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Abstract 

Large synchronous machines produce the majority of electric energy in Canada. 

To improve quality of the electric energy, manufacturers skew stators of these 

machines, Skewing causes axial shifting of magnetic fields, so that power 

losses in these machines differ from the losses in unskewed machines. Numeri­

cal methods are incapable of analyzing a large skewed machine in a reasonable 

time. To evaluate losses, fast simulation tools have been needed to aid design­

ers of skewed synchronous generators at a preliminary stage of design. 

This work is devoted to analytical modeling of harmonic magnetic fields, 

harmonic currents and high-frequency energy losses in large synchronous gen­

erators with skewed stators. A fast and accurate simulation tool has been 

developed on the basis of the model; it can be used for preliminary design of 

a skewed synchronous machine. 
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Chapter 1 

Introduction 

Large synchronous machines may be found in a range of applications, either 
as generators or as large synchronous motors. Electric power generated using 
hydro electric plants is a large component of the electricity market; it com­
prises 59.6% of the electricity produced in Canada [1, 2] and 16.5% worldwide 
[3]. In 2005, large-scale hydro electric projects employing large generators pro­
duced 91.9% of the total hydro electric energy in the world [5]. These plants 
commonly use large low-speed salient-pole synchronous generators. Large syn­
chronous motors have higher efficiency comparing to induction motors and are 
preferred in applications that require high horsepower and low speed, such as 
water pumping, flour mills, rubber mills and mixers, crushing and grinding [6]; 
they are sometimes used as traction motors and as synchronous condensers for 
power factor correction. 

In some designs, manufacturers skew stators of large synchronous machines. 
The primary effect of skewing, or tilting, slots of a generator is improvement 
of the output voltage waveform. If harmonics exist in the voltage, they in­
duce harmonic currents in conductors of electrical cables and loads; harmonic 
currents can cause excessive heating and premature aging of insulation. In mo­
tors, the induced harmonic currents create magnetic fields that can produce 
parasitic pulsating torques, resulting in a difficulty to start a motor or mechan­
ical oscillations in a turbine-generator or a motor-load system [7]. Harmonic 
currents in power conversion apparatus can induce electric and magnetic fields, 
which impair performance of communication systems, metering equipment and 
data processing equipment. Harmonics in the input voltage can cause iron 
losses in transformers and motors, resulting in additional heating. The joule 
and iron losses increase with increase of frequency, so that higher-frequency 
harmonics may be more important to avoid than lower-order components [7]. 
Manufacturers specify voltage harmonic output of a generator in a form, for 
example, of a telephone interference factor (TIF), which rapidly increases with 
frequency [7]. To be competitive in the market, manufacturers strive to pro­
duce machines with an output voltage waveform close to a sinusoid, sometimes 
by skewing. 

Another effect of skewing is reduction of audible noise in machines pro-
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duced by magnetic tension force between the stator and the rotor slots. In 
most machines, the frequency of this noise is in the range of 700 Hz to 1400 Hz, 
where the human ear is most sensitive [8]. F. W. Carter emotionally described 
the effect of the noise on a human being [9]: "A persistent and penetrating 
sound, variously described as singing, howling, and whistling, which accom­
panies the working of certain rotating machines... The untoward character of 
the noise irritates the operator and his neighbours, whilst its erratic incidence 
has long perplexed the designer; for no sure means has hitherto been devised 
either for its avoidance or remedy. Designers are indeed often reduced to 
making tentative changes with the object of alleviating or curing the trouble, 
sometimes to the detriment of a machine in other respects". However, while 
skewing reduces the voltage harmonic spectrum and noise, it complicates the 
analysis of the machine performance. 

Skew causes axial variation of magnetic flux density harmonics in the air 
gap between the rotor and the stator, affecting high-frequency losses, or stray 
losses. Stray losses in synchronous machines are the losses due to harmonic 
magnetic fluxes in iron and harmonic currents in windings and iron. Because 
they cannot be measured or calculated from measured quantities, stray losses 
are estimated using the following methods: 

• calculating as 0.2-0.5% of the input power of a machine, according to 
IEC 34-2 or IEEE Standard 112 [10, 11, 12] 

• using the electric-input method according to IEEE Standard 115-1995 
[13]. The total loss curve consists of friction and windage, core and 
short-circuit losses. Extrapolation of the curve to zero armature current 
gives a value of loss in open circuit; this value corresponds to the sum 
of the friction and windage and core loss. "By subtracting this sum 
from the total loss at any armature current, the short-circuit loss for 
that armature current is obtained. The short-circuit loss is the sum of 
I2 Ra and stray-load losses. The stray-load loss is then determined by 
subtracting the armature I2 Ra loss calculated for the temperature of the 
winding during test" [13]. 

• using empirical formulas, based on test data from previously manufac­
tured machines. 

It has been noticed that losses are influenced by skew; however, these phe­
nomena have not been well understood. Utility companies charge manufac­
tures as much as $US 2000-5000 for lkW of extra losses, so that manufacturers 
are concerned with better understanding of causes for losses and techniques 
for their evaluation. The existing methods described above may be unavail­
able or unreliable at the design stage, and they do not provide information 
about causes of stray losses and impact of design variables on stray losses. 
Investigation of literature shows abundance of analytical means to evaluate 
performance of skewed induction machines, but shortage of those for skewed 
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synchronous machines. Finite element analysis (FEA) can be used to verify 
the performance of skewed synchronous generators, but simulation times are 
prohibitive at the design stage, due to the large size of these machines. There 
is a clear need for new methods that would quickly analyze stray losses in a 
large skewed synchronous machine. Designs for machines could be improved if 
there was a tool available to provide a detailed picture of losses, and the cost 
of a skewed synchronous machine could be reduced. 

A combination of analytical methods with FEA of an unskewed machine 
has recently become an attractive choice in machine analysis. While mathe­
matical descriptions provide fast evaluation, data obtained with FEA provide 
accuracy and can be reused for a number of simulations. The combined ap­
proach has also been adopted in this work. 

The goals of this work are to 

• develop analytical models to predict performance of a large synchronous 
machine with a skewed stator 

• develop software that evaluates losses using these models 

• investigate the impact of design changes on stray and total losses 

The thesis is structured as follows. Chapter 2 outlines construction of a 
salient-pole synchronous machine with a skewed stator, describes integral slot 
and fractional slot windings and shows calculation of the electromotive force 
(emf) in coils of these windings. Harmonic skew is defined, and expressions for 
harmonic voltages in the stator winding and for the harmonic skew coefficients 
in the skewed magnetic field are obtained. This background information is 
used in the following chapters. Chapter 3 reviews literature with respect to 
evaluation of magnetic fields and power losses in electric machines; some of the 
reviewed models are used to develop the analytical model. In Chapter 4, the 
air gap permeance and the air gap mmf harmonic series are modeled, including 
the mmf component formed by the armortisseur bar currents, and the air gap 
flux density is predicted by means of a permeance model. The obtained air gap 
flux density distribution serves as an input for modeling of flux distribution in 
the stator iron and evaluation of stator iron, pole face, damper bar and inter-
bar losses in Chapter 5. Chapter 6 is devoted to validation of the analytical 
model, developed in Chapters 4 and 5, based on provided measurements. The 
impact of skew and inter-bar resistance on the loss components, the total loss, 
and the armortisseur current distribution is investigated in Chapter 7. Chapter 
8 states contributions to the field, draws conclusions and recommendations on 
loss minimization. 
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Chapter 2 

Construction of a salient-pole 
synchronous machine 

This chapter is devoted to the basic construction of a low-speed, salient pole 
synchronous machine and to details of construction that are relevant to this 
work, such as construction of integral and fractional slot stator windings, skew. 
It is shown that a properly constructed double-layer stator winding reduces 
higher-order harmonics other than slotting harmonics in the stator voltage. 
The voltage in a skewed coil is obtained; the expression includes a novel def­
inition of the harmonic skew coefficient. Skew is discussed as the means to 
reduce higher-order harmonics, including slotting harmonics, in the voltage 
waveform; to reduce audible noise, resulting from magnetic forces between the 
stator and the rotor. 

2.1 Basic construction 

A cross-section of a low-speed large synchronous machine is shown schemati­
cally in Pig. 2.1. As a rule, this machine has a large diameter and a small axial 
length [6]. It consists of stationary and rotating parts, called stator (sometimes 
armature) and rotor, respectively. The stator inner surface is slotted and con­
tains a three-phase winding, wye-connected with the neutral earthed [8]. The 
rotor consists of a shaft, a spider ring fixed on the shaft, and multiple poles 
mounted on the rim of the spider ring [14]. The stator and the poles are as­
sembled from laminations; the poles can be solid, cast or cut from steel. The 
stator is axially divided in packets distanced from each other for cooling; these 
air ways are called air ducts. 

A field winding, made of copper or aluminum, is wound around each pole 
to provide magnetic flux. The direct current is supplied to the field winding 
either by a dc supply through slip rings and brushes [14] or a brushless exciter, 
which is most commonly an ac permanent magnet generator [15]. A damper 
winding is embedded in the surface of the pole face, or shoe, on each pole. It 
consists of copper or aluminum bars, interconnected similar to a squirrel cage. 
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stator (armature) 
winding 

field 
winding 

armortisseur 
(damper) 
winding 

pole face 

pole body 

spider ring 

stator tooth 

stator back (core) 

Figure 2.1: A salient pole synchronous machine. 

In the case of a generator, as the prime mover (a hydro turbine, for ex­
ample) rotates the rotor, the magnetic field produced by the field winding 
moves and induces voltage in the armature winding. If a three-phase load is 
connected to the stator winding, the voltage can be delivered to the load. 

2.2 Modeling of the rotor quantities 

A well recognized theory, called Park's transformation, considers electric quan­
tities of a two-pole machine projected on a set of orthogonal coordinates d and 
q rotating with the synchronous speed. This representation allows one to con­
sider the stator and the rotor equations simultaneously [16]. The model can 
be used to analyze multiple-pole machines on an electrical period of two poles. 
A synchronous machine is a convenient object for d-q analysis, because the 
rotor rotates with the synchronous speed. 

In a salient-pole synchronous machine, the direct axis d is located along 
the pole, and the quadrature axis is the axis of symmetry between two poles 
(Fig. 2.2). 

In this work, g-axis is used only as the origin for measuring phase angles of 
voltage, current and air gap quantities. It is assumed that the g-axis is aligned 
with the centre of a stator tooth at the time t — 0. 
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cor 

Figure 2.2: Direct and quadrature axes. 

2.3 Construction of three-phase double-layer 
windings 

The most common type of stator windings is a three-phase double-layer wind­
ing. A double-layer winding provides a magnetomotive force (mmf) waveform 
close to a sinusoid (Fig. 2.3). A double-layer integral-slot short-pitched wind­
ing is symmetrical, which allows one to manufacture identical coils [14]. 

mmf 

Figure 2.3: MMF waveform versus winding design. 

A coil is defined as a closed loop of conducting material, and is located in 
two slots, as shown in Fig. 2.4. The coil can be described as being formed 
by two coil sides, separated by a span or coil pitch (measured in slots), and 
connected by end windings. A coil can be formed by one or more turns of 
wire. 

An emf harmonic of the coil can be computed as the phasor difference of 
emf harmonics induced in the coil sides, as shown in Fig. 2.5. The coil pitch 
in electrical radians for the n-th harmonic is calculated as 

2TT 
n-Py (2.1) 

where Ns is the number of slots in the stator, p is number of pole pairs, y is the 
span in slots. It is clear from Fig. 2.5 that the coil emf harmonic magnitude 
equals [14, 17] 

Ecoil!n = 2Ensin^ (2.2) 
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where En is the magnitude of the n-th voltage harmonic induced in one coil 
side. 

end winding 

coil 
side mj 

coil pitch 

Figure 2.4: A coil and the coil pitch. 

conductor 

E ' 
^ n 

Figure 2.5: The n-th emf harmonic induced in the coil. 

Alternatively, the n-th emf harmonic can be computed as 

E, ccriLn -»u BndS (2.3) 

where N is the number of turns in the coil, Bn is the n-th flux density harmonic 
penetrating the coil (assuming the flux perpendicular to the cross-sectional 
area), S is the cross-sectional area of the coil. 

Several coils, next to each other in one layer, can be connected in series 
and form a coil group of one phase. Coil groups of one phase are located under 
different poles; they can be connected in series, in parallel, or a combination 
of both, and provide the emf of the phase to be an arithmetical sum of emfs 
of the coil groups. In parallel branches, induced emfs have similar magnitudes 
and phase angles. 

The pole pitch can be thought of as the number of slots; per pole. The 
number of slots per pole per phase is calculated as 

Ns 

2pm 
(2.4) 
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where m is the number of phases. If q is an integer, the winding is an integral 
slot winding. Otherwise, the winding is a fractional slot winding. 

A three-phase double-layer winding has a capability to reduce induced 
voltage harmonics, produced by space harmonics of air gap magnetic field. 
However, there are harmonics of the space order [18] 

Ns 
ns = k ± 1 = 2mq ± 1 (2.5) 

V 
called slotting harmonics, that are not affected by the double-layer winding 
construction. It is shown that these harmonics may be reduced or eliminated 
in the emf waveform using a fractional-slot winding or by skewing slots either 
on the stator or on the rotor. 

2.3.1 Integral slot windings 

If the span of the coil equals the pole pitch, the winding is called a fully-pitched 
winding. If the span is less, the winding is called short-pitched, or sometimes 
fractional-pitch or chorded, winding. These windings are schematically shown 
in Fig. 2.6. 

In Fig. 2.6, a coil of phase A has the "going" side at a and the "returning" 
side at a'. Most frequently, a phase is chosen to occupy 60 electrical degrees per 
pole pitch [8, 17]. Fig. 2.6 illustrates that an integral slot winding is periodic 
with the pole pitch. This pattern facilitates computation of the phase emf. It 
is sufficient for analysis of properties of the winding to consider emf induced 
in a group of q coils. 

Calculation of an emf harmonic in a coil group. The emf harmonics 
of q coils can be represented as phasors apart of each other by a slot pitch 
angle n'j, as shown in Fig. 2.7. [11, 17, 18]. Summation of the q coil emf 
phasors yields the coil group emf Eq,n. It can be seen that the coil emf phasors 
form a "circumference" of a radius R and the emfs can be expressed as 

Ecoiltn = 2Rsm^ (2.6) 

Eq>n = 2Rsm!f (2.7) 

where a = q~f. The ratio of the phasor sum to the arithmetical sum of the coil 
emfs is called distribution factor [18]: 

(2.8), 

K, — q'n 

q*->cml,n 

the emf harmonic of the coil 

sin ^ 

qsm^ 

group is 

^q,n = Q^coHfTi^-djn 

(2.8) 

(2.9) 
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Fully-pitched winding 
pole pitch 

coil pitch 

m w 

span = 6 
i 

a' a' c c b' b ' 

M ft 
a a c' c' b b 

Short-pitched winding 
coil pitch 

a' a' c c b' b ' 

a 

a a c' c' b b 
pole pitch 

span = 5 

a' c c b' b' a 

mm ^ 
a' a' c c b' b' 

Figure 2.6: A double-layer integral slot full-pitch and short-pitched winding. 

coil 

nY 

Figure 2.7: Calculation of the emf due to the coil group. 
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From (2.2) 
Eqjn = 2qEn sin &Kdjn = 2qEnKPtnKdjn, (2.10) 

where 

KPtn = s i n | (2.11) 

is called the pitch factor [18]. 
Improvement of the emf waveform. A shorter span than the number of 

slots per pole may reduce or eliminate a space harmonic. Table 2.1 illustrates 
variation of the pitch factor with span, in the case of an integral slot stator 
winding of six slots per pole. The pitch factor has been calculated using the 
equation (2.11), where the angle between the harmonic emfs of the coil sides 
is determined as 

I o n o 

£n = —— x span x n (2.12) 

harmonic number 
span = 6 
span = 5 
span = 4 

1 
1 

0.9659 
0.8660 

3 
-1 

-0.707 
0 

5 
1 

0.2588 
-0.8660 

7 
-1 

0.2588 
0.8660 

9 
1 

-0.707 
0 

Table 2.1: Pitch factor for a case of six slots per pole. 

One can see that changing the span (coil pitch) changes the pitch factor, 
reducing or eliminating the emf harmonics. A shorter span makes the magni­
tude of the fundamental emf to be less, because less area is enclosed by the 
coil, but the change is not significant. 

However, for slotting harmonics the angle between the coils is 

lns = nsll = (k^- ± l ) ^ = 2nk ± 7 l (2.13) 

where 7 l is the angle between the coils for the first harmonic. By the equa­
tions (2.11) and (2.8), the pitch and distribution factors remain the same 
for the first and a slotting harmonics. Therefore, the magnitude of the n-th 
slotting harmonic cannot be reduced much less than the magnitude of the 
fundamental by reducing the span. 

With increase of q, the space order of slotting harmonics that show up in 
the emf waveform increases. Higher-order harmonics tend to be smaller with 
increase of the space order, so that increase of q improves the emf waveform. 

In salient-pole synchronous machines, q cannot be high, as the number of 
slots per pole is limited by mechanical considerations. 

2.3.2 Fractional slot windings 

Fractional slot double-layer windings are often used in low-speed, multiple pole 
synchronous machines. The total number of slots must be a multiple of the 
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number of phases to maintain phase symmetry [8, 17, 18]. However, for a high 
number of poles the pole pitch is small and cannot spread under many stator 
slots with large conductors, so that it is not always possible to construct a 
machine with an integer number of slots per pole per phase. 

An example below [18] illustrates the construction of a fractional-slot wind­
ing in a three-phase machine. If the machine has 10 poles, the number of slots 
must be 30 to have q = 1, or 60 for q = 2 by (2.4). Choosing 42 slots gives 
q = 3^|Q = IO = I s^°^s P e r P°le P e r phase. That means that 7 slots that be­
long to one phase should be distributed over 5 poles, suggesting that a pattern 
will repeat. If conductors of the phase occupy 1 or 2 slots over a pole, a slot 
pattern could be, for instance, 21121 or 11221 over the 5 poles. 

