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Abstract—Maritime industries desire high speed and reliabil-
ity, low lifespan cost, and environmental impact shipping for
transportation. Compared to highly congested land shipments
and high-cost air freight, all-electric ship (AES) can reduce
the lifespan energy consumption and transport a considerable
freight volume at a lower rate. Recently, the medium voltage DC
(MVDC) topology, recommended by IEEE standard, pushes the
AES to the next stage in considering space and weight constraints
with the reduction of bulky transformers and simplified parallel
connections. However, device-level modeling of this massive
parallel MVDC-based ship-board microgrid (SBM) is challenging
to both the state-of-the-art general-purpose compute unit and
traditional electromagnetic transient (EMT) based emulation.
With the rapid development of machine learning (ML) algorithm
and its dedicated execution unit, accelerated parallel emulation
becomes achievable in different levels of this paralleled connected
SBM. Applying the ML-aided technique can help to improve
the emulation execution efficiency and reduce the consumption
of hardware resource on the field-programmable gate arrays
(FPGAs). This work proposes a real-time hybrid ML-EMT based
digital twin of the complete SBM at the subsystem-level and
equipment-level with validated results from PSCAD/EMTDC®,
and device-level with validated results from SaberRD®.

Index Terms—All-electric ship (AES), artificial intelligence
(AI), digital twin, electromagnetic transient (EMT), field-
programmable gate arrays (FPGAs), gated recurrent units
(GRU), hardware-in-the-loop (HIL), machine learning (ML),
power electronics, ship-board microgrid (SBM), recurrent neural
network (RNN), real-time systems, silicon carbide (SiC).
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I. INTRODUCTION

Global economic output plummeted by 3.5% in 2020 as
a result of the pandemic, as did commercial commerce,
while international maritime exports fell by 3.8% to 10.65
billion tonnes [1]. However, global marine trade has recovered
by 4.3% in 2021, with growth expected to continue over
2022-2026, albeit at rates that will be moderated due to
an easing of world economic production. Meanwhile, the
International Maritime Organization (IMO) set a sustainable
development goal to reduce greenhouse gas emissions by at
least 50% before the year 2050, compared with the year
2008 [2]. Energy-efficiency based design in the marine in-
dustry becomes a preferable choice for future ship application.
Thus, the medium-voltage DC (MVDC) based all-electric ship
(AES) [3], [4] has drawn the attention of the researchers
and manufacturers due to its high energy-efficiency, relia-
bility, reconfigurability, low lifespan cost, and the reduction
of the bulky AC power equipment. With the proliferation
of novel power electronic-based equipment in MVDC-based
AES, there has been an increasing focus on modeling and
simulation techniques for these microgrid systems [5]. These
methodologies provide a virtual platform to validate various
issues and control strategies pertaining to islanded microgrids.
However, conventional simulation tools and models employed
on computers face significant challenges in terms of interactive
validation with real-world physical devices and control strate-
gies. In response to these challenges, considerable research
efforts have been dedicated to hardware-in-the-loop (HIL)
applications for power system evaluation [8] and assessment
of power switch stress performance [9], [10]. Consequently,
there is an urgent and compelling need to develop real-
time emulation of comprehensive ship-board microgrid (SBM)
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systems, incorporating device-level modeling [11] - [13].

The traditional way of simulating large-scale and paralleled
connected electrified transportation systems [14] - [16] is
to solve the physical nonlinear differential equations with
full matrix nodes integrated. Then, a heavy computational
burden (e.g., Newton-Raphson iterative method) is needed by
solving these matrices or other complex iterative mathematical
calculations. Separating the traditional power system into
multiple sections without theoretical loss is a favourable tech-
nique for accelerating the calculation with parallel execution
(e.g. transmission line modeling method) [17], [18]. Many
studies [19], [20] on parallel computing in power systems
have been conducted to accomplish real-time emulation of
system dynamics. However, a complex combined all level real-
time emulation for these large-scale and paralleled connected
MVDC-based microgrids is not yet reported in literature and
practice.

With the rapid development of machine learning (ML)
technology and its accelerated hardware, it is a possible
solution for integrating all levels of microgrid models into
multiple complex black-box models by different ML methods.
These methods were widely researched on fault detection
[21], load estimation [22], and control algorithm [23], HIL
emulation for microgrid systems (e.g, more electric aircraft
power systems [24] and the high-speed rail microgrid [25]).
Previous studies utilize ML to replace traditional electromag-
netic transient (EMT) equipment and investigate the benefits,
which facilitates in achieving the optimal trade-off point when
considering execution efficiency, adaptability, variety, and ac-
curacy [24], [25]. Nonetheless, equations-based EMT models
have advantages over ML methods in terms of being succinct,
efficient, and straightforward to comprehend. Both EMT-based
and ML-based modeling methods have been explored indepen-
dently, but little attention is given to the comprehensive and
detailed comparison between EMT and ML models, let alone
the ML-EMT-based hybrid models. As a result of merging
traditional EMT and ML models in the microgrid system,
comparing and selecting or analyzing hybrid models at the
subsystem, equipment, and device levels will benefit from both
EMT and ML methodologies. Microgrid HIL emulation can
be accelerated and resource-efficient by combining classical
EMT with ML technology without sacrificing robustness and
stability.

This paper proposes the real-time hierarchical digital twin
for the MVDC-based SBM on the Xilinx® Ultrascale+ archi-
tecture FPGA hardware platform with the hybrid ML-EMT
modeling techniques. The paper is organized as follows: Sec-
tion II describes the overview of the MVDC-based SBM power
system. Section III discusses different neural networks (NN)
structures for ML modeling. Section IV propose the various
level hybrid ML-EMT based models. Section V gives an intro-
duction to the ML training processes and explains the details
of the SBM digital twin hardware implementation. Section VI
shows the real-time emulation results and verification using
experimentally verified software PSCAD/EMTDC® (system-
level, subsystem-level, and equipment-level) and SaberRD®

(device-level). Section VII gives the conclusion of this paper.

