
Multi-layer Distributed Coding Solutions for
Large-scale Distributed Computing

by

Arash Yazdanialahabadi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Communications

Department of Electrical and Computer Engineering

University of Alberta

© Arash Yazdanialahabadi, 2020

Abstract

In distributed computing models, where some helper nodes assist the master

in a large-scale computation, a big challenge is when these helpers straggle.

The straggling of even a single helper node can significantly increase the pro-

cessing time. Therefore, coded distributed computing has been proposed as a

solution in many recent studies. Unfortunately, in some scenarios, the decod-

ing complexity at the master is so significant that it undermines the benefit

of distributing the computation. To allow for distributed computing in these

cases, we propose a multi-layer coding strategy that allows some helpers to

assist with the decoding. In this thesis, we focus on two scenarios, (1) when

an extra layer of helpers are introduced to help with the master’s decoding,

and (2) fitting a distributed coding scheme when the computation naturally

requires multiple layers with shuffling (for example FFT). In both scenarios,

we propose a fully-coded structure that tolerates straggling in each step. More-

over, using low-complexity codes such as Raptor codes to further reduce the

master’s decoding load is studied.

ii

Preface

The contributions and results of this thesis have been presented in two journal

submissions. The results and algorithms of Chapter 3 have been submitted to

IEEE Transactions on Communications under the title “A Distributed Low-

complexity Coding Solution for Large-scale Distributed FFT”. Chapter 4 also

includes the results of the paper “Distributed Decoding for Coded Distributed

Computing” submitted to the Journal of Parallel and Distributed Computing.

iii

To my parents

For their love and never ending support.

iv

Acknowledgements

First, I would like to express my appreciation and gratitude to my supervisor,

Dr. Masoud Ardakani. His continuous guidance, support, and mentorship

have been exceptional. I am grateful that I was able to work under his super-

vision and learn so many valuable lessons. Second, I would like to thank the

committee members, Dr. Yindi Jing, Dr. Hai Jiang, and Dr. Gregory Kish,

for their constructive comments and dedicating their time to this thesis.

Also, I would like to express my gratitude and gratefulness to my family,

whom I have been blessed by their love and endless support in every step of

my life. Finally, I cannot find a better way to thank my friends, who sparked

joy in my life throughout my time in Edmonton.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Distributed Computing . 2
1.3 Unreliable Distributed Computing 3
1.4 Coded Distributed Computing 4
1.5 Thesis overview . 5

2 Background 7
2.1 Distributed Computing Systems 7

2.1.1 System Model . 8
2.1.2 Challenges . 10

2.2 Forward Error Correction Codes 12
2.2.1 Mathematical Background 12
2.2.2 MDS codes . 13
2.2.3 Fountain codes . 15

2.3 Coding in distributed computing 16
2.3.1 Related works . 18
2.3.2 Decoding Complexity 20
2.3.3 Proposed Multi-layer Distributed Coding Solutions

Overview . 20

3 Multi-layer Coded Distributed FFT 22
3.1 Introduction . 22
3.2 Background and motivation 25

3.2.1 FFT computation . 25
3.2.2 Coded distributed FFT 26
3.2.3 Remaining challenges and overview of our contributions 28

3.3 Uncoded distributed FFT solution 29
3.4 Coded solution . 31

3.4.1 Toy example . 32
3.4.2 Coding algorithm . 36
3.4.3 Low decoding complexity codes 40

3.5 Performance analysis and numerical results 42
3.5.1 Failure probability . 42
3.5.2 Complexity and cost comparison 43

3.6 Conclusion . 48

4 Distributed Decoding 49
4.1 Introduction . 49
4.2 System model . 50
4.3 A fast and reliable distributed decoding solution 53

4.3.1 Main idea . 53
4.3.2 Proposed distributed decoding solution 54

vi

4.3.3 Greedy decoding helper allocation 57
4.4 Numerical results . 59
4.5 Conclusion and future work 63

5 Conclusions and future work 65
5.1 Summary of contributions and results 65
5.2 Future research directions . 66

References 68

vii

List of Tables

3.1 The master’s load is presented for N = 232, εc = 0.10, and a
range of K. The numerical column is normalized to the first
row, i.e., Self-FFT. 44

viii

List of Figures

1.1 Cloud computing schematic 2

2.1 MapReduce structure with K processors and multiple Shuffle
stages. The helpers might perform different computations in
each layer. In Map, the master assigns the data and tasks to
the helpers and they start their computational task. They might
shuffle their output data with each other, and start a new pro-
cessing. In Reduce, the helpers perform final tasks and send
the results to the master for the final processing (if needed). In
some scenarios, the helpers only perform one layer of computation. 9

2.2 Distributed matrix multiplication model with K helpers . . . 10
2.3 Coded distributed matrix multiplication model with 4 helpers 17

3.1 The butterfly structure of FFT. Vertices may multiply a weight
to their source dots and each dot operates the sum of the input
vertices. 27

3.2 Distributed FFT example for N = 16, M = 4 completed in two
layers with four helper nodes in each layer. 30

3.3 The coding scheme example of a two-layer distributed FFT.
Generating the coded symbols for redundant nodes is not feasi-
ble unless the required symbols for encoding exist in the same
place. 33

3.4 The complete proposed coded distributed FFT scheme for (N,M,K,L)
= (16,4,4,5). The master performs encoding in Map stage. K
helpers participate in M–FFT and the successful nodes send
their results to Computation Layer 2. There, helpers decode to
recover b4 symbols, multiply twiddle factors, and encode the
symbols they need for the second FFT. In this systematic ex-
ample, only E25 does the encoding. The master finally decodes
and retrieves y. 35

3.5 System block diagram . 41
3.6 Normalized cost of the proposed algorithm for different values

of ψt. The minimum point follows a trend: it occurs on higher
overheads for higher ψt values. 45

3.7 Comparison between the proposed algorithm with two compu-
tation layers and Raptor coding and single computation layer
with MDS coding. 46

3.8 The proposed algorithm’s cost for a number of code lengths for
N = 232. 47

4.1 The coded matrix-vector multiplication distributed computing
scheme based on MapReduce with no Shuffle stage 51

4.2 The coded matrix-vector multiplication distributed computing
scheme with perfect decoding helpers 53

ix

4.3 The two-layer coding structure to add reliability for both pro-
cessing and decoding layer . 55

4.4 The behavior of E[τx] and its components 60
4.5 A comparison between our proposed multi-layer method and

single-layer method when a different number of helpers from
the network are utilized . 61

4.6 The behavior of different distributed computing allocations based
on |Sd| . 62

4.7 The effect of different sizes of computations on the optimum |Sd| 63

x

List of Acronyms

CDCS coded distributed computing systems

DCS distributed computing system

DFT discrete Fourier transform

FEC forward error correction

FFT fast Fourier transform

GDHA greedy decoding helper allocation

IoT internet of things

LT Luby transform

MDS maximum distance separable

RS Reed-Solomon

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, with new technologies such as machine learning and data pro-

cessing growing, the size of data is increasing every day. Companies collect

data from their customers more than ever; the researchers have access to an

extensive amount of information; graphic files and datasets are getting ex-

tensively larger. This increasing trend in the size of data has created several

challenges, such as data storage and processing.

With the development of computing resources and the rising popularity of

data analysis and machine learning methods, massive datasets are put into

processing for various applications [1]. Furthermore, high-quality image pro-

cessing and big data analysis require a large amount of computation [2]. There-

fore, large-scale computing has gained attention in recent years. Even the most

straightforward computations can become a challenge when the size of data

increases exponentially. Hence, processing massive data has introduced many

new challenges.

The problem with large-scale computing is that the personal processors

cannot handle the computation due to memory limitations as well as CPU/GPU

speed, and capacity limitations. This problem has forced users to move their

computation to the cloud. Cloud service providers have contributed to this

trend by providing a variety of servers to satisfy the costumer’s needs [3], [4].

In this approach, users’ computations are transferred to one or multiple servers

on the cloud. These servers process the users’ data and return the processed

1

Input data

Task

Output data

Figure 1.1: Cloud computing schematic

data to the users. Fig. 1.1 demonstrates the main idea.

Cloud services, though gaining much popularity, have several challenges [5],

[6]. The systems’ reliability is one of the important ones. The user must be

assured of the system’s success. Moreover, the privacy and security of the

system are very important since the users’ data could be sensitive. The service

provider must also provide the storage and computational needs of the user.

Communication limitation is also a contributing factor in designing the system.

1.2 Distributed Computing

Depending on the data size and the needed processing, sometimes a single

processing unit – in either the cloud or a local network – is unable to handle

all the computations. Moreover, some computational tasks are time-sensitive

and must be finished before a tight deadline. The standard solution in such

cases is parallel computing, where the tasks are broken into smaller ones and

are performed in parallel [7], [8].

Parallel computing at the hardware-level has been a common practice for

decades. Having multiple processors in a single device increases the speed

of the processing and has been subject to numerous structure designs and

hardware development. However, in distributed computing models, several

distinct devices are utilized simultaneously, and this introduces new challenges.

Consider a network consisting of a number of helper devices, available to

conduct a computational task. This network can be a set of servers in the

cloud, devices with limited computational capacity in an Internet of Things

(IoT) network, or an Ad Hoc cluster of machines. In any scenario, these

2

helper nodes possess computational abilities and therefore, can participate in

the distributed computing scheme. In this way, some processing units that

could potentially be idle benefit other devices.

The helpers can communicate data before, during, and after computation

and can receive multiple tasks in order to complete the whole processing. Gen-

erally, the master-helper 1 model is the most standard distributed computing

model studied [9]–[13]. In this model, data and computational functions are

provided to the helpers by the master. When helpers finish their assigned

tasks, the master collects the processed data to finalize the computation.

As an example, MapReduce structure introduced in [14], covers several

distributed computing models and benefits from the master-helper structure.

In this structure, in the Map stage, some helpers receive an assignment to

perform a computation based on a fraction of the input data. Commonly,

there exist Shuffle stages where the helpers start communicating throughout

their computation, and multiple tasks might be completed. In the Reduce

stage, some helper nodes perform some final tasks and send the results to the

master. Many works [15]–[18] have been developed by adopting this structure.

More details on MapReduce is provided in Chapter 2.

1.3 Unreliable Distributed Computing

There are multiple factors that can cause a failure in a distributed computing

network [9], [11], [19], [20]. Such failures will result in an unreliable distributed

computing system (DCS). It is essential to identify these factors and propose

a solution to resolve them in order to obtain a dependable system.

An obvious source of failure is the imperfect communication channel. In

particular, many distributed computing networks are wireless [18], [19], [21],

[22], i.e., the helper nodes and master communicate through wireless channels.

Wireless channels are especially subject to error and erasure. These problems

might jeopardize the success of the whole computation.

In addition to channel imperfection, there are other sources of failure in

1Also known as master-server, master-worker.

3

distributed computing. In fact, the main challenge in distributed computing

systems is stragglers [11], [23], [24]. These are the helpers that consume more

time on their task than expected, which results in the added latency to the

system. Resource sharing, power limits, queuing, and many expected or unpre-

dictable reasons contribute to the straggling of helpers [25]. In a time-sensitive

computational task, even one straggler can be a bottle-neck for the latency of

the whole system and decreases the performance of the distributed computing

system.

These factors create unreliability in distributed computing systems. Clearly,

one needs to develop a solution to combat these unreliabilities. A trivial ap-

proach is to reassign failed tasks to new helpers. Reassigning the tasks to new

helpers would both take time and still will not be fully reliable and, thus, is

not an efficient solution. Hence, more efficient and more reliable solutions to

combat unreliabilities in a distributed computing system are necessary.

1.4 Coded Distributed Computing

To add reliability and allow data recovery in any application, adding redun-

dancy is needed. In distributed computing systems, also, having some extra

helpers engaging in redundant tasks is vital because it eliminates the depen-

dency of the system’s success on any individual helper. Utilizing these extra

resources are equivalent to extra costs; however, the added reliability that is

achieved justifies this trade-off.

A trivial method to add redundancy in distributed computing would be to

assign the tasks to multiple helpers instead of one. As a result, any node that

responds faster would send their result to the master, and the computation

would be complete. However, this method is extremely inefficient from a re-

source management perspective. Therefore, an alternative approach is needed

that can offer high reliability but at a reasonable amount of extra cost. In prac-

tical settings, and if selected carefully, even 5 % extra helpers can mitigate the

straggling effect and reduce the latency [23].

Coding theory has proposed solutions that can be adopted to combat the

4

unreliability of the helper nodes in distributed computing systems. More

specifically, erasure coding, which is a forward error correction (FEC) code,

allows the missing blocks of information to be recovered if the blocks are coded

in advance. Therefore, if blocks of data are encoded by an erasure FEC code

prior to being sent to the helpers, even if some helpers straggle or fail in send-

ing their results, having a sufficient number of the data blocks back, a decoder

can recover the erasures and retrieve the results.

Note that if both the computation and the coding are linear, the processed

blocks of data are also coded. Therefore, the same decoding method that could

be used for helpers’ inputs can be applied to their outputs. This approach has

been proposed by many recent works and has been studied for several problems

and system setups [9], [11]–[13], [16], [24]. The dynamics of coded distributed

computing is explained with more details in Chapter 2.

1.5 Thesis overview

Coding techniques can resolve the unreliability of distributed computing, yet

they come with some costs. For instance, extra computing resources are re-

quired. Moreover, to have coded blocks of data, some pre-processing and

post-processing are needed that increase the overall amount of computation.

These added processings are called encoding and decoding that the master

must perform before sending the blocks, and after receiving the computed

results, respectively.

Note that the original goal of a distributed computing system was to reduce

the amount of computation in a single machine to reduce the execution time.

Now, with the coded distributed computing systems (CDCS), although the

original computing is extracted from the master, a new load of computations

appears for it. When the added load is insignificant, the reliability gain of

coding justifies the added costs. However, there exist cases where the added

computations for encoding/decoding is significant and cannot be ignored.

The coding complexity is directly relative to the size of the code, which is

typically the number of helpers in the CDCSs. In particular, in setups with

5

a large number of helpers, the coding complexity, specifically the decoding, is

no longer negligible. Therefore, a new method of CDCS is needed to address

the high complexity of computations that remain at the master.

In this thesis, we have focused on two problems. First, we have con-

sidered the large-scale coded distributed Fourier transform computing. In

this type of computation, we have developed a novel distributed comput-

ing method evolved from fast Fourier Transform (FFT) structure that allows

for low-complexity coding on large-scale distributed FFT computing systems.