Further constructing of the fractional slot winding may be done by an 
arbitrary choice of a coil span, checking that the pitch coefficient for the first 
harmonic is close to unity. In the example described, there are 7 x 3 = 21 slots 
in total distributed over 5 poles, and the coil pitch can be chosen 4 slots. If 
the pattern repeats after 21 slots, it is sufficient to draw the first 21 slots and 
insert a coil into each slot with the chosen span. The emf phasors of the coil 
sides can be drawn, taking care of the phase shift from slot to slot. One phase 
occupies 60 electrical degrees, so that all emf phasors within 60 degrees may 
be claimed to belong to one phase, and the corresponding coils are assigned 
to the phase. In this way, all coils may be assigned to a certain phase [18]. 

A winding with a fractional q may significantly reduce slotting harmonics. 
Slotting itself does not induce voltage harmonics in the stator winding. How­
ever, slotting may induce currents in the rotor, which produce a magnetic flux 
component that induces voltage harmonics in the stator. A fractional q allows 
only voltage slotting harmonics of the space orders described by (2.5) to be 
induced in the stator winding [17]. As the air gap magnetic field does not 
contain harmonics of fractional space orders, the greatest slotting harmonics 
are not present in the stator voltage waveform. 

If the stator has a fractional slot winding, it is possible to produce a bal­
anced winding with a winding pattern that does not repeat. In this case, it 
is necessary to consider the whole circumference of the machine to determine 
the emf induced in a phase. 

2.4 Skew 

2.4.1 Definition of skew 
Skew is defined as the variation in the angular position of a conductor along 
the axial length of a machine. It is usually measured in slot pitches. As an 
example, a conductor with a skew of k slot pitches will undergo an angular 
shift such that if one end of the conductor is at the position 6\, the other 
end will be at the angular position 9\ + /?, where /3 is the skew in mechanical 
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radians (Fig. 2.8): 

P 2ir 
(2.14) 

conventional slot 

skewed slot 

skewed slot 

Figure 2.8: Skew. 

At any z, the angular position of the conductor along the axial length may 
be found as 

6 = di + az (2.15) 

where 
fL 
i 

and may be referred as the axial phase shift of the coil; I is the stator length. 
For the n-th space harmonic, the angle must be n times greater than for 

the fundamental [14, 17], and the harmonic axial phase shift becomes 

a (2.16) 

0 (2.17) 

2.4.2 Voltage in a skewed winding and the skew coeffi­
cient 

The expression (2.3) can be used to evaluate a voltage harmonic in a skewed 
coil, if the flux density harmonic penetrating the coil is known. In a general 
case of a skewed magnetic field, each harmonic of the air gap magnetic flux 
density can be expressed as 

Bm — B cos(md + (j) + az — ut) (2.18) 

where B is the harmonic magnitude, m is space order, 6 is angular position in 
mechanical radians, 0 is phase, a is axial phase shift of the skewed field per 
unit length, u> is electrical angular velocity. 
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Considering Fig. 2.9, the flux linkage m-th harmonic can be determined 
from 

il> = N [ BdS 
Js 

= Nr 
Jo Jx1+f 

B cos(m9 + (f) + az — ut)dd dz 

(2.19) 

(2.20) 

where N is number of turns in the coil, S is surface area of the coil, X1 and 
A2 are angular positions of the coil sides at one end of the stator, f3 is stator 
conductor skew in mechanical radians, I is effective stator length, r is radius 
of the stator inner circumference. It is assumed that the vector of magnetic 
flux density B is perpendicular to S. 

Xx A-!+p A. 2 X2+$ 

Figure 2.9: A skewed coil. 

Integration of (2.20) gives 

-m(A2 + A!) , Vf + <*)1 
xp = NrB Kx K21 cos 

where 

Kx 
sin 

+ 

m(Az—Ai) 

+ (j) — LOt 

m 
2 

m/3+al sin 0 
Ko = 2 

mp+al 
2 

The expression can be further reduced to 

rj) = NrB Kx K21cos(<^ -\v\t) 

where 
al + (3m 

K3 = sign(a>) 

+ </> 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 
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It is assumed that the angular velocity of the magnetic flux density u can 
be negative, depending on the direction in which the field harmonic rotates. 
However, the flux linking the coil has only "positive" frequency. 

The voltage harmonic in the coil can be computed as 

ĉoii = - ^ = ojNrB Kx K21cos(<^ + f - ut) (2.27) 

If the magnetic field is unskewed (for example, the magnetic field formed by the 
field mmf and the permeance due to the pole shape), a = 0 in the expression 
(2.18), and (2.23) reduces to 

sin 2 

2 

This is a classical definition of the harmonic skew coefficient [14, 17]. One 
can see that if the machine slots are also unskewed, then 0 = 0, and K2 = 
-^skew,n = •!•• 

To remove the m-th harmonic of the coil voltage, the numerator of the 
expression (2.28) has to be zero. If the skew is chosen to be 

P = ^ (2.29) 
m 

then the m-th harmonic skew coefficient becomes 

s i n f ^ sin/cTr 
m Iki 
2 m 

K* = ::^kt = ̂  = * (2-30) 

Taking the expression for voltage induced in a single coil, it is possible to 
carry out a phasor summation of all the coil voltages in a winding to obtain 
the total voltage induced in any arbitrary winding connection. 

For a double layer, short-pitched winding with a span of y slots and a 
parallel paths, with a "going" coil side located at the bottom layer at a position 
Ai, the "returning" coil side at the upper layer at A2, where 

27T 

A2 = Ax + y— (2.31) 

and Ns is total number of slots in the armature, a phase voltage can be found 
as 

^phase = = — / j ^coil,i yZ.oZ) 

i 

where a is the number of parallel paths. 
The line-to-line voltage can be found as 

^LL = ^phasel ~ %iase2 (2.33) 
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2.4.3 Damping of noise with skew 
Noise can result from at least two sources: so-called magnetic noise and vibra­
tion of the rotor due to mechanical unbalance [8]. 

Magnetic noise is caused by pulsations of magnetic flux in the air gap. A 
simplified magnetic circuit is shown in Fig. 2.10. It can be seen that the number 
of slots over the pole may vary, providing magnetic paths with a different 
reluctance. In the left-hand side of the figure, the reluctance is maximum, so 
that the flux is minimum, and vice versa in the right-hand side [14]. 

^ P S P 
Figure 2.10: Variation of magnetic path. 

The pulsating flux produces a tension force proportional to the square of 
the air gap flux density magnitude at the double frequency of the flux density 
harmonic [8, 10, 19]. For example, if the flux density vector is perpendicular 
to the magnetic surface, the m-th flux density harmonic 

B = B cos(m6 + <f> + az-ut) (2.34) 

produces the m-th radial force density harmonic [20] 

1 B2 

fm = ^—B2 = — (1 + cos 2(m6 + <f) + az- tot)) (2.35) 
2fj,0 4^o 

In fractional slot machines, there may be subharmonics of the space order m 
lower than of the fundamental [21] which also produce noise. Measurements 
give a total range of the open-circuit noise frequency in the most machines 
from 700 to 1400 Hz [8]. 

A skewed slot pattern reduces vibration, because flux becomes more uni­
form across the air gap. 
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Chapter 3 

Literature review 

A review of literature is presented to allow investigation of existing techniques 
to estimate performance, factors that influence stray losses and existing models 
which have been used to quantify losses. The literature on skewed synchronous 
machines is scarce, so that research done on other types of skewed machines 
is also reviewed. 

3.1 Machine models 

Models of electrical machines including, but not limited to, synchronous ma­
chines are described in this section. The models that have been or can be 
developed to account for skew are reviewed in more detail. 

An expanded equivalent circuit has been used to evaluate performance 
of an induction machine [10, 18, 22, 23, 24, 25, 26]. Neglecting magnetic 
saturation, each magnetic field harmonic can be treated separately, and using 
supersposition, added to form the resulting waveform. Thus the circuit consists 
of loops connected in series, a loop describing electric quantities of a certain 
space harmonic [22]. The parameters of such a model can be determined 
analytically [11, 18] or numerically [23, 24, 27]. Skew can be included in the 
model in the form of harmonic skew factors [23, 24, 28] or harmonic inter-bar 
factors [25, 26]. 

Well-known numerical models are the eddy current model and the coupled 
circuit model [29, 30, 31, 32]. The eddy current model employs simultaneous 
solution of the stator circuit equations, rotor circuit equations, and magnetic 
field equations for each region in a two-dimensional finite element model. As 
the rotor moves, the system of equations is time-stepped to obtain values corre­
sponding to the movement. The coupled circuit method time-steps the stator 
and the rotor circuit equations, using FEA to update the circuit parameters 
at each time step. These two models have been futher developed to account 
for skew [29, 30, 32, 33]. In the eddy current model, the machine can be 
"sliced" axially, as shown in Fig. 3.1. In each slice, skew is zero, but the slot is 
shifted to approximate skew. All equations in all slices must be solved simul-
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taneously to provide continuous current in the slot [29, 32, 33, 34, 35, 36, 37]. 
The coupled circuit model accounts for skew by skew factors incorporated into 
parameters of the circuit equations, or using the multi-slice approach as well 
[24, 30, 31, 32, 38, 39]. The majority of this work has been devoted to in­
duction machines; however, the coupled circuit model has also been used to 
simulate a small skewed salient-pole synchronous generator [40]. One draw­
back of numerical models is high time consumption, and a compromise between 
computational accuracy and time is sometimes required. As an alternative to 
time-domain FEA, frequency domain FEA has been employed to lower time 
requirements. The method considers a harmonic of the field at a time. Cal­
culations in this case require less time than simulating an instantaneous field 
[33,41]. 

i 
i 

a 

bo 

13 
X 

a) b) c) 

Figure 3.1: A multi-slice model of a skewed slot. 

A permeance model, where air gap magnetic flux density is obtained as a 
product of air gap permeance and mmf waves, can be used to evaluate perfor­
mance of a salient pole synchronous generator [10, 20, 42, 43, 44] (see Chap­
ter 4). Permeance and mmf harmonic series can be obtained by magnetostatic 
FEA, keeping either the former or the latter constant to determine the other 
[42]. A skewed salient pole machine without a damper has been simulated ne­
glecting saturation [43]; mmf waveforms are represented in a piecewise-linear 
form, and permeances computed directly from the air gap geometry. A large 
unskewed machine with a damper winding has been analyzed in [20], where 
the field mmf has been approximated by Carter's equation, and permeance 
waveforms obtained from a magnetostatic FE model. Given magnetic flux 
density in the air gap, voltages and currents induced in a damper winding can 
be obtained [20, 44, 45]. 

Magnetic circuits of a machine can be represented by reluctance networks 
[46, 47, 48, 49, 50] or permeance networks [51], where a characteristic part is 
replaced by a reluctance or permeance element, either constant or varying. 
Magnetic circuits of a machine can also be modeled by equivalent cascade 
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circuits [52], where the vector magnetic potential is an analogue to voltage, 
and the magnetic field intensity is analogous to current. 

Ladder networks, or equivalent circuits to represent a squirrel-cage rotor, 
have been used [10] to find current and voltage distribution in bars, includ­
ing interbar current effect (see Section 4.2.2). Ladder networks have been 
extensively used to model transmission lines [53]. 

3.2 Prediction of magnetic field 

Evaluation of magnetic field is an essential component in the prediction of 
losses. A B-H curve (Fig. 3.2) shows variation of the magnetic field magnitude 
in steel of a machine with the increase of load; when the dependence becomes 
nonlinear, the steel is called saturated. Magnetic saturation is helpful because 
it reduces harmonic mmfs and harmonic magnetic fluxes in iron [54]. Currents 
induced in bars of the armortisseur windings of synchronous machines increase 
non-linearly due to saturation in open circuit [45], similarly to the shape of 
the B-H curve. The saturation makes prediction of fields more difficult. 

B 

Figure 3.2: A B-H curve. 

There are numerous analytical and numerical methods that can be applied 
to computation of magnetic fields in a machine. They can be modified to 
account for magnetic saturation and to incorporate skew. 

3.2.1 Analytical methods to predict magnetic field 

In early machine design, it was acceptable to estimate average values of mag­
netic fluxes and flux densities in distinct parts of a machine, to determine a 
size of the part [11, 18, 19]. Adoption of linear superposition enabled one to 
consider magnetic fields as a sum of fields from different sources and to view a 
waveform as an harmonic series. The latter made it possible to apply already 
developed mathematical techniques to analyze physical fields in the machine. 

Generalised Ampere's and Faraday's Laws, known as Maxwell equations, 
can be transformed into Helmholtz equations to describe a sinusoidal magnetic 
field: 

(V2 + k)A = 0 (3.1) 

where k is a constant, A is an unknown twice differentiable function. Using 
the equation (3.1), many results have been obtained. Magnetic field, induced 
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by eddy currents on and under the smooth surface of a pole, solid or lami­
nated, due to a moving slotted surface across the air gap, has been described 
[19, 56]. Magnetic flux density and current density distributions in a rectan­
gular slot that contains a current-carrying conductor can be obtained at each 
frequency [18]. If k = 0, the equation (3.1) becomes Laplace's equation, which 
can be used to: give a picture of magnetic flux density in iron, if the flux 
density in the air is known [23]; obtain the scalar magnetic potential as a har­
monic series in poles and slots in a strip "pole-slot-pole..." [52]; describe the 
magnetic field in a model of a salient-pole machine, where the field winding 
is represented by a thin current sheet located at the bottom of an interpole 
space [52]. 

A magnetic vector potential has been introduced to avoid discontinuities 
in magnetic flux density and magnetic field intensity on a boundary between 
two media. It has been widely used in numerical methods, as described in 
Section 3.2.2. The magnetic vector potential has been used to analytically find 
distribution of the magnetic field in semi-closed slots of several configurations, 
filled with current-carrying conductors [52]. 

Conformal transformations is yet another technique that allows one to 
analytically describe electrostatic or magnetostatic fields in the area of interest 
[57] (see Appendix A). With this method, magnetic flux density distribution 
has been found in the air gap between 

• a rectangular pole and a solid surface, in the cases of an isolated pole 
and adjacent poles [58] 

• a succession of slots across solid surface (pole face), slots of infinite depth 
[59, 57] and of finite depth [59] 

Conformal transformation method becomes more attractive with recent 
development of software, which allows one to quickly evaluate elliptic integrals 
and functions [60], involved in computations. Air gap permeance harmonics 
have been computed for a slotted surface against a smooth surface using the 
conformal method and by FEA [61], with results in excellent agreement. Air 
gap permeance between two teeth of the same size opposite each other have 
been computed using the conformal method and confirmed by FEA [62]. 

Use of the conformal mapping method is limited by well-conditioned exam­
ples; there has been no general outline for what geometries the method does 
not work. Some dependencies have been found in [57, 62]. 

A general drawback of analytical methods is the limitation of the use of 
regular geometries. Attempts to improve analysis include partition an area 
of interest in layers with distinct properties or size [18, 23], considering a 
partially-layered model, as was done to analyze a salient pole machine [52]. 

Another drawback of analytical methods is that they assume infinitely 
permeable iron, which can be visualised as a B-H characteristic with the slope 
of 90°. Characteristics of practical machines have finite slopes that decrease 
when the machine parts become saturated (Fig. 3.2). 
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Investigations to account for magnetic saturation include modifying param­
eters of an equivalent circuit representing a machine. For example, reactive 
elements in a machine equivalent circuit can be multiplied by saturation fac­
tors, calculated as single values [6, 19, 63, 64] or polynomials of air gap mmf 
[65]. A phasor diagram coupled with a B-H curve can be used to find satu­
ration factors in a salient pole synchronous machine [11]. Saturation factors 
and d, q B-H curves can be used to evaluate reduction in air gap magnetic 
flux due to saturation [66]. A saturation function of armature voltage can be 
used in place of the factor in modeling a synchronous generator by reactances 
[67]. Alternatively to modeling saturated reactances, an effective air gap can 
be modified by a saturation factor [54]. 

In general, steels used to manufacture electric machines have narrow hys­
teresis loops, which allows one to approximate their magnetic properties by a 
single B-H curve. A single value of permeability (or its reciprocal, reluctivity) 
depends on a definition of permeability [68]. For example, effective reluctivity 
can be defined as a time average of the ratio of magnetic flux strength and 
magnetic flux density [33]. 

An iterative method has been proposed to determine permeability on the 
surface of poles in synchronous machines [55]. A nonlinear equation was pro­
posed to be coupled with curves of relative permeability versus an argument 
that includes H. 

It is possible to incorporate skew into analytical methods. A term that 
includes the axial coordinate can be added to the phase of the armature mmf 
waveform in a synchronous generator [43]. A skew coefficient is commonly 
used for the armature voltage computations [11, 6, 17, 18]. 

3.2.2 Numerical methods to predict magnetic field 

Most common methods used to analyze an electrical machine are two-dimensional 
finite element analysis (FEA) and, less common, two-dimensional finite differ­
ence analysis [69, 70]. In these methods, a cross-sectional area of the machine 
is covered by a mesh consisting of polygons, most commonly, triangles, or 
elements, and one principal variable is used to aproximate magnetic field in 
each element [68, 71, 72]. The magnetic vector potential or the scalar mag­
netic potential (in current-free media) can be chosen as the principal variable; 
currents in conductors are sources of magnetic field. Maxwell equations can 
be developed and modified to include information about vertices, or nodes, of 
each element. The resulting linearized system of equations describes magnetic 
field over the area. To obtain a time-varying field, the system must be updated 
at each time step [33, 68]. 

Assuming a single-valued B-H curve, magnetic saturation may be taken 
into account using an iterative method such as Newton-Raphson method [34, 
68, 70, 71]. This technique involves recalculation of Jacobian, which depends 
on reluctivity and its rate of change, and recalculation of reluctivity, until the 
residual in the linearized system is close to zero. To account for skew, which 
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is in the third dimension, a multi-slice model has been used, as described in 
Section 3.1. 

Numerical methods have a capability of predicting fluxes in places where 
magnetic field changes direction, for example, in tooth tips and backs. A 
level of polarization, or extent of rotation, of magnetic flux density has been 
determined in tooth roots, slot backs, core back and tooth tips of a stator in 
an induction machine using frequency-domain finite element method [41, 73]. 

Three-dimensional FE methods have been proposed to compute magnetic 
field in steel laminations [74, 75] and in a skewed machine [76, 77, 78]. They 
give very accurate results, but simulations take significantly longer than for 
two-dimensional models, so that they are essentially impractical for analysis 
of large machines. 

Numerical methods produce more accurate data than analytical solutions 
in a case of complex geometry. A drawback of two-dimensional numerical 
models is significant time required for computations. 

