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ABSTRACT

An early warning system for dengue disease in the province of Yogyakarta, 

Indonesia was developed. Using Poisson general linear models, accurate 

predictions of the number of recorded dengue cases between June 1999 and 

August 2004 were obtained up to four months in advance based on past dengue 

incidence and sea surface temperatures. The methodology and models developed 

can be easily implemented in future because the procedures are relatively simple 

and the required data are readily available. Further, reliable predictions can be 

obtained with an adequate amount of lead time that will successfully allow for 

proper planning and implementation of effective dengue control programs.
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Chapter 1: INTRODUCTION

Dengue is considered the most important vector-bome disease that affects the 

human population (National Research Council, 2001). A global pandemic of 

dengue is occurring throughout the tropics and sub-tropics with an estimated fifty- 

million new cases of dengue infection occur yearly (WHO, 1998). This shows a 

substantial increase in the location and frequency of epidemic cycles and 

corresponding incidences over the last two decades. Inevitably, this has a large 

economic impact on both the government and affected families, making control 

efforts for dengue imperative.

Chapter 1.1: The Spread of Dengue Disease

Dengue fever, originally discovered in the Philippines in 1953 (WHO, 1997), is a 

vector-bome vims transmitted to humans via the mosquito Aedes aegypti. While 

feeding on the blood of an infected individual, the female mosquito acquires one 

of the four vims serotypes responsible for dengue fever. The vims next replicates 

within the mosquito, rendering her capable of passing the vims on to all 

subsequent humans she feeds on, in addition to her offspring. With the spread of

1
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dengue relying on mosquito populations, climate factors such as temperature, 

precipitation and humidity play an important role in its transmission and 

incidence, through both direct and indirect effects.

The Aedes aegypti can survive between 5 °C and 42 °C, however temperatures

below 20 °C prevent offspring from hatching (Focks et al., 1995). Further, higher

temperatures lead to an increase in the speed of the mosquito’s metabolic rate and

egg production, resulting in increased feeding requirements (Bradley, 1993). As

such, warm temperatures directly promote an increase in the mosquito population,

and hence in the dengue virus spread. In addition to temperature, humidity and

rainfall also influence mosquito populations via an increase in the abundance of

their available breeding sites. The Aedes aegypti rely on pools of standing water

to act as breeding sites, and items such as drum barrels and discarded tires are

prime locations as they easily collect water from rainfall (Sheppard et al., 1969).

It is believed that heavy rainfall discourages breeding as containers collecting

water begin to overflow, whereas drought conditions promote breeding due to

elevated use of water storage containers by people (Moore et a l, 1978). This is

one example of an indirect effect that climate has on dengue. Ecologically, cities

with high human densities promote the Aedes aegypti as the number of feeding

opportunities is large. After having contracted dengue from one of the four virus

serotypes, one is temporarily immune to that particular serotype. Unfortunately,

this immunity is short-lived and as such herd immunity within the community is
2
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also only short-lived (WHO, 2000). Further, if inadequate water or waste 

management is present within these cities, the number of available breeding sites 

increases, again promoting mosquito populations.

Besides climate, transportation and migration, urbanization, and poverty can also 

influence the incidence of dengue disease. With transportation and migration 

increasing, dengue has also shown an increase in its geographical span. Southeast 

Asia’s dengue endemic in recent years is likely due to rapid urbanization 

providing plenty of feeding and breeding opportunities for the mosquito and the 

virus it carries to spread (National Research Council, 2001). Malnutrition and 

poor sanitation due to poverty also compromise a person’s immune system 

thereby making them more susceptible to the dengue virus and its potentially 

lethal symptoms (WHO, 2004).

D e n g u e ,  2 0 0 3

o f  t r a n s m  i s s l o n

Figure 1.1.1: Geographical range of dengue as of 2003 (WHO, 2005)

3
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Chapter 1.2: Social and Economic Impacts of Dengue Disease

A major complication of dengue is in its diagnosis. Its symptoms include fever, 

severe headache, and aching muscles and bones - all of which are common for a 

wide variety of other diseases. As such, true dengue diagnosis is dependent on 

the results from expensive lab tests based on blood samples (WHO, 2000). This 

confirmed diagnosis is not always feasible due to its high cost, resulting in 

different diagnostic standards between countries. This problem makes disease 

management difficult and likely yields underestimated incidence counts (National 

Research Council, 2001).

Dengue is of high concern to policymakers in Southeast Asia due to its difficulty 

in diagnosis and management. In addition, it imposes a heavy burden on local 

hospitals, as dengue can occur throughout the entire year. A severe complication 

of this virus is dengue hemorrhagic fever (DHF), which is characterized by a long 

term high fever, vascular leakage of plasma, low platelet counts and circulatory 

failure (WHO, 2000). DHF has a case fatality greater than twenty percent, but 

this rate is reduced to less than one percent if proper treatment is received (WHO, 

2000). Unfortunately the cost of proper medical treatment can be financially 

devastating to many families. Without accounting for time missed from work, the 

estimated cost for a DHF case is reported to be forty-three percent of the average

4
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monthly family income. If symptoms become severe enough to require intensive 

care, the costs are estimated to be 188% of the average monthly family income 

(DeRoeck et al., 2003). In Jakarta, Indonesia, DHF has been reported to be the 

second highest cause of pediatric admission into public hospitals (DeRoeck et al, 

2003), demonstrating how dengue persistently overwhelms hospital facilities, 

staff and finances in Southeast Asia. Politically, media concern regarding dengue 

is heightened as it equally affects all individuals, regardless of social economic 

status, due to the fact that it’s vector borne, therefore forcing greater political 

recognition (DeRoeck et al., 2003).

Chapter 1.3: Early Warning System for Dengue Disease

Clearly, dengue is a disease with great negative impacts on a country, both

socially and economically. It results in overwhelmed medical facilities, heavy

financial burdens on families, and lost work time. Further, it is projected that

every 1 °C increase in future temperatures due to global warming will result in at

least a thirty-one percent increase in incidence rates (Patz et al., 1998). Currently,

mosquito control is the main preventative strategy for dengue disease (DeRoeck

et al., 2003). Such measures however are difficult to sustain due to its high cost,

short term impacts, and the high amounts of effort required by human resources.

5
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The high costs associated with mosquito control therefore emphasize the need for 

an early warning system for dengue disease.

Early warning systems can provide a very helpful tool in effective mosquito 

control programs. Their use can help determine when mosquito control efforts 

should be increased based on their projected number of dengue incidences. 

Implementing mosquito control efforts only when an early warning system 

predicts an epidemic can reduce the need for human and other resources. 

Potentially the cost of mosquito control could also be reduced by focusing such 

efforts only in times projected to be of concern. Focusing mosquito control 

efforts could also improve its efficacy, resulting in a decrease in both morbidity 

and mortality due to dengue disease (WHO, 2004).

Dengue, being a vector bome virus, is climate sensitive. Thus, one can use 

climate factors to develop an early warning system. Specifically, characteristics 

of the El Nino/Southem Oscillation (ENSO) cycle nearing the equator in the 

Pacific Ocean can be employed, as it is known to be the cause of much of the 

world’s climate variability (National Research Council, 2001). In Indonesia, El 

Nino is known to be associated with drought conditions. This could potentially 

increase the number of available breeding sites for mosquitoes through increased 

use of water storage containers. In addition to using climatic factors, increased

6
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predictive power could result by including other factors related to population 

vulnerability, such as previous number of cases (WHO, 2004).

