
1 Praise the LORD.
Praise the LORD from the heavens, 

praise him in the heights above.

2 Praise him, all his angels, 
praise him, all his heavenly hosts.

3 Praise him, sun and moon, 
praise him, all you shining stars.

4 Praise him, you highest heavens 
and you waters above the skies.

5 Let them praise the name of the LORD, 
for he commanded and they were created.

6 He set them in place for ever and ever; 
he gave a decree that will never pass away.

7 Praise the LORD from the earth, 
you great sea creatures and all ocean depths,

8 lightning and hail, snow and clouds, 
stormy winds that do his bidding,

9 you mountains and all hills, 
fruit trees and all cedars,

10 wild animals and all cattle, 
small creatures and flying birds,

11 kings of the earth and all nations, 
you princes and all rulers on earth,

12 young men and maidens, 
old men and children.

13 Let them praise the name of the LORD,
for his name alone is exalted; 

his splendor is above the earth and the heavens.

14 He has raised up for his people a horn,
the praise of all his saints, 

of Israel, the people close to his heart.
Praise the LORD.

-  Psalm 148, The Bible (New International Version)
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Abstract

The studies of electrons, atoms and ions captured by external electric and magnetic 

fields have recently become a mainstream in the research of semi-conductor physics 

and nanotechnology; however, similar investigations concerning confined molecules 

are rather limited. Therefore, the present thesis aims at filling this missing link 

by exploring the cavity effects on the physical and chemical properties of small 

molecules when they are enclosed by an external potential.

The thesis is composed of two sections. The first part, consisting of the first two 

chapters, deals with the theoretical background of the modeling of confinement. All 

the ab initio techniques employed in this project are reviewed in Chapter 1, followed 

by a general introduction to various models of confinement and a detailed discussion 

of the parabolic model in Chapter 2.

The subsequent chapters form the second part of the thesis which is concerned 

with the applications of the harmonic model potential to a number of diatomic
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molecules with different unique characteristics. It starts with the analysis of the 

simplest neutral molecule, H2 , and a comparison with the scenario when H2 is 

subjected to a strong magnetic field, followed by the investigations into a wide va­

riety of exotic phenomena induced by the presence of a confining potential: the re­

organization of dissociation channels and the alternation of the ground-state terms 

of alkaline-earth dimers (Chpaters 4 and 5), facilitated field-induced autoionization 

of Rydberg molecules (Chapters 6 and 7), interplay of relativity, electron correla­

tion, and spatial confinement (Chapter 8) and cavity-modulation of opto-electronic 

properties of small molecules (Chapter 9). Explanations for all these observations 

are proposed and discussed in terms of the configuration interactions caused by the 

spatial confinement. Meanwhile, the applicability of the perturbational approach, 

a cheaper alternative to variational configuration interaction-type methods, to the 

studies of confinement effects for weakly-bound systems is also verified.
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Chapter 1

Introduction

Computational quantum chemistry is a rapidly growing branch of theoretical chem­

istry which has become an integral part of the modern chemical research. The inter­

face between mathematical, physical and chemical sciences, quantum chemistry is 

concerned with the applications of the fundamental principles of quantum mechan­

ics to chemical problems. Utilizing advanced numerical techniques, the problems of 

interest described in the form of various mathematical models are solved, and the 

desired quantities are evaluated thereafter.

At the dawn of quantum chemistry, where computers were still not present, cal­

culations could only be performed on paper which consumed a humongous amount 

of time and an immense effort; consequently, within the limited available capabil­

ity of time and manpower, only the smallest systems, such as hydrogen molecule, 

could be practically investigated with the semi-quantitative or quantitative level of 

accuracy. The emergence of computing machines after the World War II provided 

an effective tool of resolving the limitations of the previously laborious quantum 

chemical calculations. Taking advantage of the high-speed processing of arithmetic 

operations, many rather complex mathematical equations in quantum chemistry 

could be solved by computers within more reasonable time. The unprecedented, 

rapid growth of hardware technology and high-level programming languages in the 

past twenty years, alongside the advances in developing more sophisticated theo­

ries in molecular quantum mechanics and more efficient numerical algorithms, have

1
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further catalyzed the progress of computational quantum  chemistry and made it a 

well-established phylum of science.

Nowadays, computational quantum chemistry has become a powerful research 

tool in chemistry. On one hand, the astonishing data-processing ability of modern 

computers enables large-scale calculations involving a vast number of atoms in a 

relatively routine fashion. On the other hand, the high accuracy offered by the 

delicate quantum chemical methods can provide some insight into the design of 

experiments and establish benchmarks for the reliability of the experimental results. 

Accordingly, the techniques of computational chemistry have been widely employed 

in real-world research such as computer-aided drug design and protein modeling [1].

In the following sections, the basic concepts and approximations of quantum 

chemistry are reviewed, and the computational techniques tha t have been used in 

the completion of this project are described. The details concerning the model of 

confinement, the derivation of necessary formulas and their implementation will be 

presented in Chapter 2. Excellent monographs on different topics of fundamental 

quantum chemistry and advanced methods of computational chemistry are widely 

available. Good references can be found from, for example, the followings: Szabo 

and Ostlund [2], Jensen [3], Cramer [4], Levine [5] and Helgaker, Jorgensen and 

Olsen [6].

1.1 The Schrodinger Equation

The central part of the modern quantum theory is the elegant, time-dependent 

Schrodinger equation (TDSE)

H ( r ,f M r ,f )  =  - ^ J U > ( r , f )  (1.1)

postulated by Schrodinger in 1926 [7], inspired by classical mechanics. In this equa­

tion, the Hamiltonian operator % contains all the terms concerning the interactions 

between various kinds of particles in the system and the surrounding. The so­

lution J f(r, t) of the Schrodinger equation is called the wavefunction from which 

the information regarding the system can be deduced. The above time-dependent

2
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Schrodinger equation can be reduced to the corresponding time-independent Schrodinger 

equation (TISE) when only the stationary states are to be considered

r) =  E V { t), (1.2)

in which the Hamiltonian operator bears no time-dependent terms, and the wave- 

function in eq. (1.1) can simply be w ritten as a product of a stationary-state wave- 

function (which is space-dependent only) and the time-dependent term: T (r, I) =  

^(r)ip(t). The TISE was used throughout this project since only the stationary-state 

solutions of the Schrodinger equation were of interest.

For an N -e lectron and M-nuclei molecular system in a free space, the non- 

relativistic time-independent Hamiltonian operator can be written as:

.2 N *2 ^ 1  M z ^ 2  l

= - £ - E v ? - t E i^ - E E
1 2 M a S '  1^1 47reo - R ^l

+  fi2 1 I V s V  z AZBe2 1 ^  3 .

h 47re° ir* -  r î 4,reo

where rj and denote, respectively, the spatial coordinates of electron i and 

nucleus A, m e is the mass of an electron, e is the elementary charge, M  and Ze  

are the mass and charge of nucleus, and eo is the vacuum permittivity. The first 

two terms of the Hamiltonian are the kinetic energy operators of the electrons and 

nuclei, respectively, while the remaining terms describe the electron-nucleus attrac­

tion, electron-electron repulsion, and nucleus-nucleus repulsion. The expression for 

Hamiltonian can be greatly simplified by using the atomic units, in which the fol­

lowing are defined: h =  m e =  e =  47reo =  1. The resulting Hamiltonian, in atomic 

units, is given by

N  M  N  M

* ( r ,R )  = Za
2 ^  2 2 ^  M A A ^  Ir* -  R a |

i= 1 A = 1 A i = l  A = 1 1 1
N  N  . M  M  „  „

3
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1.1.1 T he B orn -O p p en heim er A pp roxim ation

Because of the presence of a cross term  |r_R[ > the solution of the TISE utilizing the 

Hamiltonian in eq. (1.4) will be dependent on both the positions of electrons and 

nuclei. In quantum chemistry, however, it is reasonable to assume tha t the motions 

of electrons and nuclei are not coupled (recall that M /m e «  1837); therefore, elec­

trons can be considered as moving in the electrostatic potential generated by the 

nuclei of fixed configuration. Born and Oppenheimer have shown that, neglecting 

a small error introduced to the ground state electronic states, the complete wave- 

function can be approximated as a product of electronic and nuclear wavefunctions 

[8]:

tt(r,R) =  ^ (r ;R )^ iv (R ). (1.5)

The electronic wavefunction T (r; R ) depends parametrically on the nuclear positions 

R. Applying the Born-Oppenheimer (BO) approximation, one can demonstrate that 

the purely electronic Hamiltonian can be expressed, in atomic units, as,

1 N  N  M  „  N  N  1

1  i = l  i = l  A = l  r j l

and the total electronic energy is thus given by the purely electronic energy plus the 

internuclear repulsion energy U =  E ei +  Vn n  where

M M  „  „

1.1.2 T he V ariational M eth od

Except for several special systems, for instance, harmonic oscillator and hydrogen 

atom, the TISE is generally not solvable analytically, and only approximate solu­

tions can be achieved. There are three commonly used approximation methods in 

quantum chemistry: variational method, perturbation theory, and WKB (Wentzel- 

Kramers-Brillouin) approximation. In this section, the variational method is out­

lined; the details concerning the perturbation theory will be given in Section 1.3.

4
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The main idea of the variational method is the minimum energy principle which 

guarantees tha t the expectation value (or energy of the system) of the Hamiltonian

H, calculated using a trial function ip is always greater than  or equal to the true 

ground state energy of the system E q , i.e.,

~ f ^ n i p d r
E -  j r f d r  a  Ea- ( 1 ' 8 )

This method is powerful since a better solution ip, and energy E, can be obtained 

by varying ip until the minimum energy is yielded. An advantage of the variational 

method is tha t the real form of the ground state wavefunction should not necessarily 

be known; the trial wavefunction tha t gives the lowest energy could serve as the best 

approximate ground state wavefunction of the system.

I.2 Hartree-Fock M ethod

The electron interaction term |r ..lr .|' in the BO Hamiltonian (eq. (1.6)) makes find­

ing the exact solution of the TISE impossible. In order to alleviate the problem, 

Hartree proposed the independent particle model (IPM) which states that the elec­

tron repulsion term can be instead described as the interaction between an electron 

j  at the position r j  and the mean electrostatic field generated by the other electrons 

[9], i.e.,
^  N  -| N  n | I /  V .0

E E r a  - E/irrlU &•»>
i i < j  1 1 |r* r|

The electronic wavefunction \I/e; associated with this form of electron interaction 

term  can adopt the form of a product (called the Hartree product) of one-electron 

wavefunctions (r i) i or orbitals. As the eq. (1.10) is dependent on '(/;,(r.(), the

corresponding TISE can only be solved in an iterative, self-consistent field (SCF)

method. T hat is, the initial guess of ip^  has to be first provided, followed by the

substitution of into the TISE. The generated will be back substituted
(2)

into the TISE again and yields another new Wel 1. This cycle is repeated until the 

difference between two consecutive sets of T e/, and is smaller than the

preset threshold of tolerance.
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0 i ( * i ) 01 (X2) ’ • 01 (xjv)
1 02  f c l ) 02  (X2) • • 02 (Xjv)

^ e l  =  ~ 7 =
y /N \

01V (x  l ) 0 at(x 2) • ■ 0At(xat)

A serious problem of the Hartree product is tha t it is not anti-symmetric with 

respect to the interchange of electron positions, as required by the Pauli principle 

for all fermion particles. Therefore, Fock [10] and Slater [11] modified the Hartree 

product, and expressed the AT-electron wavefunction in the determinantal form:

( 1.10)

V’i(xj) 'n f^e Slater determinant eq. (1.11) are called spin-orbitals which are com­

posed of both the spatial part 0 i(r0  and spin part w:

*<*>=«ri) x {Ztm=t(x!) (L11)
Employing the Slater-determinant wavefunction, the energy of the system can be 

computed as the expectation value of the molecular electronic Hamiltonian (eq. 