3.3 Prediction of losses 

Losses in electrical machines can be divided as losses in iron due to changes in 
magnetic flux, ohmic conductor losses, and loss due to macro current flow in 
iron between conducting bars. Each loss can be considered independently. 

3.3.1 Iron losses due to magnetic fluxes 

Iron losses due to changes in magnetic flux can be classified as hysteresis loss, 
eddy current loss, and excess loss. Hysteresis loss arises during magnetizing 
and re-magnetizing of the magnetic material, because energy is required to 
orient magnetic domains comprising the material [79]. Eddy current losses are 
associated with varying magnetic fluxes that induce emfs in iron. Eddy current 
excess loss is believed to occur due to microscopic eddy currents induced on 
the walls of moving domains [80]. 

Traditionally, hysteresis and eddy current losses have been determined us­
ing manufacturer's curves of the loss per unit volume or mass versus amplitude 
of flux density [18, 79]. This technique does not account for the losses due to 
higher-frequency magnetic fields [23]. To account for changes with frequency, 
manufacturers of steel provide curves of loss versus frequency [79] for approx­
imate calculation of high-frequency losses. 

If magnetic flux density in magnetic parts of the machine is known, iron 
losses can be evaluated directly from the flux density distribution [23, 80, 81] 
(see Section 5.2) or Poynting vector for eddy current loss calculation [56, 82]. 
Calculation of eddy current loss in steel can be directly included in FEA [82]. 
Constants used to compute hysteresis losses have to be obtained empirically 
[11, 18, 83]. A correcting factor has been derived to account for hysteresis 
losses due to minor loops on a boundary of the main B-H loop [84]. An eddy 
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current loss formula versus geometry has been derived for a permanent magnet 
motor [83, 85]. 

To account for hysteresis effects, Preisach developed a theory that allows 
one to track changes of magnetic flux density with varying magnetic field 
intensity [86, 87, 88]. In the theory, a domain consists of electrical dipoles, 
which can be in either "on" or "off" states, depending on value of magnetic field 
intensity. If a distribution function of the dipoles is determined, magnetic flux 
density is easily calculated. Because of statistical nature of this theory, it can 
be implemented in software in straightforward manner [88]. Using statistical 
Preisach theory coupled with FEA, hysteresis, eddy current losses [89] and 
excess losses [90] can be evaluated. 

Eddy current losses on a smooth pole surface due to the stator slotting can 
be found analytically using Maxwell's equations. The magnetic flux pulsation 
due to slotting has been predicted to penetrate iron along lamination edges 
much deeper than it was accounted for by a penetration depth constant, to 
comprise more than 60% of the total eddy current loss in the pole [56]. A har­
monic factor to account for higher order harmonics has been included in an 
equation of eddy current loss in a pole [55]. Damping effect of eddy currents 
on the magnetic flux density waveform has been included [55]. Pole face losses, 
obtained with this approach, have been found to be close to the results ob­
tained by finite difference and finite element methods for solid poles [69, 70], 
A deeper penetration of the tooth-ripple magnetic flux into a pole has also 
been confirmed numerically [70]. 

Hysteresis, eddy current, and excess losses due to rotational flux in parts of 
a magnetic circuit where flux changes direction, have been found to comprise 
about 50% of iron losses in an induction motor [73]. A dependence of these 
losses on flux density, given in [91], has been used to estimate the losses in 
stators of induction motors using finite element methods [92]. A linear de­
pendence of the rotational hysteresis loss on hysteresis loss due to alternating 
fluxes has been obtained empirically [93]. 

As synchronous machines are often manufactured with stator fractional 
slot windings, mmf harmonics, with orders lower than that of the fundamental 
harmonic, might exist in these windings [10, 21]. The author of [21] points 
that these subsynchronous harmonics induce additional rotor loss, particularly 
in damper windings, which is appreciable compared with the loss caused by 
higher-order harmonics. 

3.3.2 Currents in conductors and ohmic losses 

When an electric current flows in a conductor, electrical energy is converted 
into heat at a rate proportional to the current squared. Electrical resistance 
can be evaluated depending on the current frequency [18], the conductor shape 
[18, 94], stranding and transposition of conductors [18]. If voltages and resis­
tances in a circuit are known, one can find currents and losses associated with 
them. 
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Distribution of currents in the armortisseur winding of a synchronous ma­
chine has been evaluated using combined analytical and numerical approach 
[20, 44, 95, 96]. If damper bars of the whole machine are connected and the 
currents flow in loops, then the obtained circuit can be analyzed using mesh 
analysis. Assuming linear superposition, damper bar currents can be repre­
sented as a harmonic series, and a system of equations can be solved for a 
current component at each frequency. 

3.3.3 Iron loss due to interbar currents 

If the machine is skewed and contains a winding with non-insulated bars, then 
there are losses in iron due to currents flowing among the bars. Investigations 
have shown that losses due to these transverse, or interbar, currents could 
constitute about 30% of stray-load losses in an induction motor [26]. A good 
guide on references addressing evaluation of interbar currents has been given 
[53]; some of these references and others are reviewed below. 

Assuming a bar-to-bar path, starting from works by Rossmaier [10, 53], 
Odok [10] found analytical expressions for the bar and interbar currents. The 
expressions have been found for a "slice" of a bar. He showed theoretically 
that for zero skew, interbar currents are zero, and also that the bar-to-iron 
impedance is purely resistive. This analysis has been used to obtain interbar 
losses analytically in an induction machine, assuming a stator integral slot 
winding [10, 22, 97]. Similar work has been done in [19, 98]. A theoretical curve 
of the interbar loss in an induction machine versus the cross-path (contact) 
resistance has a maximum [10], which has been confirmed by simulations of 
full-load efficiency versus contact resistance in an induction machine [25, 26]. 

On the basis of the work by Odok, Subba Rao and Butler [97] improved a 
chain equivalent circuit of an induction squirrel-cage machine, introducing an 
equivalent rotor bar impedance that included the effect of interbar currents, 
and effective skew factor. These results have been further developed. They 
have been combined with the general harmonic analysis model [25, 26], where 
a new harmonic interbar factor has been introduced. They have been used 
to account for interbar effects with bars partitioned by a large number of 
slices [28]. 

The results obtained in [10, 22] have also been used in a finite element 
model of a machine to include interbar current effect [36, 99]. 

It was recently suggested that interbar currents go in all directions in iron 
rather than between adjacent bars, and the cross-sectional model evolved as 
shown in Fig. 3.3 [53, 100]. 

The difficulty of estimating interbar resistance, especially as it can vary 
along the length of the bar, has been discussed by a number of authors, starting 
by [22]. Schemes to measure the resistance have been developed in [10, 101]. 
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Figure 3.3: A cross-sectional interbar current model. 

3.4 Summary 

The work in this thesis applies methods described in this chapter to the analysis 
of large synchronous machines. The permeance model is used to predict the 
air gap flux density. Skew is incorporated into the analytical model by adding 
an axial phase shift to the phase angle of the permeance, mmf and magnetic 
field waveforms. Losses due to each harmonic are predicted using the formulae 
given in [80]. Ohmic losses in the armortisseur winding due to each slotting 
harmonic are calculated as a product of the current magnitude squared and 
the resistance at the frequency of interest. Finally, the inter-bar model is used 
to evaluate inter-bar currents and losses associated with them. 
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Chapter 4 

Prediction of air gap magnetic 
fields 

A permeance model can be used to compute magnetic flux density distribution 
in the air gap. In this model, the air gap flux density is a product of air gap 
permeance and air gap mmf waves: 

B = PF, (4.1) 

where P is air gap permeance per unit area, F is air gap mmf. Each term can 
be represented by a Fourier series of the form 

f(x) = fdc + Y2 fn COS(mnQ + Qn,0 + OCnZ - LOnt) (4 .2 ) 
n 

where /<&. is an average (dc) component, mn is space order, /„ is amplitude 
of the n-th harmonic, 9 is angular position from a reference point, 0njO is 
initial phase angle of the n-th harmonic, an is phase axial shift of the n-th 
harmonic due to skew, z is the axial coordinate, u>n is angular velocity of the 
n-th harmonic. 

In this chapter, the air gap permeance, the air gap mmf and the air gap 
flux density waveforms are obtained. The air gap permeance consists of three 
components: the permeance due to the non-uniform air gap (or the permeance 
due to the pole shape), the permeance due to the damper slotting, and the 
permeance due to the stator slotting. The air gap mmf consists of the field 
mmf, armature mmf and the armortisseur mmf. The field mmf is scaled to 
account for magnetic saturation of steel. The damper (or armortisseur) mmf 
component is formed by the damper bar currents. As the air gap magnetic 
field is skewed, inter-bar currents also exist and flow in iron of the pole; the 
inter-bar model is used to account for these currents to accurately predict the 
armortisseur mmf. The air gap magnetic flux density is evaluated using the 
permeance model. 
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4.1 Calculation of air gap permeance 
The air gap permeance waveform is influenced by several factors: the shape of 
the pole, stator slotting, and damper slotting. The pole and the damper per­
meance harmonics have constant magnitudes, distributed in space and rotating 
with the rotor. The stator slotting harmonics are stationary, and their magni­
tudes vary with time, due to variation of the air gap length in the salient-pole 
machine. It is convenient to model the impact of each component separately 
and then to consider their combined effect. 

The air gap permeance due to the pole shape can be modeled analytically. 
The effect of slotting can be modeled using data from linear magnetostatic 
FEA [20, 44]: 

1. air gap flux density distribution over the damper slot pitch, located in 
the centre of the pole, with a smooth stator and a slotted pole, 

2. air gap flux density distribution over the stator slot pitch, located in the 
centre of the pole, with a slotted stator and a smooth pole. 

4.1.1 Air gap permeance due to the pole shape 

The field mmf can be represented by a rectangular waveform, constant over 
the pole pitch (see Section 4.2). In this case, the permeance waveform over 
the pole pitch is identical to the flux density waveform up to a factor, by the 
equation (4.1). The normalised permeance curve is identical to the normalised 
flux density curve over the pole pitch. 

Carter's expression of the normalised air gap flux density (see Appendix A) 
is exact for a rectangular pole and interpole space between two rectangular 
poles. One can suggest that that the expression can be valid for curved poles, 
if the pole curvature is taken into account. Thus an expression for the air gap 
permeance has been formed as a product of two functions (Fig. 4.1): 

1. Normalised air gap permeance, inverse of the air gap length between the 
smooth pole and the smooth stator and unity over the pole edge and the 
interpole space. 

2. Carter's normalised flux density curve, unity under the pole, diminishing 
to zero in the middle of the interpole space. 

The following assumptions are used: 

• the stator and the pole surfaces are smooth 

• magnetomotive force (mmf) is a unity square wave, positive at one pole 
pitch and negative at adjacent ones. This assumption means that the 
normalised air gap flux density and permeance curves over the pole pitch 
are identical. 
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Figure 4.1: Functions to approximate the pole shape permeance. 

• flux lines are perpendicular to the pole and the stator surfaces, and can 
be approximated by arcs between these two surfaces 

• end effects in the third dimension are ignored, so that the model is two-
dimensional 

Magnetic flux density in the interpole space. Carter's model de­
scribed in Appendix A has been used to calculate air gap flux density distri­
bution in the space between adjacent poles. The equations (A.34), (A.35), 
(A.37), and (A.38) are duplicated here for the reader's convenience: 

9 i 
x — — In 

7T 

+ ^ + V(e-X + a)(e~X-b) 

arcsm 
•K \a-\-b 

2ab v a — 6\ 
ex r ) (4.3) a + b 

where x is the position along the stator bore, g is air gap length between the 
pole and the stator, 

B = BQ 

,-x 

+ a 
(4.4) 

B is air gap magnetic flux density, B0 is magnetic flux density in the centre of 
the pole, 

2c2 

a = 
7T £ 

-e "as 
c2 + g1 

2,(1 _ £ £ 
b — — — — e 2 9 

c2 + g2 

(4.5) 

(4.6) 

c is the half a distance between the poles. If the ratio R — -jj- is the input, X 
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can be found from (4.4), and the equation (4.3) can be re-written as [20] 

(4.7) 

Given the value of R, of the normalised magnetic flux density in the interpole 
space, the point x where this value of R occurs can be calculated from the 
equation (4.7). 

Round pole. Two non-concentric surfaces, one of the stator and the other 
of the pole, are shown in Fig. 4.2. Suppose that the origin of xy coordinates 
is located in the centre of a circle with the radius of the pole tip. The radius 
of the stator inner circumference is located at the distance a below the origin. 
It is desirable to find length of an arc between the stator and the rotor at 
an arbitrary angle a, because permeance due to the pole shape is inversely 
proportional to the arc length. 

It can be seen that the arc has a centre in the point $. If the radius r and 
the angle 7 of the arc can be determined, then the arc length can be calculated 
as 

larc = 2ir (4.8) 

The coordinates x, y of the point <3> can be found as 

or 

x = Rp sin a — r cos a 

y — Rp cos a + r sin a 

x = Rs sin j3 — r cos (3 

y = Rs cos f3 — a + r sin (3 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

where Rp is the pole tip radius, Rs is the stator bore raduis, and (3 is the angle 
from the point (0, a) corresponding to the point B. As x, y are coordinates of 
the same point, the following system of equations can be obtained: 

Rp sin a — r cos a — Rs sin j3 — r cos (3 (4-13) 

Rp cos a + r sin a = Rs cos (3 — a + r sin (3 (4-14) 

Assumming that (3 is small, so that cos (3 « 1 and sin (3 « /?, and solving for 
r, one can obtain a quadratic equation 

r2( l — cos a) — r(Rs — Rp) sin a + RS{RS — a — Rp cos a) = 0 (4.15) 

Even for a maximum a corresponding to the pole tip end, (1 — cos a) is by an 
order smaller than sin a. Therefore, the first term is much smaller than the 
second term and can be neglected. Then one can obtain 

RS(RS — a — Rp cos a) 

(Rs — Rp) sin a 
(4.16) 

28 



o 

a 

flux line 
*r*/ 

a/ / * 

P 

Figure 4.2: Geometry of the pole and the stator. 
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The length of the segment AB is given by 

d= y/(xA - xBf - (VA - VB)2 

and 

S1117 
2r 

(4.17) 

(4.18) 

The distance between the centres of the pole tip and stator bore circumferences 

a = Rs- Rp- g^n (4.19) 

where gm[n is the length of the air gap in the centre of the pole. 
The air gap permeance due to the pole shape. The normalised air 

gap permeance due to the pole shape is product of two functions, shown in 
Fig. 4.1. It can be expanded to Fourier series 

Ppole = ^pole,0 + ^ 2 Pn COs(n9 + <f>n - Unt) (4.20) 
n=l 

The maximum air gap permeance, in the centre of the pole, is 

P _ ^0 
^ m a x 5 

S W n 

(4.21) 

The air gap permeance due to the pole shape can be obtained by multiplying 
the normalised curve by the maximum air gap permeance. 

A waveform of the air gap per unit flux density is obtained by the manu­
facturer by means of FEA (Fig. 4.3, right). One can see that it has a similar 
shape to the normalized permeance curve due to the pole shape calculated 
analytically. The "dips" under the pole are due to damper slotting. 

The pole shape permeance in Machine 1 Air gap normalised flux density in Machine 1, FEA 
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1 
*0 .4 

0.2 
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^ • " 

0.02 0.04 0.06 
Angle, rad 

0.08 0.02 0.04 0.06 
Angle, rad 

0.08 

Figure 4.3: Normalised permeance due to the pole shape, calculated from the 
model (left) and by FEA (right), on the half a pole pitch. 
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4.1.2 Air gap permeance due to the damper slotting 
FEA analysis provides distribution of air gap flux density over one damper 
slot in the centre of the pole. If the mmf is constant over the pole pitch, 
the normalised flux density curve is identical to the normalised permeance 
curve. The permeance Fourier coefficients due to the damper, slotting can be 
calculated from the magnetic flux density harmonic series of the form 

00 

f(t) = 0-0 + ^2 (fln cos(nuJot + On) + K sin(nu0t + #„)) (4.22) 
n=l 

as 

«0 rp 
Jn ./To 
^ / /(*) dt (4.23) 
-0 J To 

an = 7JT I f(t)cos(nu0t) dt (4.24) 
IOJT0 

2 f 
K = 7F I / W sin(no;ot) dt (4.25) 

J-o JTO 

where T is the period of f(t). 
However, damper slots are located irregularly on the pole pitch. To ob­

tain the air gap permeance due to damper slotting accurately, the Fourier 
series should be determined separately at each slot, respectively to the com­
mon reference angle. Then sum of the Fouries series over all slots comprises 
the permeance due to damper slotting on the pole pitch. This algorithm is 
described below [102]. 

Assume that the input magnetic flux density over one slot pitch provided 
by FEA is given by 

B(a) = B0 + ^>2Bn cos(na + <j>n) (4.26) 
n 

where a is the angle varying over the slot pitch, B0 and Bn are the average 
and the n-th harmonic magnitude of flux density, respectively, <f>n is the n-th 
harmonic phase angle. Assume also that the harmonic series (4.26) describes 
a combination of the unslotted case and the effect of slotting: 

B(a) = Bbase + Bslot (4.27) 

where -Bbase is the peak value of the air gap flux density in the unslotted case 
(smooth stator and rotor), in the centre of the pole. The air gap length can be 
assumed constant over the damper slot in the centre of the pole. Therefore, 
flux density takes the peak value over the damper slot. 

The flux density component due to damper slotting is then given by 

Boot = B(a) - Bhase = B0 - Bhase + ^ Bn cos(na + (f)n) (4.28) 
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The average component is less than the peak value of the unslotted case. That 
means that average permeance is reduced, when compared with unslotted 
permeance, due to the effect of slotting. 