Currently, the use of early warning systems is not widespread. Reasons for this 

include the limited affordability and accessibility of accurate data. An early 

warning system must be capable of predicting incidences months in advance, in 

order to provide officials with adequate time to organize control efforts. Further, 

the predictive accuracy of such a system must be evaluated, for which there 

currently is no generally accepted criterion (WHO, 2004). For example, in Puerto 

Rico a dengue early warning system was developed based on daily temperature, 

precipitation and water values. This provided incidence predictions for two week 

intervals, three weeks in advance (Schreiber, 2001). Unfortunately, a system 

providing only three weeks notice may not be beneficial due to time constraints in 

organizing control efforts. Another early warning system for dengue used climate 

factors in conjunction with an early warning system for its closely related disease, 

Malaria (Cullen et al., 1984). This however was only capable of identifying past 

epidemics, and is not capable of predicting future dengue epidemics (Myers,

M.F., 2000).

The advantage of using early warning systems to help control infectious diseases,

such as dengue, is that the entire process of the disease does not need be known

for future predictions. The goal of early warning systems is to provide reliable
7
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future predictions about the number of projected incidences and to identify 

periods of time that are likely to be epidemic. Explanatory information 

concerning the relation between predictors and dengue epidemics is not a priority. 

If such predictions can be provided, much of the efforts and costs involved in 

mosquito control programs could be reduced, while increasing its efficacy. By 

improving mosquito control, the social and economic impacts of dengue disease 

could be dramatically decreased.

8
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Chapter 2: METHODOLOGY

It is essential that the early warning system created can provide reliable 

predictability several months in advanced, based on readily available predictors. 

These qualities are necessary to ensure that the system is both easy to implement 

and effective. In the province of Yogyakarta, Indonesia, the goal of an early 

warning system for dengue disease is to accurately indicate the level of concern 

authorities should have for a dengue epidemic. Further, being able to identify 

potentially epidemic months several months in advance, and then track any 

changes to the classification as the given month approaches, would also be useful 

for planning resources. Authorities involved in dengue control programs have 

indicated that a minimum of one month lead time for such predictions is essential 

for complete preparation and implementation of such programs. Two to three 

months lead time with less accuracy would also be valuable as “watch” indicators 

for the control program (Focks, 2003). This therefore requires a sequence of 

predictive models for the number of dengue cases. Based on the number of 

dengue cases predicted by each model, the level of concern for an epidemic 

within a given month can then be determined.

9
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Chapter 2.1: The Data

To develop predictive models for an early warning system for dengue disease in 

Yogyakarta, Indonesia, a combination of dengue case data and climate data were 

utilized. The response variable was the number of monthly recorded dengue 

cases, using past dengue case and death counts along with sea surface 

temperatures as predictor variables. The dengue case data contain monthly 

records of dengue cases and deaths occurring in Yogyakarta, Indonesia from June 

1985 to August 2004. Monthly anomalies, indicating the raw difference between 

the monthly mean and the monthly observation, for both cases and deaths were 

also calculated. These values were used to indicate the degree of departure a 

given months observations were from the norm. The monthly averages used to 

determine the anomalies were only based on the data between January 1985 and 

December 1999, and are summarized in table 2.1.1. This was done so that the 

2000 to 2004 data could be used as validation data, with the pre-determined 

anomalies being independent of the validation set. As an example, the recorded 

number of cases in June 1985 was 54, yielding a monthly anomaly of 23.0 (77.0 - 

54.0). The case and death data are important in the early warning system as a 

measure of the vulnerability of the population to dengue.

10
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Table 2.1.1: Monthly averages of dengue cases and deaths
( 1985 and 1999)

Month Average Average
Cases Deaths

January 131. 6 3.3
February 107 .2 3.1
March 123 .5 3.5
April 148.5 3.9
May 139.7 2.9
June 77.0 1.5
July 52.3 1.1

August 47.9 1.8
September 64.3 2.5
October 71.8 1.9
November 71.5 1.9
December 72.0 2.7

The climate data were comprised of sea surface temperatures from two different 

sources. The first source was from the Japan Meteorological Agency (JMA), 

where monthly sea surface temperature (SST) anomalies are provided. These 

values are measured for the region between 4 °N to 4 °S and 90 °W to 150 °W, 

using a 2° grid over the ocean. The normal values used to calculate the monthly 

anomalies provided were determined based on recorded observations between 

1961 and 1990, and are summarized in table 2.1.2 (JMA, 1991). These data are 

maintained to determine El Nino/Southem Oscillation (ENSO) events and are 

readily available and up to date at www. coaps.fsu.edu/products/jma index.php. 

Further, with Yogyakarta being located at 7.5 °S and 110 °E (figure 2.1.1) it lies i 

near proximity to the JMA region resulting in high correlation with future air 

temperature (Focks, 2003). With these values influencing the air temperatures,

11
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there is a subsequent effect on the mosquito population and transmission rates, as 

discussed in Chapter 1.

In addition to the JMA data, sea surface anomaly temperatures were also provided 

by the National Oceanic and Atmospheric Administration (NOAA), which are 

calculated using a different algorithm than the JMA temperatures. Specifically, 

the monthly SST anomalies were obtained for the regions covering 5 °N to 5 °S, 

150 °W to 90 °W (titled “Nino3”) and 5 °N to 5 °S, 170 °W to 120 °W (titled 

“Nino3.4”). Anomalies for these two regions were also calculated based on 

monthly averages between 1961 and 1990, and are summarized in table 2.1.2 as 

well. Figure 2.1.2 illustrates an example of the anomalies provided by NOAA 

based on February 2006 temperatures. Comparing the location (latitude and 

longitude) of these anomalies to the location of Yogyakarta in figure 2.1.1 

(coloured green), the proximity of these values to Yogyakarta can be seen. Also 

notice that the JMA anomalies are also captured within the location of the 

anomalies in figure 2.1.2.

12
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Table 2.1.2: Mont ily averages of JMA and NOAA SSTs (1961 and 1990)
Month JMA Average 

SST
Nino3 Average 

SST
Nino3.4 

Average SST
January 25.4 25 .61 26.51
February 26.2 26 .35 26.69
March 26 . 9 27 . 08 27 .14
April 27.1 27.40 27.69
May 26.6 27.06 27 .76
June 26 .1 26.37 27.49
July 25.2 25.58 27.07

August 24.6 24 . 95 26.70
September 24.6 24 . 82 26 .64
October 24 .6 24 . 89 26.60
November 24 . 6 24 . 95 26.51
December 24 . 9 25 . 08 26.48
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Figure 2.1.2: Sea surface temperature anomalies for February 2006, based on
NOAA calculations (Borrowed from 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_update/
sstweek_c.gif)

Considering both the raw observations (cases, deaths, JMA SST, Nino3 SST, and 

Nino3.4 SST) and their anomaly observations, ten predictor variables were 

available. However, in order to develop predictive models based on past dengue 

cases and mortalities and climate, these variables needed to be time lagged. As

14
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such, the predictor variables were lagged one to five months. In doing so, a 

predictive model five months in advance could be developed by using only 

observations recorded five months prior to the current month being predicted. A 

four month model could also be developed using only observation from five and 

four months earlier, and so on, up to one month in advance. By creating five to 

one month in advance models, the classification of a given month’s epidemic 

concern could be tracked over its proceeding five months. Using time lagged 

variables resulted in increasing the number of predictor variables to fifty, for one 

month in advance models only. Of course, five month in advance models could 

only have the original ten variables to use in the models, as it is inappropriate to 

use four, three, two and one month lagged data. As such, the number of possible 

variables increased by ten for each model in the sequence. In addition, first order 

interactions between each of the appropriate predictor variables were also 

considered to be included in the model selection process, again substantially 

increasing the number of possible variables used in the early warning system 

models.

15
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Chapter 2.2: Classifying the Concern for a Dengue Epidemic

The epidemic severity of a given month was classified into one of five groups, 

with group 0 indicating very little concern for a dengue epidemic, and group 4 

indicating very high concern for a dengue epidemic. In order to classify the 

predicted epidemic severity of a given month, monthly specific cutoff values to be 

used on the number of predicted cases were required. These selected cutoffs were 

primarily based on the monthly twenty-percent quantiles of dengue cases 

observed between June 1985 and June 1999. For some months, the cutoff ranges 

were slightly extended to avoid intervals that wee too restrictive.