( 1 .6 )):

E  =  (VellHa I 'M
N  j  N  N

=  ^ ( 0 i l M x )l0i> +  2 E  S  [(0i0;/l0i0j> ~  <0i0jl0j0*>] • (1-12)
i = 1 i= 1 j = 1

The h(rj) operator is the one-electron core-Hamiltonian operator containing the 

first two terms of the electronic Hamiltonian in eq. (1.6). The one-electron integral 

(0 i|h (r)|0 j) is defined as

r (  1 M
(^ i(x i) |h ( r i) |^ (x i) )  =  J  dxitp*(xi) f •- - V ?  -  ^ 0 i ( x i )  (1.13)

|ri -  R a y

The two-electron integral (0 i0 j|0 t0 j)  is defined as follows:

, , , , , , ,  f  / • ^ ( x i ) ^ ( x 2) ^ ( x i ) ^ ( x 2)
(0 i0 j|0 i0 j)  =    i-------------d x xdx2 (1.14)

J J Ti -  r 2|

The variational treatment is applied to the energy expression eq. (1.13) to obtain 

the wavefunction corresponding to the minimum ground state energy of the system.

6
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In this fashion, the electronic Schrodinger equation is transformed into a system of 

one-electron integro-differential Hartree-Fock (or Fock) equations:

/ ( r i )^ i (x i )  =  eiV’»(xi) , i =  , N  (1.15)

where the Fock operator / ( r i)  for electron 1 is given by

N

/ ( n )  =  h{n )  +  Y  {Jj(r i )  -  K j { n ) ) . (1.16)
j

The terms Jj ( r i)  and K j ( ri)  in the Fock operator are, respectively, the Coulomb 

and exchange operators defined in the following way:

J j( r i)^ j(x i)  =  ipj (x2) ^  ^  V>j(*2)<fr2)  ipi(x 1 ) (1.17)

^ ( r i ) V ’i(x i)  =  ( / ^ ( x 2 ) |ri ^  ^ ipi (x2)dx2'̂  ipj{* 1) (1.18)

The Coulomb operator Jj ( ri) , as implied by its name, considers the electrostatic

interaction of electron 1 and the electron density created by electron 2 in the orbital 

4>j. The exchange operator Kj ( r \ ) ,  however, arises solely from the anti-symmetric 

property of the wavefunction, and has no classical analog.

1.2.1 R estr ic ted  H artree-Fock M eth od

The HF equation in eq. (1.15) is derived for a general iV-electron system. For the 

special case of closed-shell systems where all electrons are paired, and only N/ 2  

orbitals are occupied, the restricted Hartree-Fock (RHF) equations would retain the 

same form as eq. (1.15) except that the Fock operators are instead written as

N / 2

/ ( n )  =  h{r i)  +  Y  (2Jj ( r i) “  ^ i ( r i)) • (L19)
j

where the operators are defined in terms of orbitals fa.

The eigenvalue e* of the Hartree-Fock equations (1.15) corresponds to the energy 

of orbital fa. Unfortunately, the determination of e* is not straightforward since the 

Fock operator depends on fa which is the eigenfunction of the Hartree-Fock equa­

tion. Solving the orbital Hartree-Fock equations (1.15) is very difficult, especially

7
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for molecules. In order to simplify the calculations, Roothaan [12] and Hall [13] 

suggested that the orbital <j>i{ri) be expanded in a set of basis functions Xi(ri):

k
^ i(ri)  =  5 ^ c i9x 9(ri) , * =  1) 2, • • • , N/ 2 .  (1.20)

9=1

The resulting Hartree-Fock-Roothaan-Hall (HFRH) equations, obtained by substi­

tuting eqs. (1.19) and (1.20) into eq. (1.15):

k k

/ ( r l) J 2  CiqXqi* l) =  i)> (L21)
g = l  g = l

multiplying <f>(r\) from the left and integrating, can be written in m atrix notation:

F C  -  SC E, (1.22)

where F  is the Fock matrix, S is the overlap matrix, and C is the coefficient matrix. 

The Fock matrix elements Fpq and overlap matrix elements Spq are given by

F p q  =  ( X p ( r l ) l / ( r l ) I X 9 ( r l ) > ;  ( L 2 3 )

Spq =  (xP(ri) |x9 (ri)). (1.24)

Similarly to the Hartree-Fock equation, this HFRH matrix equation can be solved 

using the SCF technique since the Fock matrix is dependent upon the expansion

coefficient matrix C. The RHF electronic energy in terms of the basis functions can

be deduced from the HFRH equation as:

E elH F  =  Y 1 Y 1  ( X p \ h ( r i ) \ X q )  (1-25)
p  q \  i /

+  e e e e ( e W )  $ ( X p X q \ X r X s )  -  ( X p X q l X s X r )] •
p q r  s \  i '  \  3 J

It is worth-noting that the RHF energy is not equal to the sum of the orbital 

energies ej because the electron repulsion has been counted twice in the Fock oper­

ators.
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1.2.2 O pen-shell S ystem s

The preceding discussion is concerned only with the systems having closed-shell elec­

tronic configurations. However, in many cases, the molecules may possess different 

numbers of a  (spin-up) and (3 (spin-down) electrons, and some of the molecular or­

bitals may be occupied by a single electron only. There are two common approaches 

to deal with these open-shell systems: unrestricted Hartree-Fock (UHF) method 

and restricted open-shell Hartree-Fock (ROHF) method.

The UHF [14] method assumes that the spatial orbitals of a  and (3 electrons could 

be different; therefore, the determinantal electronic wavefunction can be rewritten, 

in shorthand notation, as

*ei =  +  N \ ^  ^ ^ 2  ' ' '  ^ ^ m + i ^m +2 ■ ■ ■ ^m +n I (1.26)

where M  and N  are the numbers of a  and [3 electrons, respectively, and M  > N.  

The energy associated with the UHF wavefunction can be deduced in the similar way 

as for the RHF wavefunction (eqs. (1.13) and (1.25)), but the exchange interaction 

now consists of two terms, one for a  electrons and one for (3 electrons. Because 

of the different spatial parts of a  and f3 spin-orbitals, the UHF wavefunction is no 

longer the eigenfunction of the 5 2 operator, and very often the spin-contaminations 

of different spin states are observed [15].

Unlike the UHF method where the a  and [3 electrons can occupy different spatial 

orbitals, the ROHF method requires that a spatial orbital be paired up for both an 

a  and f3 electron [16]. In other words, there is a constraint: (j>M+i =  (h  imposed 

on eq. (1.26). The ROHF wavefunction, compared to the RHF counterpart, can be 

considered as a system of N  closed shells and M  — N  non-closed open shells. The 

resulting ROHF wavefunction would again be an eigenfunction of the spin operator 

S 2. However, the Fock operators are not invariant under the unitary transformation 

on the complete orbital space. Furthermore, the ROHF method is applicable only 

for the high-spin half-filled open-shell, either non-degenerate or degenerate, systems, 

and the calculated energy is usually higher than the corresponding value obtained 

using the UHF method.

9
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1.3 Electron Correlation M ethods

The Slater-determinant representation of the wavefunction used in HF methods 

accurately describes their antisymmetry as required by the Pauli exclusion principle, 

and eliminates the problems of having two electrons of parallel spins occupy the same 

spatial orbital. However, the HF formalism ignores the instantaneous interaction 

of two electrons of anti-parallel spins. Recall tha t the Coulomb integral defined in 

eqs. (1.10) and (1.17) assumes the electrostatic repulsion of an electron and the 

averaged field generated by the other electrons, and two anti-parallel electrons are 

implicitly allowed to simultaneously occupy the same position in space, which is in 

fact incorrect. As a consequence, an error due to this electron correlation is present 

in the HF energy, calculated at the limit of the basis set, Ef- ^ , which makes Ej-J  ̂

always higher than the exact energy of the system. The energy difference between 

lim energy an(l the exact non-relativistic energy £o is termed the correlation energy 

E Co r r :

Ecorr =  & -  E ^  (1.27)

Another drawback of the HF method lies in the fact that the HF wavefunction 

does not describe the proper dissociation of a bond. Due to the assumption of the 

RHF method that all orbitals be either occupied by a pair of anti-parallel electrons 

or empty, the dissociation of, for example, a diatomic molecule will lead to the 

wrong asymptotic products of closed-shell ions instead of neutral, open-shell atoms. 

In addition to the inaccurate behavior near the dissociation, the HF method is also 

inappropriate for the weakly-interacting systems such as van der Waals complexes 

since the dispersion interaction is completely absent in the HF formalism.

In order to more accurately describe the motion of electrons and their interac­

tions, and recover the correlation energy, approximations beyond the HF method 

have to be employed. A variety of such electron correlation methods have been for­

mulated and applied (for references, see e.g. [2, 3, 6 ]). In this section, the details of 

a number of methods of treating the electron correlation that have been used in this 

project will be briefly discussed. They include configuration interaction (Cl), per-
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



turbation theory (PT) and coupled-cluster theory (CC), and multi-reference (MR) 

methods.

1.3.1 C onfiguration In teraction

The configuration interaction (Cl) method is conceptually the easiest among all 

the electron correlation methods. The main idea of this method is to express the 

wavefunction by, instead of a single determinant, a linear combination of Slater- 

determinant. Symbolically, one can write the Cl wavefunction as

=  (1.28) 
K

where the \$>k ) is the configurational state function (CSF) in form of determinants, 

and Ck  is the associated coefficient. Since, in general, the HF method can recover 

approximately 90% of the total energy, the HF wavefunction is usually chosen as 

the first term in the Cl wavefunction. The other CSF’s can then be generated by 

exciting electrons from the HF occupied orbitals to the virtual orbitals according to 

the spin and symmetry restrictions. Based on the number of electrons excited, the 

Cl wavefunction can be expressed in a general way as

occ v ir t  occ v i r t  occ v ir t

*  =  Co|® „) +  £ E  C £ K >  +  Y, £  C 2 i « ®  +  £  Y, C 2 2 I 4 ®  +  • • • (1.29)
a r ab rs  abc r s t

The is the CSF resulting from a single-electron excitation from the occupied 

orbital a to the virtual orbital r. Similarly, can be obtained by a two-electron 

excitation from orbitals a and b to orbitals r  and s. The associated coefficients C  

are determined by the variational method.

As can be seen, the Cl wavefunction contains a tremendous number of CSFs. 

The total number of CSFs that can be generated in Cl wavefunction is determined 

by the Weyl’s formula [17]:

* ( „ ,  N ,  S )  -  f i t  (  )  (  J „ n + s \  !  )  (1.30)

where n is the number of molecular orbitals, N  is the number of electrons, and S  is 

the spin quantum number. The eq. (1.29) describes the full Cl (FCI) wavefunction

11
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if all possible excitations are included. FCI method is the most accurate method 

that yields the exact non-relativistic energy within the orbital space spanned by the 

given finite basis set. However, it is also the most time-consuming and resource- 

demanding method which makes it applicable only for very small systems.

It is recognized tha t high-order excitations (such as fifth-order) in fact contribute 

only a small portion to the total correlation energy; therefore, the CSFs resulting 

from those excitations could be removed from the Cl wavefunction while retaining 

most of the correlation energy. Depending on the order of excitations up to which 

the Cl wavefunction is truncated, two subsets of FCI method are commonly used: 

configuration interaction with single and double excitations (CISD) and configura­

tion interaction with single, double, triple and quadruple excitations (CISDTQ).

The CISD method is the simplest version of truncated Cl wavefunction in which 

only up to the level of double excitations are included. The resulting CISD wave­

function is thus written as

occ v ir t  occ v ir t

^ c is d  =  C'ol^o) +  E E w + E E w ) ’ (L31>
a r ab rs

Brillouin showed [18] that the singly-excited determinants do not interact di­

rectly with the HF ground state reference |$o). In other words, the single excitation 

terms have only a small effect on the ground state energy. On the other hand, the 

double excitations \&raD play an im portant role in determining the correlation en­

ergy as they directly mix with the ground state HF wavefunction. Since the single 

and double excitations interact with each other, as allowed by Slater’s rule, and 

there are only a small number single excitations compared to the double excitations 

that have to be considered, the single excitations are normally included in the CISD 

calculations.

