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Abstract

Facies is an important categorical variable. In facies modeling, point data and scaled
up block data must be considered. The scaled up facies proportions form a multivariate
distribution that is dependent on the volume.

Back transformation of Logratio values satisfies the order relation constraints (non-
negative proportions that sum to one), but the non-linecar nature of the logratio
transformation and the issue of dealing with zero proportions make it problematic to
apply logratio in multiscale facies modeling.

Describing the volume dependent multivariate distribution of facies proportions and
fitting the distribution at different volumetric supports is the major purpose of this thesis.
Several parametric statistical distributions will be tested and practical recommendations
will be made.

The volume dependent distribution of facies proportions can be predicted using a
proper parametric distribution. Block kriging and sequential simulation algorithm are
applied and tested in estimating the 3-dimensional distribution of facies proportions over

different volumetric scales.
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Chapter 1 Introduction

1.1 An Overview

A basic problem in reservoir modeling is to build the 3-dimentional realizations of
facies, porosity and permeability at a sufficiently detailed resolution to provide a reliable
basis for well planning, volumetric calculations and meaningful effective flow properties
(Deutsch, 1996). Facies are important in reservoir modeling. Porosity and permeability,

are highly correlated to facies types.

Consider a three-dimensional space €2 with K facies categories S;,S,,...,5y .
Each location u, in the space corresponds to a facies category, that is, a set of indicator
variables I(u,,k) (k=12,..,K), such that

1 if facies atm,, is S,

0 otherwise

I(Uaak)={

Such facies indicator variables are mutually exclusive and exhaustive (Deutsch, 2002),

that is, for any location u_, the following is satisfied:

K
ZH I(u,,k)=1

Scaling up the facies categories over a neighborhood v, of location wu,, the proportion of

{I(ua,k)-l(ua,k')=0 forall k # k'

category S, is obtained by:
B, = B(u,. k)= [I(u,.)dv, k=12,..K.
v v

Here in this thesis, capital P is used to denote a facies proportion variable and lower case

p denotes its value. The values and distributions of proportions P,(u,,k) , are

volume-dependent. Figure 1-1 gives a brief illustration of the volume-dependent
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distribution of the facies categories and proportions.

Two important sources of data include well data and seismic data. The well data
provide accurate measurements at a small scale while the seismic data approximately
reflect facies proportions at a larger volumetric support. Various other sources, such as
historical production data, provide information at different scales regarding the facies.
Integrating data of different scales into reservoir models is a critical issue. Furthermore,
based on the available data, for some locations, perfect knowledge is available about the
facies categories and proportions. But for other locations, we must treat the facies
categories and facies proportions as uncertain. Estimating the multiscale distribution of
facies categories and proportions and drawing realizations from these distributions is
important in reservoir modeling.

This thesis focuses on three problems regarding the multiscale facies modeling: 1) A
discussion on the order relation constraints and the validity of logratio transformation in
multiscale facies modeling; 2) Parametric fitting of marginal and multivariate distribution
of facies proportions over various volumetric scale; and 3) Application of parametric
facies distributions in reservoir modeling. The topic of each subsequent chapter is as
follows:

Chapter 2. Order Relations and Logratios

Chapter 3. Analytical Fits of the Multivariate Distributions of Facies Proportion

Chapter 4. Volume Dependent Distribution of Facies Proportions Based on Ordinary Beta
Chapter 5. An Application of Multiscale Facies Model

Chapter 6. Further Discussions of Multiscale Facies Modeling

Chapter 7. Conclusions and Future Works
1.2 Literature Review

Much research has been carried out regarding volume dependent distributions of

facies proportions, particularly related to scaling laws governing the changes in means,
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vatiances, covariances and variograms of facies proportions based on different volumetric
supports. Some of the important previous works include:
1. Journel and Huijbregts (1978) developed a series of theoretical concepts and theorems

that are widely applied as scaling laws of categorical variables in geostatistical study:

For scaled up variable Z,, volumetric support variogram 7, (h)is defined as:

7.0 =2 EZW-Z,@+WF} where Z,@ =1 [ Z0)db.
v(u)

Given two different volumetric supports vand V and the entire space of interest ),
three important concepts: dispersion variance D*(v,V’), average variogram 7(v,¥) and
average covariance C. (v, V') were defined and the following relationships were shown:

D*W,Q)=D*(V,Q)+D*(v,V) (vcVcQ)
and

D*,V)=C(,v)-CWV,V)=7(V,V)-7(v,v).

The changes in variograms were shown predictable via a variance-variogram model.
2. C. V. Deutsch and P. Frykman (1999) gave a full discussion on semivariogram
modeling at different volumetric support as well as sequential simulation based on

multiscale data; the fitted variogram model at arbitrary scale v is defined as

nst
7,)=C)+> CI'(h)

i=1
where I''(h)represents i nested structure, nst the total number of nested structures,

C! the nugget effect and C! the variance contribution the i nested structure. The

sum of variance contribution equals the dispersion variance; the range of the volumetric

supported variogram at a larger volume V increases as the increase in volume size

(JV | —]v]) in each particular direction; depending on the shape of large volume V', the

range may increase in some directions and stay the same in other directions; the purely
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random component, the nugget effect, decreases with an inverse relationship of the
volume; the changes (decreases) variance contribution of each nested structure along with
supporting volumes are determined by the average variogram I calculated from the
nested structure I".

3. Two basic categories of algorithms are used in mapping the facies codes and
proportions over a 3-dimentional space: 1) Estimation or interpolation algorithms, as
named by Xu et al (1992), yield a unique response that is best in some sense. Krigings of
different types form a critical family in this category. 2) Simulation, or stochastic imaging
(Xu etal , 1992), provides multiple realizations of the variable of interest.

Kriging algorithms are widely used to map the facies based on well data and seismic
data. Kriging with external drift, kriging with locally varying mean, block kriging and
collocated cokriging are some commonly used variants. Simulation is closely related to
kriging. Usually, a certain type of kriging (or cokriging) approach is used to build the
conditional distribution of a variable at a certain location based on the known data, and
realizations are then drawn from the conditional distribution.

Sequential simulation (Deutsch and Journel, 1998) is an effective approach in
modeling the spatial distribution of facies. In the sequential simulation approach, the
attributes at different locations are treated as a set of jointly distributed variables. The
local distribution at each location is built based on the values of available data as well as
those of related covariates. Two widely used simulation techniques for facies variables
are sequential indicator simulation (sisim) (Deutsch and Journel, 1998) and truncated
Gaussian simulation (Deutsch, 2002). In truncated Gaussian simulation, the local facies

data are transformed to continuous Gaussian conditional data and threshold of the

k™ facies y.(u) is set by the cumulative facies proportion cp,(u) as
Vi 3

yi(u) =G (cp,(u)) . Gaussian simulation approach is applied and the threshold values

are used to assign the facies categories according to the simulated value. The truncated

Gaussian approach works well when facies are ordered while sisim works better in case
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there is no clear ordering. Deutsch (2005) developed an advanced indicator simulation
program BlockSIS that integrates data of different scales in simulating the facies
categories at desired local points.

In most cases, the kriging or cokriging algorithm gives estimates of the means of
facies proportions but not the estimates of facies proportions themselves. Building
distributions of facies proportions conditioning on the estimated means and simulating
realizations from these distributions remains a problem. Some parametric fits of the
distributions of facies variables over various volumetric supports as well as an algorithm

to sample from the distributions will be developed.

1.3 A Brief Description of Facies Proportion Distribution with an

- Introductory Example

Consider a facies category training image over a three-dimensional space

256x256x128 in terms of xXyxz coordinates. There are five facies
categories, S, ,S,,S,,5,and S, . Figure 1-2 gives the slice maps along the planes x=50,
y=50 and z=50. Figure 1-3 gives the maps of the vertical facies proportions over the

horizontal area. In this training image, S,,S, andS, are the three most important
categories and their proportions sum to over 90% in most of the area. Categories S, and

S, take very small part.

The space is divided into blocks of equal scale using sizes of 2x2x2, 4x4x4, 8x8x§,
16x16x16, 32x32x32 and 64%x64x64 and the proportion of each facies category is
calculated for each block.

The following properties can be observed regarding the volume dependent facies
proportion distribution:

1) Maps

Figure 1-4 gives the pixel plots of facies proportions F,at various volumetric
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supports. At small scale, the values of the facies proportions are mostly 0 or 1. As the

volumetric support increases, more and more possible values for the facies proportions
P, occur. The true facies becomes a proportion and not a single category.

2) Continuity and Shapes:
At small scale, the facies proportions have a discrete and bimodal distribution. As

the scale increases, the distributions turn to continuous, unimodal and symmetric. At scale
. . 12

of v=1[xl,xl;, the facies proportions take values from the set {0,—,—,....1¢.
vy

Specifically, at scale of 2x2x2, the facies proportions take some values among

1131537 . . .
{ ,—,—,—,—-,—,—,—,1} . As the scale increases, a more continuous group of values is

reached. Looking at the histograms in Figures 1-5 and 1-6, obvious bimodal distributions

of facies proportions F, and P, are observed at a small scale and the distributions

appear discrete. As the volumetric scale increases, more continuous distributions appear
and the shapes change to unimodal but skewed. Finally, at some scale of volumetric
support it becomes symmetric. Based on the central limit theorem, for a random sample,
as the sample size increases, the sum, or equivalently the mean, of the sample indicator
values will converge to a normal distribution. The facies categories or facies proportions
are spatially correlated. Nevertheless, the central limit theorem will still partially effect
the distribution of scaled up facies proportions.

The marginal cumulative distribution function (CDF) curves give us a clear picture

about the continuity and shape. Figure 1-7 shows the marginal CDF curves for

facies S, for various volumetric scales. At a small volumetric scale, the curves are

discontinuous and they become more continuous as the scale increase. At the scale of

64 x64x 64, the CDF curve is close to normal.

