
 
 
 

 

 

 

Photovoltaic Power Pattern Clustering Based on  

Conventional and Swarm Clustering Methods 

by 

Amr Abdullah Munshi 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Computer Engineering 

 

 

Department of Electrical and Computer Engineering 

University of Alberta 

 

 

©Amr Abdullah Munshi, 2014 

  

 
 
 
 
  



ii 
 

Abstract 

 

Among renewable energy resources, solar energy is promising and has recently become an area 

of interest in research. Photovoltaic (PV) systems have the capability of converting solar energy 

into electrical power. The advances in PV technology, such as the reliability and the continuous 

reduction in capital costs, motivate the integration of PV systems into the electrical grid. The 

power output of PV systems is mainly influenced by the level of irradiation and ambient 

temperature. This leads to operational problems and instability in the power output generated 

from PV systems. Accordingly, the integration of these systems requires extensive study and 

simulations of lengthy historical data with sub-hourly time steps. However, dealing with such 

data is time consuming and computationally expensive. Photovoltaic power pattern (PVPP) 

clustering is fundamental in providing enhanced knowledge on the impacts of integrating PV 

systems into the electrical grid without extensive analysis and simulations. Therefore, this 

research aims to develop solutions that can reduce the burden of extensive studies and 

simulations related to the integration of PV systems into the electrical grid. 

This research investigates a set of clustering methods from different clustering categories to 

determine the optimum number of clusters and to produce cluster representatives for PVPP data. 

Furthermore, the introduction of bio-inspired swarm optimization methods, such as the Ant 

Colony and Bat methods in clustering power patterns is presented. For the purpose of clustering 

and achieving efficient cluster representatives, six clustering algorithms from five different 

clustering categories are involved: K-means from partitional clustering, Hierarchical Ward’s 

minimum variance (WMV) from agglomerative clustering, Fuzzy C-means (FCM) from fuzzy 
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clustering, self-organizing maps (SOM) from neural network based algorithms, and Ant Colony 

and Bat from bio-inspired swarm optimization methods. In order to evaluate the clustering 

methods in a comprehensive manner, the following nine internal validity indices were employed: 

Davies Bouldin (DBI), Dunn, Silhouette (SI), Bayesian information criterion (BIC), Xie-Beni 

(XB), mean square error (J), clustering dispersion indicator (CDI), mean index adequacy (MIA), 

and ratio of within-cluster sum-of-squares to between-cluster variation (WCBCR). The 

clustering results show that swarm clustering methods are comparable to conventional methods. 

Moreover, the Bat method was the most efficient and outperformed the other clustering methods. 

Therefore, five Bat algorithms with various objective functions: Bat based on Davies Bouldin 

Index (Bat DBI), Bat based on Dunn index (Bat Dunn), Bat based on clustering dispersion 

indicator (Bat CDI), Bat based on mean index adequacy (Bat MIA), and Bat based on within-

cluster sum-of-squares to between-cluster variation (Bat WCBCR) are proposed to enhance the 

clustering results. The clustering results on two data sets show that the bio-inspired swarm 

clustering algorithm Bat based on WCBCR, as an objective function, produces significantly 

highly separated and well-compacted clusters that can be utilized in PV system simulations. In 

order to test the efficiency of the produced PVPP representatives in PV system simulations, a 

short-term PV power prediction model is presented. The results of the prediction model verify 

the efficiency of the PVPP clustering methodology in PV system studies.  
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Chapter 1 

Introduction  

1.1 Motivation 

As the demand for electrical power is increasing rapidly due to the growth of the global 

population and industrialization, electrical systems need to increase generation. Currently, most 

power is generated from conventional power resources, such as fossil fuels. However, there are 

many financial, environmental, and availability issues associated with the increasing 

consumption of conventional power resources. In order to overcome many of these issues, 

renewable energy resources can participate in producing power. The potential of using renewable 

energy resources as an alternative for power generation is being widely studied. Among 

renewable energy resources, solar energy is promising and has recently become an area of 

research interest. Photovoltaic (PV) systems have the capability of converting solar energy into 

electrical energy. The advances in PV technology, such as the reliability and the continuous 

reduction in capital costs, motivate the integration of PV systems into the electrical grid. 

Generally, the power output of PV systems is influenced by the level of solar irradiation and the 

ambient temperature [1]. This leads to operational problems and instability in the output power 

generated from PV systems. Accordingly, planning for the integration of these systems requires 

extensive study and simulations of lengthy historical data of irradiance and ambient temperature 

with sub-hourly time steps. Also, predicting the power output of PV systems requires the output 

power data with sub-hourly time steps. However, dealing with such data is time consuming and 

computationally expensive. For this purpose, the main focus of this thesis is to develop solutions 

that can reduce the burden of extensive studies and simulations related to integrating PV systems 

into the electrical grid. 
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1.2 Thesis Objectives 

This research aims to develop solutions that can reduce the burden of extensive studies and 

simulations related to integrating PV systems into the electrical grid. Therefore, we investigate 

the most appropriate clustering method for establishing the PV power pattern (PVPP) grouping. 

We chose at least one representative algorithm from various clustering categories: K-means from 

partitional clustering, Hierarchical Wards’ minimum variance (WMV) from agglomerative 

clustering, Fuzzy C-means (FCM) from fuzzy clustering, self-organizing maps (SOM) from 

neural network based algorithms, and Ant Colony and Bat algorithms from particle swarm 

optimization methods. In addition, we propose five Bat clustering algorithms with different 

objective functions, and test their efficiency in clustering PVPPs and presenting the optimal 

number of clusters. 

The main objectives are summarized as follows: 

 Comparing between different clustering methods. 

 Introducing particle swarm optimization-based clustering algorithms in clustering PVPP. 

 Introducing a proper parameter calibration process, such as the learning rate of SOM and 

the wavelength frequency in the Bat algorithm. 

 Using an extended set of validity indices to evaluate the performance of the clustering 

methods. 

 Reducing the dimensionality of daily PVPPs during the clustering process using 

principal component analysis (PCA).  

 Proposing five Bat clustering algorithms based on different objective functions. 

 Finding the optimum number of clusters for PVPPs and presenting a representative 

power pattern from each cluster that can be used in the simulations and studies of the 

integration of PV systems into the electrical grid. 

1.3 Thesis Outline 

The remainder of the thesis is organized as follows: 
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Chapter 2 presents an introduction to clustering and discusses the utilized clustering methods: 

K-means, Hierarchical WMV, FCM, SOM, Ant Colony and Bat algorithms. Also, nine validity 

indices, including DBI, Dunn, SI, BIC, XB, J, CDI, MIA, and WCBCR that evaluate the 

clustering algorithms’ performance are introduced. The dimensionality reduction technique, 

principal component analysis (PCA), is also illustrated. 

Chapter 3 introduces the layout of the methodology used to establish the PVPP grouping. The 

details of each step are also presented. The application of the clustering methods and validity 

indices are applied on a real data set and discussed. A comparison of the clustering results is 

presented, and the method to detect the optimum number of clusters is discussed in detail in this 

chapter. 

 Chapter 4 introduces the five proposed Bat clustering algorithms based on different objective 

functions. The application of these algorithms on two dimensionally reduced data sets of PVPPs 

is presented. Also, a detailed comparison between these algorithms’ results is presented. 

Chapter 5 presents a model for short-term predictions of PV power. The approach this model 

uses is a dedicated formulation in order to test the efficiency of the PVPP cluster representatives 

obtained from the previous chapters. 

Chapter 6 presents the summary and conclusions of the thesis. 
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Chapter 2  

Background 

2.1 Introduction 

This chapter introduces the background of the core topics in this thesis. The work related to 

clustering power patterns and the general preliminary notes are presented. Six clustering 

algorithms from five different clustering categories are discussed: K-means from partitional 

clustering, Hierarchical WMV from agglomerative clustering, FCM from fuzzy clustering, SOM 

from neural network based algorithms, and Ant Colony and Bat algorithm from particle swarm 

optimization methods are presented in detail. Figure 2.1 illustrates the taxonomy of the clustering 

algorithms. The nine validity indices utilized to evaluate the clustering results, (DBI, Dunn, SI, 

BIC, XB, J, CDI, MIA and WCBCR) are discussed. Finally, the feature generation method PCA 

is presented. 

2.2 Introduction to Clustering 

Clustering is an unsupervised learning procedure that has been studied in various contexts and 

disciplines. The aim is to combine data points into groups (clusters) based on similarity and 

 
Figure 2.1: Taxonomy of the clustering algorithms that will be discussed in this chapter. 
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Partitonal 

K-means 

Agglomerative 

Hierarchical 
WMV 

Fuzzy 

FCM 

Neural 
Network 

SOM 

PSO 

Ant Colony Bat Algorithm 



5 
 
 

 

 

dissimilarity criteria, such that the similarity of data points within clusters is maximized and the 

similarity of data points from different clusters is minimized. Accordingly, the data set is 

represented by fewer cluster representatives that may lose fine details but achieve simplification 

and scalability. Each cluster contains a cluster representative (centroid), which is usually the 

weighted average of the data points within that cluster. There are numerous clustering methods 

that can be used for clustering; most of them are parametric methods that require a pre-specified 

number of clusters. The assignment of data points to clusters in general can be either hard (crisp) 

or soft (fuzzy) [2]. Crisp clustering algorithms assign each data point to exactly one cluster; 

whereas fuzzy clustering algorithms may assign a data point to more than one cluster with 

different membership degrees (usually between 0 and 1). Membership degrees close to zero 

imply minimal similarity between the data point and that cluster, while membership degrees 

close to unity imply a high degree of similarity between the data point and that cluster [3]. The 

sum of membership degrees for each data point must be unity. Fuzzy clustering can be a 

powerful tool that can deal with uncertainty and ambiguity hidden within data. 

2.3 Related Work 

An intensive research effort has been devoted to cluster time-series power patterns and obtaining 

representatives for these clusters during the last few years. Models based on clustering 

techniques were used to group electrical load patterns of customers in order to assist tariff 

formation [4]__[11], short-term forecasting [12], and demand response programs to support 

management decisions [13]__[15]. Also, power load clustering has been used for the 

classification of load profiles for ship electric consumers [16] and for estimating the power load 

of warships [17]. In [18], aggregate modeling of wind farms has been proposed based on the 

wind farm’s layout and the clustering of wind speed patterns. A method to improve the 

management decisions of wind farms was also proposed in [19] by applying a clustering method 

on wind power loads. 

Research interest in PVPP clustering for analyzing the power output fluctuation effects on 

integrating PV systems into the electrical grid [20] and for determining the optimal location and 

size of PV plants [21] has recently increased. In the clustering process, [20] adapted three 
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clustering methods: K-means, hierarchical, and a hybrid of K-means and hierarchical whereas, 

[21] used K-medoids and Fuzzy C-means. In [22] a Radial Basis Function (RBF) network model 

to predict short-term PV generation was proposed by clustering historical time-series PV power 

data, then constructing a prediction model at each cluster so that the prediction is based on data 

similarity. [23] proposed a predicting model by clustering historical data and using the weather 

forecast. The results of [22] and [23] showed that the prediction results depend significantly on 

the accuracy of the clustered data. Thus, developing clustering algorithms that produce efficient 

partitioning of PV power data is of practical interest. In addition, the potential of PV in becoming 

a major power resource world-wide [24] motivates the investigation of applying various 

clustering techniques to investigate the most appropriate technique for clustering PVPPs. Bio-

inspired algorithms have been efficient in solving many optimization related problems. However, 

integrating such algorithms with data mining algorithms is still at an early stage and has not 

gained much attention. In [11] electrical load pattern clustering using the Ant Colony algorithm 

was able to detect an abnormal load pattern whereas the K-means method included this abnormal 

pattern in a cluster with other normal patterns. For this purpose, Ant Colony clustering and Bat 

clustering algorithms are included to investigate their performance on clustering PVPPs. 

2.4 Preliminary Definitions 

This section illustrates some general definitions and notations of the clustering algorithms and 

validity indices used in the context of PVPP clustering. The initial data are a set of N daily PVPP 

referring to a specified period of time (i.e., the fall season for the past few years). Each daily 

PVPP contains d time-series observations (features). The row vector xn = [xn1, . . ., xnd] represents 

the nth PVPP for x = 1,. . ., N. The PVPP data set is represented by the matrix X = [x1,. . ., xN]. 

The clustering process creates a partitioning of the N PVPPs into K clusters with non-

overlapping PVPPs through an iterative process. Each cluster is represented by a centroid Ck = 

[Ck1,. . ., Ckd], for k = 1,. . ., K. The set of centroids is represented by the matrix C = [C1,. . ., CK]. 

The proximity measure quantifies the closeness between elements (e.g., data points and 

centroids). The proximity is measured using a similarity (distance) measure. In this thesis, the 

utilized proximity measure is the Euclidean distance given by: 
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                                         .

2.5  K-means Clustering Algorithm 

The K-means algorithm is one of the most popular algorithms used in clustering [25]. It groups a 

set of N input data points into K clusters using an iterative procedure. The number of K clusters 

is a user specified parameter that depends on the desired number of clusters based on the 

application. The average of all data points in a cluster is a representative data point called a 

centroid. The main goal of K-means is to minimize the sum of the square error over all K 

clusters. Equation (2.2) indicates the objective function J where K is the required number of 

clusters, xi is the ith data point, Ck is the centroid of the kth cluster, and N is the number of data 

points. 