Despite the relatively fast generations of configurations (it scales as N 6, where 

N  is the number of basis functions), the CISD method neglects the contribution 

from the quadruple excitations which in fact, for many-electron systems, are more 

im portant than single and triple excitations. To solve this problem, the configura­

tions resulting from the triple and quadruple excitations can be added to the CISD

12
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wavefunction, giving rise to the so-called CISDTQ wavefunction

occ v ir t  occ v ir t

C I S D T Q  — ^  C I S D  +  E  E  c s M ) + E  E  a - 3 2 >
abc r s t  abed, rs tu

The triple excitations are included, although they again do not interact with the 

ground state HF wavefunction due to Slater’s rule, because they mix with both the 

double and quadruple excitation terms. This CISDTQ method has the performance 

comparable to the full Cl method, but it is computationally too expensive (scaling 

as iV10). Consequently, it is of little practical value, and is only applicable to very 

small systems described with basis sets of modest sizes.

Many variants of Cl methods, except for the full Cl, suffer from two vital prob­

lems: size consistency and size extensivity. The first one refers to the condition that 

the energy of a many-particle system is the same as the sum of the individual, non­

interacting particles. The second one is very similar but a more general concept. It 

requires that the method scales proportionally to the number of particles [3]. Both 

problems can be accounted for by the fact that some of the configurations are omit­

ted in the Cl wavefunctions, and these missing terms contribute unequal amounts of 

correlation energy for different sizes of systems and nuclear configurations. In order 

to regain the properties of size consistency and extensivity without using the full Cl 

wavefunction, an approximation called the Davidson correction [19] can be used, in 

which the contribution from the quadruple excitations to the correlation energy can 

be estimated by

A E Davidson =  ( l -  Cq) E c is d  (1.33)

where Cq is the coefficient of the HF wavefunction, i.e., |$o)? in the normalized 

CISD wavefunction (eq. (1.31)).

In addition to the problem of size inconsistency, the practical Cl calculations are 

also limited by the slow convergence in the SCF iterations because of the cusp con­

dition [20] of wavefunctions. Even so, the large flexibility of the wavefunctions, the 

applicability to both closed- and open-shell systems, and the feasibility of simultane­

ous treatm ent for both ground and excited states still make the Cl methods among 

the most popular electron correlation methods in modern computational chemistry.
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1.3.2 P ertu rb ation  T heory

Since solving the Schrodinger equation and obtaining the exact solutions are impos­

sible in most of the quantum chemical problems, the use of approximations becomes 

necessary. The variational principle introduced previously is one of the most com­

mon techniques to obtain the approximate solutions. Another method tha t is widely 

used is called perturbation theory (PT).

The basic assumption of perturbation theory is tha t the Hamiltonian of a system 

U  is separable:

n  =  n °  +  XU! (1.34)

where U.0 is a Hamiltonian whose eigenfunctions and eigenvalues are known, A is a 

perturbation parameter and W  is called the perturbing Hamiltonian. A is the factor 

illustrating the extent the system is perturbed. When A is zero, the perturbed 

Hamiltonian is reduced to the unperturbed one; when A =  1, it is said tha t the 

perturbation is ultimately turned on.

Suppose that the Schrodinger equation corresponding to the Hamiltonian U°  is 

given as follows:
7 £ ° |t fW > = 4 0 >|tfW) (L35)

and l^n0̂ ) form a complete solution set. Suppose also tha t the Schrodinger equation 

for the perturbed Hamiltonian is:

n \ * n )  = E n\*n)- (1-36)

Since the perturbed Hamiltonian is dependent on the perturbation parameter A, its 

eigenfunctions |'frn) and eigenvalues En also depend on A, and can be expanded in 

the form of Taylor series:

I *n} -  | ^ 0)) +  A |^ 1)) +  A2| ^ 2)) +  . . .  (1.37)

En =  + \ e W + \ 2e £)  +  . . .  (1.38)
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where

” ' u a\k A=0

E.{k) =
1 dkEn

(1.39)

(1.40)
A=0&;! d \ k

for k =  1 ,2 ,... .  Substituting eqs. (1.37) and (1.38) into eq. (1.36) yields the 

following equation:

{n° + an') (|44 + a | 4 4  +  a 2 4 4  +  •••)  =

+  (4°) + A41) + a 2 4 2) + • • •) (144 +  a i 4 4  +  a 2 14 4  +  • • • )(.i.4i)
Collecting and equating terms with the same powers of A generates an infinite num­

ber of linear equations:

?444 - 4444 (i.42)
?444+?444 = 4444+4444 (1-43)
h°i44 + ?444 = 4 4 4 4  + 4 4 4 4  + 4 4 4 4  (i.44)

The expressions for high-order terms for energy and wavefunction in eqs (1.36) 

and (1.37) can be deduced from these equations. The first equation (1.42) is the 

Schrodinger equation corresponding to the unperturbed system. The associated 

energy and wavefunction are thus said to be the zeroth-order energy and wavefunc­

tion. To obtain the first-order correction of energy, the eq. (1.43) is left-projected 

by ( 4 0)|:

(44?444 + <44?444 = <444144+ <444144 (1-45) 

4 4 4 4 4 4  + (4 4 h'i4 4  = 4 4 4 4 4 4  + 4 4 4 4 4 4 . (i.46)
Two assumptions are used here to simplify the derivation. First, the zeroth-order 

wavefunction | 4 )  is normalized, i.e., ( 4 4 4 4  =  1- Secondly, the condition of 

intermediate normalization leads to ( 4 4 ^ 4  =  k̂l- As a result, the first order 

correction to the energy is given by

4 1) =  < 4 4 f t #l 4 4 .  (i.47)
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It is now assumed tha t the unperturbed Hamiltonian H 0 possesses a complete 

orthonormal set of eigenfunctions. Hence, the first-order correction to the wave­

function can be expanded as:

l<t!>1)> = E c S l<tS,)> <L48)
/i^n

Inserting this expression into eq. (1.43) yields

( e ^ S i ^ A  +  ^ ' l 4 0)> =  4 0) + 4 1 W ))- (1-49)
\ ^ n  J \ ^ n  J

Multiplying | from the left gives:

n

=  E c S 4 0 )( ^ 0 ) iH 0)) + 4 1W W )>, (i.50)
fi^n

which, due to the condition of intermediate normalization, leads to

=  C $ ) e W (1.51)

and, finally,
m (®!,0)i«'|'j40))
~  _  e P - e P  ■ ( 1

Therefore, the first-order correction to the wavefunction is

(L53)
fi^n

The second-order correction to the energy can be derived from the eq. (1.44) in 

a similar way as used for E n \  Projection of | from the left yields the following

( t W |^ 0 | 4 2)) +  ( ^ 0 ) |^ |^ W )

=  < 4 ° ) |4 ° ) |^ 2)> +  +  < 4 ° > |4 2 )|4°)>  (1.54)

which is simplified as

4 2) =  ( L 5 5 )
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according to the intermediate normalization condition. Using the expression of the 

first-order correction to the wavefunction in eq. (1.53), the final expression for the 

second-order correction to energy can be achieved:

p (2 ) _  V  ( ^ 0)| ^ | 4 0)) ( 4 0)1 ^ 1 ^ 0)) n
Z ^  p(0 ) p(0 ) • l L5b)

Since the perturbing Hamiltonian %' is Hermitian, the above expression can be 

rewritten simply as

F(0) p(0 ) • I1-57)
^ n  &n -  &11

The corresponding second-order correction to the wavefunction is, without showing 

the details of derivation,

,* (2)v =  ( v  ( ^ 0) î i4 0)) ( 4 0) î i^ 0)) _  ( ^ ° V i4 0)) ( 4 V ^ 0)A  (0)

" } "  [ f e  ( ^ >  -  4 0)) (4 0) -  d 0))  ~  ( ^ )  -  e ^ ) 2 ) 1 *
(1.58)

The higher-order corrections can be obtained in the similar procedures, although the 

derivations are much more tedious and the expressions very complicated. The above- 

mentioned development is the time-independent version of Rayleigh-Schrodinger 

perturbation theory (RSPT) [21, 22] which is designed for the systems with non­

degenerate ground states. As can be seen, if the ground state of a system is degen­

erate, the denominators in eqs (1.53), (1-57) and (1.58) will vanish for certain /j  and 

v. The corresponding treatment for degenerate systems has been developed as well, 

and both methods have been extended to incorporate the time-dependence effects. 

These have been shown very powerful in the studies of, for instance, Stark effect of 

hydrogen atom [23, 24].

The RSPT formalism is a general treatm ent of the perturbation effects on the 

energies and the associated wavefunctions of a system, and thus it is applicable to 

any quantum mechanical systems with bound-state eigenfunctions. In the regime of 

quantum chemistry, Mpller and Plesset devised an analog of the RSPT which deals 

with the electron correlation effects [25]. In the Mpller-Plesset perturbation theory
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(M PPT), the unperturbed Hamiltonian is taken as the sum of one-electron Fock 

operators (eq. (1.16))

N  (  N  'I

n °  =  Y ,  { h(i) +  £  -  K j ( i ) )  \  . (1.59)
i = l  ^ i<j )

Therefore, the perturbing Hamiltonian %' is simply the difference between T~L() and 

the multi-electron Hamiltonian:

W = n-n°
N  1V JV iV f  N  'I

=  E  + E  E  f t h  -  E  * ( • ) + E  « «  -  K M
i = 1 i = l  i < j   ̂ i = l   ̂ i < j  J

= E E iT T T i-E E W W -^ W )- d-60)I J. 2 7i=\ j i=i

The formulas for the energy and wavefunction corrections in the M PPT scheme 

are based on those derived in the general RSPT. The zeroth-order energy is merely 

the sum of orbital energies

N /2  (  N / 2  \  N /2

E 00) =  5 3  1 +  5 3  { ( f c f a l M j )  ~ ( M j l f a f c ) )  f =  5 3  e* (L61)
i = 1 ^  j = 1 J  i = 1

since e, are the eigenvalues of the Fock equations (1.16). From eq. (1.47) the first- 

order energy correction can be computed:

4 1} =  (^el ln'^e i)
1 N  N  1 N  N

= 9 E E ^ m ,—— .I'M -  E<*“i E « - «  -  ĵCO) i®«i> ̂ ix? r  ?i= i?= i j i=i
AT/2 AT/2

=  ■ (1-62)
i = l  j = l

The total energy up to the first-order correction is thus

4 0| + 4 1) =  E

N /2

1

N /2
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which is equal to  eq. (1.13), which is the HF energy. In other words, no correlation 

has been yet introduced in the first-order M PPT. Using eq (1.57), the second-order 

correction to the energy can be easily found:

_  2 y "  (4>k(k\(pj4>j) _  y - '  ( & <t>j 1 (<i>k4>i 1 <i>jfa) ^  g^\

° “  m  e‘ +  ei - e“ ~ e‘ f a  ei +  ' j - c , , - ' ,

for a  closed-shell system. The expression contains only the HF and doubly excited 

determinants because of the Brillouin theorem. The second-order Mpller-Plesset 

(MP2) energy is thus:

E qIP2 =  Uj0) +  E {01} +  E f ] = E hf  +  4 2). (1.65)

Working equations of higher-order M PPT can be derived in the similar fashion, but, 

like the RSPT counterpart, the expressions of energy corrections are complicated 

and rather difficult to  be used efficiently.

There are several advantages of the M PPT over the variational Cl method. 

The most important one is the size-consistent and size-extensive nature of M PPT, 

regardless of the orders of correction. Furthermore, the computational expense of 

M PPT, especially MP2, is smaller than  the Cl methods (IV5  for MP2 versus IV6  for 

CISD) which usually suffer the problem of convergence. Contrary to  other popular 

correlation methods, M PPT is not variational; the M PPT energy is not guaranteed 

to be the upper bound to the exact energy. Consequently, the calculations results of 

the M PPT have to be viewed with caution. In general, the M PPT energy converges 

with increasing orders of correction. However, this is not always the case, and 

in some circumstances, higher-order corrections may lead to the divergent total 

energy [26]. Since, in most quantum chemical calculations, the property of size 

consistency is generally more im portant than being variational, M PPT, in particular 

MP2, remains the most common post-HF method for the approximation of electron 

correlation.

1.3.3 Coupled C luster  M ethod

The coupled cluster (CC) method has recently emerged as one of the most accurate 

computational methods for electronic structure calculations. First applied in nuclear
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physics [27, 28], the use of the CC theory in chemistry was initially very limited be­

cause of the highly complicated formalism using the sophisticated mathematical 

concepts such as Feynman diagrams and second quantization. The efforts of Ci'zek 

[29, 30], Paldus [31], Hurley [32] and Sinanoglu [33] on reformulation and interpre­

tation of the CC theory made this method understandable and, more importantly, 

applicable to effectively solving chemical problems.