Moreover, a low-complexity coding solution is adopted to resolve the high-

complexity decoding problem discussed earlier.

Second, we consider the high decoding complexity problem in the large-

scale CDCSs, i.e., systems with a massive number of helpers. By devising a

solution in which helper nodes can participate in the decoding stage, a new

coded distributed computing structure is proposed in which the master’s load

is manageable. In particular, a multi-stage decoding that leaves little work for

the master is developed and tested.

The key novelty of the proposed schemes can be summarized as taking

advantage of extra stages of computation without involving the master, in

order to reduce the master’s computation load, and thus, the execution time.

This technique, however, requires careful design and consideration that are

discussed throughout this work.

The remainder of this thesis is organized as follows. In Chapter 2, we

provide some background on the coding theory, distributed computing mod-

els, and CDCSs. In Chapter 3, the large-scale distributed FFT computing

problem is considered and an efficient solution is proposed. In Chapter 4, we

have focused on the possibility of distributed decoding models, and discussed

our proposition, formulated some optimization problems, and have suggested

efficient solutions for these problems. Finally, in Chapter 5, the overview of

contributions and possible future research directions are provided.

6

Chapter 2

Background

2.1 Distributed Computing Systems

A distributed system is a collection of devices with a single common goal.

This system can be a small cluster of devices or a massive complex network.

The devices can have a limited computing and memory capacity such as the

internet of things (IoT) networks or the network might consist of several high-

performance processing units. The communication method between the nodes

(devices in a network) could also vary between wired and wireless. Two types

of distributed systems, distributed storage and distributed computing systems,

have gained a lot of interest in recent years [6], [26].

This thesis particularly focuses on distributed computing systems. The

fundamental goal of distributed computing is to perform a computation in

the shortest possible time with the available resources. There are a number

of attributes that contribute to finding the best DCS for a computing prob-

lem. The number of the available nodes and their characteristics such as their

memory size, computing capability, and their speed are vital in designing the

distributed computing model. When such a network is offered by an external

service provider, we can specifically call the system, a cloud computing system.

In our discussions, we offer solutions for a general DCS, whether it is a local

network or on the cloud.

The main idea behind distributed computing is to break a very large com-

putation into smaller tasks, distribute the small tasks between the computing

resources, and collect the results to finalize the original computation. In most

7

cases, the computing task is either appointed to or offered by a single machine

called the master. This node is responsible for delivering the final result to

the user. The master employs the other devices in the network, known as

helpers, for the tasks. This popular structure is known as the master-helper

structure. Although there exist some models that are masterless or have mul-

tiple masters [27] or only masters [19], in this work, we specifically focus on

the master-helper model, which is the most common in the literature, as well.

2.1.1 System Model

One of the distributed computing models that are compatible with the master-

helper is MapReduce [14]. MapReduce splits the steps of distributed comput-

ing into two or three categories. These stages are Map, Shuffle, and Reduce,

ordered chronologically. In the first stage, i.e., Map, the master provides the

helpers the data and their computational task (function). In some cases, the

task or the data might be already existing at the helpers. Then, the helpers

start to perform the computation assigned to them.

Depending on the computation model, normally, there are some Shuffle

stages. In this stage, the helpers exchange their results and reapply the func-

tions to the new data or perform a fresh task. This procedure might be re-

peated, each time with a new function or different data transmissions between

the nodes. In many setups, the master also engages in the shuffling. Here,

we have considered a system that allows device to device communication. In

some setups, the only means of communication between the helpers might be

through the master, working as a relay between the devices.

At last, the master assigns Reduce tasks that the helpers must perform on

their received inputs and pass the results to the master or the designated des-

tination [18]. Often, the master will perform some type of post-processing and

sorting to the received data to prepare them for the user. Fig. 2.1 demonstrates

a general model of MapReduce-derived distributed computing system.

MapReduce illustrates a general but useful structure that DSCs can apply.

In most cases, the master breaks very large data into smaller chunks and send

them to the helpers for them to apply the same computation on each of them.

8

Master

Helpers

Input file 1

Function 1

Comp.

Input file K

Function K

Master

Comp.

Comp.

Comp.

Comp.

Comp.

Output file 1

Output file K

Map Shuffle Reduce
F
u
n
ctio

n

F
u
n
ctio

n

F
u
n
ct
io
n

F
u
n
ct
io
n

Figure 2.1: MapReduce structure with K processors and multiple Shuffle
stages. The helpers might perform different computations in each layer. In
Map, the master assigns the data and tasks to the helpers and they start their
computational task. They might shuffle their output data with each other,
and start a new processing. In Reduce, the helpers perform final tasks and
send the results to the master for the final processing (if needed). In some
scenarios, the helpers only perform one layer of computation.

Alternatively, all or some of the helpers might be applying different functions

on the same blocks of data. Moreover, in the Shuffle stage, the nodes either

directly exchange data or send their outputs to the master and it distributes

the processed data in a desirable way.

As an example, consider a matrix multiplication task with excessive matrix

sizes. The master can break a matrix or both matrices into smaller ones and

allocate them to the helpers for the multiplication task. Once the helpers are

finished, they can send back their results. The master, then, can gather all the

data segments and form the final matrix. Assume that the goal is to calculate

Ax = y where A ∈ RN×P ,x ∈ RP×1,y ∈ RN×1 and N is large. The master

breaks A into smaller matrices such as A1, . . . ,AK where Ai ∈ RN
K
×P , 1 ≤

i ≤ K, then sends each Ai with the vector x to each helper. Now, the helper

nodes can do the Aix matrix multiplications and generate yi ∈ RN
k
×1 vectors.

By sending these vectors to the master, the helpers allow it to form the vector

y by combining the yi vectors. Therefore, the computation is completed by

9

Master

A1

A

A2

AK

A1 y1

AK yK

Helpers

y1

yK

Ax

Master

A2 y2 y2

Figure 2.2: Distributed matrix multiplication model with K helpers

the helper’s assistance. This process is demonstrated in Fig. 2.2. Note that,

if instead of x the goal was to do AB matrix-matrix multiplication, the same

process could be done.

2.1.2 Challenges

In a DCS, some challenges exist that endanger the success of distributed com-

puting. The key factor in these challenges is that the computation is decen-

tralized. Throughout the whole distributed computing scheme, two things can

fail. One is the communication between the nodes, and the other is the task

completion in each helper.

Communication networks, in particular wireless ones, are not completely

reliable. Complete or partial communication failures are not rare due to the

unreliable nature of the wireless (or even the wired) channel. Moreover, in a

wireless DCS, the helper nodes might not be fully committed and may leave

the network or delay their assigned task for a more prioritized task [22], [28].

This is more common in mobile computing and fog computing networks. How-

ever, the most common scenario in the failure of a task is that the computing

resources face a problem with the task itself.

10

In any DSC, the helper nodes might not finish their task by the expected

time. There are some nodes that take an excessive amount of time to finish a

computational task. These nodes are known as stragglers. The straggling in

DSC has an unattractive consequence. A straggling in a single node causes the

finish time of the whole computation to be delayed. The main task cannot be

finished unless all the subtasks are finished first. If the task is re-assigned to

a fresh node, the execution time is at least doubled. Therefore, this problem

interferes with the main goal of distributed computing, i.e., completing the

task in the shortest possible time. To solve the straggling problem, the best

idea is to reduce the dependency of the system on a single node. Such a

solution requires implementing a kind of redundancy.

The redundancy helps the computation to be completed even if not all the

helpers finish their tasks. To have redundancy, the tasks that are distributed

to the helpers cannot be simply partitions of computation but must have a

relation to each other. A simple example is to have some replicas for each task.

This technique assures if a node straggle, there are other nodes with the same

task. Then, it is very likely that one of them responds on time. However,

this method is not the optimum way to benefit from computing resources.

The reason is that if many nodes perform the same task, the computation

cannot be broken into small chunks and the time that each helper must spend

on their task is increased. Therefore, although some works have benefitted

from this approach [29], it might not be the best practice for many distributed

computing problems.

An alternative solution is to consider the output of the stragglers as era-

sures, i.e., since the outputs take too long to be generated, the system can

consider them as erased information. This analogy helps to relate the problem

to bit erasures in communication systems and hence, hints at using the solu-

tions that have been developed in that field. In the next part, we will review

the coding solutions that are used in faulty communication systems, and then,

we will discuss how they can be applied to DCSs.

11

2.2 Forward Error Correction Codes

In a digital communication channel, it is common that a part of the information

(bits) gets erased or be received with an error. Therefore, in order to avoid

retransmissions, adding redundancy to the information has been practiced in

the transmitter. This act allows the receiver to recover errors or erasures. For

example, for an information block of k bits, the process includes generating

n, n > k symbols from the original k bits. This process is called encoding with

an (n, k) code where n and k are called the size, and the dimension of the

code. For this code, the coding rate is k
n
, and the overhead is n−k

k
. Thereby,

the receiver is able to recover the original k bits by decoding the block of data

that may have errors or erasures. These codes are known as forward error

correction codes.

FEC codes have been a popular solution in the digital communications

area. However, the use of FEC codes is not limited to communication chan-

nels. In recent years, the FEC codes’ application has expanded to distributed

storage and computing systems, where erasure is a common problem. In these

applications, the erasure does not just happen to a fraction of bits out of a

data block, but a data block is inaccessible, completely. Therefore, predicting

such failures in advance, and resolving them by applying FEC codes, makes

the distributed storage and computing systems reliable. In Section 2.3, we will

discuss the details of this procedure.

2.2.1 Mathematical Background

To understand how the coding work, we need to review some mathematical

pre-requisites. In coding theory, we work with the numbers that are members

of a finite field F.

Definition 1 A finite field Fq, also known as Galois field GF (q), is a finite

set of q elements if (Fq,+, ∗) satisfies the following rules:

I. (Fq,+) forms an Abelian group with additive identity 0.

II. (Fq/{0}, ∗) forms an Abelian group with multiplicative identity 1.

12

III. ∀ a, b, c ∈ F : (a+ b) ∗ c = a ∗ c+ b ∗ c.

A linear (n, k) code C in a finite field F, generates n > k symbols by doing

linear operations on the original k symbols. Linear codes can be represented

by a generator matrix Gn×k, and the encoding process can be described as y =

Gx, where xk×1 and yn×1 are the original, and the coded block, respectively.

A coded block is called a codeword. There are 2k different codewords.

An important feature of linear codes is the minimum distance of the code.

The minimum distance of a code is the minimum hamming distance between

any pair of codewords. A code with a minimum distance of d, can tolerate up

to d− 1 erasures. This means when d− 1 elements of y is missing, x can still

be retrieved.

Definition 2 For an (n, k) code with a minimum distance of d, it can be

proved that

d ≤ n− k + 1. (2.1)

This inequality is called the Singleton bound [30]. Remember that the code

can allow no more than d−1 erasures. Therefore, (2.1) implies that the number

of erasures must be less than or equal to n− k. The codes that achieve (2.1)

with equality are called the maximum distance separable (MDS) codes.

2.2.2 MDS codes

MDS codes have been a popular choice of codes for distributed computing

problems [9], [12], [31], [32]. Note that for decoding, at least n−(d−1) symbols

must be existent. In other words, the decoding overhead, i.e., the number of

redundant symbols needed for decoding, is k + n− (d− 1). Since MDS codes

achieve the equality in (2.1), they can tolerate up to n−k erasures. This means

that with any k coded symbols, the decoding would succeed. In other words,

the decoding overhead is zero. This is an attractive feature because it allows

a minimal code overhead. Therefore, the number of redundant symbols, in

other words, the redundancy cost, is minimized. To construct an MDS code,

13

one needs to make sure that in the generator matrix, any k rows are linearly

independent.

In many applications, it is preferred to have the original k symbols among

the n coded symbols. This class of codes is known as systematic codes. The

generator matrix of these codes is in

G =

[︄
Ik×k

G′

]︄
format. The advantage of the systematic codes is that when the erasure rate

is low, the original symbols could be available without any decoding.

Reed-Solomon (RS) codes

One of the most common types of MDS codes is Reed-Solomon codes [33].

These codes are practical because given n, k, and Fq, the generator matrix of

an (n, k) RS code can be defined as follows,

G =

⎡⎢⎢⎢⎢⎢⎣
1 α1 α2

1 . . . αk
1

1 α2 α2
2 . . . αk

2
...

...
...

. . .
...

1 αn α2
n · · · αk

n

⎤⎥⎥⎥⎥⎥⎦ (2.2)

where α1, . . . , αn are n different numbers in F. Such a generator matrix ensures

the criteria that an (n, k) MDS code must have.

The encoding complexity of RS codes is O(n), and thus, is not a concern.

However, the decoding complexity of the codes has proved to be higher. An

obvious method of decoding is to use matrix operations which results in a

decoding complexity of as high as O(n3). However, the decoding complexity

was reduced to O(n2) [34], and later by the use of fast polynomial multiplica-

tion technique, this complexity was reduced to O(k log2 k log log k) 1 [31], [35].

Moreover, for a systematic MDS code, the decoding complexity can be shown

to be O(n(n − k)). These orders of decoding complexity are not pleasant for

some applications. That is why a different method of linear codes known as

fountain codes have been developed in recent years.

1Throughout this thesis, whenever the base of the log function is not specified, the log
is in base 2.

14

2.2.3 Fountain codes

Fountain codes were first introduced for the broadcast scenarios and have also

been suggested for storage systems lately [36]. In broadcast applications, the

encoding process is continued until the whole block of data is recovered by all

receivers. Hence, these codes are considered as rateless, i.e., there is no fixed n

and the coded symbols get generated by the encoder until the job is finished.

Therefore, the code overhead of these codes is relatively larger than the MDS

codes. In particular, unlike MDS codes, the decoding overhead is not zero.

The advantage of the fountain codes, however, is that the generator matrix is

not dense. Thus, the decoding complexity is lower.

In fountain codes, for each encoded symbol, d number of the k original data

symbols are randomly selected and linearly combined in F. The number d here

is called the degree of this encoded symbol. A polynomial Ω(x) =
∑︁
λix

i is

usually used to represent the fountain codes where λi shows the frequency of

degree i being used in the encoding. In the decoding, a belief propagation

scheme is used where starting with degree 1 and then higher degrees, the

original symbols are recovered.