                                          2

1

 | |||
i k

K N

i k
k x c

J x C
 

   

The classical K-means makes adequate geometric and statistical sense for numerical data sets but 

does not function with data sets that contain categorical data points. The formation of clusters in 

the classical K-means is significantly affected by outliers. The K-means algorithm starts by 

randomly choosing K data points as centroids. The different random initialization of centroids 

can lead to different cluster formation, even when applied on the same data set. A poor 

initialization of clusters can lead to insufficient clustering results [26]. The distance between 

each data point and each centroid is calculated using a proximity measure, such as the Euclidean 

distance. Each data point is then assigned to the closest centroid. After that, the centroid of each 

cluster is updated based on the mean of data points in that cluster. The assignment of data points 

to the closest cluster and the updating of the centroids are repeated until no data points change 

their cluster and the centroids remain the same. Figure 2.2 presents the flowchart of K-means. 

The classical K-means clustering can be summarized by the following steps [27]: 

1. Initialize K data points randomly or with some prior knowledge C = [C1, C2,…, CK]. 

 
2

1

d

ij il jl
l

D x x


 
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2. Calculate the distances between each data point x and centroid C and assign each data point 

to the nearest centroid. 

                            
 ,    if  ||  ||

     for   1, , ,   ,   and   1

|| ||

, ,
i w i w i jx C x C x C

i N j w j K
   

    
                                       

3. Recalculate the centroid for each cluster, 


 

1  
k

k
x Ck

C x
N 

   

where Nk is the number of data points in Ck. 

Repeat steps 2 and 3; terminate when there is no change for each cluster. 

 

 

 
Figure 2.2: Flowchart of the general K-means algorithm. 
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2.6 Introduction to Hierarchical Clustering 

Hierarchical algorithms can either be agglomerative (bottom-up) or divisive (top-down) [2]. An 

agglomerative algorithm starts by considering each data point as an individual cluster where 

similar clusters are merged in successive steps. Conversely, divisive hierarchical algorithms start 

with all data points in one cluster and then split successively until each data point is an individual 

cluster. The merge and split decisions are based on a similarity metric. However, different 

similarity metrics may yield different clustering results even when the same data set is used [28]. 

The resulting decomposition is represented in a convenient tree-like structure called a dendogram 

(Figure 2.3). In the dendogram each level of the hierarchy represents a particular grouping of 

data points into disjoint clusters. It is a user task to decide which level represents the desired 

clustering formation and how many clusters are desired in the sense that data points within each 

cluster are sufficiently more similar to each other than to those in other clusters [29]. 

2.6.1 Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering is the most commonly used approach in hierarchical 

clustering. It requires calculating the proximity between clusters to decide which ones to group 

together. There are various agglomerative approaches that have different distance definitions 

 

 
 
 

Figure 2.3: Dendogram of a hierarchical clustering result. 
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between clusters (Figure 2.4). The general flowchart of the agglomerative hierarchical clustering 

algorithm is shown in Figure 2.5. The next subsections define some agglomerative approaches 

and Table 2.1 presents their formulas. 

 

2.6.1.1 Single Linkage 

The single linkage (nearest-neighbour) is based on the minimum distance between two data 

points in two different clusters. The merging of clusters is based on the most similar data points 

from each cluster. Single linkage tends to form clusters that may lead to heterogeneous data 

points clustered together [30]. This procedure is sensitive to outliers, as a new data point can 

extremely alter the hierarchical clustering structure [31]. 

2.6.1.2 Complete Linkage 

Complete linkage (farthest-neighbour) is based on the maximum distance between two data 

points in two different clusters. The cluster similarity is based on the most dissimilar data points 

from each cluster. It tends to form compact sphere-like clusters [30]. This procedure finds 

 
 
 

Figure 2.4: Agglomerative hierarchical clustering procedures (a) single linkage (b) complete linkage 
(c) average linkage (d) centroid linkage. 

 

(a) (b) 

(c) (d) 



11 
 
 

 

 

compact clusters with small diameters; however, some data points in a certain cluster may be 

much closer to other clusters than the other data points in its cluster [31]. 

 

2.6.1.3 Average Linkage 

The average linkage, UPGMA (unweighted pair-group method using arithmetic averages), is a 

compromise of single and complete linkages. It is based on the average distance between all the 

pairs of data points of two clusters. In other words, it calculates the minimum and maximum of 

all the pairwise distances between the data points of two clusters to average them. Consequently, 

the resulting clusters tend to have almost equal within-cluster variability [30]. 

2.6.1.4 Centroid Linkage 

In this procedure, the centroid, which is an existing representative data point, of each cluster is 

determined first. The merging is based on the distance between two centroids. 

 
Figure 2.5: Flowchart of the general agglomerative hierarchical algorithm. 
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2.6.1.5 Ward’s Minimum Variance (WMV) Linkage 

Another commonly used procedure in agglomerative clustering is the WMV method. This 

procedure differs from the other mentioned procedures, as it utilizes the variance to evaluate the 

distances between clusters. It merges clusters if such merging increases the overall within-cluster 

variance to the smallest possible degree. 

The steps to perform a general agglomerative hierarchical algorithm are: 

1. Assign each data point to a separate cluster.  

2. Evaluate all pair-wise distances between clusters.  

3. Construct a distance matrix using a distance metric.  

4. Look for the pair of clusters with the shortest distance.  

5. Merge the pair of clusters and remove them from the distance matrix.  

6. Calculate all distances from this new cluster to all other clusters using a distance linkage 

and update the distance matrix.  

7. Repeat from step 4 until all the clusters are grouped into one cluster.  

 

Table 2.1: Formulas of agglomerative hierarchical clustering approaches. 
 

Linkage Formula 

Single linkage 
,( , ) min ( , )x X y YD X Y d x y    

Complete linkage 
,( , ) max ( , )x X y YD X Y d x y    

Average linkage 1( , ) ( , )
| | . | | x X y Y

D X Y d x y
X Y  

   

Centroid linkage 2( , ) || ||D X Y X Y    

WMV 2|| ||( , ) 1 1
x y

X YD X Y

N N





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2.7 Fuzzy C-means (FCM) Clustering Algorithm 

The FCM algorithm is one of the oldest and most ubiquitous fuzzy clustering algorithms 

developed by Dunn in 1973 and improved by Bezdek in 1981. It allows each data point to belong 

to more than one cluster with different membership degrees. This method behaves in a similar 

fashion to the K-means algorithm but each data point has a membership degree with respect to 

each cluster. Various fuzzy clustering algorithms have been developed based on the optimization 

and modification of the FCM algorithm [32]. The main objective of the FCM is based on the 

minimization of the following objective function: 

                                              2

1 1

,  ,
N C m

m ij i j
i j

J U C d x C
 

                                              

where U = [µij]n×k is a matrix with degrees of memberships of each data point in each cluster and 

µij ∈ [0, 1]. This implies that the sum of the membership values for each data point on the K 

clusters must be equal to 1. The function d(xi, Cj) is the distance between xi (the ith data point) 

and Cj (the centroid of the jth cluster), and m ∈ [1,∞) is the fuzziness parameter. The selection of 

these parameters is not an easy task and must be made by experience or by trial-and-error. Figure 

2.6 illustrates the basic FCM flowchart. 

The steps to perform FCM algorithm are [33]: 

1- Select values for the number of clusters K, fuzziness parameter m, a small positive 

threshold value ɛ, and a random set of centroids C. 

2- If t = 0, calculate, or if t > 0, update the membership matrix U: 

                                         1
2

1

1

1

( , )
( , )

t
ij

mK i j
k

i k

U
d x C
d x C



 
 

 





 
 
 



                                                 

where i = 1,…, N and j = 1,…, K 

3- Update the fuzzy centers (C) by: 
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C j K





 



  



                                       

4- Repeat steps 2 and 3 until the objective function Jm converges to a local minimum. This 

means that ||U t+1 - U t|| < ɛ. 

Various FCM clustering algorithms have appeared as a result of the utilization of different 

distance metrics and fuzziness control [27]. It should be noted that the fuzziness parameter m is a 

positive value greater than 1 and as it increases the fuzziness increases. 

 

 

 

 

 

 
 

Figure 2.6: Flowchart of FCM. 
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2.8 Introduction to Artificial Neural Networks 

Artificial neural networks (ANNs) are information processing paradigms that attempt to model 

biological nervous systems, such as the brain. The main element of this paradigm is the novel 

structure of the information processing system. An ANN is composed of a large number of 

highly interconnected processing elements called “neurones” that work together to solve specific 

problems. An ANN mimics the way people learn by example. They have the ability to learn from 

data in a supervised or unsupervised fashion. The ANN can be set for a specific application, such 

as regression, pattern recognition, or data classification through a learning process. This type of 

learning requires certain adjustments to the synaptic connections that exist between the neurones, 

as in biological systems. 

2.8.1 Self-Organizing Maps (SOM) 

 

Kohonen self-organizing maps (SOM) were developed by Tuevo Kohonen in 1982 [34]. A self-

organizing map (SOM) or self-organizing feature map (SOFM) is a topological unsupervised 

neural network that projects high-dimensional input patterns into a reduced dimensional space 

that can usually be visualized in a one-dimensional or two-dimensional lattice structure. Each 

unit in the network (lattice) is known as a neuron, and adjacent neurons are connected to each 

 

 

Figure 2.7: Structure of the SOM with hexagonal distance function. Retrieved from [7]. 



16 
 
 

 

 

other. The input patterns are fully connected to network neurons through adaptable weights. 

These weights are updated as input patterns are projected into the network, and then assigned to 

the best matching unit (winning neuron) based on a competition function. As more inputs (data 

points) are presented into the network, each neuron closest to the input vector adjusts its weight 

vector toward the input vectors. Figure 2.7 illustrates the main structure of the SOM. The 

neurons in the layer of the SOM are arranged originally in physical positions according to a 

certain topology function. MATLAB offers functions that can arrange the neurons in a grid, 

hexagonal, or random topology structure. Distances between neurons are calculated from their 

positions with a distance function. There are four distance functions in MATLAB: dist, boxdist, 

linkdist, and mandist. For the research presented in this thesis, the gridtop topology and dist 

distance functions have been used after a few trials and errors. A detailed discussion about SOM 

is given in Hagan et al. [35] and Kohonen [36]. The basic SOM procedure can be summarized in 

the following steps [27]: 

1- Random initialization of prototype (weight) vectors mj
(0), j = 1,…, K. 

2- Project an input pattern (data point) x into the network and choose the winning neuron, Jw, 

based on the minimum distance to x: 

                                             arg  min || ||w j jJ x m                                                       

3- Update the prototype (weight) vectors, 

                                               1j j cj jm t m t h t x m t       ,                                             

where hcj(t) is the neighborhood kernel function centered on the winning neuron, 

                                         
 

2

2

||||
2

c j
cj

r r
h t t exp

t




  
   

 

   ,                                             

where rc and rj are the positions of the corresponding neuron on the network, 𝜎(𝑡) is the 

monotonically decreasing kernel width, and  (t) is the monotonically decreasing learning 

rate defined by: 
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                                                 min
tt exp

T
  

 
  

 
 

 ,                                              

where 𝜂˳, 𝜂min and T𝜂˳ are the initial learning rate, the minimum learning rate, and the time 

parameter, respectively. 

4- Repeat steps 2 and 3 until the maximum number of epochs is reached or no change of 

neuron position more than a positive number is observed. 

It should be noted that in step 3 the prototype vectors are updated and moved closer to the input 

vector. The winning neuron’s weights are altered proportionally to the learning rate, whereas the 

weights for the neighbouring neurons are updated in inverse proportion to their distance [36]. 

The SOM performance is significantly sensitive to the initialization of the prototype vector 

weights. Accordingly, the mapping could generate suboptimal partitions if the weights are not 

chosen properly. The topology and distance functions can be determined based on trial and error. 

The flowchart of SOM in its basic form is shown in Figure 2.8. 

 
 

Figure 2.8: Basic flowchart of SOM. 
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2.9 Introduction to Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) methods are recently developed population based stochastic 

techniques that mimic swarm behaviour. It is considered to be a swarm intelligence technique 

[38]. Although each candidate (particle) member of the swarm moves in its own way, the swarm 

as a whole collaborates together in order to achieve a common optimization objective. Each 

particle stores its local best solution and updates it when a better solution is found. The behavior 

of particles is adjusted according to the overall best particle’s solution (global best solution). 

2.9.1 Ant Colony Clustering Algorithm 
Ant Colony clustering is an intelligent swarm-based approach that mimics the behavior of real 

ants to find the shortest path between a food source and their nest. The ants communicate and 

exchange information about the paths by means of pheromone trails. As more ants trace a certain 

path and deposit their pheromone, the more attractive this path becomes and is followed by other 

ants. Consequently, this collaborative behaviour leads to the establishment of the shortest route 

path [39]. 

This Ant Colony clustering approach uses a dedicated formulation with respect to other 

applications of Ant Colony clustering [11], [40], [41]. It can be divided into three main stages: 

initialization, first iteration, and successive iterations. 