The change of the distribution with scales is also shown in Figure 1-12. Here, pis
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the prior global proportion of the facies category. The value and distribution of P,
depend on the scale of supporting volume v. For v=0, P, =I(u,k)is an indicator

variable that equals either 1 or 0, and Prob[A, =0]=1-p, Prob[B =1]=p. The

cumulative distribution function (CDF):

~p V0<x<l

1
F,(x) = Prob[P
() = Probl 7, <x]= {1 forx>1

see the red curve in the left of Figure 1-12. For v =0, the proportion F, = p, and the

CDF:

Vx<p

0

F.(x)=Prob[P, < ,
(x)=ProblF, <x]= {1 xsp
as illustrated by black curve in the left of Figure 1-12. The right of Figure 1-12 shows

how the distribution of facies proportion P, changes between these two extreme cases

along with volumetric scales.
3). Moments: Means, variances and covariances:

Given a certain scale v, where # individual points are located in each block. The
proportion P, (u,,k) of facies category S, can be defined as:

P(u,,k)== Zl(ua,k) k=12,.,K

=
Suppose the entire space of interest is divided into m blocks of the same size, then

mean of the proportion B, can be obtained by :

BIRM1= -3 3, )= 553 1, 6 == ST ) =

R =1 =1
The means of facies proportions over the entire area of interest are independent of the

size of the scale and are equal to the global mean 4, ’s

The variance depends on the scale. As described above, according to the results of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journel and Huijbregts (1978):

D*(V,Q)=D*(v,Q)—-D*(v,V) where vV cQ.
Variance of the scaled up facies proportion decreases as the scale increases, with variance
reduction factor defined as (Isaaks and Srivastava, 1989):

_D*(V,Q) D*(v,Q)-D*(v,V) 1 D*(v,V)

/= D’v,Q)  D*»Q) D*(v,Q)

Taking as an example the facies category S, , the mean and standard deviation (S.d.)
of proportion Fj are tabulated below:

Table 1-1 Mean and standard deviation of F, at different scales

Scale 2x2x2 4x4x4 8x8x8 16x16x16 | 32x32x32 | 64x64%64
Mean 0.6648 0.6648 0.6648 0.6648 0.6648 0.6648
S.d. 0.4514 0.4232 0.3898 0.3232 0.2419 0.1372

The mean remains unchanged over different scales and the standard deviation decreases
as the scale increases.
The covariance value between two variables provides a measure of linear

dependency between these two variables. Based on the training image, covariance values

C(B,,B.)’s are calculated for all pairs of scaled up facies proportions (F,,F,.) with

k<k' and k,k'e{O, 1, 2,4,5}. Most of the pairs have a negative covariance. The

facies proportion variables are subject to a unit sum constraint, that is, the full set of
facies proportions will sum to 1.0. In the case where only two facies categories exist, the
increase in the proportion of one category will lead to a decrease in the other. In the
multivariate cases, with more than two facies categories, things are more complicated but
‘the increases in the proportion of one category will lead to the decrease of the total of
others.

In Figure 1-11, the absolute values of covariances for each pair are plotted against
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the volumetric support. Similar to the trend of variances, the absolute covariance values
decrease along with the increase in volumetric scale.
4) Semivariogram:

The semivariogram is an important function giving the spatial relationship between
two points with distance vector h. For a fixed orientation, the variogram indicates the
difference in the values at that distance. When the orientation changes, the variogram
values also disclose directional anisotropy (Armstrong, 1998). The semivariogram of the
facies categories and facies proportions are dependent on the volumetric support

following the scaling laws as introduced above. Figures 1-8 give the semivariograms of
facies proportion F, in x-direction (in red), y-direction (in green) and z-direction (in

blue) at various scales. As the scale increases, the sill of indicator semivariogram in each
direction decreases and the plots flatten, suggesting a trend of more continuity as the
scale increases. The changes in ranges are not obvious in this case.

5) Unit Sum Constraint

Another property of facies proportions is their unit sum. Suppose only three
facies S, , S, and S; occur in the whole area, their proportions satisfy:
B+P+PF =1 with B,P,F,20.
That is, all the points ( p,, p,, p;) lie in the plane determined by this equation, as
illustrated in Figure 1-9. More precisely, suppose line segments AB ,CD and EF in the
plane represent the lines on which £ =max(R), P, =max(F,) and P, =max(p),
respectively. Then all the points ( p,, p,, p,) fall within the area of polygon ABCDEF' .

However, the density of the plane, that is, the frequency of each group of (p,, p,, p;) is

not even and is dependent on the volumetric support. Generally, suppose there are

K facies categories S, ,S,,...,S; in the area of interest, the point ( p,, p, ,..., py ) will

fall on a hyperplane determined by equation:
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Again, the density of the hyperplane depends on the volumetric support.

In Figure 1-10, the plots of the facies proportions of three synthetic categories from

the training image are given. Here P, remains unchanged, Fand P, are combined

and so are FP,and F,, denote as AP, and PP, respectively. At point scale, only 0 or

1 value occurs and the plots lie on the axis for each facies category.

P

Pk

Figure 1-1 Multiscale facies modeling
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Figure 1-2  Slice maps of facies categories
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Figure 1-3 Facies proportion maps
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Figure 1-4 Scaled up facies proportions
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Figure 1-5  Facies proportion of So over different scales
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Figure 1-6 Facies proportion of S'1 over different scales
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Figure 1-7 Cumulative distribution of proportion of SO over different scales
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Figure 1-8 Semivariograms of facies proportion for So at various scales.

(X-direction: in red. Y-direction: in green. Z-direction: in blue.)

Figure 1-9 Facies proportion distribution
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Figure 1-10 Combined facies proportions (left: scale 4x4x4, right: scale 16x16X16)

2. 50E-01

2. 00E-01

1. 50E-01
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5. 00E-02

0. 00E+00

Figure 1-11 Volume dependent covariances (absolute values)
Each curve gives the covariance of one pair of facies proportions.
The horizontal axis gives the scales:

1:2X2%2;2:4%x4x4;3:8x8x8;4:16 x16x16;5:32x32x32
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Chapter 2 Order Relations and Logratios

2.1 Order Relations in Facies Modeling

As introduced in the previous chapter, the facies indicator variables are mutually

exclusive and exhaustive, that is, for each fixed location u,, the following constraints

hold:

> (k) =1

The scaled up facies proportions are calculated by:

{I(ua,k)-l(ua,k') =0  forallk=k'

P(u,,k) 1 [ . v, k=12,..K,
vV

for any given location u_, the following constraints must be satisfied:
0<P(u,,k)<1 forallkinl2,. . K
{Zilpv(ua ’k) =1 '
This is called the order relation restriction (Deutsch, 2002).
In facies modeling, data of facies indicator or facies proportions are used to estimate
the facies categories or proportions at the desired local point or block locations, using
various kriging and simulation methodologies. Take as an example the simple indicator

kriging algorithm;

PF@b)=Y" I, 0)+0-" AF)pk) k=12..K.
This is a linear combination of the known facies indicators with the weights minimizing

the kriging error with the following kriging system:
Z:f:l 25°C(u, —ug)=C/(u-u,), a=12,.,n

Kriging minimizes the kriging error with no constraint on the range and sign of the
kriging weights or estimate. It is possible to have a negative estimate or an estimate
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greater than 1.0.

The violation of order relation constraints has long been a critical issue in facies
modeling. Various approaches have been proposed to solve this problem, the following
are two of the important methods:

Compositional kriging (CK) suggested by Dennis et al (2001). This is a

straightforward extension of ordinary kriging, with two additional constraints inserted:

Z:::l ATy, k) 20 k=12,..K
Z:=lz:=ll(1CK1(ua’k) =1

and satisfies the order relation rules. Each constraint is connected to a corresponding

b

Lagrange multiplier. The kriging weights are estimated by minimizing the kriging

variance subject to all the constraints. And kriging estimator is expressed as:
CK noaCK _
Pk =3" A1,k k=12,..K
Another important alternative is Posteriori processing (Deutsch, 2002). Here the

kriging estimated facies probability f)ff at the unsampled location u, is set to zero if

v

it is negative and the estimated facies probability is adjusted to ﬁ; as below:

A K
pr==Lv _ i_12, .k

DI
Now the order relation requirements are satisfied. A relative adjustment is made on the
Sequential Indicator Simulation procedures by adding the correction after indicator
kriging.
The use of logratio transformation of the facies is another possible choice and it is

attracting the interest of geostatisticians due to its special properties.
2.2 Logratio Formalism

Logratio approach is a methodology in analysis of compositional data. According to

the definition by Aitchison (1986), the compositional data give sample values of a
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K dimensional space
F* = {pK =(B,BsB): P20 (1=12,,K), 35 P =1}
that is often described by a K —1 dimensional positive simplex:

= _ . -1
FE ={pK L= (B, By Py): P20 (1=1,2,,K -1, Y P s1},

and the K" variable is determined directly by
K-
Fe=1- Zk:l By

The positive simplex &% form a principle component of compositional data base
Z#X . Facies indicators and facies proportions variables make a typical compositional

data.
A Logratio value, denoted by 7, for the facies proportion p, is defined as:
_ Piq ._ _
r=log[~+], i=12,..,9-1Lq+1,...k
q

where the denominator p, can be any fixed one proportion among p;,..., p,. The

reverse from # to p, is given by:

1+ Z exp(r,)

t=,t#q

__exp(r) .
—— for i=1,2,.,q-1,q+1,..k

and
B 1
pq-— k
1+ Z exp(7,)

t=1,t2q

k
Directly from the above formulas, the constraints 0 < p, <1 and Z p, =1 hold

i=1
for any given set of {r,...,¥, ;,%,,,,....% ; and thus the order relation requirements are

s¥g-13 7415

satisfied.

Aitchison (1986) gave a detailed introduction on the logratio analysis for
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compositional data. Some natures of the logratio transformation are worthy for its
application in modeling and analysis on the compositional data:

First of all, there is a one-to-one correspondence between the original data
(p;>---»p,) and the logratio vector (Bseeesy1s¥yyrseesty ), therefore any statement in

terms of logratios can be expressed as an equivalent statement in terms of raw

components (Aitchison, 1986).

Secondly, logratio inference obtained from any subcompsition (pyys...s Dg))s

(d<k) , from the parent composition ( p;,..., p,) will be exactly the same as the

inference from the parent composition provided that the same component is applied as the

denominator.(Aitchison, 1986). Suppose X, ,..., x, denote, respectively, number of
samples belong to facies S,,S,,...,5, inanarea;and x),..., X, denote, respectively,
number of samples belong to facies S, ,...,S(d) and{S,,....S,} S {SI,...,Sk} . Then

logratio 7, for {SI,...,Sk} is

r=Ilo % )/[Z-] |=log X ;
! g([ Zr=1x' ] [Zr=1x’ ]) g T

and for {S(l),...,S(d) }, we have

r. =log| [=2—]/[—2—] |=log =
(O] g([zr=1x(t)] [Z,=lx(t) ]\J gx(q)

1y =t whenever S, =S; and §, =S, . This allows us to apply logratio analysis on

)

any known facies collection over an area when we don't know exactly how many facies

occur in the area.

