘

By adding Fhis matrix to the k; = 0 matrix yields the
original matrix. | . | | ‘

Since the mass, damping and stiffness chénges are being
implemented at the same point, the modified sYstem equation -

would take the form:

[MIZ} + [CI{x} + [K1{x} + [aMI{%} + [ac]{x} + [aKI{x} = {0} (2.16)
Instead of using the Laplace transform as before to obtain
the solution vectof {x}, it is also possible to simply

assume a solution of the form: - %

(x} = {1

©

r

Substitution into equation'(2.16) yielas:

[a2[M] + alc] +[K] + (ae? + g2 + V)OI 104 = (0) (2.17)

Because of practical measurement considerations (to be
discussed in the next chapter), a real mode model with
proportional damping (as opposed to a complex model) is

assumed. The mode shapes {u,} fo§<the system are thérefore
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real and can thus be used directly in making a coordinate
transformation to uncoﬁple th; equationé-of motion. As.will
be shown below, by also normalizing the mode shapes to unit
modal mass, the uncoupled equations can be written solely in
terms of the modal parameters.

In order to normalize the mode shapes to unit°modal
mass, the mode shape vector {u,} is scaled such that it

wouldvtake the form:
{uk}/ﬁﬁ:

where m, is the modal mass obtained from equation (2;13).
The mode shape vector is now in the appropriate form to
uncouple the equations of motion in terms of the modal
parameters. This is done by a coordinate transformation to

modal coordinates using the modal matrix:

0 = [elzy | (2.18)

where:

{u } {u }. | {un}:l

[¢] = ) e
I w T,

and {z]} are the modal coordinates. Substitution of equation
(2.18) into eguation (2.17) and'premultiplyingrby [¢]7 .
gives‘

[2°[e]"[M1[e] + afe] Trclre] + [cb] [K]m + (an® + 8 + y)[@] (11} (61142} = {0}
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Since the system was assumed to be propo:tiénally damped and
utilizing mode shape orthogonality, the equations of motion

in modal coordinates become:

[92 13 + @200 + [o? + w?_] - (2.19)
+ (a0 + 82 + v) {6} 6} 10z} = {0}

vhere {¢} = [¢]T{1} and:

0 - original structure damping
éoefficient

w - original structure naturélbfrequency
@ - modified structure cohplex
éigenvélue

{z} - modified structure eigenvector

Since the equafions'afé uncoupled, it is possible to write .

the ith eguation as:

2 - 2, 2.3 _ ., 2. n |

(2° + 20,02 + (0% + w; ))5; = -(aQ + gQ +‘y)k§] b2, (2.20).
Therefore:

a | ' (2.21)

2. . ., 2 2
2 2 2,2
= (@° + 20,0 + (02‘ f-wzf))$;
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2 " 22 2y %n
= (Q° + 20nQ + (cn *wp ))3;

n

- (e v B+Y) I 07
. k=1

From equation (2.21) it is clear that an expression for the

kth element of the vector {z} can be determined in terms of

any ith element. This fact leads to:

- 2 b
= — (0 +20;Q + (0;° +w))e (2.22)
! v 4 (.92 + 20,0+ (ok2 + wkz))

Substituiing equation (2.22) into (2.20) yields:

(@ + 20,2 + (0% + D))o
1

: n Z; « ¢
= -(aﬂ2 + R +y) L 5;-(92 + 200 + (012 + miz))° > k . .
. k=1" ' (Q + Zo'kQ + (gk + “’k ))
which~reducesvto£ . :
2
n ¢, )
= k (2.23)

=1L
(e + g2 +y) k=1 (27 + 20,0 + (0, + 4 °))
>Equatioh (2.23) represents the modified systems

,‘charactefistic'equation. Ohce the eigenvalﬁes have been

solved from this equation, the eigenvectors can be computed .

,
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- i
from equation (2.22) to within an arbitrary constant, A;.

The kth' element of the ith mode is then:

¥
+ 20,95 + chz + wkz)).

z, = Ai 5 (2.24)

(94
The constant A, is found by normalizing the modifiéd.mode

Shapes to unit modal.mass so that:
»

{Zi}T{Zi} =]

Since the modified mode shapes are in terms of modal
coordinates, the transformation back to physical coordinates
can be accomplished using equation (2.18). As.a result, for

the ith mode: ' ' : 1

S {Xi} = [QJ{Zi}

Thus, the eigenvaluesiapd eigenvectors'éﬁ the modified
system are determined using the original\modal parametefs
- and applyiﬁg-the assumption of a real mode.model with
proportional démping. The implementatign'of this procedure

is shown in the next chapter.
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_reéponsé time domain signals. While theoregigiiéy this i

| 3. PRAC'I;\ICAL ASPECTS \.\
In the previous chapter,\tgg frequéncy re;;dgse
fuﬂctions, whic7 are the .basis of\determining’moas
infSrmation, weﬁe-obtained by dividing\phe qu;ier

N

A : > N . .
transforms of the simultaneously measured excitation and\\
. N ' \ -
A

\‘l
straight forward, in a préctical sense - there a g\several
difficulties and inaccuracies which must be overébme. This

chapter therefore begins by outlining the practical p:oblems

of modal analysis associated with signal ahalysis and

‘hardware for data acquisition, data processing and

calibration. The final section deals with COmputing
considerations for the practical aspects of SDM necessary in
obtaining modified eigenvalues and eigenvectors from the

modal parameters.

3.1 Experimental Modal Analysis

. EMA %Elies on broadband excitation signals in which
mos£ of the modes of interest are excited sihpltaneojslf.
The various classes of these signals_include ransient,
random and swept sine. In this study, the tf?nsient method
using a hand held hammer was chbéén bécause bf its easy
implementation in va;iogs situaﬁions. THevot\er two methods
rely on the use of shakers and thus are more'cumbersqme. The
transient .method, unfortunately, has two major. ’

disadvantéges. Tf a structure is large and heavily damped,

it becomes difficult to adeqguately excite it in this way.