The central idea of the CC method is to generate all possible determinants from

the HF wavefunction using the exponential ansatz. That is, the CC wavefunction

is written as

^CC =  eT |$o) (1.66)

where the exponential ansatz, when expanding, is given by

i i °° i
eT =  1 +  T  +  - T 2  +  - T 3 --- =  V - T fc. (1.67)

2! 3! ^  k\
k = 0

The operator T  is called the cluster operator which is a sum of i-particle operators:

T - T 1 + T 2  +  T 3  +  - - - , (1 .6 8 )

each of which defined as, for example,

occ v ir

T ii*») =  E E  w >  (L69)
i a 

occ v ir

t 2|$o> = £ £  (1-70)
i < j  a<b

The coefficients t  associated with the excited determinants are called amplitudes. 

Substituting eqs. (1.67) and (1.68) into eq. (1.66) yields the complete CC wave­

function:

^ c c  =  j l  +  T r - l - ^ T 2  +  iT ? ^  +  ^Ta +  T aT r +  ^T ?

+  ( t 4 +  T 3T! +  +  ^ T 2T? +  +  • • • 1 1 $ 0>. (1.71)

The CC energy can then be computed by substituting the CC wavefunction into the 

Schrodinger equation.
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If eq. (1.69) is used, then the resulting wavefunction will contain all possible 

excited determinants; in this case, the CC wavefunction is equivalent to the full Cl 

wavefunction. However, as mentioned earlier, the calculations using wavefunctions 

at the full Cl level are possible only for small systems. Therefore, for practical 

reasons, the cluster operator has to be truncated. If only T 2  is present in the 

exponential ansatz, the method is referred to as the coupled cluster doubles (CCD). 

The T i term is missing because of the Brillouin’s theorem. The more common 

variant is the coupled cluster singles and doubles (CCSD) method where T  =  T i +  

T 2 . The exponential ansatz corresponding to this cluster operator is

e T 1 + T 2 =  1 + T l +  ^ T 2 +  1 +  ( T i X 2  +  1 T 3 ^  +  Q X 2 +  1 T 2 T 2 +  + . . .

(1.72)

There are several unique features of the CCSD wavefunction that are notable. 

Despite the cluster operator truncated at the double excitation level, the expanded 

CCSD wavefunction contains terms that result from triple and quadruple excita­

tions, such as T f and T |.  The CISD wavefunction, in which the excited determi­

nants are generated by the linear ansatz, omits all these terms. In other words, the 

CCSD method employing the exponential ansatz is able to recover all the geminal 

terms in the pair-correlation theory [34]. These disconnected terms in fact account 

for the size inconsistency of the CISD, and all other truncated Cl methods. An­

other feature is tha t the amplitudes for these high-order excitation terms are not 

determined independently; instead they are related to the amplitudes of the singly 

and doubly excited determinants. Accordingly, the iterative determination of the 

singles and doubles amplitudes can simultaneously resolve the contribution of the 

higher-order excited determinants.

Normally, the CCSD method enables the recovery of 95% of the correlation 

energy. The performance of the CCSD wavefunction can be determined by the 

so-called Ti-diagnostic [35], which is defined as the norm of the singles amplitude 

vector divided by the square root of the number of electrons:

T, =  M .  (1,73)
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Since, from the Brillouin’s theorem, singly excited determinants do not directly 

interact with the ground state, the values of t i, and in turn  T\,  are expected to be 

small. Hence, the magnitude of computed T) gives an indication of how adequate 

the HF reference wavefunction is. Typically, the values smaller than  0.02 imply the 

performance of CCSD method comparable to the full Cl limit.

Besides the pure CCSD method, the one augmented with triples through pertur- 

bative approach (CCSD(T)) [36] and full approach (CCSDT) [37] are also available. 

As the scaling factors of these methods (IV6  for CCSD and N 7 for CCSD(T)) are 

similar to that of CISD (TV6) and the size-consistent and size-extensive properties, 

CCSD(T), or even CCSDT, has already become the standard for high-level compu­

tational quantum chemistry. Still, it has to be mentioned that CC methods are not 

variational; therefore, the CC energies are, like the M PPT energies, not necessarily 

the upper bound of the true energies.

1.3.4 M ulti-C onfigurational S e lf C on sisten t F ield  M eth od s

For the electron correlation methods introduced in the previous sections (Cl,M PPT, 

and CC), the reference wavefunction from which excited determinants are generated 

is the HF determinant, with the closed-shell HF wavefunction represented by a single 

determinant. Accordingly, these correlation methods can be referred to as single­

reference correlation methods. As can be easily seen, the performance of these 

methods in recovering the correlation energy is partly dependent upon the quality 

of the HF reference function. Poor results are to be expected if the HF determinant 

is not able to nicely describe (or approximate) the electronic configuration of the 

system. A typical example is the system where the ground state is degenerate. In 

such case HF fails to describe the wavefunction properly using a single determinant 

(or more precisely, CSF).

A straightforward way to solve this problem is to allow the HF wavefunction 

to contain more than one CSF. This is the reason the multi-configurational self- 

consistent field (MCSCF) was first developed [38]. This method is very similar to 

the Cl methods in the way that the wavefunction is written as a linear combination
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of configurations, i.e.,
K

^ M C S C F  =  (1-74)
i=i

The coefficients C{ of the configurations are determined variationally by the SCF 

procedures. There are a number of differences between the MCSCF and Cl wave­

functions. First, while all possible configurations are generated and included au­

tomatically in the Cl wavefunction according to the constraint on the order of ex­

citations, in MCSCF only a limited number of configurations is actually included, 

and the configurations that are present in the MCSCF wavefunction are specified 

on the basis of chemical understanding of the system of interest. Secondly, instead 

of optimizing solely the coefficients as done in the Cl methods, both the coefficients 

of configurations and the molecular orbitals with which the configurations are con­

structed are optimized in MCSCF calculations. Therefore, a greater flexibility is 

provided in the MCSCF scheme which, however, creates an additional problem of 

difficult convergence, and often solutions are obtained which do not correspond to 

real minima.

The MCSCF wavefunctions containing more than  one configuration are advan­

tageous because the static correlation can be recovered; i.e., the degenerate (or 

resonant) configurations can be treated on the same footing, and no artificial error 

will be introduced by neglecting certain im portant configurations. A downside of 

the idea of MCSCF, however, is the proper choice of configurations. Very often 

it is difficult to select the necessary configurations tha t have to be included in the 

MCSCF wavefunction. A possible approach is to include all possible configurations 

arising from a group of pre-selected molecular orbitals called the active space. In the 

complete active space self-consistent field (CASSCF) method [39, 40, 41], molecular 

orbitals are separated into two groups: active and inactive spaces. Orbitals in the 

inactive space are considered frozen; no electron excitations are allowed between 

these orbitals. In the active space, on the other hand, different configurations are 

generated by full Cl calculations and enter the MCSCF wavefunction (Figure 1.1). 

Though smaller orbital space than the genuine full Cl, CASSCF method still gen­

erates a huge number of configurations which makes the calculations impractical.
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The reduction of the configurations in MCSCF wavefunctions can be achieved 

by employing the restricted active space self-consistent field (RASSCF) method [42], 

which is a variant of CASSCF. In RASSCF, the active space is further divided into 

three subspaces, as illustrated in Figure 1.1. RAS2 is the space in which full Cl cal­

culations are still performed to generate all possible configurations. Furthermore, 

additional single and double excitations from RAS1 and to RAS3 are allowed, giving 

rise to a CISD in these spaces. By doing so, the accuracy of the resulting wavefunc­

tion is slightly deteriorated, but the number of necessary configurations is largely 

reduced.

The main advantage of MCSCF and related methods is the proper treatment 

of the static (or non-dynamical) correlation effects which deal with the degeneracy 

(or near-degeneracy) of configurations. By expanding the wavefunction from single- 

determinantal to multi-determinantal, different configurations (or CSFs) of same 

chemical importance can be considered equally, and the balanced description of 

degenerate, or quasi-degenerate, orbitals can be attained. Unfortunately, the design 

of chemically active space is problematic and a prior knowledge of the systems 

of interest is required. In addition, the dynamical correlation is not considered 

in MCSCF methods, so that the resulting energies are worse than those obtained 

by M PPT and CC methods. The MCSCF methods clearly serve as an excellent 

starting point for the improvement of HF reference wavefunctions in the electron 

correlation methods, although their calculations are not as mechanical as HF and 

M PPT methods.

1.3.5 M ulti-R eferen ce M eth od s

Due to the lack of treating the dynamical correlation effects, the MCSCF and related 

methods are only suitable for computing the potential energy curves and obtaining 

the spectroscopic constants. In order to capture most of the correlation energy, 

MCSCF methods have to be incorporated with other electron correlation methods, 

so tha t both the static and dynamical correlation effects can be dealt with equally. 

Attempts have been made to combine the MCSCF methods with, for example,
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CASSCF RASSCF
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0,1 or 2 

excitations

Figure 1.1: Illustration of the CAS and RAS orbital partitions

Cl, MP2 and CCSD methods, and satisfactory results have been obtained. In the 

following section, several such combined approaches will be outlined.

The method of multi-reference configuration interaction (MRCI) was first intro­

duced in mid 1970’s [43], and by now it has become one of the standard electron 

correlation methods employed in routine computational studies of ground and ex­

cited state potential energy surfaces. The basic idea behind the MRCI method is 

simple: instead of the excited determinants generated from the HF wavefunction, 

they are generated from a reference space consisting of a number of configurations. 

The CISD wavefunction in eq. (1.31) can be rewritten, in second quantization for­

mat, as

( occ v ir t  occ v i r t  \

Co +  E E  C> r ^ a  +  E  E  Ca> + a + a ha a +  • • • |$ 0) (1-75)

a r ab r s  /

where a + and a  are creation and annihilation operator, respectively, acting on the 

HF wavefunction | <3>o) ■ In MRCI scheme, the HF wavefunction is replaced by a
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CISD wavefunction. T hat is,

( occ v i r t  occ v i r t  \

C o  +  E  E  +  E  E  C3 a+a+a*n, +  ■ • • V c i s d -  ( 1-76)

a r  ab rs J

By choosing the CISD wavefunction as the reference, higher-order excitation terms 

can be included. For instance, the missing quadruple excitations in the CISD wave­

function, which make the method size-inconsistent, can be generated in the MRCI 

method, therefore significantly improving both the wavefunction and energy. In 

general, this method is able to recover a much larger portion of the correlation en­

ergy than the CISD method, while requiring only a small amount of extra computer 

resources. Normally, the expression inside the bracket in eq (1.73) is truncated at 

the double excitation level since the contributions from higher-order terms are negli­

gibly small. This gives rise to the so-called MRCISD (or MRSDCI) method. As the 

other truncated Cl methods, the MRCI method is not size-consistent, and Davidson 

correction is still required to recover the contribution from the missing higher-order 

configurations.

A closely-related method to MRCI is known as the second-order configuration 

interaction (SOCI) [44]. This method differs from the general MRCI in the way 

tha t the MCSCF or CASSCF wavefunction is taken as the reference, from which 

excited configurations are generated by CISD. An im portant factor determining 

the accuracy of MRCI is the choice of molecular orbitals with which the wavefunc­

tion constructed. Note tha t these orbitals are generated by the single-reference HF 

method which is incapable of dealing with the effects of degeneracy. Thus, this 

set of HF orbitals is certainly not able to properly describe the systems with de­

generate ground states, although this problem can partly be solved by including a 

large number of configurations in the MRCI wavefunction. However, the resulting 

wavefunction will suffer a serious problem of convergence. The use of an MCSCF- 

type reference, on the other hand, can avoid the potential problem of degeneracy, as 

both the orbitals and coefficients in the MCSCF wavefunction are optimized, and 

all chemically significant configurations are manually chosen in the reference space. 

Consequently, both static and dynamical correlations can be considered while only
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smaller number of configurations, compared to MRCI, have to be included. This 

method has been applied fairly successfully on heavy systems such as LaH [45], PbBr 

[46], W F 4  [47] and [Mo2 C19]3-  [48].