I : . B
Furthermore, the logarithmic operation on the ratio —~ often leads to a set of

q
approximately normally distributed variables that possess approximate linear

relationships, making it possible to apply linear regression and linear contrast approach to
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analyze and model the facies data.
Finally, the covariance structure of the original compositional data can be expressed

in terms of a logratio covariance structure, determined by matrix
2 =[cov{log(R,/P),log(P,/P)}] i,j=12,.,k

Details about the logratio covariance structure were discussed by Aitchison (1986).

Due to the above characteristics, logratio transformations and modeling are
frequently applied in compositional data analysis in various fields such as ecology,
geology and environmental science, where original compositional data are transformed to
logratio values. Then a series of statistical analysis will be applied on the logratio data:

A linear or non-linear model can be built regarding the logratio values and against a
series of regressor variables acting as factors that will determine the compositional
variable. In this way, the conditional logratio values can be estimated based on the given
regressor variables and the significance of each regressor can be tested. The fitted logratio
values can be back transformed to get the estimated compositional value given the values

of regressors.
2.3 Application of Logratios to Facies Modeling

Facies indicators or proportions at un-sampled locations are estimated or simulated
according to the facies data. The application of the Logratio formalism in facies modeling
is straight forward. For kriging, the following steps are applied:

° | Facies proportions are transformed to Logratio data and semivariogram models are
built based on logratio transformed data,

e Logratio values at unsampled locations estimated by kriging,

e Estimated logratio value back transformed to get estimated facies proportions at the
unsampled location.

The procedures below will be followed in sequential indicator simulation:

e  The entire space is gridded and all the grid nodes are visited with a random path,
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e  For each of the randomly visited grid nodes, logratio values are estimated by kriging
and back transformed to get the estimated facies proportions. The local conditional
CDF (CCDF) of the facies is built based on the estimated facies proportions.

e  Facies category is drawn and assigned to the grid node based on this local CCDF.
Two critical problems are hard to avoid and lead to fatal risks in facies modeling and

analysis when logratios are used. They are 1) zero proportion problem, and 2) problem of

non-linearity.
2.4 Problem of Zero Proportions

As discussed above, for any location, an indicator /(i,u,) is defined as:

1 iffaciesu, is S,

0 otherwise

I(i,ua)={

And the facies proportion can be scaled up to a particular volume of support. A zero
proportion of a particular facies category is common, especially when the scaled up facies
proportion is calculated at a small scale where only one or several facies categorics may

occur and the rest will not. A zero value in either the denominator or numerator of

&Will lead to an undefined logratio value. One way to solve this problem is to apply

P,
some arbitrary small values, such as 107 or 10, in place of the zero facies
proportions.

Another problem then arises: different values, such as 107 or 107, lead to quite

different logratio values. Using such values into kriging or simulation will lead to
different estimation results. A number of tests show that the gaussian or uniform score

transformation of logratios may partially solve the problem.
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2.5 Non-linearity Problems

In multiscale facies modeling, facies categories are scaled up to facies proportions
by the arithmetic average at various volumetric supports. Kriging approaches are applied
to estimate facies proportions at unsampled locations based on the sampled data. Each of
these involves a linear average of the data. However, the logratio transformation is not a

linear transformation of the original values. That is,

alog| 2 |+ blog| 22 |#10g| a-Brvp. BL .
p, p, p, P,

Therefore, back transformation of either the means (arithmetic average) or kriging

estimates of logratio values will not reach a valid result.
2.5.1 Problems in block means estimation

From the formula of inverse of logratio values:

ﬁi—:-w-—— for i=12,...,9-1,q+1,..,k
1+ Y exp(7)
t=1t2q

and

& 1

pq_ k

1+ Y exp(7)
t=l,t2q

we have

reversed and finally reach

p%.= P g i=12,..,k

i k
2B,
=1
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with p, the proportion of the i" facies at position u, (a=12,.,n),p,'s the
geometric average of p, 's in the sample. That is, back-transforming the arithmetic

average of logratio values will finally reach a standardized geometric average of the
proportions, rather than the arithmetic average of the facies proportions.

The nonlinearity problem can be illustrated through a small example. Assume there

are only two facies and take two samples from locations w, and u, with proportions

for facies 1 at these two sample locations as p;, and p,, respectively. The percentile

contours in Figure 2-1 (solid curves) are obtained by plotting the points of all the possible

combinations of proportions p,, and p,, that result at the same estimated proportion

1%1 after back transformation of the mean logratios. Comparing these contours with the
dot lines in Figure 2-1, which represents the percentile contours of arithmetic average, an

obvious nonlinearity nature of the logratio reversed proportions ﬁl is shown.

The differences (errors) between the estimated f)l and the true p, (that is:
b - f)l) are obvious. Figure 2-2 gives the map of the errors versus p,; and p,, while
Figure 2-3 gives the curves showing a series of the errors versus p;, for each
Py, € {0.05,0.1,0.15,...,0.95}. These two figures show that the difference increases

symmetrically as p,, and p,, diverge from 0.5. By the way, in Figure 2-3, when p,,
takes values less than 0.1 or greater than 0.9, the error will goup to 0.5

Parametrically,

p=—2— (i=1,2).
D +D,

Given a fixed estimated value ﬁl =a, then

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1-p I-p
D= 1_21111 _ 11

1+ 2 " Pn 1+&- py

with & = L2a

a2

Note that £ =0 if and only if a=0.5. Given a fixed estimated value a for the
logratio reversed estimated proportion, the relation of the two sample proportion values
py, and p,, for facies 1 are nonlinear unless a=0.5. This is shown in Figure 2-1.

As will be further discussed in later chapters, scaled-up proportions at certain
volumetric support are often estimated directly based on the available point and block

data. Applying logratios in either up-scaling or down-scaling process is inappropriate.
2.52 Problems with kriging process

The same problem will also affect the validity of kriging logratios. Taking ordinary
kriging as an example, p,, (proportion for i" facies at position u,) is estimated by:
Di=Apy+--+Ap, with 4 +..+4 =1
Similarly, the kriging estimator for logratios takes the form:

A * *
Fo=ht+..+Ar

n'in

with A +..+4 =1
that is:

IT. ()"
[T (.*

Po=Ary +.t A,

n’in

=log

reversed and get

A K HZ=1 (pia )A;
P = ” Iz
Zt:lHa:l (P,a) E

Clearly, p,, # p,, and expected value

E[py]=E [L.@u" # E[ P, 1= E[F,]

> Il o)

in general. Therefore, back transformation of a kriging estimated logratio value to the
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original base will not lead to unbiased estimation. Such errors are hard to fix because the

A,'s and /1; 's (x=12,..,n) in the above are estimated via two different linear

regression models and it is difficult to identify the relationship between A_'sand A 's.

2.6 Summary of the Results

Although the logratio approach can guarantee nonnegative estimated facies
proportions that also satisfy the unit sum constraint, using the logratio values directly to
estimate and model the facies proportions will lead to significant bias. Furthermore, back
transforming the arithmetic average of logratio values will lead to a result of standardized
geometric average of facies proportions, completely different from the arithmetic average
that is desired in up-scaling process. Also, the zero proportion problem is hard to avoid.
These problems make it inappropriate to apply logratios in the multiscale facies

modeling.
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Figure 2-1 P, Percentile contours. Each of the solid curves is a collection of p;; and p,, that reach

an identical logratio back transformed estimated facies proportion ﬁl . Each of the dot lines is a collection

of p,; and p,, thatreach an identical arithmetic average P,
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Py — P, VErsus p,, under a distinct value of p,,
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Chapter 3 Analytical Fit to the Multivariate Distribution of

Facies Proportions

A precise understanding and estimation of the volume dependent multivariate
distribution of facies proportions is the basis of multiscale facies modeling. As described
in Chapter 1, when the scale increases, the facies proportions will change from a discrete
bimodal distribution to é continuous unimodal distribution; the means of facies indicators
and proportions will remain constant; however, the variances of facies proportions
decrease along with the increase in volumetric support. The facies proportion distribution
changes with volumetric support, as shown in Figure 1-12 in previous chapter.

Precisely describing and estimating the change in the multivariate distribution of
facies proportions with volume is a challenge. An analytical description of the
distribution of facies proportions for a fixed volumetric scale will be our first step. In this
chapter, several parametric probability distributions and their fit to data are discussed and

tested.

3.1 Multinomial Distribution
Consider K facies  categories S, k=12,.,K , define

variable X, = ZI (v, k), the number of points where S, occur within a certain block
i=1

X - . .
v(u,), and variable B, =—% the facies proportion. Let p, be the prior facies

n
proportion for category .S, . Then the following conditions are satisfied:
1§ Zszl X, =n,where n is the number of grid nodes in the block

2 Z::lﬁk =1

The above characteristics suggest a  multinomial distribution of
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variables X, ,k=1,2,...,K , that is

n! —x o
Prob(X, = x,,..., Xy =X ) =——— P pJ2 -+ pi¥ .
X 1x, Lo !

Where x, denotes the value of variable X, . For each individual category S, the

marginal distribution of X, is binomial with probability mass function (PMF)

n
Prob(X, =x,) =( J Pir(1—p,)"™. And the scaled up local facies proportion B,
Xk

follows a distribution with PMF:

n

() =Prob(B, = y) = Prob(X, =[ny]) = (
[ny]

ye{O,l,%,...,l}
nn

and the cumulative distribution function:

jﬁ,ﬁ"”a—ﬁk)"‘["”,

2l n) _. Lo
FO=2 |, |Bd=p)", yelo]
i=0
where [ny] is the integer part of ny .