. 24
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N\

\
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"Also the method is inadequate when nonlinearities are =
present since the speéctrum level cannot be precisely
controlled. The test structures in this study, howeveg;\yg;e
small and lightly damped with little nonlinearity so that

«

'these factors.did not present a problem. !
o

3.1.1 Data Acquisition

The experimental set-up for data‘acquiéition‘uéing the
transient method is sﬁOwn in figure 3.f.‘Each compohent»will
be discussed bélow in ;elat%on to its significanée in the
" signal analysis process and its use. o

The hammer repreSents the basic component in the
transient method. Hammer we%ght and tip hardness determine
~the excitation force'frequenéf\content.lsince the structures
considered were reiatively small,\a light weight hammer of»
about 200 gm was chosen. The load cell magnted in the head
of the hammer to measure the force, had a ;énsétiVity of
about 2.2 mV/N. Structﬁral/frequencies belo§_1000-Hz were to
be examined and”therefdreAthe tip was chosen so as td .
concentrate most of the energy in this fange. As a resulé:\a\
\bard rubbef.tip was used, which resulted in an exéitation'
fSrce spectrum that was flat (%3 dB) to about 1300 Hz. While
the input force was being measured by the hammér-mqunted '
load céll, the response was simultaneouslx measured by an
acceleroﬁeter. An initiadl accelerometer used came wiﬁh the
hammer kit,Kbut was found tb cause acéelerome[

er loading

errors. The accelerometer's 26 gm weight was substantial
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enough to affect the dynamics‘of the test structures. Thus a
much lighter accelerometer (2 gm) was useﬂT"While this lower
mass gave a small accelerometer loading emror, it also
reduced the ou€put sen51t1v1ty from 10 mV/g to 2. 37 mV/g
Since analy51s 3r proce551ng of the exc1tatlon and
response t1me wavefodms produced by the hammer and
accelerometer requires digital computation, the sagnals must
be dlgltlzed and 11m1ted to é\f1n1te period. The discrete
waveforms thus have a finite resolution (At) based on the
number of samples (N) and the period (T). This time domain

L)

relationship can be expressed as:’
T==NAt'

In order to transform the digitized waveforms to the
_freduency domain, the Discrete fourier'Transform (DFT) 1is
used.’ The algorithm whlch accompllshes thls task 'is called
the Fast Fourier Transform (FFT) The-resultlng frequencv">
waveforms are complex quantxtles and are thus made up of two
parts, namely the magnltude and phase. Therefore, Nlt1me
domain samples will yield‘N/Z complex,frequency domain .

samples. This frequency domain relationship may be shown as:
o3, . s N - . 5

Fn fAf

” .-

where Fnm-is the max imum value of the frequency in the

frequency range of interest and Af is the frequency

————
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‘ resolution according to the'relation:

©Af =

——

AN
Rearrandgement of the previous three relations results in:

.
wherg F, is the sampling fréduency.‘N is a fixed value in
the FFT algorithm (typi;ally N = 1024). Therefore to extend
the frequency range of interest, thé sampling frequency is
increased and thus the time period is shortened. Note +then
that this also results in lower freqﬁéncY'resolution.

From thé preVidus quation, it can be seen that the
sampling frequency, F,, must be twice the maximum frequency.
Thi; relationship is referred to as Shannon's Sampling

Theorem. If F, is less than twice, a probiem called aliasing

can ocgur. This problem refers to the fact that signals of

ﬁ%equency greater than the difference between F, and Fn, will

der;ap or alihs in the ffequency range of iﬁ@erest..
Hoﬁevé;lfby setiing“F; at leést t@icg Fm, the difference
would then:capse'thé alias signgls to fall above the F
limit..$igce aliasing-can alsq.occur due to stray signals
from surrounding'sources, a low pass filter is used to

ensure that the frequency range is limited. Because of the

finite filter roll-off (a characteristic of all filters) the

cut-off set at F, does not ensure that all higher

|
¥
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ffequencies are completely rejected. Signals occurring in
the roll-off band might ndt be entirely attenuated by the
time they alias i. he frequency range of interest. To
account for this éffedt{ the sampling frequency is usually
raised to‘§.56 times thg maximum frequency. The-filter used
in this study had a roll-off rate of 96 dB/octave. Thus, if
F, = 2.56Fm, then alias signals would be attenuated by
approximately 62 dB. This is more than enough since the
entire range considered in this study was 60 dB. |

| Digitizing is done by an analog to digital‘converter )
(ADC). The type used was a twelve-bit ADC with an effective
range of 72 dB or *5 volts. As a result, to maiimize the
signal—to-no;se ratio, an amﬁ%}fier was needed to boost the
signals thereby fil;ing up the required range. It was also
neceésary on the other hand to ensure that the signal did
not saturate in the range or 'clipping' of the signal and
thus distortion 6ccﬁrs..An§ther conéideration was that for
points on the structure where there was‘a lot of response,
it frequently occurred that after the initial hit, the
structure would spriﬁg back iqto the hammer beforerit could
be moved away resulting in a multiple impact. The impacts
after the initial hitlare typically of such low level at
particular frequencies that the signal—to—noise ratio is
very much reduced at those points in. the frequency spectrum.
In order to ensure that the signals properly'fflle@ the

required range and ‘that multiple/impacts had not occurred,

thé’digitized time domain signalb were plotted by computer

/
{

N



30

graphics for viewing. Acceptable signals were then stored on
: -
floppy disc for future processing.

3.1.2 Data Processing

'Since the time domain data is a limited sample taken
from a .continuous waveform, the data thué represents the
viewing of the continuum through a rectangular window. This
corresponds to mﬁitiplying the time domain data by a
rectangular window function. Multiplication of time domain
data by a window function is equivalent to convolution of
the Fourier transforms of window and data in the frequency
domain. Distortion of the transformed waveforms will thus
result uhless the time sighalé'are periodic (waveforms form
i?teger multiples of cycles in the finite time period) or
decay completely in the time period considered. Added
distortion can aléo occur since random noise in the
measurements is not periodic. This»distortiqn is referred to
as leakéée since signal power 'leaks' out over the fréquency
spectrum when transformed. Various types of window functions
‘can be used to minimize the leakage'depending on the type of
waveform examined. Windows also have the effect of reducing
the amount of noise in a signal.

:The tiﬁe domain window transformed fo the’frgqueﬁcy
domain assumes the form of a large main lobe-fbllowed by a
series ofismaller side lobes‘that occur over the rest of\the
f;equency range. Signal distortion is minimized when the

main lobe width and side lobes magnitude are minimized. an
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unfortunate confl&cting Property of windows is that by
decreasing the main lobéfwidth, the side lobes magnitude
increases and there are iesé noise reduction effects. These
properties are proportional to an increasing time domain
window width. Thus compromises mhst be made in choosing the
proper window. However, a-standard requirement of windows is
that to minimize leakage, the window should go to zero at
the ends of the fime record thereby forcing the signal to be
periodic. For example, a common window used on sine waves or
random signals is called the Hanning window. This window

resembles a Bell curve which tapers to zero at both ends. It

can be expressed as a function of the form:

w(t) = 0.5 [1 - cos(2rt/T)]  0<t<T

When the impaét method 1is usea; Qindows‘takeon an even
greater importance. Aﬁ‘important technique used as well in
reducing the noise ié to take the power spectrum and
cross-spectrum of signals aF the same points and average’
them. These are then used to fbrm the frequency~ie§ponse
- function (to be discussed below). Since the whole boint of
the impact method is to save time, less averages are taken
and fhus noise reduction by windowing is very important.