For example, the observed number of dengue cases in June (1985 to 1999) were 

as follows:

11 33 36 49 53 53 54
54 60 64 67 74 128 153 266

This yielded the following quantiles:

0% 20% 40% 60% 80% 100%
11.0 46.4 53.6 61.6 84.6 266.0

As such, the range for group 1 would only be [47, 54), which is too narrow. 

Therefore, this range was extended to [40, 54) without affecting the group 

distribution since no cases between forty and forty-seven were observed in the

16
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June 1985 to June 1999 data. Table 2.2.1 summarizes the monthly cutoff values 

used for predicted epidemic severity classification.

Table 2.2.1: Level of epidemic concern classification
Month Group 0 Group 1 Group 2 Group 3 Group 4
Jan < 71 [71, 101) [101, 151) [151, 200] > 200
Feb < 50 [50, 71) [71, 111) [111, 160] > 160
Mar < 45 [45, 73) [73, 96) [96, 130] > 130
Apr < 51 [51, 71) [71, 91) [91, 116] > 116
May < 65 [65, 71) [71, 96) [96, 130] > 130
Jun < 40 [40, 54) [54, 63) [63, 84] COA

Jul < 30 [30, 46) [46, 65) [65, 74] > 74
Aug < 20 [20, 33) [33, 56) [56, 70] > 70
Sep < 30 [30, 57) [57, 65) [65, 80] oCOA

Oct < 20 [20, 46) [46, 76) [76, 94] > 94
Nov < 25 [25, 50) [50, 71) [71, 130] > 130
Dec < 35 [35, 66) [66, 81) [81, 95] > 95

Chapter 2.3: Poisson Generalized Linear Modeling

In developing models to predict the number of dengue cases, based on past 

observed cases, deaths and climate, general linear models (GLM) were employed. 

Moreover, since the counts of monthly dengue cases were being modeled, a 

Poisson distribution was used (McCullagh and Nelder, 1989). Using this 

distribution was most appropriate for the dengue case counts as the number of 

cases is strongly skewed to the right, with the majority of monthly observations 

having small counts (figure 2.3.1). In addition, this distribution assures that all 

predictions will be positive, which is essential since negative values of predicted 

cases are illogical.
17
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Figure 2.3.1: Monthly dengue cases (June 1985 to May 1999)

By using GLMs with a Poisson distribution, it is assumed that

Y | X  ~ Poisson(n).

The predictive models have the form

E\s |x] = p = exp|0o + # Xl+... + /?pxpj

where y  is the vector of monthly observed dengue cases, (xj, x% ..., xp) is the 

vectors of p predictor variables, and (fto, fii fh. . [1P) is the vector of estimated 

coefficients.
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Chapter 2.4: AICc Model Selection

To develop the predictive Poisson GLMs, stepwise model selection based on 

AICc was used to identify the model with the least number of predictors that best 

approximated the true, but unknown, model (Buckland et al. 1997). As such, the 

starting model contained all the appropriately time lagged predictor variables and 

their interactions. The model was then subsequently reduced by dropping the 

variable that resulted in the lowest AICc value for the remaining model. The 

variables previously dropped from the model were then separately reconsidered in 

the newly reduced model. The addition of the variable again resulting in the 

lowest AICc value for the model only occurred if it resulted in a lower AICc 

value than without the variable at hand. This sequence of dropping and adding 

variables to obtain the model with the lowest AICc value for the data at hand was 

repeated until no changes in the model resulted in a lower AICc. Unlike 

traditional modeling, if the two main factors in an interaction term were excluded 

from the model, the interaction term was not necessarily excluded. For example, 

if  either anomaly cases or anomaly deaths were not in the best model, the 

interaction between these two variables was still considered. This was done 

because the main goal is predictability, not explanatory (Breiman, 2001).
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The original Akaike information criterion, AIC, (Akaike. 1973) is calculated as

AIC = —2 log L + 2(m + 1)

where m represents the number of variables in the model, and logL represents the

log-likelihood of the model. However when the sample size is large or there are

many predictor variables, AIC model selection can be too liberal and therefore

may produce models that include unnecessary predictors (George, 2000).

AICc provides a bias correction to the traditional AIC that is useful when the

sample size is small or the number of parameters is large (Hurvich and Tsai,

1989). As mentioned previously, the number of parameters in the possible

predictive models is very large, with one month in advance models having fifty

potential variables, without considering their interactions. AICc is calculated as

m + l)(m + 2) 
n — m — 2

where n represents the number of observations used to develop the model, and m 

and AIC are as defined above.

With the anomaly variables having been derived directly from the raw variables 

by simply adding a constant, it is inappropriate to have both the raw variables and 

their anomaly counterparts in the models simultaneously. Therefore, it was 

required to determine which of the raw or anomaly variables should be used in 

order to obtain the best available model. For each of the five advance models
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separately, this was determined by comparing the AICc values for the best 

stepwise model including only the following subset of variables:

1. Raw case/death data with raw SST data
2. Raw case/death data with anomaly SST data
3. Anomaly case/death data with raw SST data
4. Anomaly case/death data with anomaly SST data

The subset that yielded the stepwise model with the smallest AICc value was then 

deemed to be the most appropriate for the data at hand. With prediction accuracy 

being the goal, as opposed to understanding the mechanisms, the subset being 

used was free to change for each of the five predictive models. As an example, 

the five month in advance model using both raw case/death and SST data may be 

the most appropriate, while anomaly case/death data with raw SST data may be 

the most appropriate for the four month in advance model. This technique of 

choosing the most appropriate subset of the variables helped to reduce the number 

of possible variables and interactions in any given model, as well as eliminated 

many of the strong correlations existing between predictor variables. Figure 2.4.1 

illustrates the correlations remaining between the raw variables. The SST 

variables do show strong correlations (0.845 < r < 0.902), indicating that 

multicollinearity was a concern. However, with prediction again being the main 

concern and not the mechanisms behind dengue incidence, the goal of model 

development is simply to find a function of the variables at hand that yields a 

good predictor of future dengue cases (Breiman, 2001). Therefore, all three of 

these SST variables were retained in the model selection process.
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Figure 2.4.1: Scatterplots of the explanatory variables (June 1985 to May 1999)
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Two sets of models for each of the four, three, two, and one month in advance 

predictions were developed. The first set merely contained the time lagged 

variables specific to the current month only. For example, the four month model 

would only contain the four month lagged data. These models were developed by 

choosing the best subset of raw/anomaly variables and the corresponding AICc 

stepwise model, as described above. With regards to the second set of models, 

the previous month(s) lags were also considered as appropriate variables. These 

models were developed by using the model from the first set as a base, or starting, 

model. The previous month(s) lags were then considered, using AICc stepwise 

model selection with the original model being the starting model. No interactions 

between lagged variables and their previous month’s lags were permitted into the 

models. As an example, the four months in advance model was first developed 

using only the four month lagged data. Once the best model based only on these 

variables and their interactions was determined, the five month lagged data and 

their interactions were next considered to enter the original four month model, 

using AICc stepwise model selection. The interactions between the four and five 

month lagged variables were not permitted in the model selection.
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Chapter 2.5: Model Diagnostics

To assess the quality of the models in terms of goodness-of-fit, the raw residuals 

were examined. Plots of standardized residuals versus fitted values were 

examined for any non-uniform patterns. A uniform band of points centering 

around the zero standardized residual value is ideal, indicating that constant 

variability in the residuals has been satisfied. Plots of observed cases versus 

fitted/predicted cases were also examined to visually assess the accuracy. A 

perfect 45° line in this plot is ideal, suggesting that the observed and fitted values 

have a perfect match. The log-transformed version of this plot was also examined 

for clarity, as the majority of cases are small, with a few outliers. Q-Q plots of the 

residuals were also examined to assess the normality of the residuals assumptions. 