Fountain codes do not guarantee the coverage of all symbols or the linear

independence between codewords. Therefore, unlike MDS codes, the decoder

needs to receive more than k encoded symbols to succeed. The needed over-

head is related to the average degree of the encoded symbols (
∑︁
λii), where

the overhead is smaller when the average degree is higher. Clearly, the de-

coding complexity is also related to these parameters since the higher degrees

require more operations in the decoding process [37]. The earlier versions of

fountain codes like Luby Transform (LT) codes [38], required O(
√
k) average

degrees but with the introduction of Raptor codes, using an outer code al-

lowed fountain codes with a fixed average degree and the decoding complexity

of O(k loge(1/ε)). For the outer code, the encoder first uses a (KO, K) to

construct KO intermediate symbols. These symbols will be the inputs of the

fountain code encoder.

Now to design a Raptor code, the main goal is to ensure that the decoding

15

will succeed with a very low failure probability. In the successful decoding

process, it is important that the LT part of the decoding would not fail until

a (1− δ) fraction of the intermediate symbols is recovered (Step 1). This will

then allow the outer code to recover the k original symbols (Step 2). In [37],

it is shown that for a given k, εc, and δ, a valid degree distribution for Step 1

must hold the inequality

1− x− e−Ω′(x)(1+ε) ≥ γ

√︃
1− x

k
(2.3)

for x ∈ [0, 1 − δ]. This distribution ensures that the LT part of the decoding

will be successful with a failure probability of 1/kc where c is independent

of the other parameters. Note that Ω′(x) is the derivative of Ω(x), and the

coefficient γ must hold the inequality δ
√
k > γ.

In Chapter 3, we will see how Raptor codes can be applied to distributed

computing problems.

2.3 Coding in distributed computing

As discussed earlier, in DCSs, we face some challenges such as straggling.

When a helper straggles, its output block is considered unavailable. Such a

data block will be treated as erasure and a procedure must be done in order

to retrieve these missing blocks of information.

As discussed, FEC coding has been proved to be an appealing solution to

this problem. With an encoding prior to distributing the data to the helpers,

some redundant blocks of data are generated. Therefore, with some straggler

nodes, still enough results are accessible to retrieve the needed information.

Coding in distributed computing has some differences with a typical packet

coding in communications. Like distributed storage systems, coding in CDS is

applied to the blocks of data as a single unit. This means that when a block

is not available, the whole symbols are not. So the coding is applied to the K

blocks of data no matter the number of symbols each one contains. To generate

the symbols of the coded blocks, element-wise coding must be performed, i.e.,

the ith symbols of the new coded blocks are generated by performing coding on

16

Master

A1

A4∗4

A2

A1 y1

Helpers

y1

Ax

Master

A2 y2 y2

A3

A4

A5

A3 y3

A4 y4

A5
y5

y4

y5

y1

y2

y3

y4

Figure 2.3: Coded distributed matrix multiplication model with 4 helpers

the ith symbols of the original blocks. In the decoding, similarly, element-wise

decoding is done.

As an example, assume the computation goal is to find y = Ax. To

distribute this computation we can break the matrix A(K×V) into K vec-

tors A1, . . . ,AK . Now, the master can generate redundant blocks such as

AK+1 = A1 + · · · + AK and assign them along with the original blocks to

L nodes. Therefore the ith symbol of AK+1 is the sum of the ith symbols of

vectors Aj. An example for K = 4 is demonstrated in Fig. 2.3.

Now, note that, unlike storage systems, the data blocks are not the same

after the computation is done, i.e., the inputs and outputs of the helpers are

not the same. However, when the computation is linear, the outputs will also

be coded with the same code that the inputs were coded by. Therefore, even

though the symbols are different, the same decoding method can be done to

recover the missing symbols.

Consider the example presented earlier. The helpers compute yi = Aix and

send them to the master. Since the computation in each helper is the same (and

linear), we can argue that the ith symbol of yK+1 is the sum of ith symbols of

17

each yj. Therefore, for L = K+1, any K blocks of yi would allow us to decode

the desired y1, . . . ,yK . Therefore, a coded distributed computing system can

tolerate stragglers as long as the decoding is doable with the received blocks.

Note that the type of computation is not limited to matrix multiplication.

If the computation is linear, i.e., the outputs can be claimed to be coded by

the same code as the inputs, then coding can be used for that DCS.

Many works in recent years have developed more complex algorithms based

on this idea to develop fault-tolerant DCSs. Many works have been developed

on optimizing the coding solutions for various types of computations and sys-

tem models. In the next section, we will review some of these works.

2.3.1 Related works

The works that have proposed FEC codes for distributed computing problems

can be categorized in several ways based on the type of computation, the type

of code, features of the helpers, and even other applications of coding such as

communication and security.

The most common type of computation, matrix multiplication, usually falls

under the MapReduce structure. For applications such as machine learning,

data analysis, image processing [9], [39], the main computation is transformed

into a matrix-vector or matrix-matrix multiplication. In such examples, the

matrix can be divided into smaller matrices or vectors and be distributed

among helper nodes for the multiplication task. Matrix-vector multiplication

has been studied in many recent works [13], [40]. Later, some solutions [31],

[32], [34] have been proposed for matrix-matrix multiplication, where both

matrices are divided into smaller pieces and are distributed.

Since discrete Fourier transform (DFT) is a linear operation, it can be mod-

eled as matrix multiplication and be implemented using the available coded

approaches. However, the complexity of matrix multiplication (that is O(N2))

is much higher than FFT (O(N log(N))). Thus, new coded distributed ap-

proaches that fit the FFT structure have been recently studied [12], [41], [42].

Distributed learning methods that are based on matrix multiplications have

also gained attention, where the most studied type is the gradient descent in

18

a distributed manner [9], [22], [43], [44].

In some works, no specific codes are suggested, and linear codes as general

are proposed for their problem [45], [46]. However, in most works such as [9],

[21], [24], [32], MDS codes are suggested. The advantage of MDS codes is their

small overhead. Some works [40], [47], however, have studied low-complexity

decodings such as LT [38] and Raptor codes [37]. In a recent work [48], polar

codes have also been investigated.

Other than the type of the code, the characteristics of the distributed net-

work, (e.g., homogeneous, heterogeneous, number of nodes) also contribute to

the performance of the distributed computing systems. In most distributed

computing schemes, it is assumed that all the helper nodes are the same type,

and thus, the tasks are distributed among them equally. However, despite this

assumption of network’s homogeneity, in many cases, there are helper nodes

with different features available [45], [46]. The memory size, processing unit ca-

pacity, the priority they assign to different tasks, and other parameters can all

contribute to the performance of a helper, and the processing time it requires

to complete a task. Such a network of helpers with different characteristics is

called a heterogeneous network.

In many studies, the heterogeneous characteristic has been treated by load-

balancing techniques to achieve an optimum performance regarding finishing

time or other costs [17], [22]. In works such as [27], based on the helpers’

straggling parameters, the sizes of the assigned matrices to the helpers were

optimized. The performance of these methods was observed to outperform

uniform scheduling or existing load-balancing schemes. In [46], this optimiza-

tion was conducted when FEC was in place. In [49], the codes for each stage

of computation were selected based on the performance of stragglers.

Other than combating stragglers, coding has been proved to be useful for

other challenges in distributed computing problems, as well. Several works

have been developed on reducing the communication cost of distributed schemes

[11], [20], [50]. Moreover, to add security and privacy to distributed computing,

coding has been practiced [51]–[53]. In this work, we focus on the straggling

problem and benefit from coding to combat straggling.

19

2.3.2 Decoding Complexity

In coded distributed computing solutions, the computation load is lifted from

the master and the coding makes the system reliable. However, new compu-

tation loads due to coding are introduced. The decoding load is the largest

newly defined computation that the master must handle. In a typical coding

solution such as the example given earlier, the size of the code is proportional

to the size of the network, i.e., the number of the helpers.

When the computation is massive, the number of helpers needed to assist

with the computation becomes very large. The reason is that the helpers’ com-

putational capacity is limited. Therefore, the number of needed helpers, and

thus, the size of the code becomes very large. Since the decoding complexity

is proportional to the size of the code K, the decoding complexity increases,

too. Thus, the added load of the master becomes larger. Considering Reed-

Solomon as the method of coding used for CDCSs, this complexity would be

O(K log2K log logK).

Such complexities could become considerable for a very practical range of

K. In some setups, this complexity can even surpass the original computation’s

load. This will be a very serious issue, questioning the advantage of distributed

computing for such setups. Moreover, in scenarios where the master is to

perform computations other than decoding, this issue becomes more critical.

2.3.3 Proposed Multi-layer Distributed Coding Solu-
tions Overview

When the master’s load due to decoding becomes massive, it seems intuitive to

consider distributing its task again. An additional layer of helpers to assist the

master with either the remaining computation or the decoding seems tempting.

Therefore, one needs to think about the reliability of the added layer as nodes

in this added layer can also straggle. Hence, new coded distributed computing

structures are needed.

Through this thesis, we work on two scenarios. One, where the master

has some computation to do other than the decoding such as distributed FFT

20

computation. We investigate how another layer of distributed computing can

be useful to reduce this complexity. A fully-reliable structure for this purpose

requires a novel design that is proposed in Chapter 3. We will also discuss

the use of low-complexity codes such as Raptor codes to further reduce the

master’s load.

In another scenario, we study a solution with an extra layer of helpers

engaging only in the decoding. This distributed coding solution will reduce

the master’s complexity by reducing the size of the code. The master will be

only responsible for the coding applied on the decoding helpers’ layer. This

solution is presented in Chapter 4.

21

Chapter 3

Multi-layer Coded Distributed
FFT

3.1 Introduction

Discrete Fourier transform has been considered as one of the most fundamental

operations in computing methods [54]. Many applications of DFT, such as

image processing, machine learning, and data analysis, have been identified

over the years. As technology advances, the size of data increases, requiring

large-scale computations including large-scale DFT [55].

While the computational complexity of direct implementation of DFT is

O(N2), an improved implementation, called fast Fourier transform, achieves

a computational complexity order of O(N log(N)) [56]. Even with FFT, the

computational capacity of a single processing unit may not be sufficient when

N is large. This is true for modern applications such as high-resolution image

processing and large data set machine learning [2], [57], [58]. In such cases,

distributed computing, where the computation load is distributed among mul-

tiple devices has been suggested.

For applications such as matrix multiplication, there exist straightfor-

ward coded distributed solutions [31], [32]. To benefit from the FFT’s low-

complexity, different coded distributed solutions are needed. Thus, new coded

distributed approaches that fit the FFT structure have been recently studied

[12], [41], [42].

For distributed FFT, in [12], a coding idea similar to [31] is proposed that

22

can tolerate some failures or straggling, without affecting the latency of the

computation. This work benefits from polynomial codes (a special case of

MDS codes) so that the minimum number of responding nodes can finalize

a distributed computation. To do this, first, the large input data is divided

into K smaller blocks which by MDS coding are mapped to L > K coded

blocks. Then, the FFT of these coded blocks are computed each by a different

helper node. A sufficient number of results from the helper nodes lets the

master successfully decode for the FFT of the original K data blocks. Then,

using the recursive structure of FFT, the master finishes the remaining FFT

computation.

In this solution, although the master offloads the FFT computation to

the helper nodes, due to the complexity of decoding and the remaining FFT

computation, the master still needs to perform a large amount of computation.

In fact, for many ranges of parameters, the remaining complexity at the master

(which is of order N log2K log logK) can even exceed the complexity of self-

computing the FFT of the whole data. It can be argued that, this scheme

works well only when the size of data that the helper nodes can accept M is

comparable to the original data size N and hence, the number of helper nodes

is small 1. However, when M ≪ N or equivalently when the number of helper

nodes is large, we need more efficient solutions. To better see the problem,

consider a data of size N = 230 and K = 26 helper nodes performing M–FFT,

where M = 224. Then, in the coded distributed scenario, the master needs to

perform about

N log2K log logK +N logK = (93 + 6)× 230

operations which is much higher than the self-computing load of N logN =

30× 230 operations 2.

This motivates us to propose a new coded distributed approach for large-

scale FFT computed by the help of a large number of helper nodes. Many

1We consider the cases where N,M,K are all powers of two. Thus, their log is an integer.
2Here, we used the complexity orders as the actual values. While this is not a perfect

comparison, it gives an idea about the problem. Moreover, the constant factor of decoding
complexity is usually higher than that of FFT, indicating that the increase in the load of
the master can be even worse than the reported numbers.

23

recent works consider a large number of helper nodes up to thousands of nodes

[13], [15], [25], [59]–[61], especially when the size of computation is massive.

Moreover, parallel FFT with a large number of processors has been studied in

works such as [8], [62]. Therefore, with the growing size of data and distributed

computing problems, in this chapter, we have focused on very large scale

distributed FFT computation.

Our approach takes advantage of the FFT’s own parallel structure to in-

troduce a distributed scheme, specifically for FFT. Using multiple layers of

computations, this approach allows for the FFT computation to be fully of-

floaded on the helper nodes, unlike [12], leaving no FFT computation for the

master node, thus reducing its complexity. It will be shown that, unlike exist-

ing distributed uncoded FFT solutions [62], [63] that do not readily allow for

efficient coding, in our work, coding can be applied on each layer of computa-

tion. Also, our algorithm is reliable in every stage and unlike [41] does not rely

on the assumption that the helper nodes remain reliable for the shuffle-stage

coding.

The challenge for us is that without bringing everything back to the master

for the Shuffle stage, we need to perform a reliable distributed shuffle-stage

coding by the helper nodes when these nodes might fail or straggle in this

process. We meet this challenge by allowing helpers to communicate with

each other. As a result, the Shuffle stage encoding and decoding can entirely

be assigned to the helper nodes. Such a distributed FFT computation requires

a novel distributed coding approach, which is developed in this chapter.

To further improve the master’s Reduce stage decoding complexity, Raptor

codes are suggested. Raptor codes enjoy a linear coding complexity, hence

for larger K, they are much more efficient than MDS codes. After studying

the total latency and the offloading cost of the proposed solution, we present

numerical studies supporting our findings. We then use our numerical study

to adjust the Raptor code parameters to optimize the number of helper nodes

in different setups. The results show that the proposed scheme significantly

reduces the cost and the master’s complexity compared to Self-FFT (by more

than 80% in our reported studies).

24

3.2 Background and motivation

In this section, we first review the idea behind FFT that performs DFT in a

faster way. It is shown that there is a distributed nature in FFT structure

which we will benefit from when proposing our solution. Later, the challenges

that a distributed computing method could face are introduced and it is dis-

cussed how coding methods can become useful for resolving these challenges.