     Initalization: In the initializtion stage, the number of clusters K and the number of ants A are 

defined. Then the initial set of centroids C(0) are randomly chosen from the data set. An initial 

N×K phermone matrix ɸ(0) is constructed by computing the distances between each data point 

and each centroid. The resulting null distances are replaced by a relatively small value ɛ to avoid 

division by zero: 

  (0)  max ( , ),ik i kr d x C   

Then, auxiliary variables based on the squared inverse of distances in ɸ(0) are calculated: 
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   
2(0) (0)1 /ik ikr                                                             

The components 𝜑′𝑖𝑘
(0) of the pheromone matrix are normalized to avoid the continuous growth of 

pheromone components in the iterative stage. This normalizing is accomplished by dividing each 

auxiliary variable by the sum of auxiliary variables occurring in the same corresponding row: 


(0) (0) (0)

1

 /
K

ik ik ik
k

  


    

     First iteration: For the number of ants a = 1,…, A, each ant generates a solution path vector 

Sa
(1) based on a probablistic criterion using the pheromone matrix components 𝜑𝑖𝑘

(0). The S(1) 

matrix is an N×A matrix that contains the solution (clusters) to which each data point is assigned 

for ant a. The generated solutions are determined by using the biased roulette wheel selection 

criterion with the probability of choice proportional to row values of the pheromone matrix ɸ(0).  

The pseudo code to implement the biased roulette wheel is as follows  [42]: 

 

1: Let i = 1, where i denotes the row index of the normalized pheromone matrix;  

2: sum = 𝜑𝑖𝑘
(𝑚), m is the iteration number; 

3: Generate rand ~ U(0, 1); 

4: while sum < rand do; 

5:    i = i + 1, (i.e., advance to the next index); 

6:    sum = sum + 𝜑𝑖𝑘
(𝑚); 

7: end while; 

8: Return i as the selected cluster for San
(m+1); 

 

The set of centroids Ca
(1) is now obtained for each Sa

(1) vector by averaging the data points 

assigned to a specified cluster. Hence, A clustering solution vectors and centroid sets are 

obtained. Each clustering solution is evaluated by a fitness function based on the sum of square 

errors: 
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 ( ) 2

1

 || ,   for    || 1, ,  
i ak

K N
m

a i ak
k x c

x C a A
 

     

where m is the iteration number. 

In this fitness function, lower values indicate better clustering solutions. Thus, the set of Sa
(m) and 

Ca
(m) leading to the lowest fitness values are considered to be the best sets, defined as S̃a

(m) and 

C̃a
(m)

, respectively, and these replace the initial ones. Finally, the pheromone matrix is updated to 

ɸ(1)  by:  

  ( ) ( ) max ( , ),m m
ik i akr d x  C

.
                                             

Differently from the initialization stage, the auxiliary variables 𝜑′𝑖𝑘
( ) are calculated by adding a 

pheromone reinforcement term to (2.13) 

  
2( ) ( 1) ( ) 1 /m m m

ik ik ikr       

The components of 𝜑′𝑖𝑘
(𝑚) of the pheromone matrix are then normalized with m = 1 to avoid  

continuous growth of pheromone components in the iterative stage: 


( ) ( ) ( )

1

 /
K

m m m
ik ik ik

k

  


    

     Successive iterations: To avoid losing the best solution sets, the solution and centroid set for 

the first ant (a=1) is set to equal S̃a
(m) and C̃a

(m)
. For the successive ants a = 2,…, A, at each 

iteration m, solution vectors Sa
(m) are generated based on the roulette wheel criterion as indicated 

in the first iteration. 

The following operations are the same as the ones mentioned in the first iteration, with the 

obtaining of the set of clusters Ca
(m) and evaluating each ant’s solution then obtaining the best 
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solution vector S̃a
(m) and set of centroids C̃a

(m)
. At the end of each successive iteration, the 

pheromone matrix ɸ(m) is updated by following (2.16) through (2.18). 

     Stop criterion: An effective criterion in heuristic methods is to stop when there is no noticable 

improvement in the fitness function after a specified number of successive iterations. For the 

purpose of preventing excessive computation time, a user defined maximum number of iteration 

is adopted here. 

    Final clustering results: The assignment of data points to clusters is achieved by taking the 

index of the highest value in each row of the pheromone matrix ɸ. Hence, the final centroids can 

be obtained by averaging the data points assigned to each cluster. 



 

 

 

 

 

 

 

First Iteration

Successive iterations

(0)
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2.9.2 Bat Clustering Algorithm 
The Bat algorithm (BA) is a swarm intelligence algorithm that was first introduced in [38] for 

solution optimization problems. It has been found to be efficient and has expanded significantly. 

Recently, clustering has been addressed by applying BA concepts [43]. 

Bats are fascinating animals that have an advanced capability of echolocation. A famous type of 

bats that uses echolocation extensively is microbats. Microbats emit a loud and short pulse of 

sound (echolocation) and wait a fraction of time for the echo to return back to their ears. 

Accordingly, bats can determine how far they are from the surrounding objects. Moreover, bats 

have the capability of distinguishing between an obstacle and prey, which allows them to search 

for prey even in darkness. When searching for prey, the loudness increases and decreases when 

approaching towards prey. The main idea of the BA is to mimic bat behavior when tracking prey. 

In order to model this algorithm, the idealization proposed by [38] can be followed as: 

1- All bats use echolocation to sense distance, and they can differentiate between food and 

prey and background barriers in some magical way; 

2- Bats fly randomly with velocity vi at position yi with a fixed frequency fmin, varying 

wavelength λ and loudness A0 to search for prey. They can automatically adjust the 

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission r ϵ 

[0,1], depending on the proximity of their target; 

3- Although the loudness A can vary in many ways, we assume that the loudness varies from a 

large (positive) A0 to a minimum constant value Amin. 

At each iteration each bat’s position yi is associated with a fitness indicator expressing its 

performance. The search is intensified by a local random walk (exploitation) and the selection of 

the best current position (solution) continues until a certain stop criteria is met. 

The Bat clustering algorithm [43] can be divided into three main stages, as follows: 

     Initialization: In this stage, the number of clusters K and the number of bats, b = 1,…, B, are 

defined. Each bat (b) is then assigned an emission rate r, a frequency value fb ϵ [fmin, fmax], 

loudness value Ab ϵ [A0, Amin], and a random solution vector (Sb) showing to which cluster each 

data point is assigned. Accordingly, an N×B matrix S is formed where N is the number of data 
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points, and each column vector represents the bth bat solution vector. The initial set of centroids 

Cb
(0) are calculated from each Sb vector by averaging the data points assigned to a specified 

cluster. The set of centroids C is also referred to the bats’ positions y. 

     Exploitation: Each solution vector Sb is evaluated by a fitness function based on the sum of 

square errors: 
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In the previous fitness function, lower values indicate better clustering results. The lowest fitness 

value is defined as ψ̃, and the corresponding Sb and yb are considered to be the best sets, defined 

as S̃ and ỹ, respectively. New B solution vectors are generated by adjusting the frequency, 

updating the velocity, and updating the positions of the bats: 
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where  denotes a random value within the interval [0, 1]. 

A new random number 2 between [0, 1] is generated, and if it is greater than the pulse rate r, a 

new local search solution is generated around y
b

(t)
, 

                                                                .t
by Я y  

,
                                                 (2.23) 

where ɛ is a small value that attempts to direct and strengthen the random walk, and Я is a 

randomly generated normal distribution vector of the same size as y. Now the distance between 

each data point and its position is computed, and each data point is assigned to the lowest 

distance solution (i.e., each data point is assigned to the nearest centroid). Then the 
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corresponding fitness is computed ψ
b

(t)
. Finally, a random number 3 between [0, 1] is generated, 

and if it is less than the loudness A and the computed fitness ψ
b

(t)
 is less than ψ

b

(t-1)
, it accepts the 

new position for that bat, increases r, and decreases A. 

     Updating clustering results: In this stage if one of the generated positions improves the best 

fitness function, then S̃ and ỹ are updated. 

     Stop criterion: This process continues until a user-predefined maximum number of iterations 

M is reached. Then the final set of centroids C can be obtained from ỹ. 
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Figure 2.10: Flowchart of Bat clustering algorithm. 
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2.10 Validity Indices 

Various clustering algorithms have been developed. They behave differently depending on the 

features of the data set and the assumptions in defining clusters. In addition, for the same data 

set, the clustering algorithm can present different results when different parameters are tweaked 

[44]. Therefore, the produced clustering results require evaluation to find the partitioning that 

best fits the underlying data set. Clustering validity indices are usually utilized to measure the 

quality of the clustering results. There are three approaches of validation indices: external 

indices, internal indices, and relative indices [44]. External indices measure the agreement 

between two partitions. The first partition is the a priori, a pre-specified clustering structure of 

the data set, such as labels, and the second partition results from the clustering procedure. 

Internal indices are used to measure the goodness of the clustering structure without any external 

information. The relative validity indices use external or internal indices to compare different 

clustering algorithms with each another. Internal validity indices are appropriate for evaluating 

the partitioning of clustering algorithms, as it is an unsupervised task where pre-specified 

knowledge about the classification of the data set is unavailable. There are various internal 

validity indices for crisp and fuzzy clustering algorithms that have different aspects in measuring 

the optimization of clustering. 

The approach of a validity index in assessing clustering consists of running a clustering 

algorithm several times for different numbers of partitions (clusters) and selecting the clustering 

result that optimizes the validity index. The evaluation of the optimal clustering partition is based 

on two parameters: compactness and separateness. The compactness is defined by the closeness 

of the members (data points) of each cluster. The separateness is defined by the distance of 

separation of the clusters, which should be as separated from each other as possible. It should be 

noted that various distance matrices are utilized to measure the compactness and separateness. 

Thus, the main goal of a cluster validity index is to identify a compact and separate partition of 

clusters that presents the optimal clustering quality [45]. The following are compactness and 

separation formulas: 
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In the next subsections nine validity indices based on properly defined metrics and indicators are 

introduced: the DBI, Dunn, SI, BIC, XB, J, CDI, MIA and WCBCR. 

2.10.1 Davies-Bouldin Index 

The DBI [46] identifies clusters with high compactness and low separateness. It is a function of 

the ratio of the sum of the within cluster scatter to the between cluster separations defined as: 
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where d̂(Ωi) and d̂(Ωj)  are the average distances between all data points in cluster i and j to their 

respective cluster centroids and d(Ci, Cj) is the distance between the centroids of clusters i and j, 

respectively. A smaller Davies-Bouldin value indicates compact clusters and large distances 

between cluster centroids. 

2.10.2 Dunn Index 

The Dunn’s index identifies a clustering scheme as a ratio between the minimal inter-cluster 

distances to the maximal intra-cluster distance. This can be achieved by the following formula 

[47]: 
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where d(Ck) is the intra-cluster distance of cluster k. It can be observed that large values indicate 

the existence of compact and well-separated clusters. Thus, the number of clusters chosen for a 

particular algorithm is the one that generates the largest value as an optimum number of clusters. 

2.10.3 Silhouette Index (SI) 

The SI [48] calculates the silhouette width for each data point, average silhouette width for each 

cluster, and the average silhouette width for the entire data set. 

For a given cluster Ck, this approach assigns a quality measure to each data point in Ck, known as 

the silhouette width. The silhouette width is a confidence indicator on the membership of the ith 

data point in cluster Ck and is defined by the following formula: 

 

                                                        
 

( ) ( )( )
max ( ), ( )

b i a is i
a i b i


  ,                                                (2.28) 

 

where a(i) is the average distance between the ith data point and all data points in the same cluster 

of Ck, and b(i) is the minimum average distance between the ith data point and all data points not 

included in the same cluster. The s(i) value will vary between -1 ≤ s(i) ≤1. A value close to 1 

indicates that the data point i is classified to the right cluster, whereas a value close to -1 indicates 

the misclassification of that data point. A value close to 0 indicates that a data point contained 

within one cluster is at an equal distance away from another cluster and could be contained within 

either cluster. The average silhouette width that represents the heterogeneity of a given cluster Ck 

is calculated by: 
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where n is the number of data points in s(i). The overall global silhouette width denoted by GS is 

defined by: 
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In order to choose the optimal number of clusters using the SI index, the clustering that presents 

the maximal GS is chosen. 

2.10.4 Bayesian Information Criterion (BIC) 

The BIC [49] is a criterion for model selection to fit into a given data set. The formula for BIC is 

based on [50], as follows: 
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where L(θ) is the log-likelihood function of data point x. Assuming a Gaussian distribution of the 

data, the maximal likelihood estimate for the variance of the kth cluster is given by: 

                                        2

1

1  ||||
kN

j k
i jk

x C
N K 

 


                                         (2.32) 

 

The final BIC formula can be written as: 
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where d is the dimension of the patterns. The maximal BIC value indicates strong evidence for 

the correct number of clusters. 

2.10.5 Xie-Beni (XB) index  

The XB validation index [51] involves the U matrix (from FCM) and data set to evaluate the 

clustering of fuzzy algorithms. However, it can be applied to validate the clustering of crisp 

algorithms. The XB index is defined as the ratio of the total variation to the minimum separation 

of the clusters. It can be calculated by [52]: 
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Small values of XB define compact and well-separated clusters. 

2.10.6 Mean Square Error or Error Function (J) 

The J function [4] expresses the distance of each data point from its cluster centroid with the same 

weight values: 
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The J function is a decreasing function regarding the number of clusters. When it reaches a knee 

point, the optimum number of clusters can be found. 

2.10.7 Clustering Dispersion Indicator (CDI) 

The CDI [4] is the ratio of the mean intra-set distance between data points in the same cluster 

(d̂(Ωk)) and the intra-set distance between the cluster centroids (d̂(C)): 
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Lower CDI values indicate better clustering results. However, an increasing number of clusters 

decreases the CDI value. A knee point can define the optimum number of clusters. 

2.10.8 Mean Index Adequacy (MIA) 

The MIA [4] is the average of distances between each data point assigned to the same cluster 

(𝛺𝑘) and its centroid: 
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The choice of the number of clusters is similar to that in CDI. 