Althoughlthe fofcing signal for the impact method is
éelf—windowing since ii dies out in the time record, stray
‘signals can occur due to hammer movement after the impact.

One window which yields reasonable results in this case, is
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the squared cosine which drops from unity to zero in 1/16 of

the time record. This windoﬁ can be expressed as:
w(t) = cos?(8mt/T) 0<t<T/16

For the case of the response signal in an impact
excitation, an exponenfial window is often used. If the
signal decays rapidly, then much of the sampling time period
will contain noise. On the other hand, if the structure is
lightly damped, then tﬂere may be very little decay of the
signal and thus there may be no periodicity. This effect
will theh produce leakage: Both these problems'afe tYpically
solved by multiplying the response signal by an exponential
function: which decays.exponentially from unity to 0.05 in
the time peribd. Since the important information occurs at
‘the beginning of the time period, it is weighted more

heavily. The exponential window is represented as:

w(t) = et : T 0<t<T o
where:
b = qu.osz

This particular window has the effect of’adding additional
damping to each mode. However, this damping is a known
amount, b. Thus, once the modes have been identified, the
damping can bé simply subtracted from them to obtain the

actual damping. One unfortunate consequence of this window .
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occurs if the system is already heavily damped. This
additioﬁal damping may cause the modes to become even more
closely coupled and thus harder to identify. In these cases
or in general where damping is. to be determined more
accurately, a Zoom transfogm can’be used. Tﬁe Zoom transform
increases the resolution by concentrating on a narrow
frequency band instead of the entire béseband. This
technique is discussed in Ramsey [21] and was not used in
the present stﬁdy.

It is important to note that with both the forcing and
response windows, thgre was no-neéd to force a zero
aﬁplituéj at the beginning of the time period. Both are
inheren£1y zero as the Stru¢ture has not yet been excited.

The determination of the frequency response function 

(FRF) can be determined from its basic definition:

w2

However, to reduce the inherent noise effects, it is
actually done by using averages of power and
cross-spectrums. To understand how this is done, consider

the response spectrum as:
Sl‘= Hsf+5n

where S, is’theunoise Fourier spectrum. While the effect of

the noise can be substantially reduced by averaging the
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spectrums, since they are complex, they do not readily lend
themselves to this averaging process. It is easier to use
the power spectrums which for the response and forcing are

defined respectively as:
Gpr T Se5F Ger = Sp%

Taking the sguare root of the ratio of the above guantities
wéuld yield the FRF. However, in this form theré is no phase
information and the noise will not average out. The

cross-power spectrum can be used for this purposé. I£ can be

defined as:

and thus the ERF can be defined as:i

wn
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Averaging in the presence of noise yields:

G = S5% = TSeH + 5,)5% = GegH + B¢

and thus:
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where the second term numerator is #he noise cross-power
spectrum. Since the noise and forcing signals are
uncorrelated, the noise cross-power spectrum will average to
zero and thhs a closer approximation to the true FRF can be

determined.

In order to quéntify the amount of noise in a FRF‘
measurgmeht, the coherence fuﬁction_is computed. Thi;
coherence function canvbe defined as the ratio of the
| response power caused by the applied force to the measured |

response power.The measured response power can be expressed

as: »

6.. =SSk (Hs¢ + S, (HS + S, )*

L]

2 . .. : .
| HS. [© + H*S,S¥ + HSS* + S,S*

G

l H fo +H an * Han‘+ “nn

'

Averaging will thus yield:

- 2
Ll NG

nn

The response power caused by the applied force is:

| ' C 2
. _Grp GF | Grg |
ff~ e TEZ

12
ff ff
[

(HS¢)(HSL)* = | H

.-

where averaging will give:
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Therefore, the coherence can be expressed as:

2 — 2

2 - IHI" Ger | Grg |
. =

|H] fo ¥ Gﬁn; fo Crr

As a result, if the coherence is one, then the fesponse is
due solely to the forcing and thus no noise is present. All
values of less than one suggest noise contamination

quantified‘by the particular value.

3.2 Modal Parameter Estimation
Once the FRF's have been formed, accurate estimat ~n

the modal parameters is done by curve fitting. Each FRF

!
formed at each point on the structure represents the sum of |
the contribution of each mode in the frequency range of
interest. If there is’'a large amount of freguency separation
and 11ttle modal damplng, then t%e effect of one mode on
another is minimal and a curve fit that fits one mode at a
time is adequate. The assumption then is- that each mede can
be represented by a singie degree-of-freedom model. However,
often the situation is such that the modes have a marked
effect on one another and there is thus strong modal

coupling.. In this situation,'zhe modal parameters must be

identified simultaneously. Single mode and multiple mode
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methods are discussed in some detail in Richardson [24]. A
very good multiple mode curve fitting algorithm is described
in some detail in Ricﬁérdsoa and Formenti [25]. The method
used in this study for modal parameter estimation was an
algorithm developed by Fyfe [7] based on a éomplex curve
fitting scheme devised by Levy [15]. This method curve fits
the experimental data to the analytical funétion as
formulated in éqﬁétion (2.5) for s = jw. The,fitlis a
multiplemﬁbde one in which_minimization of errér uses a
least squares technigue. This method is thoroughly discussed
in the reference by Fyfe. -

It should be noted that dsually mbdal anélysis revolves
around the use of specialized equipment such as the Fourier
analyzer to collect and process the data. For ;dvanced
analysis like multiple mode curve fitting, a computer is
also required. This study bypassed the Fourier analyzer and
used a complete mini-computer softwa;é package developed by

Fyfe to collect, process and curve fit the data.

3.3 Calibration

The traditional technique of calibration involved the
determination of the individual sensitivites of the
accelerometer and load cell .by compariéon with a standard.
This me;hod, however% has several problems associated with
it. These include inconvenient on-site calibrétion, |

accumulation of errors due to individual calibration and the

fact that amplitude is usually measured at only a few
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frequencies with phase being entirely ignored. In addition,
there is typically a lack of regard for auxillary equipment
such as amplifiers and filters.

For the impact technique, the traditional calibration
can lead to entirely erroneous results. The force picked up
by the load cell is not equal to the force exerted on the
structure‘due to an'effective mass between the load cell ana
the structure. This effective mass being due to the impact
tip Qass aﬁd its material -properties. Another technique
which circumvents many of these problems is called ratio
calibration. The combination of hammer, load cell, impact
tip and accelerometer used to measu;e the dynamics of the
structure considered can be calibrétéd simultaneously. This
task is accomplished using a very simple experimental
set-up. .