II. OVERALL ARCHITECTURE OF SBM POWER SYSTEM

In Fig. 1 (d), the whole SBM power system consists of gen-
erator subsystems, energy storage subsystems (ESS), propul-
sion subsystems, and load zones. In this paper, the emulation
models can be classified into system-level, subsystem-level
equipment-level and device-level, based on the complexity
of topology and the purpose of models. Regardless of their
levels, these models may be represented using the standard
nodal voltage approach. This section focuses on typical EMT
modeling techniques for these distinct kinds of equipment.
Following the introduction of the EMT theoretical base, ML
approaches can be used to create hybrid models in section
IV. The TLM method [26] is used link numerous subsystems,
allowing each component of overall SBM to run in parallel.

A. Energy Storage Subsystem

In the ESS, the isolated DC-DC equipment (IDCDC) and
battery are included, shown in Fig. 1 (a), where the IDCDC can
be divided into two parts: the left side connects to a battery
as input, and the right side connects to the DC bus for the
loads. Then, the transformer can be equivalent to inductances,
and the topology in the simulation system is shown in Fig. 2
(a). In order to accelerate the simulation system, two parts are
separated and executed in parallel by the TLM method, shown
in Fig. 2 (b). The left side is investigated further, and it is found
to be equivalent to a 7-node network with equivalent current
sources and resistances, and the equations are displayed:

It−∆t
e = Re · It−∆t, Vt = G−1It−∆t

e , It = R ·Vt, (1)

where Ie and Re represent the history equivalent current and
resistance matrix of nodes; V, I and R mean the voltage,
current and resistance matrix of the nodes; G is the admittance
matrix for the network; the superscripts, t−∆t and t, represent
the previous time-step and the current time-step. Following
that, the circuit on the right may be modeled in a similar way,
and all node voltage and current are determined.

B. Generator Subsystem

In this subsystem, a synchronous generator (SG), an auto-
transformer rectifier units (ATRU), and a filter are included,
shown in Fig. 1 (b). 250 kVA generator is control to provide
stable AC voltage, then converter to 6 kV DC voltage supply
by ATRU. The EMT modeling equations of SG can be ob-
tained based on the following assumptions: 1) stator abc three-
phases windings have the same structure, are rotationally sym-
metric, and are spatially separated by 120 electrical degrees;
2) the rotor structure is symmetric with respect to the d− and
q−axis; 3) the magnetic potential generated by the currents
in the stator and rotor windings is sinusoidally distributed
with the fundamental waveform in the air gap, disregarding
harmonics; 4) the magnetic circuit is linear, without saturation,
hysteresis, and the eddy current losses, and the skin effect is
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Fig. 1. SBM power system: (a) energy storage subsystem; (b) generator subystem; (c) AC load zone; (d) overall system topology; (e) propulsion subsystem;
(f) DC load zone.

Fig. 2. Energy storage subsystem: (a) divided-transformer topology; (b)
equivalent circuit.

neglected. The equations of SG with damping windings are
presented to analyze modeling processes:

vd = Rsid − ωrλq +
dλd

dt , vq = Rsiq + ωrλd +
dλq

dt , (2)

vfd = Rfdifd +
dλfd

dt , Rkdikd = −dλkd

dt , (3)

Rkq1ikq1 = −dλkq1

dt , Rkq2ikq2 = −dλkq2

dt , (4)
λd = Ldid + Lmd(ikd + ifd), λq = Lqiq + Lmqikq, (5)

λfd = Lfdifd + Lmd(id + ikd), (6)
λkd = Lkdikd + Lmd(id + ifd), (7)

λkq1 = Lkq1ikq1 + Lmqiq, λkq2 = Lkq2ikq2 + Lmqiq.(8)

where vd, vq , id, iq , λd, and λq mean the dq axis voltage,
current and flux linkage; vfd, ifd and λfd represent the field
winding voltage, current and flux linkage; vkd, vkq1, vkq2, ikd,
ikq1, ikq2, λkd, λkq1 and vkq2 are the dq axis damper voltage,

current and flux linkage; Rs, Rfd, Rkd, Rkq1, and Rkq2 are
the stator, field winding, and dq axis damper winding resistors,
respectively; and Ld, Lq , Lfd, Lm, Lkd, Lkq1, and Lkq2 are
the dq axis stator, field winding, magnetizing, and dq axis
damper winding inductances, respectively.

The typical simulation computation is separated into two
sections: the first procedure employs the Forward Euler tech-
nique to determine the flux linkage of formula (2)-(8) based
on the voltage and current values at the last time-step. which
are shown as (9)-(14):

λt
d = ∆t(vt−∆t

d −Rsi
t−∆t
d + ωt−∆t

r λt−∆t
q ) + λt−∆t

q , (9)

λt
q = ∆t(vt−∆t

q −Rsi
t−∆t
q + ωt−∆t

r λt−∆t
d ) + λt−∆t

d , (10)

λt
fd = ∆t(vt−∆t

fd −Rfdi
t−∆t
fd ) + λt−∆t

fd , (11)

λt
kd = −∆tRkdi

t−∆t
kd + λt−∆t

kd , (12)

λt
kq1 = −∆tRkq1i

t−∆t
kq1 + λt−∆t

kq1 , (13)

λt
kq2 = −∆tRkq2i

t−∆t
kq2 + λt−∆t

kq2 . (14)

Then, in the second step, the magnetic linkage acquired from
the previous solution is utilized to solve the homogeneous
linear equations to obtain the current value at the current time-
step, which involves inverting the impedance matrix:

It = Z−1At
λ, (15)

where Aλ, Z, and I are the magnetic linkage matrix, the
impedance matrix, and the current matrix, respectively.