2.10.9 Ratio of within-cluster sum-of-squares to between-cluster variation 

(WCBCR) 

The WCBCR [53] depends on the sum of squared distances between each data point and its 

centroid as well as the distances between centroids: 
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The choice of the number of clusters is similar to CDI and MIA. 

2.11 Principle Component Analysis (PCA) 

Principle Component Analysis (PCA), invented by Karl Pearson in 1901 [54], is a technique 

usually used to reduce the dimensionality of large data sets while retaining as much variation as 

in the original data. The PCA is based on an orthogonal linear transformation that transforms the 

data into a new coordinate or feature space. The components of the new space are uncorrelated, 

in a sense that the first coordinate (first principle component) lies in the direction of the greatest 

variance of the original data set. The second principle component lies in the direction of the 

second greatest variation in the original data set and so on. In order to reduce the dimensionality 

of the data, the higher principle components that retain the least variance of the original data set 

are neglected [54], [55]. 

The PCA is one of the most popular techniques for feature generation. It has been used 

extensively in feature generation in order to reduce the dimensionality of features in data sets. 

The steps of applying PCA can be summarized as follows [56]: 
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1- Consider an N×d data set, where N is the number of data points, and d is the number of 

features (pattern) for each data point. 

2- Calculate the mean value of each feature (column). 

3- Subtract the mean value from each feature. The result is an N×d matrix Z with zero mean 

features. 

4- Calculate the covariance matrix Cov using equation (2.39). 

                                              
1  (   )T

N N N d N dCov Z Z
d                                           (2.39) 

5- Calculate the eigenvectors and eigenvalues λ. 

6- Sort the columns of the eigenvector matrix in descending order according to the 

eigenvalues. The result is an N×N matrix Y with principle components (PC) in the 

highest order of retained variation. 

7- Select the number of PCs L from matrix Y. Hence, an N× L matrix V is formed. 

 

The PCA in this thesis was done using the MATLAB function “princomp”. The number of PCs 

was chosen based on retaining at least 95% of the variation from any given data set. 
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Chapter 3 

PVPP Clustering Methodology and Application1,2 

3.1 Introduction 

This chapter presents the methodology to cluster PVPPs using clustering methods and validity 

indices discussed in the previous chapter. The main idea of the presented method is to use a great 

amount of historical data in an efficient and intelligent manner, while preserving the temporal 

information. The steps for preparing the data (including data acquisition, cleaning, and 

conversion) are highlighted in this chapter. Six clustering algorithms from various clustering 

categories are tested to investigate the appropriate method for establishing the PVPP grouping 

process. The criteria used to choose the best clustering algorithm and the optimum number of 

clusters is discussed. The application of the methodology is applied on a real data set and the 

results are discussed.   

3.2 General Methodology 

The clustering of PVPPs is achieved by applying a pattern recognition methodology on historical 

time series data. This historical data consists of irradiance and ambient temperature at a certain 

site for the past couple of years with an appropriate time resolution. The time resolution should 

be able to capture the short-term fluctuations in the irradiance and ambient temperature. The data 

is to be converted to daily PVPPs. The next step is to group together the PVPPs that have similar 

features and choose a representative for each group. The representative PVPPs can be used 

instead of the original data set. The general layout of the method is presented in Figure 3.1 and 

the basic steps are discussed in the following sub-sections. 

___________________________ 
1Part of Chapter 3 of this thesis has been published as: A. A. A. Munshi, and Y.  A.-R. I. Mohamed, “Photovoltaic power pattern grouping based 

on bat bio-inspired clustering,” Proc. 40th PVSC, pp.1461-1466, 8-13 June 2014. 
2Chapter 3 of this thesis has been submitted as: A. A. Munshi, and Y. A.-R. I. Mohamed, “Photovoltaic power pattern clustering based on 

conventional and swarm clustering methods”, submitted to IEEE Systems Journal, Sep. 2014. 
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3.2.1 Data Pre-processing 

Input: Historical irradiance and ambient temperature for a certain location with proper time steps. 

Output: Noise-suppressed daily time series of irradiance and ambient temperature. 

Description: The irradiance and ambient temperature data for the past few years are divided into 

segments where each segment represents a day. The daily time series patterns of irradiance and 

ambient temperature are examined for normality. 

 

 
Data Preprocessing 

The irradiance and ambient temperature are divided into daily segments and 

examined for normality 

 

Data Conversion 

The data is converted into the corresponding PV power  

 

Data Segmentation 

The PVPP data is segmented into seasonal categories 

 

Clustering of PVPPs 

PVPPs are grouped into clusters using various clustering methods 

 

Validation of Clustering 

The grouping of each clustering method is evaluated using validity indices 

Historical irradiance and ambient temperature data 

 

 

Figure 3.1: Layout of the methodology. 
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3.2.2 Data Conversion 

Input: Noise-suppressed daily time series irradiance and ambient temperature. 

Output: Time series of the corresponding AC power of the PV system (PVPP). 

Description: The AC power output time series of the PV system can be estimated from the 

irradiance and ambient temperature time series data by using an appropriate model. 

3.2.3 Data Segmentation 

Input: Time series of PVPPs. 

Output: Categorical segments of daily PVPPs. 

Description: Each year can be divided into categorical segments (e.g., seasonal categories). The 

similar categories for each year are segmented together. 

3.2.4 Clustering of PVPPs 

Input: Categorical segments of PVPPs. 

Output: Different groupings of PVPPs from each clustering method. 

Description: Each category of data is clustered by each clustering method. The results are 

different groupings of data, clustered according to the perspective of the applied clustering 

method. 

3.2.5 Validation of Clustering 

Input: Grouping results of each clustering method. 

Output: Validity index values. 

Description: The results of the clustering methods are evaluated by properly defined metrics and 

indicators (validity indices). An evaluation value with respect to the utilized validity index is an 

indicator of how well the clustering method grouped the data. 
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3.3 Data Preprocessing 

The irradiance and ambient temperature time series data are obtained from a weather station for a 

certain site with an appropriate time resolution. This step can be divided into two sub-steps: 1) 

the irradiance and ambient temperature time series data are divided into segments where each 

segment represents a day. The daily patterns of irradiance and ambient temperature are row 

vectors and each column is an observation of irradiance/temperature at a certain time step. The 

common periods when there is no irradiance are removed to reduce the dimensionality of the 

data. 2) The daily patterns of irradiance and ambient temperature are examined for normality in 

order to modify or delete values that are observed to be incorrect (noise suppression). 

3.3.1 Irradiance Time-resolution and Periods Required 

The time resolution of the irradiance data should be able to capture the fluctuations of the 

irradiance as it affects the power output of PV systems. In addition, time resolution plays an 

important role in the accuracy of the results. 

In order to study the performance and impacts of PV systems, the time steps of irradiance data 

should be high enough to capture the sub-hourly fluctuation of irradiance [57]. Moreover, 

irradiance data with high sub-hourly time steps will have higher auto-correlation coefficients 

values than irradiance data with a one-hour time resolution [58]. Figure 3.2 compares between 

fluctuations in irradiance of a day for one hour, 30 minutes, and ten minutes. It can be observed 

that the one-hour time step is not able to capture fluctuations in irradiance during the day. The 

30-minute time step can capture fluctuations, but much of the temporal information is lost. On 

the other hand, the ten-minute time step can capture fluctuation with more temporal information 

and provide more accurate results. The choice of time step is also determined by the availability 

of the data. 

Periods when no irradiance is available are removed, as no PV power can be generated during 

those periods. Figure 3.3 plots the daily irradiance values for one year of the on-hand data; it can 

be observed that periods from 8:00 PM to 4:00 AM have no irradiance consistently throughout 

the year and can be removed in order to reduce the dimensionality of the data. The removal of 
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periods when no irradiance exists can vary from one data set to another depending on the 

location of the obtained data.  

 

 

 

Figure 3.2: Captured fluctuations in irradiance for various time-steps: a) one-hour b) 30-minutes c) ten-minutes.  
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Figure 3.3: Daily irradiance patterns for one year.  

 

3.3.2 Noise Suppression 

The obtained data from weather stations are likely to include outliers due to errors in 

measurements. The days where irradiance values greater than 1360W/m2 [59] and night-time 

periods where irradiance is observed are removed. Also, days where ambient temperature values 

are unavailable or abnormal are removed. 

3.4 Data Conversion 

The irradiance and corresponding ambient temperature data are used in a PV model to calculate 

the maximum DC power output of the PV system. In order to calculate the AC power generated 

from the PV system, it should be noted that the DC power generated from a PV array is affected 

by several factors, such as the power loss due to dust, the power loss due to module parameter 

mismatch, and the power loss due to the DC current ripple caused by the converter [60]. 

The AC power output time series of the PV system can be estimated from the irradiance and 

ambient temperature time series data by the following two steps [60]: 

1. The calculation of the DC power (Pdc) output generated from the PV system using a 

suitable PV model and using the PV module data sheet is as follows: 
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where Tc is the cell temperature, Tamb is the ambient temperature, S is the irradiance, NOCT is the 

operating cell temperature at Standard Test Conditions (STC: S=1000W/m2, Tamb=25ºC), and 

Pmax is the maximum rated power. 

2. The calculation of the AC power (Pac) output generated from the PV system using the 

manufacturer’s efficiency curve is as follows: 

 

                                                      ac dc mismatch dirt inverterP P       ,                                         (3.3) 

 

where 𝜂mismatch, 𝜂dirt, and 𝜂inverter are array to mismatched modules, dirt loss, and inverter 

efficiency, respectively. 

The AC power output of the PV system for each day at each observation constructs the daily 

PVPP data. 

3.5 Data Segmentation 

After the conversion step, the daily PVPPs of the PV system are obtained. The data is first 

segmented into years. In this case, 365 PVPPs are available for each year. Each year can be 

divided into seasonal segments (i.e., fall, winter, spring, and summer). The similar seasonal 

category segments are then grouped together in the same data set. This leads to groupings of data 

that have close profiles and can be clustered more efficiently. 

3.6 Data Clustering 

The main objective of the data-clustering step is to group together PVPP with close patterns in 

the same cluster and presenting a cluster representative. Each clustering algorithm produces 
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different clusters and thus, different cluster representatives. Therefore, it is necessary to apply 

several clustering algorithms in order to choose the most appropriate algorithm for PVPP data 

clustering. 

For each segment of PVPP time series data, a combination of conventional clustering algorithms 

and bio-inspired swarm optimization clustering algorithms are applied. The conventional 

clustering algorithms are chosen because of their extensive utilization in literature. In addition, 

each one represents a clustering category, except for Ant Colony and Bat, which both fall in the 

same category. K-means is a representative of partitional clustering. Hierarchical clustering is a 

representative of agglomerative clustering. The FCM is a representative of fuzzy clustering 

methods. The SOM is a representative of neural network based algorithms. Ant Colony and Bat 

are representatives of bio-inspired optimization methods. Those clustering algorithms are used to 

assign the PVPP into clusters, so that PVPPs in the same cluster are more similar to each other 

than those in other clusters. From each cluster, a representative PVPP (centroid) can be obtained. 

Thus, the set of centroids can be used to represent the whole data set. 

3.7 Validation of Clustering 

The validation of clustering results obtained by clustering methods is a fundamental part of the 

clustering process. Although clustering validation is a difficult task and lacks theoretical 

background, examining the compactness and separation of clusters can provide an indication of 

how well the data are partitioned [61]. The clustering results are evaluated in order to determine 

the optimum number of clusters and the most efficient clustering algorithm for PVPPs. Various 

validity indices based on different metrics and indicators are utilized to investigate which ones 

are able to present adequate information about the optimum number of clusters. The success of 

choosing the number of clusters is expressed by detecting the index’s best value at the knee 

point. 

From the previous step, each clustering algorithm produces different clusters and different 

centroids. Therefore, it is essential to evaluate clustering results in order to choose the most 

suitable algorithm for clustering the PVPPs. The comparison among the clustering algorithms’ 

results is held by the utilization of clustering validity indices based on properly defined metrics 
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and indicators. In order to evaluate the clustering results of each algorithm in a comprehensive 

manner, nine internal validity indices are employed: DBI, Dunn, SI, BIC, XB, J, CDI, MIA and 

WCBCR. 

3.8 Simulation Results 

The methodology was applied on data concerning three consecutive past years (2010-2012) with 

ten-minute time-steps of irradiation and ambient temperature from the Solar Radiation Research 

Laboratory [62]. The location of the obtained data has a latitude of 39.74ºN and a longitude of 

105.18ºW. The irradiance data with this high time resolution (ten minutes) can lead to better 

accuracy due to the autocorrelation coefficients that will have higher positive values as compared 

to those obtained for data with lower time resolutions [58]. Thus, the 10-minute time resolution 

will result in 144 observations per day. The data were then examined for normality to remove 

abnormal and error recorded observations in irradiance or ambient temperature values. For 

example, two days of the year of 2011 were removed as the irradiance values were “-99999” for 

the whole day. In order to reduce the dimensionality of the data set, the periods when the 

irradiance is not available are removed. Thus, each day (data point) is limited to the period 

between 4:00 AM and 8:00 PM, which corresponds to 96 ten-minute time steps per day. The 

resulting data from the data pre-processing step for the three years were 1089 ten-minute daily 

irradiance and ambient temperature data points. The data was then converted to an AC power 

time series with respect to the SUNPOWER E20/435 solar panel data sheet [63]. The resulting 

data became 1089 row vectors of PVPPs. The data was segmented into four seasonal categories 

(i.e., fall, winter, spring, and summer) to obtain data sets with close profiles. The resulting data 

from the data segmentation step for the three years were 272, 270, 274, and 273 days for fall, 

winter, spring, and summer, respectively. For each of the clustering methods, 50 executions are 

carried out for two up to 20 clusters. The best result for each validity index among the 50 

executions of each clustering method was registered. 
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3.8.1 Application of K-means 

The K-means method was applied with 200 replicates. At each replicate a new set of initial 

centroids were chosen. The solution with the lowest intra-cluster distances was recorded. 