One important assumption for the binomial distribution is that the indicator variable

I(u,,k) and I(u,,k) are independent from each other for any different locations u,,

and u - However, this is not true with facies variables. See an illustration of

semivariogram in Figure 3-2, those points with distance less than range a are positively
correlated and those with variogram values above the sill are negatively correlated. Only
those with variogram value at the sill can be considered as independent. Figure 3-1 gives
the histograms from simulated multinomial realizations, which are obviously different
from the true histograms. Here the parameter n denotes the volume of the scale, i.e., at

scale of 2x2x2,has n=8§8.
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3.2 Beta Distribution

The Beta distribution is defined for a random variable X within a closed interval [0,1]

and has the probability density functions (PDF):

_T@a+p) . YA
f(x)_—l“(a)l“(ﬁ)x (1-x)

where the gamma function I'(z)is defined asI'(z) = It"le"’dt and has an important
0

property:

I'z+1)=2zI(z).
The shapes of the CDF curves are determined by the parameters & and [ . Based on
the known expected values (global mean p, ) and variances Var,(F,), the parameters

a and f are determined as:

=7 M_ n =(1— % ﬁk(l_pk)_
a=pl Var.(B) 1] and =0 pk)[—-—-—Varv(Ec) 1.

Furthermore, let (2 be the entire space of interest, and D;() be the dispersion variances

of proportion B, based on certain supports, then

p-B) | _Di®&Q) | ___ Do) | ___ Diev)
Var(B) D@ DiwQ)-Di(ev)  Di(eQ)-Di(ev)
L
6-1

= DI?(.’Q) - ﬁk(l—i)k)
Di(s,v)  Di(s,v)

where

Thatis: a= ‘—92’-‘—1— and fB= 1; P 1" , with @ defined as above.

The expected values and variances are calculated as follows:
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E[R]=—"—, Var[R]= i :
a+pf (a+ ) (a+p+1)

Figure 3-3 gives a comparison between the true distributions (left) and simulated beta

distributions (right) for F, at various scales while Figure 3-4 gives the overlapped

curves of true CDF’s and beta simulated CDF’s for P, and F.

The beta simulated realizations give good reproductions of the marginal distributions
at most scales and for most facies categories. The Frequencies of extreme proportion

values (around 0 and 1) are slightly over or under estimated, making the simulated CDF
curves over-smooth at both ends. When Var,(P)—0, both o, f—>o, the
distribution goes to a normal distribution. Figure 3-5 gives the simulated realizations for

Pjat azand 8 values based on some very small variance and it is a normal distribution

with mean p,=0.6648. Some other training images are tested and similar results are

obtained for categories with reasonable prior global proportions. For those categories
with extreme prior proportions, e.g., greater than 0.99 or less than 0.01, the beta

distribution does not reproduce the true. Figure 3-6 gives some examples.

3.3 Multivariate Fitting (1) - Dirichlet distribution

A generalized form of beta distribution, the Dirichlet Distribution, is considered to fit
the joint distribution of F,, B,..., F_,. A Dirichlet distribution (Kotz et al, 2000), is
defined for » random variables X, X,,...,X,, with values x,,x,,...,x,, and has the
joint probability density function (joint PDF) given as:

rQ. a) o
fisiay =2 [y

;-1
x td
where x,,X,,...,x, €[0,1] and H,-=1F(ai) i=1

i

where x,,X,,...,x, €[0,1] and in=1. And «a,,,..,a, are the shaping

i=1
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parameters. The expected value and variance of each variable are given as:

L alXea
Z-l, Y SRS

Let B,= Z a; and we get:

j=l,j=i

E[X,]=

EX]=—2%—, and VarX,]= f"’ﬂ"
o+ p (a,+B)(a,+ B, +])

And it can be shown that the marginal distribution of X ; follows a beta distribution with

parameters (&, ;). (Kotz et al, 2000)

n
Taking into consideration the constraint ZX ,=1, only n—1 variables are free
i=1

n—1
and X, =1- ZX ;. The the joint PDF for Dirichlet distribution can then be expressed

i=1

as:

F (s Treen X, 30) = [(Iz—l ! [H 1.1~ "Zx) e

Now come back to facies proportion F,, B,..., P, the joint PDF can then be fitted

as:
F(Z ak) @
S (Pos Prsos P13 @) = =S 2— Hp k!
H F(ak) k=0
K-l
Or, taking into consideration the constraint ZPk =1, only K —1 variables are free and
k=0
K-2
=1- ) P, . The joint PDF for Dirichlet distribution can then be expressed as:
k=0

(Zk =0 %) X H -1 KZ_Z -1
s Prsees K—2; = 1 1- Kt
f(po p p a) I I F( k [ k=0 ] [ k=0 pk]
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One problem occurs in fitting parameters @,,q,,@,,...,&,_, . In case there are only
two facies categories, it is simplified to a standard beta distribution and parameters
o and f are uniquely determined by mean and variance of any one of the two facies

proportions. In cases more than two facies categories occur, the following conditions

should also be satisfied:

, and Var[X]= L2 1%~ ]
Z_l 2 PMATINACIE

Here values of n variables, ¢,,q,,...,a

n?

E[X]= i=1,2,..,n

need to be determined satisfying 2n

constraints.
One possible way might be focusing on the expected values and use only the

variance of the most important category. From the mean constraints, we reach:
a, =E[X,.]-Zj,=laj =E[X,]-v forall i=12,..,n
where v denotes the sum of « ’s. Substitute this into the constraint regarding

Var[X,] for the selected important category X, and leads to:

_E[X,]-(-E[X,])
Var[X,]

-1

and

a,=E[X]v forall i=12,.,n
10000 realizations are simulated, using the variance for facies category .S, when

fitting the parameters. For facies proportion F,, the simulated CDF’s are very close to

those from beta distribution. Figure 3-7 gives some cross plots of joint CDF’s from the
real data versus the joint CDF’s from the Dirichlet simulated realizations for other facies
categories.

The shapes of the marginal distributions are approximately reproduced, particularly

for the cases of smaller scales. The mean proportion of each facies category is
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approximately reproduced. The variances for facies proportion F,are reproduced at

different scales of volumetric support, while the variances for other facies categories are

over or under estimated to some extent. For /| and F,, the estimated variances are

close to the real levels, but for P and F,, the variances are over-estimated and the

shapes of distributions change particularly at a larger scales of supports. In Figure 3-8, the
joint CDF’s are approximately reproduced by Dirichlet distribution at small scales, but

not at the larger scales.
3.4 Multivariate Fitting (2) — Ordinary Beta
3.4.1 Fitting of the parameters

One possible solution to the problem of not reproducing all of the variances in

Dirichlet distrbution lies in a generalized beta distribution introduced by Mauldon (1959).

Mauldon defined an integral transformation (¢ﬂ ) of mn random variables

X,,X,,...X, with joint CDF F(x,,X,,...,X,):

&5 =E[(t-—Z;=1ajxj)"ﬂ]= [l ae-X ax)y?dF(x,...x,)

and defined X, X,,..., X, as forming an 7 — dimensional beta distribution when there

exist parameters ¢; and f, (i=12,...,r) such that

_ r n _.ﬂi _ r
811~ a0 where p=3 5
i=l
Those parameters c;’s form a coordinate matrix. Mauldon showed that when the
coordinate matrix is a unit matrix (with all ¢;=1), and X}, X,,..., X, fall within (0,1)

and X, +X, +...+ X, =1, the joint PDF has the form:
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_TIB) 1 8m
f(x,.x,)= —HF(,B,.)HF‘xj

Mauldon called it the basic beta distribution. It is in fact the Dirichlet distribution

discussed above. Mauldon also showed that any »— dimensional beta distributed

variables y = (1],Y,,...,Y; ) can be obtained by y=Mx from basic beta distributed

variables X = (X, X,,...,X,) through matrix M . Mauldon named this the Ordinary

Beta.

The results of Mauldon are helpful in solving our problem. Let

p=(B,B,..., P )bethe K facies proportions, the joint distribution can be modeled by

p=Mx where x=(X,,X,,..,X) forms aDirichlet distribution with

E[X;] =£i- and Var[X,] =.ﬂi§i.@
B B(B+1)

and
E[p]l=M-E[x], COV[pl=M- -COV[x]-M"
where COV[x] denotes the covariance matrix of variable vector Xxand M’ the

transpose of matrix M . Solving the above equation systems will results in the estimated

matrix M and parameters f,’s that make B, ..., P honor population means, variances

and covariances.

Specifically, if a diagonal matrix is used:

a, 0 0
P |
0 0 -

and x=(X,X,,...,X;) form a K —dimensional basic Beta (Dirichlet) distribution

with parameters S, (i=1,2,...,K), the following system will be reached:
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b,
B

Var[p,]1=a;

Elp,]=

2 BiB-B)

i=12,..,K .
B (B+1)

U?=,B1 + 6, +...+ P

Or, equivalently:

_BVarlpl+Varip]+(Elp, )}
' E[p,]
ﬂ—ﬂ E[pl] i=12,..K.

i

A

B=P+fy+..+ By
This system is solved for g, and S, and thus we reach variables p = Mx that honor

both the means and the variances. One problem is that the values p,, p,,..., py are not

guaranteed to fall within [0,1] or to sum to one. This problem can be solved by resetting

negative values to zero and restandardizing by:

p===L i=12,..K

Zilpj

Figure 3-9 gives cross plots of the real joint CDF’s versus the simulated joint CDF’s.
The joint CDF’s are well reproduced at small scales and also reproduced at large scales.
Several other training images are tested and the similar results are obtained. If a full
matrix M is adopted, the covariances can also be honored and a better fit can be

expected. But that will require solving a very complicated equation system.
3.4.2 Limitation and Solution

One major problem that might occur in ordinary beta distribution fitting lies in the

roots of f,f.’s or a;. The system discussed above will finally lead to equations of
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K™ order polynomials. Sometimes in each group of solutions, values for B, ’sor a,

are not all positive. It is also possible that no real root exists. Fortunately, repeated tests

suggest that all the non-real roots and most of the non-positive roots occur in those

extreme situations where the expected values E[F,] for some k in 1,2,..., K are greater
than 0.99 or less than 0.01. Note that forall 0< P, <1:

VarlP,1= E[P2]-(EIR)) < E[R, 1-(EIR])* < EIR 1.
10° pairs of uniformly distributed random vectors (u , v ), 5-dimensional or
4-dimensional, are drawn such that 0.01<u(i)<0.99 and 0.0005 < v(i) <u(i) ,

treated respectively as E[pland Var[p] and do the test. Real roots occur in all the

cases and positive roots occur in more than 97.5% of the cases. In case all real roots were
negative, a slight reduction on the required variances lead to positive roots. Based on this

observation, when building the conditional distribution, values 0.99 and 0.01 can be

assigned to E[F,] when an extreme value greater than 0.99 or less than 0.01 occurs.

The result will be very close to the original one. The problem of non-positive roots can be

solved by slightly reducing the maximum of the target variances.