Finally, the problems that still remain in the existing solutions are explained.

These are the problems that this chapter will tackle.

3.2.1 FFT computation

Consider a vector x of size N . Based on the DFT definition

X (N)
p =

N−1∑︂
n=0

xne
−j 2πp

N
n, (3.1)

where X (N)
p denotes the pth element of the N -point DFT of the vector x and

xn denotes the nth element of x. For simplicity, we sometimes use Xp instead

of X (N)
p .

Now, assume that N is even and we divide x into two equal units xo and

xe, where xol = x2l+1 and xel = x2l, l = 0, ..., N
2
− 1. Now, using (3.1), we can

write

X (N)
p =

N
2
−1∑︂

l=0

xel e
−j 2πp

N
(2l) +

N
2
−1∑︂

l=0

xol e
−j 2πp

N
(2l+1)

=

N
2
−1∑︂

l=0

xel e
−j 2πp

N
2

l
+ e−j 2πp

N

N
2
−1∑︂

l=0

xol e
−j 2πp

N
2

l

= X e(N
2
)

p + e−j 2πp
N X o(N

2
)

p ,

(3.2)

where X e
p and X o

p are the pth element of the N
2
-point DFT of xe and xo,

respectively.

Equation (3.2) indicates that, in order to obtain the DFT of x, we can first

calculate the DFT of two smaller vectors whose elements are independent and

25

then add the elements, respectively, with given weights. Moreover, by defining

W k
N = e−j 2πk

N , it can be shown that

W
p+N

2
N = e−j 2πp

N
+π = −e−j 2πp

N = −W p
N . (3.3)

Therefore, having the DFT of even and odd parts, the final result can be

computed by three operations for any pair of elements as

X (N)
p = X e(N

2
)

p +W p
NX

o(N
2
)

p

X (N)

p+N
2

= X e(N
2
)

p −W p
NX

o(N
2
)

p .
(3.4)

This recursive feature inspired Cooley and Tuckey to introduce the FFT

algorithm which requires 3N
2

operations in each layer. The number of layers de-

pends on how many times the vectors can be divided into two half parts which

is log(N) for any N = 2n 3. This proves that the computational complexity of

FFT is O(N log(N)).

The FFT algorithm is demonstrated in Fig. 3.1 for a 16-length vector,

where FFT layers are also labeled. This figure helps us discuss the distributed

computation design in the next section.

3.2.2 Coded distributed FFT

Consider a master-helper scenario with an FFT computation objective. As-

sume the master wants to compute FFT of a large vector x of size N = 2n.

The resources at the master are too limited. Hence, instead of self-processing,

it is required to distribute the computation load to a number of helpers, where

the nodes can store and compute FFT of vectors of maximum size M . So, the

master divides the input data into K equal parts of size M .

In [12], they use the fact that Fourier transform is a linear function and

thus, treat the computation the same as other linear computations. Therefore,

the conventional coding method discussed earlier is applied to the distributed

FFT without any Shuffle stages. In other words, the master converts the

3The algorithm can be generalized for any value of N . For convenience, we focus on
N = 2n cases.

26

x16x16

x8

x12

x4

x14

x6

x10

x2

x15

x7

x11

x3

x13

x5

x9

x1

Layer 1

X (2)
1

Layer 2

X (4)
1

Layer 3

X (8)
1

Layer 4
X16

X15

X2

X (16)
1

X1

Figure 3.1: The butterfly structure of FFT. Vertices may multiply a weight to
their source dots and each dot operates the sum of the input vertices.

original K data block into L coded blocks which are sent to L available helper

nodes for M–FFT computation. With the first K results, the master has

enough data to continue with the rest of the job by first, decoding and then,

completing the rest of the FFT butterfly structure. Notice that since no Shuffle

stages are allowed, the FFT butterfly structure must be completed by the

master node.

Here, the decoding complexity can be minimized by a combination of

Bluestein’s algorithm and fast polynomial multiplication [31] with the up-

per bound of O(N log2K log logK). Moreover, the master does the rest of

the FFT computation with the complexity of O(N logK). As discussed in

the Introduction section, in this approach, the total complexity load on the

master can be significant and for some ranges of parameters even an order of

magnitude larger than self-computing of the original FFT.

27

In a different coded FFT approach, developed in [41], the K input blocks

are first coded to L blocks for distributed processing. As soon as K processed

blocks finish theirM–FFT task, the outputs are shuffled for further computing.

The helper nodes first decode the shuffled data to recover the uncoded data.

Then, the nodes apply the twiddle factor multiplication on the data. Finally,

in this stage, the uncoded symbols are sent to the encoder points, so the

coded symbols of the second stage can be generated. When the encoding is

completed, the L helper nodes will begin the second FFT computation.

The main assumption buried under this approach is that the nodes suc-

cessful in FFT computation will engage in the Shuffle stage (decoding, mul-

tiplication, and encoding), flawlessly. However, the amount of computations

needed for the Shuffle stage is in the same order as the FFT computations.

Therefore, it is possible that a node succeeds in FFT computation but later

fails or straggles in the Shuffle stage. Naturally, we need a coding solution to

handle errors and stragglers in the Shuffle stage. Unfortunately, the Shuffle

stage in existing coded distributed FFT approaches is not fault-tolerant. Re-

solving this problem would require rethinking and developing a new approach

for distributed coding. In this chapter, such a distributed coding approach is

developed and tested.

3.2.3 Remaining challenges and overview of our contri-
butions

The existing coded FFT approaches [12], [41], [42] are efficient solutions when

K is small. Note that when K is small, decoding complexity is reasonable, but

the helper nodes end up performing very large FFTs. When a large number

of helper nodes can be utilized, the above mentioned FFT solutions result in

a significant computation load at the master.

In this chapter, we develop efficient coded distributed FFT solutions ca-

pable of utilizing a large number of helper nodes. For this, we reorganize

the FFT computations into multiple layers 4. We apply coding on each layer

4Note that different layers can employ the same helper nodes. Throughout this chapter,
we consider the general case with independent nodes for the ease of demonstration.

28

separately, making all the layers reliable. Finally, it will be shown that using

Raptor codes, the remaining load at the master due to encoding/decoding is

drastically reduced. This comes at the cost of a few more helper nodes, but

our assumption is that the bottleneck is the master’s complexity load and not

the number of helper nodes.

3.3 Uncoded distributed FFT solution

In this section, we discuss an uncoded distributed FFT approach, where the

FFT computations are all done by the helper nodes in multiple layers. This

approach has been practiced in parallel FFT schemes and replaces a large

FFT with smaller FFTs. For now, let us make the simplifying assumption

that there are no failures or stragglers. Also, consider the MapReduce method

with zero or more Shuffle stages, where K available nodes are occupied in each

computation layer (Map stage plus Shuffle stages).

Assume that we have decided to break the computation between K nodes.

In the first layer, each node receives a vector of sizeM , denoted by a1, . . . , aK ,

in the Map stage. Each node, in this layer, is supposed to compute theM–FFT

of its input, denoted by b1, . . . ,bK . Note that, this stage fulfills the compu-

tation happening in the first logM FFT layers of the N–FFT computation

demonstrated in Fig. 3.1. Now, still logN − logM = logK FFT layers worth

of computation is remaining. If there is more than one computation layer, in

the first Shuffle stage, the KM outputs are shuffled, the twiddle factors are

multiplied 5, and the symbols are sent to the second computation layer in a

way that each node in the next layer can perform FFTs on its M inputs. This

process continues until the whole FFT is complete. In the ℓth layer, the jth

element of the ith node will be X (Mℓ)
Mi+j. Fig. 3.2 shows a 16–FFT broken into

two 4–FFTs.

In the first computation layer (and with a similar argument in all other

5In order to successfully break the N–FFT into smaller FFTs, e.g., multiple M–FFT
or an M–FFT and a K–FFT, we need to process the symbols in the Shuffle stage. This
processing involves an extra twiddle factor multiplication, which can be done either in the
previous layer, after FFT computation, or in the next layer, before FFT computation. This
processing includes a smaller than N number of operations.

29

x16

x1

X16

X1

Computation Layer 2
4 nodes

Computation Layer 1
4 nodes

4–FFT 4–FFTmultiplication
Twiddle

Figure 3.2: Distributed FFT example for N = 16, M = 4 completed in two
layers with four helper nodes in each layer.

computation layers), there exist KM logM = N logM operations. Based on

the values of M and N , one may choose the number of computation layers.

Also, depending on the master’s computational abilities, one may choose to

assign the computations from layer j onward to the master. In one extreme,

as in [12], we have zero Shuffle stages. In other words, only the computations

in Layer 1 are done by the helpers and all the rest of FFT computation is done

by the master. In the other extreme, the maximum number of shuffle stages

is used. That is, the helpers complete all the tasks, leaving no computations

for the master node.

Remark 1 We can assume that in Computation Layer j, there are Kj nodes

with Mj inputs such that MjKj = N . This way, helper nodes in different

layers compute FFT operations of different sizes. In that case, the load left for

30

the master would be N log(N −
∑︁
Mj).

Remark 2 For load balancing purposes [64], and assuming all helper nodes

have similar computational abilities, it is desirable to have Kj = K for all

j. When Kj = K, the maximum number of computation layers is ⌈ logN
logM

⌉. In

this case, there are logN (mod logM) FFT layers left in the last computation

layer. Therefore, the nodes at this layer perform fewer FFT computations per

input. In that case, for all the layers but the last one Mj = M , meaning that

M–FFTs are repeated.

Remark 3 In practical scenarios, it is reasonable to assume that M ≥
√
N .

In other words, a single helper node can take an FFT of size at least
√
N ,

otherwise, we would need a very large number of helper nodes K >
√
N . As a

result, we have ⌈ logN
logM

⌉ = 2, meaning that no more than two layers are needed.

Therefore, although the proposed method can be generalized to any number of

layers, in the remainder of , we focus on the two-layer designs.

As a result of the above remarks, we can simplify our general model into a

two-layer structure with K nodes in each layer. The first layer is responsible

for M -FFT computation in each of the K nodes. After the shuffling, the

Computation Layer 2 nodes finish the FFT task by performing multiple K–

FFTs on the corresponding K symbols from their M input symbols.

Fig. 3.2 shows an example of the above discussions for N = 16 and

M = K = 4, where the computation is fully distributed, i.e., the number

of layers is ⌈ logN
logM

⌉ = 2 meaning that the master does not do any computations

in the Reduce stage other than resorting the results. Thus, the remaining com-

putational load for the master node is zero. Here, the communication load of

this approach is (1 + ⌈ logN
logM

⌉)N.

3.4 Coded solution

In the previous section, we made the simplifying assumption that there is no

failure or straggling problems. In reality, these problems exist, and we need to

apply coding to resolve them. In this section, we show how a linear coding can

31

be tailored to the distributed FFT structure discussed above which enables

helper nodes to participate in the decoding process.

To ease the notations, and as justified earlier, we assume there are only two

computation layers, both layers having the same number of helper nodes. The

notation Eℓj will be used for the jth helper node in the Computation Layer ℓ.

3.4.1 Toy example

Consider an example based on Fig. 3.2 setup, where N = 16, and M = 4.

Discussions on this example are demonstrated in Fig. 3.3. Let us assume we

want to add only one redundant helper node to each layer. First, the master

groups the input vector x into blocks of size M = 4 to form K = 4 blocks

(a1, . . . , a4). The redundant block a5 is constructed as

a5,i = a1,i + a2,i + a3,i + a4,i for i ∈ {1, . . . , 4}, (3.5)

where aj,i is the ith element of aj. This is a simple example of a (5, 4) code.

Now, the master sends these five blocks to five helper nodes for FFT compu-

tation in the Map stage.

Node E1j receives block aj and generates a vector bj with the same size,

that is the M–FFT of aj. Since FFT is a linear operator, the relation in (3.5)

holds for the FFT blocks, as well. Therefore,

b5,1 = b1,1 + b2,1 + b3,1 + b4,1, (3.6)

and thus, having four of these symbols let the fifth one to be recovered by

performing a linear decoding.

Assume that E14 is a straggler and its output b4 is not available for the

next layer while the other four nodes have responded. To provide the inputs

for the next computation layer, all bj,1 elements must be gathered in the node

E21 but b4,1 symbol is missing. In our coded solution, E21 can locally recover

b4,1 symbol from other available symbols, i.e., b1,1, b2,1, b3,1, b5,1, using (3.6).

Similarly, all E2j nodes will recover b4,j and then have the inputs they need

(ci,j = W
(i−1)(j−1)
4 bj,i) to perform the second FFT and complete the whole

FFT.

32

a4,4

a4,1

a3,4

a3,1

a2,4

a2,1

a1,4

a1,1

a5,4

a5,1

b3,4

b3,1

b2,4

b2,1

b1,4

b1,1

b5,4

b5,1

b5,4

b1,4

b5,3

b1,3

b5,2

b1,2

b5,1

b3,1

b2,1

b1,1

b4,4

b1,4

b4,3

b1,3

b4,2

b1,2

b4,1

b3,1

b2,1

b1,1

c5,4

c5,3

c5,2

c5,1

c4,4

c4,1

c3,4

c3,1

c2,4

c2,1

c1,4

c1,3

c1,2

c1,1

d5,3

d5,2

d5,1

d4,4

d4,1

d3,4

d3,1

d1,4

d1,3

d1,2

d1,1

FFT Decoding FFT∗

Computation Computation
Layer 1 Layer 2

Figure 3.3: The coding scheme example of a two-layer distributed FFT. Gener-
ating the coded symbols for redundant nodes is not feasible unless the required
symbols for encoding exist in the same place.

Since failure or straggling can happen in the second layer, as well, we need

to use coding to make this layer redundant, too. Therefore some blocks such

as c5 are needed that their symbols are element-wise coded symbols of other

ci blocks. In order to do this stage of the encoding, we first need the decoded

33

symbols of b. However, after decoding, the symbols needed for encoding are

located in different nodes. One solution to generate c5,4 is to have an encoder

node to collect all b4,i symbols from the second layer nodes’ decoders outputs.

The encoder having this systematic block of the unresponsive node in the pre-

vious layer, e.g. b4, applies the same code as the first layer nodes to construct

the missing coded symbols at the second layer (c5,4). However, this scheme

relies on other nodes for decoding and if one straggles, the encoding process

can not be completed in time. Also, note that if the code was non-systematic,

this same problem for c5,4 would have occurred for all c5,j symbols. When the

number of coded blocks increases, this method’s unreliability becomes more

serious.