To obtain the normalised flux density waveform, the expression (4.28) 
should be scaled by the peak flux density of the unslotted case: 

D o 

Bsi0t = - = - ^ — l + ^ 2 W^ cos(na+^n) = B0-l+Y2 Bn cos(na+</»n) (4.29) 
-Obase „ ^*base 

where 

Bn = 
Bo 

Bn — 
Bn (4.30) 

-Obase ^base 

Assume that the centre of the slot is located at the electrical angle f3s from the 
origin. Assume that a varies from —IT to 7r over the slot pitch of As electrical 
radians (Fig. 4.4). To transfer this coordinate system to a general coordinate 
system of an electrical angle 6e, suppose that the centre of the slot is located 
at the angle j3a with respect to the origin at d-axis of the pole. Then 

a = (0e-ps) 
2TT 

As 
(4.31) 

To verify this formula, one can pick 0e at the edges of the slot to check whether 

i l 

% 

X 

, 

% a 

? 

e< 

Figure 4.4: A mapping from a to 0e. 

a = ±7r. 
Average permeance due to damper slotting. The average permeance 

due to slotting is given by the equation (4.23) with the period 2w (Fig. 4.4) 

*, - l f B{6e) d6e (4.32) 

This permeance is negative over slots and zero otherwise, therefore, the integral 
from —7r to 7r can be replaced by a sum of integrals over ns damper slots: 

B{0e) dee (4.33) 
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or 
n" rPs+ 

Pr, 
fi=^tl J BQ - 1 + ^ Bn COS (n(6e - pa)j- + (f>n)) d6e 

(4.34) 
where s is the number of the slot. Further solving the integral gives 

Pdfl — 
nsXs(B0 - 1) 

2TT 
4-

s = l n 

cos ( n(9e - & ) — 4- </>„ ) d#e 

&-4f V As 
(4.35) 

It can be shown that the second term equals zero. Now, to express the average 
permeance versus mechanical angle, recall that 

As = 2pAsiot (4.36) 

where p is the number of pole pairs, Asiot is the slot pitch in mechanical radians. 
The average component of the normalised permeance due to damper slotting 
becomes 

„ nsp K\ot{B0 - 1) 
J d , 0 — 7T 

(4.37) 

Harmonic permeance due to damper slotting. The Fourier coeffi­
cient for the fc-th harmonic of the permeance can be found from the equation 
(4.24), assuming that the permeance is nonzero only over the slots. The equa­
tion becomes 

l ns r^+^f (- f 
Pk = ^J2 ^ B o - l + ^£nCOsU(0 e -A 

s=l J Ps~~2 \ n ^ 

2TT 
s)-r- + <l>n ) 1 cos(k9e)d6e 

Solving the integral yields 

2{BQ-1) . kX 

(4.38) 

P* = 
n k 

s i n^]Cc o s( f c^ s) 
s= l 

1 ns 

=1 n 

2n7r , u cos(k{38 + 4>n) sin ( nn + -L-
+ k 

+ 2nir u cos(—k(3s + <f)n) sin I nir 
X.k 

(4.39) 

The electric angles As and f3s should be expressed in mechanical radians. Shift­
ing the origin to g-axis, we obtain 

Ps = (Patot + — J2p = 2p/?siot + TV (4.40) 
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The expression for the A;-th harmonic of the air gap permeance due to damper 
slotting becomes 

Pk = £ sin(fcpAsi0t) X ] cos(2A;p/3siot + kw) 
2 ( 5 ^ 1) ^ 

kit 
s=l 

pKiot 
-1 *<-S 

K 1 
s=l n 

cos(</>n + 2kpflsxot + ifor) sin(rar + A:pAslot) 
n7r + A;pAsiot 

(4.41) -I p i — cos(0n - 2kp(3s\ot - kit) sin(n7r - A;pAsiot) 
nir - A;pAslot 

The normalised total air gap permeance due to damper slotting takes form 

k 

where 
Oe = (em + ~ y p = 2P6m + -K (4.43) 

with respect to the <?-axis, 8m is a mechanical angle. 

4.1.3 Air gap permeance due to the pole shape and the 
damper slotting 

The combined normalised permeance due to the pole shape and damper slot­
ting is given by 

PPd = PPoie,o+Pd,o+y~", Pncos(n6>+</>n-a;wt)+y^ Pk cos(k0+(f)k-ujkt) (4.44) 
n k 

To obtain a physical value of the permeance, the normalised curve should be 
multiplied by the air gap permeance in the centre of the pole 

Pm a* = - ^ - (4.45) 
ymin 

The combined air gap permeance due to the pole shape and damper slotting 
becomes 

Ppd = P0 + J2Pn COS(n6 + <i>n- "J) + J2Pk COS(k9 + ^ - Wfct) (4.46) 
n k 

where 

Po = Ppolefi + Pdfi = {Ppolefi + -Pd,o)^max (4-47) 

A waveform of the air gap permeance with the effect of damper slotting 
has been computed for Machine 1, shown in Fig. 4.5 (left). The air gap flux 
density waveform obtained by FEA and shown in Fig. 4.3 (right) has been 
reproduced in Fig. 4.5 (right). One can see that two waveforms obtained by 
the two methods have similar shapes. 
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Figure 4.5: Permeance due to the pole shape and damper slotting, calculated 
from the model (left), and the normalised permeance obtained by FEA (right), 
on the half a pole pitch. 

4.1.4 Air gap permeance due to the stator slotting 

If the stator is slotted, the permeance is less under the slots, as shown in 
Fig. 4.6. 

p d c , B d c 

Figure 4.6: The normalized permeance due to stator slotting. 

FEA analysis provides distribution of the air gap flux density over one 
stator slot pitch in the centre of the pole. Due to uniform distribution of the 
stator slots over the circumference of the air gap, the flux density distribution 
over the circumference can be assumed to be periodic with the period of the 
stator slot pitch. The space order of the stator slot flux density harmonic in 
the machine is calculated as 

s = pnNs (4.48) 

where p is the number of pole pairs, n is space order of the harmonic over the 
stator slot pitch, Ns is the number of stator slots. 

The flux density curve can be normalised to be unity under the slots, as 
shown in Fig. 4.6. In this case, the base value to normalise the curve should 
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be chosen as 
^base = Bdc + -Bpeak (4 .49 ) 

The normalised permeance due to the stator slotting is identical to the 
normalised flux density waveform and can be expanded to 

-Pstat = 1 + ^2 Ps COS(s# + $3 + az ~ Ust) (4.50) 

4.1.5 Air gap permeance due to the pole shape, damper 
slotting, and stator slotting 

If the stator is smooth, the permeance due to the stator slotting is unity and 
the total air gap permeance waveform is one that is due to the pole shape 
and damper slotting. In case of the slotted stator, the "dips" under the stator 
slots are present in the combined waveform. One can suggest that a product 
of two permeances, one due to the stator slotting and other due to the pole 
shape and damper slotting, gives the total air gap permeance. The combined 
air gap permeance is thus calculated as 

-•air gap =— ini\ X rK Pd stat (4.51) 

or 

^air gap = PQ + ^ P* cos(n0 + <t>n ~ Unt) 
n 

+ ^ Pfe cos(£;0 + (j>k~ Wkt) + Po ^ Ps cos(sd + <fis + az- ust) 
k s 

2_] Pn COs(nd + 4>n — Unt) X \_. Ps COs(sd + (j)s + CtZ — (jjst) 

n J L s 

2_\Pkcos{k9 + </>& — Ukt) x y^ Ps cos(s9 + c/)s + az — ujat) 

+ 

+ (4.52) 

4.2 Calculation of air gap MMF 

The air gap mmf may be considered as sum of mmfs produced by different 
sources: by the field, or excitation, winding, by the armature winding and by 
the amortisseur, or damper, winding. 

The field mmf can be calculated as in Section 4.2.1; armature mmf har­
monic series can be user specified. However, the damper mmf is unknown 
because damper currents depend on air gap flux density, which is unknown. 
After the air gap permeance waveform is computed, air gap flux density can 
be calculated by the equation (4.1), using sum of the field and armature mmfs. 
The resulting flux density distribution allows one to evaluate damper currents 
and damper mmf. Assuming that the damper mmf does not affect the field 
and armature mmfs, the calculation of flux density may be updated [20]. 
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4.2.1 Field mmf 
The field mmf is produced by the field winding located on the poles of the 
synchronous machine, as shown in Fig. 4.7. The figure shows two poles, the 
stator across the air gap and several paths of magnetic flux in the circuit. 
Neglecting mmf drops in the iron and leakage fluxes, the mmf can be assumed 
to have a square waveform, constant over one pole pitch. 

n mmf 

e 

leakage 
flux 

stator 

main flux 

Given the Ampere's Law 

/ 
Hdl = iVI (4.53) 

where I is the field current in one turn, N is the number of turns, and assuming 
infinite permeability of iron and constant air gap length g, the mmf drop from 
the pole to the stator in the air gap can be approximately calculated as 

Hg = 
NI 

(4.54) 

where / is amplitude of the field current. Thus the magnitude of the field mmf 
waveform, shown in Fig. 4.7, is approximately a half a product of the rated 
field current and the number of turns. However, this estimate is valid only for 
unsaturated magnetic circuits, such as in the short circuit regime. 
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In unsaturated magnetic circuits, the air gap flux density linearly depends 
on the field mmf, as shown by an airgap characteristic in Fig. 4.8. In saturated 
regimes (for example, in open circuit), the dependence becomes nonlinear. 
However, the permeance analytical model assumes a linear dependence, as 
given by the equation (4.1). The mmf value can be reduced in such a way 
that the value of the air gap flux density on the airgap characteristic equals 
the value of the saturated curve at the rated current. 

Scaling of the field mmf magnitude can be done using FEA. One way to 
account for saturation is to obtain a linear and a nonlinear BE characteris­
tics of an unskewed machine, assuming non-saturating and saturating steel, 
respectively (Fig. 4.8). Suppose that F\ is the rated value of the field current. 
A difference between values B\ and B% of flux density suggests that the field 
current must be reduced to correspond to the value B^ on the air gap curve 
[103]. 

B, 

B2 

Figure 4.8: BE linear and nonlinear characteristics. 

Another way to account for saturation is to exploit only a nonlinear BE 
curve and the equation (4.1). The mmf magnitude can be calculated as 

F = § ^ (4.55) 

where Bmax is the peak flux density obtained in the saturated regime, and 
Pmax is given by Equation (4.21). 

4.2.2 Armortisseur currents and mmf 
The armortisseur mmf is produced by currents induced in short-circuited bars 
of the armortisseur (damper) winding, located on the pole surface. In a skewed 
magnetic field, inter-bar currents flow in the pole iron. The inter-bar current 
effect can be incorporated into an existing model of the damper bar current 
calculation [44]. It is shown that the damper currents calculated in a three-
dimensional circuit form an mmf varying in three dimensions. 

Currents induced in bars of the armortisseur winding are caused by 
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• pulsations of the air gap flux due to periodic movement of the stator 
slots relative to the rotor surface; 

• higher-order space harmonics of the rotating armature mmf, formed by 
currents of the three-phase stator winding. While the armature mmf fun­
damental harmonic moves with the same speed as the rotor, the higher-
order space harmonics rotate forward or backward with respect to the 
rotor. 

Constructing the interbar current model 

The phenomenon of interbar, or transverse, currents has been well explained in 
[53] and described below. Suppose that two adjacent bars in a skewed machine 
are partitioned in layers, AC and CE and BD and DF respectively, as shown 
in Fig. 4.9. The emfs induced in the layers of a bar have different phase shifts 
due to skewing (see Section 2.4). As a result, emfs in the loop CABD and 
ECDF do not cancel each other, and a current in branch CD is non-zero. 

Figure 4.9: Voltages in skewed bars. 

Fig. 4.10a shows the most recent way to model the inter-bar current ef­
fect [53]. The impedance between two bars consists of the contact resistance 
Rc on the surface of each bar and the impedance of iron. The iron impedance 
is much smaller than the contact resistance, so that it can be neglected. The 
circuit simplifies to one shown in Fig. 4.10b. 

In the longutudinal direction, the armortisseur bars can be partitioned in 
slices. The resulting circuit configuration becomes three-dimensional (Fig. 4.11). 
In the figure, n is the number of slices, Rbb is the contact resistance, Zbar, zend, 
zP2P are the impedances of the bar, the end ring segment between two bars, and 
of the pole-to-pole connection, respectively. The circuit includes the damper 
bars on all poles. If the poles are not connected, the connection is assumed 
to be present with a large value of impedance. To simplify the model, it is 
assumed that there are no interbar currents between adjacent poles. 
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Figure 4.10: Cross-sectional interbar current model. 
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Figure 4.11: A model of the damper winding including interbar currents. 
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The armortisseur circuit can be represented by a system of linear equations 
with loop currents as unknowns [44]: 

3^^ loop + IioopR + JLoIioopL = 0 (4.56) 

where R is the matrix of loop impedances and L is the matrix of self and 
mutual inductances of the damper network, ^i0Op is the vector of air gap flux 
linkages, to is the electrical frequency being considered. 

The system of equations can be modified to be of the form 

Z hoop = Vloop, (4.57) 

where Z is the result of superposition of the matrix of loop resistances and the 
matrix of self and mutual inductances, Vioop is a vector of resulting loop volt­
ages, and Iioop is a vector of loop currents, where loop currents are enumerated 
as in Fig. 4.11. Each component of the modified system is described below. 
The system can be solved for loop currents by any known method, Gaussian 
elimination and backward substitution being the simplest. 

The matrix of loop resistances 

Fig. 4.11 shows that two or four loop currents can flow in the interbar Rbb 
branch, depending on whether the interbar branch is adjacent to a loop be­
tween the poles. KVL equation can be written for each loop. For example, 
the quantities in the loop 5 are related by 

^1^66 — h^Rbb + ^3^66 ~ h(Zb + 2Rbb) + hzs ~ h{Zb + 2Rbb) 

+ I7Rbb-I82Rbb + I9Rbb = V5 (4.58) 

where zb =
 S^L, n is number of slices, zs = 2zb + ARbb is self impedance of the 

loop. After KVL equations are written for all loops, they can be combined to 
form a system of linear equations 

IRioop = Moop (4.59) 

An example of the loop resistance matrix is shown in Table 4.1. The 
following notation has been used: ze = 2zb + zend + 2Rbb, zs = 2zb + ^Rbb, 
zc — —(zb + Rbb) in the first and the last slices and zc = —(zb + 2Rbb) in middle 
slices, zp = 2nzb + 2zp2p- „ 

The dimension of a square main block of the loop impedance matrix is the 
number of loops per pole, [(iVbars — 1)" + 1], where Nbars is the number of bars 
per pole. 

The matrix of self and mutual inductances 

For each loop, self-inductance and mutual inductances due to magnetic cou­
pling with other loops have to be calculated. It can be noted that self-
inductances are equal from pole to pole, therefore, it is enough to calculate 
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self-inductances on one pole. Moreover, self-inductances do not depend on the 
axial length, so that calculation of one loop self-inductance between two bars 
in the first slice provides same value for a subsequent loop between these bars. 
Mutual inductances should be calculated only within a slice, as there is no 
magnetic coupling in axial direction: laminations comprising the pole body 
prevent the flux from going axially. This also means that when constructing 
the total matrix Z, only main blocks of the loop impedance matrix are covered 
by the inductance matrix. 

Below is the procedure of calculating inductances, as in [44]. A loop pro­
duces mmf in the slice over the whole rotor circumference as shown in Fig. 4.12. 
The amplitude of the mmf produced by the loop may be written as 

total = NI=\F1\ + \F2\ (4.60) 

where TV = 1 is number of "wire" turns in the loop (one bar is one turn), 1 = 1 
is the loop current, Fi is the mmf magnitude produced inside the loop, and 
i*2 is the magnitude produced by the loop outside it. In the Fig. 4.12, k and 
k + 1 are bar numbers, 9 is the angle from the origin to the bar. 

mmf 

'k+1 

Figure 4.12: Mmf on the total rotor surface produced by one loop. 

Due to the continuity principle, the total flux through the surface is zero, 
so that the flux doing through the loop must equal the flux returning through 
other loops, or 

|*i l^i = 1 ^ 2 = * (4.61) 

Here Px and P2 are permeances of the loop and of the outside of the loop along 
the air gap circumference. Combining the ecfuations (4.60) and (4.61), one can 
obtain 

Pi , „ , T Pi \Fi\ = I 
Pi + p?: P1+P2 

(4.62) 
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The self-inductance L of the loop can be obtained as 

L = \ft\Pi =-jTTJT (4-63) 
M + r2 

and mutual inductance M can be calculated as |F2 | times the permeance of a 
loop coupled to the current loop. 

Loop voltages 

Loop voltages exist in open and short circuit due to slotting harmonics of 
the stator. In open circuit, only the field mmf is present, but the air gap 
permeance is skewed due to the skewed stator slots, so that the product of the 
mmf and the permeance waveforms results in the skewed air gap flux density, 
which permits inter-bar currents to arise. In short circuit, the armature mmf 
also adds up to the mmf waveform to produce the skewed air gap flux density. 
A voltage harmonic induced in the loop can be obtained by integrating the 
air gap flux density harmonic over the surface of the loop and taking the time 
derivative of the resulting expression. 

If the armortisseur bars are partitioned in slices of equal length, all loops 
between two bars have the same area. In open circuit, the air gap mmf is the 
"uniform" field mmf, so that the loop voltage respective harmonics have the 
same magnitudes from slice to slice between two bars. In the presence of both 
the field and the armature mmf, magnitudes of the loop voltage harmonics 
are different. Phases of the loop voltage harmonics depend on the axial shift, 
as shown below, so that the total instantaneous loop voltages cannot be same 
from slice to slice. 

To obtain the n-th harmonic of the loop voltage, the n-th flux density 
harmonic 

Bn = Bn cos(n9 + 60 + anz - unt) (4.64) 

should be integrated over a loop from l\ to \<i and from 9\ to 92 (Fig. 4.13). 
Refer to an and ion as a and ui, respectively. The n-th harmonic of the loop 
voltage can be determined as 

Qft> Q rl2 r°2 

Vn = ——- = - — / / rBn cos(n0 + 90 + az- ut) d6 dz (4.65) 

where r is the pole tip raduis. Integration over 6 yields 

/ Bn cos(nd+60+az-ut) d(nd) = BnrKp cos (§(02 + 0i) +6o + az- ut) 
JO! 

r 
n „ „± 

(4.66) 

where Kp = —^-n can be called a pitch factor. 
2 

Integrating (4.66) over the length, one can obtain 

rh 
rKp / cos(o!2; + k) dz = rKpKs cos (f (l2 + h) + k) (4.67) 

Ju 
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Figure 4.13: Indexing slices in the damper winding. 

where k = f (02 — #i) + #o ~ ^ Ĉs = —^-g is a skew factor. 
2 

Then the loop voltage 

K = -rAnKpKs^ cos (f (i2 + ^ + f (02 - ^ ) + 0O - "*) 

= rAnuKvK9 cos (§(Z2 + Zx) + §(02 - 0X) + 0O - ^ + | ) (4.68) 

If the slices are enumerated from the lower end of a damper bar, as shown in 
Fig. 4.13, then 

l2 + h = (2n - l)la (4.69) 

for the n-th slice. The equation (4.68) can be modified in terms of freqiency, 
using ijj = 27r/. 