Again, a perfect 45° line in this plot means that the residuals follow a perfect 

normal distribution. Unfortunately, goodness-of-fit tests for models with higher 

dimensions, or many explanatory variables, are less reliable and may have little 

power to detect non-conformances to the assumptions of the GLM. However, 

cross-validation techniques can help to alleviate this problem (Breiman, 2001).

To improve the goodness-of-fit assessment for the models, leave-one-out cross-

validation was also performed. This was completed by building a model based on

all observations, except for the first observation. The resulting model, which is
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completely independent of the first observation by design, was then used to 

predict the first observation. The difference between the observed and the 

predicted number of cases for this first data point was then recorded, as well as 

the observed and predicted epidemic severity group classification. This process 

was next completed by building a model based on all observations, except for the 

second observation. The discrepancy between the observed and predicted number 

of cases, as well as the observed and predicted epidemic severity group 

classification, for this second data point were then recorded. This process was 

repeated over the entire dataset. The leave-one-out cross-validation prediction 

error (CVPE) was then calculated as follows:

n

y  (Observedt — Fittedi )2
CVPE = -£!---------------------------- .

n

Clearly, the smaller the CVPE, the better the model is in terms of predictive 

accuracy (Stone, 1974). A 5x5 contingency table representing the agreement 

between observed and predicted epidemic severity group classification was also 

tabulated, along with the cumulative percentages of correct classification, within 

one group, two groups, three groups, and four groups. Ideally, a very high 

percentage of the cases would be correctly classified and no observations would 

be classified three or four groups away from its observed classification.
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The empirical distribution of the absolute difference between the observed and 

predicted cases was also calculated and plotted to provide a visual of the 

predictive accuracy. This graph displays the cumulative percentages of 

observations with a specified absolute difference, or smaller. Graphs with steeper 

slopes indicate better prediction accuracies. Similarly, the empirical distribution 

of the absolute difference between the observed and predicted epidemic severity 

group classification was also calculated and plotted. Again, graphs with steeper 

“steps” indicate better classification accuracies.

Chapter 2.6: Principal Component Analysis

Even after having reduced the number of variables in each of the predictive

models by using AICc stepwise model selection and avoiding the use of both raw

variables and their anomaly counterparts, the potential of having a large number

of parameters in the model is still problematic. As a worst case scenario, if no

variables were removed from the one month in advance model, it could still

potentially have seventy-five variables in the model, each of which requires a

parameter estimate for its inclusion in the Poisson GLM. Unfortunately,

increasing the number of estimated parameters has the impact of decreasing the

confidence in the resulting predicted values. In addition, the three SST variables
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are highly correlated (figure 2.4.1) posing a multicollinearity problem, as 

mentioned in Chapter 2.4. To overcome these problems, principal component 

analysis (PCA) was performed on the variables remaining in the models obtained 

from AICc stepwise selection. Using principal components can help improve 

parameter estimates that are often unstable in the presence of multicollinearity 

(Marx and Smith, 1990), and can also serve to reduce the number of estimated 

parameters.

To perform PCA, the correlation matrix between the variables, including any

potential interactions in the best model was utilized. By using PCA, the original

variables wee transformed in terms of the patterns revealed between the variables

by the resulting components (Jolliffe, 1986). Specifically, the eigenvectors and

eigenvalues of the correlation matrix were obtained. The eigenvectors, or

components, represent perpendicular transformations of the original variable.

Their corresponding eigenvalues indicated the amount of variability observed in

the original variables that was captured by each of the components. A larger

eigenvalue therefore indicates that its component is more important, while a

smaller eigenvalue suggests that the component is less important in capturing

patterns within the data. Performing vector multiplication of the original

variables (including their interactions) with the components/eigenvectors

produces a set of new transformed variables (scores) that were perpendicular, or

uncorrelated. As a result, multicollinearity was no longer an issue. In addition,
27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by selecting only components that accounted for a large proportion of the 

observed variability in the original variables, the number of variables used in the 

Poisson GLM could be reduced, resulting in fewer estimated parameters.

The newly transformed variables, or scores, were then used sequentially to 

estimate predictive Poisson GLMs. For example, the first model only contained 

one variable, corresponding to the scores from the first (and most important) 

component. The second model contained two variables, corresponding to the 

scores from the first two (most important two) components. The third model 

contained three variables, and so on. The full model based on all principal 

components produced the exact same results as the Poisson GLM prior to PCA 

(Chapter 2.4 models). Similar to the model diagnostics described in Chapter 2.5, 

the residual plots, leave-one-out CVPEs, agreement contingency tables between 

the observed and predicted groups, and maximum difference between observed 

and predicted cases were determined for each of the sequential models. The 

model providing the smallest CVPE was taken to be the best model. Further, the 

CVPE values for two sets of models pertaining to the four, three, two, and one 

month in advance models were compared at this point. Again, of the two models 

being compared, the model producing the lowest CVPE was chosen as the final 

and best available model for the data at hand.
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Chapter 2.7: Model Validation

The true accuracy for each of the final five, four, three, two and one month in 

advance predictive models was determined by comparing the observed values the 

models were intended to predict, and the predicted values the models yielded.

The predictive models and coefficients were determined based on June 1985 to 

May 1999 data only, with the intention of predicting observations between June 

2000 and May 2001. As such, the true accuracy of the models was determined by 

first obtaining the new scores for the principal components using the appropriate 

variables observed in June 2000 to May 2001. These new scores were then used 

as the values of the explanatory variables in the final predictive models. The 

predicted values therefore represent the actual values that would be projected if 

the early warning system was in place. These results were then compared to the 

true observations the models were intended to predict, to obtain the true accuracy. 

The prediction error of each of the five models was calculated as

n

y ]  {Observedi -  Fitted. )2
PE = ^ ------------------------------ ,

n

which is the identical calculation as the CVPE. The maximum difference 

between the observed and predicted number of cases was also reported, along 

with the contingency tables summarizing the agreement between the observed and 

predicted groups.
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In addition to calculating the prediction errors and contingency tables for group 

agreement, each of the months between June 2000 and May 2001 were randomly 

assigned to one of the five groups. The cumulative percentages of correct 

classification, within one, within two, within three and within four groups were 

then calculated and compared to the values obtained by the five predictive models 

developed. The values obtained by random selection served as a guideline to 

indicate if the five predictive models performed classification better than mere 

random allocation.

Chapter 2.8: Modeling over the Years

The above process of developing a sequence of predictive models and evaluating

their accuracies was completed five times in total. The first process described in

detail above utilized the June 1985 to May 2000 as “training” data to build models

for June 2000 to May 2001 prediction. However, because validation data was

also available from June 2001 to May 2002, the process was repeated to develop

predictive models for this particular time range as well. These models were

developed using the June 1985 to May 2001 data however, meaning that an extra

twelve observations were included in the dataset. Similarly, to predict June 2002
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to May 2003 the models were developed using the June 1985 to May 2002 data. 

Predicting June 2003 to May 2004, models were based on June 1985 to May 2003 

data, and finally predicting June 2004 to August 2004, models were based on June 

1985 to May 2004 data. Table 2.8.1 summarizes the training datasets used to 

create each of the models, and the validation data they were intended to predict.