‘A‘relatively large block of known mass is hung from a -
long suspension. This set—up caﬁ be made to approach a
single degree-of—freerm system if the suspension is long
énough and if there_févlittle motion throhgh the block's
center of‘gravity. Thus by mounting an accelerometer on one
end of thé block and @mpacting it through its center of

gravity at the opposite end, the force can be expressed‘

through-Newton'sllaw as:

F=mA

(
or AL
F mC
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¢«This relation fhus represents the iner;ance or expected FRF
of the calibration block and is a constant (inverse of the
block mass). A calibration function can be defined then as
the ratio of the‘expected FRF to the measured FRF.expresSéd

as:

H ]/mc 1 ' ' °
< AI/FI m_H : | | L

cI

where: .

Hc - calibration function

HI - measured FRF of caLibration block

m. - mass of calibration block
Assuming linearity for an actual structure being tested, its
measured FRF can be calibrated by multiplying it by the
calibration function to obtain the actual FRF. This
relationship can be simply shown as:

HA - HcHM

The actudl FRkaill be in'physical inertance units depending
on the ph¥sical units used for the calibration block. To
‘convert to compliance units, -it is only necessary to divide

through by (jw)?.
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3.4 Structural bxnamics Modification

Structﬁres whose mode(s) possess proportional or very
light_damping can usually be described in terms of a real or
.normal mode model. At a particular mode, this model is.
éharaéteri%ﬁd by a mode shape whichAattains»maximum'oru
miniﬁum def‘ections simulﬁaneously. As a result, different
points on the structure are either in phase or_180° out of
phase and thﬁs nodal pointé are-stationary. In actuality,
all structures possess damping where the modes are complex
to some degree. This implies that a mode shape wiil not
reach haximums or minimums simultaneously and thus nodal
points "travel' i.e. the phases will assume values other
than 0° or 186°._ | R

However, since a majority of the mechanical structures
dealt with possess relatively 1ittie damping, it is not very
often when truly complex modes are encountered. EQen‘when
they afe, they are almost impossible to adequate;y'iéﬁntify ]
as such due to practical‘measurement problems. These include
thé,inhere' problems of noise, transducer agd‘v
instrumentation phase-match characteristics, leakage and-
errors in parameter estimation. Formenti and Welaratna [6]
exéminéé sevefal~6f these problems and théir effects using
simuiation. They have found’thrdugh éxperience thaﬁ the

Pl

errors in assuming a real mode model are mush less than e
. o v - i
those occurring when trying to estimate complex modes. As a

=

result, the SDM technigue utilizes a real mode model.

o

Damping is taken into account through the assumption of
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pnoportionality as shown in section 2.2.
The curve fitter in this study (section 3.2) results in
complex frequenbies and. mode shapes.’Therefore, the mode

shapes can be approximated as real by considering only the

-magnitude of the residues and determining their sign'by

rounding off the phase. Because of the assumption of
proportional damping,wthe complex frequéncies can be.
retained as complex. When the modal parameters have been

converted, a real mode model with proportional damping can

~ :

be c?nstructed.
Once tﬁe physical modification value and location are

decided and the mode shapes have been normalized to unit

modal masé, then the modified systems damping andwnaturél

frequedéies or complex eigenvalues () can be calculated

from equation (2;2}). Rearrangéd in terps of a function, it

becomes: | ' - i

| 2

Fla) = [z — L2, ey it T
k=1 (@° 20,2 + (0,7 + 1, 7)) (a0 + B8R+ y)

where:

fo} = [61T (1}
Thus at a point on the structure where there is a mass
modification and/or stiffness apd damping changes applied: to

ground, the vector {¢} is the row of the mbdal'matriX~[¢]

_cérresponding to that particular point or DOF,‘Fpr démping

and stiffness applied between two points or DOE's, the
N

vector {¢} is the difference between the two cdfrésponding

’

Ty



{#¥ows in the modal matrix.

Equation (2.23) represents the modified sysféms
characteristic equationl It is'possible to expand equation
(2.23) into a characteristic polynomial. The solution could
then be accomplished using any of the numerous pdlyhomial
:algorithms available. Howeye;,-fo; sysgems greater than 1
DOF, the expansibn into the p&iynomial becomes an |
increasingly difficult fask. Fortunately, the roots can
' still be found from the oriéinal form by using fhe
Newton-Raphson method. This method is iterative where the

iterative equation is'formulated as:
g o g FeD
Fr(a")
wvhere 'r' denotes the iteration and F' is the functional

. . ]
derivative of equation (2.23) expressed as:

, - 2 ,
F'(a) = ﬁ = [g ; -2¢k (2 + ck-) ] - (200 + B)
@=m=LZ— 2, 2\\2 2 2
: k=1(2° + 20,2 + (0," + ) (a2 + 8O + v)

Once the complek fréquenéies have been determined, it
is a straight forward process to obtain the eigenvéctors or
mode shapeé by direct substitution into equatioh (2.54).
Transformation-of the modified mode shapes baék to physical.
coordinates is then accomplished byhhsing equation (2.13).

The Newton-Raphson method was both easy to program and

converged to complex frequencies rapidly. However, for very

small valﬁes'Of»¢k (little modal motion) or relative

, 27
¢ ‘FZ oy
-



modification values, it was found that convergence to a

‘modified structure frequency did not occur. As a result, it
v

.'\ .
"#was deemed a valid assgmption that the modal fregquency was

not affected and thus the previous unmodified value was
_rétained. ‘ |

Initialiy the Newton-Rapﬂson method was coupled with
the Incremental-Search method so as to make the root finding
process automatic. It was found to be much faster however,

to simply use an interactive approach whereby initial values

were manually input. S

AT



4, RESULTS AND DISCUSSION
- In the previous chapters,H%pé“fheoretical and practical
aspects of EMA and SDM have been individually examined. This
ohapter follows the next logical steps of first separately
verifying these t?chniques thfough'an example of a well
known structure (a free-froe boam) and then evaluating the
“combination of the two techniqueg by application to a more

complex structure.