To resolve this problem, each node in Computation Layer 2 must be able

to decode the desired symbols, apply the twiddle factors, and encode the

symbols before starting the FFT. Therefore, each node after decoding has

access to uncoded bj,i symbols including b4,i. They can multiply twiddle factors

to generate b′j,i symbols. Then, each node E2j generates symbols ci,j having

the b′j,i symbols. As a result, for example, ci,1 symbols are coded even though

the encoding was not done in a centralized way but locally in each node. Each

E2j performs a different encoding, but it repeats that for all the symbols. In

other words, each node performs a row of the encoding matrix, locally. This

approach is demonstrated in Fig. 3.4.

To better understand how this idea works, consider a redundant block

(node E25 in our example). It receives b1,b2,b3,b5 and decodes to recover

b4, as well. Then, it generates b′j,i = W
(i−1)(j−1)
N bj,i symbols. Now, assuming

the code being systematic, the other nodes simply allocate ci,j = b′j,i, and

proceed. In E25, the coded symbols are generated as follows,

c5,j = b′1,j + b′2,j + b′3,j + b′4,j. (3.7)

Therefore, this node will proceed with 4–FFT, too, while we have five nodes

where one is redundant.

34

x1
x5
x9
x13

x2
x6
x10
x14

x3
x7
x11
x15

x4
x8
x12
x16

a1,1b1,1

a1,4 b1,4

a2,1b2,1

a2,4 b2,4

a3,1b3,1

a3,4 b3,4

a1,1

a1,4

a5,1 b5,1

a5,4 b5,4

b1 b′1
b2 b′2
b3 b′3
b4 b′4

c1,1
c1,2
c1,3
c1,4

b1
b2
b3
b5

b1 b′1

b4 b′4

c2,1

c2,4

b1

b5

b1 b′1

b4 b′4

c3,1

c3,4

b1

b5

b1 b′1

b4 b′4

c4,1

c4,4

b1

b5

b1 b′1
b2 b′2
b3 b′3
b4 b′4

c5,1
c5,2
c5,3
c5,4

b1
b2
b3
b5

d1,1
d1,2
d1,3
d1,4

d3,1

d3,4

d4,1

d4,4

d5,1
d5,2
d5,3
d5,4

y1
y2
y3
y4

y5
y6
y7
y8

y9
y10
y11
y12

y13
y14
y15
y16

Map 4-FFT 4-FFTDecoding Encoding
Twiddle

Reduce

b′2,1

b′2,4

b′3,1

b′3,4

b′4,1

b′4,4

Computation Layer 1 Computation Layer 2

Figure 3.4: The complete proposed coded distributed FFT scheme for (N,M,K,L) = (16,4,4,5). The master performs encoding
in Map stage. K helpers participate in M–FFT and the successful nodes send their results to Computation Layer 2. There,
helpers decode to recover b4 symbols, multiply twiddle factors, and encode the symbols they need for the second FFT. In this
systematic example, only E25 does the encoding. The master finally decodes and retrieves y.

35

Now, the second layer computation can start which gives output blocks di.

The master collects the outputs of the second layer nodes and is able to decode

them to achieve the systematic symbols. For instance, if the node E22 straggles,

the master uses the E25’s outputs and can recover the missing symbols of d.

The decoded symbols will form the vector y which is the Fourier transform of

x. This solution is demonstrated in Fig. 3.4 as our complete coded approach.

Note that in this solution, the master performs only the initial encoding and

final decoding. No FFT operation or middle-stage encoding/decoding is done

by the master.

Remark 4 In (3.7), we can expand the equation into

c5,j = b′1,j+b
′
2,j+b

′
3,j+b

′
4,j = b1,j+W

(j−1)
4 b2,j+W

2(j−1)
4 b3,j+W

3(j−1)
4 b4,j. (3.8)

Therefore, we can merge the twiddle factor multiplication and encoding at each

node. This modified encoding with new weights will reduce the computation load

caused by these two stages.

To better understand the difference between our approach and that of

[12], [41], here, we discuss how our toy example is performed in [12] and [41].

In [12], b1,b2,b3,b5 will be received by the master, decoded to retrieve b4,

and then, without further encoding, the next stage of FFT computation is

fulfilled. This means the master still has a considerable computation load.

In [41], E11, E12, E13, E15 nodes share their symbols such that E1j will have

b1,i, b2,i, b3,i, b5,i, and it will decode to recover b4,i. The twiddle factors are mul-

tiplied to generate b′j,is. Here, ci,j symbols cannot be generated because the

symbols of each row are in different nodes, unless, a new shuffling stage is

added. Recall that shuffle stages are prune to straggling themselves.

3.4.2 Coding algorithm

Now, consider the general case where a vector x of size N is divided into K

vectors of size M denoted by x1, . . . ,xK , where xi = [xi, xK+i . . . , xM(K−1)+i].

We now define the matrixXK×M where its ith row is xi. The goal is to calculate

Y = F∗(W ⊙ (FXT)T), (3.9)

36

where F∗
K×K represents the second layer K–FFT computations and FM×M

represents the first layer M–FFT computation. The W is the twiddle ma-

trix where Wij = W
(i−1)(j−1)
N

6, and ⊙ represents element-wise multiplication

known as Hadamard product. We then have

F{x} = y = [YT
1 · · ·YT

K], (3.10)

where Yi is the i
th column of Y.

The master encodes the K data blocks to L > K coded blocks using

some (L,K) linear block code. This means we need L helper nodes in each

computation layer. Therefore, the master applies the linear code on columns

of X in an element-wise fashion to achieve a1, . . . , aL. Similarly, we define

the matrix AL×M , where its ith row is ai. If we represent the code with its

generator matrix G1L×K
, we have

A =

⎡⎢⎢⎣a1
...

aL

⎤⎥⎥⎦ = G1X = G1

⎡⎢⎢⎣x1
...

xK

⎤⎥⎥⎦ . (3.11)

Now, each helper node performs anM–FFT transform on an ai block which

can be represented by a matrix as in DFT computation as follows,

bj = Faj for j = {1, . . . , L}, (3.12)

or equivalently,

B = (FAT)T = (FXT GT
1)

T = G1(FX
T)T. (3.13)

Note that, the encoding is performed on the columns of X, while for FFT, the

rows of A, i.e., coded X, are used.

Assume ˜︁K number of these blocks are sufficient to successfully decode for

FXT. The jth elements of all these blocks are the ˜︁K coded symbols that can

be decoded to the jth column of FXT. We define the matrix ˜︁B ˜︁K×M such that

its rows are the output blocks of the first ˜︁K responsive nodes in the first layer.

6Note that linear block codes are defined over Galois fields. To make FFT computation
compatible with this, W 1

N = e−j 2π
N in the FFT operation must be replaced by w which is

the N th root of unity in the chosen Galois field F.

37

Now, as discussed earlier, the matrix ˜︁B must be sent to the nodes in Com-

putation Layer 2. Using (3.13), the matrix ˜︁B can be written as ˜︁G1(FX
T)T,

where ˜︁G1 is the first codes’ encoder matrix with missing rows. Therefore, we

can represent the decoding as

Z = ˜︁G−1
1

˜︁B = ˜︁G−1
1

˜︁G1 (FX
T)T = (FXT)T, (3.14)

which is the decoded M–FFT result.

The twiddle factor multiplication and encoding for the second layer can be

expressed as,

B′ = W ⊙ Z,

C = G2B
′T = G2 (W ⊙ (FXT)T)T.

(3.15)

Now, each row of the matrixCmust be subject toK–FFT computation. In

our toy example, we hadM = K, hence both layers had the same computation

size. In general, M may not be equal to K. In this case, the first layer

nodes can do M–FFT operations as usual. For the second layer nodes, we

define M/K virtual nodes that are grouped to one helper node. This way the

computation load of the helper nodes in both layers will be similar. Therefore,

each node performs the processing in (3.15) partially to construct the M/K

rows that it needs. Therefore, each node can locally merge their twiddle factor

multiplication and encoding into a single computation and save computational

complexity.

The K–FFT will start in the L nodes in Computation Layer 2. Again,

some helper nodes may straggle. When the first sufficient number of nodes

respond, we can write their outputs as

˜︁D = (F∗ ˜︁CT
)T = ˜︁CF∗T = ˜︁G2 (W ⊙ (FXT)T)T F∗T

= ˜︁G2 (F
∗(W ⊙ (FXT)T))T = ˜︁G2Y

T
(3.16)

Now, the master node will collect these blocks and decode the received blocks

to

Y∗ = (˜︁G−1
2

˜︁G2Y
T)T = Y,

which is the desired result.

38

Remark 5 If M/K number of virtual nodes become merged to a single helper

node, the process of all the decoding and computation remains the same but

happens in one place. Since these blocks are in the same helper node, either all

of them become available for the decoding or none. Therefore, we can reduce

the length of the codes from M to M K
M

= K meaning that the parallel elements

of the actual helper nodes are coded instead of the virtual nodes. For the same

reason, it was more accurate to rearrange B′ such that each M/K row becomes

a single row and the matrix G2LM
K

×M
would become G2L×K

. In conclusion, the

codes that are actually used are (L,K) codes. The advantage is that there are

only L nodes required who perform computation on M symbols which makes

the input size in both layers balanced.

Remark 6 For the cases where the system can benefit from a systematic code,

it is sufficient to find G1 and G2 such that,

G1 =

[︄
IK×K

G′
1

]︄
and G2 =

[︄
IM×M

G′
2

]︄
.

Remark 7 The proposed coded distributed scheme is applicable to structures

with more than two layers. The same procedure for the second layer is repeated

for all added layers. The coding and shuffling procedures are the same. The

only difference comes from the number of nodes that are involved in the shuf-

flings. We need more than two layers only if M <
√
N , meaning that K > M.

Therefore, in all but the last layer, the nodes receive their inputs from M nodes

of the previous layer and perform M–FFT. So, not all the K nodes interact

with each other in these Shuffle stages 7.

So far, we have presented a coded distributed FFT using two layers of

computation which is fully coded and offload the whole FFT computations

from the master. The coding scheme was not limited to any of the linear

codes. This brings us to our choice of codes which is discussed in the next

part.

7In this remark, we have assumed M1 = M2 = · · · = Mj = M. In the general format,
these details might defer, as well.

39

3.4.3 Low decoding complexity codes

While the literature of distributed coded computing is mainly focused on MDS

codes, these codes have a superlinear complexity with the block size. In set-

tings where K is large, the coding complexity can be an issue. Luckily, there

exist efficient coding solutions, such as some fountain codes, with linear coding

complexity. We discussed these codes in some details in Section 2.2.3.

In a MapReduce distributed computing model, the master sends out the

data to other nodes for computation and waits for the results. Since only a

fixed number of helper nodes can be reserved for the computation, the code

length L must be finite. Therefore, the fountain code that is applied to this

problem cannot be rateless. The number L should be large enough to com-

pensate for straggling nodes as well as for the overhead of the fountain code.

Hence,

L ≥ Lmin = K(1 + εc + εs), (3.17)

where εc reflects the fountain code overhead and εs the effects of the strag-

glers. Since utilizing extra helper nodes comes at a cost, choosing a small L is

more desirable. Note that rateless coding for distributed computing has been

proposed in approaches such as [47], but their rateless coded strategy cannot

be directly applied to our proposed distributed computing structure. This is

because our structure has multiple layers of coded FFT computation.

To generate these L blocks, the encoder first uses a (KO, K) outer code to

construct KO intermediate blocks. Then, in the (L,KO) fountain part with

Ω(x), for each λi, the encoder constructs Li = ⌈Lminλi⌉ encoded blocks of

degree i from the intermediate blocks. Then, the total number of helper nodes

used will be L =
∑︁
Li

8.

Now, we need to select the Raptor code design for our application. A degree

distribution based on (2.3) is proposed in [65]. This design is later adapted to

a fixed-length code for longer size codes [66] and other designs such as [67] for

smaller sizes have been suggested. It is shown that these designs achieve the

8Note that L can be slightly larger than Lmin because of the ceiling operations. The
effect is small, typically resulting in less than 10 extra helper nodes.

40

(Encoding 1)

Map

G1

A
M -FFT

F

B
Decoding 1

˜︂G1

−1

B′

(Decoding 2)
Reduce D

F∗

C
Encoding 2

G2

K-FFT

˜︂G2

−1
W

Z

Figure 3.5: System block diagram

linear decoding complexity and their performance for different sizes of codes

are studied. The key point in the latter designs is to minimize the number

of inactivations which is the bottle-neck of the decoding complexity while

satisfying a target failure probability. In all designs, with enough overhead (εc),

the number of inactivations is shown to be small enough such that the overall

decoding complexity (including back substitution, Gaussian elimination, and

the outer code) remains linear. An example is provided in Section 3.5. This will

then reduce the decoding complexity from O(K log2K log logK) to O(αK),

where α is independent of K. This results in a significant reduction of the

master’s load.

Remark 8 The outer code can be represented by its generator matrix GO

which is constructed by combining smaller dense and sparse matrices to achieve

a good outer code [37]. Furthermore, the fountain part of the code can also be

represented by a sparse matrix GF . This L×K(1+ δ) matrix is the combina-

tion of rows where their non-zero elements correspond to the positions of the

intermediate symbols that were used to construct a coded symbol. Therefore,

the generator matrix of the code is going to be G = GF GO. This G can be

used as G1 and G2 in the block diagram of Fig. 3.5.

41

3.5 Performance analysis and numerical results

In this section, we first analytically study the proposed algorithm’s reliability

and compare it with [41]. In addition, we will show numerically how the

proposed algorithm performs compared to other schemes. Furthermore, for

different setups, the choices of design parameters such as ϵc and K are studied.

3.5.1 Failure probability

Assume that the added overhead due to εs reduces the failure probability

of a layer from p to pe ≪ p. Here, p is the probability that not enough

number of helper nodes in a layer respond in time and thus, make the whole

process fail. Since the M–FFT, shuffle-stage decoding and the second layer

FFT computations are in the same order of the complexity, we assume that the

two layers of our algorithm and the three stages in [41], all can be modeled with

the same failure probability p. Therefore, in our scheme, the whole process

will fail with the probability of

P1 = 1− (1− pe)
2 = 2 pe − pe

2 ≃ 2 pe.

However, since the shuffle-stage coding in [41] is not coded, the failure proba-

bility will be

P2 = 1− (1− pe)(1− p)(1− pe) ≃ p+ 2 pe ≃ p.

Therefore, the reliability of our proposed solution can be significantly higher.