3.8.2 Application of Ward’s Hierarchical Clustering 

Ward’s hierarchical clustering was applied and cut-off at different levels to partition the data 

from two to 20 clusters. It should be mentioned that there are no other parameters for calibration, 

such as the maximum number of iterations. The dendogram for the fall data set is shown in 

Figure 3.4. 

 

Figure 3.4: Dendogram for the fall data set using Ward’s hierarchical clustering.  

 

3.8.3 Application of FCM 

The FCM algorithm was applied with different fuzziness values m = {2, 4, 6, 9}. The maximum 

number of epochs is 500 for the four scenarios and the upper limit of weight change between 

sequential iterations ɛ = 10
-4

. The results of all adequacy values improved as the fuzziness 
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parameter increases. For lower fuzziness values m = {2, 4, 6}, dead clusters were produced, as 

shown in Figure 3.5. Hence, the simulations were applied using FCM with m = 9. 

 

 
 

Figure 3.5: Dead clusters for the FCM method on fall data with m = {2, 4, 6, 9} for two to 20 clusters. 

 

 

3.8.4 Application of SOM 

The SOM has many parameters that can affect clustering results. The initial value, 𝜂0, the 

minimum value, 𝜂min, the learning time rate, T𝜂0, and the number of epochs are calibrated in order 

to improve the neural network’s behaviour. The SOM process was repeated for different values 

of learning rates, T𝜂0, and number of epochs with 𝜂0 = 0.9 and 𝜂min = 0.02. The sensitivity of the 

ratio of WCBCR to the T𝜂0 and epochs parameters is presented in Figure 3.6. 
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Figure 3.6: WCBCR values with respect to T𝜂0 = {100,500,1000} and epochs = {100,500,1000} for mono-
dimensional SOM with nine clusters. 

 

3.8.5 Application of Ant Colony 

The results of the parametric analysis were determined on the number of ants in the initialization 

and successive steps. The algorithm has been performed with 50 repetitions with A = {20, 50, 

and 100} and the solutions giving the best validity values were recorded. An overall best value 

when the number of ants increases has not been demonstrated (Figure 3.7). However, increasing 

the number of ants increases the number of fitness evaluations, directly proportional to the 

number of ants and iterations. 

 
Figure 3.7: WCBCR values with respect to A = {20, 50, 100} for Ant Colony for two to 20 clusters. 
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3.8.6 Application of Bat 

The Bat algorithm was performed with B = 50, A = 0.5, r = 0.5, and fmin = 0. The fmax and M 

parameters were calibrated to investigate their effect on adequacy measures. The overall best 

validity values were produced when fmax = 0.9 and M = 50 (Figure 3.8). 

 

Figure 3.8: WCBCR values with respect to fmax = {0.2, 05, 0.9} and M = {50, 100} for Bat at ten clusters. 

 

 

3.9 Comparison of Clustering Algorithms and Validity Indices 

The best results for each of the aforementioned clustering algorithms on the fall data are 

presented in Figure 3.9. The K-means had the smallest values for the mean square error J and 

competitive values for WCBCR and CDI. The Hierarchical WMV had the best behaviour for 

XB. While FCM presented the overall worst results, it was not included in the DBI and XB plots 

as it produced abnormal values compared to all other clustering methods. The SOM and Ant 

Colony methods had an overall average performance on the validity indices but have not shown 

overall best results on any of validity indices. The Bat method presented the best behaviour for 

DBI, SI, WCBCR, CDI, and MIA. Moreover, the Bat algorithm demonstrated competitive results 

on all other validity indices. 
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By comparing the measures of all validity indices with each other, an optimum number of 

clusters cannot be explicitly determined. Therefore, only indices that present adequate measures 

for all clustering algorithms will be used. For WCBCR and CDI indices, the performance 

improved as the number of clusters increased for the majority of clustering algorithms. In 

addition, all clustering algorithms had relatively similar measures with respect to those indices. It 

can be observed that the utilization of WCBCR is slightly better than CDI as it combines the 

distances of input data from the representative clusters and distance between clusters, which 

covers the J and CDI characteristics [10]. Therefore, the WCBCR was used to detect the 

appropriate number of clusters, while the CDI could be used to verify the number of clusters, as 

it is practical to use more than one validity index in evaluating a clustering method and choosing 

the optimum number of clusters. In Figure 3.9(d) the WCBCR index for two to 20 clusters for 

the fall is presented. The number of optimum clusters corresponds to the knee of the respective 

curve [10], [16], [17]. However, the values for clusters two to four are large. If these values are 

removed a knee point can be better observed. From Figure 3.10 there are a few possible knee 

     

   

   
Figure 3.9: The best results of each clustering method for the fall season of the three-year data set of PVPPs 

for two to 20 clusters: (a) DBI (b) SI (c) BIC (d) WCBCR (e) CDI (f) XB (g) J (h) MIA (i) Dunn. 
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points between five and 12 that can be selected. In addition, the improvement of the index values 

is not significant after that. However, the knee point cannot be explicitly detected. For that, the 

angle-based method [49], [64] (Appendix A) on the WCBCR values of the Bat method was used 

to detect the knee points. Figure 3.11(a) presents the successive difference between points of the 

WCBCR index values of the Bat method. The method was able to detect four knee points at 

eight, 12, 14, and 18, with eight clusters having the largest knee angle. In order to validate this 

number, the CDI index was used. By applying the same method on the CDI index (Figure 

3.11(b)), it can be observed that eight clusters can be an optimum number of clusters to represent 

the fall PVPP data. The comparison of validity indices values of the clustering algorithms for 

eight clusters is shown in Table 3.1. It can be observed that the Bat clustering algorithm 

presented the best performance on WCBCR and CDI indices; moreover, it presented the overall 

best performance results. 

 

 
Figure 3.10: The best results of each clustering method for the fall data set of PVPPs for 5 to 20 clusters:  

 (a) WCBCR. (b) CDI. 
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Figure 3.11: The successive difference for the angle-based method on the Bat clustering results for the fall data set of  

PVPPs for two to 20 clusters:  (a) WCBCR (b) CDI. 
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The compactness and separation of the best clustering results for each clustering method showed 

that the best results for compactness and separation were obtained from the Bat method (Table 

3.2). It should be noted that in Table 3.2 the best clustering results for each clustering method 

were chosen based on the WCBCR value. 

The results for the clustering algorithms on winter, spring, and summer data are presented in 

Appendix B. 

The representative PVPPs with their confidence limits for the eight clusters of fall produced by 

the Bat algorithm are presented in Figure 3.12. The intermediate area between the confidence 

limits has a probability of occurrence of 70% assuming normal distribution. 

 

 

Table 3.1: Validity indices of clustering algorithms for eight clusters of fall. 

Validity index DBI Dunn SI BIC ×104 WCBCR CDI XB J MIA 
K-means 1.349 0.543 0.208 -2.647 1.565 1.264 1.160 347.86 109.15 

Hierarchical WMV 1.439 0.970 0.309 -2.640 1.899 1.992 0.686 452.55 124.49 

FCM 7.030 0.056 0.122 -2.638 3.033 1.818 78.145 426.35 120.84 

SOM 1.869 0.491 0.197 -2.647 1.754 1.392 1.276 369.72 112.53 

Ant Colony 1.742 0.617 0.250 -2.634 2.194 2.038 2.217 401.69 117.29 

Bat 1.402 0.719 0.299 -2.631 1.165 1.119 1.150 352.20 109.83 
 
 

Table 3.2: Comparison of clustering algorithms w.r.t compactness, separation, and CPU for eight clusters on fall data. 

Clustering method Compactness 
Intra-cluster dist. 

Separation 
Inter-cluster dist. 

CPU time(second) 
Best Worst Average 

K-means 413.823 923.078 8.1616 9.4534 8.7224 

Hierarchical WMV 452.546 897.477 0.0876 0.2035 0.1000 

FCM 398.745 800.907 0.0684 0.3835 0.1648 

SOM 428.323 899.042 21.0917 22.8013 21.3620 

Ant Colony 450.102 855.981 9.5542 10.0377 9.7180 

Bat 379.831 1.0120×103 11.9034 12.5303 12.1348 
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3.10 Summary and Conclusions 

In this chapter, the methodology to cluster PVPPs was presented in detail. Six clustering 

algorithms from different clustering categories have been tested in order to investigate the 

appropriate method for establishing the PVPP grouping process. The clustering algorithms that 

have been applied were as follows: K-means, Hierarchical WMV, FCM, SOM, Ant Colony and 

Bat. The clustering results of each method have been evaluated by nine validity indices (DBI, 

Dunn, SI, BIC, XB, J, CDI, MIA, and WCBCR) in order to obtain the optimum number of 

clusters that best fits the PVPP data and investigate the most efficient clustering method and 

validity index. 

In addition to the conventional clustering methods, this chapter introduced bio-inspired swarm 

clustering methods to cluster PVPPs. The comparison of the clustering algorithms of different 

       

        

        

        
 

Figure 3.12:  PVPPs with respective confidence intervals using Bat, assuming eight clusters. 
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characteristics and categories showed that bio-inspired swarm clustering methods were 

comparable to those conventional methods. Additionally, the clustering results of the Bat 

algorithm were the most efficient and outperformed the other clustering methods in many 

validity indices measures. However, it corresponds to increased complexity, as the number of 

parameters should be a priori calibrated. 

The compactness and separation of the best clustering results for each clustering method showed 

that the best results for compactness and separation were obtained from the Bat method (Table 

3.2). It should be noted that the best clustering results for each clustering method were chosen 

based on the WCBCR value. This supports the claim that the WCBCR validity index is an 

efficient indictor in evaluating PVPP clustering results. As it is practical to use more than one 

validity index, the angle-based method on the CDI index values also verified the values obtained 

by the WCBCR index. It can be observed from Table 3.2 that for the best two clustering methods 

(Bat and K-means), K-means outperformed Bat with respect to CPU time. Those observations 

were applicable to all other seasons as well. 
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Chapter 4 

Comparisons Among Bat Algorithms with Various Objective 

Functions on Clustering PVPPs3 

4.1 Introduction 

From the results of the previous chapter, it was observed that the Bat clustering algorithm with 

the minimum mean square error, J, as an objective function (Bat J) outperformed the other 

clustering algorithms. Therefore, this chapter proposes five different versions of Bat algorithms 

as an attempt to enhance the clustering results. Each algorithm has a different objective function. 

The five proposed Bat algorithms are: Bat based on the Davies Bouldin Index (Bat DBI), Bat 

based on the Dunn index (Bat Dunn), Bat based on the clustering dispersion indicator (Bat CDI), 

Bat based on mean index adequacy (Bat MIA) and Bat based on within-cluster sum-of-squares to 

between-cluster variation (Bat WCBCR). The K-means clustering algorithm is also included in 

the comparison because of its extensive utilization in power pattern clustering. The 

dimensionality of the data is reduced by application of the PCA method in order to reduce 

clustering CPU time. This chapter presents the results of a detailed investigation of the 

performance of Bat clustering algorithms based on various objective functions to establish the 

grouping process of PVPPs. 

4.2 General Methodology 

The clustering of PVPPs is achieved by applying a similar methodology to that discussed in 

Chapter 3.2, except that the PVPP data is subjected to a dimension reduction technique known as 

PCA before applying the clustering algorithms. The layout of the methodology to investigate the 

performance of  Bat  clustering algorithms based on  various objective functions and  K-means to 

___________________________ 
3Chapter 4 of this thesis has been submitted as: A. A. Munshi, and Y. A.-R. I. Mohamed, “Comparisons among bat algorithms with various 

objective functions on grouping pv power patterns”, submitted to IEEE Transactions on Industrial Electronics, Sep. 2014. 
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establish the grouping process of the dimension reduced PVPP data is shown in Figure 4.1. The 

pre-processing, data conversion, and data segmentation steps have been discussed previously in 

detail in Chapter 3.2. The data dimension reduction, data clustering, and evaluation and analysis 

of clustering results steps are discussed in the following sections. 

 

 
Data Preprocessing 

The irradiance and ambient temperature are divided into daily segments and 

examined for normality 

 

Data Conversion 

The data is converted into the corresponding PV power  

 

Data Segmentation 

The PVPP data is segmented into seasonal categories 

 

Data Dimension Reduction 

The PCA is applied and PCs that retain at least 95% are included 

 

Clustering of PVPPs 

PVPPs are grouped into clusters using various clustering methods 

 

Historical irradiance and ambient temperature data 

Evaluation and Analysis of Clustering Results 

The grouping of each clustering method is evaluated using validity indices 

 

 

Figure 4.1: Layout of the methodology. 
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4.3 Data Dimension Reduction 

In the pre-processing step, periods when the irradiance was not available were removed. That 

reduced the dimension of the data significantly. In order to reduce the remaining features, a 

feature generation technique (PCA) is employed to reduce the dimensionality of the PVPP data. 