C. Propulsion Subsystem

As illustrated in Fig. 1 (d), the system has propulsion
subsystems, each of which consists of a two-level converter
(TLC) and a 60 kV A PMSM with a dampening circuit. Fig.
1 (e) depicts the PMSM’s control scheme, which controls
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TLC to regulate the PMSM’s dq axis current. PMSM’s motor
equations are similar to SG’s, updated by dq axis current and
flux linkage, and the particular formula is described in detail
by the prior research [24]. It is worth noting that PMSM
modeling takes into account both the electromagnetic torque
and the mechanical component, whereas the electrical part is
calculated solely for the SG. The procedure of computing
the current and flux linkage is identical, except that the
PMSM permanent magnet flux linkage λpm substitutes the
synchronous motor field winding voltage vfd, current ifd
and flux linkage λfd. Then, electromagnetic torque and the
mechanical part are shown as follows:

Te =
3
2
p
2 [λpmiq + (Ld − Lq) idiq] , (16)

J dωr

dt = Te − Tm −Bωr,
dθm
dt = ωr, (17)

where id, iq , Ld, Lq are the dq axis stator current and
inductances, respectively; Te, Tm, ωr, J , B, θm are the
electrical torque, mechanical torque, rotor speed, moment of
inertia, friction factor, and rotor position angle, respectively.

D. Load Zone

There are two sorts of load zones, which are characterized
primarily by the type of load linked. The DC load zone is
depicted in Fig. 1 (f). Before driving the DC load, the required
DC voltage is obtained through the IDCDC. The IDCDC is
identical to that in the ESS, but the energy flows in one
direction, so diodes rather than IGBTs are employed on the
rectifier side. The voltage generated by the IDCDC can be
changed to meet the demands of the load, however, is generally
less than 1 kV.

Fig. 1 (c) depicts the AC load zone, which differs from the
DC load zone in that the TLC generates three-phase AC power
to drive the AC load after obtaining the DC bus voltage. The
AC level is generally a commonly used load voltage, such
as 110 V 50 Hz AC, which can be controlled and adjusted
according to actual needs.

III. MACHINE LEARNING MODELING METHODS

In this section, ML modeling methods for power electronics
digital twin are discussed. Based on the complexity and
the function of equipment, NN models can be classified as
component-level, device-level, and system-level models, which
is introduced in the previous research [24]. These models can
be constructed by single NN only, called single-NN models.
Then, some of them can be composed of multiple single-NNs,
named multi-NN models. Finally, other models that consist of
traditional EMT methods and NNs are called hybrid models.

A. NN Topology

To build a single-NN model for the power electronics digital
twin, several stable and accurate NN topologies can be utilized,
including traditional fully connected artificial NNs (ANNs),
classical recurrent NNs (RNNs), long short-term memory
NN (LSTMs), gated recurrent units NNs (GRUs), etc. Most
power electronic ML digital twins require not long sequence
prediction nor coarse prediction but near future prediction.

Hence, the complex NNs (e.g., the transformer NN [27] and
the informer NN [28]) for the long sequence (larger than
100 sequences) time-series prediction are unsuitable for our
applications, considering the computational burden and sub-
microsecond real-time execution requirements. According to
comparisons between these NN methods in [24], the tradi-
tional ANN and classical RNN are highlighted with a simple
and efficient structure, while GRU and LSTM may improve
accuracy but cost more hardware resource.

Nevertheless, for models with time-series signal input, there
will be some discrepancies in the specifics of the data process-
ing structure of traditional ANN and classical RNN. As shown
in Fig. 3 (a), the first line shows the simplest ANN model,
forward neural network (FNN), which calculates the data at
the current time-step based on the signal at the previous time-
step. It can be expressed as the following function:

Yt = f
(
Xt−∆t

)
, (18)

where Yt and Xt−∆t are output and input signals, respec-
tively. The EMT models similar to this ANN are displayed
in Fig. 3 (b), showing how a typical closed-loop system
simulation process works.

However, in many cases it is not possible to calculate the
current time-step only from the previous time-step, because
the derivative of the input signal is necessary, such as the dωr

dt

and dθm
dt in equations 17. Then, the expression in this case can

be rewritten as:

Yt = f
(
Xt−∆t,Xt−2∆t...Xt−n∆t

)
, (19)

where n means the number of previous time-step, is depended
on the algorithm design. In the second line of Fig. 3 (a), the
structure of ANN with multi-time-step (n = 3) inputs are
shown, and this type of NN is named the time-series forward
neural network (TSFNN).

TSFNN becomes exceedingly complicated and bloated as
time-step n rises since TSFNN is fully connected ANN, and
the computation matrix becomes massive. Compared with
TSFNN, RNN can process each time-step with a smaller
matrix and fewer parameters, and it can continue the procedure
with the same structure and parameters to determine the final
Yt. TSFNN will undoubtedly outperform RNN in hardware
parallel computation, but RNN surpasses TSFNN the flexibil-
ity, usability, and accuracy. Although the RNN cells are run in
serial, each cell can be calculated in parallel. The parameter
class of TSFNN increases by n3, while the RNN just needs to
be executed n times without any parameter number increase,
which makes RNN easier to be trained than TSFNN.