Remark 9 Although the failure probability is significantly reduced, it is still

non-zero. Note that most existing solutions (all MDS-coded solutions) suffer

from a similar problem. The only cases that do not suffer from this issue are

rateless coded solutions, where waiting longer for more coded blocks may resolve

the failure. Although rateless codes cannot be used in a multi-layer structure

with master-free shuffling, an alternative solution is possible, where the master

computes the missing data locally. Note that, the master always has the input

data and can construct the FFT outputs using partial DFT matrix multiplica-

tion in order to retrieve the missing symbols. This will put an additional load

42

on the master. However, this extra load is not of major significance, consid-

ering that it is rare that the number of straggling nodes exceeds the considered

overhead.

3.5.2 Complexity and cost comparison

In our complexity/cost comparison, since multiple objectives, such as optimiz-

ing the processing time, or the number of helper nodes, can be considered, we

first define a cost function to capture these objectives. More specifically, we

define the total cost as

CTotal = L (Ch1 + Ch2) + ψtCt, (3.18)

where the first term represents the cost of offloading the computation to exter-

nal resources, in which L is the number of helper nodes in each computation

layer, and Ch1 and Ch2 are the loads (number of operations) per helper node

in the first and second layer, respectively.

The second term in (3.18) represents the penalty associated with the la-

tency of the process, in which Ct is the total latency, and ψt is the time penalty

coefficient. This coefficient can be used to adjust the emphasis on time penalty

versus the cost of offloading the computations. Note that, Ct can be written

as follows,

Ct = Cm + Ch1 + Ch2 , (3.19)

where Cm is the master’s load. Also, since the computations in the middle

stages are done in parallel, the time penalty of a single helper node must be

considered.

The terms Ch1 , Ch2 , and Cm depend on several factors such as M , K, and

the choice of the code. For the choice of the code, we consider the Raptor

codes introduced in [68] which are based on the degree distribution

Ω(x) = 0.0098 x1 + 0.4590 x2 + 0.2110 x3 + 0.1134 x4

+ 0.1113 x10 + 0.0799 x11 + 0.0156 x40,

introduced in [69]. There, the number of inactivations nID is studied for differ-

ent lengths and overheads. The term n3
ID is known to be a dominant term in

the decoding complexity in addition to K loge(1/εc) for the back-substitution.

43

Table 3.1: The master’s load is presented for N = 232, εc = 0.10, and a range
of K. The numerical column is normalized to the first row, i.e., Self-FFT.

Method

Master’s load

General
Numerical, normalized to Self-FFT

K = 26 K = 28 K = 210

Self-FFT 1.5N logN 1 1 1

[12] MDS
N (1.5 logK +
log2K log logK)

2.13 4.25 7.23

[12] Raptor
N (1.5 logK +

2 loge 1/εc) +M n3
ID

0.35 0.41 0.44

Our scheme 2N loge 1/εc +M n3
ID 0.17 0.16 0.13

First, we compare the load at the master for a number of approaches. This

comparison is represented in Table 3.1 for N = 232, εc = 0.10, and a range of

K. For MDS, the encoding load is ignored as it is negligible compared to the

decoding load. It is clear that MDS is not a good choice for coding in this

setup. To provide a more fair comparison with [12], we have applied Raptor

coding to [12] and have reported the complexity results in Table 3.1. Even

when both solutions use Raptor codes, the table shows that our work has

significantly lower complexity than [12], mainly because it completely removes

the FFT load from the master.

Next, we use the cost function defined earlier to study the effect of the

added overhead. For the scheme proposed in this chapter,

Ch1 = 1.5 (M logM), (3.20)

Ch2 =M (K loge(1/εc) + n3
ID) + (

M

K
) (K loge(1/εc)) + 1.5 (

M

K
) (K logK).

(3.21)

The term in (3.20) corresponds to the M–FFT in each helper node. Also,

in (3.21), the first term represents the decoding in the second layer, the sec-

ond term represents the encoding, and the third term represents the K–FFT

computations. Similarly,

Cm =M (K loge(1/εc)) +M (K loge(1/εc) + n3
ID), (3.22)

44

0.05 0.1 0.15 0.2 0.25 0.3
10-1

100

101

102

N
or

m
al

iz
ed

 c
os

t

Figure 3.6: Normalized cost of the proposed algorithm for different values of
ψt. The minimum point follows a trend: it occurs on higher overheads for
higher ψt values.

where the first term corresponds to the initial encoding and the second term

corresponds to the final decoding, both performed by the master. Note that

increasing the number of helper nodes increases the first term of the (3.18)

whereas it reduces the straggling time and the decoding complexity and hence,

the second term. Therefore, there exists a trade off between L and Ct.

This trade off leads to finding the optimum number of helper nodes to

achieve the minimum cost as shown in Fig. 3.6. These points determine the

favorable εc and so, the optimum number of helper nodes. In this simulation,

for K = 1024, N = 232 and εs = 0.05, the normalized cost of the proposed

algorithm for a number of ψt were computed based on a range of εc. The cost

of self-computing the FFT in the master, i.e.,

C = (1.5N logN)ψt,

is considered as the base cost for the normalization. It can also be observed

45

0.05 0.1 0.15 0.2 0.25 0.3
10-1

100

101

102

N
or

m
al

iz
ed

 c
os

t

Figure 3.7: Comparison between the proposed algorithm with two computa-
tion layers and Raptor coding and single computation layer with MDS coding.

in Fig. 3.6 that the more expensive the helper nodes become, the higher the

cost becomes.

In Fig. 3.7, the proposed approach is compared to the scheme using MDS

code with one computation layer. For this scheme, we consider

Ch = 1.5 (M logM),

Ct =M (1.5K logK +K log2K log logK) + Ch,
(3.23)

where only the dominant factors are considered for Ct. Although the load per

helper node is smaller than our scheme, the time and the total complexity

are higher for most regimes. The curves extend our previous comparison of

master’s load to the total cost and demonstrate the level of efficiency of our

algorithm. Our complexity saving becomes more significant for higher ψt.

The MDS-based solution is not affected much by the choice of ψt because its

complexity is mainly due to decoding at the master. In our solution, however,

the master’s complexity is not necessarily the dominant factor, hence, changing

46

0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

8

9

10

N
or

m
al

iz
ed

 c
os

t

Figure 3.8: The proposed algorithm’s cost for a number of code lengths for
N = 232.

ψt can significantly affect the efficiency.

It should be noted that for some setups, the existing MDS-based approach

outperforms our proposed scheme. One case as demonstrated in Fig. 3.7 is for

small ψt and small overhead (εc), where the Raptor decoding becomes complex.

However, in such setups, distributed schemes are worse than Self-FFT. The

other case happens when K is small. This is because the superlinear factors in

the MDS solution are negligible for short K. In contrast, Raptor codes do not

perform well for short K as they need a larger overhead. As was mentioned

earlier in this work, our proposed solution is targeted for setups with very

large N that requires a large number of helper nodes, i.e., large K.

Furthermore, in Fig. 3.8, the impact of the code length is demonstrated

using the data obtained from [68]. As expected, as K increases, the code

complexity also increases, resulting in a higher total cost. The conclusion here

is that one should use the highest size of the data M that can be handled by

47

a helper node since it results in a smaller K and less decoding cost. However,

as the overhead increases, this impact is alleviated and the curves converge.

3.6 Conclusion

In this chapter, we focused on the challenges that distributed FFT comput-

ing faces when a large number of helper nodes are needed. In the proposed

solution, we suggested two computing layers, where each layer was coded, in-

dependently. It was shown that the helper nodes can participate in the encod-

ing/decoding reliably, leaving the master out of the Shuffle stage. Supported

by the numerical results, we observed that for a large number of helper nodes,

low-complexity coding such as Raptor codes are highly beneficial. As a re-

sult of the master-less Shuffle stage and linear-complexity coding, we achieved

significantly lower complexity at the master.

48

Chapter 4

Distributed Decoding

4.1 Introduction

In this chapter, we consider the coded distributed matrix-vector multiplication

problem, and similar to most existing literature, we mainly focus on Reed-

Solomon codes. When the number of helpers is large and the original com-

putation is massive, the decoding complexity that is left for the master could

be very large. This load can even be comparable to the initial load of the

original matrix multiplication task. Therefore, in order to minimize the total

computation time, we need to be cognizant of the master decoding time and

try to reduce the master’s decoding load.

In this chapter, we utilize the network’s heterogeneity in a novel way. In

particular, we develop a multi-layer coding scheme to combat the straggling

problem and also allow some helper nodes to be involved in the decoding

process. As a result of this design, the encoding/decoding load of the master

is significantly reduced. This creates a trade-off since the load of the helpers

has increased in return. The challenge here is to ensure that the overall finish

time is indeed minimized. This trade-off results in an optimization problem

that is studied in Section 4.3.

After proposing a strategy for simplifying the optimization, we study differ-

ent scenarios, optimize the solution for each case, and analyze the performance

of the proposed scheme. Significant completion-time reductions (as high as

more than 90%) are observed.

49

4.2 System model

Consider a heterogeneous network with helper nodes of v different types. For

each type i, 1 ≤ i ≤ v, assume there are ni helper nodes with the straggling

parameter µi. This means that when a task, requiring at least T seconds, is

assigned to such a helper node, its runtime CDF is [9], [46],

P [t ≤ τ] = 1− e−µi(
τ
T
−1) for τ > T.

This represents the probability of the task being finished before time τ. Note

that T is a function of the allocated load, and thus, it is constant here. The

exponential distribution is suggested since it is the closest representation of

the behavior of the servers in cloud systems. Without loss of generality, we

assume µ1 > · · · > µv, meaning that type 1 is the most reliable helper type.

For the matrix multiplication problem introduced in Section 4.1, the ma-

trix AN×P is first divided into K = N
M

equal parts, A1, . . . , AK . These new

matrices are then encoded, using an (L,K) Reed-Solomon code, to generate

coded matrices B1, . . . , BL. Each matrix Bℓ is sent to a helper node along

with the vector x, so that yℓ = Bℓx is computed. Therefore, L helper devices

are to be utilized where L = L1+ . . .+ Lv and Li ≤ ni represents the number

of helpers of type i that are selected for this computation. This scheme is

demonstrated in Fig. 4.1.

For the uncoded case, i.e., L = K, the time needed for matrix multiplica-

tion to be finished τp is then defined as

τp = max
w

τw. (4.1)

The max operation above can be responsible for the straggling effect. As

discussed, to resolve the straggling impact, coding must be applied. In the

coded scenario, where L > K helper nodes are used, we need not wait for

all helpers to respond. The helpers’ finish time is when the fastest K helpers

out of L return their computation. At this point, the Reed-Solomon code can

be decoded. In other words, the maximum multiplication time of the fastest

K helper nodes defines the matrix multiplication time (τp). Regarding the

50

Master (Encoding)

A1

A

A2

AK

B1

B2

BL

B1 y1

BL yL

Helpers

Bf

yi1

yiK

Ax

Master (Decoding)

type
1

type
z

Figure 4.1: The coded matrix-vector multiplication distributed computing
scheme based on MapReduce with no Shuffle stage

load allocation, a thorough study and optimization have been done in [46]. To

minimize E[τp], for both coded and uncoded cases, there is a trivial solution

where

L1 = n1, L2 = n2, . . . , Lz ≤ nz, Lz+1 = 0, . . . , Lv = 0. (4.2)

The objective of a distributed computing system, however, is to minimize

the total execution time τex. The total execution time is a random variable

whose exact value varies from one realization to another. Hence, for the struc-

ture introduced in Fig. 4.1, this parameter can be expressed as

E[τex] = E[τp] + τmas. (4.3)

Here, τmas is the master’s decoding time. This factor impacts τex independently

of the performance of the helpers.

Consider an example where the computation of AN×PxP×1 is distributed

among L > K = N
M

helpers. Each helper performs yi = Bix multiplication

where Bi ∈ RM×P , and, yi ∈ RM×1. For a systematic (L,K) Reed-Solomon,

the decoding complexity is O(K(L−K)), and for large K, employing polyno-

mial codes [31] can reduce the complexity to O(K log2K log logK) [35]. Note

51

that the yi vectors each consist of M symbols. It means that the decoding

must be repeated M times, i.e., the actual decoding computation complexity

isM times larger. Since decoding is traditionally the master’s task, this leaves

M K log2K log logK = N log2K log logK computations for the master alone.

This is while the load of each helper is MP.

When K is large, the master’s load and thus, τmas might be much greater

than τp. The decoding time for a number of scenarios can be the main bottle-

neck, and hence, the computing load allocation becomes less important. As an

example, note that for a case where M = 1000, K = 1000, P = 1000, the load

of each helper is MP = 106 while, the master’s load is MK log2K log logK ≃

3× 108 and thus, τmas is much larger than τp. Therefore, any solution towards

minimizing the average execution time E[τex] must consider τmas, meaning that

we need approaches to reduce τmas by using the available resources in the net-

work.

Imagine that there were completely reliable helper nodes available in the

network. Then, they could have helped the master in the decoding stage, thus,

reducing the decoding load at the master and, consequently, the overall time.

Assume there are Q helper nodes available for decoding. This means that

the time required for the decoding stage is reduced to smaller than 1/Q of its

initial value. In the previous example, for Q = 20, the decoding complexity

will be M K
Q
log2 K

Q
log log K

Q
≃ 4 × 106, much smaller than 3 × 108. Since the

decoders are entirely reliable, there is no concern about the straggling of the

newly defined nodes, and thus, no additional layer of coding on these Q nodes

is required. This scheme is demonstrated in Fig. 4.2.

In practical settings, however, there are no perfect helpers. Essentially,

we have to pick up from the available helpers that have a non-zero chance of

straggling. Hence, entrusting decoding to unreliable helpers can endanger the

success probability of the whole computation. In short, there exist two choices,

none of them attractive. One choice is to engage helpers in the decoding and

lose the reliability of the computation. The other choice is to leave the decoding

for the master to ensure reliability, but suffer a long execution time. In the

next section, we propose a third choice that is both reliable and fast.

52

Master (Encoding)

A1

A

A2

AK

B1

B2

BL

B1 y1

BL yL

Helpers

Bf Ax

Master (No load)

yi1 A1x

yiK AKx

Q Decoders

A1x

AKx

Figure 4.2: The coded matrix-vector multiplication distributed computing
scheme with perfect decoding helpers

4.3 A fast and reliable distributed decoding

solution

4.3.1 Main idea

Let us first discuss the big picture of our proposed solution. The main idea

is to involve some helpers in the decoding process. Now, in order to make

the decoding performed by the helpers a reliable process, we also add another

layer of coding for these helpers. It is not clear, though, if such a solution

helps the overall performance. Certainly, the problem with the unreliability is

mitigated, and the solution will be fully reliable. However, in this approach,

the master still needs to decode the output of the decoding helpers. Moreover,

two decoding completion time must be considered in the total execution time.