If slices have equal lengths, then I2 — h = const and Ks = const in (4.68). 
For all loops between two bars, #2 — #i = const, so that Kp = const in (4.68). 
As a result, magnitudes of voltages induced by a single flux density harmonic 
are same in all loops between two bars, and same between respective bars on 
all poles. However, phases of the loop voltages differ, as they depend on axial 
and angular position of the loop. 

The inter-bar model is also valid for non-skewed machines. In non-skewed 
machines, phases of loop voltages do not depend on the axial phase shift a = 0, 
so that loop voltages are identical between adjacent bars. 

Bar and interbar currents 

Assuming in Fig. 4.11 that bar currents flow down, interbar currents flow from 
left to right, and loop currents flow clockwise, bar currents are related to loop 
currents as 

Ik — hoop, k — hoop, fe-i (4.70) 

and interbar currents as 

hb,k Hoop, k HOOp, fc+iVba 
(4.71) 

for the k-th bar. 
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Damper mmf calculation 

An mmf produced by constant current in a loop, formed by two bars connected 
by end rings, is a rectangular pulse (Fig. 4.14). To determine the loop mmf 
harmonic contents, Fourier coefficients for the pulse have to be derived. Next, 
to obtain mmf caused by a time-varying loop current harmonic, the pulse, or 
the Fourier series, has to be multiplied by the loop current harmonic. 

1 

A 

6 

-« 

>i e 2 

^-

2% 

Figure 4.14: Mmf produced by a constant loop current. 

Fourier coefficients of a pulse with a constant magnitude. Let 
the pulse amplitude A be constant, and assume that the pulse exists between 
angles 9\ and 02, and is zero over the rest of the period of 2% (Fig. 4.14). Then 
the pulse function can be expanded to Fourier series 

f(6) = a0 + ]P(ancos(n0) + bnsin(nO)) (4.72) 
n = l 

The dc component does not have to be calculated, because a dc component 
produced by a loop over one pole is cancelled by a dc component produced by a 
respective loop over the pole of opposite polarity. Ignoring the dc component, 
the Fourier coefficients can be computed as 

an = J; / f(6) cos(n0) d6 = - f * Acos(nd) d6 = —(sin(n0 2) - s in(n^) ) 
1 JT 7T J01 7TO 

= ^ B m [ ; ( f c - 0 1 ) l c M [ £ ( f c + 01) irn 12 J 12 

2 f i r A 
bn = - f{9) sin(n0) d$ = - I Asin(n6) dd = (cos(n02) - cos(n0i)) 

1
 JT n Jei nn 

'-Xe2-e1)]Sm[^92 + e1)] 
2A . 

= — sin 
7rn 
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Then the function is computed as 

/ ( * ) = 

sin [|(0: 

to become 

y — x 
*-i irn 
rc=l 

# 1 )](«-[=(« ~n '2 + 0i)j cos(n0) + sin [-(02 + 0i) sin(n0) 1 

f(0) 
2 A , A s i n [ f ( 0 2 - 0 1 ) ] 

7T n 
cosn 0 - 02 + 01 (4.73) 

MMF as a pulse with time-varying magnitude. Loop current can 
be represented as a sum of harmonics varying with time: 

I(t) = ^2 Im cos(umt + <f>m) (4.74) 

For simplicity, refer to quantities of the ra-th harmonic as / , u/, </>, omitting 
the subscripts. Multiplying the pulse of unity magnitude A = 1 by the loop 
current harmonic, 

^mx /(0) = J cos(a>£+</>) —- > — cos n | 0 
7T 

n = l n 

one can obtain 

s i n ^ ^ - O i ) ] 

7T 
n = l n 

[cos (art + n9 + $1) + cos(u;£ — n6 

where 

$! = -(f)+ n 02 + 01 
$2 = </> + n 

02 + 01 

(4.75) 

$2)] 

(4.76) 

(4.77) 
2 ' " T ' " 2 

Variation of damper loop currents and mmf with axial position. 
Damper loop currents vary with time and axial coordinate. Suppose that the 
damper network has been partitioned in a number of slices in axial direction. 
Between two bars, all loops produce loop currents of different magnitudes and 
phases. A magnitude and a phase allow to represent a loop current by a 
complex number. Then moving in axial direction from slice to slice, one can 
obtain a complex-valued function versus axial coordinate. 

With a known number of points, an analytical form of the function versus 
axial position can be obtained using any kind of a polynomial. Dealing with 
harmonics, it is traditional to use Fourier series, and to represent complex 
numbers, an exponential form of Fourier series is the most convenient. From a 
five-slice model, five points are available, and the polynomial to approximate 
the finction has five terms: 

4 

Im(z) = h + he-juz + I2e-j2uz + he-^z + he~^z = £ he —jku>z (4.78) 
fe=0 
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where u = ^ , and T is an arbitrarily chosen period of the function. The period 
should be a fraction or a multiple of the machine length, as the function Im 

is considered versus longitudinal position. Also, is is desirable to have the 
damper loop current as a function of skew. Thus the period can be chosen to 
yield u 

u = — = 2TT- (4.79) 

where a is skew in slot pitches, l8 is the length of the stator stack. 
The coefficients I0, h, . . . , h of the function Im can be found by solving a 

system of equations 

J0 + / i e _ M + I2e-j2uza + he-'3"3* + he~j^ZA = /m>1 (4.80) 

Jo + Iie-
juei + he-^* + I3e-j3uga + he~j4uZi = /m,2 (4.81) 

J0 + he~juJZl + I2e-j%,Za + I3e-i3uz* + Ue~j4uzt = 7ro,3 (4.82) 
IQ + he-jwzi + I2e-j2"Z2 + I3e-i3b>za + I4e~j4wZi = Im<4 (4.83) 

/o + he-jwzi + he-*7"** + he-*3*"* + / 4 e " ^ 2 4 = 7m,5 (4.84) 

where Imji is a complex number representing the damper loop current ra-th 
harmonic in the z-th slice. 

The final expression for a harmonic of the damper mmf is product of (4.73) 
and (4.78): 

4 

M * , a ) = / ( ( ? ) ^ / f c e - ^ (4.85) 
fe=0 

Collecting all harmonics of the damper loop current, the expression becomes 

4 

m fc=0 
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Chapter 5 

Prediction of losses that depend 
on skew 

The varying skewed magnetic field in the air gap affects losses in iron of the 
machine and in bars of the armortisseur winding. As a result, one needs to 
consider iron loss of the stator, the pole face loss, the loss caused by inter-bar 
currents in the pole iron, and also the joule loss in the armortisseur bars. 

It is shown below that while eddy current loss depends on the flux density 
harmonic magnitude squared, hysteresis and excess loss depend on the peak 
value of the flux density instantaneous curve. In each lamination, the instan­
taneous curve is different due to harmonic axial phase shifts, so that iron losses 
obtained in a skewed machine differ from those of an unskewed machine. 

Losses due to conductor currents induced in the skewed magnetic field may 
be computed by Ohm's Law. The damper ohmic loss is obtained as 

Pd = I2R^ (5-1) 

where / is the magnitude of the current harmonic in the conductor, R^ is the 
ac resistance of the conductor at the harmonic frequency. Interbar iron loss 
can be calculated as 

^ib = ilRc (5-2) 

where Rc is the contact resistance. 

5.1 Magnetic field in iron of the stator 

The air gap flux density distribution can be used to obtain the flux density 
distribution in iron of the stator, namely, in the teeth and the back of the 
stator. Then the iron losses in the stator can be evaluated. 

5.1.1 Magnetic flux density in the stator tooth 

The stator tooth and the flux lines entering the tooth from the air gap are 
shown in Fig. 5.1. The figure can be described by the following assumptions: 
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(1 

stator tooth 

AUAAUU 

\V\ 
air gap flux 

stator slot pitch 

Figure 5.1: Flux lines outside and inside the tooth. 

1. All flux lines over the stator slot pitch go to the tooth. By this assump­
tion, because the tooth cross-sectional area is less than the one of the 
slot pitch, the number of flux lines remains the same, but their density 
is higher in the tooth. 

2. All flux lines enter the tooth near the tooth tip. 

3. Flux density has zero tangential component in the tooth. 

4. The harmonic flux is uniform in the tooth at one depth, in the sense 
that each point at same depth of the tooth "sees" the same magnitude 
of flux. 

If the period of the space harmonic of the air gap flux density is less than width 
of the tooth tip, one can assume that presence of tooth edges does not affect 
the harmonic. When entering the iron, the harmonic magnitude is unchanged. 
Magnitudes of the space harmonics with periods larger than the tooth tip must 
increase in iron in the manner 

Bn m,tooth»^tooth t ip 

B, m,tooth 

^>m,gap»5slot pitch 

pitch jrj 
-q B< 
'- 'tooth t ip 

'm,gap 

(5.3) 

(5.4) 

where Bm is flux density magnitude, S is cross-sectional area. 
In the axial direction, magnetic field is also non-uniform. Stator lamina­

tions of large synchronous machines are arranged in packets with spaces (ducts) 
between them. All flux lines over the "packet pitch" are assumed to go into 
iron of the stator packet, as shown in Fig. 5.2, and magnetic flux density in 
the packets increases. 

Carter's equivalent model of a slotted surface against a smooth one can be 
used to account for the increase in magnetic flux density due to ducting [104]. 
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EDxHl" 

—»-

I'M f t t 1 ! 

duct width 

air gap flux 

Figure 5.2: Flux lines entering a stator packet. 

A packet and a duct of the total length A can be replaced by an equivalent 
iron packet of smaller length, calculated as 

A' = A — aw, (5.5) 

where w is width occupied by air over the slot pitch, and a is calculated as 

7T 
tan w 

2g 

5 l n | l + , 9 w \ \2g 

Carter's coefficient 

c A' 

(5.6) 

(5.7) 

can also be used to scale the air gap magnetic flux density harmonic, when it 
enters the tooth. 

While the flux travels down the tooth, its magnitude decays with depth. 
A penetration depth, which is the depth where the wave magnitude decays to 
e_ 1 of its value on the surface, can be calculated as [23] 

(5.8) 

where d is diameter, in this case of the stator bore, and 2p = In is the number 
of poles of the n-th space harmonic counted at the period of the fundamental 
harmonic. It is convenient to partition the stator tooth in a number of layers, 
as shown in Fig. 5.3. For each flux density harmonic, its penetration depth 
can be computed and compared with the depth of the i-th layer hi. If the 
penetration depth is greater than the depth of the layer, the harmonic can be 
assumed to exist in the layer and to cause iron losses. 

The phase shift of the n-th harmonic of the flux density in the fc-th tooth 
of one lamination can be computed as (Fig. 5.4) 

Otv\ 
&>„ = n0 + £Bn + —z, (5.9) 
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1 

1 

h 2 

mm 

Figure 5.3: A stator tooth partitioned in layers. 

where z is axial coordinate of the lamination, 6 = 90 + (k — 1)7 is angular 
position of the fc-th tooth, 0O = j3f is the initial angular phase delay, j3 is skew 
in mechanical radians, / is the stator length, 7 = | p is the stator slot pitch 
angle, Ns is the number of stator slots, £Sn is phase shift of the magnetic flux 
density harmonic, an is axial shift of the n-th harmonic of the magnetic flux 
density. 

1 

7 / 
1 1 1 

r 1 t 
1 / 

/ / 

^^»^«»»s»»^^ 

e 

f > / / y '' 
/ / / / e 
0 y 

lamination 

Figure 5.4: To the calculation of the tooth flux phase. 

The most accurate picture of losses could be obtained, if the flux density 
distribution in the teeth of the stator was evaluated in each lamination. How­
ever, this considerably slows down computations. As a compromise between 
accuracy and computational speed, the flux density distribution can be ob­
tained in a middle lamination of each stator packet, and can be considered 
approximately constant along the packet. 

5.1.2 Stator back fluxes in open circuit 

The magnitude of the flux harmonic entering the yoke of the stator can be 
calculated as product of the flux density harmonic magnitude in the deepest 
layer of the tooth and the cross-sectional area of the layer. The phase shift of 
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the flux harmonic is the same as of the corresponding flux density harmonic. 
When magnetic fluxes leaving the stator teeth are known, fluxes flowing in the 
stator yoke can be estimated. Consider magnetic circuit shown in Fig. 5.5, 
where Xi IS cL flux in the i-th segment of the stator back between adjacent 
teeth, and $; is a flux coming from the i-th. tooth. The following observations 
can be made: 

• The stator back flux that leaves the last segment is the same as the flux 
that enters the first segment. 

• According to magnetic flux continuity principle, the sum of tooth, fluxes 
should be equal to zero. 

• According to the same principle, the sum of back segment fluxes should 
be equal to zero. 

It is assumed that the magnetic flux harmonic in the yoke does not decay 
with depth, which is a good approximation for a synchronous machine in open 
circuit [83]. 

segment 

X N X 

1 1 

1 X 2 

i i 

T 2 

X N ! 

J 

Figure 5.5: Fluxes outside and inside the stator yoke. 

7? 7? 7? 

Figure 5.6: The magnetic circuit for stator flux calculation. 

From Fig. 5.6, the first Kirchoff 's law for each node can be written as 

(5.10) 

(5.11) 

(5.12) 

Xl = %n + # 1 

%2 = %1 + $2 

Xn = £ n _ i + ®r, (5.13) 
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and the equations organized in the matrix form. For simplicity of illlustration, 
assume that the machine has six slots: 

1 
- 1 
0 
0 
0 
0 

0 0 
1 0 

- 1 1 
0 - 1 
0 0 
0 0 

0 
0 
0 
1 

- 1 
0 

0 
0 
0 
0 
1 

0 
0 
0 
0 
1 

" Xi ' 

x2 

Xz 
X4 

x5 

. X6 . 

" $ l " 
$ 2 

$ 3 

$ 4 

$ 5 

$ 6 

(5.14) 

Solving the system by Gaussian elimination and back substitution yields 

1 0 0 
0 1 0 
0 0 1 
0 0 0 

0 
0 
0 
1 

0 
0 
0 
0 

0 0 0 0 1 - 1 
0 0 0 0 0 0 

X\ 

X2 
X3 

£5 
x6 

$1 

$1 + $ 2 + $3 
$1 + $ 2 + $3 + $4 

$ ! + $ 2 + $3 + $4 + $5 
$1 + $ 2 + $3 + $4 + $5 + $6 

(5.15) 

The last row confirms the second observation, but the matrix is singular, so 
that the system does not have a unique solution! One needs either to define one 
unknown, to make one variable less in the system, or to add another equation. 

The third observation can be used to complete the system of equations, 

XQ — {x\ + x2 + ... + x5). (5.16) 

To make the matrix smaller (and solution faster), the equation (5.16) can be 
used to reduce the original number of unknowns in the system by one, and 
solve for the last unknown xn separately afterwards. If the equation (5.16) 
holds, then instead of the equation (5.10) for n = 6 one can write 

2a?! + x2 + x3 + xA + x5 = <£>!, (5.17) 

and the reduced system becomes 

2 
- 1 
0 
0 
0 

1 
1 

- 1 
0 
0 

1 
0 
1 

- 1 
0 

1 1" 
0 0 
0 0 
1 0 
-1 1 

" Xx ' 

x2 

x3 

X4 

. X$ . 

= 

• $ r 
$ 2 

$ 3 

$ 4 

_ * 5 _ 

(5.18) 

It can be shown that this system of equations can be quickly solved using 
"incomplete" Gaussian elimination. The system can be rearranged as 

2 1 1 1 1 " 
0 3 1 1 1 
0 0 4 1 1 
0 0 0 5 1 
0 0 0 0 6 

Xl 

x2 

X3 

£ 4 

. X 5 . 

= 

$1 
$1 + 2$2 

$1 + 2$2 + 3$ 3 

$ ! + 2$2 + 3$ 3 + 4$ 4 

$1 + 2$2 + 3$3 + 4$ 4 + 5$ 5 

(5.19) 
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Denote Sw = $1 + 2<3>2 + 3<fr3 + 4<&4 + 5<&5. The last unknown in the system 
is found as 

x5 = ISW. (5.20) 

Then 

5x4 + x5 = 5x4 + ±SW = Sw - 5$ 5 (5.21) 

5x4 = | 5 w - 5 $ 5 (5.22) 

X4 = lSw - $5 = X5 - $ 5 (5-23) 

For the next unknown, from row 3 in (5.19) we have 

4x3 + x4 + x5 = 5„, - 5$5 - 4$4 (5.24) 

4x3 = Sw — 5$ 5 - 4$4 - x4 - x5 (5.25) 

From row 4 in (5.19), we have 5x4 = Sw — 5<J>5 — x5, so that 

4x3 = 5x4 - 4$ 4 - x4 = 4x4 - 4<3>4 (5.26) 
x3 = x4 - $ 4 (5.27) 

Similarly, it can be shown that for each unknown Xj in the system, except the 
last, xn_i, 

xt = xi+1 - $ i + 1 . (5.28) 

The n-th element in the system of equations is calculated as 

n - l 
i 

X. 

1 n—1 

-Z>* (5-29) n 
fc=i 

and the last element in the original system of equations is calculated according 
to the continuity principle, 

x. n+l £>*. (5.30) 
k=\ 

The magnitude of a magnetic flux density harmonic in a segment can be de­
termined as the ratio of the flux harmonic magnitude and the cross-sectional 
area of the stator back traversed by the flux. 

5.2 Formulae for iron loss evaluation 

Iron losses are traditionally classified as eddy current losses and hysteresis 
losses. Eddy current loss can be further divided in traditional eddy current 
loss, produced by eddy currents in iron, and excess loss, due to eddy currents 
flowing on the moving domain walls [80]. 
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5.2.1 Traditional eddy current loss 

Alternatively to eddy current loss density per unit mass [23, 80], eddy current 
per unit volume loss density can be calculated as 

where a is the material conductivity, d is the lamination thickness, T is the 
period of the fundamental frequency, B is flux density. 