' "able 2.8.1: Training and validation datasets for the early warning system models
Model Training data Validation data

Years N Years N
1 June 1985 - May 2000 180 June 2000 - May 20 01 12
2 June 19 85 - May 2 001 192 June 2 001 - May 2002 12
3 June 1985 - May 2 002 204 June 2 002 - May 2003 12
4 June 1985 - May 2 003 216 June 2 003 - May 2004 12
5 June 1985 - May 2004 228 June 2004 - Aug. 2 004 3

This sequencing of models was developed to ensure that the most recent, and 

likely the most related data for a specific time of prediction would also be 

included. Using this approach in practice is highly feasible, and ensures that the 

predictive models are being updated on a yearly basis to accommodate any 

changes in the relation between current dengue disease incidence, and past cases 

and climate.
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Chapter 3: RESULTS

The results for June 2003 to May 2004 prediction are discussed in detail 

throughout Chapter 3.1, being the final year for which all twelve months in the 

validation dataset were available. Although the results for the remaining 

validation years are not identical, they are not immensely different either, as 

shown in Chapter 3.2. Recall that the methodology, fully described in Chapter 2, 

used to develop all of the early warning system models were identical, regardless 

of the year. For complete model details and estimates not provided in efforts to 

eliminate redundancy, please contact the author.

Chapter 3.1: June 2003 through May 2004 Models

The reported Dengue cases between June 2003 and May 2004 were best predicted 

by the four, two and one month models and as such only these three models will 

be described in detail in efforts to avoid redundancy. Even though the actual 

prediction error for the five month in advance model was not the lowest of all the 

models, it failed to reflect any of the lows or highs in dengue cases observed for 

this year, as it essentially only provided average monthly counts of dengue
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disease. As such, this model was deemed to be of little help, perhaps because the 

case, death and SST data were too early to accurately capture the current 

incidence of dengue and the future climate in Yogyakarta. Similarly, the three 

month in advance model also only provided approximately average counts, again 

resulting in too smooth of a yearly trend that failed to capture any of the observed 

lows or highs. However, the predictions were not as smooth as for the five month 

model, likely due to current population vulnerability being slightly better captured 

by the case and death data.

Chapter 3.1.1: Four Month in Advance Model

Using the June 1985 through May 2003 four month lagged anomaly case, death 

and SST data with the raw five month lagged case, death and SST data, provided 

the model with the lowest AICc. The original GLM contained nineteen variables, 

and had a CPVE of 3068.9. Using PCA reduced the model dimensionality and 

eliminated any multicollinearity issues, by using only the first sixteen principal 

components. The first sixteen principal components accounted for 99.997% of 

the variability in the original explanatory variables. Based on CVPE, the GLM 

using these sixteen components was further improved by excluding the 2nd, 7th,

9th, and 14th components (Appendix, table A.l), which had a lower CVPE of

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2789.3, compared to 3006.5 with all sixteen components. Residual diagnostics 

for this model (Appendix, figure A .l) indicated less accuracy as predictions 

became smaller. This is likely due to the fact that there were many more 

observations with few dengue cases, and as such the variability is naturally larger 

for the smaller dengue cases. Of course, it would be inappropriate to eliminate 

the few large recorded dengue cases as outliers, because these are the months of 

particular interest and importance. The spread of positive residuals was also 

wider than negative residuals, indicating more severe underestimations, compared 

to overestimations, since the residuals are defined as “Observed-Fitted.”

The four month in advance model for June 2003 to May 2004 observations was 

successful in that it was able to correctly predict the classification of three 

months, with five months being classified within one group of its true 

observation, eleven months within two groups, and all twelve months within three 

groups (table 3.1.1.1). Unfortunately, two of the months observed as very high 

epidemic concern (group 4) were only predicted as medium concern (group 2).
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Table 3.1.1.1: Four months in advance agreement between predicted and
observed groups (June 2003 to May 2004)1

true .0 true.1 true .2 true.3 true .4
pred.0 0 0 0 0 0
pred.1 0 2 0 1 0
pred.2 3 2 1 0 2
pred.3 1 0 0 0 0
pred.4 0 0 0 0 0

Count Percentage Cumulative
correct 3 25.000 25.000
withinl 5 16.667 41.667
within2 11 50.000 91.667
within3 12 8.333 100.000
within4 0 0. 000 100.000

Max.diff
177.55

Prediction. error
4985.9

COo'

o

oo

(b)

~ r ~  t  — \ ~ ~ r  

0 50 100 150
jDifF. cases]

ODd

d

o
d

1 0  1 2  3 4
IDiff. groups)

Figure 3.1.1.1: Four month in advance prediction accuracy 
(June 2003 to May 2004)

1 The column names “true.0”, “tru e .l”, etc. indicate the observed group classification for each 
month. The row names “pred.0”, “p red .l”, etc. indicate the predicted group classification for each 
month. The rows “correct”, “w ithinl”, etc. indicate if  the predicted classifications were correctly 
classified, classified within 1 group o f the observed classifications, etc. The subsequent columns 
“count”, “percentage” and “cumulative” represent the number o f months, percentage o f  months 
and cumulative percentage o f months for each row.
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Chapter 3.1.2: Two Month in Advance Model

The original two month in advance GLM contained thirty-five variables, and used 

the combination of two through five month lagged raw case/death data with two, 

three and five month lagged raw SST, and four month anomaly SST data. 

However PCA substantially reduced the model dimensionality and eliminated 

multicollinearity, by using only the first fifteen principal components, accounting 

for 99.5% of the variability observed in the original thirty-five variables. A 

model using only the scores from the first fifteen components had a CVPE of 

2859.9 was much lower than 14411.0 CVPE from the original model. Removing 

the 9th component further improved the model, with an even lower CVPE of 

2753.1. For details on the estimated coefficients for each component in the 

GLM, see table A.2 in the Appendix. The residual diagnostics again indicated 

less accuracy as predictions became smaller, with more severe underestimates due 

to wider spread of the positive residuals (Appendix, figure A.2).

Based on prediction error, the two month in advance model for June 2003 to May 

2004 observations was not as successful as the four month model, with a much 

higher error of 6420.6, compared to 4985.9. However, the group classifications 

were improved with one of the high epidemic concern months (group 4) now 

being accurately classified, while the other is predicted as little concern (group 1).
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Two months are overestimated, resulting in high epidemic concern classification 

when their true observations were very low concern. With early warning systems 

however, it is better to overestimate than underestimate as underestimations will 

result in unexpected, and unplanned for, dengue epidemics. Thirty-three percent 

of the months are now correctly classified, which is an improvement compared to 

the twenty-five percent from the four month model (table 3.1.2.1).

Table 3.1.2.1: Two months in advance agreement between predicted and 
observed groups (June 2000 to May 2001)

true.0 true.1 true .2 true.3 true .4
pred.0 0 0 0 1 0
pred.1 1 3 1 0 1
pred.2 1 1 0 0 0
pred.3 0 0 0 0 0
pred.4 2 0 0 0 1

Count Percentage Cumulative
correct 4 33.333 33 .333
withinl 7 25.000 58.333
within2 8 8.333 66.666
within3 10 16.667 83 .333
within4 12 16.667 100 . 000

Max.diff
165.88

Prediction. error
6420.6
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Figure 3.1.2.1: Two months in advance prediction accuracy 
(June 2003 to May 2004)
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Recall that the cutoffs used for classification were determined from a statistical 

point of view and may not represent the best choice from an epidemiologist’s 

perspective. In contrast, prediction error is not subjective and is therefore a better 

indicator of model performance in comparison to the cumulative agreement 

percentages. With this in mind, the four month model appears to better predict 

June 2003 to May 2004. This is likely due to climate still being an important 

driving factor for dengue disease, which four month in advance SST would better 

capture than two month in advance SST values.

Chapter 3.1.3: One Month in Advance Model

Originally, forty-two variables were used in the GLM, consisting of one, two, four 

and five month lagged raw case, death, and SST data, along with three month 

anomaly case, death, and SST data. PCA was unable to reduce the dimensionality 

of the model, as the lowest CVPE was 2356.0 when all components were used, 

although multicollinearity was still resolved. Once the 19th, 25th, 26th, 27th, 30th, 

31st, and 40th components were excluded, the CVPE lowered to 1407.7. Table 

A.3 in the appendix shows the estimated one month in advance GLM model, 

while figure A.3 in the appendix still indicated less accuracy as predictions 

became smaller, except that the residuals now show similar spread in both the
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positive and negative direction. This suggests that underestimates are no longer 

more severe than overestimates, unlike the four and two months in advance 

models.