RNNs are classified into two types: dependent RNN
(DRNN) and independent RNN (IRNN). The distinction is
whether or not the historical information H is shared by
multiple RNN computation processes. For each RNN cell, its
output Yt and Ht can be calculated as:{

Yt,Ht
}
= f

(
Xt−∆t,Ht−∆t

)
. (20)

The IRNN utilizes the input of the previous n time steps for
each computation, calculates all historical information from
Ht−n∆t to Ht, and outputs Yt at time t in the last cell, shown
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Fig. 3. Structure of time serried emulation algorithm: (a) NNs models; (b) EMT models without history information; (c) EMT models with history information;
(d) ML-EMT parallel hybrid model; (e) ML-EMT serial hybrid model.

as the third line in Fig. 3 (a). The IRNN process executes the
RNN cell n times each run, whereas the DRNN only runs the
cell once for Yt. DRNN will output the historical information
H at each time-step, and all DRNNs share this H. Therefore,
the DRNN only needs to execute the cell once rather than
repeating it n times in a time-step, shown as the fourth line in
Fig. 3 (a). Clearly, the DRNN is more efficient in execution (it
no longer has to perform n cell loops in serial each time-step),
which allows it to be executed faster than the IRNN and more
accurate than TSFNN. However, because each computation
output is conducted independently, and the sequence of input
data can be shuffled for improved generality before training,
the IRNN is more resilient and easier to be trained. Then, as
illustrated in Fig. 3 (c), EMT discrete model has a similar
structure to the DRNN, and undoubtedly both ML and EMT
models can perform the same tasks.

Overall, different ML models have different trade-offs in
terms of complexity, scalability, and performance. Although
complex models like LSTM may achieve better performance,
they require much more computational resources and much
longer training time. The choice of ML model may also
depend on the hardware architecture, its limitations, and
system communication bandwidth. Depending on the specific
requirements and constraints of the system, a simpler ML
model may still be preferable, especially in the context of real-
time inferencing applications for modeling high-complexity
hierarchical systems.

B. Multi-NN Models

In [24], multi-layer single-NN models can simulate the
system-level modeling function relatively accurately. Increas-
ing the number of NN layers or recycling structure can reduce
the number of neurons in each layer and improve accuracy

but sacrifice execution speed. Hence, RNN is a compromise
solution, taking accuracy, resource consumption, and training
speed into account. The research [29] concludes that a single-
layer neural network with enough neurons is sufficient to
simulate any functions. To further enhance emulation speed,
a single-layer FNN, the fastest method, should be utilized to
replace RNN in some cases.

Typically, a piece of equipment is represented with a single
NN so that the full digital twin system may be assembled
like Lego bricks. Following the construction of each piece of
equipment, the entire microgrid system is created by single-
NN models block-by-block. However, there will always be
some equipment that cannot be efficiently simulated by a
single-NN model. In [25], the modular multilevel converter
modeling (MMC) was used as an example: if the entire MMC
was treated as a single-NN model, it would be inefficient
and cumbersome. There are several unrelated variables and
signals in the same model. Then, by isolating and operating
the submodules in parallel, the operation efficiency and latency
may be improved. This notion is vital in multi-NN models:
the MMC submodule may be treated as a NN model. The
whole MMC network is made up of tens of hundreds of NN
submodule models as well as the main circuit NN model.

Besides, the equipment can be decomposed into different
units based on their functions, and various types of NN can
be utilized to model these units accordingly (e.g. PMSM multi-
NN models in [24] and SG multi-NN models in section IV).
This method mathematically decomposes a huge matrix into
block matrices and allows each to compute in parallel, which is
another critical reason for the application of multi-NN models
instead of single-NN models.
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Fig. 4. Collection and classification of digital twin for SBM: (a) hierarchy;
(b) classification based on function.

C. Hybrid Models

Undeniably, almost every piece of equipment in the power
system can be modeled as NN models, whether single-NN or
multi-NN models, which has been discussed in our research
[24], [25]. However, it makes a simple problem complicated
when only NN models are applied without traditional models
because sometimes traditional EMT methods can efficiently
work out the linear models. Compared with conventional
equations-based methods, NN-only models may waste hard-
ware resources and cause a heavy computational burden when
applied to replace simple linear multiple equations in tradi-
tional ways. What is worse, it also results in unnecessary
latency and hardware resource consumption during training
processes. The modeled objective can be divided into different
parts by empirical knowledge, where suitable NN or traditional
methods will be decided to model based on the characteristics
and functions of these parts. When both the NN and traditional
methods are utilized and combined to build the models,
these hybrid ML-EMT based models can take advantage of
both modeling skills, which is the interdisciplinary utilization
of power electronics and ML. Inside the hybrid ML-EMT
based model, these NN and EMT parts can be connected
in parallel (shown in Fig. 3 (d)) or in serial (shown in Fig.
3 (e)), respectively. The hybrid model can provide a higher
degree of accuracy and efficiency in comparison to EMT
models, especially in scenarios where the parameters of the
models are unknown or may change due to specific operating
conditions. When compared with the multi-NN or all-NN
model in [24], this method utilizes the EMT model for simple
partial calculation in order to reduce calculation burden and
guarantee generality, stability, and accuracy. With the strengths
of each approach, hybrid models can overcome the limitations
of individual models and achieve superior results in practical
scenarios.

Fig. 5. DC load zone digital twin: (a) EMT model; (b) ML model.