4.1 Calibrated EMA Validation

As a check on the modal analysis technigue, a free-free
'beém was experimentally tested and the calibrated results
obtainéa were oompared to theoretical results. The
calibration procedure followed that as outlined in section
3.3. The calibration mass used was an arbitrary block of
steel with dimonsions 2 in x 2 in x 5 in (50.8 mm x 50.8 mm
"X 127 mm) resulting in a mass of 0.0146 lb-seoz/in (2.55
kg). Initial theoretical céiculations for the free-free beam
‘placed the.first three modes ar*ﬂust'under 1000 Hz and as a
result, the calibration FRF wasidetermined with a cut-off ati££~
1000 Hz. It is important to note that since two FRF's were
multiplied together (section 3.3), they must have compatible
frequency resolutions. ’

The e#perimental,set-up for the free-free beam
consisted of‘a steel beam with dimensions 3/8 in x 3/2 in x
22 in (9.53 mm x 38.1 mm x 559 mm) suspended by elastic

bands. Eleven equal locations from one end to the other were

44



45

)l

marked off and tested for lateral vibration up to 1000 Hz.
The same accelerometer as that used in célibration was
mounted at the first point at the énd of thé beam in the
"verticél direction and the same hammer was used;to impact
the beam'at all eleven locations.

The first test point coherence and calibrated inertance
FRF is shawn in figure 4.1. The entire plot actually
consists of the three separate plots of coherence and the
FRF magnitude;and phase. The dashed line corresponds to the
curve fif results. It can be seen from the figure that there
are three well defined modes with very.little damping. Since
the coﬁerence is essentially unitx at all three péaks and
the curve fit conforms to them very well, this meésurement
should be expected to accurately portray the dynamics at
this point..&able 4.1 shéQé the excellent agreement between
the experimental (averaged over all the test points) and
. theoretical frequencies. o | : ,
Since SDM uses mode éhapes normalized to unit modal mass
(section 2.2), and since this directly qgrresponds to the
‘degree of modal participatién as well aéxcalibration and EMA
accuracy, hoth ;he calibrated test/éﬁé thaoret.zal mode |
shapes were compared in this form as shown in table 4.2. Thé
table sths that the first “and second mode shapés are very
close to their theoretical counterparts while the third mode
shape 1is notvas good. It was found that in most of the
measurements, the coherence  was not as good in .the vitin@ty

L3

- of the third mode. This fact 1is especiallyuevident at test
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'DAMPING (%) FREQUENCY (Hz)
MODE  THEORY TEST  THEORY  TEST

1 0.0 0.06 158.5 159.4
2 0.0 0.06 436.8 438.8
3 0.0 0.04 856.3 858.8

Table 4.1 Comparison Between Theoretical jnd Experimental
Frequencies for the Free-Free Beam

TEST MODE 1 - MODE 2 : MODE 3
POINT THEORY TEST . THEORY TEST THEORY TEST

1 21.2 22.2 21.2 22.1 21.2 22.2
2 11.4 11.1 - 4.8 4.6 -11.0 - 1.7
3 ‘ 2.1 2.3 - 8.4 - - 8.1 -13.5 -15.8
4 - 5.8 - 5.6 -14.0 -13.7 - - 8.4 - 8.0
5 -11.0 -10.8 -10.2 -10.3 6.9 7.3
6 -12.9 -12.6 0.0 0.3 15.1 18.2
7 -11.0 -10.7 "~ 10.2 10.2 6.9 8.7
8 - 5.8 - 55 14.0 13.7 - 8.4 -10.8
9 2.1 2.2 . 8.4 8.1 -13.5 -16.0
&y 10 11.4 11.1 -4.8 - 4.7 -11.0 - 1.6 . '
N 21.2 -21.9 -21.2 -21.6 21.2 20.2 Vo
. . \
Table 4.2 Comparison Between Theoretical and Experimental \

Mode Shapes for the Free-Free Beam
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Point 2
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point 2 which gave the poorest mode shape estimate. The
coherence and FRF for test point 2 is shown in figure 4.2.
It is evideng that whlle the EMA technique and calibration
can be qulte accurate, noise can greatly affect this
accuracy as evidenced by the coherence in‘tigure 4.2.
4.2 SDM Validation

In order to check the accUracf of the SDM methcd, the
theoretical modal parameters for the free-free beam
described in the previous section, were used as input to the
SDM -program. Thevtheoretical modal model used was described
by:six modes including the two rigid body modes. This model
is shown in tables 4.3 and 4.4 where the mode shapes have
again been normalized to unit modal mass. This model was
modified usiug SDM and compared to the corresponding
theoretical solution. The modifications ccnsisted of the
separate addition of a‘pin, a stiffness of 10,000 1b/in
.(1'75(108) N/m) and a mass of 1 1b (0.454 kg) to point 1.
The pinned modlflcatlon was modelled in the SDM technlque by
"adding an 1nf1n1te stiffness. Thls 51mply results in the
left hand side of equation (2.23) going to zero. Table 4.5
represents the‘theoretical nen-rigid-body frequencies in
comparison to the predicted using a varying number of input
modes for the three separate modlflcatrons. In each case,
the relative modlflcatlon was large 1in order to adequately

=
for predictions at hlgher medes (since the model is

test SDM accuracy. As was expected, the accuracy dlmlnlshes
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MODE FREQUENCY (Hz)

856.3
- 1415.6

(SRS - WAY e
g
(9]
(=]
[00]

Table 4.3 Theoretical Free-Free Beam Frequencies

POINT MODE 1 . MODE 2\ MODE 3 MODE 4 MODE 5 MODE 6 -

10.6 ~ -18.4 21.

1 2 21.2 21.2 21.2
2 10.6 =147 11.4 4.8 -11.0 - 6.2
3 10.6 -11.0 2.1 - 8.4 -13.5 -12.7
4 10.6 -7.4 - 5.8 -14.0 - 8.4 4.8
5 10.6 - 3.7 -11.0 -10.2 6.9 14.8
6 10.6. 0.0 -12.9 0.0 15.1 0.0
7 10.6 3.7 . -11.0 10.2 - 6.9 -14.8
8 10.6 7.4 - 5.8 14.0 - 8.4 - 4.8
9 - 10.6 11.0° 2.1 8.4 -13.5 12.7
10 10.6 14.7 11.4 - 4.8 -11.0 6.2
11 10.6 18.4 21.2 .2 21.2 -21.2

Table 4.4 Theoretfca]‘F.cerFree Beam Mode Shapes'v
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truncated) or if fewer modes were used in the prediction.
Howéver, it is important to note that the accuracy did not
diﬁinish exponentially but much more gradually.

. To determine mode shape prediction accuracy as well, a
fourth change was made. The full six mode free-free beam
model was used to predict the effect of two local
modifications which pinned both endé of the beam. The
comparison in terms of both frequency and mode shépe
(normalized to unit modal mass) with the theoretical is
shown in tables 4.6 and 4.7. It caﬁ'be seen that the
prediction is quité good overall, but accuracy again

diminishes for higher frequencies.