3.4.3 Joint PDF for ordinary beta distribution

The parametric joint PDF for ordinary beta distribution can be derived applying

Jacobian transformation rule. In the transformation p=Mx, where x forms a

Dirichlet distribution with joint PDF:

__LWB) yx pe
fx(xla"'xK) - Hr(ﬂi)Hlej

and M an invertible matrix with inverse M™ =[bij] , ,j=12,..,K, then
x=M7p
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or equivalently X, (p)=2f=1biij (i,j=1,2,..,K). The Jacobian matrix for such

transformation can be expressed as:

J=[s;], where s, =?—);i1!()—p)=bi]. (j=12,..,K).

j
That is: J=M"". Denote the determinant of the Jacobian matrix J as det(.J) and its
absolute value as |det(J)|, applying Jacobian transformation rule, the joint PDF for p

is resulted as:

Jo(Bi-0) = [0 (D), x, (P)] | det(J) |

| det(M ) |- T (B bep )

[1re)
In case diagonal matrix is applied for M :
a, 0 0
M 0 a,, 0
0 0 e Ay

where, as previously discussed, ;>0 forall i=1,2,...,K, the joint PDF fp can be

simplified as:

ﬁj_l

r(p) k(2
Jo D15 Pr)=—=% 114 ~=
IIJ%TWHIL(%J

_ I'(p) TT5 (5 VP
HQ#T%HHHM)

and joint CDF is derived as:

P "Px
F;(pl,...,pK)=L L o (tysestie )yt

- F(ﬂ) T . b
HQ#%T%HHHM)
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In order to satisfy the order relation constraints, further adjustment is done by:

p; = i=12,...K.

P;

K
z Jj=1 p J
Again, the Jacobian matrix takes the form J,= [s;:l with

* a 2 * * * *
5= B8 om0
p.

J
Finally, using p =(p,,..., Px)to denote the fitted facies proportions, its joint PDF has

the form:

re y
f (pla..-,pK): X . 1 ﬁj(pl,...,pK) ldCt(J2)|
p Hi:l[ag -T(B)] H]_[ :I

with @,’s determined by p, =6, / Zf 0., that is:

=1 J?

K .
Zk=l,k¢ipi6k _(1_pi)0i= 0 i=12,...,K.

and Jacobian matrix

J2=|:s;.:| where s;. = %
P;

The above formalism is complicated. In practice, the joint CDF’s can be

approximated via large size (say 10000) of simulated sample realizations.
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Figure 3-2 Semivariogram
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Figure 3-5 Beta simulated distribution for Po at a very small variance

Facies Proportion, scale=2x2x2 (p4) Facles Proportion, scale=8x8x8 {p4)

0. :
Femmmn, 1
.. i o : o e
= : B : sH0
8 & i @ 4
5 ] 2
g s & 1
e 1] L 60
® ] : g ]
g ] 2]
£ 040 o
S S 040
€ 1 i
G 6207 2 =
] E a2
_ 1 Ha ET)
GO0 " T 2 Y Y T i
3 5 ST B A ¥ ¥ G e R LN T L oy
600 020 04D 080 080 100 L smasamnnoy o m om e
pa = SRR L pd
Facies Proportion. scale=32x32x32 (04) G Facies Proportion, scale84x64x64 (pd)
100 " : e
B oom g e
vg' 6’.501 g 8,80
3 £
g 2 ]
£ 40 &0
- ¥ r
2 s o
g P
8 ew G 020
000+ ; i . 0.08 e B aeinans et ,
i oz o s s 000 020 040 T bs0. 040 oo
pa ’ p4

Figure 3-6 Beta simulated fits with prior global proportion 0.0047. The CDF’s of simulated
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Chapter 4 Volume Dependent Distribution of Facies

Proportions Based on Ordinary Beta

4.1 Formalism

As discussed in the previous chapter, an ordinary beta distribution is determined by
the means and variances of the facies proportions B, P,,...,P,. The means remain
constant and the variances are determined by the volumetric support and
variance-covariance structure of facies categories over the entire 3-dimensional space of
interest.

The key problem is to determine the variances of facies proportions based on the
volumetric support and scaling laws. Journel and Huijbregts (1978) introduced the
theoretical concepts and formalism of scaling laws. Deutsch and Frykman (1999) gave
further development as well as the discussion on its applications.

Given a certain volumetric support v, the variogram model is expressed as:
7,m)=C) + 3" C)-T'(h)
where Cf is the nugget effect, nstis number of nested variogram structures applied,
Ci (i=1,2,...,nst) are the variance contributions of the i" nested structure used in
the variogram model, and I"(h) the elementary licit variogram function for the

i” nested structure. Both the nugget effect Cf and variance contribution Cf; are
determined by variance-covariance structure and the volumetric support. Given the

reference variogram model at some volumetric support v,, the nugget effect at scale v

can be obtained by:
c?=C’ 1%l
v Vo I _v I
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and the variance contribution of the i” nested structure is obtained by:

¢l =c 1 LOwa)
*1-T'(v,,v,,a")

where f(v, v,a’) is the average variogram at volumetric support v calculated based

on the " nested structure in the variogram model. The vector of ranges in the three
directions
a’=( a;z—major B minors Byt )
corresponding to the i" nested structure and is determined by the volumetric support
via:
a)=d(v,)+av
with av the change volume size (|v|—|v, |) in each particular direction.

The calculation of average variograms I'(v,v,a’) can be done with gammabar
program in Gs/ib (Deutsch and Journel, 1998) using the semivariogram models for point

data. Given the variogram model at some reference volumetric support v,, the above

algorithm is first applied to obtain the point variogram model and then extend to any
desired scale.
The variance of the scaled up proportion at volumetric support v is the dispersion

variance and is the sum of variance contributions at this volumetric support, that is:
2 0 st i
D'(v,Q)=C, + o
where Df (v,Q2) gives the variance of scaled up values at v over the entire area of

interest €.

Another way to calculate the variance of scaled up facies proportion is :

D*(v,Q) = D*(e,Q)~ D*(s,v)
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where
D*(+,Q)=7(Q,Q) and D*(s,)=7(v,)

Taking the entire space of interest as the target population, the above formalism
suggests a function o (v,Q; v, ) for variance (global) of the scaled up facies proportion
for each facies categories at volumetric support v conditioning on the reference
variogram model at some scale v,. Specifically, o} (v,Cv,) is used for the k”

facies category.

The ordinary beta distribution has joint probability density function (joint PDF)

fitted based on the parameter matrix M and vector B that are determined by the means
(m,) and volume dependent variances (O',f ). Therefore the joint distribution of scaled up
facies proportion can be modeled by

Jo(Prsees Px3 M, B) , with

M =M(m,e’(v,Q;v,))and B=p(m,e’(v,Q%v,)) ,
where m is the vector of volume independent means and &°(v,();v,) the volume

dependent variance vector determined by the formalism as discussed above.
4.2 Sample Test

This sample is from the training image as described in Chapter 1. Here the point
scale is the reference scale and the indicator variogram models are as in Table 4-1. The
variances for facies proportions at volumetric supports 2x2x2,4x4x4 ,8x8x8,
16x16x16 and 32x32x32 are calculated using the methods described in the
previous section and tabulated in Table 4-2. The means of facies proportions are constants

for all volumetric support (as given in Table 1-1). Applying the algorithm as discussed in

Chapter 3, the parameter matrix M and parameter vector P are estimated and the
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ordinary beta distribution is built. 500 realizations are then simulated and tested.

Figure 4-1 gives the simulated histograms for F, at various volumetric supports.
Compared with the real histograms as shown in Figure 1-2 above, the marginal
distributions for F, are approximately reproduced by the simulated distributions. The

simulated histograms of other facies proportions also compare well.
The cross plots of real versus simulated joint CDF’s are shown in Figure 4-2. For
various volumetric supports, the cross plots are close to a 45° line, suggesting a

reasonable reproduction of the global joint CDF’s by the simulated realizations.

Table 4-1 Indicator Variogram Models

Facies Categories Variogram Models
SO 2 0.002157533 -nst, nugget effect
1 0.1510273 90.0 0.0 0.0 -it,cc,angl, ang2,ang3
35.0 50.0 30.0 -a_hmax, a_hmin, a_vert
1 0.0625685 90.0 0.0 0.0 -it,cc,angl,ang2,ang3

120.0 1200.0 40.0 -a_hmax, a_hmin, a_vert

Sl 2 0.000437917 -nst, nugget effect

1 0.03941259 90.0 0.0 0.0 -it,cc,angl,ang2, ang3
15.0 30.0 25.0 -~a_hmax, a hmin, a vert

1 0.003941259 90.0 0.0 0.0 =-it,cc,angl,ang2,ang3

40.0 60.0 30.0 -a_hmax, a_hmin, a_vert

S2 2 0.001825218 -nst, nugget effect
1 0.12776526 90.0 0.0 0.0 —it,cc,angl,angZ,éngZ%
35.0 40.0 40.0 -a_hmax, a_hmin, a_vert
1 0.05293132 90.0 0.0 0.0 -it,cec,angl, ang2, ang3
50.0 200.0 50.0 -a_hmax, a_hmin, a_vert
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Table 4-1 Indicator Variogram Models (continued)
S, 2 0.000125341 -nst, nugget effect
1 0.008147192 90.0 0.0 0.0 -it,cc,angl,ang2,ang3
25.0 30.0 14.0 -a_hmax, a_hmin, a_vert
1 0.004261608 90.0 0.0 0.0 -it,cc,angl,ang2,ang3
90.0 500.0 18.0 =-a_hmax, a_hmin, a_vert
S, 2 0.000158536 -nst, nugget effect
1 0.01189023 90.0 0.0 0.0 -it,cc, angl, ang2, ang3
20.0 25.0 16.0 -a_hmax, a_hmin, a_vert
1 0.003804874 90.0 0.0 0.0 -it,cc,angl, ang2,ang3
200.0 500.0 18.0 -a_hmax, a_hmin, a_vert
Table 4-2 Estimated Variances
Dy b P by Ps
2x2x2 0.2214 0.03740 0.1566 0.01327 0.01425
4x4x4 0.2130 0.03410 0.1496 0.01240 0.01306
8x8x8 0.1913 0.02590 0.1316 0.01020 0.0101
16x16x16 | 0.1531 0.01337 0.09950 0.006863 0.005626
32x32x32 10.0914 0.004157 0.04953 0.002839 0.001296
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Chapter S An Application of Multiscale Facies Model