The prediction error for the one month in advance model was 11848.0, which is 

very large compared to the four and two month models (4985.9 and 6420.6, 

respectively). Closer examination of the one month in advance predictions 

indicated that this model predicted April 2004 to have 330.2 Dengue cases, when 

it only had eleven recorded cases. Thus, April was overestimated by 319.2, which 

contributed to almost seventy-two percent of the prediction error. Excluding this 

one month’s prediction, the prediction error greatly reduced to only 3367.9, which 

is lower than both the four and two month models. Again, overestimations are 

preferred to underestimations for an early warning system, as its better to be safe 

than sorry with regards to tracking potential epidemics. Considering the two 

months observed as very high epidemic concern, one month was again correctly 

classified, while the other month was classified as medium concern (group 2), 

which offered an improvement to both the four and two month models. Thirty- 

three percent of the months were still correctly classified (table 3.1.3.1), as with 

the two month model.
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Table 3.1.3.1: One month in advance agreement between predicted and observed
groups (June 2003 to May 2004)
true .0 true.1 true .2 true.3 true .4

pred.0 0 0 0 1 0
pred.1 2 3 1 0 0
pred.2 0 1 0 0 1
pred.3 1 0 0 0 0
pred.4 1 0 0 0 1

Count Percentage Cumulative
correct 4 33 .333 33.333
withinl 8 33 .333 66.666
within2 9 8.333 74.999
within3 11 16.667 91.666
within4 12 8.333 100.000

Max.diff
319.02

Prediction. error
11848
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Figure 3.1.3.1: One month in advance prediction accuracy 
(June 2003 to May 2004)

Chapter 3.1.4: Model Comparison

The reported dengue cases between June 2003 and May 2004 were best predicted 

by the one, two, and four month in advance models. Based on actual prediction
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errors, the one month performed the best if the overestimation for April was 

unaccounted for, followed by the four, and then two month model. This is not 

extremely surprising, given that the one month model would be expected to 

provide the most accurate predictions, with current states of dengue incidence 

being the main driving factor at this point in time. It may seem slightly surprising 

that the four month model outperformed the two month model with respect to 

prediction error, but as previously mentioned, this may be contributed to the fact 

that the four month model better captured the future climate conditions, for which 

the two month model is too late to capture. Further, four month in advance 

climate may be more important than the current dengue incidence two month in 

advance.

Figure 3.1.4.1 compares the predicted trend for each of the one, two, and four

month in advance models to the actual recorded dengue cases for June 2003 to

May 2004. Examining this figure clearly shows that the one month model best

captured the yearly trend of dengue cases, while the two month in advance model

seems to capture the trends second best, as it actually shows an increase in dengue

cases for March. This is extremely important for an effective early warning

system. Although the four month in advance model does depict increasing

predictions as the observed cases increases, the observed spike in March is not

clearly captured by this model. This therefore indicates that the two month in

advance model does indeed provide a better warning than the four month model,
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which contradicts the results based on prediction error alone. This clearly 

demonstrates the need to examine the general trend any given model is producing 

with regards to predicted dengue cases, and not just the prediction error alone. 

Also notice that the one month in advance model greatly overestimated April, as 

mentioned earlier, missing the observed peak by one month. Fortunately however, 

the one month in advance model still managed to flag March as high epidemic 

concern, especially compared to the lower predictions for the previous months.
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Figure 3.1.4.1: Observed and predicted number of cases from the three predictive
models (June 2003 to May 2004)
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With regards to the classification of epidemic severity resulting from model 

prediction, the one and two month in advance models both correctly classified 

33.3% of the observations. For the remaining cumulative percentages, the one 

month in advance model out performed the two month in advance model, 

however the four months in advance model appears to have performed better than 

the one month model, based on the cumulative percentages of agreement alone. 

All three of the models have larger cumulative percentages of agreement than 

random allocation alone (table 3.1.4.1), demonstrating that the predictive models 

do indeed perform better than random classification alone, as hoped. Once again, 

it must be emphasized that the cutoffs used for classification of epidemic severity 

were determined using a statistical approach, as opposed to an epidemiology point 

of view. Therefore the groupings used may not be the most appropriate.

Table 3.1.4.1: Cumulative group agreement percentages1
4. month 2 .month 1. month Random

Correct 25.0 33.3 33.3 0.0
withinl 41.7 58.3 66.7 16.7
within2 91.7 66.7 75.0 50.0
within3 100. 0 83 .3 91.7 83 .3
within4 100. 0 100.0 100.0 100.0

1 The columns “4.month”, “2.month”, “ 1.month” and “Random” represent the predicted 
classifications from the 4, 2 and 1 month in advance model, followed by random classification 
respectively. The rows “correct”, “w ithinl”, etc. indicate the cumulative percentages of correctly 
predicted classifications, predicted classifications within 1 group o f the observed classifications, 
etc.
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Chapter 3.2: Model Overview for the Remaining Years

Chapter 3.2.1: June 2000 through May 2001 Models

For June 2000 to May 2001 prediction, the prediction errors for the five through 

one month in advance models were 2186.3, 2812.7, 2461.4, 2576.5, and 1536.2, 

respectively. Based on these values, the one month in advance model was again 

the best, next followed by the five month, then three month in advance models. 

However the trends presented in figure 3.2.1.1 indicate that the five month model 

again just simply provided average predictions and failed to capture the observed 

trend. In contrast, the four month in advance model does appear to somewhat 

capture the trends, although it also seems to be predicting highs and lows two to 

three months too early, and fails to spike in May. The three month in advance 

model again appears too smooth and unable to capture the overall trend, while the 

two month model also seems inadequate. Finally, the one month in advance 

model does parallel the observed trend nicely, with the exception of the drop in 

prediction in April and too low of a prediction for May.
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Figure 3.2.1.1: Observed and predicted number of cases from the five predictive
models (June 2000 to May 2001)

Chapter 3.2.2: June 2001 through May 2002 Models

The prediction errors for the five through one month in advance models were 

391.2, 1384.3, 979.7, 692.5, and 194.2 respectively. Accordingly, the one month 

in advance model was again the best, next followed by the five, then two month in 

advance models. In addition, the June 2001 to May 2002 predictions yielded the 

smallest prediction errors of all the years predicted. This however is likely due to 

the fact that little variability was actually observed (range of 32 to 94) in this
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year’s dengue cases, and there was no evidence of a dengue epidemic. As usual, 

the five month in advance model offers no real assistance in an early warning 

system, with predictions being too moderate. Both the three and four month 

models seem to completely miss the actual observed trend in that the opposite 

appears to be predicted. Both the one and two month in advance predictions do 

roughly parallel the yearly trend, with the one month model being slightly more 

accurate. Again, no real epidemic concerns are present in this data, as indicated 

by all the predictive models.
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Figure 3.2.2.1: Observed and predicted number of cases from the five predictive
models (June 2001 to May 2002)
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Chapter 3.2.3: June 2002 through May 2003 Models

The prediction errors for the five through one month in advance models were 

3843.6, 866.1, 2257.9, 954.3, and 535.0, respectively. As with all the previous 

models, the one month in advance model again offered the best predictions, 

followed by the four and then two month in advance models. These results 

closely parallel the results for June 2003 to May 2004, discussed in detail. Also 

notice that the range of dengue cases for this year is again fairly small (3, 78), 

with no real concern of an epidemic. Figure 3.2.3.1 shows that all the models 

generated overestimates and were therefore more conservative than the actual 

records. The one, two and four month predicted trends parallel the observed trend 

better than the five and three month in advance predictions. Further, the four 

month in advance model again appears to be making predictions a couple of 

months too early.
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Figure 3.2.3.1: Observed and predicted number of cases from the five predictive
models (June 2002 to May 2003)