4.3 Unmodifiad Test»Structﬁre

The structure chosenrto be tested was built to be
similiar_to that used by Herbert and Kientzy [31] and Ramsey
and Firmin [23]. A schematic diagram of thisAstructure is
given in figure 4.3. It éonsists of three aluminum plafés
bolted together along the adjoining edges. In ordef_to
determine the mode shapes.accurately, a grid comprised of
seventeen test points was established on the top plate. No
_ points‘were used for the back plate.since the motion could
" be deduced from top plate information. Only two points were .
deemed.hecessary»for the bottom plate since i; was large and
heavy_relative.to the other two and thus little response was
expected. The total number of test points then was nineteeﬁ,'
‘each with 3 DOF (x,y and z directions) resulting in a total

~



FREQUENCY (Hz)

MODE THEORY SDM
69.9 70.3

279.6 281.8

629.1 645.7

1118.5 -1147.7

.

4 éxg

™~

TEST - - MODE 1 MODE 2 MODE 3 MODE 4
POINT THEORY. . SDM THEORY . SDM THEORY sSDM THEORY SDM

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 4.6 4.7 8.8 8.6 12.1 18.2 14.3
3 8.8 8.8 14.3 - 14.3 14.3 14.3 8.8
4 12.1  12.2 14.3 14.3 4.6 5.7 - 8.8
5 14.3 14.3 8.8 - 8.7 -8.8-8.8 -14.3
6 ~15.0 15.0 0.0 0.0 -15.0 -16.0 0.0
7 14.3 14.2 -8.8 -8.8 -8.8-28.8 14.3
8 12.1 12.2 -14.3 -14.4 4.6 5.8 8.8
9 8.8 8.8 -14.3 -14.3 14.3 14.3 - 8.8
10 - 4.6 4.6 -8.8 -8.6 12.1.18.1 -14.3
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

—_—

]
— —
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Table 4.7 Theoretical and Predicted Mode Shapes for the . -

Pinned-Pinned Configuration
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Figure 4.3 Original Test Structure - - ‘ : /.
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of 57. Since many of the points were internal to the
structure, ‘this total was reduced so 30. In order to
simulate a free-free condition, the structure was placed on
a block of foam rubber for all measuremenﬁs.

As before, the modal information nas obtained nsing tbe'
inpact'method with an accelerometer fixed in the z direction
'aﬁ ooint 1 (thus point 1z). Preliminary tests didplayed the
existence of five distinct vibrational modes under:400 Hz.
Therefore, with a samp%ing frequency ofv1024\Hz, the-
frequency resolution was a very accept;;le 1 Hz, It was = _
possible to impact theAstructure at all points in the
perpendicular or 2z direction. To obtain information in the
inane of the structure (x and yidirections), selected points
were impacted oarallel to the surface. Since the |
accelerometer was fixed at-point 13,1and impacted et all'
others, the first row of the'ffansfer function matrix was
measured. | s

The FRF information which was curve fitted fofipoinh 1z
up to 400 Hz (fiqure 4.4) shows the five distinct
'vib:ationailmodes_as well as the octurrence of two rigid
body mooes-at the lower end of the frequency scale. The
coherence at this point ‘and for most of the others in the z
direction wereivefy good. Io‘was however, typically much
'poorer for measurements in the x and y directions. This'

effect can most likely be attrlbuted to low response levels

(and thus lower s1gnal to-noise ratlos) in those directions

and pérhaps transverse sen51t1v1¢y effects of the

.

-
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aobelerometer.

The modal para%eters obtained in the z direction are
shown in tables 4.9-4.14 w!&re the mode shapes were again
normalized to unit modal mass. Since damplng and natural

frequency are global propert1es of a structure they have °

=,
2

been averaged and presented as shown. The geometrical .

representation of the modelshapes for the five modes are

IS v

shown in'tigﬁre 4.5. Thetfirst mode at 48.2 Hz represents an

almost purely flap%ing mode of the top plate (first bending)
\ thereas the second,modeyat 171.3 Hz displays almost pure

torsion ot the top plate arouhd the x axis (first t.rsiom’.

L¥]
The third at 217.9 Hz is comprised of - combination of top

plate torsion- around the X axis and bark plate tor51on or

tw1st1ng around the z axis. The Zourt® and flfth modes at

-~ ©290.8 Hz and 395, 8 Hz respectlvely, are essentlallg

it

‘rippling’ modes of the top plate (second bendlng in and out hh

of phase).

<

’5 ) An examlnatlon of the mode shapes 1nd1cates that po1nt

*
! 3 undergoes relat1vely 1arge excur51ons in the first three

© modes. As a result thlS point was chosen for mod1f1cat10ns

as it appears that thls would cause large dynamlg changes:

&

and thereby g1ve a. thorough test of the SDM conpept

v
e 0 e
%.
L wh "o

;;4 ¥ 4.4 Efiects of Mass Mod1f1catlon.

.ﬁ ’The s mplest modlflcatlon to 1mplement consxsted of “an

Shy.

3 addlt

o

of 0. 25 1b (mass of 0. 11 kg) of'lead at p01nt 30
Thls conf1gurat1on was tested u51ng EMA- at the same testQ;

L ~. ot
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/
points as in the original structure. The FRF, curve fit and

coherence—dre shown again for point 1z in figure 4.6. The
most obvious effect of the mass was an overall reduction of
the natural frequenc:i:s. ‘ ’ , i

In order to moc-l *-.s change using SDM, the mass u&ﬁ
I

added to all 3 DOF (x,y and z directions) at p01nt ‘T”:

in affect three local modifications were performed. Thet;'
modal frequency comparison between the test and the !
predicted results are shown in table 4.9. The predicted

effect ‘on the mode shapes in the z direction is summarized:

in tables 4.10-4.14. It can be seen from table 4.9 that‘the,'

prediction is good when considering the magnitude of the

16-,

changes in f@bquency. ‘The second and third mode frequencies

show the greatest dlscrepanc1es most likely due to a ;o "

’

comblnatlon ‘of several factors..The f1rst factor relates to

the fact that these modes had the largest contributions from.

_all three dlrectlons with the result that the mot1on is more
c)mplex and thus more dependent on‘three measurements

Lnstead‘of one. Secondly, the measurements ine thé x and y
d1rect10ns were ‘more prone to noise efgects as4expla1ned
- above and thus poorer estimates of modal parameters were
used in the predlctlon. The last factor which is‘probabiy
the most 1mportant is that rotat10na1 inertia of the mass

is not taken 1nto account Complete motion at a p01nt

involves notxonfy the translational motion in the x,y and z

- directions but also rotatlons around- each axis. Thus, to

V

accurately predlct the motlon rotatlonal DOF's should be

—

A==

£~
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added..This‘is_especially important for beam structures,
such as the test structure considered here, where rotational
effects are mést pronounced}'Unfortunately, rotations are
difflcult to measure and thus there are no commercially
available.transducers. However, rotaticns caa~be estlmated_'
using several translational trangducers. Disc¢ussion of

rotational DOF and their estimation has been. done in

'references [2] and [29].