Both MRCI and SOCI inherit the property of size-inconsistency from the trun­

cated Cl wavefunction, although the problem of non-dynamical correlation is to cer­

tain extent solved. The multi-reference perturbation theory (M RPT), however, does 

not encounter the same situation because perturbational method is, as mentioned 

in the previous sections, both size-consistent and size-extensive. Unfortunately, the 

development of M RPT is much more difficult than MRCI and SOCI. Recall that 

in perturbational approach, the complete Hamiltonian of the system is separated 

into two parts, with the zeroth-order Hamiltonian being solvable. Generally, the 

zeroth-order Hamiltonian in M PPT method is the sum of one-electron Fock oper­

ators, whose eigenfunctions are simply the HF wavefunction. This is not true in 

the case of MCSCF wavefunctions since they are not the eigenfunctions of the Fock 

operators. Therefore, the zeroth-order Hamiltonian and wavefunction in the general 

multi-configuration perturbation theory (MCPT) [49] should be constructed from 

both the HF and excited configurations:

=  C0|$o) + E ^ I ^ )  (L7?)
k+ 0

n ®  = £?oi^0)x ^ 0)i + X ) £7* l ^ ,) ^ ' l -  (L78)
0

An additional requirement in the zeroth-order Hamiltonian is tha t the ground state 

|\e40̂ ) is projected out of the excited configurational space {|3>fc')}. Using the same 

technique as shown for RSPT, the second-order correction to energy can be deduced:

En -  2 ^  „ (0 ) F(0) ■ (L79)

The multi-reference Mpller-Plesset method developed by Hirao and co-workers 

[50] divides the state space into three sections: CAS reference space |$ n), excited 

determinants |<&*) from the CAS space, and orthogonal determinants |$ 9) outside
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the CAS space. Symbolically, the Hamiltonian is w ritten as

ft<°> =  4 ° )  i ^ x 4 0) i + E  Ek] ! * * > < $ * ! + E  eT  i * ? x * , i -  (L 8 °)

The complete active space perturbation theory (CASPT) is another popular MRPT 

developed by Roos et al. [51], in which the zeroth-order Hamiltonian is further 

transformed into block-diagonal matrix based on the order of excitations from the 

CAS reference space. The second-order CASPT (CASPT2) is identical to MRMP2 

when only the ground state energy and wavefunction are to be calculated.

Despite the size-consistent property tha t makes M RPTs promising techniques 

in electron correlation calculations, they all suffer from the singularity problem 

arising from the diminishing denominators in eqs. (1.79) and (1.81). This so-called 

intruder states problem [52] is particularly im portant for excited states since their 

energies in the CAS space are usually quasi-degenerate. Several proposals dealing 

with the intruder states have been reported; the most commonly used scheme is the 

intruder state avoidance (ISA) [53] in which an energy-denominator shift is added 

to the energy correction terms so as to remove all |$ q) which are quasi-degenerate

1.3.6 O ther M ethods

In the previous sections the basic information of HF and electron correlation meth­

ods such as Cl, MP2 and CC was introduced. These methods are categorized as 

ab initio wavefunction methods because no a priori assumptions are made in the 

computations of the wavefunction: The wavefunction of the system of interest is de­

termined from the correct Hamiltonian without using any experimental data. Since 

all the integrals have to be evaluated, the efficiency of such methods is greatly de­

pendent on the number of basis functions tha t are used to build the wavefunctions.

k

The second-order MRMP (MRMP2) energy is thus

Q

(1.81)
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This limitation strongly hinders the applicability of these methods, and restricts 

them to only small atomic and molecular systems.

There are two quantum chemical approaches which allow for the calculations 

involving relatively large systems. The first one is semi-empirical approach [54], 

in which the Hamiltonian is somehow simplified by introducing parameters that 

are pre-determined to fit experimental data or ab initio values. In this family of 

methods, certain types of molecular integrals are replaced by parameters which 

are adjusted so that the energies and other molecular properties agree with the 

experimental values or the results from the ab initio calculations. Depending on the 

underlying approximations and parameters, various semi-empirical methods such as 

Pople-Parr-Pariser (PPP) method [55, 56], Hiickel molecular orbital (HMO) method 

[12], modified neglect of differential overlap (MNDO) [57] method, Austin Model 

1 (AMI) method [58] and Parametrized Model 3 (PM3) method [59] have been 

developed.

Another completely different approach to the electronic structure calculations is 

to employ the electron density rather than the wavefunction. This method, known 

as density functional theory (DFT) [60], stems from two revolutionary papers from 

Hohenberg and Kohn [61], and Kohn and Sham [62] which showed tha t the ground 

state energy (and other molecular properties) can be uniquely determined by the 

ground state electron density, and this relation can be expressed in terms of a density 

functional

Eo[p] =  J p{r)v{r)dr  +  Ts[p] +  ^ ^ - ^ - d r i d r 2 +  Exc[p). (1.82)

In this equation, p(r) is the electron density of the system, u(r) is the electrostatic 

potential energy of electrons, Ts[p] is the kinetic energy of electrons and E xc[p] is 

the exchange-correlation functional. This energy expression is very similar to those 

derived in HF and other wavefunction methods; its exact form, unfortunately, is 

not known. Many forms of the exchange-correlation functionals E xc[p] have been 

developed (for example, X a [63], VWN [64], PW91 [65] and B3LYP [6 6 ]) and their 

performance has been extensively tested. In general, the computational resources 

required in the DFT calculations are much smaller than wavefunction methods since
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the problem has been reduced to finding the electron density of a system in x, y  and

z  coordinates. Therefore, DFT can be utilized in the molecular modeling for large 

systems such as clusters or solids. However, a problem associated with the DFT 

formalism is the use of “empirical” functionals which may not work equally well for 

all systems; in some circumstances, the DFT even predicts wrong geometries and 

binding energies [67, 6 8 ]. For a comprehensive comparison of the performance of 

various DFT methods, see Ref. [69].

1.4 Relativistic Effects

Relativistic effects, generally speaking, refer to the consequences of changes of phys­

ical and chemical properties of atomic or molecular systems when electrons are 

moving at the speed comparable to the speed of light. In classical mechanics, the 

speed of light is assumed infinite and there is no interaction between light and par­

ticles. Accordingly, the masses of particles are conserved in Newtonian mechanics. 

However, the proposition and verification of the special theory of relativity devel­

oped by Einstein [70] completely revised this idea. In the relativistic mechanics, 

the rule of the conservation of mass does not hold; instead, the mass of a moving 

particle is related to its speed via the following relation:

in which mo is the rest mass of a particle, and m v is the corresponding mass of the 

particle moving at the speed v. Furthermore, the special theory of relativity also 

suggests the mass-energy equivalence which reveals that both energy and mass are 

not conserved; they can be transformed from and to each other.

These two fundamental principles of relativity, though widely adopted already 

in several areas of modern physics, were found not very useful in chemistry until 

1970’s when it was discovered tha t the relativistic effects are in fact substantial in 

the systems containing heavy atoms. The most known and fascinating examples of 

relativistic effects in chemistry are the yellow glitter of gold [71], the liquid phase 

of mercury and the existence of mercurous ion [72], and the weak binding of heavy

m v = (1.83)
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main-group dimers such as TI2 and P b 2  [73]. Nowadays, the relativistic effects have 

become the central part of the research on the electronic structure and properties 

of systems composed of heavy elements.

All relativistic quantum chemistry centers on the Dirac equation for particle in 

an arbitrary external scalar field, which is the relativistic version of the Schrodinger 

equation:

(ca • p  +  /3mc2  +  V)  4/ =  E (1-84)

where a  is a (4 x 4) matrix expressed in terms of the (2 x 2) Pauli spin matrix a  in 

Cartesian coordinates, /3 is expressed in terms of two (2 x 2) identity matrices:

a
0 cr 
cr 0 0 =

f  1 0 0 0
0 1 0 0

0 0 - 1 0

^ 0 0 0 - 1 )
(1.85)

and p  is the momentum of particle. Since the Dirac equation is a four-dimension 

equation, the resulting Dirac wavefunction thus contains four components, which 

are generally written as
(  * L a  \

VSa
V Ŝ/3 J

where 4 ^  and 4/ 5  refer to the large and small components respectively. Using this 

four-component wavefunction, the Dirac equation can be rewritten as a system of 

two coupled equations:

$ (1 .86 )

c (a  • p) ^ 5  +  =  E ^ l

c ( a  • p) iIIl +  (V -  2 mc2) f g  =  E'&s

(1.87)

( 1 .88 )

In the non-relativistic case, the large components for electrons will be reduced to 

the solutions of the Schrodinger equation, and the small components disappear. For 

electrons, the small components are needed only for the coupling with the positronic 

states.
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For the many-particle systems, the Dirac operator is written as the so-called 

Dirac-Coulomb Hamiltonian [74]

(L89)
i i < j  ^

The first term  is the summation of one-electron Dirac operator defined, in atomic 

units, as:

hD(i) =  • pi +  0 jC2  -  ^  . (1.90)

The second term is a generic non-relativistic Coulomb two-electron operator. The 

full relativistic two-electron term is very complicated because of the presence of 

retardation effects tha t can be dealt with only by quantum electrodynamics. Con­

sequently, this term  is usually written as the Taylor expansion up to the order of 

1/c, giving the following Coulomb-Breit operator [75]:

v c b (tk ) =  T  _  J _
r \2  2 r X2

„  „  , (« i • r i 2) ( a 2  • r i 2)Oq • a.2 H-------------- 9------------ (1.91)
'  12

The presence of the two-electron interactions may lead to problems in finding suit­

able solution [76], as the negative-energy states may interfere with the positive- 

energy ones [77]. A discussion of the approaches that avoid these problems in prac­

tical calculations is given by Grant and Quiney [78].

1.4.1 P au li A pproxim ation

The ideal way of studying the relativistic effects on molecular structures and prop­

erties is to solve the Dirac equation directly and obtain the four-component wave- 

functions (or spinors). However, the mathematics involved and the practical imple­

mentation of such procedures into computer programs are very tedious. Therefore, 

simplifications were sought by decoupling the large and small components in the 

spinors and looking only at the large-component solutions of the Dirac equation 

which correspond to the electronic motions. The large and small components couple 

through one-electron operators in the Dirac Hamiltonian; therefore, the decoupling 

can be achieved by transforming only the one-electron terms in the Dirac Hamilto­

nian. A number of decoupling schemes have been proposed. The first method is to
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substitute to the large-component equation (1.87) the expansion of K  defined as

(  E - V V 1 E - V
K  V1 +  ^ w y  +  (L92)

Assuming the Coulomb potential V,  the one-electron Dirac equation can be trans­

formed to the Pauli equation:

p 2  p 4  Zs  ■ 1 ZnS(r)
=  E V l . (1.93)

2 m 8  m 3 c2  2 m 2 c2 r 3 2  m 2c2

The first two terms in the Pauli equation constitute the non-relativistic Hamiltonian, 

and the remaining terms account for the relativistic effects. The third term is 

called the mass-velocity term dealing with the dependence of mass of electron on 

its velocity. The fourth term is the spin-orbit term concerning the interaction of 

the spin and orbital angular momenta. It is worth noting, in passing, tha t spin 

emerges as a consequence of relativity. The last term, called the Darwin correction, 

is sometimes called Zwitterbewegung. This term  has no definite physical meaning, 

but can be considered as arising from the high oscillations of an electron at its mean 

position or the smearing of electron charge due to its relativistic motion [79]. The 

third and fifth terms are often collectively called the scalar relativistic correction as 

they do not contain spin terms.

A major problem in the Pauli approach is the singularity at regions close to 

the nucleus which arises from the constraint tha t \V — E\ «  2me  in order for 

the expansion to be valid. The violation of this assumption will cause the phe­

nomenon of variational collapse, which strongly prohibits applications of the Pauli 

approximation to the variational calculations in the relativistic quantum chemistry.

1.4.2 Zero-Order R egular A p p roxim ation

In the zero-order regular approximation (ZORA) [80], the Dirac Hamiltonian for the 

large component is expanded, to the zeroth-order, in the similar way as the Pauli 

approximation except that the factor K  is modified as the following

E  \ _ 1  _ E
K  =  i 1  +  2mc*7Ty  J “  1 "  +  ■ <LM >
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such that the problem of divergence near the nuclear position can be eliminated [81]. 