5.1 Fitting the Local Multivariate Distributions of Facies Proportions

In the previous chapter, the global multivariate and multiscale distribution of facies
proportions is built as a function of means, volumetric support and a reference variogram
model for each facies category at some volumetric support giving the variance-covariance
structure. The volumetric scale is applied to infer the global distribution at a different
volume support. The establishment of the location specific multiscale distribution, though

more challenging, is often the goal. Similarly, it can be estimated by the local means and

- local variances. Supposed #, points and », blocks are known, various Kriging

approaches can be used to get the estimated local means of facies proportions based on
the block and point data. Fitting the local variances is a challenge. One choice is the
kriging variances.
1) In simple block kriging algorithm with global means, the kriging estimator is:
Pyt w)=3"" Ay (e, WI(k,u,)+ 37 Agy(k,0)p, (k,u,)
=20 A e w) = 300 Ay (kW)

and the kriging system:

Za Ay B W)C(k,u, 0, )+Zﬂl1 Agr, (e )C (k,v,,u, )=C (k,V,u,)
a,=12,..,n

Zal_l Aoy e w)C e m, v, )+ D A (&, wC (k,v,,v,)=C (k,V,v,)
B, =L2,.,n,

with kriging variance:
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oy (k,u) = Ck,V (), V() ->"" _ 4,,.(k,w)C(k,u, ,V(w)

" A w)C (kv V(@)

2) In simple block kriging with locally varying means, we have:

prwy=3" A,.(k,wi(k,u )+an Agy (kW) p, (0 )
+[1-2" Ao (kyu) - Z A (R, W] ok, u)

and

Za Ay, W)C (K, ua,ua2)+z Ay (ks 0)C (K, vg,u,)=C (k,V,u,)
a,=12,..,n

2o P WO, v )+ D0 Ay (h,w)C (K,v,v5)=C (KV )
B, =L2,..n,

with kriging variance:

o, (k,u) = C(k,V (u), V(u))—zn1 L Harelk, w)C(k,u, ,V (u))
=3 Ak wC (kv V(W)

3) The ordinary block kriging estimator takes the form:

p;(k’u) =Z: lﬂ’aVc(k’u)I(kﬁua)+Z:_lﬂﬂVv(kﬂu)pv(kiuﬂ)
with 1-"" 2. (k,u)— an Ay, (k,0) =0

and
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Z Aap (e W)C(k,u, u,, )+Z A (B, WC (k,vsu, )+, =C (k,V,u, )
a,=12,..,n

Ay (R W)C (RS0, ’Vﬁ2)+z Agpn (K, u)C (k, VgoVp )t il = C (k,V,vy)
B=12,..,n,

D i W)+ D% A (k) =1

with kriging variance:

oy (k,w)=C(k,V @),V @) -2." _ 4, . (k,w)C(k,u, ¥ (w)
=2 2 A (e wC (kyvg V@)= 44
Each equation for kriging variances is in fact a difference between two parts. For
example, in simple block kriging, the kriging variance is the difference between
C(k,V (w),V (w))
and
ot Ay e WC ey, V() 4D Ay, (k,W)C(, vy, V (W)

The first part is the block average covariance over the estimated block, and depends only
on the target volumetric support. The second part is the sum of variances and block

average covariances of the data points and data blocks with kriging weights. In ordinary

block kriging formalism, Lagrange constant 2 is also subtracted from the block average

of covariances. Both the simple and ordinary block kriging variances can be considered a
function of desired volumetric support, the univariate proportions, local data and
variograms. As the volumetric support increases, the block average covariance will
decrease and thus tend to decrease the kriging variances. The second part of kriging
variances contains uncertainties based on the available data set. It is possible that the

kriging variances either overestimate or underestimate the true variances. Further
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discussion will be done in our sample studies in sections below.
5.2 Model Description

Two typical cases in multiscale facies modeling are shown in Figure 5-1. The left of
Figure 5-1 illustrates a regular grid, where the point data and facies proportions of regular
blocks at a certain volumetric support (say, the bigger blocks) are given and facies
proportions of regular blocks at some other volumetric support (say, the smaller) are
estimated. The right of Figure 5-1 shows the case of irregular grids where the point data
and the facies proportions over blocks 4 and B are known, while facies proportions
over blocks C,DandF are desired. A general description of the multiscale facies
model is suggested as follows:

The‘following data are supposed known:

o Exact facies category at each data point.

e TFacies proportions:

- Facies proportions for each regular grid data block over entire area of
interest. Or

- Facies proportions for each irregular block, as well as the (x,y,z) coordinates
at all the finest grid nodes within the block.

Blocks to estimate:

¢ Regular blocks, block grid structures are given
e Irregular blocks, (x,y,z) coordinates at all the finest grid node within the

block are supposed to be known.

Based on the kriging proportion p; (k,u) (considered as mean proportion for a
local block) and kriging variance, multivariate distributions for facies proportions
(B,...,P) are built applying ordinary beta distribution.

In order to better honor the spatial relationship of facies proportions, the sequential
simulation approach is applied, where the local multivariate distribution of each desired
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location is built conditioning on previously simulated blocks that are the most related
covariate with current estimated/simulated block. Here all the blocks adjacent to current
estimated block are considered. In a 3-dimensional space that is regularly gridded, each
block has 26 adjacent blocks (either with common edge or common corner point), except
those at the corner or on the boundary of the space. Either all or some of the previously
simulated adjacent blocks can be used in the sequential simulation and the following
steps are applied:
1) A random path is built to reach all the blocks over the entire space of interest
2) For the first block selected, local multivariate distribution is built based on the
kriging estimated means and kriging variances from the original data and a
realization is simulated.
3) For any subsequent blocks, all or some of the adjacent blocks may be used for
block kriging. A realization is drawn.
4) step 3) is repeated until all blocks are randomly visited.

5) A number, say 100, of realizations are simulated following steps 1) to 4).

5.3 Sample Studies

Here the facies category training image described in Chapter 1 will be considered.
The examples are limited to cases where block data are collocated with the block to be
estimated. The indicator variogram models are fitted based on the point data from the

training image and are as shown in Table 4-1 in Chapter 4.

5.3.1 Small Sample Cases

A small sample is drawn from the training image. Suppose point data are available at
locations (4,4,4), (4,8,4), (8,4,4), (8,8,4), (4,4,8), (4,8,8), (8,4,8), (8,8,8) and the facies
proportions are to be estimated over blocks of scales 2x2x2, 4x4x4,8x8x8§,

16x16x16 and 32x32x32, but with the same upper corner at (4,4,4). Simple block
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kriging algorithm is used and Tables 5-1 and 5-2 give the block average covariances and
kriging variances. Figures 5-2 and 5-3 show the block average covariances and kriging
variances along with volumetric scales. The block average covariances decrease as the
volumetric scale increases. The kriging variances also decrease but fluctuate based on the
kriging weights determined by the variance-covariance structure as well as the spatial
relation of the data.

Table 5-1 Block Average Covariances

Scale pO pl p2 p4 PS5

2x2x2 0.2052 0.04002 0.1736 0.01153 0.01450

4x4x4 0.1968 0.03672 0.1666 0.01066 0.01332

8x8x8 0.1801 0.03032 0.1526 0.008977 0.01104

16x16x16 0.1387 0.01646 0.1180 0.005261 0.006066

32x32x32 0.07792 0.005058 0.06511 0.002134 0.002242
Table 5-2 Kriging Variances

Scale p0 pl p2 p4 ps

2x2x2 0.08216 0.02049 0.06472 0.006149 0.007311

4x4x4 0.04100 0.008482 0.03140 0.002763 0.002973

8x8x8 0.08042 0.01106 0.06729 0.003596 0.004111

16x16x16 0.06119 0.004966 0.05089 0.001962 0.001814

32x32x32 0.02688 -0.0000823 0.02153 0.0003268 0.0001374

A further look at the fit is taken from the following small samples regarding the
estimation of one block at scale 16x16x16 with the upper corner at (0,0,0) using 5
sample points at different locations. Group 1) of data points are collocated or closed to
the estimating block, say at: (4,8,4), (4,8,8), (20,12,12), (24,16,8), (16,16,24). Group 2) of
points are farther, located at (32,64,32), (48,48,64), (36,64,48), (64,48,24), (16, 48, 24).
Group 3) of data points are even farther, located at (96,64,32), (72,96,32), (64,84,28),
(72,64,28) and (72,48,28) Also, collocated 32x32x32 block data are used in the block
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kriging.

Tables 5-3 to 5-4 give the kriging matrices (right-hand-side “r” and columns “a” of
upper triangle of the left-hand-side), kriging weights, kriging variances for these small
samples. As the data points located farther to the estimated block, the values of
corresponding terms in the kriging matrix are getting smaller and smaller except for the
diagonal terms, the variances, which remain constant at a fixed volumetric support under
a stationary semivariogram model. The Kriging weights reduce as the distances of data
points from the estimated block increase. The Kriging variances are complicated, for

some facies categories, they are increasing among these three groups; for other facies

categories, they are decreasing.