A more complete wa&q?t dlsplaylng the entlre prediction
in terms of frequencies and mode shapes is to synthesize an
element of the modified FRF matrix and compare it to the
actual FRF measured. This synthesis is inﬁthe‘form of a plct
‘of the magnitude—for point 1z and is shown in flgure 4.7 for
the mass change. The solid line represents the magnitude of
the measured FRF and the dashed 11ne dlsplays the predlcted
As 1? seen, the magnitudes are also gquite close'whlch
implies an accurate prediction for the mode shape asywell.

Again, the largest deviations appear to occur at the second

and third modes due to the reasons previously discussed.

S4 5 Effects of St1ffness Mod1f1cat1on

k : The second cype of change considered was the add%tlon
'd;s;tlffness Once agaln, in order to provide large relative
-fchanges 1n}ch% test results, the change included attachment
at pdint 3. A prass rod I/16in (1.6mm) in dlameter was
attached between po1nts 3 and 19. Using 51mple beam theory-

and assqmlng"built—ln end cond;tions; the stiffness in all

o)
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three directions was calculated from:

k-T. k:ky:

x 3

L

where A is the cross-sectional area, L is the length, I is
the area moment of inertia and E is the Young's modulus.
This rod gave calculated\values of k, of 10,500 1lb/in
(1.84(10%) N/m) and k, and k, of 0.4 ib/in (70 N/m). The
total weight of the stiffening rod addition was 0.016 1b
(mass of 0.0073 kg) and this vas evenly‘divided'between
points 3 and 19. The FRF, curve'fit and coherence for the
stiffneSs addition for point 1z is shown;in figure‘4:8. The

" main effect of the stiffness was to raise the ha;ural

frequencies so that only four modes occurred in the

frequency range of interest. As*;een in table 4.9, ‘the

~lowest mode occufred'ét apprdxifgﬁely 106-Hz'whereas in the

original structure it was at 4élﬁé. | fff'
'Talmodel_th%,changg using SDM,'Fhe stiffnesses Qe}e

éddediinﬁthe respective directions betﬁaen the two points

. -4
and also half the total mass was added to each of the points
5 and 19. However, it was found that‘thg.small amoﬁnt of
ﬁa%s'and'the x and y stiffnesses caused negligiblé changes
in the’stfucture's'dynamiés. The longitudinal or z direction

stiffness though, resulted in large changes in frequency as

shown in table 4.9. ' The changes in the mode shapes can again

be seen in tables 4.}pf4.14. The tested ahd predicted

results from table 4.9 agree very well. This good agreement

~I
~
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is due to the fact that essentially on}y,ene local
modification was needed, that rotatione; DOF's could be
safely ignored and that very good original modai parameters
(z direction only) were used in the prediction. The
synthesis plot for the stiffness change is presented in
ingure 4.9 for point 1z. The mode shape can be seen to be
very close-as weIP‘
It should be noted that since f1ve ‘modes were ‘utilized
in the modal model7 that a fifth mode was also predicted. It‘
—_ _
.was found ‘that the predlcted fifth mode ocefired .at 1019 Hz.
vAlthough the actual structure was not tested for the fifth
- mode (it exists outside the frequency range of interest), it
" seems highly Unlikelylthat the fifth mode would jump from”
395.8 Hz to over 1000 Hz. The explanation for this behavior
is that the modal model used is a truncated one which .was
built around information only from DC to,iOO Hz. Therefo. .,
1t would not be expected to predict the dynamle effects very
far outside the scope of this model. e
Comparable results for similiarvmass and etiffness
modificatiqpe to a similiar structure can be found in

referenceéakﬁi]‘and [23].

4.6 Effects of‘Damping Modification
The final modification considered was the introduction’

of increased damping. This change was expected to yield the

least predictable results for a variety of reasohs. Ttese

include the fact that proportional linear viscous damping is

@
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" assumed and also that a réal mode model is being user to

64

model a complex mode phenomena. As well, it is known|that

material properties such as shear -modulus and damping
coefficient are quite dependent on frequéncy, temperature,
dynamic load and sfatic preload. \
The physical modification consisted of a damper

designed in the form of an annular rubber shear mouht. A
diagram of the dampgr is shown in figure 4.10 and is |
comprised of a brass casing fiiled with a soft prosthetic
rubber of about 20 durometer hardness. A brass plungef'was

then cemented into the rubbet in the center of the mount. An

end of rod soldered to the casing was then screwed into the

. structure at point 19 while the opposite end of t plunger

~

. was screwed .in at point 3. The design was based on the

formulation for sﬁiffness given by Macduff and Curreri [16]

- for rubber shear mounts. It was desirgd to minimize the

amount of stiffness, considering physical constraints, and
to accentuate the damping contribution.  The longitudinal

_ o Wy
stiffness for annular rubber shear mounts is approximaﬁed

G

as:

~

k = ZntG
ln[ ;9-)
’ i

where L is the length, r, and r, are the outside and inside

radii respectively and G is the shear modulus for the

rubber.
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A more accuratevdetermination of the!|stiffness and damping
was accomplished by testing the rod-rubber combination. This
confiquration was fixed with one end on a shaker table and a
mass attached to che other end so as to approximate an-
oscillating support prcblem for a dambed single DOF system.
hccelerometers attachedvat the mass and the shaker ends
allowed determination of the maximum ratio between the
amplitude at the mass (X) and the;amplitude at the shaker

(Y) which for a linear viscous system forms the relation:

/ (nmf)"'Z +

where m 1s the mass on the end re.cinating at th;

forc1ng frequency and c is the 51ngle unknown, tKe viscous

damping constant. The stlffness of the rod is then

calculated from: o 1 PR

i
st

. 2 = Ax{
k.=nmf L

. S \
The mass was selected so as to obtaln a fq::?ng frequency
approx1mately m1dway in the frequency range of - 1nterest The
damping constant and stlffness were thus»calculated to bea
0.13 ibfsec/in_(23 ﬁfsec/m),and 216 1b/in (3.78(10“)»N/m)
respectively. | |

;The FRF, curve“fit.andvcoherence,at point 1z for the:
damping addition to the stfucture‘is shown'in figure 4.11. A

reIatiyely lafge amount cf.damping was expected as the time
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_response waveforms decayed in a fractien of the tg¢aldtime
dﬁefiod ’The high medal damping is again indicated by the |
wider peaks and obvious modal coupllng as shown in the
figure. Whlle the curve fit was relatively good at po;q% 1z,’
at mostﬁgthet»points the fit was much wors:. This d1ff1culty\
ie simbly attributed to a limitation of thi- Lype of fit. It
is'notﬂknqwn if other curve fitting a orithms suffer the
same liﬁitations for high modal damping because of a lack of

documentation in this area. This is perhaps due to the fact

S _ o _ o _ _
.. ..that most structures considered do not have such a high
‘ . T R :

degree of damping. ' , \
In modelling the change with SDM, it was again fouhdu

that the add1t10na1 mass and stlffnesses in the x and y

e o R
f.l, e T
g

ég&; dlrectlons played negllglble roles in the dynamlc behavior.