The integral in this expression can be obtained in the closed form for each 
harmonic of flux density, as shown in Appendix B. The total volumetric eddy 
current loss density becomes 

J2 n 

( ( A u,02 + (B2 u,2)
2 + ••• + (£„ o;n)

2) = a— J2(Bi uii)2, (5.32) 
1=1 

where Bi is the magnitude of the flux density harmonic, ui is the harmonic 
frequency. 

5.2.2 Excess loss 

The excess eddy current loss per unit mass can be evaluated as [80] 

K„ f IdB'15 

T 

where Ke is a constant found experimentally, T is the period of the fundamen­
tal frequency. 

The instantaneous, or time-domain, magnetic flux density waveform has to 
be re-constructed from the flux density harmonic series to calculate the excess 
loss. If the instantaneous flux density is known over the period with the step 
At, the expression (5.33) can be approximated as 

Bex — T l__j T 
T 

AB 

At 

1.5 
At =-^=\ABt + AB2 + • • • + ABn\

15 (5.34) 

or 
Pex = ^LIABX + AB2 + • • • + ABn IL5 (5.35) 

VAt1 

where T = j - , / i is fundamental frequency. 

5.2.3 Hysteresis loss 

The hysteresis phenomenon is better described not just by one hysteresis loop, 
but by the loop with the boundary distorted to form minor loops, as flux den­
sity "randomly" reverses during magnetisation due to higher-order harmonics. 
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These minor loops produce additional losses that can be evaluated as shown 
below. The hysteresis loss density per unit mass, with an account of the minor 
loop (or higher harmonic) losses, can be calculated as in [23, 80], using the 
fundamental frequency of the flux density: 

Ph = KnhB$K, (5.36) 

where Kh and a are constants determined experimentally, Bp is the peak value 
of the flux density. K is given by [84] 

A; 
* = i+£D*« (5.37) 

P »=i 

where k is a constant between 0.6 and 0.7, Afij is magnitude of the i-th 
"dip", as shown in Fig. 5.7, on the positive half-cycle of magnetic flux density 
instantaneous curve over the period T. 

Figure 5.7: Magnetic flux density curve. 

To calculate the hysteresis loss, the instantaneous waveform of the flux 
density has to be calculated from the flux density harmonic series. 

5.3 Pole face loss 

This section describes computation of the pole face loss in laminated poles of 
a skewed machine [105]. 

5.3.1 Computation of magnetic field in a lamination 

To facilitate the problem of computing magnetic field in iron, the following 
assumptions are adopted: 

1. Magnetic flux does not travel in the axial direction. 

2. The radius of the pole is large, so that the problem can be considered in 
Cartesian coordinates. 
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3. A harmonic of field intensity has axial phase shift a negligible across one 
lamination. 

4. End effects are ignored. 

5. Hysteresis losses are negligible. 

Let the coordinate system be located as shown in Fig. 5.8. In the pole iron, 
the following magnetostatic equations must be valid: 

V H 

V x H 

0 

J 

(5.38) 

(5.39) 

where H = [Hx Hy Hz] is magnetic field intensity and J = [Jx Jy Jz] is eddy 
current density in the iron. 

air 

iron 

m 

t 
Figure 5.8: Cartesian coordinates for computation of magnetic field in the 
pole. 

Taking curl of both sides of (5.39) and using equations 

J = a E 

V x E - - « • 

B = A*H 

V x V x y l = V(V-A)-V2A 

and (5.38), one can obtain the Helmholz equation 

V2H = januH 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

for a sinusoidal function H of angular frequency u. A general solution for this 
equation can be written as 

H = he-^eJ("t-ky-ax) = ^ Hy Hz^ (5.45) 
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where h = [hx hy hz], 7 and k are constants, a — 0 is axial phase shift of 
magnetic field intensity. The components of the field intensity harmonic can 
be written as 

Hx = Ke-^e^-W (5.46) 

Hv = hye-^e^-W (5.47) 

Hz = hze^,z^utr-kv) (5.48) 

To compute pole face loss, the magnetic field intensity components have to be 
found. By Assumption 1, Hx = 0. Consider the component Hz. By (5.44), 

so that 

where 

d2Hz 

dx2 + 

92 

d2Hz + 
dy2 

d2Hz 

dx2 

= jv^ 

d2Hz 

dz2 

= g2Hz 

, + k2-

= jafMjH; 

•72 

(5.49) 

(5.50) 

(5.51) 

A standard solution for the wave equation (5.50) is 

Hz = Re{(Hie
9X + H2e-gx)e-^ei(-ut-kv^} (5.52) 

In the middle of the packet, Hz is homogeneous over the lamination, so that 

Hz(l,y,z,t) = Hz(-ly,z,t) (5.53) 

Hx = H2 (5.54) 

Now the constants k and 7 should be found. Using (5.38), one can obtain 

—jk hy — "fhz = 0 (5.56) 

Using (5.39) and Assumption 1, Jx = 0, one can obtain 

8Hy + dHZ __ Q 

dz dy 
-lK + jk hz = 0 

For nonzero hy, hz equations (5.56) and (5.58) can 

k = 7 

In cylindrical coordinates, 

y = R0 • 

m9 = —y = ky 

k = R 
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(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 



where m is order of the space harmonic, R is the radius of the pole face, 
measured from the centre of the shaft. 

The magnetic field intensity components are related by (5.56), which gives 

hy = j hz 

and the magnetic field intensity becomes 

H 
Hx 

Hy 
H?. Ht(e

9X + e-
9X)e-izei{-wt-k^ 

(5.63) 

(5.64) 

where 
g2 = jafiu (5.65) 

To determine Hi, a normal flux density boundary condition on the pole 
surface can be used (Fig. 5.9): 

air B , 

iron 

/ 

* 
Bn, 

Figure 5.9: Equality of normal components of magnetic field density. 

-t'n, air -£>n,iron /^-"z 

The magnetic flux density harmonic in air can be expressed as 

o . _ r> j(uit-ky-aBx) 

(5.66) 

(5.67) 

where a # is magnetic flux density axial phase shift. Integration over the 
lamination width along x-axis, where y = 0, z = 0, and t = 0 for the air gap 
field stationary with respect to the rotor surface 

h h 

I \iHz dx—\ B cos(a# x) dx (5.68) 
2 " 2 

where h is the lamination width, gives 

# i = 
ghB 

Using an identity 

4//sinh(ffir) 

(Aei(t>)2 = A2<P* 

(5.69) 

(5.70) 
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the equation (5.65) can be expressed as 

g2 = ou.ue'i 

9 = 
1 + 2 1 + a 

(5.71) 

(5.72) 

where T = \/-^j is classical penetration (skin) depth. 

5.3.2 Eddy current density in a lamination 

The eddy current density is found from (5.39), using Hx = 0, Hy = jHz, 
Jx = 0: 

J = 
"X 

Jy 

JZ 

where 

- dHz. 

dMx 

my 
- dx 

juia 

_ dHz 1 
dx 

_ dHz 
dx 

dHx 
dy J 

hB , 

0 

dHz 

J dx 

0 
- J o 
3 Jo 

4/xsinh(f)V 7 

(5.73) 

(5.74) 

5.3.3 Computation of the pole face loss 

The volumetric power loss density may be defined as 

W = — J • J* 
2er 

1 1 
-{Jy J* + Jz J*) = —Jo JQ 2cr' " " "' a 

Using equations (5.72) and (5.74), the loss density can be expressed as 

(5.75) 

W = 
uj2ah2B2e-2kz 

^ - y ( c O S h ^ - C O S ^ ) (5.76) 
8 (sinh2 ± + S i n

2 A) 

The eddy current loss in one lamination due to one harmonic may be found as 

h 

' / IWdxdydz (5.77) 
wo Jo •/—« 

where yo a n d y\ a re coord ina tes of t h e ends of t h e pole. 
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Chapter 6 

Validation of the analytical 
model 

In Chapters 4 and 5, the analytical model predicting magnetic fields and losses 
in a salient-pole skewed synchronous machine has been developed. An impor­
tant part of the work is validation of the model by comparison of the obtained 
results with test or with another model. The manufacturer's data, used to 
validate the model, include measurements of voltage harmonic spectrum in 
open circuit in five large machines, open circuit and short circuit loss data in 
these machines, measurements of air gap flux density in one machine, voltage 
harmonic spectrum for the five machines obtained by nonlinear magnetostatic 
FEA of an unskewed machine. Ratings of the machines are shown in Table 6.1. 

Machine 1 
Machine 2 
Machine 3 
Machine 4 
Machine 5 

Rated power,kVA 
14089 
17889 
7000 
8667 
1278 

Rated voltage, V 
13800 
13800 
4160 
13800 
2400 

Skew 
1 
0 
1 
0 
1 

Type of winding 
integral 

fractional-slot 
integral 

fractional-slot 
integral 

Table 6.1: Machine data. 

6.1 Prediction of magnetic flux density 
To evaluate losses accurately, it is necessary to accurately predict magnetic 
flux density in the machine. In machines of a smaller size, flux density can 
be measured to check a model. For large machines, this measurement is not 
included into routine testing; it takes time, and a manufacturer cannot gener­
ally afford time delays. The measurement of air gap flux density in Machine 5 
is provided for comparison with simulation results. 

The measurement of flux density is performed by placing a test coil around 
one tooth of each packet and measuring voltage induced in the coil. The 
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flux density can be calculated from the measured voltage. In this way, the 
flux density in steel of the tooth tip is measured, rather than in the air gap. 
Therefore, the resulting flux density is expected to be higher than the air 
gap flux density. The tooth in each packet has been skewed, as opposed to 
measurement taken at one point in the space, which causes slight inaccuracy. 

The test and the simulation results are shown in Figs. 6.1-6.4. 

1 50E*00 •, 

-1.50E*00 J -•-- -'- - - - - - - -

Time [s«c] 

Figure 6.1: Air gap flux density in Machine 5, obtained by test. 

It is shown in Fig. 6.1 that the magnitude of measured magnetic flux density 
varies between 1.15 and 1.3 T. The magnitude of the simulated air gap flux 
density waveform (Fig. 6.2) is close to 0.99 T, a value also obtained by FEA. 
As expected, it is somewhat less than the measured value. The magnetic 
field has been simulated at the rated field current. Magnetic flux density 
slightly varies in magnitude (Figs. 6.1, 6.3 and 6.4), depending on length of 
the magnetic path; for example, a "tooth-against-tooth" path in one instant 
of time provides the shortest magnetic path, and the flux magnitude is the 
highest in this instant. 

A ripple on the top of the flux density waveform is caused by slotting of 
the stator and the pole. Measurement exhibits the smaller magnitude of the 
ripple, compared with the calculated ripple (Figs. 6.1 and 6.2). The smaller 
magnitude of the ripple can be explained by averaging the magnetic flux den­
sity over the slot pitch. The measured flux density is determined as the voltage 
in the test coil integrated over the area of the skewed tooth along the stator 
packet and scaled by the area of the tooth. The method causes averaging of 
the "peak and dip" information over the slot pitch. 

The air gap flux density magnitude depends on the bar-to-iron contact 
resistance of the armortisseur winding. It is shown below that the open cir­
cuit voltage, induced by the air gap magnetic field, and losses depend on the 

— packet 1 (top) 
—- packet 2 

packet 3 
packet 4 

— packet 5 
— packet 6 (centre] 
- - packet 7 
— packet 8 

packet 9 
packet 10 
packet 11 (bottom) 
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OC flux density in Machine 5 
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Figure 6.2: Air gap flux density in Machine 5, obtained by the model. 

OC Flux Density Fundamental Harmonics 

4 5 6 7 
Flux Coil No. 

9 10 11 

Figure 6.3: Measured variation in the magnitude of magnetic flux density 
fundamental with axial position for Machine 5. 

OC flux density fundamental in Machine 5 

Figure 6.4: Simulated variation in the magnitude of magnetic flux density 
fundamental with axial position for Machine 5. 
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contact resistance of the armortisseur bars. The flux density waveform shown 
in Fig. 6.2 is obtained for the contact resistance Rc = 0.01 Ohm-m. The 
bar-to-iron resistance has been unknown in the tested machine. 

6.2 Prediction of open circuit voltage 

Open circuit voltage measurements are routinely done in generators. If the 
calculated open circuit voltage waveform is consistent with test, one may sug­
gest that the air gap flux density has also been accurately predicted. All five 
machines are simulated, and the results are compared with available test and 
FEA results. 

Table 6.2 provides data for the fundamental harmonic of the open circuit 
voltage. Results for the next most significant harmonics are shown in Figs. 6.5-
6.9. 

Machine 1 
Machine 2 
Machine 3 
Machine 4 
Machine 5 

Test, V 
7911.8629 

7882.4 
2417.536 
7967.1 

1352.5377 

Model, V 
8135.9 
8005.8 
2378.9 
8197.3 
1337.0 

FEA, V 
7834.85 
7924.43 
2428.02 
7906.93 
1406.88 

Model vs. Test 
1.028 
1.0157 
0.9840 
0.9924 
0.9885 

FEA vs. Test 
0.9903 
1.0053 
1.0043 
0.9924 
1.0402 

Table 6.2: RMS value of the phase voltage fundamental harmonic of the stator 
winding in the open circuit condition. 

The developed analytical model predicts the open circuit voltage funda­
mental harmonic within 3 % in Machine 1, within 1.6 % in Machines 2, 3 and 5, 
and within 1 % in Machine 4. FEA results are within 1 % in Machines 1 and 4, 
within 0.5 % in Machines 2 and 3, and 4 % in Machine 5. Predictions of higher 
harmonics vary; while in general the results obtained from the model are close 
to test, the harmonics 9, 11 and 13 may differ from test data significantly, 
sometimes more than results obtained by FEA. 

Magnitudes of certain voltage harmonics in skewed machines were found 
to depend on the contact bar-to-iron resistance of the armortisseur winding. 
Plots of the most significantly varying harmonics, such as 9th, 11-th, 13th, 
versus contact resistance in open circuit are shown in Fig. 6.10. One can see 
that the 11-th voltage harmonic varies from 40 to 580 volts in Machine 1, from 
5 to 125 volts in Machine 5. The voltage harmonic data shown in Figs. 6.5-6.9 
are obtained at the contact resistance Rc = 0.01 fim. The difference between 
the results obtained by test and simulation may be explained by the difference 
in contact resistance, which has been unknown in tested machines. 

A numerical issue has been found to affect magnitudes of voltage har­
monics obtained from the model. The designer defines minimum values to 
define the least magnitudes of harmonics to be used in the permeance model. 
However, the harmonic series only approximates a physical picture. When a 
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tolerance factor is very small, nonexistent higher-order harmonics, obtained 
through multiplication and summation, can accumulate, which may result in 
high magnitudes of non-existent high-frequency voltage harmonics. 
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Figure 6.6: Comparison of test, the model, and FEA results in Machine 2. 

6.3 Prediction of losses 

Manufacturers of generators are required to supply loss data in open circuit 
and short circuit regimes. To verify the loss model, the calculated total loss 
in open and short circuit has been compared with measurements. The indus­
trial sponsor provided open circuit and short circuit loss data, obtained by 
an electric input method and a separate drive method, for five machines with 
ratings shown in Table 6.1. The methods allow one to obtain sum of the stator 
core loss and the stray-load loss, if the armature (stator) copper loss is known 
[13]. The measured open circuit core loss is given in Table 6.3. The short 
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Figure 6.10: Phase voltage harmonics versus bar-to-iron resistance in Machine 
1 and Machine 5 for the open circuit condition. 

circuit core loss data as the difference of the measured short circuit loss and 
the estimated eddy current loss in the stator winding is given in Table 6.4. 

The calculated total loss consists of the stator core loss as sum of eddy 
current, hysteresis and excess losses, the pole face loss, the ohmic loss in the 
bars of the damper winding, and the loss in the rotor iron due to inter-bar 
currents. The total loss does not include losses due to imperfections of the 
construction. The total loss is essentially sum of the stator core loss and the 
stray-load loss. 

In skewed machines, the air gap flux density depends on the damper 
mmf formed by currents induced in bars of the armortisseur winding, so that 
losses should vary depending on the bar-to-iron resistance. Three skewed ma­
chines are simulated over a range of the bar-to-iron resistances. The losses in 
unskewed machines are found to not depend on the contact resistance, as is 
expected. 

6.3.1 Open circuit losses 

In open circuit, magnetic material saturates, and the relative permeability 
(the slope of the B-H curve of the material) decreases. The industrial sponsor 
provided a characteristic of variation of relative permeability with magnetic 
flux density in the rotor steel, as shown in Fig. 6.11 (left). The pole face 
loss heavily depends on the value of relative permeability; one can see from 
Fig. 6.11 (right) that in a range of the relative permeability from 50 to 1000, 
the pole loss increases by a factor of three. 

The flux density in the rotor iron should normally be about 1.5-1.6 T. For 
comparison with test data, the rotor has been assumed more saturated, with 
a value /ir = 50 and flux density about 1.7 T. 

Computations of losses in iron of the stator do not directly include per­
meability of the magnetic material (see Section 4.2.1). Physical constants to 
simulate the stator steel are chosen the same as the constants of steel used to 
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Figure 6.11: Relative permeability in rotor iron and pole face losses. 

manufacture stators of Machines 1-5. 
The calculated open circuit core losses for Machines 1-5 are shown in Ta­

ble 6.3 and Figs. 6.12-6.13. It can be seen that the calculated losses are less 
than the test data. Reasons for the significant discrepancy may be variation 
of magnetic properties due to construction of the stator and rotor (gaps be­
tween adjacent segments in the stator, corrupted edges of laminations due to 
punching and burring) and existence of leakage fluxes (through holes in the 
pole body, air ducts in the stator, etc.), as not all leakage fluxes are accounted 
for by the model. The additional losses caused by constructional imperfections 
comprise from 40 % to 60 % of the fundamental core loss (loss at / = 60 Hz) 
in salient-pole synchronous machines [18]. 

Machine 1 
Machine 2 
Machine 3 
Machine 4 
Machine 5 

Skew 
1 
0 
1 
0 
1 

Model, kW 
57- 70 
56.30 

33.8 - 40.8 
45.68 

8.7- 11.3 

Test, kW 
79.77 

75.94/74.45 
55.99 
51.49 
16.31 

Table 6.3: Calculated and measured open circuit losses. 