Table 5-3a  Kriging matrix for facies S,

Group 1

i( 1)=0.1436 a= 02136

r( 2)=0.1292 a= 0.174202136

r( 3)=01257 a= 0.09720.0818 0.2136

r( 4)=0.1029 a= 0.0794 0.0748 0.1606 0.2136

r( 5)=0.0743 a= 0.0501 0.0302 0.0959 0.0609 0.2136

R( 6)=0.0779 a= 0.0650 0.0539 0.0956 0.0833 0.0977 0.0779

Table 5-3b  Kriging matrix for facies S;:

Group 2

( 1)=00341 a= 02136
r( 2)=0.0327 a= 0.184702136

i( 3)=0.0197 a= 0.06670.0823 0.2136

i( 4)=00146 a= 0.0692 0.08260.1644 0.2136

i 5)=0.0113 a= 0.0329 0.0399 0.0987 0.0878 0.2136

r( 6)=0.0779 a= 0.0586 0.0586 0.0338 0.0302 0.0252 0.0779
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Table 5-3¢ ~ Kriging matrix for facies S :

1( 1)=0.0084 0.2136

[

r( 2)=0.0084 a= 0.12620.2136

Group 3 r( 3)=0.0108 a= 0.06820.12270.2136

i 4)=0.0054 a= 0.05270.08800.1248 0.2136
r( 5)=0.0012 a= 0.05310.0599 0.0365 0.0447 0.2136

r( 6)=0.0779 a= 0.01660.0165 0.0201 0.0139 0.0058 0.0779

Table 5-4 Kriging weight for facies S,

Point 1 Point 2 Point 3 Point 4 Point 5 Collocated block
Group 1 0.33939 | 0.15489 | 0.22266 | -0.00188 | -0.01806 | 0.36111
Group 2 -0.06037 | -0.09068 [ 0.00545 [-0.02216 | -0.04806 | 1.13538
Group 3 -0.02466 | -0.00126 | -0.02410 | -0.01861 | -0.00740 | 1.01562
Table 5-5 Kriging variances
p0 pl p2 p4 p5
Group 1 0.07340 0.009464 0.06275 0.002758 0.003153
Group 2 0.06451 0.01137 0.05507 0.002963 0.003685
Group 3 0.06118 0.01140 0.05289 0.003102 0.003727

5.3.2 Big Sample Case

The example below represents a 256x256x32 space drawn from the training
image. The following data are known:
1) facies category ateach 4x4x4 grid node
2) facies proportions over each 32x32x32 block in the entire space, only the
block data collocated with the estimated block are used for each of the desired

estimated block.
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Based on the above, the facies proportions over each 16x16x16 block are

estimated using both block kriging and sequential simulation approaches.
5.3.2.1 Block Kriging Estimations

Both simple block kriging and ordinary block kriging methods are used to estimate
the means and variances of facies proportions p, (k,u) for each local block. Figures

5-4 to 5-12 give the results.

Cross plots of kriging facies proportions versus real values (Figures 5-4 and 5-5) lie
around a 45° straight line, suggesting a good estimated result by both simple and ordinary
block kriging methods. The histograms of kriging estimated facies proportions compared
with the real histograms (Figures 5-6, 5-7) show that global marginal distributions are
reproduced by the kriging results. The real global joint CDF’s are reproduced by both the
simple kriging and ordinary kriging results (see Figure 5-8, the cross plots kriging
estimated joint CDF’s versus real joint CDF’s). The scatter plots of residuals (kriging
value minus the real values) versus kriging results in Figures 5-9 and 5-10 are evenly
spread and are surrounding a horizontal line at zero, Figures 5-11 and 5-12 give
distributions of residuals, showing that both ordinary block kriging and simple block

kriging output reproduce real values well.
5.3.2.2 Sequential Simulation

One hundred realizations are simulated. As discussed above, the kriging variances
may either overestimate or underestimate the variabilities of local facies proportions. The
real local block variances are also unknown. One important reference is the variograms of
the scaled up proportions. Let’s look at the reproduction of the semivariograms by the
simulated realizations (Figure 5-13).

The shapes of semivariograms are approximately reproduced by the simulated

realizations but the values are higher than the true reference results at all lag distances
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and for all facies categories. This may suggest a systematic overestimation of the
variances. In order to solve this problem, the target local variances are reduced to some
fraction of the kriging variances. Based on the shapes of the simulated semivariograms,
we assume the real local variances of facies proportions are overestimated by the kriging
variances to a similar extent over the entire area of interest. Two approaches are tried to

adjust the local variances:
In the first approach, the derived global variances D;(v,Q) are used. It is
calculated from the variogram models at the reference scale using scaling laws, as

described in Chapter 4. The global variances from a simulated realization &7(v) are

S -D0.O)|

compared with D’ (v,Q). When &2(v)> D?(v,Q) or when |
p  ( ) (V) k( ) D,f Q)

D} (v,Q)

greater than some given level, say 0.05, use factor f,(v) =——;—(—)—
G, (v

to adjust the

target variances and redo the sequential simulation. This procedure is repeated until the
simulated global variances are closed to the derived values D,f (v,Q0) . But this method
does not lead to a good fit in this sample.

. . n
In the second approach, a  series of fraction values ——
m

(m=2,3,..,10; n=12,...,m.) are applied as a variance reduction factor to each facies
- category, where the factor for one facies category may be different from others. The

simulated variograms are compared with the reference variograms. Finally in this
1
example, the factor with value of r applied to all facies categories leads to a pretty

good result. Figures 5-14 to 5-19 give the final results based on simple block kriging with
locally varying means (similar results are obtained from simulation based on ordinary
kriging after adjusting the kriging variances).

The cross plots (Figure 5-14) of simulated results versus real values are around the

45° line; the global marginal histograms are reproduced (Figure 5-15); also cross plots of
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simulated versus true joint CDF’s (Figure 5-16) show a good reproduction of the
multivariate distribution by the simulated realizations; residuals (simulated value minus
true) plots and residual histograms show they are centered at zero and has a reasonable
distribution, suggesting a good fit by the simulated realizations (Figures 5-17 and 5-18).

The above simulated histograms show that that the global variances of the
proportions of all facies categories are reproduced by simulated realizations. Figure 5-19
gives the reproduction of semivariograms. Here, after the adjustment of kriging variances,
the variograms are well reproduced by simulated realizations.

Test of Accuracy is performed on the simulated distributions. For a probability
distribution (treated as continuous random variables), accuracy and precision are based on

the actual fraction the true values falling within symmetric probability intervals of

varying width p*. A probability distribution is accurate if the fraction of true values
p ty

falling in the p* interval exceed the p* forall p* within [0,1]; the precision of an
accurate probability distribution is measured by the closeness of the fraction of true
values to p*for all p* within [0,1] (Deutsch, 2002). One way to test the accuracy and
precision is to check the distribution of the true quantile, the cumulative probability
associated to each true value based on simulated realizations. That is,
F, (x) =Prob[F, <x] for real facies proportion F, at each local block conditioning to
the simulated realizations. A probability distribution is accurate and precise if the
cumulative probabilities associated to true values follow a uniform distribution (Deutsch,
1996).

Figure 5;20 gives the histograms of the cumulative probabilities (shown on
horizontal axis) of true values based on the simulated realizations using sequential
simulation from simple block kriging. The frequency at cumulative probability 1.0 is

much higher than at those other values. We observed that most cumulative probability

values 1.0 occur at the point where the true facies proportion is 1.0. Excluding those
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points with true facies proportion equal to 1.0 and plotting histograms of the cumulative
probabilities of the remaining points, approximate uniform distributions are obtained as
shown in Figure 5-21. Such results suggest that the probability distributions from

simulated realizations are accurate for facies proportions except those extreme values.

Figure 5-22 shows the true and simulated maps of facies proportion F, in an

arbitrary slice; the spatial distribution is reproduced.
5.3.3 Discussion

Both simple and ordinary block kriging algorithms work well in estimating the
facies proportion in desired locations at certain volumetric support. In the simulation
algorithm, the building of local multivariate distribution of facies proportions needs a
further adjustment on the kriging variances. In the above sample study, we observe that
the shapes of the simulated semivariogram based on the kriging variances are above and
approximately parallel to the real reference semivariograms. Thus we assume the real
local variances of facies proportions are overestimated by the kriging variances to a
similar extent over the entire area of interest. The true semivariograms are used as a
reference and this leads to a factor (about 1/6) applied to decrease the kriging variances.

In practice, the real semivariograms of the facies proportion at the desired
volumetric scale are usually unknown. The variogram models can be built based on the
semivariograms at the reference scale following the scaling laws, as described in Chapter
4, and can be taken as a reference to adjust the kriging variances, following the similar
method as using the reference variograms. In case a common factor is not suitable for all
locations, further information is required to estimate or correct the local variances in
order to fit the ordinary beta distribution for each local block. Correctly estimating the
local variances remains a tricky question. No general solution is available by now and

further research is desired.
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S.4 Summary of Results

Block kriging approaches using simple kriging and ordinary kriging algorithms are
efficient in estimating the facies proportions at unknown block locations of desired
volumetric support based on the data of different scales, including point data and
collocated block data of difference volumetric supports.

Ordinary beta distribution is efficient in fitting the multivariate distribution of facies
proportions for any unknown local blocks and thus can be applied in sequential
simulation to build the multi-realization maps of facies proportions provided the means
and variances of facies proportions can be obtained.

One big challenge in applying the ordinary beta distribution in multivariate facies
modeling is how to determine the appropriate local variances to build the distribution.
Kriging variances are one important and reasonable reference and are determined by the
volumetric supports, variance-covariance structure and spatial distribution of data. But
kriging variances alone do not lead to a good fit. Further adjustments are still required

based on variogram models or other information.

Figure 5-1 Multiscale facies models
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Figure 5-13 Semivaribgrams reproduction from simulated realizations, based on simple block
kriging with locally varying means. Blue and yellow dash-point curves give, respectively, the real
variograms in X and Y directions. According to the variogram maps, X direction is the major
direction of continuity in the training image. The light blue and red dash curves give, respectively,

the simulated variograms in X and Y directions.
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Figure 5-14 Simulated results versus real values, based on simple block kriging

with locally varying means
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Figure 5-15 Global histograms from simulated realization, compared with the

real, based on simple block kriging with locally varying means
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simple block kriging with locally varying means
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Figure 5-17 Residual (Simulated value — real value), based on simple

block kriging with locally varying means
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Figure 5-18 Histograms of Residuals (Simulated value — real value), based on

simple block kriging with locally varying means
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Figure 5-19 Reproduction of semivariograms by simulated realizations, based on simple block
kriging with locally varying means. Blue and yellow dash-point curves give, respectively, the real
variograms in X and Y directions. According to the variogram maps, X direction is the major
direction of continuity in the training image. The light blue and red dash curves give, respectively,

the simulated variograms in X and Y directions.
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Figure 5-20 Histogram of cumulative probabilities associated with the real facies proportions

based on the simulated realizations (based on simple block kriging with locally varying means)
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Figure 5-21 Histogram of cumulative probabilities associated with the real facies
proportions based on the simulated realizations, the points with facies proportion

1.0 excluded. (Based on simple block kriging with locally varying means)
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Figure 5-22 True versus simulated maps of facies proportion P,
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Chapter 6 Further Discussions on Multiscale Facies

Distributions

6.1 Proportions and Probabilities

The key question in multiscale facies modeling is to estimate and simulate the

values and the three dimensional distribution of the facies proportions
1
p=p, (0K =7 [1(u,. kv .
v

For any given local block at some volumetric support, the values of proportions p, ’s,
(k=12,...,K) are unknown and are estimated or simulated. Various kriging approaches
have been applied and the kriging estimates, say p,:(,,) ’s are treated as the estimated

means of facies proportions for facies categories S, ’s. This is reasonable because they
are unbiased. For example, the simple kriging estimator has the form:

p;,(V) =p;(k,ll)=znl_l Ao (k@) (K, u, )+Zn2 A, (W) p, (k,u,)
+[l_z - Ao (R ) — z ’?'/;Vv(kau)]m(kau)

where m(k,u) denotes locally varying mean for variable P, and vthe scale support of

block data. The expected value of p,:(,,) can be derived:

ElPigy)= 2, Ay R WEL (e u )1+ 270 Ay (kW ELP, (K0, )]
+ [1 - Z -1 aVo (k ll) Z ]’ﬁVv (k7 u)]m(k, “)
=2 A (o wym(e,u)+ " g, (k,wym(k,u)

=" Agya (e u) - an Ay (s w) Ik, w)
=m(k,u) = E[F,]
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That is, p;(,,) is an unbiased estimator of the local means of facies proportion F,.