‘ It was asgpmed as well that damping in ‘the x_and Y '
.O~directioqs Qere also negligible for this type of‘pount. ?Ets[
the only modifications were those offdemping and stiffness
in the z direction between points 3 and 19. The compared
results for the complex frequencies . are shown.in table 4,9.

'Tte predicted mode shapes are once again summatized in
tables 4.10-4.14. The frequency test values from table 4.9
for:this ﬁodification are averaged values obtained at points
where the curve fit appeared to.conform closely td\tpe-

experlmental data. The table dlsplays good agreement for the’

natural frequenc1es since they are most dependent on the

=

~-r

stlffness ‘modification, not the damping. The damping is much

less consistent with a large discrepancy in the first mode.

~
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In order to 1nvestlgate the eﬁfects of p0551b1e varlatlons
‘in the exper1mental value of the damplng constant, +20 %

dev1at1on in c was used to make predictions. These results,

together with the original prediction and test resv. - zre
-shown 1n table 4.8. It can be seen that the damp1ng 1n
partlcular modes draws further away from the test values fo‘__

both the higher and lower values of the damping coefficient —
' ' ‘ b

Therefore, it appears that the error in the damping |
r 1t “ ‘

coefficient cannot account for the effects discussed above.

5

The synthesis plot for point 1z is shown' in figure

4.12. As can be seen, the dlfferences between predlcted and

.

actual FRF amplltudes is much more than in the prev1ous

modlfacatlons.

The test structure and EMA data acqu1sit10n set up are
.. _‘g . -,

™

shown in plate 4.1.
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5. CONCLUSIONS AND FURTHER STUDIES
This. study has shown how EMA and SDM can be combined‘to
form a powerful tool in solving vibration problems. The
prediction accuracy*of modificgtions using SDM depends host
highly on very good estimatg@ of the orig_inal modal
paraméters from EMA sincé‘éﬂeseTform thevmodal modef; The
\

]

major inherent problems of noise and leakage contribute in

reducing this accuracy so that. the ggneral'casé off%g&?lex
modes is virtually impossible to accurately identify ‘as
such. As a result, a real mode model approximation was used

where damping effects were taken into account through the
' Y :

assumption of proporﬂional,démping. Once the modal model had

beefi constructed, accurate predictions using SDM were
poSsible provided that the problems and limitations of the

technique were realized. It was shé&n’%ﬁ chaper 3 how to -

. reduce noise and leakage to improve the measurements. Noise

greatly cffects the measurements and thus predictions as

displayed in the results obtained for the free-free beam. In

using- the modal model, it is important to realize that it is

a truncated model with-a frequency range set by ae tests. on

‘the original structure. Thus, predictions far outside the

scope bf,thé model could ndt be eXpectéd‘to'be accurate as

'shown 'in thé fifth mode prediction for the stiffness

modification to»the{cahtileJer ﬁtructure. Also found was

that for many'situations} espeqiélly for beam structures,

_ . " . .
the rotary inerEia-effeqts becgme impqitant'as displayed in
the mass p;gdictiOn. In order to imprévé predictions %in

LS

78



" transient. method bed&ﬁgi posui

in a very.good frequency resolution of_I Hz. However,_in

79

these s1tuatlons rotatlonal degf&es of-freedom must be

34

'ﬂestlmated and added to the moda] MQdel The final conclusion

from this study was that damp1ng effects at the best of
times are difficult to predict since damping material
properties typically vary a great deal,;especlally,over
frequency.'In additiom, the model used assumeS proportional
linear viscous damping. Therefore, damping modification
predictions will ultimatély be less accurate:* ' o
Additibnal problems not included in'this study but_' |
stilljofwconsiderable imoortance are those dealing with

structural non-linearities and frequency resolutipn."When

©»

'non llnearltles are present in a’ structure, the exeltatlon

=Y

J 3 .
le. In this s1tuat1on, the

spectrum level must hzf prec1sel§ controlled and thus the

other classes of eXxcit égn nnamely random and 51nﬁs01dal
A

’

51gnals are used In the case of frequency resolutlon, the
Zoom transform is employed to. 1ncrease resolutlon by

examination of dlscrete bands in the frequency range,of

interest For the cantllever test structure used in thlS' ft

M. P

study, only frequenc1es up to @GD H2¢w§&e examlned resulblng

o

many\situations, much higher ;requencies are examined with a

'correspondlng drop in frequéncy resolutlon ‘and thus baseband

hd

resolutfon bégomes 1nad8quate. . _ 'i‘-. ,

: ST
In determlnlng a more accurate modal model .especially

a
.%o

*over high frequenc1es or when there is a high degree of

T

modal coupllng, varlous 1mprovements to the present

.
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'Y



,,
L& .
=

e
SF

O

Lxmplementatlon of the Zoom transtrm and further

g ﬁé§hn1que could be developed. These ‘include the

1nvest1gat10n into improvement of the curve f1tt1ng
\

algorlthm.

“Further studies in the area of . structural modifications’

might include modifications, especially damping
modifications using a -complex mode model like that described

in 0'Callahan and Avitabile [17] or using direct

" modification from FRF's as shown in reference [5].

"technlques rely on the fact that\thevr

*_by muﬂtlplylng the system FRF by a synthe51‘

"stresses.

N

Comparison of these technigues for varjous modifications and
sUbstructuring could yield further‘imsight in this area.

Exten51ons to uses of the modaluaodel and SDM 1nclude

[

'forced response 51mulat10n .and SthSSNECEdlCth‘r Both these

“'u 7 :
e Gt

hy mpl&kdly
= “@« “rs' \%

‘describes a structures dynamlcs Forced”?esponse s1mulat16hv_

:anvolves the determlnatlon of the responSe of the structure'

forc1ng

. . L
functlon. Stress pred1ct10n comb1nes the syStem FRF w1th

Fourler transformed straln gauge ope at1ng time domaln data -
to calculate a si}tem 'pseudo’ forc1ng functlon. A mod1f1ed
FRF f0und from using SDM can then be multlplled by the

pseudo forc1ng functlon to obtaln mod1f1ed system

~
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