A vertical line at the contact resistance Rc — 0.01 f2m in Figs. 6.12-6.13 
intersects the loss curves. The point of intersection shows the loss correspond­
ing to the open circuit voltage data shown in Table 6.2 and Figs. 6.5, 6.7 and 
6.9 for respective machines. 

6.3.2 Short circuit losses 

In short circuit, there is no magnetic saturation, because the stator winding 
currents produce magnetic field opposing the main field, and the remainder of 
the flux does not saturate steel. The pole face loss has been simulated at a 
relative magnetic permeability of approximately 2000. 

69 



OC total loss in Machine 1 OC total loss in Machine 3 

10 1<T 
Contact resistance. Ohm * m 

10 10' 
Contact resistance. Ohm * m 

Figure 6.12: Open circuit total loss in Machines 1 and 3. 

The calculated short circuit core losses for Machines 1-5 are shown in Ta­
ble 6.4 and Figs. 6.14-6.15. The results of measurements are higher or within 
the range of the calculated losses. Assuming that additional losses due to con­
structional imperfections exist, they may be lower in the short circuit regime, 
because the magnitude of magnetic flux density in iron is lower. The relative 
permeability of the rotor steel in short circuit has been estimated; the obtained 
pole face loss may be different from the pole face loss in the real machines. 

OC total loss in Machine 5 

10 10^ 
Contact resistance. Ohm * m 

Figure 6.13: Open circuit total loss in Machine 5. 
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Machine 1 
Machine 2 
Machine 3 
Machine 4 
Machine 5 

Skew 
1 
0 
1 
0 
1 

Model, kW 
16.5 - 24.5 

20.2 
14.7 - 20.7 

10.03 
2.8 - 4.05 

Test, kW 
34.98 

21.51/19.72 
22.23 
16.35 
3.52 

Table 6.4: Calculated and measured short circuit losses. 
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Figure 6.14: Short circuit total loss in Machines 1 and 3. 

SC total loss in Machine 5 

10 10"' 
Contact resistance. Ohm * m 

Figure 6.15: Short circuit total loss in Machine 5. 
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Chapter 7 

Design studies 

The previous chapter shows that skew and the contact resistance of the clamper 
bars affect performance of a synchronous machine. In this chapter, power 
losses and damper bar currents are considered versus the two parameters. 
The contribution of each loss component to the total loss is quantified. The 
distribution of damper currents over the pole is obtained and discussed. 

7.1 Losses 

Investigations how skew and the interbar contact resistance affect losses are 
conducted in this chapter. Only losses that depend on skew are considered: 
loss in bars of the armortisseur winding, inter-bar loss, pole face loss and 
stator loss as sum of eddy current, hysteresis and excess losses. The total loss 
is defined as sum of these components; it does not include joule losses in the 
stator winding. 

Machines 1, 3 and 5 (Table 6.1) are simulated for a range of contact re­
sistances. Skew s is varied from zero to two slot pitches. The relative mag­
netic permeability of the pole iron is assumed ixT = 105 in open circuit, and 
jj,r ~ 2000 in short circuit. Each of the four loss components and the total 
loss has been plotted. The losses in open circuit are shown in Figs. 7.1-7.9, in 
short circuit in Figs. 7.10-7.18. 

Generally, losses are higher in open circuit than in short circuit. This 
is expected, because the magnetic flux can be high in open circuit, while it 
should be kept low to provide rated currents in the short-circuited winding. 
Losses depend of the magnetic flux or its time rate of change, so the loss 
magnitudes vary with variation of the flux. The qualitative behaviour of each 
loss component is discussed below. 

In a range of low bar-to-iron resistances, the bar joule loss of the damper 
winding is little affected in either regime. This phenomenon occurs, because 
the loop currents are induced in the network at relatively high frequencies of 
several hundred hertz, so that the reactances of the network are much greater 
than the contact resistance. As the contact resistance increases and becomes 
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Open circuit bar loss in Machine 1 Open circuit inter-bar loss in Machine 1 

• * ' • * • • • — » * « i « i l l i l * — I * * i 

10"" 10 
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10~ 10"' 
Contact resistance. Ohm * m 

Figure 7.1: OC bar and inter-bar losses in Machine 1. 
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Figure 7.2: OC pole face and stator losses in Machine 1. 
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Figure 7.3: OC total loss in Machine 1. 
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Open circuit bar loss in Machine 3 Open circuit inter-bar loss in Machine 3 
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Figure 7.4: OC bar and inter-bar losses in Machine 3. 
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Figure 7.5: OC pole face and stator losses in Machine 3. 
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Figure 7.6: OC total loss in Machine 3. 
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Open circuit bar loss in Machine 5 Open circuit inter-bar loss in Machine 5 
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Figure 7.7: OC bar and inter-bar losses in Machine 5. 

Open circuit pole face loss in Machine 5 Open circuit stator core loss in Machine 5 
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Figure 7.8: OC pole face and stator losses in Machine 5. 
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Figure 7.9: OC total loss in Machine 5. 
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Short circuit bar loss in Machine 1 Short circuit inter-bar loss in Machine 1 
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Figure 7.10: SC bar and inter-bar losses in Machine 1. 
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Figure 7.11: SC pole face and stator losses in Machine 1. 
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Figure 7.12: SC total loss in Machine 1. 
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Short circuit bar loss in Machine 3 Short circuit inter-bar loss in Machine 3 
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Figure 7.13: SC bar and inter-bar losses in Machine 3. 
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Figure 7.14: SC pole face and stator losses in Machine 3. 
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Figure 7.15: SC total loss in Machine 3. 
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Short circuit bar loss in Machine 5 Short circuit inter-bar loss in Machine 5 
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Figure 7.16: SC bar and inter-bar losses in Machine 5. 
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Figure 7.17: SC pole face and stator losses in Machine 5. 
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Figure 7.18: SC total loss in Machine 5. 
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comparable with the reactances, the loop currents and the ohmic loss in bars 
begin to fall. The ohmic loss component is small, compared to other loss 
components. 

The interbar loss greatly depends on the contact resistance and contributes 
significantly to the total loss. Each interbar loss curve starts from zero at small 
values of the contact resistance, has a global maximum, and goes to zero at 
large values of the contact resistance, similarly to theoretical description of the 
interbar loss in squirrel-cage induction machines [10]. For the zero skew, the 
inter-bar loss is negligibly small. This is expected, as there are no inter-bar 
currents in unskewed machines (see Section 4.2.2; the loop emfs have the same 
phase shifts in the case of zero skew, so that they cancel each other over the 
interbar path). 

The pole face loss and the stator core loss curves exhibit similar behaviour 
in either regime. The lowest, constant, curve corresponds to zero skew. The 
greatest variation of the losses occurs at a skew of a half slot pitch (s = 
0.5), and a smaller variation occurs at the unity skew (s = 1). The losses 
corresponding to higher skew values are practically constant; they are grouped 
close to the zero skew curve in open circuit and spread more widely in short 
circuit. In open circuit, the pole face loss has been observed to be a dominant 
component of the total loss. The stator core loss is the largest component in 
short circuit. 

Depending on the skew value, the global maximum of the total loss curve 
may be shifted over a range of contact resistance values. In open circuit, the 
global maximum appears to be lower, as skew increases. In short circuit, the 
global maximum generally increases with the increase of skew. The lowest 
total loss almost always corresponds to zero skew. The "next best" curve 
corresponds to s = 2 in open circuit and to s — 0.5 in short circuit. 

7.2 Damper bar currents 

In this section, distribution of current in the bars of the armortisseur winding 
on one pole is investigated. Each damper bar is partitioned in five slices. 
Current is calculated in the middle of each slice and assumed to be constant in 
the slice; skin effect is accounted for by an appropriate subroutine. Plots given 
in this section show surfaces, obtained by interpolation between calculated 
values of current. These surfaces might indicate trends, but they cannot be 
considered as showing accurate distribution of current. 

It is clear from the damper circuit shown in Fig. 4.11 that current should 
be non-uniform along a bar. The distribution of current has been considered 
in open circuit and short circuit. 
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7.2.1 Bar currents in open circuit 

In open circuit, the only source of the induced damper bar currents is slotting 
of the stator. A formula (2.5) gives orders of the slotting harmonics; it is 
repeated here for the reader's convenience: 

Ns 
ns = k ±l = 2mq±l (7.1) 

p 

The "plus" sign indicates that the harmonic rotates forward with respect to 
the rotor, and the "minus" sign indicates the backward rotation with respect 
to the rotor. For Machines 1, 3 and 5 the formula produces orders 11, 13, 23, 
25 of slotting harmonics. Higher orders have not been considered due to lower 
bound constraint on the magnitude in the simulation tool. 

Adding the speed of the slotting harmonic, calculated as n8 x 60 Hz, to 
the rotor speed of 60 Hz, respecting the rotation in the same or opposite 
direction of the rotor's rotation, one can obtain temporal frequencies of 720 
Hz (by the 11th and 13th harmonics) and 1440 Hz (by the 23rd and 25th 
harmonics). Thus in open circuit, current in the damper bars is induced at 
these two frequencies. Plots of the bar currents versus contact resistance are 
obtained for Machines 1 and 3 (Figs. 7.19-7.22). 

OC, 720 Hz, Re = 0.00001 OC, 720 Hz, Re = 0.001 OC, 720 Hz, Re = 0.01 

Layers o o Bar number Layers o o Bar number Layers 0 o Bar number 

OC, 720 Hz, Re = 0.05 OC, 720 Hz, Re = 0.1 OC, 720 Hz, Re = 10.0 

Layers o o Bar number Layers o o Bar number Layers 0 0 Bar number 

Figure 7.19: OC bar currents, 720 Hz, in Machine 1. 

One can see that at low resistance values, the bar current distribution is 
almost symmetrical with respect to the pole axis. This is expected due to 
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OC, 1440 Hz, Rc = 0.00001 OC, 1440 Hz, Re = 0.001 OC, 1440 Hz, Re = 0.01 

Layers 0 o Bar number Layers 0 0 Bar number Layers 0 0 Bar number 

OC, 1440 Hz, Rc = 0.05 OC, 1440 Hz, Rc = 0.1 OC, 1440 Hz, Rc = 10.0 

Layers 0 0 Bar number Layers o 0 Bar number Layers o 0 Bar number 

Figure 7.20: OC bar currents, 1440 Hz, in Machine 1. 

OC, 720 Hz, Rc = 0.00001 OC, 720 Hz, Rc = 0.001 OC, 720 Hz, Rc = 0.01 

Layers 0 0 Bar number Layers o o Bar number Layers o 0 Bar number 

OC, 720 Hz, Rc = 0.05 OC, 720 Hz, Rc = 0.1 OC, 720 Hz, Rc = 10.0 

Layers 0 o Bar number Layers 0 0 Bar number Layers 0 0 Bar number 

Figure 7.21: OC bar currents, 720 Hz, in Machine 3. 
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OC, 1440 Hz, Re = 0.00001 OC, 1440 Hz, Re = 0.001 OC, 1440 Hz, Re = 0.01 

Layers o o Bar number Layers o o Bar number Layers 0 o Bar number 

OC, 1440 Hz, Re = 0.05 OC, 1440 Hz, Re = 0.1 OC, 1440 Hz, Re = 10.0 

Layers 0 o Bar number Layers o 0 Bar number Layers o 0 Bar number 

Figure 7.22: OC bar currents, 1440 Hz, in Machine 3. 

the symmetrical pole shape and uniform field mmf. The current in the bars 
closer to the centre of the pole is higher, because the smaller air gap provides 
greater flux density. The bar current in the centre of the pole may be higher 
or lower than in adjacent bars, depending on whether the central bar faces the 
stator tooth or stator slot, which affects the air gap length. As the contact 
resistance increases, the axis of symmetry can rotate, as shown in Fig. 7.19 for 
Rc = 0.01 Sim: it can be seen that similar current is induced at bar 1, slice 5, 
and bar 5, slice 1. 

The bar current is determined as difference of ajacent loop currents, cal­
culated from loop voltages and loop impedances. Loop voltage phase shift is 
affected by location of the loop in a skewed field. As a result, phase shifts 
of loop currents and the bar current between the loops are affected by skew. 
Depending on the phase shift, the bar current may be less or greater along the 
bar. 

The plots at a low contact resistance of 0.0001 Om show that the current 
is practically uniform along each bar. Consulting with Fig. 4.11 shows that 
if the bar-to-iron resistances are small, then the slices are not interconnected. 
The circuit becomes two-dimensional. Same loop voltage magnitudes, induced 
in the uniform skewed field produced by the field mmf and skewed air gap 
permeance, and similar loop impedance values (up to the end ring impedance) 
yield similar loop currents, so that the bar current has very close values in all 
slices. 
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The plots at high contact resistances, such as lOfim, show that the bar 
current essentially becomes zero. This is also expected. Each loop contains 
two or four contact resistance components. If they are high, loop currents 
become zero and produce zero bar current. 

It can be seen from the plots that a large contact resistance practically 
eliminates the bar current harmonics in open circuit. 

7.2.2 Bar currents in short circuit 

In short circuit, a rotating wave of the armature mmf is formed by currents 
of the three-phase armature winding. Space order harmonics of the armature 
mmf can be calculated by a formula 

v = 2mc ± 1 = 6c ± 1 (7.2) 

where m = 3 is the number of phases of the armature winding, c is a non-
negative integer. The "plus" sign indicates forward rotation with respect to 
the rotor, and the negative sign indicates backward rotation. The formula 
produces 1, 5, 7, 11, 13 space orders; higher-order harmonics are not consid­
ered. The armature mmf space harmonics produce the damper bar currents 
at frequencies 360, 720, 1080 and 1440 Hz. 

Added to the field mmf in the short circuit regime, the armature mmf 
creates armature reaction. The resulting mmf and the magnetic field are low 
at one end of the pole and high at the other. The non-uniform distribution 
of the magnetic field causes large variation of current in the damper bars, as 
shown in Figs. 7.23-7.30. The plots are obtained at each frequency in Machines 
1 and 3. 

It can be seen that similarly to open circuit, the damper bar currents may 
increase by the fifth slice. The dependence of the bar current phase shift on 
skew can be further clarified for the short circuit regime. Because the field 
mmf and the armature mmf tend to cancel each other, the phase shift between 
them at one end of the machine is assumed to be 180°. For Machines 1 and 3 
with six stator slots per pole pitch, a skew of one slot pitch provides a shift by 
30° . That gives a phase shift of 150° between the field and armature mmf at 
the other end of the machine. The phasor summation of the mmf components 
at the other end of the machine is likely to produce a greater voltage in the 
fifth slice. 

One can see that as the contact resistance increases, the bar current har­
monics at 360 and 720 Hz diminish, but do not become zero at a large bar-to-
iron resistance. The harmonics at 1080 and 1440 Hz decrease to zero. 

7.2.3 Bar currents versus skew value 

The magnitude of current in bars of the damper winding may depend on the 
skew value. Machines 1, 3 and 5 are simulated at the contact resistance 0.01 Cl 
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SC, 360 Hz, Re = 0.00001 SC, 360 Hz, Re = 0.001 SC, 360 Hz, Re = 0.01 

Layers o o Bar number Layers o o Bar number Layers 0 0 Bar number 

SC, 360 Hz, Re = 0.05 SC, 360 Hz, Re = 0.1 SC, 360 Hz, Re =10.0 

Layers o o Bar number Layers 0 o Bar number Layers o 0 Bar number 

Figure 7.23: SC bar currents, 360 Hz, in Machine 1. 

SC, 720 Hz, Re = 0.00001 SC, 720 Hz, Re = 0.001 SC, 720 Hz, Re = 0.01 

Layers o o Bar number Layers o 0 Bar number Layers o 0 Bar number 

SC, 720 Hz, Re = 0.05 SC, 720 Hz, Re = 0.1 SC, 720 Hz, Re =10.0 

Layers 0 o Bar number Layers o o Bar number Layers o 0 Bar number 

Figure 7.24: SC bar currents, 720 Hz, in Machine 1. 
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SC, 1080 Hz, Re = 0.00001 SC, 1080 Hz, Re = 0.001 SC, 1080 Hz, Re = 0.01 

Layers 0 o Bar number Layers 0 0 Bar number Layers o 0 Bar number 

SC, 1080 Hz, Re = 0.05 SC, 1080 Hz, Re = 0.1 SC, 1080 Hz, Re =10.0 

Layers 0 o Bar number Layers 0 0 Bar number Layers 0 0 Bar number 

Figure 7.25: SC bar currents, 1080 Hz, in Machine 1. 

OC, 1440 Hz, Re = 0.00001 OC, 1440 Hz, Re = 0.001 OC, 1440 Hz, Re = 0.01 

Layers 0 rj Bar number Layers 0 0 Bar number Layers 0 0 Bar number 

OC, 1440 Hz, Re = 0.05 OC, 1440 Hz, Re = 0.1 OC, 1440 Hz, Re = 10.0 

Layers o o Bar number Layers 0 0 Bar number Layers o o Bar number 

Figure 7.26: SC bar currents, 1440 Hz, in Machine 1. 
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SC, 360 Hz, Re = 0.00001 SC, 360 Hz, Re = 0.001 SC, 360 Hz, Re = 0.01 

Layers o 0 Bar number Layers o 0 Bar number Layers 0 0 Bar number 

SC, 360 Hz, Re = 0.05 SC, 360 Hz, Re = 0.1 SC, 360 Hz, Re =10.0 

Layers o o Bar number Layers o o Bar number Layers o o Bar number 

Figure 7.27: SC bar currents, 360 Hz, in Machine 3. 

SC, 720 Hz, Re = 0.00001 SC, 720 Hz, Re = 0.001 SC, 720 Hz, Re = 0.01 

Layers o o Bar number Layers o o Bar number Layers o 0 Bar number 

SC, 720 Hz, Re = 0.05 SC, 720 Hz, Re = 0.1 SC, 720 Hz, Re = 10.0 

Layers 0 o Bar number Layers 0 0 Bar number Layers 0 0 Bar number 

Figure 7.28: SC bar currents, 720 Hz, in Machine 3. 
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SC, 1080 Hz, Re = 0.00001 SC, 1080 Hz, Re = 0.001 SC, 1080 Hz, Re = 0.01 

Layers o o Bar number Layers o o Bar number Layers o o Bar number 

SC, 1080 Hz, Re = 0.05 SC, 1080 Hz, Re = 0.1 SC, 1080 Hz, Re =10.0 

Layers 0 o Bar number Layers 0 o Bar number Layers 0 0 Bar number 

Figure 7.29: SC bar currents, 1080 Hz, in Machine 3. 