IV. SBM HYBRID SYSTEM EMULATION

The ML models can be connected in series or parallel in
SBM system, and their data ports could be different when
they link to the traditional model and ML models themselves,
respectively. System-level, subsystem-level, equipment-level,
and device-level hybrid models, shown in Fig. 4 (a), are the
foremost concern in this section since the component-level is
pre-discussed in [24]. The details are given as: 1) The hybrid
system includes many subsystem-level ML, EMT, and hybrid
models; 2) The hybrid propulsion subsystems are compared
with ML and EMT subsystems to demonstrate the topology
and equipment differences; 3) The equipment-level hybrid SG
model is constructed with ML and EMT parts, which are
decomposed by function; 4) The device-level SiC IGBT hybrid
model is separated into two parts, the EMT steady-state and
ML transient, to improve the execution efficiency.

A. Hybrid System

Fig. 4 (b) depicts a hybrid system made up of subsystems
of various functional categories. The same subsystem (e.g.,
propulsion subsystem) can be built as a classic EMT model,
a hybrid model, or just an ML model. As an instance, the
entire EMT DC load subsystem (illustrated in Fig. 5 (a)) is
modeled as an ML model (illustrated in Fig. 5 (b)). The output
of the ML subsystem are the load side voltage and bus side
current, and the ML model does not require to calculate the
internal signals. Because the process of ML model does not
calculate the voltage and current of each switch and node in
the subsystem but simply concentrates on the input and output
of the entire subsystem, this technique may considerably
conserve hardware resources and accelerate the emulation. The
EMT subsystem can be utilized in conjunction with the ML
model. When several DC load subsystems are presented, one
or two EMT models can be utilized to derive the precise
theoretical voltage and current of the internal nodes. Other
similar subsystems can replace the whole subsystem with the
ML model, which aids in reaching the optimal point while
accounting for computational accuracy, resource consumption,
and latency.

B. Hybrid Subsystem

Fig. 6 (a) depicts the propulsion subsystem, which incor-
porates ML, EMT, and hybrid models, and according to Fig.
4 (a), the subsystem consists of equipment. This section will
utilize the propulsion system as an example to demonstrate
the construction of the hybrid subsystems. Fig. 6 (a) shows
the distinction between the ML (turquoise block), EMT (or-
ange block), and hybrid (purple block) subsystems. Hybrid
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Fig. 6. Propulsion subsystem: a) general topology; b) equivalent circuit.

Fig. 7. SG modeling structure: (a) ML model; (b) EMT model; (c) hybrid
model.

subsystems can be constructed to take advantage of unique
benefits from ML and EMT models. The hybrid subsystem
also has several possible combinations: one is made up of ML
TLC equipment-level models and the EMT PMSM equipment-
level model, while the other is composed of the EMT TLC
equipment-level model and the ML PMSM equipment-level
model. Section V will provide the comparative results.

C. Hybrid Equipment

To conserve resources and accelerate procedures, it is re-
quired to create a hybrid model that employs both conven-
tional and ML methodologies, such as the SG model. Fig.
7 illustrates the hybrid equipment composition method: some
use conventional computer models, some use ML models, and
others employ multidisciplinary knowledge and experience to
complete the modeling and fully utilize the benefits of these
approaches. The EMT model calculation procedure is shown
in Fig. 7 (a), where the flux linkage is computed first, followed
by the current. The ML model using the ML technique for all
calculation operations is shown in Fig. 7 (b), while the hybrid
ML-EMT based model is displayed in Fig. 7 (c).

The classical Euler method for calculating flux linkage is
straightforward and can readily deconstruct and compute each
flux linkage value in parallel. The formula calculates the more
straightforward linear multiplication portion, which does not

Fig. 8. Device-level ML-EMT hybrid IGBT model.

require a significant quantity of data to train the NN. Further-
more, these parallel linear formulas are simple to implement
by utilizing hardware parallelism, which has a slightly faster
execution than ML approaches. An ML model can be used
for the second phase, updating the current by inferencing
the system dynamics. Based on the standard paradigm, the
NN may eliminate matrix inversion to significantly increase
execution speed. Traditional matrix inversion is challenging to
hardware-accelerated parallel computing, whereas NN matrix
multiplication and addition can be easily hardware accelerated.

Nevertheless, when the matrix elements are unaltered, this
process of matrix inversion can be applied once and reused
to improve execution efficiency. On the other hand, the NN
training procedure is analogous to discovering a general ap-
proximation solution to the equation system in advance, which
may be instrumental for hardware acceleration.

D. Hybrid Device

The silicon carbide (SiC) insulated-gate bipolar transistor
(IGBT) model in [24] [25] employs two NNs: one for the
steady-state waveform (a system-level model with 1 µs time-
step) and another for the transient waveform (a device-level
model with 50 ns time-step). The system-level model can
achieve faster execution than the device-level model by uti-
lizing reduced nodes to solve the circuit equations. Thus, the
employment of the EMT steady-state portion and the ML tran-
sient hybrid model can minimize training time, training data
collecting, and training hardware resource consumption while
maintaining the original system-level execution efficiency and
device-level accuracy. As shown in Fig. 8, the resistive EMT
model calculates steady-state waveforms, which can adapt
to different, larger time-steps while not being complicated
to achieve. Concurrently, the ML model is only trained for
transient waveforms with high accuracy and less hardware re-
source consumption. The transient model will output multiple
data points in a time-step cycle to achieve the simulation of
tiny time-step waveforms.

E. Selection of EMT, ML, and EMT-ML Hybrid Models

The selection of different models is often based on practical
needs, and will usually take the following principles into
consideration:

1) In situations where high-frequency transients and high
accuracy events need to be captured, the EMT model is
preferable. Compared to the ML model, the EMT model is
more straightforward and simpler as it relies on empirical
knowledge. On the other hand, the ML model may be more
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complex and require heavy training cost and high hardware
resource consumption to achieve high precision. Therefore,
the EMT model is often given higher priority when the system
stability relies on an ultra-high accuracy model.