In other words, the expected execution time is now

E[τex] = E[τp] + E[τdec] + τmas, (4.4)

where E[τdec] is the time needed for decoding helpers to finish their task. Note

that the master now needs only to decode a short code. This is because the

code length at the master is now reduced from K in the conventional solution

to Q in the suggested approach, and Q is much smaller than K. Therefore,

there exists a trade-off between the added time τdec due to an extra decoding

53

layer and the reduced τmas.

In this chapter, we investigate the suggested two-layer coded system and

study parameters such as the number of helpers to participate in the decoding,

and the length of the new coding layer, in order to minimize the total execution

time. We will see that this proposed scheme can significantly outperform

existing solutions.

4.3.2 Proposed distributed decoding solution

Consider a structure with two layers 1 of helper nodes: (i) processing nodes

that compute matrix multiplication, and (ii) decoding nodes that perform the

first stage of decoding. Also, assume there are ni helpers of type i, 1 ≤ i ≤ v

available. Based on the optimization problem that will be discussed later, we

first assign Lp nodes to the processing layer and Ld nodes to the decoding

layer.

Assuming there areK = N
M

matrix multiplication tasks in total, these tasks

are grouped into Q batches and an (Lq,
K
Q
) code is applied to each batch.

Later, these Q batches are also encoded by an (Ld, Q) code. This second

layer of coding adds redundancy and hence, reliability to each batch, as well.

Therefore, LdLq coded tasks are created and sent to Lp processing helpers in

the first layer. As a result, Lq =
Lp

Ld
. This scheme is demonstrated in Fig. 4.3.

Once a sufficient number of helper nodes respond for the decoding to be

initiated, the first layer nodes send their output to the designated decoding

helpers. These helpers decode the (Lq,
K
Q
) code such that the decoding helper

r, 1 ≤ r ≤ Ld decodes the batch r outputs. Now, since these nodes are

also subject to straggling, the (Ld, Q) code ensures the master that by even

receiving any Q decoded batches from the decoding helpers, it can decode the

second layer of coding and recover the uncoded computed blocks of data.

1A structure with more than two layers either has multiple processing layers which is not
advantageous for a matrix multiplication problem or has more than one layer of decoders.
When helpers are not perfect, we cannot avoid decoding at the master. As we will see,
even with one layer of helpers, we can reduce the master complexity to values comparable
with the complexity of helper nodes. Hence, multiple decoding layers cannot offer any extra
advantage.

54

(Lq,K/Q) (Ld, Q)

Master (Encoding) Lp Helpers Master (Decoding)Ld Decoders

Computing
(Lq,K/Q)

Decoding
(Ld, Q)

Decoding

(First layer) (Second layer)

Lq
K
Q Lq

Q Ld

Figure 4.3: The two-layer coding structure to add reliability for both process-
ing and decoding layer

Example 1 With K = M = 1000, Q = 20, Lq = 55, Ld = 21, there will be

Lp = 1155 processing helpers for multiplication tasks and 21 helpers for the

first stage of decoding. The decoding helpers are decoding a (55, 50) code. The

master will be required to decode a (21,20) code. Such a code can tolerate one

straggling node among the 21 decoding nodes.

In this structure, there are many parameters that must be chosen. For

example, Lp, Ld, Q, and more. These parameters directly affect the system

performance in terms of its processing time. For example, a large Q means a

high decoding complexity at the master. Also, if Lp is too close to K we may

experience a longer tail in the processing stage. These parameters have to be

chosen for maximizing performance in view of the available helpers and their

quality.

The ultimate goal is to select the parameters in order to minimize E[τex] out

55

of all possible setups. In this problem, some limitations exist. The parameters

N and P (which define the computation size) are given, moreover, the pool of

available helpers H is limited. Therefore, the total number of helpers

|H| =
∑︂
i

ni = Lp + Ld

is constant. So, although Ld is a degree of freedom, Lp becomes determined

once Ld is selected.

The other degree of freedom is the selection of helpers based on their quality

for different tasks. One set of helpers denoted by Sp, are the helpers in the

processing layer and the other one is Sd, the set of helpers performing decoding.

Note that {Sp,Sd} is a partition ofH and |Sp| = Lp, and |Sd| = Ld. Please note

that if Sd is decided, so is Sp, and therefore, Ld and Lp. In other words, the

only design parameters are the code sizes (K
Q
and Q) and the choice of helpers

involved in decoding (Sd). In short, our goal is to minimize the execution time

over valid choices of K,Q and Sd:

min
K,Q,Sd

E[τex] = E[τp] + E[τdec] + τmas. (4.5)

Moreover, Our two codes are of size (|Sd|, Q), (|Sp|
|Sd|

, K
Q
). Thus, assuming prede-

fined overheads εp, εd, the choice of Q and K are also forced by |Sd| and |Sp|

as follows,

|Sd| = Q (1 + εd),

|Sp| = K
|Sd|
Q

(1 + εp).
(4.6)

In distributed computing, the coding overhead is typically chosen to be be-

tween 5% to 10% because this level of overhead resolves the straggling ef-

fect [23]. In other words, Lp

K
and Ld

Q
that represent the codes’ overheads can

be preselected. This associates K and Q with Ld = |Sd|, and thus, our opti-

mization problem will simplify to

min
Sd

E[τex] = E[τp] + E[τdec] + τmas. (4.7)

To solve this optimization, we must find the best subset Sd. This opti-

mization problem is not very complex since H typically consists of only a few

56

different types of helpers. Let us represent the network of available helpers by

H = [(n1, µ1), (n2, µ2), . . . , (ni, µi), . . . , (np, µp)].

This means that there are ni helpers from type i with the straggling parameter

of µi. Therefore, there are exactly
∏︁
i

(ni+1) unique subsets. This is the search

size for finding the minimum E[τex]. However, in the following discussion, we

offer a strategy that significantly reduces the complexity of this optimization.

4.3.3 Greedy decoding helper allocation

A good helper allocation is one that utilizes the heterogeneity in order to

reduce the runtime. The greedy decoding helper allocation (GDHA) strategy

suggests that the most reliable helpers must be assigned to the decoding layer

and the rest to be assigned to the processing layer. By obeying this strategy,

the search for the best Sd is simplified to search for the best size of Sd. As

soon as the size is known, Sd will be determined from the GDHA strategy.

The idea behind this strategy is that the high-quality helpers have a more

positive impact on execution time when in the decoding layer rather than in

the processing layer. This is because the low-quality helpers that are used

at the processing layer highly influence the processing time E[τp], and a few

high-quality helpers cannot improve E[τp]. On the other hand, as we will see,

the number of helpers needed for the decoding layer is typically small, and

therefore, in many cases, it is possible to perform the decoding using only

the high-quality helpers, meaning that the decoding process is significantly

impacted by this greedy allocation. The above qualitative discussion is pre-

sented in a quantitative way in the following. In practical settings, the type

of helpers with the least quality is the majority. Therefore, it is reasonable to

assume that nv > Lp −K. This will result in

nv

Ld

>
Lp −K

Ld

= Lq −
K

Ld

> Lq −
K

Q
. (4.8)

This means that the number of type v helpers in most batches is greater than

the redundant nodes, i.e., Lq − K
Q
. Therefore, the completion of the processing

computation is limited to the low-quality helpers and thus, E[τp] is very close

57

to E[τv]. Therefore, assigning the better helpers to Sp has a negligible improve-

ment on E[τex]. On the other hand, E[τdec] is only dependant on the quality of

Ld helpers. As we will see, the optimum |Sd| is usually small enough that can

exclude most of the low-quality helpers. Therefore, assigning the best helpers

to this set can actually reduce E[τdec], and thus, E[τex].

This algorithm might not achieve the optimal solutions when the processing

load for the helpers in the first layer is significantly higher than the decoding

helper’s load. Then, even a small improvement in E[τp] would be favorable as

E[τp] ≫ E[τdec]. Please note that E[τp] ≫ E[τdec] indicates that the processing

time of the helpers is too long, meaning that we do not have enough helpers

in the system. In other words, the conditions under which GDHA approach

deviates from the optimal solution are impractical cases.

Remark 10 For a given |Sd|, GDHA suggests the best partitioning as Sd =

[(n1, µ1), . . . , (Lu, µu)] and Sp = [(nu − Lu, µu), . . . , (nv, µv)], where u is found

based on
u−1∑︂
i=1

ni < |Sd| ≤
u∑︂

i=1

ni. (4.9)

Remark 10 suggests that for the best performance, after grouping helpers

into two groups Sp and Sd, for any helper in Sp with µi and any helper in Sd

with µj, we can be sure that µi ≤ µj.

Using Remark 10, our search for optimal Sd will reduce to the size of |H|.

In reality, the search size is even much smaller than that. This is because

the length of the first code is K
Q

≫ 1. Thus, we can also say LP

Ld
≫ 1, which

means that |Sd| ≪ |Sp| and thus, |Sd| ≪ |H|. This means, the search for the

optimal |Sd| can start from zero and will end soon. Note that when |Sd| = 0 it

means the two-layer solution is not optimal and we are back to the one-layer

traditional solution. In other words, our search includes the existing one-layer

solution as a special case.

At the heart of this optimization, there is a trade-off. On the one hand,

the smaller Q is, the decoding complexity at the master is reduced, but the

decoding complexity at the decoding helpers intensifies. In contrast, larger Q

58

means more reliability and less complexity in the decoding layer, resulting in

smaller E[τdec]. In conclusion, and as supported by simulation results in the

next section, the extremes in the choice of Ld are not typically optimal.

4.4 Numerical results

In this section, we will consider several system setups. One objective is to

verify the optimality of the solution provided by Remark 10. The second goal

is to find the optimum |Sd| in each study case and analyze the performance of

the system. Furthermore, we will observe that how changing some parameters

affects the optimum solution and its performance.

We consider the allocation of helpers to the decoding and processing layers,

Sd and Sp, based on both Remark 10, and searching all the possible partition-

ings. Assuming a preselected code overhead, K and Q can be found based

on (4.6). From these selections, the load of each processing helper, i.e., NP
K

is calculated. Similarly, the decoding load of the decoding helpers and the

master’s load are calculated based on the Reed-Solomon decoding complexity

stated in Section 4.2.

For our first setup, assume the size of matrix multiplication is given as P =

103 and N = 106. Also, assume H = [(10, 9), (40, 4), (1000, 1)]. By changing

|Sd|, we have studied the performance of the system. As demonstrated in

Fig. 4.4, the optimal |Sd| = 13 is the one that achieves the minimum point on

the E[τex] curve. We observe that almost always the partitioning provided by

Remark 10 aligns with the optimum partitioning found by a complete search.

The only cases that GDHA is not optimal are when the size of Sd is much

larger than the optimal |Sd|, which is clearly not an attractive regime. Even

in these cases, the gap between the complete search and GDHA is negligible.

Note that if |Sd| is too small, the decoding helpers will have a high com-

putation load, and E[τdec] would be very large. Consequently, the single-layer

model is not an attractive solution in this setup. Moreover, as discussed in

Section 4.3.3 and supported by this figure, we can see that with a large num-

ber of decoding helpers |Sd|, the master’s completion time becomes too large,

59

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

Figure 4.4: The behavior of E[τx] and its components

resulting in a much longer total execution time. While more decoding helpers

means shorter decoding time by the decoding helpers, the second code to be

decoded by the master increases in size, making the master decoding the bot-

tleneck. Hence, the extreme cases for |Sd| are not optimal and the existing

trade-off defines the optimal |Sd| somewhere in the middle. The expected

time of each stage of the distributed computing is also shown in Fig 4.4. The

trade-off between τmas and E[τdec] can be easily seen.

In Fig. 4.5, we have compared our proposed model with a traditional

single-layer scheme. We can see the runtime reduction as a result of the

proposed multi-layer decoding scheme. In this figure, we still assume H =

[(10, 9), (40, 4), (1000, 1)], but we allow algorithms not to employ all the avail-

able helpers. For example, when |H| = 600, we meanH = [(10, 9), (40, 4), (550, 1)].

An interesting observation about the single-layer solution is that for a large

number of helper nodes, the runtime increases with the number of employed

helpers. When a smaller number of helpers are used, although the compu-

60

100 200 300 400 500 600 700 800 900 1000

10-2

10-1

Figure 4.5: A comparison between our proposed multi-layer method and single-
layer method when a different number of helpers from the network are utilized

tational load of each helper is increased, the decoding load of the master is

decreased because the master is using a shorter code and thus experiences a

reduced decoding complexity. This means the best choice of the single-layer

solution is to not use all the available helper nodes. Despite this, the conclu-

sion of this figure is that the optimal solution based on GDHA (achieved when

using all 1050 helpers) is much better than the optimal single-layer solution

(achieved when using 50 helpers) 2.

We have also studied the effect of |Sd| on a number of methods in Fig. 4.6.

These methods are GDHA, reverse GDHA, and random allocation. Reverse

GDHA allocates the most reliable helpers to the processing layer. Also, for

comparison, the result of the single-layer solution is reported, where, as dis-

cussed in Fig. 4.5, not all the helpers are employed to achieve the best runtime

2Note that our scheme’s curve will also reach a minimum point. That is because by
having a lot of helpers, the sizes of codes increase again and become problematic. For the
setup in Fig. 4.5, the minimum point is at around 2000 helpers.

61

0 10 20 30 40 50

10-2

10-1

Figure 4.6: The behavior of different distributed computing allocations based
on |Sd|

possible. It can be seen that GDHA allocation can improve the minimum

E[τex] by almost 16 times compared to the single-layer solution and by 10%

compared to the random two-layer allocation.

In Fig. 4.4, the values for all three stages of distributed computing were in

the same order. However, in cases where the number of helpers is insufficient,

i.e., E[τp] is dominant, or the cases in which the decoding complexity is the

major bottleneck, the choice of |Sd| optimization and the behavior of E[τex]

may differ. In Fig. 4.7, three scenarios are compared. We can see that the

optimal |Sd| can be very different for the same network based on the original

computation size. We can see that when both N and P increase, the optimum

|Sd| increases, as well.