SC, 1440 Hz, Re = 0.00001 SC, 1440 Hz, Re = 0.001 SC, 1440 Hz, Re = 0.01 

Layers o o Bar number Layers o o Bar number Layers o o Bar number 

SC, 1440 Hz, Re = 0.05 SC, 1440 Hz, Re = 0.1 SC, 1440 Hz, Re = 10.0 

Layers 0 o Bar number Layers 0 o Bar number Layers o o Bar number 

Figure 7.30: SC bar currents, 1440 Hz, in Machine 3. 
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m to obtain the bar current distribution. The most representative plots of the 
bar current versus skew in open and short circuit in Machines 1, 3 and 5 are 
shown in Figs. 7.31-7.35. 

OC bar currents at frequency 720 Hz in Machine 1 OC bar currents at frequency 720 Hz in Machine 5 

Layers 0 0 Bar number Layers ° 0 Bar number 

Figure 7.31: OC bar currents, 720 Hz, in Machine 1 and 5. 

OC bar currents at frequency 1440 Hz in Machine 1 OC bar currents at frequency 1440 Hz in Machine 3 

Layers 0 0 Bar number Layers ° 0 Bar number 

Figure 7.32: OC bar currents, 1440 Hz, in Machine 1 and 3. 

One can see that in a non-skewed machine, the current has the same mag­
nitude along the bar (no inter-bar currents), which is generally the highest, 
compared to currents at other skew values. When the skew is a half slot pitch 
(s — 0.5), the bar current in the fifth slice may be higher than in a non-
skewed machine. As the skew increases, the bar current tends to be lower. 
The dependence exhibits the behaviour similar to the bar loss trend shown in 
Section 7.1. 
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SC bar currents at frequency 720 Hz in Machine 1 
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Figure 7.33: SC bar currents, 720 Hz, in Machine 1 and 3. 
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Figure 7.34: SC bar currents, 1080 Hz, in Machine 1 and 5. 
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Figure 7.35: SC bar currents, 360 and 1440 Hz, in Machine 3 and 5. 
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Chapter 8 

Conclusion and 
recommendations for future 
work 

Large synchronous machines have been a vital part of the electricity market. 
However, not much research has been done to study factors that impact per­
formance of large synchronous machines with skewed stators. A multi-slice 
FEA that has a capability to analyze magnetostatic fields in these machines 
is excessively time-consuming, and so infeasible at the design stage. 

This work is devoted to analytical modeling of magnetic fields and losses in 
a synchronous salient-pole machine with a skewed stator. Each loss component 
of interest is quantified, and this is the most significant result of the work. This 
result and other obtained results are discussed below. 

A developed analytical model uses the permeance model and input infor­
mation obtained by FEA of an unskewed synchronous machine to evaluate 
magnetic flux density in the air gap; it also employs a recent inter-bar cur­
rent model to analyze inter-bar currents in the poles of a skewed synchronous 
machine. A simulation tool is developed on the basis of the analytical model. 
When possible, the model and the tool are verified by provided measurements. 

The analytical model is used to investigate impact of skew and of the inter-
bar resistance on the stator voltage in the open circuit condition and losses in 
the cases of open circuit and short circuit. Magnitudes of the voltage harmonics 
induced in the stator winding are found to depend on the contact resistance. 
Losses are also found to vary as the contact resistance varies; they decrease 
with the increase of skew in open circuit and increase with the increase of skew 
in short circuit. The open circuit losses appear to be much higher than the 
short circuit losses. With this information, a designer can make an optimal 
choice on the value of skew to minimize losses. 

It is stressed that variation of the contact resistance makes the losses vary 
in a wide range. It is recommended that the contact resistance of the bars 
of the armortisseur winding is measured before the loss calculation. The bars 
can also be manufactured to be either very little or well insulated, to avoid a 
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range of the peak total loss. 
It is also found that the pole face loss, a major loss component in the case 

of open circuit, varies in a wide range versus relative permeability of the pole. 
In calculations, the relative permeability of the pole is estimated for the open 
circuit and short circuit regimes. It is recommended that the material used to 
manufacture poles is studied to yield a possibly correct value of the relative 
permeability, to provide a better estimate of the pole face loss. 

The analytical model is used to investigate distribution of currents in bars 
of the armortisseur winding over a pole versus contact resistance in open circuit 
and short circuit. It is found that the currents may increase from one end of 
the bar to the other, and that the increase of the contact resistance reduces 
the bar currents in magnitude. This data are not feasible for verification by 
measurements. 

The following improvements are suggested to refine the analytical model. 
The bar-to-iron contact resistance is assumed constant along the damper bar 
and from bar to bar. It would be helpful to incorporate variation of the contact 
resistance along the bar length, and also from bar to bar. While leakage fluxes 
can be estimated empirically in an unskewed machine, they may be different 
in a skewed machine. Work in this area would improve evaluation of losses. 
Assumptions on flux fringing can be revisited to include leakage fluxes into 
calculation. 

The developed simulation tool calculates magnetic fields and losses for a set 
of input data within several minutes. The stator voltage spectrum, obtained 
with the tool, is as accurate as FEA of a non-skewed machine or better. It 
can be concluded that the developed software is fast, accurate, and allows a 
design engineer to choose a suitable design at an early stage. 
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Appendix A 

Conformal transformations 

Conformal transformations is a method that allows one to analytically rep­
resent a field within an arbitrary boundary. The method has been shown to 
predict field almost as accurately as FEA [61]. An example [57] is reviewed to 
illustrate the method and to give some insight into a model used in this work. 
The latter model is then considered in possible detail [58]. 

A.l The idea of the method 

An area inside a polygon can be mapped to an upper half plane of a so-called 
w-plane, with the polygon boundary stretched on the real axis (Fig. A.l). An 
equation called Schwatrz-Christoffel transformation governs this transforma­
tion: 

^ = A(w- a)^-\w - 6)#-1...(w - ef-x (A.l) 

where A is a constant, a, 6, . . . , e are coordinates of the polygon vertices on 
the real axis of the w-plane, and a, /3, ..., 6 are angles of the polygon in the 
xy-plane, else called z-plane. Integration of the equation with respect to w 
gives a coordinate z versus w, and constants of integration can be determined 
from boundary conditions. 

This transformation might or might not be sufficient to analytically rep­
resent field in the original plane. Sometimes another, easily visualised, or 
"regular" field picture can be mapped to w-plane. Then w can be expressed 
from an equation of the regular field to be substituted into an equation of an 
arbitrary polygon. Thus w is eliminated, and one obtains dependence of an 
unknown field versus known. Thus desirable quantities such as electric scalar 
potential or magnetic flux density distribution can be obtained in the area of 
interest. 

The boundary of the polygon has to be "cut" at some point, and the ends 
at the point of the "cut" become the ends of the real axis on the w-plane. 
The point of the cut is not included in the equation of transformation. A 
polygon may have discontinuity in a "vertex" or to be degenerated (to have 
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A 

z - plane 

Figure A.l: Mapping from the z-plane to the w-plane. 

zero internal area), when all surrounding space is the area of interest [57]. A 
point of discontinuity is most convenient to serve as the origin in the w-plane. 

A.2 A symmetrical problem of the rectangu­
lar pole across the smooth armature 

A problem of magnetic field in the air gap between an isolated rectangular 
pole and smooth armature surface has been first solved by F. W. Carter [57]. 

Transformation of a regular field to the w-plane. A rectangular 
capacitor with infinitely stretched plates of opposite polarity serves as a two-
dimensional regular model (Fig. A. 2). Assuming one end to be the origin in 
the w-plane, the other end can be "opened" to w = —oo and w = +oo. The 
angle at the only corner of the polygon is zero. The transformation equation 
from this t-plane to the w-plane becomes 

dt 
dw 

A 
w 

The integration by dw gives 

t = Alnw + B 

(A.2) 

(A.3) 

At this step, B can be assumed to be zero. To have unity distance between 
the plates, A can be found from 

j l = A l n ( - l ) = A jw 

to be A = A. Then 

t = — In w 
TV 

(A.4) 

(A.5) 
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w= 0 

w = -oo 

W = + 00 

Figure A.2: A rectangular capacitor with infinitely stretched plates. 

and 
•Kt w = e"" (A.6) 

The t-plane is often called X'P^ane-
Configuration with one right angle. If the pole and the armature 

have the same length (Fig. A.3), use of symmetry can be made to simplify 
the problem. An x-axis can be put in the middle of the air gap; it is also an 
equipotential (Fig. A.4). Let the pole and the armature have unity potential 
of opposite polarity, then the ar-axis will be at zero potential. 

Pole 

g 

Armature 

Figure A.3: The pole and the armature of the same length. 

W = - 0 0 

y 

w = o ^g 

w= -1 

0 w = 00 

z = 7Jg z = 00 u 

a = ̂  b=0 

Figure A.4: The air gap in the z-plane and the w-plane. 

Choose w = 0, when x = —00, w = 00 when x = 00, w — —00 when 
jy = 00, w = 1 at the corner of the pole. There are two angles corresponding 
to two vertices of the polygon: 

a = —1 

6 = 0 

3TT 

a 

(3 = 0 

(A.7) 

(A.8) 
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The transformation equation takes form 

l 
— = A(w-a)2 w = — '— (A.9) 
aw w 

Integration by w yields 

z = A |2(w + l ) 2 + l n ^ W + 1 ^ ~l ]+B (A.10) 
(W + 1 ) 2 + 1 

The origin on the z-plane can be chosen arbitrarily, so assume 5 = 0. Checking 
the equation, at w = —oo, z — —joo; at w = oo, x = oo; at w = 0, z = 
j4(2- lnoo) = -oo . 

To determine the constant A, consider an integral by z over the interval 
off 

dz = -j<? (A.11) 

and assume that w — re^e where the radius r is small. When r —» 0, 

I l 

d* = "4(W + I ) 2 d w = A ( r e ' + 1 ) 2 . j r e ? ^ = ^ ( r e ^ + l ) id0 -> Ad0 (A.12) 

I3 

and from 

one obtains 

Then 

jAj dd = jAiv = ±jg (A.13) 

A = A (A.14) 

z = f f ( 2 ( W + l ) l + l n ( w + 1)|-1) (A.15) 
27!" V (W+ 1)2+1/ 

At the corner w = — 1, 

* = | ; M - l ) = | ^ = £te (A.16) 

which allows one to conclude that the origin in the z-plane is exactly below 
the pole corner. 

The origin of the £-plane should correspond to w — —1, to be aligned 
with the origin of the z-plane. It was shown in [57] that the point t = jir 
corresponds to w = — 1. 

Distribution of air gap flux density. If a picture of flux lines and 
equipotentials is drawn in each plane, a difference between two points should 
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be scaled going from plane to plane. So the air gap magnetic flux density can 
be calculated as 

B = 
dt 
dz 

fi0F = 
dt 
dz Mo (A.17) 

for unity mmf F across the area of interest. This expression can be replaced 
by 

dt dw 
dw dz 

B Mo 

Prom (A.9) and (A.14) 
dw 2TC W 

dz 9 {w + l)\ 

From (A.6) dw — ire^dt = nwdt, and 

dt 1 
dw ww 

The expression for magnetic flux density becomt 

B = 
1 2irw 

™0(«/ + l)5 

2 
Mo = - Mo 

g 
(w + iy 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

It is not feasible to draw magnetic flux density versus z directly. Instead, 
values of w can be picked, and z and B can be calculated using formulas (A. 15) 
and (A.21). The graphs are the simplest, where w is real. 

A.3 A problem of rectangular poles against 
the infinite smooth armature 

One rectangular pole. A rectangular pole against an infinite plane of arma­
ture has been considered by Carter [58], as shown in Fig. A.5. The purpose of 
the exercise is to find the potential function (mmf) </> that provides potentials 
of the pole and the armature </>o and zero, respectively. The area of interest, air 
enclosed between the two surfaces, has been mapped to the second quadrant 
of the w-plane worj, where w — a at the point A (corresponds to the point E), 
w = 0 at the point o (corresponds to the point P). Thus OA corresponds to 
the bottom of the pole PE, the line A£ corresponds to Ey, or) corresponds to 

The transformation is given by 

2g {Va? 
7T 

wr In 
'a + ya? w 

a —w 
+ i-. 

.ft 
(A.22) 

where z — x + iy, w = £ + irj, g is the air gap length. 
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$ A(E) 

a 

11 

o(P) £ 

Figure A.5: Mapping from the 2-plane to the ^77-plane in a one-pole model. 

If a function C = </> + # on the w-plane can be found such that it equals 0o 
along o£ and zero along or), then after it is transformed to the 2-plane by the 
equation (A. 22), flux lines ip = const and equipotential lines 0 = const can be 
plotted on the original plane by x, y. Such a function is given by 

c = e-
•x i<t>+<t>Q+ill' 

00 (A.23) 

Eta. 
Denote a = e 2 ^ . The equation for the £-plane becomes 

= ggfv/i-^('+"oyo)) 
7T 

In 
7r .(<p-<po+i(y>+y>o)\ . f <j>—^o+i(^+ipo) 

4>o ) - i + * j l (A-24) 

Thus given a pair ((/>, ^) on the w-plane, a corresponding point (x, 7/) on the 
z-plane can be obtained, and the field pattern in the area of interest can be 
drawn. 

The flux density distribution along the armature surface can be determined 
as 

\fy\ B = 
dx 

(A.25) 

when y — 0. On the armature surface, the potential function 0 = 0, and the 
expression (A. 24) becomes 

x 
2J> Hi 

ip+i'o 

+ e 
7T 

- l n 

2g 

V I + i-. 
.7T 

where 

e ? e2 0o + V l + e* 

^ ( V l + e-2X - In (ex + y/l + e 2 *)) (A.26) 

X = \*g- (A.27) 
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Then 
dX = 

7T 

Wo 
# (A.28) 

Taking derivative of x from the equation (A.26) by dip and using (A.28), one 
can obtain 

dx n dx g 
dip 2<po dX (po 

—e 
-2X nX 

ViT ~2X Vl + e2*. 

g ex + e~x 

<Po Vl + e2X 
(A.29) 

The flux density is the inverse of the expression (A.29): -see def of B in Gibbs, 
others 

B = ^ = ^ V T ± ^ = B l ( A 3 0 ) 

dx gex + e-x \/TTPm 

where BQ = ^ is flux density well under the pole. Given a range of X, values 
of x and B can be calculated from the equations (A.26) and (A.30), and the 
flux density waveform on the armature surface can be obtained. 

Two rectangular poles. Carter [58] points out that magnetic flux density 
reduces to zero in the middle between two adjacent poles. That does not occur 
if the "one-pole" model above is used. The model can be corrected, assuming 
that the line in the middle of the interpole space has zero potential. Then 
the area of interest is bounded by the pole having the potential <jf>0, and by 
the armature and the middle line, both of zero potential. The transformation 
from the w-plane to the z-plane is given by 

z = — In 
7T 

a — b ry— 
WH h V ( w a)(w — b) arcsm 

7T 

2ab 
[(a + b)w 

where 
c = 9\ I 

a — b 
a + b 

(A:31) 

(A.32) 

is a half of the distance between the poles on the xy-plane, a and b are coor­
dinates of the corners of two poles on the w-plane (Fig. A.6). The potential 
function which reduces to <po on the pole and to zero on the armature plane 
and the median line, is given by 

<P0 e - e " ' ^ T (A.33) 

To obtain magnetic flux density on the armature surface, the function £ is 
substituted into the equation (A.31) as before. Assuming <p = 0 and X — n-±-, 
one can obtain 

x TV L 
,-x a + ^ + VTe^^Ta)(e- x - b) 

B = B0 

arcsm 
7T 

2ab 
a + b~ 

,x a 
a + b 

+ a 

(A.34) 

(A.35) 
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T| S 

A O B 

w - plane 
B O 

xy - plane 

Figure A. 6: Mapping from w-plane to xy-plane in a two-pole model. 

The origin in Fig.5 has not been yet determined. To make x — 0 at the corner 
of the pole, a and b can be chosen as 

a + b = 2e =* I 

Due to (A.32), they can be expressed as 

2c2 

a — 

b = 

c2 + g2 

2ff2 

c2 + #2 

7T jC 

e 2 9 

7[ C 

e 2 s 

(A.36) 

(A.37) 

(A.38) 

The equations (A.34) and (A.35) allow to obtain the magnetic flux density 
distribution on the armature surface over the pole pitch, given a range of ift 
and X = n-$-. 

<t>o 

108 



Appendix B 

Calculation of eddy current loss 
density at one frequency 

For a flux density harmonic at the frequency UJ, 

B = Bsm(0-ut) (B.l) 

the volumetric eddy current loss density, (5.31), becomes 

L (^)2 dt=°4i \ ̂ uf I(cos(* -ut)f dt (B-2) 
Using a trigonometric identity 

9 cos 2a + 1 .„ „. 
cos2 a = (B.3) 

the integral can be expanded to be 

/ (cos(0 - cot))2 dt = - cos 2(0 -ut) dt+- dt = 

1 T T T 
-^He-ut)\T + - = o + - = -

and the volumetric eddy current loss density at the frequency to becomes 

Pe = ^(Bp uof (B.4) 

„ ad2 1 f fdB\2 , ad2 1 
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Appendix C 

A product of two waves with 
axial phase shifts 

When using the permeance model (see Chapter 4), a product of two waves, 
each with an axial phase shift, should be obtained. Suppose we have two 
sinusoidal waveforms, 

A\ cos(mi6 + #i;o + a.\z — uj\t) 

and 
A1 cos(m20 + #2,0 + ®2z - u2t) 

with axial phase shifts ot\ = ^- and a,2 = j 1 , where /?1; (32 are skews in radians, 
/ is axial length. Using a trigonometric identity 

cos a cos P = \ [cos(a + /?) + cos(a — /?)], 

one can obtain a product as 

A\ cos(mi9 + #i]0 + o.\z — uit) x A\ cos(m29 + 92>0 + a2z — u2t) = 

\AXA2 cos ((mi + m2)0 + (01>o + 02,o) + («i + a2) - (wi + u2)t) 

+ cos((m! - m2)9 + (0liO - 92,0) + («i - a2) - (wi - w2)t) 

A product of two sinusoids yields a sum of two sinusoidal waveforms, with 
axial phase shifts that include a sum or a difference of skews. 
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