2) To improve emulation accuracy and efficiency, ML
models are ideal for capturing complex nonlinear interactions
between different components of a comprehensive system.
These models are especially useful in real-time inferencing
scenarios. They can be employed when model parameters are
unknown or may change due to different operating conditions
like temperature and humidity, as long as input and output data
are readily available. In contrast, traditional approaches for
solving nonlinear component in EMT may require more itera-
tions to handle, resulting in significant latency and challenging
simulation criteria. On the other hand, EMT calculation may
result in inaccuracies due to the misuse of the large time-step.

3) Hybrid models that combine the benefits of EMT and
ML models can provide superior results in real-time hardware
emulation. Such models are designed based on empirical
knowledge and specific requirements for the intended applica-
tion. For instance, the device-level IGBT model can benefit
from a hybrid approach by utilizing the EMT model to
ensure the stability and accuracy of the system-level working
conditions while incorporating the ML model to analyze and
output device-level transient waveforms. This approach can
provide a higher degree of accuracy and efficiency in compar-
ison to traditional methods, especially in scenarios where the
parameters of the models are unknown or may change due to
specific operating conditions. By leveraging the strengths of
each approach, hybrid models can overcome the limitations of
individual models and achieve superior results in real-world
scenarios.

V. FPGA-BASED DIGITAL TWIN IMPLEMENTATION FOR
REAL-TIME SBM HIL EMULATION

The conventional EMT formula-based model is straightfor-
ward to implement on hardware, and the calculation process
is unrolled and pipelined as much as possible utilizing FPGA
parallel computing. The ML model requires parameter gath-
ering and training before referencing the system dynamics for
HIL application, which is discussed further in this section:
1) Data processes and hyperparameters for offline training;
2) Details for tuning the parameters for models; 3) Hardware
resource consumption and latency introduced by the selection
of the methods and parameters.

A. Hyper-Parameters and Design for Training

To enhance the versatility, scalability, and performance of
the ML model, it is crucial to utilize diversified work-condition
data during training. To this end, a large amount of data has
been collected on the modeling object in various working
situations. The acquired data is split into training and testing
sets, with 70% used for offline training and the remaining
30% used for validation and testing. For example, when
training the PMSM motor model, various combinations of
operating conditions with different speeds and torques were
utilized, such as (0.5 p.u. Te, 1 p.u. wr), (1.5 p.u. Te, 0.8

Fig. 9. Datasets utilization for: (a) standardization; and (b) normalization.

p.u. wr), and (1.2 p.u. Te, 1.2 p.u. wr), along with steady-
state and some dynamic data (such as maintaining a speed of
1 p.u. while reducing torque from 1 p.u. to 0). The test data
were selected from other reasonable speeds and torques that
were not included in the aforementioned training operating
conditions (e.g., dynamic changes in torque from 0.8 p.u.
to 1.2 p.u. at a speed of 0 to 1.2p.u. or static operating
conditions with 1.6 p.u Te and 0.4 p.u. wr). The normalization
or standardization of the data has a significant impact on the
training results of the models.

In this work, the primary application of the ML model
is the replacement or enhancement of EMT process. While
online training of ML models can enhance their accuracy and
make them more realistic in terms of the physical models
[25], it involves significant resource consumption, and makes
itself unsuitable for SBM systems that encompass various
levels. Therefore, this paper primarily employs offline training
ML models. Additionally, the ML model is predominantly
utilized for modeling EMT hybrid SBM systems instead of
relying entirely on ML modeling. The EMT model and system
are given priority, and the corresponding ML model is built
according to their specific requirements. The most commonly
compatible method involves training the ML model into a
nonlinear controlled voltage source or current source, which
has been proven to achieve high accuracy and generalization
performance of the proposed design.

The standardization can focus on most data changes while
ignoring a limited number of extreme values. Then, these
datasets are better suited for normalization when the data
varies within the steady-state range, where maximum and min-
imum values may be modified manually, which is beneficial
for preprocessing in conjunction with professional experience
and expertise. Fig. 9 shows the examples suitable for standard-
ization and normalization.

standardization : x′ = x−mean(x)
std(x) , (21)

normalization : x′ = x−min(x)
max(x)−min(x) , (22)

where mean(x), std(x), max(x), and min(x) represent the
average value, standard deviation, maximum, and minimum of
dataset x, respectively.

After normalization or standardization, the training data
will be sampled out of order and sent to the offline train-
ing program. During each epoch training, the parameter is
optimized 50,000 times, and the training is repeated for 100
epochs to get the tuned weights and biases of NNs. Adam
algorithm [30], utilized in this work, is a training NN method
that automatically modifies the learning rate in comparison to
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the classical stochastic gradient descent algorithm. The mean
absolute error and the mean squared error have comparable
impacts when calculating prediction and reference error [24].

MAE : e =
∑n

i=1
|ypre

i −yi|
n . (23)

Designing a hybrid model requires expertise and experience
to determine the optimal utilization of EMT modeling and ML
methods, considering factors like computation speed, latency,
accuracy, resource consumption, and interface compatibility.
While hybrid models offer partial analytical insights, they
outperform solely NN models by incorporating both analytical
and ML components, although thorough testing is necessary
to ensure their general applicability. To obtain the optimal hy-
perparameters for the ML model, a comprehensive analysis of
the SBM was conducted, taking its specific characteristics and
requirements into consideration. A trial-and-error approach
was then adapted to identify the hyperparameters that yielded
the best performance for the model. Regarding the consistency
of hyperparameters across different cases and time-steps, it
should be noted that the selection of hyperparameters is
a case-specific process. Different cases and time-steps may
necessitate different hyperparameters to achieve the desired
level of accuracy and reliability. Thus, careful consideration
was given to the selection of hyperparameters for each case
and time-step to ensure optimal performance of the ML model.