The resulting ZORA Hamiltonian slightly differs form from the Pauli Hamiltonian:

c2  /  c2  \ 2  Zs  ■ 1
^ 2 m 2 c2  — I 2m2 c2  — V

=  E ^ l - (1.95)

An interesting feature of the ZORA Hamiltonian is that the spin-orbit coupling term 

exists even at the zero-order correction, which enables the description of relativistic 

effects in the region close to the nucleus. However, this Hamiltonian is gauge- 

dependent; the shift of potential V  results in non-constant shift of energy.

1.4.3 R ela tiv istic  E lim in ation  o f Sm all C om pon en t

Another popular approximate method is the relativistic elimination of small com­

ponent (RESC) method proposed by Hirao and Nakajima [82], This method starts 

with the equation for the large component obtained by the substitution of eq. (1 .8 8 ) 

into eq. (1.87):
c

V  +  ( a  • p) ( a - p) 4T =  E V l , (1.96)
2me2  -  (V -  E)

with the (V  — E)  in the denominator replaced by the relativistic kinetic energy T:

T  =  -  me2. (1-97)

Expanding the Hamiltonian in the powers of (p/mc)2 yields the RESC Hamiltonian 

as a sum of spin-free and spin-dependent parts:

-Hsf =  T  +  O Q p  • V p Q O - 1 +  2 m c 0 Q 1/2V Q 1/ 20 - 1

U sd =  i O Q a  • (pV) x p Q O - l

in which

O

Q =
E„ +  me2

Ev +  me2

1 +
(.Ep +  me2 ) 5

1/2

(1.98)

(1.99)

( 1.100)

( 1 .101 )

and Ep =  y  m 2 c4  +  p 2 c2. This method contains relativistic correction terms of order 

higher than the ZORA approach, as it is derived directly from the Dirac equation; 

however, it has been shown tha t RESC may suffer from the variational collapse 

when Z  exceeds 80 [83].
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1.4.4 D ouglas-K roll T ransform ation

All the methods introduced previously eliminate the small component of the full

four-component spinors by inserting eq. (1.88) into (1.87), and expanding the large- 

component equation in different terms. Another way of reducing the four-component 

Dirac Hamiltonian is to diagonalize the Dirac equation. As demonstrated by Foldy 

and Wouthuysen [84], this decoupling scheme can be achieved by the unitary trans­

formation of the Dirac Hamiltonian using the unitary operator S  defined as

Unfortunately, the Foldy-Wouthuysen (FW) transformed Hamiltonian cannot be 

applied in variational calculations as both the mass-velocity and Darwin terms are 

singular. In order to solve this problem, Douglas and Kroll, and later Hefi, developed 

a modified approach, in which a successive FW  transformations are to be performed 

so tha t all operators become bound from below. In the Douglas-Kroll (DK), or 

Douglas-Kroll-Hess (DKH) method [85, 8 6 ], the free-particle FW  unitary operator 

is instead defined as

Acting with this operator on eq. (1.84) generates the first-order DK (DK1) Hamil­

tonian:

U dkx =  p E p +  f t  +  Ox =  (3EP +  A{V  +  R V R ) A  +  p A { R V  -  VR)A .  (1.107)

i]/' =  elS^ = ex. ■ p
2  me

( 1 . 102)

U0 =  A { l + / 3 R ) (1.103)

in which

A (1.104)

COL ■ p
(1.105)

Ep -I- me2  ’

Ep =  cy /p 2  +  m 2 c2. (1.106)

The second FW transformation, using the unitary operator:

(1.108)
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is carried out on the first-order DK Hamiltonian with the commutation constraint:

[pEp, W d  =  O i (1.109)

and the kernel of W\  defined as:

P . p ' ) = / 5 ^ ^ .  (1 .1 1 0 )H/pf ~T H/p

The final second-order DK (DK2) Hamiltonian has the form

U DK2 =  PEp +  t l - l- [ W l , O l }. (1.111)

Similar procedures can be repeated to generate the higher-order DK Hamiltonians. 

Here, only the third-order DK (DK3) Hamiltonian is given as an example:

H dkz  =  PEp +  & -  \ [ W u O x] +  (1.H2)

There are several advantages of DK method. The method remains regular for 

the Coulomb potential so that the problem of variational collapse can be avoided. 

During the decoupling process, the influence of the small component on the large- 

component solutions is reduced by the factor o i v / c  [87]; hence, in theory the effect 

of small component (or negative-energy states) can be completely diminished when 

a sufficiently high-order DK transformation is performed on the Dirac Hamilto­

nian. One limitation of the DK method is the complicated form of high-order DK 

Hamiltonians. In the presence of an external potential V,  all the operators in the 

Hamiltonian are well-defined only in the momentum space, and those containing 

V  are represented as integral operators specified by their kernels. Therefore, the 

applications of DK method at the high-order levels (n > 3) to atomic and molecular 

calculations are still rather limited.

1.4.5 P ractica l C om pu tation s o f R e la tiv istic  E ffects

The above-mentioned elimination methods are not limited to the single-electron sys­

tem, i.e., hydrogen atom. They can be easily extended to multi-electron systems, by 

modifying the potential term to include electron-electron repulsion, or multi-nuclear
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systems. The full transformation including the Dirac one-electron Hamiltonian and 

the Coulomb-Breit two-electron operator in eq. (1.91) leads to a t least fourteen 

different terms pertaining to Zeeman effects and all kinds of relativistic effects such 

as spin-spin interaction, spin-orbit coupling, etc [3]. The calculations involving such 

Hamiltonians are impractical. Hence, one usually treats relativistic effects as per­

turbations, assuming tha t the influence of these factors on the total energies is small. 

The terms tha t are generally considered are mass-velocity, Darwin and spin-orbit 

corrections which constitute the so-called scalar relativistic (only the first two terms) 

or quasi-relativistic (including also spin-orbit term) Pauli Hamiltonian.

The incorporation of both relativistic and electron correlation effects in quantum 

chemical calculations is straightforward since only the one-electron operators have 

to be transformed relativistically while the correlation effects are determined solely 

by the two-electron operators. As a consequence, there are relativistic counterparts 

of almost all post-HF methods available in a variety of ab initio packages.

Although the two-component methods form the mainstream in the area of rela­

tivistic quantum chemistry, the calculations applying four-component Dirac Hamil­

tonian have become more popular due to the improving computer capability and the 

advance in the theoretical development [8 8 ]. Some remarkable calculations on the 

properties of atoms, molecules and solids containing heavy elements have already 

been published (for example: Refs [89, 90, 91, 92]).

1.5 Basis Sets

The main task of quantum chemical calculations is to solve the Schrodinger equation 

concerning the system of interest and find the wavefunctions associated with it, from 

which the properties of the system can be deduced. As described, the analytical 

solution of the Schrodinger equation is in fact impossible to find except for some 

special models such as harmonic oscillator, particle-in-a-box, or hydrogen atom. 

In other words, only approximate solutions of the Schrodinger equation may be 

obtained.

One difficulty connected with solving the Schrodinger equation using standard
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quantum chemical methods is tha t the transformed Hartree-Fock equation is an 

eigenvalue problem in which the Fock operator is dependent on the eigenvectors, 

and the equations can be solved only iteratively. Therefore, initial guesses of the 

eigenvectors have to be provided in order to obtain self-consistent solutions. Unfor­

tunately, the exact form of the solution is not known; recall tha t the Schrodinger 

equations for multi-electron and molecular systems are not solvable.

To facilitate the solution of the approximate equations, it was proposed that 

the unknown solutions be expanded in terms of some known functions, called basis 

functions, the contribution of each determined via the self-consistent field proce­

dures subjected to the constraint of minimum total energy. There are two types 

of commonly used basis functions: Slater-type functions (STF) and Gaussian-type 

functions (GTF).

1.5.1 S la ter-typ e and G au ssian -type Functions

It is known that, when solving the non-relativistic Schrodinger equation for hydrogen 

atom, the wavefunctions can be expressed as a product of spherical harmonics and 

radial functions which are exponential functions in terms of the position of electron 

r. Slater therefore assumed that atomic orbitals of many-electron elements could 

also be well represented by the hydrogen-like orbitals, or Slater-type functions [93]. 

In general, STFs possess the following form, in spherical coordinates:

Xa,«,t>m(r, 0, cj>) =  N Y ltm(6, (f))rn~1e~ar, (1.113)

where N  is the normalization constant and Yj>m stands for the spherical harmon­

ics. Here, n, /, m  determine the type of the orbital tha t the STF represents. A 

major difference between hydrogen-like orbitals and STFs is that the latter ones are 

nodeless; the nodal feature of real atomic orbitals could be retained only by using 

a linear combination of properly chosen STFs. Calculations using STFs have been 

found fairly difficult, particularly in the multi-center two-electron molecular integral 

evaluations. Consequently, the applications of STFs are quite restricted to atomic, 

diatomic, or semi-empirical calculations.
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In order to speed up the calculations of molecular integrals, Boys proposed the 

use of Gaussian-type functions whose form is very similar to the STFs [94]:

X a ,n , i , m { r ,  9 ,4>) =  N Y i>m{9, (f>)A2n~2^  exp { - o r 2} (Spherical) (1-114)

Xa,lx,iy,iz (* -  x A , y -  Y a , z -  Z A ) =  N (x  -  X A)l°(y  -  YA)ly{z  -  ZA)l>

x exp {—a ((x  — X A)2 +  (y — YA)2 +  (z — Z A)2)} (Cartesian)(1.115)

where X A, YA and ZA are the coordinates of the point with respect to which the 

basis is defined. The sum of indices lx , ly , and lz in eq. (1.115), like n ,l ,m  in eq. 

(1.114), determines the type of orbital. The GTFs are inferior to the STFs in two 

aspects. A GTF has a zero slope when r  —> 0 while the STF correctly possesses 

a non-zero gradient at the nucleus. The missing cusp condition in the GTFs leads 

to the error in representing the behavior near the nucleus. In addition, the GTFs 

decays more rapidly than the STFs at large r, as they depend exponentially on r 2, 

consequently leading to a poorer representation of wavefunctions at distances far 

from the nucleus. To overcome these deficiencies, one has to use several GTFs with 

different exponents a  to mimick the behavior of a single STF, leading to the con­

tracted basis functions. This, unfortunately, will very rapidly increase the number 

of integrals to be evaluated.

On the other hand, there is a peculiar feature of the GTFs that can compensate 

for the increased number of molecular integrals needed to be evaluated: the product 

of two GTFs is a new GTF; i.e., for example, for Is  GTFs,

3/4

x i '( r  -  R A) x i 8(r -  R b) =  ( ( ~ ^ ) exP aP \Ra - R b \2a  +  /3 Xa+Ar - R P) 
(1.116) 

where R p is given by
olR a +  (3Rb  ^

R p  -  a + e  ■ (L117)

In other words, the product of two GTFs centered at A  and B , respectively, is in

fact a GTF centered at a new position P . This is an invaluable relation since all

the four-center molecular integrals can now be converted immediately to two-center
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integrals which can be evaluated very efficiently. Therefore, the total time required 

to perform calculations using the GTFs is significantly reduced compared to the 

cases using the STFs.

1.5.2 C om m on T yp es o f B asis Sets

A basis set is the collection of basis functions used to expand molecular orbitals 

in quantum chemical calculations. The smallest basis set is the one in which each 

occupied orbital is represented by one contracted basis function; this type of basis is 

called minimal or single-zeta basis set, where £ is the symbol of Slater atomic orbital. 

A typical family of single-zeta basis sets is the STO-nG set, where n stands for the 

number of GTFs in the contraction, developed by Pople and co-workers [95]. Obvi­

ously, the single-zeta basis sets are not good choices in accurate calculations as they 

are unable to describe any deviation of electron density caused by the neighboring 

atoms in a molecule.