Chapter 3.2.4: June 2004 through August 2004 Models

With only three months available for 2004 validation, it is difficult to truly assess 

the accuracy of these predictive models. Regardless, the prediction errors for the 

five through one month in advance models were calculated as 4968.8, 2834.5, 

1815.9, 1045.4, and 1135.5, respectively. For these three months, it therefore 

appears as though the two month in advance model provided the most accurate 

predictions, closely followed by the usual one month in advance model. Neither
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of the three, four or five month models appear to be adequate. These results are 

supported by the three month trends depicted in figure 3.2.4.1 below.
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Figure 3.2.4.1: Observed and predicted number of cases from the five predictive 
models (June 2004 to August 2004)

Chapter 3.3: Overview of the Models

The actual prediction errors for each of the five models over the five predicted 

years ranged from a minimum of 194.2 (one month in advance model for June 

2001 to May 2001 prediction) to a maximum of 11848.4 (one month in advance
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model for June 2003 to May 2004 prediction). However almost seventy-two 

percent of the latter prediction error can be contributed to the model 

overestimating the number of dengue cases in April 2004 by 319.2 cases. 

Therefore, without this one month, the prediction error reduces to a much more 

reasonable 3357.7.

Unfortunately, the 196 dengue cases observed in May 2001 was not captured by

any of the five models for that particular year’s prediction, with its largest

prediction being 82.3 cases by the one month in advance model. The less extreme

observation of 112 cases in April 2002 was also not well captured by any of the

models, since its largest prediction was only 64.2 by the two month in advance

model. June 2001 through May 2003 did not present any extreme observations in

terms of the number of dengue cases, with the largest number of cases being 78 in

April 2003. With no observed epidemic concerns here, the models were generally

conservative, yielding larger estimates than actually observed. The peak number

of cases for the June 2003 to May 2004 year occurred in March, with 259 cases.

This severity was somewhat captured by the two and one month models, having

predictions of 132.5 and 149.0 cases respectively. As previously mentioned,

figure 3.1.4.1 suggests that the one-month in advance model was off by one

month for this prediction, since the following month (April) was predicted to have

330.2 cases. Finally, with regards to the June 2004 to August 2004 observations,

which were all very low (only 0 to 5 cases), the models all produced
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overestimates, as one might expect. In addition, the models were indeed capable 

of producing classifications of the dengue epidemic severity that were better than 

mere random classification alone, as shown in table 3.1.4.1.

The one and two month in advance models captured the overall “up and down” 

trends in dengue cases occurring each year. To a lesser extent, so did the four 

months in advance models, except that they tended to offer predictions that were 

between one to three months too early. The three and five month in advance 

models typically provided similar estimations to each other, and produced yearly 

trends that were too smooth to be of much help in an early warning system. For 

implementation purposes, it would be most reasonable to visually examine the 

trends (such as those presented in figures 3.1.4.1 through 3.2.4.1) in the predicted 

dengue cases each model is offering, and be more prepared to increase mosquito 

control efforts when the models produce peaks or gradual increases in their 

predictions, paying closer attention to the one, two, and four month in advance 

models. For the complete datasets, R programs used to develop the predictive 

models, and resulting models, please contact the author.
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Chapter 4: DISCUSSION

Chapter 4.1: Other Options for Predictive Models

In addition to considering first order interactions between each of the basic five 

variables used in the models, various transformations were also considered.

Using the log-transformed cases as opposed to the original form, was considered 

as the response variable, however this did not improve the linear relationship 

between the number of cases and the exponential of the explanatory variables. 

Similarly, using functions such as the square and inverse of the explanatory 

variables did not improve the model fits.

Although Poisson GLMs were used, the observed variances in the number of 

dengue cases were much larger than the observed means. To account for this 

violation of the Poisson distribution, the negative binomial distribution could have 

instead been used to develop the GLMs. By doing so, the models accounted for 

extra variation in the observed number of cases. Although these models produced 

lower AICc values due to improvements in the log-likelihood, the trend in the 

residuals observed with the simpler Poisson GLMs were still present with these 

more complex models. Further, the CVPE values were actually higher for these
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models, compared to the Poisson GLMs. With the main goal of the early warning 

system models being predictive accuracy, the increased CVPE values indicated 

that the negative binomial GLMs were not as accurate as the Poisson GLMs, with 

regards to prediction capabilities.

As the first step to model reduction, stepwise model selection was used based on 

AICc values. This method was chosen as a fast way to reduce the number of 

possible variables and their interactions in each of the predictive models.

However this method of model selection is not fool proof and may result in a 

model far away from the most optimal model, given the data at hand (Hawkins, 

1973). For this reason, both backward and forward model selection alone were 

also explored, again based on AICc, and compared to the model obtained using 

stepwise selection. Usually the three models obtained were identical, but on the 

rare occasion they were slightly different, due to one or two changes in the 

interaction(s) included. However, comparing these three models developed, the 

AICc values for the stepwise models were always the smallest.

An alternative to AICc based stepwise model selection would have been to choose

the models based on CVPEs for each of the possible subset of models, and chose

the model resulting in the lowest CVPE (Stone, 1977). However, this would have

been extremely time consuming and would limit the ease of actually

implementing this procedure to develop predictive models for an early warning
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system in practice. The current choice of methodology for developing the 

predictive models ensures a reasonably fast and easy method that can be used in 

practice for early warning system, while producing reliable results. This is an 

extremely important concept, as using complex methodology would limit the 

practicality of such models and would thereby render the early warning system 

useless.

Chapter 4.2: Other Options for Explanatory Variables

The previous case and death records along with sea surface temperatures were

capable of producing fairly accurate results, even though they did have difficulty

in capturing some of the extreme number of cases, which somewhat jeopardizes

the reliability of the models. The advantage of this data is that it is easily

available and updated on a monthly basis, which allows for quick and timely

development of the models for use in an early warning system. Unfortunately

however, they may not be the best predictors for dengue cases, as shown by the

large residuals when fewer monthly cases occur and the less than perfect

predictions they yielded for the validation datasets. These results could

potentially be improved by gaining access to other climate and vulnerability

indicators. For example, rainfall, humidity, and temperature could be used as
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alternate climate variables. A count of the number of water storage containers in 

the region could provide an indicator of population vulnerability, based on the 

number of breeding sites available for the Aedes aegypti. The availability and 

frequency of updates for these variables would first need to be considered before 

their inclusion would be of much help though, regardless of how well they 

improve the predictive accuracy and reliability of the models. If the data are not 

readily available and continuously up-to-date, they will obviously be of little help 

in a real-time early warning system.

Chapter 4.3: Classification Cutoffs Review

Once again, it must be highly emphasized that the cutoffs used to determine each

month’s level of epidemic concern was purely based from a statistical standpoint.

As such, it is highly doubtful that these cutoffs are the most appropriate for

defining and classifying epidemic concern. Is seventy-one to one-hundred

(cutoffs for January, group 1) dengue cases for January really not considered to be

of great concern? It is difficult to answer this question without considering the

social and economic impact this level of cases has on society, or the future

impacts on spread of dengue this would have. For this reason, it is difficult to

assess the performance of the models based on the cumulative percentages of
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agreements presented, as it is unknown how reasonable and representative the 

cutoffs used actually are. One possible modification that could be used for the 

cutoffs is to consider the mean number of cases for each month, along with their 

standard deviations. This would therefore be more representative of the monthly 

norms and variability. Again, this is from a statistical view however, and may not 

be truly representative of dengue concern from an epidemiology point of view.