B. Parameters for Models

Previous research [24] [25] have compared a reasonably
workable range for the number of hidden layers and neurons
in the equipment-level NN model: For all NN models, the
layer number is 1 or 2; The number of neurons in the
hidden layer range from 10 to 30, and the RNN sequence
size is between 3-5. Parameters within this range not only
ensure the accuracy of the output but also reduce hardware
resource consumption and latency as much as possible. The
consideration of NN model parameters at subsystem-level and
device-level is hence the primary emphasis of this work.
The hidden layer and hidden size should still be in the
previously indicated range for subsystem-level IRNN or GRU
models, but the sequence size should be increased by at least
20. This is due to the necessity of output prediction being
based on the comparatively lengthy time of input signals.
The enormous number of output data points for device-level
models necessitates a considerable increase in hidden size.
Hence, the hidden size for the IGBT transient model is 25, 30,
40, 50, and 60 for 10 ns, 20 ns, 30 ns, 40 ns, and 50 ns time-
step, respectively. ML models for subsystem-level DC load
zones offer insights into how parameters can be manipulated.
For example, the time-step of the ML model can be varied
between 10, 15, 20, 25, and 30. Additionally, the number
of neurons in the model can be increased from 20 to 40,
and the number of layers can be decreased from 3 to 1. The
training process also involves adjustments to the learning rate
and the number of training epochs based on feedback results.
Moreover, hardware resources can be controlled to optimize
the training and implementation of the model.

Fig. 10. Hardware setup of the real-time SBM digital twin.

TABLE I
MODEL HARDWARE RESOURCE CONSUMPTION ON FPGA

Device BRAM DSP FF LUT Latency

EMT DC Load Zone 2% 13% 3% 15% 7.63 µs

DRNN DC Load Zone 5% 4% 1% 3% 0.39 µs

GRU DC Load Zone 11% 7% 3% 5% 0.83 µs

EMT Converter 0% 1% ≈0% 1% 0.12 µs

IRNN Converter 4% 6% ≈0% 3% 0.64 µs

EMT PMSM ≈0% 4% 2% 1% 0.41 µs

Multi-FNN PMSM 0% 3% 1% 2% 0.84 µs

EMT SG 1% 7% 2% 9% 4.84 µs

Multi-FNN SG 2% 17% 2% 11% 0.96 µs

Hybrid SG 1% 8% 1% 5% 0.96 µs

EMT Resistive IGBT ≈0% ≈0% ≈0% ≈0% 0.1 µs

FNN IGBT(10ns×150) 0% 2% ≈0% 33% 3.88 µs

FNN IGBT(20ns×75) 0% 6% ≈0% 40% 0.6 µs

FNN IGBT(50ns×30) 0% ≈0% ≈0% 9% 0.82 µs

Available 4332 9024 2607k 1304k

C. Hardware Platform

In Fig. 10, the hardware connection is displayed. As can
be shown in Table I, the subsystem-level DRNN model only
requires 4% DSP and 3% LUT, whereas the subsystem-
level EMT DC load zone model costs 13% DSP and 15%
LUT resources, incurring 7.63 µs latency. Compared with
DRNN models, the subsystem-level GRU model increases
resource consumption (11% BRAMs, 7% DSP, and 5% LUT)
and slightly improves the accuracy with long-term prediction
ability. The EMT PMSM and TLC models are less expensive
than ML models in terms of the equipment-level model
in electromagnetic domain only. However, ML models can
predict multi-physics domain details, which is close to the
actual working conditions. Then, the hybrid equipment-level
SG model demonstrates the transdisciplinary modeling benefit
of traditional EMT and newer ML methods. The execution
of this hybrid model is completed in 1 µs as opposed to
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TABLE II
MAE COMPARISON OF TLC-PMSM SUBSYSTEMS

Output IDC Te ωr

EMT-TLC-ML-PMSM 1.41% 0.91% 0.14%
ML-TLC-EMT-PMSM 0.21% 0.09% ≈0%
ML-TLC-ML-PMSM 1.49% 0.93% 0.14%

TABLE III
MAE COMPARISON OF SG AND IGBT

Output V I

Hybrid SG 0.41%(VAC ) 0.41%(IAC )

EMT Resistive IGBT(ON) 14.14% 11.26%
EMT Resistive IGBT(OFF) 10.13% 15.68%

FNN IGBT(10 ns× 150)(ON) 0.09% 0.27%
FNN IGBT(10 ns× 150)(OFF) 0.19% 0.30%
FNN IGBT(20 ns× 75)(ON) 0.07% 0.24%
FNN IGBT(20 ns× 75)(OFF) 0.28% 0.23%
FNN IGBT(50 ns× 30)(ON) 1.20% 0.99%
FNN IGBT(50 ns× 30)(OFF) 2.83% 1.86%

the EMT model’s 5 µs with approximate hardware resource
consumption. When compared with multi-FNN model, the
hybrid model consumes less hardware resource but still keep
the same execution efficiency. The execution time for resistive
switching IGBT EMT model is 100 ns for a single time-
step without detailed switching transients while the FNN-
based IGBT model can predict multiple device-level time-steps
transients by only one referencing operation with reasonable
hardware resource consumption. The multiple device-level
time-steps are given: 1) 10 ns multiply by 150 points; 2) 20
ns multiply by 75 points; 3) 50 ns multiply by 30 points.