The number of the features or principal components (PC) after applying the PCA should retain 

around 95% of the variation to achieve more accurate results. This step investigates the ability of 

the PCA to generate a set of features built in a reduced dimensional space but able to 

satisfactorily preserve the characteristics of the original PVPP data by using a significantly 

reduced number of features. For this purpose, the original N PVPPs are subject to a feature 

transformation process that maps them into a new dimensionally reduced data set. 

4.4 Data Clustering 

For each segment of PVPP time series data, seven clustering algorithms (K-means and six 

versions of Bat with different objective functions: Bat J, Bat DBI, Bat Dunn, Bat CDI, Bat MIA 

and Bat WCBCR) are used to assign PVPPs into clusters, so that patterns in the same cluster are 

more similar to each other than those in other clusters. From each cluster, a representative PVPP 

(centroid) can be obtained. Thus, the set of centroids can be used to represent the whole data. 

The various objective functions for the Bat clustering algorithms are mainly validity indices 

integrated into the Bat algorithm. The definitions of the six validity indices (DBI, Dunn, J, CDI, 

MIA and WCBCR) were presented previously in Chapter 2.10. 

4.5 Evaluation and Analysis of Clustering Results 

From the previous step, each clustering algorithm produces different clusters and different 

centroids. Therefore, it is essential to evaluate the clustering results in order to choose the most 

suitable algorithm for clustering the PVPPs. The evaluation is based on the validity index values, 

the measurement of intra-cluster distance (compactness), and inter-cluster distance (separation) 

of the produced clusters. The compactness is represented by the average overall value of the 
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average distances of data points between their mean (centroid). The compactness can be defined 

by the following formula: 

 

                                
1
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Compactness x C
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      .                                     (4.1) 

 

The separation is measured by the overall average sum of distances between the centroids of a 

pair of clusters and is defined as: 
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4.6 Application of Bat Clustering Algorithms on PVPP Data 

This methodology was applied on two data sets concerning the past three years with ten-minute 

time steps of irradiation and ambient temperature. 

The first data set is from the Solar Radiation Research Laboratory [62] with the location latitude 

of 39.74ºN and longitude of 105.18ºW for three consecutive years (2010-2012). The data was 

then converted to an AC power time series with respect to the SUNPOWER E20/435 solar panel 

data sheet [63]. In order to reduce the dimensionality of the data set, the periods when the 

irradiance is not available were removed. Thus, each PVPP is limited to the period between 4:00 

AM and 8:00 PM, which corresponds to 96 ten-minute time steps per day. Then the original 

PVPP data was segmented into four seasonal categories (i.e., fall, winter, spring, and summer). 

The use of PCA for reducing the dimensionality of the four seasons’ data while retaining at least 

95% of the total variance resulted in 13, 13, 18, and 24 PCs for fall, winter, spring, and summer, 

respectively. The Pareto diagram (Figure 4.2) shows the amount of the total variance using the 

first ten PCs for the summer PVPP data. For each season, the reduced PVPP data are normalized 

with respect to the maximum power contained in the PVPPs, as such, all PVPPs values fall 

between the [0,1] range. For each of the aforementioned clustering algorithms, 20 executions 

were conducted for two up to 20 clusters. The parameters for all Bat algorithms are defined in 
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Appendix C. In order to evaluate the performance of the clustering results, the original PVPP 

data was used, and the best result for each validity index among the 20 executions of each 

clustering algorithm were registered. 

 

The validity indices (J, DBI, Dunn, CDI, MIA, and WCBCR)
 
were used to evaluate the 

performance of the clustering algorithms. The measurement of compactness and separation of 

the produced clusters was considered, as they form a key indicator that reflects the output quality 

of the clustering algorithm. It should be noted that the main objective of clustering is to achieve 

high values of separation and low values of compactness. The results illustrated in Figure 4.3 

show that the information provided by the clustering validity indices was inconsistent. Some 

clustering algorithms show adequate results on certain validity indices but average results on 

other validity indices. Thus, an optimum number of clusters cannot be explicitly determined. For 

this purpose, the compactness and separation of the partitioning of each clustering algorithm 

should be examined, in order to investigate the best combination of clustering algorithm and 

validity index that presents the most compact and separate partitioning of PVPPs. It can be 

observed from Figure 4.3 that the knee points [10], [16], [17], were in the range of eight to 12 for 

the summer PVPP data. For that, the compactness and separation from eight to 12 clusters for 

each clustering algorithm were considered and computed. 

 

Figure 4.2: Pareto diagram of the PCA on the summer PVPPs (first data set). 
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Table 4.1 illustrates the validity index value and the associated compactness and separation. In 

general, the results demonstrated that Bat clustering algorithms were either comparable or better 

that K-means with respect to the validity index, compactness, and separation values. The Bat J 

and Bat CDI both produced relatively compact clusters and have the highest compactness values 

 
 
 

 
 
 

 
 
 

Figure 4.3: The best results of each clustering algorithm for the summer PVPP of the first data set 
for five to 20 clusters: (a) J (b) DBI (c) Dunn (d) CDI (e) MIA (f) WCBCR. 
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on ten and 12 clusters, respectively, but they produced average separated clusters. Bat DBI, Bat 

Dunn, and Bat MIA produced overall average results in compactness but tended to produce poor 

separated clusters. The Bat WCBCR presented the best overall results on the validity index, 

compactness, and separation values. It can be observed that when the WCBCR validity index 

value was the lowest, the separation was consistently high on all knee point partitions. In 

addition, the separation values for the Bat WCBCR were significantly higher than all other 

clustering algorithms and the associated compactness was lowest at nine clusters and relatively 

lower than the best compactness value for the other partitions (eight and ten to 12 clusters). Thus, 

the lower WCBCR validity index values on Bat WCBCR indicated highly separated clusters of 

PVPPs. Accordingly, the best combination of clustering algorithm and validity index that can 

present the overall best results of compactness and separation between PVPP clusters are the Bat 

WCBCR and WCBCR, respectively. The angle-based method (Appendix A) can be used to 

detect a knee point as illustrated in Chapter 3.9.  Figure 4.4 presents the visualization of the first 

three PCs with respect to the Bat WCBCR clustering results for ten clusters of summer PVPP 

data. The ten cluster representatives for the summer PVPP data are presented in Figure 4.5. The 

CPU time of the various Bat clustering algorithms is presented in Table 4.2. It can be shown that 

Bat J was the fastest and Bat WCBCR was the second fastest, whereas Bat CDI had the worst 

CPU time among the Bat algorithms. The observations on the results of the other seasons (i.e., 

fall, winter, and spring) of the PVPP data were similar to those observed on the summer PVPP 

data. 
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Figure 4.4: Visualization of the first three PCs w.r.t Bat WCBCR clustering results for ten clusters 
on summer PVPP of the first data set. 
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Figure 4.5: Cluster representatives for ten clusters of summer w.r.t Bat WCBCR 
clustering (first data set). 
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Table 4.1: Validity indices, compactness, and separation values for clustering algorithms on knee-points (first data 

set). 
Validity 

index 

(VI) 

8 Clusters 9 Clusters 10 Clusters 11 Clusters 12 Clusters 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

K-means 

J 412.649 488.207 811.368 406.364 479.526 785.517 400.101 474.184 780.750 394.231 463.134 828.970 389.852 456.994 821.239 

DBI 1.576 488.207 811.368 1.656 479.526 785.517 1.710 474.184 780.750 1.646 462.963 832.028 1.658 460.202 819.774 

Dunn 

CDI 

0.540 

1.787 

488.207 

488.207 

811.368 

811.368 

0.514 

1.317 

479.526 

479.526 

785.517 

785.517 

0.480 

0.991 

474.184 

474.184 

780.750 

780.750 

0.582 

0.742 

465.642 

463.134 

830.564 

828.970 

0.515 

0.587 

458.673 

456.994 

819.995 

821.239 

MIA 119.316 488.207 811.368 111.632 479.526 785.517 105.084 474.184 780.750 99.456 463.134 828.970 94.692 456.994 821.239 

WCBCR 2.732 488.207 811.368 2.189 479.526 785.517 1.724 474.184 780.750 1.188 463.134 828.970 0.984 456.071 821.545 

Bat J 

J 417.763 498.541 784.332 407.605 479.128 773.749 402.209 478.091 780.882 396.008 470.376 783.100 391.859 462.991 752.947 

DBI 1.633 487.907 811.819 1.712 479.943 785.658 1.535 430.450 835.661 1.728 476.314 796.528 1.727 469.742 779.297 

Dunn 

CDI 

0.712 

1.936 

487.723 

498.541 

784.837 

784.332 

0.683 

1.357 

484.237 

479.128 

771.162 

773.749 

0.582 

1.025 

470.098 

478.091 

837.992 

780.882 

0.525 

0.779 

476.314 

470.376 

796.528 

783.100 

0.586 

0.639 

465.953 

462.991 

839.299 

752.947 

MIA 120.053 498.541 784.332 111.802 479.128 773.749 105.361 478.091 780.882 99.680 470.376 783.100 94.935 462.991 752.947 

WCBCR 2.729 487.907 811.819 2.120 484.291 802.574 1.461 467.147 837.782 1.338 476.314 796.528 0.971 465.953 839.299 

Bat DBI 

J 419.930 490.069 752.115 408.409 480.772 803.485 536.728 469.853 796.525 398.639 475.120 798.279 395.405 467.100 770.688 

DBI 1.502 485.036 828.996 1.524 482.868 795.906 1.505 466.791 807.884 1.573 466.647 793.705 1.545 465.751 826.123 

Dunn 

CDI 

0.721 

1.837 

491.977 

444.791 

805.265 

811.286 

0.741 

1.383 

494.070 

481.010 

779.359 

796.015 

0.601 

1.072 

483.234 

466.579 

796.404 

844.534 

0.597 

0.816 

478.006 

463.813 

790.411 

836.056 

0.641 

0.628 

465.751 

433.658 

826.123 

796.249 

MIA 120.364 490.069 752.115 111.913 480.772 803.485 121.712 469.853 796.525 100.011 475.120 798.279 95.364 467.100 770.688 

WCBCR 2.634 480.283 829.540 2.054 485.066 821.849 1.442 465.855 851.039 1.188 463.813 836.056 0.989 461.136 825.824 

Bat Dunn 

J 419.066 500.602 791.079 411.775 486.514 758.922 407.959 486.180 754.253 401.041 478.977 768.461 404.831 475.162 769.651 

DBI 1.666 499.576 800.145 1.652 476.543 852.708 1.708 476.277 815.908 1.617 438.504 821.751 1.686 468.386 816.812 

Dunn 

CDI 

0.884 

1.960 

500.962 

500.602 

771.174 

791.079 

0.878 

1.409 

493.777 

476.543 

799.397 

852.708 

0.790 

1.078 

486.180 

474.466 

754.253 

830.304 

0.834 

0.859 

483.941 

465.091 

758.970 

819.307 

0.821 

0.686 

472.351 

468.085 

820.135 

809.458 

MIA 120.240 500.602 791.079 112.373 486.514 758.922 106.112 486.180 754.253 100.312 478.977 768.461 96.494 475.162 769.651 

WCBCR 2.770 491.533 808.876 1.849 476.543 852.708 1.500 475.143 833.196 1.235 465.091 819.307 1.022 463.937 813.435 

Bat CDI 

J 412.910 472.618 790.110 406.931 466.235 782.924 401.707 470.182 790.347 396.125 461.538 760.275 392.633 460.683 780.974 

DBI 1.563 478.187 817.031 1.616 477.652 795.891 1.752 469.866 791.103 1.736 459.660 831.986 1.743 425.032 818.930 

Dunn 

CDI 

0.561 

1.712 

490.589 

472.618 

819.314 

790.110 

0.494 

1.234 

472.928 

466.235 

781.216 

782.924 

0.494 

0.949 

463.529 

470.182 

842.931 

790.347 

0.472 

0.759 

474.716 

461.538 

787.930 

760.275 

0.459 

0.580 

471.676 

460.683 

791.543 

780.974 

MIA 119.354 472.618 790.110 111.710 466.235 782.924 105.295 470.182 790.347 99.695 461.538 760.275 95.029 460.683 780.974 

WCBCR 2.591 472.694 847.528 1.843 467.110 850.383 1.440 463.529 842.931 1.173 454.458 833.701 0.982 451.509 820.471 

Bat MIA 

J 411.456 481.314 814.455 405.483 477.055 795.869 400.504 465.291 782.622 395.834 471.331 780.430 391.044 458.263 777.258 

DBI 1.581 485.789 815.690 1.692 477.958 799.206 1.721 464.142 808.837 1.693 469.259 777.902 1.654 437.486 821.612 

Dunn 

CDI 

0.698 

1.743 

502.836 

481.314 

753.885 

814.455 

0.529 

1.264 

487.054 

477.055 

790.293 

795.869 

0.513 

0.974 

480.387 

465.291 

795.484 

782.622 

0.528 

0.770 

466.137 

471.331 

802.483 

780.430 

0.537 

0.606 

463.875 

458.263 

839.545 

777.258 

MIA 119.144 481.314 814.455 111.511 477.055 795.869 105.138 465.291 782.622 99.659 471.331 780.430 94.837 458.263 777.258 

WCBCR 2.685 482.111 819.177 2.060 482.444 815.094 1.651 464.142 808.837 1.198 462.614 828.553 0.971 460.034 830.790 

Bat WCBCR 

J 412.362 480.376 835.734 405.915 467.393 820.950 401.636 450.431 812.736 398.271 449.364 858.801 393.198 456.568 791.899 

DBI 1.604 479.844 836.224 1.503 463.513 866.186 1.685 466.915 804.868 1.593 419.425 819.432 1.666 462.612 791.640 

Dunn 

CDI 

0.566 

1.804 

481.094 

480.376 

842.541 

835.734 

0.515 

1.214 

463.513 

467.393 

866.186 

820.950 

0.507 

0.978 

455.175 

450.431 

880.213 

812.736 

0.478 

0.741 

456.360 

449.364 

846.390 

858.801 

0.502 

0.604 

457.337 

456.568 

831.361 

791.899 

MIA 119.275 480.376 835.734 111.571 467.393 820.950 105.286 450.431 812.736 99.964 449.364 858.801 95.097 456.568 791.899 

WCBCR 2.275 472.714 887.560 1.755 458.888 871.496 1.374 455.175 880.213 1.108 434.283 856.650 0.912 431.356 853.163 
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Table 4.2: CPU time for Bat clustering algorithms of ten clusters on PVPP summer data (first data set). 