On the other hand, we should realize that in most cases, it is not an estimator of the
facies proportion itself. For example, at point scale the means of facies proportions take

some value within interval [0,1] while the exact facies proportions are either 0 or 1. But

usually, E[ p,:(_)] does not equal 0 or 1. In fact, such an estimator contains information
in two distinct and equally important aspects: 1) the facies proportion p,(u,k) itself

and 2) the probability that the facies proportion variable P, take some value. The
information of these two parts is often combined.

Given some volumetric scale V', there is a set of possible values {0,%,%,...,1.0}

~ for the facies proportion. Using x q=-Iq7 , 4=0,1,...,V to denote the possible values of

facies proportions at volumetric support V', the expected value of facies proportions

have the form
vV
E[R]=),,  Prob[B, =x,]x, .
This is a linear combination of all possible values with the weights to be their

probabilities and p,:(,,) is an unbiased estimator of this combination.

Now, focus on just one facies category S,. Consider the facies proportions at two

extreme volumetric supports ¥ =0 and V = o. The first case represents the point scale
and the second case can be regarded as the entire area of interest, V' =C2. At a very large

scale, there is exactly one unit in the population, that is, the entire space. All other values

of x, have the probability O except one, say X with probability 100% . In this case,
E l: p,:(,,)} =E[F]= 100%-xq. and p;(w) or p;(m is the estimate of this facies
proportion value. At the point scale, the facies proportion P, (u,k)is the same as the

facies indicator I(u,k) and takes exactly O or 1. There is a large population of points
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and different points might have different indicator values.
Here E| p;y, |= E[B,1=Prob[B,,, =1.0F1.0 . p;, is therefore the estimate of
probability Prob[ 7, ,,) =1.0]. This is in fact the probability that facies S, occurs at the
point. These two extreme cases are relatively simple and clear. At other volumetric scales
0 <V < Q, the probabilities and the proportions are mixed. Figure 1-5 in Chapter 1 gives
the histograms of proportions for facies S, at various volumetric supports. Note that at
scales 2x2x2 and 4x4x4, about 80% or 90% of the real facies proportion values

are either O or 1. In these cases, p;(,,) can give a very good estimation about probability
that facies category S, occupies the whole block and the probability that no facies

category S, occurs in the block. At scale 8x8x8, 60% percent of facies proportions

take values of either 0 or 1. At scale 64x64x64, about 60% of the real facies
proportion values go between 50% to 70%, surrounding the means of the facies
proportion 66.48%. Similar observations are true for other facies categories and other
training images.

The uncertainty also depends on the volume. ‘At point scale, there is a large
population of points taking values of either 0 or 1, each has some probability. The
uncertainties, that is, variances of estimated facies proportions, are the largest.. As scale
increases, a series of facies proportion values occur but their variance decreases. At a very
large scale V' =(, there is exactly one unit in the population and no uncertainty of this

type. This can be illustrated by dispersion variance defined as:
1
D'V, Q)= E{FZ [Bey = Proy ]2} .
Here p,q,is the means of facies proportion F,,,over the entire area of interest. At

point scale, F,,,=F,,, takes either 0 or 1, while at various other scales V' # 0, more

values of F,,, are larger than 0 or smaller than 1 and getting closer to the means. For
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any fixed global mean p, . Z By — Prey F is the largest when ¥ =0and will

decrease as V increases.

Another source of uncertainty comes from the modeling and estimating approach
itself. Taking as an example the simple kriging algorithm, just as discussed in previous
chapter, the kriging variance is the difference between two parts. The first part is the
block average covariance over the estimated block and is dependent on the volumetric
support. The second part is the sum of variances and block average covariances of the
data points and data blocks with kriging weights and is determined by spatial relationship
of the data with estimated block, as well as the variance covariance structure used. As the
desired volumetric support increases, the block average covariance decreases and thus

tends to decrease the kriging variance and thus decrease the uncertainty.

6.2 Facies Proportion Distribution Conditional on Local Data

The facies proportion distribution of a block is conditional on the information (data)
available regarding this block. In the training image in this thesis, for block of each
desired volumetric scale, there is a global distribution as described in Chapter 1 and the
marginal CDF’s are as listed in Figure 6-1. When there is no local information, the block
is treated as one unit among the population following the global distribution. Based on

some data regarding that local block, the conditional distribution changes. In case of

perfect knowledge, we are 100% sure that the facies proportion for category .S, is

x5 =q7, for a unique value q* within 0,1,...,7 and distribution of P, becomes

0 ‘v’x<xq.
E (x)=Prob[P. < x]= .
¢x) £, <] 1 Vxeq.

The shape is shown in Figure 6-2. Different blocks might correspond to different values

of X but for a given block, this value is unique.
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The above paragraph discusses two extreme cases: 1) there is no local information

about a block; 2) full information is available. Usually, some information is available but

not full. In this case, the possible value of facies proportion for category S, is not unique

but is part of the population with the unconditional global distribution. Here are three

examples: 1) one point known: suppose among the regular grid in the training image, it is
known that category S, occurs at the north-west top corner of a block; 2) two points
known: suppose the facies category at the middle of the block is also S, ; 3) three points

known: besides on 1) and 2), suppose it is known that the facies category at the south-east

bottom comner is ;. Figures 6-3 to 6-5 give the marginal CDF curves for P, at

different volumetric scales and Tables 6-1 and 6-2 give the means and variances. Also

Figure 6-6 gives the marginal histograms.

Table 6-1 Means of R) conditional on the points known

2x2x2 4x4x4 8x8x8 16x16x16 | 32x32x32 64x64x64
3 points 0.9789 0.866 0.7966 0.7487 0.7958 0.6802
2 points 0.9956 0.9814 0.9565 0.8951 0.828 0.7295
1 points 0.9403 0.9262 0.8616 0.7731 0.6989 0.6600
Table 6-2 Variances of P() conditional on the points known
2x2x2 4x4x4 8x8x8 16x16x16 | 32x32x32 64x64x 64
3 points | 0.004476 | 0.027656 | 0.023378 0.03052 0.028527 0.010588
2 points 0.00117 0.004436 0.00996 0.023348 | 0.028968 0.009722
1 points 0.0147 0.038064 | 0.063303 | 0.073984 | 0.056787 0.020909

The following properties are observed:

a) At small scale, the histograms often show a unimodal shape rather than bimodal as in

global distribution, but with a stronger skew.

b) The means are no longer constant. At small scale, means get close to either 0 or 1

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




while at large scale, they converge to the global means

c) The variances decrease as more points are known, but they are not strictly decreasing.
As the local data increase, the mean of conditional distribution of facies proportion
will get closer to the truth and the uncertainty will decrease.
Ordinary beta approach can also be applied to fit the multivariate distribution

conditional on the data if the means and variances can be obtained. Figure 6-7 compares

the simulated histograms with the true in some cases for facies proportion F, and shows

a well reproduction of the distributions.
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Figure 6-1 Global distributions of Po (based on no local information)
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Chapter 7 Conclusions and Future Works

The multivariate distributions of facies indicators and facies proportions are volume
dependent and determined by mean, the volumetric support and the variance-covariance
structure of facies categories within the domain of interest. The global means of facies
proportions are independent of the volumetric support while the variances of the facies
proportions decrease with an increase in the volumetric support, Due to constant sum
constraints, a negative covariance often occurs between the proportions of two facies
categories within the space of interest.

Logratio transformation of facies proportions will guarantee the satisfaction of order
relation constraints when applied in kriging or other estimation approaches. However,
zero-proportions will lead to problems. Furthermore, the nonlinear nature of logratio
transformation always leads to geometric average results when back transforming an
arithmetic average of logratio values thus leading to significant bias when it is used to
estimate the mean that is an arithmetic average.

The beta distribution and the drdinary beta distribution are shown to efficiently fit
the marginal and joint distribution of facies proportions at different volumetric supports.
Block kriging approaches using simple kriging and ordinary kriging algorithms estimate
the facies proportions at unsampled block locations based on the data of different scales,
including point data and collocated block data of difference volumetric supports.

One big challenge in applying the ordinary beta distribution in multivariate facies
modeling is how to determine the appropriate local variances to build the distribution.
Kriging variances are one important and reasonable reference and are determined by the
volumetric support, variance-covariance structure and spatial distribution of data. But
kriging variances tends to overestimate or underestimate the local variances. Further
adjustments are required based on variogram models or other information.

Several factors determining the uncertainty of facies proportions include: 1)
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volumetric support, 2) spatial distribution of available data and variances-covariance
structure within the entire area, 3) modeling and estimating approach itself and 4) amount
of local data and local information available. In general, at a larger volumetric support, or
having more local data or local information available, uncertainty tends to decrease.

The following future works are desired:

First, as discussed in Chapter 5, further research is needed on estimating and
adjusting the local variances which are required to fit the local facies distribution. Kriging

variances are a reference in estimating the local variances but further adjustments are

needed. Supposed there is a factor f,(u,v)such that o} (u,v)= f,(u,v)-67(u,v),
where o> (u,v) is the true local variance for facies category S,and ol (u,v)is the

kriging variance, the factor f, (u,v) may depend on i) the location of the estimated block,

ii) the magnitude of kriging estimate, iii) the conditioning data, iv) the multivariate
distribution of the facies proportion and v) other factors.

Second, the research in this thesis is based on analysis and process on the training
images. Application in industrial and production practices is still subject to further

development and test.
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