62

0 50 100 150

10-2

10-1

N=105, P=102

N=106, P=103

N=107, P=104

Figure 4.7: The effect of different sizes of computations on the optimum |Sd|

4.5 Conclusion and future work

In this chapter, we focused on the high decoding complexity of the master

node in coded distributed computing schemes. We proposed a multi-layer

coding structure which allows the helpers to engage in decoding, thus, reducing

the master’s decoding load. Then the question of how to allocate helpers to

processing or decoding was discussed. A simple helper allocation strategy

was proposed and shown to be the optimal allocation. The numerical results

supported the analytical discussions.

The proposed multi-layer coded solution for distributed computing prob-

lems can be very promising. MapReduce schemes with multiple Shuffle stages [41]

can also benefit from this method in order to phase out the master’s en-

gagement in the Shuffle stages. Moreover, scheduling methods for heteroge-

neous distributed computing problems carry many opportunities for further

research [46]. In this work, the processing load was distributed uniformly, and

63

it was shown that high-quality helpers are better to be assigned to the decod-

ing task. It can be investigated whether non-uniform load allocations might

offer other advantages.

64

Chapter 5

Conclusions and future work

5.1 Summary of contributions and results

In this work, we considered large-scale coded distributed computing systems.

We investigated the effect of the added computational load to the master,

due to coding. It was shown that for many practical setups, this newly intro-

duced load was extensively high. Therefore, for large-scale coded scenarios, an

alternative solution was needed.

The main idea of this thesis was to explore possibilities that are introduced

by inserting an additional layer of helpers to the structure of the system. The

goal was to have some helpers directly assist the master with its remaining

computational load and decoding load. Such a multi-layer solution, however,

induced some new challenges, challenges that become more severe as the size

of the network increases.

To have a multi-layer coded solution, each layer of the computation must be

coded itself. Applying multiple layers of coding to a system with master-free

shuffling, however, did not have a straightforward solution. This thesis pro-

posed solutions for these multi-layer coded distributed computing problems.

In Chapter 3, particularly, we formed our multi-layer structure based on

FFT structure. In order to have a fully fault-tolerant design, a coding design at

the Shuffle stage was proposed which fitted the FFT computation. Moreover,

by benefitting from low-complexity codes, we further reduced the decoding

load and showed that the overall system performance and cost-saving were

extremely improved.

65

In Chapter 4, we focused on a coding structure in which two layers of coding

were applied over each other. Thus, we were able to introduce some decoding

helpers that carried the main load of decoding complexity and left a very small

load for the master. The key challenge was to design the decoding layer also

reliable. Considering a heterogeneous network, we proposed a strategy that

achieved the minimum run-time and thus, the best performance.

In both studies, considering a number of scenarios and system setups, we

performed various numerical analysis. The numerical results supported our

algorithms, and it was shown that for practical setups, they outperform the

existing solutions.

5.2 Future research directions

In our setups, we assumed that the size of helpers’ input data is more or

less the same. In heterogeneous networks, the helpers’ memory capacity may

also vary from node to node. Therefore, allocating different data sizes to

helpers in the same layer can open up many opportunities. For instance,

as discussed in Section 4.5, one could investigate whether non-uniform load

allocation schedulings could result in a better performance in a heterogeneous

network. Optimizing the solution for such a scenario, however, accompanies

many challenges.

Moreover, including the helpers’ cost could also add another factor of com-

plexity to the optimization problem. In that case, employing all the helpers

available might not offer the best solution. In both this and the previous sce-

nario (i.e., varying memory capacity across nodes), because of the added de-

grees of freedom, finding the optimum design requires a massive search through

all the possibilities. Finding a general solution even under some practical as-

sumptions would be incredibly attractive.

Another possible future work is to explore the conjunction of two proposed

coding structures. The necessary shuffling in distributed FFT does not let the

multi-layer encoding proposed in Chapter 4 to be directly applied. Thus, cod-

ing in the Shuffle stage was required. However, there are distributed computing

66

systems that require multiple layers of computations, too, even though their

data shuffling is not necessarily the same as FFT (e.g., not all the nodes share

data with each other). In those applications, a combination of the proposed

coding methods could be developed that achieves a better performance.

Finally, because of our multi-layer design, employing fountain codes as

rateless codes was not applicable. Designing Raptor codes with a fixed rate is

another interesting area of work. Although currently the need for a fixed-rate

low-complexity code does not go beyond distributed computing problems, they

may be proved helpful in other coded systems, in the future.

67

References

[1] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–
186.

[2] Y. Yan and L. Huang, “Large-scale image processing research cloud,”
Cloud Computing, pp. 88–93, 2014.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.,” HotCloud, vol. 10, no. 10,
p. 95, 2010.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[5] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Generation Computer Systems,
vol. 79, pp. 849–861, 2018.

[6] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth International Joint Conference on
INC, IMS and IDC, IEEE, 2009, pp. 44–51.

[7] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation for data-
parallel computing: Interfaces and implementations,” in Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 247–260.

[8] A. Norton and A. J. Silberger, “Parallelization and performance analysis
of the Cooley-Tukey FFT algorithm for shared-memory architectures,”
IEEE Transactions on Computers, vol. 36, no. 5, pp. 581–591, 1987.

[9] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.

[10] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-
optimal straggler mitigation for distributed gradient methods,” in 2018
IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), IEEE, 2018, pp. 857–866.

68

[11] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding frame-
work for distributed computing with straggling servers,” in 2016 IEEE
Globecom Workshops (GC Wkshps), IEEE, 2016, pp. 1–6.

[12] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded Fourier trans-
form,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), IEEE, 2017, pp. 494–501.

[13] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large
linear transforms distributedly using coded short dot products,” in Ad-
vances In Neural Information Processing Systems, 2016, pp. 2100–2108.

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[15] J. Dean, “Experiences with MapReduce, an abstraction for large-scale
computation,” Proceedings of 15th International Conference on Parallel
Architectures and Compilation Techniques, vol. 6, p. 1, 2006.

[16] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
in 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), IEEE, 2015, pp. 964–971.

[17] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments.,”
in Osdi, vol. 8, 2008, p. 7.

[18] F. Li, J. Chen, and Z. Wang, “Wireless MapReduce distributed com-
puting,” IEEE Transactions on Information Theory, vol. 65, no. 10,
pp. 6101–6114, 2019.

[19] M. Ji and R.-R. Chen, “Fundamental limits of wireless distributed com-
puting networks,” in IEEE INFOCOM 2018-IEEE Conference on Com-
puter Communications, IEEE, 2018, pp. 2600–2608.

[20] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Transactions on Information Theory, vol. 64, no. 1,
pp. 109–128, 2017.

[21] A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computa-
tion schemes over wireless networks,” in 2017 55th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton), IEEE,
2017, pp. 1256–1263.

[22] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded
computing for distributed machine learning in wireless edge network,”
in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall),
IEEE, 2019, pp. 1–6.

69

[23] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Presented as part of the
10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), 2013, pp. 185–198.

[24] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in 2018 IEEE International Symposium on Infor-
mation Theory (ISIT), IEEE, 2018, pp. 1988–1992.

[25] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[26] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST), IEEE, 2010, pp. 1–10.

[27] Y. Sun, J. Zhao, S. Zhou, and D. Gündüz, “Heterogeneous coded compu-
tation across heterogeneous workers,” arXiv preprint arXiv:1904.07490,
2019.

[28] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, ACM, 2012, pp. 13–16.

[29] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to re-
duce latency in large-scale parallel computing,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 3, pp. 7–11, 2015.

[30] R. Singleton, “Maximum distance q-nary codes,” IEEE Transactions on
Information Theory, vol. 10, no. 2, pp. 116–118, 1964.

[31] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An op-
timal design for high-dimensional coded matrix multiplication,” in Ad-
vances in Neural Information Processing Systems, 2017, pp. 4403–4413.

[32] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in 2017 IEEE International Symposium on Information
Theory (ISIT), IEEE, 2017, pp. 2418–2422.

[33] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[34] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P.
Grover, “On the optimal recovery threshold of coded matrix multiplica-
tion,” IEEE Transactions on Information Theory, 2019.

[35] K. S. Kedlaya and C. Umans, “Fast polynomial factorization and modu-
lar composition,” SIAM Journal on Computing, vol. 40, no. 6, pp. 1767–
1802, 2011.

70

[36] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Distributed
fountain codes for networked storage,” in 2006 IEEE International Con-
ference on Acoustics Speech and Signal Processing Proceedings, IEEE,
vol. 5, 2006, pp. V–V.

[37] A. Shokrollahi and M. Luby, “Raptor codes,” Foundations and trends®
in communications and information theory, vol. 6, no. 3–4, pp. 213–322,
2011.

[38] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, Proceedings., IEEE, 2002, pp. 271–280.

[39] F. Bensaali, A. Amira, and A. Bouridane, “Accelerating matrix prod-
uct on reconfigurable hardware for image processing applications,” IEE
proceedings-Circuits, Devices and Systems, vol. 152, no. 3, pp. 236–246,
2005.

[40] A. Severinson, A. G. i Amat, and E. Rosnes, “Block-diagonal and LT
codes for distributed computing with straggling servers,” IEEE Trans-
actions on Communications, vol. 67, no. 3, pp. 1739–1753, 2018.

[41] H. Jeong, T. M. Low, and P. Grover, “Coded FFT and its communication
overhead,” arXiv preprint arXiv:1805.09891, 2018.

[42] ——, “Masterless coded computing: A fully-distributed coded FFT al-
gorithm,” in 2018 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), IEEE, 2018, pp. 887–894.

[43] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradi-
ent coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[44] N. Ferdinand, B. Gharachorloo, and S. C. Draper, “Anytime exploitation
of stragglers in synchronous stochastic gradient descent,” in 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA), IEEE, 2017, pp. 141–146.

[45] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Transac-
tions on Networking, vol. 25, no. 5, pp. 2643–2654, 2017.

[46] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, 2019.

[47] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-perfect
load balancing in distributed matrix-vector multiplication,” arXiv preprint
arXiv:1804.10331, 2018.

[48] B. Bartan and M. Pilanci, “Polar coded distributed matrix multiplica-
tion,” arXiv preprint arXiv:1901.06811, 2019.

71

[49] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
2018 IEEE International Symposium on Information Theory (ISIT),
IEEE, 2018, pp. 1620–1624.

[50] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” arXiv preprint arXiv:1802.03475, 2018.

[51] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. Aves-
timehr, “Lagrange coded computing: Optimal design for resiliency, se-
curity and privacy,” arXiv preprint arXiv:1806.00939, 2018.

[52] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in 2018 IEEE Global Communications Conference
(GLOBECOM), IEEE, 2018, pp. 1–6.

[53] N. Raviv and D. A. Karpuk, “Private polynomial computation from
lagrange encoding,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 553–563, 2019.

[54] K. R. Rao, D. N. Kim, and J. J. Hwang, Fast Fourier transform-algorithms
and applications. Springer Science & Business Media, 2011.

[55] A. C. Gilbert, P. Indyk, M. Iwen, and L. Schmidt, “Recent developments
in the sparse Fourier transform: A compressed Fourier transform for big
data,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 91–100, 2014.

[56] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcu-
lation of complex Fourier series,” Mathematics of computation, vol. 19,
no. 90, pp. 297–301, 1965.

[57] A. Sandryhaila and J. M. Moura, “Big data analysis with signal pro-
cessing on graphs,” IEEE Signal Processing Magazine, vol. 31, no. 5,
pp. 80–90, 2014.

[58] J. W. Wong, C. Durante, and H. M. Cartwright, “Application of fast
Fourier transform cross-correlation for the alignment of large chromato-
graphic and spectral datasets,” Analytical Chemistry, vol. 77, no. 17,
pp. 5655–5661, 2005.

[59] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, 2013, pp. 69–84.

[60] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan,
“Speeding up distributed request-response workflows,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 219–230, 2013.

[61] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: Distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing, ACM, 2017, pp. 445–451.

[62] A. Gupta and V. Kumar, “The scalability of FFT on parallel computers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 8,
pp. 922–932, 1993.

72

[63] M. Pippig, “PFFT: An extension of FFTW to massively parallel ar-
chitectures,” SIAM Journal on Scientific Computing, vol. 35, no. 3,
pp. C213–C236, 2013.

[64] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li,
“Cloud computing resource scheduling and a survey of its evolutionary
approaches,” ACM Computing Surveys (CSUR), vol. 47, no. 4, p. 63,
2015.

[65] A. Shokrollahi, “Raptor codes,” IEEE/ACM Transactions on Network-
ing (TON), vol. 14, no. SI, pp. 2551–2567, 2006.

[66] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
“RaptorQ forward error correction scheme for object delivery,” Tech.
Rep., 2011.

[67] F. Lázaro, G. Liva, and G. Bauch, “Inactivation decoding of LT and
Raptor codes: Analysis and code design,” IEEE Transactions on Com-
munications, vol. 65, no. 10, pp. 4114–4127, 2017.

[68] F. L. Blasco, G. Liva, and G. Bauch, “Enhancing the LT component of
Raptor codes for inactivation decoding,” in SCC 2015; 10th International
ITG Conference on Systems, Communications and Coding, VDE, 2015,
pp. 1–6.

[69] “Technical specification group services and system aspects; multimedia
broadcast/multicast service; protocols and codecs,” 3GPP, TS 26.346,
Jun. 2012, V11.1.0.

73

	Introduction
	Motivation
	Distributed Computing
	Unreliable Distributed Computing
	Coded Distributed Computing
	Thesis overview

	Background
	Distributed Computing Systems
	System Model
	Challenges

	Forward Error Correction Codes
	Mathematical Background
	MDS codes
	Fountain codes

	Coding in distributed computing
	Related works
	Decoding Complexity
	Proposed Multi-layer Distributed Coding Solutions Overview

	Multi-layer Coded Distributed FFT
	Introduction
	Background and motivation
	FFT computation
	Coded distributed FFT
	Remaining challenges and overview of our contributions

	Uncoded distributed FFT solution
	Coded solution
	Toy example
	Coding algorithm
	Low decoding complexity codes

	Performance analysis and numerical results
	Failure probability
	Complexity and cost comparison

	Conclusion

	Distributed Decoding
	Introduction
	System model
	A fast and reliable distributed decoding solution
	Main idea
	Proposed distributed decoding solution
	Greedy decoding helper allocation

	Numerical results
	Conclusion and future work

	Conclusions and future work
	Summary of contributions and results
	Future research directions

	References