 

 

 

 

 

 

 

 

 

 

The same methodology was applied on a second data set with a latitude of 21.68ºN and a 

longitude of 39.15ºE for three consecutive years (1999-2001). The dimensionality reduction 

resulted in the limitation of each PVPP to the period between 5:00 AM and 8:00 PM, which 

corresponds to 90 ten-minute time steps per day. While the PCA retaining at least 95% of the 

total variance resulted in 22, 19, 21, and 25 PCs for fall, winter, spring, and summer, 

respectively. The knee points were observed to be in the range of seven to 11, for the summer 

PVPP data (Appendix D). The results of the validity index value and the associated compactness 

and separation from seven to 11 clusters for each clustering algorithm are presented in Table 4.3. 

The observations on the results are similar to those observed on the first PVPP data set, where 

lower WCBCR validity index values on Bat WCBCR indicated highly separated clusters. In 

addition, Bat WCBCR presented the best overall results on the validity index, compactness, and 

separation values. 

 

 

 

 

 

 

 Clustering 
Algorithm 

CPU time (second)  
 Best Worst Average  

 Bat J 26.88 28.41 27.12  

 Bat DBI 39.70 46.53 41.19  

 Bat Dunn 45.47 46.18 45.73  

 Bat CDI 141.15 147.69 142.92  

 Bat MIA 38.9103 40.12 39.39  

 Bat WCBCR 32.86 33.39 33.03  
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Table 4.3: Validity indices, compactness, and separation values for clustering algorithms on knee-points (second 

data set). 
Validity 

index 

(VI) 

7 Clusters 8 Clusters 9 Clusters 10 Clusters 11 Clusters 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

VI 

value 
Comp. Sep. 

K-means 

J 149.620 210.642 516.512 147.008 220.790 509.146 145.283 224.690 519.530 142.292 216.716 501.564 141.025 215.448 513.989 

DBI 1.383 210.642 516.512 1.446 220.790 509.146 1.288 218.190 527.175 1.310 223.412 538.101 1.463 212.491 503.803 

Dunn 0.394 210.642 516.512 0.351 220.790 509.146 0.437 218.190 527.175 0.419 218.122 498.722 0.412 200.871 535.533 

CDI 1.436 210.642 516.512 1.070 220.790 509.146 0.834 224.690 519.530 0.623 216.716 501.564 0.502 213.476 478.861 

MIA 75.968 210.642 516.512 70.438 220.790 509.146 66.019 224.690 519.530 61.983 216.716 501.564 58.835 215.448 513.989 

WCBCR 1.169 210.642 516.512 0.893 221.382 510.911 0.660 218.190 527.175 0.503 223.412 538.101 0.399 200.871 535.533 

Bat J 

J 149.620 210.642 516.512 147.181 211.183 488.609 146.094 184.351 498.231 140.903 202.554 482.590 138.586 196.995 461.200 

DBI 1.176 193.119 597.172 1.307 184.351 516.332 1.435 184.863 529.181 1.392 177.946 540.569 1.277 199.956 513.750 

Dunn 0.529 192.063 567.291 0.399 208.594 485.776 0.411 218.032 497.634 0.380 227.513 493.758 0.398 215.686 463.218 

CDI 1.436 210.642 516.512 1.037 211.183 488.609 0.795 184.351 498.231 0.600 202.554 482.590 0.475 196.995 461.200 

MIA 75.968 210.642 516.512 70.480 211.183 488.609 66.203 184.351 498.231 61.680 202.554 482.590 58.324 196.995 461.200 

WCBCR 0.992 193.119 597.172 0.783 181.895 555.265 0.645 184.863 529.181 0.481 177.946 540.569 0.403 172.006 533.477 

Bat DBI 

J 155.124 208.403 558.983 148.625 213.929 524.865 144.979 190.384 481.246 142.628 188.650 478.438 142.084 194.884 507.354 

DBI 1.168 200.769 566.671 1.125 171.592 570.514 1.185 188.325 563.818 1.270 177.734 519.936 1.145 167.404 561.934 

Dunn 0.440 204.822 540.564 0.461 214.425 537.301 0.433 157.402 572.493 0.426 206.085 499.679 0.426 182.763 506.936 

CDI 1.615 204.702 536.866 1.157 213.929 524.865 0.813 190.384 481.246 0.615 188.650 478.438 0.547 206.579 483.360 

MIA 77.352 208.403 558.983 70.824 213.929 524.865 65.950 190.384 481.246 62.056 188.650 478.438 59.055 194.884 507.354 

WCBCR 1.006 202.235 576.404 0.769 171.592 570.514 0.591 157.402 572.493 0.476 200.416 546.898 0.382 167.404 561.934 

Bat Dunn 

J 153.323 220.389 520.677 151.686 219.287 494.343 147.971 186.068 498.963 146.050 198.131 504.922 183.004 227.096 504.238 

DBI 1.324 222.465 489.668 1.275 204.732 547.603 1.251 203.306 541.255 1.232 174.927 541.199 1.285 208.799 526.927 

Dunn 0.675 222.356 526.446 0.641 234.526 531.128 0.634 195.006 509.384 0.649 228.426 510.897 0.648 218.260 486.717 

CDI 1.700 220.389 520.677 1.247 219.287 494.343 0.847 186.068 498.963 0.694 198.131 504.922 0.563 170.521 503.628 

MIA 76.902 220.389 520.677 71.550 219.287 494.343 66.627 186.068 498.963 62.796 198.131 504.922 67.022 227.096 504.238 

WCBCR 1.172 234.470 542.075 0.877 190.466 530.236 0.674 203.306 541.255 0.513 204.007 537.629 0.434 208.799 526.927 

Bat CDI 

J 149.396 210.644 515.295 146.182 200.815 477.449 144.715 204.842 491.577 143.744 212.546 475.578 140.713 207.421 456.163 

DBI 1.460 210.739 517.559 1.304 207.944 523.140 1.473 188.260 502.396 1.483 189.524 508.327 1.520 199.706 479.235 

Dunn 0.395 212.674 511.387 0.417 217.113 518.971 0.401 213.960 473.854 0.359 188.240 496.281 0.375 207.421 456.163 

CDI 1.402 210.644 515.295 0.987 200.815 477.449 0.756 204.842 491.577 0.604 212.546 475.578 0.467 207.421 456.163 

MIA 75.911 210.644 515.295 70.240 200.815 477.449 65.890 204.842 491.577 62.298 212.546 475.578 58.770 207.421 456.163 

WCBCR 1.165 210.665 516.753 0.851 184.384 529.040 0.704 188.260 502.396 0.535 189.524 508.327 0.474 189.458 479.925 

Bat MIA 

J 149.533 191.114 482.968 147.642 208.936 489.388 145.422 215.957 493.403 143.943 210.795 492.512 140.709 208.530 452.171 

DBI 1.363 209.311 516.438 1.336 183.318 528.119 1.421 215.957 493.403 1.325 168.452 500.337 1.378 168.712 505.695 

Dunn 0.510 236.433 418.647 0.395 210.545 490.156 0.403 215.957 493.403 0.397 168.452 500.337 0.377 214.231 499.940 

CDI 1.513 209.226 521.177 1.072 208.936 489.388 0.818 215.957 493.403 0.629 167.093 490.747 0.474 208.530 452.171 

MIA 75.945 191.114 482.968 70.590 208.936 489.388 66.050 215.957 493.403 62.342 210.795 492.512 58.769 208.530 452.171 

WCBCR 1.151 209.226 521.177 0.852 183.318 528.119 0.652 185.267 523.639 0.551 216.595 502.148 0.433 172.560 498.482 

Bat WCBCR 

J 151.992 196.000 569.315 147.301 191.781 530.847 144.645 203.054 525.696 142.498 196.207 504.116 141.457 199.400 502.037 

DBI 1.005 163.417 585.336 1.200 205.243 565.127 1.074 153.185 598.344 1.089 165.558 583.919 1.063 167.368 590.870 

Dunn 0.447 197.125 566.219 0.421 198.753 531.954 0.426 210.165 527.964 0.422 214.132 536.232 0.418 161.263 538.838 

CDI 1.607 196.000 569.315 1.099 191.781 530.847 0.845 203.054 525.696 0.654 196.207 504.116 0.518 184.839 507.111 

MIA 76.567 196.000 569.315 70.508 191.781 530.847 65.874 203.054 525.696 62.028 196.207 504.116 58.925 199.400 502.037 

WCBCR 0.975 195.433 608.155 0.753 206.288 574.855 0.555 153.185 598.344 0.445 172.437 575.250 0.346 202.421 585.980 
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4.7 Summary and Conclusions 

This chapter presented a detailed investigation of the performance of Bat clustering algorithms 

based on various integrated objective functions to establish the clustering process of PVPPs. In 

addition, it compared the performance of the K-means and Bat J clustering algorithms with those 

new versions of Bat clustering algorithms (i.e., Bat DBI, Bat Dunn, Bat CDI, Bat MIA, Bat 

WCBCR) on clustering PVPP data. For the purpose of reducing the dimensionality of the PVPP 

data during the clustering process, the PCA technique was adopted and the number of retained 

PCs were those that preserved at least 95% variation. 

The clustering results of each clustering algorithm have been evaluated by six validity indices: J, 

DBI, Dunn, CDI, MIA, and WCBCR. In addition, the separation and compactness for each 

clustering algorithms’ partitioning at the knee points were examined in order to obtain the best 

combination of clustering algorithm and validity index that can provide information about the 

optimum number of clusters that best fits the PVPP data. The methodology was applied on two 

PVPP data sets; in general, the results demonstrated that Bat clustering algorithms were either 

comparable or outperformed K-means in the validity index, compactness, and separation values. 

The Bat WCBCR presented the best overall results. The best combination that can present the 

optimum number of clusters was the Bat WCBCR clustering algorithm and the WCBCR validity 

index. Together, these presented significantly highly separated and well-compacted clusters. The 

main purpose of this chapter was to enhance the results of the best clustering algorithm from the 

previous chapter. This goal has been achieve by the Bat WCBCR clustering algorithm. 

Moreover, the methodology included PCA that reduced the dimensionality of PVPP data, and 

accordingly, the clustering CPU time was reduced. Thus, the Bat WCBCR can provide well-

defined PVPP clusters and cluster representatives that can be utilized in PV power application 

studies. 
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Chapter 5 

Short-term Prediction of PV Power 

5.1 Introduction 

The integration of PV systems into the electrical grid is considered to be a challenging task due 

to the uncertainty of solar irradiation. A key to solve this problem is to accurately predict short-

term PV power generation. The PV power prediction is essential to increasing the penetration of 

solar power systems in electrical grids. Accurate short-term PV power predictions can assist in 

the optimization of power systems and operation control. However, the accuracy of PV power 

prediction depends mostly on the meteorological and climatic conditions, which makes it a 

challenging task. 

Generally, PV power prediction is based on solar irradiation. Several models have been 

developed in order to predict solar irradiance data. These models can be mainly classified into 

two categories [65]: physical models and statistical models. Physical models use mathematical 

equations mostly in order to describe the physics and dynamics of the atmosphere that influences 

solar irradiation [66]. They work well for medium and long-term solar predictions [65]. 

Statistical models are mainly based on analyzing time series data. They have lower complexity 

than physical models and have the ability to perform well for short-term predictions. These 

statistical models include the artificial neural network (ANN) [67], [68], autoregressive (AR) and 

autoregressive moving average (ARMA) [69], and support vector machine (SVM) [65] models. 

Such models have shown their efficiency in predicting solar irradiation. 

This chapter presents a model for short-term predictions of PV power. The approach of this 

model uses a dedicated formulation in order to test the efficiency of the PVPP cluster 

representatives obtained from the previous chapters. The results are compared with a single-point 

(ten-min) and three-points (30-min) shifting methods. 
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5.2 PV Power Prediction Model 

At time (t), this short-term PV power prediction model predicts the future PV power generation 

(t+1,t+2,…,t+f) from the past values (t-1,t-2,…,t-n) of ambient temperature, solar irradiation, 

and representative PVPPs. The prediction is based on the classification of the past PVPP time 

steps to the representative PVPPs, then the future values are obtained from the closest PVPPs. 

The diagram of the model in presented in Figure 5.1 and the steps are as follows: 

1- The sequence of ambient temperature and solar irradiation prior to the interval to be 

predicted (t-1,t-2,…,t-n) are obtained. 

2- Calculate the corresponding AC power output for (t-1,t-2,…,t-n) using the model 

discussed in Chapter 3.4. 