The performance of single-zeta basis sets can be improved simply by increasing 

the number of contracted basis functions describing an atomic orbital, leading to 

the development of double-zeta, triple-zeta, and so on, basis sets. (For example, the 

DZ and TZ basis sets developed by Dunning and Hay [96, 97, 98]) These expansions 

allow for a better representation of electron density in both core and valence regions 

by selecting appropriate GTF exponents. Furthermore, the larger number of basis 

functions better accounts for the different electron distribution in different direc­

tions. Besides increasing the number of basis functions for all the atomic orbitals, 

the shell splitting can be done merely for the valence orbitals, with the argument 

being that mostly chemical reactivity of an atom is determined by the valence elec­

trons. This kind of splitting scheme produces the split-valence basis set [99]. Pople 

and co-workers have designed a series of such split-valence basis sets such as double 

split-valence 4-31G and 6-31G and triple split-valence 6-311G basis sets for the first, 

second, and third-row elements [100, 101, 102, 103].

In parallel to the expansion of zeta, the angular correlation (i.e., the distortion 

of electron density from its original direction) can be considered by adding basis
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functions with angular momenta higher than those of the occupied atomic orbitals. 

Such polarization functions are im portant in the electron correlation calculations and 

the geometry optimizations of hypervalent compounds [104]. In the cases where the 

electron density is spread out far away from the nuclei, such as in molecular anions, 

a set of GTFs with very small exponents, called diffuse functions, have to be added 

to the atomic basis sets so as to well describe the extended electron distribution in 

the outer region.

Another logical way of improving the performance of basis sets is to increase 

the number of GTFs in the contraction, so as to enhance the flexibility of the 

basis set. However, the large number of GTFs causes the slow convergence in the 

optimization. Therefore, the contraction coefficients are usually pre-defined based 

on variational atomic calculations. It has been observed tha t the ratios of two 

successive exponents in the best optimized basis sets are nearly constant. This 

provides a route to expanding a basis set if more GTFs are to be added. Two 

approaches are commonly employed: the even-tempered basis set [105]

Ci =  af3l , * =  1,2,-- - ,M

ln(ln/3) =  b ln M  +  b'

In a  =  aln(/3 -  1 ) +  a',

and the well-tempered basis set [106]

6  = a /^ -1 ( l  +  T ^ )  ^ , * =  l , 2 , - . - , M .  (1.121)

in which a, a', b, b', cc, (0, 7 , and S are optimized for each atom. The even-tempered 

formula shares the same ratio of exponent for the whole range of i, so tha t the 

generation of contraction coefficients is fast. On the other hand, the well-tempered 

formula guarantees the better even-tempered behavior for the valence region than 

the core region, which is more sensible in chemical consideration. In addition, the 

orbitals of different angular momenta will have the same exponents and thus the 

same radial part in the well-tempered basis set.
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There are two more popular classes of basis sets, besides the ones just mentioned, 

widely used in quantum  chemical calculations. The first class is the atomic natural 

orbitals (ANO) basis sets which are constructed using a large number of GTFs 

optimized based on the natural orbitals obtained from CISD calculations [107, 108]. 

These ANO basis sets are very accurate and may be easily extended to approach 

the basis set limit. However, a major disadvantage of this family of basis sets is the 

huge number of GTFs which makes the computations very time-consuming unless 

the integral code is specifically designed to handle such basis sets. The second class 

is the correlation-consistent (cc) basis sets [109, 110] which aim at yielding results 

comparable to those for ANO basis sets with smaller set of GTFs. The features 

of the cc-type basis sets are tha t the GTFs which contribute the similar amount 

of correlation energy, regardless their type, are included at the same stage, and 

tha t the correlation energy from the valence electrons is recovered. Accordingly, the 

polarization functions can be augmented in a systematic fashion, for example: Id, 

2 d lf ,  3d2 flg , and so on. Similarly to the ANO basis sets, the cc-type basis sets 

can be easily extended towards the basis set limit.

1.5.3 P seu d op oten tia l M eth od s

It has been generally accepted tha t the chemical properties of an element are de­

termined mainly by its valence electrons. A representative example is the elements 

belonging to the same group in the periodic table tha t exhibit very similar behavior 

such as preferred oxidation states, redox properties, and chemical reactivities. These 

observations stimulated the idea that the chemically “unreactive” core electrons of 

an atom be replaced by an effective electrostatic potential, by which a great com­

puter time saving can be achieved since now only the basis functions for the valence 

electrons should be explicitly present in the basis set.

The central concept of pseudopotentials is to divide the electrons of a system 

into two groups: core electrons and valence electrons, in accordance to some sort of 

chemical intuition. The valence Hamiltonian describing the resulting many-electron
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system can be expressed in a general form, in atomic units, as:

nv W'V
( 1 . 122)

where nv is the number of valence electrons. The last term in eq. (1.122) is the usual 

Coulomb repulsion between valence electron. The first term  concerns the repulsion 

between shielded nuclei; explicitly, this term  is given by, for a K-nuclei system,

in which A and ji denote the nuclei and Q \  is the core charge associated with the 

nucleus A. The effective one-electron operator is

where Ucv(i) is called the effective core potential (ECP), or pseudopotential, which 

describes the Coulomb interaction between valence electrons and the core. The 

general form of ECP is:

Many forms of the ECP operator Û v (r) have been proposed. The most popular 

one is the shape-consistent ECP [111] which adopts the form of ECP operator as 

follows:

where L is the maximum angular momentum of the core orbitals. The last term 

is the projection operator which guarantees the orthogonality between core and 

valence orbitals of the same angular momentum. The parameters in the ECP oper­

ators, i.e., A, B , m, n, a, /3, are determined by the fitting with the orbitals obtained 

in all-electron calculations. The numerical pseudo-valence orbitals determined us­

ing this ECP Hamiltonian are nodeless and retain the same shapes as the true

(1.123)

h v { i )  — + U c v { i ) (1.124)

(1.125)

(1.126)
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valence orbitals only at the region beyond their outermost maximum R m. In the 

core region, i.e., r  <  Rm, the pseudo-orbitals are adjusted so tha t the normalization 

integral yields the same value as tha t of the real valence orbitals. These semi-local 

pseudopotentials assume the complete separation of the core and valence electrons; 

therefore, the core-polarization effect on the valence electrons is ignored. In addi­

tion, the nodeless ECP orbitals induce a large error when properties of inner-core 

electrons are to be calculated. Therefore, the use of ECPs in the calculations of 

nuclear shielding tensors and spin-orbit coupling constants, for instance, will be in­

appropriate. The numerical potentials of the pseudo-orbitals are generated by the 

Phillips-Kleinman transformation [112], and are fitted with an analytical pseudopo­

tential, for example,

r 2Vi{r) =  ^  A i,krni'k exp ( - B t,kr 2) , (1.127)
k

in which A\, nkk and B^k are optimized for each value of angular momentum I. 

There are several ways of performing the fitting of the numerical pseudopotential 

to the analytical form. For example, Hay and Wadt did the accurate least-square 

fitting with a large number of terms [113, 114, 115]. In the S tuttgart approach, 

the fitting is performed based on the constraint tha t the parameters should yield 

the best fit for the valence electron excitation spectrum [116]. On the other hand, 

Stevens and co-workers developed the compact effective potentials (CEPs) [117] by 

fitting the pseudopotentials with the all-electron HF potentials generated from very 

large valence basis sets, by which only a relatively small number of parameters are 

needed.

A way to get rid of the nodeless feature of the pseudo-valence orbitals is to define 

the effective potential in a nonlocal fashion. Huzinaga and co-workers [118,119] have 

proposed the ab initio model potential (AIMP), or model core potentials (MCP), in 

which the ECP operator Uxv(r) is written as

Ux(r) =  exp {-a % r2Xi) +  £  Bc\ ^ ) ( ^ \ .  (1.128)
k c £ \

In the operator, the nonlocal projection is present to maintain the orthogonality 

between the valence and core orbitals, and to prevent the collapse of the valence
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orbitals onto the core. Since no orbital transformation is needed, the resulting 

pseudo-orbitals retain all the nodal structure of the true valence orbitals. Like the 

ECPs, the parameters in the MCP operators, i.e., TJA, and aj) are determined by 

the fitting to the all-electron potentials. Depending on the methods the reference 

potentials are generated, a number of different types of MCPs such as well-tempered 

MCPs [120] and improved MCPs [121] have recently been produced.

The relativistic effects can be incorporated into the pseudopotentials by utilizing 

the reference all-electron potentials obtained from the Dirac-Hartree-Fock calcula­

tions in which the relativistic Hamiltonian is used. On the other hand, the inclusion 

of core-polarization and spin-orbit effects can be achieved by adding the appro­

priate potential terms to the effective one-electron operators [122, 123, 124], and 

determining the necessary parameters via matching with the all-electron potentials.

1.5.4 B asis Set S u p erp osition  Errors

In most of the molecular calculations, the basis sets used to construct the molecular 

wavefunctions are atomic basis sets which are centered at the positions of atoms. The 

performance of an atomic basis set is not constant; it changes when the geometry 

of the molecule changes. Recall that all the basis sets discussed so far are finite 

and incomplete. Therefore, errors will be introduced when the two atoms come so 

close during the geometry optimization tha t the basis functions from one atom are 

used by the other atom. These “borrowed” basis functions will artificially lower 

the energy of the system since the basis set becomes apparently larger and more 

flexible. The error associated with such borrowing of basis functions is referred to 

as the basis set superposition error (BSSE). The BSSE could be a serious problem 

in the calculations of the hydrogen-bonded and weakly interacting systems [6 ].

Various approaches have been proposed to eliminate the BSSE. The counter­

poise correction (CP) is by far the most frequently used method [125]. However, it 

still overestimates the BSSE since, in certain situations, the BSSE truly reflects the 

partial charge transfer between atoms. Other attem pts such as the chemical hamil- 

tonian approach (CHA) [126] and linear-scaling local correlation methods [127] have
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been made to exclude the BSSE directly from the calculations; however, these meth­

ods are not yet widely used because of the rather complicated formalisms.

1.6 M olecular Properties

Computing the properties of a molecule is the main objective of electronic structure 

calculations. Molecular properties can be generally divided into two categories: 

primary and induced properties, according to the Boys and Cook’s definitions [128]. 

Various methods have been developed for determining molecular properties, but they 

can be grouped generally into three main approaches: (1 ) to evaluate the molecular 

property as the expectation value:

’M r ,  (1.129)

in which O is the quantum mechanical operator tha t defines the property, ()nuc is the 

contribution from the nuclei, and T e is the electronic wavefunction, (2 ) to measure 

the molecular property as a response to a particular type of external fields such as 

electric or magnetic radiation which are considered as a perturbation, and (3) to 

extract the properties of a molecule directly from its Born-Oppenheimer potential 

energy hypersurface.

1.6.1 Sp ectroscop ic  P rop erties

Potential energy hypersurface is the collection of energies of the molecule at different 

nuclear configurations. This hypersurface for an V -particle molecular system will 

be multi-dimensional and highly complicated for visualization and analysis. The 

situation for diatomic molecules, however, becomes very simple since now the sys­

tem contains only one degree of freedom, and the potential energy curve can be 

represented in terms of only internuclear distances and energies.

Though it is merely a trivial low-dimensional plot, the potential energy curve 

for a diatomic molecule is informative, and many interesting, spectroscopy-related 

quantities can be determined from it. To obtain the spectroscopic constants, the 

analytical form of the potential is required. Since only the numerical potential

46

O  =  O n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can be calculated from ab initio calculations, least-square fitting of the ab initio 

potential to a pre-defined potential functions is necessary. The most common form 

of the potential functions is the Taylor expansion at equilibrium bond distance R e 

derived by Dunham [129] using the perturbation theory:

v < * >  =  V ( f t )  +  i  )  ( J *  -  f t ) ’  +  |  ( ^ )  ( «  -  f t ) 3  +  .  . .  .

(1.130)

This function can be simplified to:

V (R ) =  F(0) +  \ f 2{R  -  R e)2 +  ^ f ( R  -  R e)3 +  f \ R  -  R ef  +  ■■■ (1.131)

in which / 2, / 3  and / 4  are the second, third and fourth-order force constants that 

are related to the spectroscopic constants such as harmonic frequency u>e, rotational 

constant B e, reduced mass fi, vibration-rotation coupling constant a e, and anhar- 

monic constant u exe in the following way:

/*2 a  2 2 2/  =  4 tT flLO gC

f 3  =  3 / 2 ( ,  , a e U e \
1 R e V 6  B \ )

f 2 a eoje \ 2 8uexe5( W; ~~BTr  = R l

(1.132)

(1.133)

(1.134)

Other popular potential functions tha t are widely used include the Morse po­

tential [130]:

V (R ) =  D e {exp(—2a(R  — R e)) — 2 exp(—a (R  — i?e))} (1.135)

where D e is the binding energy and f 2 — 2D ea 2, and the Lennard-Jones potential

[131]:

V (R ) =  4e (I)'2 (1.136)

where e and a  are binding energy and the inner zeros of the potential, respectively. 