VI. RESULTS AND DISCUSSION

This section compares the emulation results of ML, EMT,
and hybrid models, whose system-level, subsystem-level, and
equipment-level results are validated by PSCAD/EMTDC®

while device-level results are validated by SaberRD®.
Fig. 11 depicts the subsystem-level EMT model, as well as

the DRNN and GRU models with varying sequence lengths,
where the current is increased from 10 A to 20 A, then to 30 A.
With the same sequence length, the DRNN and GRU models
have similar effects. The larger sequence length will result in
closer outputs to EMT model. Although the GRU model has a
slightly better performance than the DRNN model, the mean
absolute error of both models is below 2% when the sequence
size is more than 30 (1.6% for DRNN and 1.2% for GRU).

Fig. 12 contrasts ML, EMT, and two hybrid subsystems,
where the PMSM mechanical torque changes with its load to
0 p.u. at 1 s, 0.8 p.u. at 2 s, and 0.5 p.u. at 3 s, while the
PMSM’s referenced speed increases from 0.5 p.u. to 0.7 p.u.
at 4 s and lowers to 0.3 p.u. at 5 s. Although the ML model
may introduce a designated training target error, it can take into
consideration features of complex physical working conditions
with the capability of utilizing adaptive parameter updates.
The MAEs of ML and ML-EMT hybrid subsystems’ outputs

are all below 2% when compared to the EMT subsystem. As
shown in Table II, the MAEs of the EMT-TLC-ML-PMSM
subsystem are 1.41% for Idc, 0.91% for Te, and 0.14% for
wr, while the MAEs of the ML-TLC-EMT-PMSM subsystem
are 0.21% for Idc, 0.09% for Te, and approximately 0 for
wr. As for the ML-TLC-ML-PMSM subsystem, its MAEs
are close to the EMT-TLC-ML-PMSM subsystem, those are
1.49% for Idc, 0.93% for Te, and 0.14% for wr. Furthermore,
the hybrid equipment-level SG model flexibly combines the
benefits of the EMT and ML models. As shown in Fig. 13,
the hybrid model’s resource usage is comparable to that of
the EMT model with reduced latency, while the steady-state
errors are less than 1%, as demonstrated in Table III. These
results indicate the potential of the proposed hybrid model to
provide improved performance and efficiency in power system
digital twin applications.

Fig. 14 is for the validation of different device-level models.
Since real-time IGBT waveform output of 10 ns and 20
ns is challenging to achieve with the EMT method, the
SaberRD® waveform is used for comparison. The hybrid
model can output a waveform close to SaberRD®: The steady-
state waveform is generated by the EMT resistive model
because ML model can not overweight EMT model in terms of
hardware resource consumption and latency for a single time-
step, while the ML model outputs the switching on and off
transient waveforms because ML model can inference multiple
time-steps waveform to achieve a faster execution overall.
As shown, the real-time emulation with the tiny time-step is
realized, revealing five cycles of harmonics. As shown in Table
III, the EMT resistive IGBT model results in unacceptable
MAEs during the switch on and off transients, while the FNN
IGBT transient models perform much better. For instance, the
FNN IGBT model with (50 ns ×30 outputs) can limit the
MAEs to less than 3% and achieve the results which mimic
the SaberRD® device-level transient waveform, as shown in
Fig. 14. Furthermore, increasing the number of output points
(also increasing the number of neurons) can lead to excellent
performance, with all turn-on and turn-off MAEs for V and
I being less than 0.5%. The models with (20 ns ×75 points)
and (10 ns ×150 points) show similar high accuracy.

VII. CONCLUSION

This paper proposes hybrid ML-EMT based real-time mod-
els of the SBM digital twin for FPGA-based emulation under
different operation scenarios. The entire SBM is segregated ac-
cording to function, then the typical EMT modeling calculation
method is introduced, and following the various NN topologies
are comprehensively studied. Finally, the ML and EMT ap-
proaches are integrated, and the purpose of the hybrid model is
explained at the system, subsystem, equipment, and device lev-
els. The obtained results confirm the benefits of the real-time
hybrid modeling method on the Xilinx® VCU128 hardware
platform and are validated by PSCAD/EMTDC® (system-
level, subsystem-level, and equipment-level) and SaberRD®

(device-level): 1) The real-time hybrid SBM digital twin
emulation is implemented to conserve hardware resources
while maintaining system details and accuracy; 2) The hybrid
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Fig. 11. EMT and ML subsystem-level DC load zone results.

Fig. 12. ML, EMT, and hybrid propulsion subsystems results (top line: EMT-TLC-EMT-PMSM; seconde line: EMT-TLC-ML-PMSM; third line: ML-TLC-
EMT-PMSM; bottom line: ML-TLC-ML-PMSM): (a), (e), (i), and (m) PMSM torque; (b), (f), (j), and (n) PMSM speed; (c), (g), (k), and (o) TLC DC current;
(d), (h), (l), and (p) TLC output three-phase current.

subsystem-level modeling can make the entire model closer to
the real physical environment due to the data-driven ML part;
3) The hybrid equipment-level model can not only leverage

the ML model’s general and flexible structure to execute
parallel computing with high execution efficiency, but it can
also maintain the EMT model’s stability and high calculation
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Fig. 13. EMT and hybrid equipment-level SG steady-state results.

Fig. 14. Hybrid device-level SiC IGBT transient results: (a) turn-on current;
(b) turn-off current; (c) turn-on voltage; and (d) turn-off voltage.

accuracy (less than 1% error); 4) The hybrid device-level
model can enable real-time emulation with ultra-small time-
steps (20 ns). The hybrid ML-EMT based modeling aids in
reaching the best trade-off point with consideration of real-
time execution efficiency, adaptability, generality, variety, and
accuracy.
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