3-  Calculate the distance between the obtained sequence and the corresponding time 

sequence of each representative PVPP. 

4- Obtain the two closest PVPPs and calculate the mean distance between them. The result 

is three PVPPs. 

5- Calculate the distance between the obtained sequence from step two and the 

corresponding time sequence of the three PVPPs from step four. 

6- The future PV power values (t+1,t+2,…,t+f) are obtained from the closest PVPP. 

 

 

 

Figure 5.1: Diagram of the prediction model. 
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The flowchart of the model in presented in Figure 5.2. 

 

5.3 Application of PV Power Prediction Model 

The short-term PV prediction model is applied on a real data set in order to predict ten-minute 

time steps of 30 minutes, 60 minutes, and 120 minutes ahead. The cluster representatives are 

obtained by applying the methodology of Chapter 4 using the Bat WCBCR clustering algorithm. 

The clustering of three consecutive years for the data resulted in 32 representative PVPPs. The 

ambient temperature and irradiation for a following year were converted to AC power and the 

 

 
Calculate the AC power for (t-1,t-2,…,t-n)  using a suitable model  

 

Calculate the distance between the AC power (t-1,t-2,…,t-n) and the  

corresponding time sequence of the representative PVPPs 

 

Obtain the two closest representative PVPPs and calculate their mean PVPP 

 

Calculate the distance between the AC power (t-1,t-2,…,t-n) and the  

corresponding time sequence of the three obtained PVPPs 

Obtain the future PV power values (t+1,t+2,…,t+f) from the closest PVPP 

Irradiance and ambient temperature for (t-1,t-2,…,t-n) 

 

 

Figure 5.2: Flowchart of the model. 
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test data was obtained by choosing every tenth day of that year. Accordingly, 36 daily PVPPs 

were obtained. The results of predicting 30 minutes, 60 minutes, and 120 minutes ahead from a 

sequence of the past 30 minutes, 60 minutes, 90 minutes, and 120 minutes are illustrated in Table 

5.1. It should be noted that the RMSE, MAE, and correlation coefficient (Appendix E) were 

calculated between the actual data and predicted data, and the RMSE and MAE arranged 

between 19.374 and 25.983, and 9.034 and 14.692, respectively. The correlation coefficient 

values were all above 97.8%. Smaller values of RMSE and MAE imply a superior prediction 

performance of the model. While a larger positive correlation coefficient value indicates that the 

data are more correlated. It can be observed that when the sequence of the prediction increased, 

the error increased. Also, it can be observed that increasing the past sequence does not improve 

the prediction. Figure 5.3 presents the comparison between the actual and predicted PV power 

for predicting 60 minutes from the past 30 minutes. 

 
Table 5.1: The results between the actual and predicted data. 

Past time 
sequence 

(min) 

Predicted time 
sequence 

(min) 
RMSE MAE Corr. 

30 30 19.374 9.034 0.988 

30 60 21.542 11.133 0.985 

30 120 25.983 14.692 0.978 

60 30 19.320 9.378 0.988 

60 60 21.860 11.318 0.984 

60 120 25.716 14.451 0.978 

120 30 19.584 10.161 0.987 

120 60 21.749 11.620 0.985 

120 120 25.687 14.677 0.978 

180 30 20.499 10.741 0.987 

180 60 22.366 11.887 0.985 

180 120 24.906 13.611 0.981 

240 30 20.533 10.367 0.988 

240 60 22.283 11.171 0.986 

240 120 24.846 13.267 0.982 
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Figure 5.3: Comparison between the actual and predicted PV power 
for predicting 60 minutes from the past 30 minutes. 

 

 
Figure 5.4: Correlation between the actual and predicted PV power. 
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Table 5.2: The results of the single-point (ten-min) and three-point (30-min) shifting methods. 

Shifting 
method 

Predicted time 
sequence 

(min) 
RMSE MAE Corr. 

Single-point 10 18.417 10.108 0.989 

Three-point 30 33.018 24.221 0.965 

 

Figure 5.4 shows the correlation between the actual and predicted data. It can be observed from 

the slope of the fitting line that the data falls close to the 45º line. Therefore, the predicted values 

closely match the actual data, which indicates accurate prediction. The single-point and three-

points shifting methods showed significantly large RMSE and MAE.  

5.4 Summary and Conclusions 

This chapter presented a short-term PV power prediction model. The aim was to construct a 

model that can take advantage of the PVPP representatives. Also, this chapter tested the 

efficiency of the representative PVPPs resulting from the PVPP clustering methodology 

discussed in the previous chapters. The model was applied on real data and the error between the 

actual data and predicted data ranged between 19.374 and 25.983, and 9.034 and 14.692 for 

RMSE and MAE, respectively. While the correlation coefficient values were all above 97.8%. It 

was observed that when the sequence of the prediction increased, the error increased. Also, it 

was observed that increasing the past sequence does not improve the prediction accuracy for this 

model. 
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Chapter 6 

6.1 Summary and Conclusions 

This thesis facilitated developing a solution that can reduce the burden of extensive studies and 

simulations related to integrating PV systems into the electrical grid. 

Chapter 2, presented an overview of clustering methods and validity indices used in the PVPP 

clustering process. Also, the dimensionality reduction technique (PCA) used in Chapter 4 was 

illustrated in detail. 

In Chapter 3, the methodology to prepare the irradiance and ambient temperature data for 

clustering was presented in detail. Investigation of the most appropriate clustering algorithm to 

establish the PVPP grouping was analysed. At least one representative algorithm from various 

clustering categories was used (K-means from partitional clustering, Hierarchical WMV from 

agglomerative clustering, FCM from fuzzy clustering, SOM from neural network based 

algorithms, and Ant Colony and Bat algorithms from particle swarm optimization methods) to 

investigate the most appropriate for PVPP data clustering. The comparison of the clustering 

algorithms of different characteristics and categories showed that swarm clustering methods are 

comparable to these conventional methods. Additionally, the clustering results of the Bat 

algorithm were the most efficient and outperformed the other clustering methods in many 

validity indices measures. This motived the interest to enhance the swarm based, Bat clustering 

algorithm. Therefore in Chapter 4, five Bat clustering algorithms with different objective 

functions (Bat DBI, Bat Dunn, Bat CDI, Bat MIA, and Bat WCBCR) were proposed based on 

the results of Chapter 3. The methodology of Chapter 4 included PCA that reduced the 

dimensionality of PVPP data, and accordingly, the clustering CPU time was reduced. The 

methodology was applied on two PVPP data sets; in general, the results showed that Bat 

clustering algorithms were either comparable or outperformed K-means in the validity index, 

compactness, and separation values. The Bat WCBCR presented the best overall results. The best 

combination that presented the optimum number of clusters was the Bat WCBCR clustering 

algorithm and the WCBCR validity index. Together, these presented significantly highly 



71 
 
 

 

 

separated and well-compacted clusters. The main objective of the proposed Bat clustering 

algorithms to enhance the clustering results and obtain more efficient clustering formations of 

PVPP data was achieved by the Bat WCBCR clustering algorithm. Thus, the Bat WCBCR can 

provide well-defined PVPP clusters and cluster representatives that can be utilized in PV power 

output application studies. 

Chapter 5 presented a short-term PV power prediction model. The model was constructed to take 

advantage of the PVPP representatives. Also, this chapter tested the efficiency of the 

representative PVPPs resulting from the PVPP clustering methodology discussed in the previous 

chapters. The results of the prediction model using the PVPP representatives validate the 

efficiency of our PVPP clustering methodology in PV system studies.  

 

6.2 Future Work 

Based on the research presented in this thesis, some of the studies that can be carried out in the 

future are summarized in the following: 

- The development of swarm clustering methods in order to improve the accuracy of the 

cluster representatives in PV power studies. 

- Examination of the use of other features to improve the accuracy of PVPP cluster 

representatives. 

- Use of swarm clustering methods to investigate their efficiency in clustering wind power 

patterns. 

- Use of the cluster representatives in other prediction models, such as Radial Basis 

Function (RBF) models for short-term PVPP prediction. 

- Dividing the daily PVPP into two categories and applying the clustering methods. 
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Appendix A 

Angle-Based Knee Detection Method 

Given a fixed number of clusters K≥2 and a clustering algorithm, finding the clustering that best 

fits the data set involves the following steps: 

1- Select a proper cluster validity index.  

2- Repeat a clustering algorithm successively for number of clusters, K from a pre-defined 

minimum to a pre-defined maximum.  

3- Plot the “number of clusters vs. criterion metric” graph. 

4- Calculate the difference between previous and afterward index values: 

 

                                ( )    ( 1) ( 1) ( )DiffFun k F k F k F k     .                                        (A.1) 

 

5- Select n local significant changes and calculate the angle of those points: 

 

             ( )    tan(1/ | ( ) ( 1) |) tan(1/ | ( 1) ( ) |)Angle k a F k F k a F k F k      .                          (A.2) 

6- Select k that has the largest angle as a knee point. 
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Appendix B 

The Clustering Results for Summer, Spring, and Winter Seasons 

 

 

 

 
Figure B.1: The best results of each clustering method for the Summer data set of PVPPs for two to 20 clusters: 

(a) DBI (b) SI (c) BIC (d) WCBCR (e) CDI (f) XB (g) J (h) MIA (i) Dunn. 
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Figure B.2: The best results of each clustering method for the Summer data set of PVPPs 

for five to 20 clusters: (a) WCBCR (b) CDI. 
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Table B.1: Comparison of clustering algorithms for ten clusters (summer). 

Validity index DBI Dunn SI BIC ×104 WCBCR CDI XB J MIA 
K-means 1.706 0.481 0.174 -2.676 1.711 0.991 1.304 400.10 105.08 

Hierarchical WMV 1.790 0.600 0.185 -2.665 1.584 1.079 1.169 410.98 106.50 

FCM 44.951 0.014 0.138 -2.651 37.61 7.188 159.859 593.49 127.98 

SOM 2.327 0.445 0.126 -2.663 2.438 1.329 1.760 425.54 108.37 

Ant Colony 2.116 0.484 0.170 -2.653 3.004 1.913 1.499 450.23 111.47 

Bat 1.507 0.870 0.238 -2.661 1.185 0.834 1.228 405.27 105.76 
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Figure B.3: The best results of each clustering method for the Spring data set of PVPPs for two to 20 clusters: 

(a) DBI (b) SI (c) BIC (d) WCBCR (e) CDI (f) XB (g) J (h) MIA (i) Dunn. 
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Figure B.4: The best results of each clustering method for the Spring data set of PVPPs 

for five to 20 clusters:  (a) WCBCR (b) CDI. 
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Table B.2: Comparison of clustering algorithms for seven clusters (spring). 

Validity index DBI Dunn SI BIC ×104 WCBCR CDI XB J MIA 
K-means 1.448 0.794 0.241 -2.6659 2.864 2.239 0.887 410.18 127.17 

Hierarchical WMV 1.511 0.931 0.276 -2.6631 2.563 2.417 0.732 426.38 129.65 

FCM 14.938 0.041 0.136 -2.6590 15.671 5.302 57.879 528.54 144.35 

SOM 1.871 0.725 0.207 -2.6678 3.250 2.259 0.995 419.67 128.63 

Ant Colony 1.904 0.544 0.209 -2.6581 4.550 3.344 1.379 456.32 134.13 

Bat 1.291 0.894 0.283 -2.6586 1.386 1.730 0.991 413.09 127.62 
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Figure B.5: The best results of each clustering method for the winter data set of PVPPs for 2 to 20 clusters: 

(a) DBI (b) SI (c) BIC (d) WCBCR (e) CDI (f) XB (g) J (h) MIA (i) Dunn. 
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Figure B.6: The best results of each clustering method for the winter data set of PVPPs 

for five to 20 clusters: (a) WCBCR (b) CDI. 
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Table B.3: Comparison of clustering algorithms for ten clusters (winter). 

Validity index DBI Dunn SI BIC ×104 WCBCR CDI XB J MIA 
K-means 1.406 0.699 0.216 -2.610 0.923 0.751 0.940 357.99 98.31 

Hierarchical WMV 1.601 0.941 0.262 -2.613 1.098 1.029 0.791 387.19 102.24 

FCM 19.974 0.014 0.024 -2.610 1.977 1.117 155.477 449.85 110.20 

SOM 2.118 0.439 0.135 -2.606 1.237 0.926 2.338 397.49 103.59 

Ant Colony 1.865 0.645 0.225 -2.597 1.621 1.282 1.510 513.28 117.72 

Bat 1.326 0.896 0.255 -2.602 0.875 0.722 1.198 369.40 99.73 
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Appendix C 

Parameters of Bat Clustering Algorithms 

 
Table C.1: Parameters of Bat Clustering Algorithms. 

Parameter Value 

B (bat population) 20 

A0 (loudness) 0.5 

r (pulse rate) 0.5 

fmin (minimum frequency) 0 

fmax (maximum frequency) 0.9 

M (Iterations) 50 
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Appendix D 

The best results of each clustering algorithm for the summer PVPP of the 

second data set. 

 

 

 

 
 
 

 
 
 

 
Figure D.1: The best results of each clustering algorithm for the summer PVPP of the second data set 

for five to 20 clusters: (a) J (b) DBI (c) Dunn (d) CDI (e) MIA (f) WCBCR. 
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Appendix E 

MRSE, MAE, and Correlation Coefficient 
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where observedP and predictedP are the observed and predicted daily PVPPs, respectively; observed and 

predicted are the mean values of  observedP and predictedP , respectively. 