Chapter 4.4: Final Comments

These models would be extremely easy and practical to actually implement in a

real-time early warning system for dengue disease in Yogyakarta, Indonesia. The

data used to develop the models are updated on a monthly basis, and readily

available. As well, the methodology created to develop each of the predictive

models was not overly complex, nor are they overly time consuming. The models

developed for June 2000 to August 2004 do not have a perfect track record, in the

sense that they did not capture every single month with higher than usual

incidences of dengue. They were however capable of suggesting general

increasing and decreasing trends in the number of cases that would be appropriate

to use as early warnings. Further, many of the models erred on the side of caution

by providing overestimates of the number of dengue cases. For obvious reasons,
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this is clearly much more useful than models that consistently underestimated and 

provided no indication of months considered to be high epidemic concern. The 

goal was to provide models that could be used in an early warning system -  

models that could help raise awareness and provide advance warnings with 

regards to elevated number of dengue cases. Overall, the models developed here 

were successfully capable of providing such warnings up to four months in 

advance. If implemented in practice, this early warning system could help to 

substantially reduce the number of dengue cases and epidemics in Yogyakarta, 

Indonesia. Closely watching the predictions and trends offered by these models 

could provide valuable signals indicating when early preparation for dengue 

control efforts would be most beneficial.
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APPENDIX

Table A. 1: Four months in advance GLM (June 2003 to May 2004 prediction)1
Estimate Std. Error z value P r (>|z|)

(Intercept) 4 . 26390 0.00841 506.99 < 2e-16 * * *
Comp.1 -0 . 07168 0 . 00230 -31.20 < 2e-16 * ★ *
Comp.3 0 . 17749 0.00393 45 .17 < 2e-16 * * *
Comp.4 0 . 07698 0.00689 11.17 < 2e-16 * ★ *
Comp.5 -0 . 25097 0.01071 -23 .43 < 2e-16 * * *
Comp.6 0.20672 0.01081 19 .12 < 2e-16 * ★ *
Comp.8 0 . 19520 0.02019 9 . 67 < 2e-16
Comp.10 -0.54090 0.02987 -18.11 < 2e- 16 * * *
Comp.11 0.53176 0.04621 11. 51 < 2e-16 * * *
Comp.12 -0.83561 0 . 07689 -10.87 < 2e-16 * * *
Comp.13 0.42218 0 . 07615 5 . 54 3 0e-08 * * *
Comp.15 2.52589 0.10033 25 . 17 < 2e-16 * * *
Comp.16 -1.15959 0.10474 -11.07 < 2e-16 ★ * *

Signif. codes: 0 '** * ' 0.001 ' **’ 0.01 ■ * 0.05 ' . ' 0.1 ' ' 1
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Figure A.l: Four month in advance GLM diagnostics

The row names “Com p.l”. 
component analysis.

“Comp.3”, etc. indicate component 1, 3, etc. from principal
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Table A.2: Two months in advance GLM (June 2003 to May 2004 prediction)
Estimate Std. Error

(Intercept) 4 . 24850 0 .00845
Comp.1 -0.06397 0.00161
Comp.2 0 . 06220 0 . 00257
Comp.3 -0 . 07452 0 .00424
Comp.4 -0.11384 0 .00496
Comp.5 0.09558 0 .00725
Comp.6 0 . 23487 0.00609
Comp.7 -0 . 17150 0 .00847
Comp.8 -0.10003 0 . 01021
Comp.10 0 . 00518 0 . 01343
Comp.11 -0 . 13227 0.01765
Comp.12 -0 . 05915 0 . 01914
Comp.13 -0.37641 0 . 02027
Comp.14 -0 . 19240 0 . 02420
Comp.15 0.43811 0 . 02077

Signif. Codes: 0 '***' 0.001 '

z value P r (>|z|)
5 0 2  . 7 9 < 2 e - 16 * ★ *

- 3 9 . 7 5 < 2 e - 16 * * *

2 4  . 2 3 < 2 e - 16 * * *

- 1 7  . 5 9 < 2 e - 16 * * •*

- 2 2  . 94 < 2 e - 16 ★ * *

13  . 1 8 < 2 e - 16 * * *

3 8 . 6 0 < 2 e - 16 ★ * *

- 2 0 . 2 4 < 2 e - 16 * * *

- 9 . 8 0 < 2 e - 16 ★ * *

0 . 3 9 0 . 7 0 0
- 7 . 4 9 6 . 7 e - 14 * * *

- 3  . 09 0 . 0 0 2 * *

- 1 8 . 5 7 < 2 e - 16 ★ * *

- 7  . 95 1. . 8 e - 15 * * *

2 1 . 1 0 < 2 e - 16 * * *
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Figure A.2: Two months in advance GLM diagnostics
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Table A.3: One month in advance GLM (June 2003 to May 2004 prediction)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.19548 0.00891 470.72 < 2e-16 * * *
Comp.1 -0.07663 0.00158 -48.65 < 2e-16 * * *
Comp.2 0.06269 0.00265 23.67 < 2e-16 * * *
Comp.3 0.12114 0.00288 42.01 < 2e-16 * * *
Comp.4 0.01695 0.00408 4.15 3.3e-05 * ★ ★
Comp.5 0.06374 0.00515 12.3 8 < 2e-16 ★ * ★
Comp.6 0.13278 0.00627 21.16 < 2e-16 ★ ★ *
Comp.7 -0.10815 0.01030 -10.50 < 2e-16 ★ ★ ★
Comp.8 -0.06046 0.00949 -6.37 1.9e-10 * * *
Comp.9 0.06153 0.01056 5.83 5.6e-09 * * *
Comp.10 0.03858 0.01226 3.15 0.00165 * *
Comp.11 -0.07221 0.01694 -4.26 2.0e-05 * * *
Comp.12 -0.28476 0.01828 -15.57 < 2e-16 * * *
Comp.13 -0.16927 0.01937 -8.74 < 2e-16 ★ * ★
Comp.14 0.57123 0.02006 28.47 < 2e-16 ★ * *
Comp.15 0.12454 0.02853 4.37 1.3e-05 ★ ★ ★
Comp.16 -0.14195 0.03244 -4.38 1.2e-05 ★ ★ *
Comp.17 0.05302 0.02982 1.78 0.07543
Comp.18 -0.43597 0.03658 -11.92 < 2e-16 * * *
Comp.2 0 0.79538 0.07970 9.98 < 2e-16 * * *
Comp.21 0.39911 0.09732 4.10 4.le-05 * * *
Comp.2 2 -0.35935 0.11472 -3.13 0.00173 * *
Comp.2 3 1.25066 0.11639 10.75 < 2e-16 ★ * *
Comp.2 4 -0.32015 0.15214 -2.10 0.03535 *
Comp.2 8 -0.40769 0.23008 -1.77 0.07640
Comp.2 9 -2.23986 0.45237 -4.95 7.4e-07 ★ ★ ★
Comp.3 2 -5.58444 0.52407 -10.66 < 2e-16 * * *
Comp.3 3 2.27249 0.94175 2.41 0.01582 *
Comp.3 4 -2.70312 0.98369 -2.75 0.00600 * *
Comp.3 5 -6.88218 1.10160 -6.25 4.2e-10 * * ★
Comp.3 6 -13.07012 1.45024 -9.01 < 2e-16 ★ ★ *
Comp.3 7 -15.15099 1.52915 -9.91 < 2e-16 ★ * *
Comp.3 8 24.94054 2.02371 12.32 < 2e-16 * * *
Comp.3 9 -8.70275 2.26402 -3.84 0.00012 *  *  *
Comp.41 -29.39826 6.00936 -4.89 1.0e-06 ★ ★ ★

Comp.4 2 -33.04340 7.64107 -4.32 1.5e-05 *  ★ ★

Signif. codes: 0  ' * * * ' 0.001 ' * * ’ 0.01 ’ * ’ 0.05 ' ’ 1
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Figure A. 3: One month in advance GLM diagnostics
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