Recently, the potential function proposed by Murrell and Sorbie [132] has attracted 

a considerable attention of spectroscopists as it has demonstrated its superior per­

formance in both the repulsive and attractive regions compared to other available

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



potential functions, and in the matching with the experimental potential deduced 

by the Rydberg-Klein-Rees (RKR) inversion [133, 134, 135] for more than  a hundred 

diatomic molecules. The general form of Murrell-Sorbie potential is:

V (R ) =  - D e (̂  +  Xj â R ~  exP -  R *V (1.137)

In most of the cases, the five-parameter (i.e., k — 3) Murrell-Sorbie potential is used. 

The relations between the force constants of different orders and the parameters in 

the Murrell-Sorbie potential function are as follows:

£)col -  6 / 2a? -  4 / 3ai - / 4  =  0 (1.138)

02 = W~£)  (i-i39)
i  f 3

a 3 =  a ia 2  -  -a ?  -  (1.140)

Once the analytical form of the potential energy curve is known, the rotational, 

vibrational and electronic Schrodinger equations can be solved, yielding the corre­

sponding wavefunctions that can be used in the calculations of transition probabili­

ties between different states. In the vibronic spectrum, the intensity of a transition 

is proportional to the integral

I = j  V M 'd V v  I  W M e d V e ,  (1.141)

in which ipv and 'tpe are the vibrational and electronic wavefunctions. 'i// and •*/>" refer 

to, respectively, the final and initial states involved in the transition. The square of 

the first integral is commonly called the Frank-Condon factor [136] which measures 

the degree of overlap between the two vibrational wavefunctions. The second integral 

is the electric dipole integral from which the selection rules of electronic transitions 

are deduced. The determination of Frank-Condon factors is essential since these 

values reveal the relative positions of the equilibrium internuclear distances of the 

two states and the spacing of their vibrational levels.

Another quantity that is closely related to the electric dipole integral is the 

oscillator strength which is defined as [137]:

8 7 r2 m e
/ « " - > ✓  -  3 h e 2  “ v" - (1.142)
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where uy'_>v is the frequency of radiation. This value shows the transition proba­

bility of a electronic transition; therefore, it can be used in the determinations of, for 

example, the rate of radiative decay of an excited state and the fluorescence lifetime 

of an organic dye.

1.6.2 E lectric  P rop erties

When a molecule is placed in a static electric field, the equilibrium electron density 

will be distorted according to the orientation of the field. The modified electron 

density will thus create an induced electric dipole filnd(E j) which is related to the 

original electric dipole moment /q (0 ) by:

fi\nd(Ej) =  m{Ej)  — m(0) =  otijEj +  -ftijkEjEk +  -ji jkiEjEkEi  +  • • • . (1.143)

In the equation, (i, j ,  k , I) designate the Cartesian coordinates, a, ft and 7  denote the 

molecular polarizabilities, first hyperpolarizabilities and second hyperpolarizabili- 

ties, respectively. The polarizability a  is a crucial factor determining the strength 

of a transition in the Raman spectroscopy. The hyperpolarizabilities ft and 7  are of 

great importance in nonlinear optics since large third-order nonlinearity effects on 

the intensity dependence of the refractive index are required for a good material to 

be utilized in optical-switching components in photonics [138].

In the ab initio calculations, the energy of a molecule in the presence of an electric 

field is computed by treating the electric field interaction as a small perturbation. 

As this energy can be expressed in terms of a, ft and 7 :

E{E) =  E(0) -  mEi  -  XijEiEj -  ^ftijkEiEjEk -  ^ 7 i juEiEjEkEt  , (1.144)

the different components of a, ft and 7  can be determined using the finite-difference 

techniques [139], where, for example, an  and ftm are given by:

a uE f =  ^ E ( 0 ) - ^ ( E ( E i) +  E ( - E i )) +  ^ ( E ( 2 E i) +  E (-2 E ft)(1 .1 4 5 )

ftuiEf =  (E (E i) - E ( - E i)) +  ^ (E (2 E i ) - E ( - 2 E i) ) .  (1.146)

A by-product of the ab initio calculations of molecules is the electric field gradient 

(EFG) tensor, the second derivative of the electrostatic potential generated by the
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neighboring charges. The different components of the EFG tensor can be directly 

computed from the electron distribution determined by the electronic wavefunction 

or via the response theory of molecular properties. Though mainly im portant in the 

studies of the nuclear quadrupole interactions in the solid-state nuclear quadrupole 

resonance (NQR) spectra, the hyperfine splitting of pure rotational spectra and line- 

broadening effects of the nuclear magnetic resonance (NMR) spectra [140], the EFG 

tensors are in fact valuable parameters that provide paramount information related 

to the orientation-dependent charge distribution of a molecule.

1.7 Scope of The Thesis

The central theme of this thesis is the study, using ab initio quantum chemical 

techniques, of simple molecular systems enclosed in external electrostatic potentials 

of different strengths and symmetries, and their behavior under such influence. The 

thesis is composed of two major parts. The first part, consisting of the first two 

chapters, presents the theoretical background of the model of confinement. The 

basic outline of the quantum chemical methods tha t have been employed in this 

research project and the necessary knowledge required to interpret the results are 

given in Chapter 1. Chapter 2 is devoted to the theory of confinement, including 

the historical review of the early development and recent advances in the studies 

of confinement effects, the discussion of the harmonic oscillator model utilized in 

the present project, and some technical information concerning the derivations and 

computer implementation of the confinement integrals.

The subsequent chapters comprise the second part of the thesis which centers on 

the applications and case studies of the model of confinement. For simplicity, only 

diatomic molecules have been chosen in all calculations. The presentation starts with 

the full Cl studies of hydrogen molecule, the smallest diatomic neutral molecule, for 

its ground and several low-lying excited states (Chapter 3). This study serves as 

a starting point of the investigation of different behavior of electronic states with 

different symmetries to the application of an external potential, and their relations 

to the orbital responses. The results from the current confinement model are also
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compared to those from the modeling of the hydrogen molecule magnetized by a 

parallel ultra-strong magnetic field on the surface of neutron stars.

The main focus of Chapters 4 and 5 is on the effects of confinement on a peculiar 

molecule, beryllium dimer, and its molecular ions. These chapters report the results 

of the comprehensive studies of the low-lying electronic states of these systems. 

In particular, there are two im portant issues tha t have been discussed in details. 

The first one is the decreasing electron affinity of Be2 molecule as a result of the 

instability of the anion relative to the neutral counterpart. The second one is the 

rearrangement of dissociation channels which are caused by the significant orbital 

re-ordering of the confined Be atom.

In Chapters 6  and 7, the attention is switched to the noble-gas hydrides, the 

group of Rydberg molecules, being only weakly-bound, tha t exhibit intriguing prop­

erties in their excited states. Chapter 6  describes the full Cl studies the effects of 

confinement on the electronic structure and spectral properties of the HeH molecule. 

The transition dipole moments and oscillator strengths were computed for the first 

three excited states, and their variations with respect to the strengths of the applied 

potentials have been rationalized in terms of the induced changes of the electronic 

structure. Chapter 7 summarizles the work performed on a heavier NeH molecule, 

and the emphasis is on the analysis of the unprecedented state crossings that are 

caused by the external potential.

In additional to the respective focal points, there are two common objectives 

that are shared by both Chapters 6  and 7. As the valence electrons of Rydberg 

molecules are usually diffuse and not strongly held by the ion core, they should be 

very sensitive to the presence of the repulsive electrostatic potential. The first objec­

tive is thus to investigate the field-induced ionization process of these molecules, and 

to find the field-strength dependence of the valence electrons in different Rydberg 

energy levels. The second objective is to verify the applicability of the Rayleigh- 

Schrodinger perturbation theory as an effective alternative for the studies of the 

effects of confinement, since a small external potential is already sufficient to cause 

noticeable changes on the structural and spectral behaviors of these molecules.
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Theoretical analysis of the relativistic effects in the compounds containing heavy 

elements is one of the most popular topics in modern quantum chemistry. Many 

remarkable results have already been published. Nevertheless, the study of the 

relativistic properties of confined molecules and their interactions with the environ­

mental constraints is still a fairly untouched area. In order to gain an insight into 

the interplay of the relativity, electron correlation, and confinement effects, DK3- 

MRMP2 calculations of AgH and AuH molecules confined in a cylindrical harmonic 

potentials were performed, and the results are presented and discussed in Chapter 

8 .

Chapter 9 deals with a more specific topic concerning the influence of the applied 

potential to a number of one-electron properties of LiH molecule. In this study, 

the electric dipole moments, dipole polarizability and electric field gradients of the 

ground and first two excited states of LiH, subjected to various strengths of the 

confining potential, were computed. Analysis of the relations between the changes 

of these electric properties and the geometry and strengths of the spatial confinement 

was undertaken.

Finally, a general conclusion of this project is given in Chapter 10, along with 

some perspectives of the possible research projects in the studies of quantum con­

finement.
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Chapter 2

M odel o f Confinement

2.1 Overview

In many electronic structure calculations of atoms and molecules, the system of 

interest is assumed to be isolated from the surrounding; tha t is, the system is said 

to be present in the free space. This approximation, incorporated with the currently 

available quantum chemical methods, usually works very well in reproducing the 

experimentally measured structural and energetic quantities, especially in the gas- 

phase reactions and spectroscopy. However, the same performance is not achieved in 

the cases where the systems is either in the solution or in solid phase. Very often the 

interaction of the system with the neighboring particles, either atoms or molecules, 

is not negligible and will cause substantial changes in the geometric and electronic 

properties. For instance, the B3LYP/6-31G* investigation of formamide, HCONH2 , 

revealed significant differences in the vibrational modes of this molecule in gas-phase 

and water [1]. The presence of surrounding molecules may even lead to the change 

on the reaction profile, as demonstrated by Frisch and co-workers in their studies of 

the keto-enol tautomerization of 2 -pyridone in cyclohexane and acetonitrile [2 ].

The examples mentioned above illustrate two major types of influence experi­

enced by a trapped atom or molecule. The first one is called the boxing effect, 

proposed by Jaskolski et al. [3], which deals with the spatial constraints on the 

confined system exerted by the environment which result in the modified physical 

and chemical properties of the system. Some interesting work of this type include
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simulations of the properties of hydrogen molecule adsorbed on a surface [4], ad­

sorption and dynamics of acetonitrile molecules in mordenite zeolite [5], aromatic 

benzene, naphthalene and anthracene on a mica sheet [6 ], and the production of hy­

droxyl radicals from confined water [7]. Another type of confinement effect concerns 

the interaction of the system with the electric field produced by the environment. 

Modeling of the solvent environment using the self-consistent reaction field (SCRF) 

method is a representative case, in which the solvation effect on the system (solute) 

is approximated simply as the Coulomb interaction with the reaction field created 

by the solvent molecules.

In fact, the studies of confinement effects on quantum systems have long been 

a subject in quantum mechanics since the pioneering study of the confinement by 

a magnetic field by Fock [8 ]. The particle-in-a-box (PIB) and the harmonic oscil­

lator models are among the most well-known examples. Progress in this area was 

initially slow, and most of the research centered on some solvable or quasi-solvable 

systems such as an electron and hydrogen atom [9, 10, 11, 12, 13]. However, a change 

of this situation took place in 1970’s because of three im portant breakthroughs in 

condensed-matter physics and astronomy. On one hand, the development of new 

techniques in semi-conductor manufacture allowed one to synthesize exotic objects 

such as quantum wells, quantum wires and quantum dots, in which electrons are 

spatially confined in different dimensions [14, 15, 16], which, to some extent, rev­

olutionized the understanding of quantum systems. In parallel to the production 

of nano-scale objects, the discovery of quantum Hall effects [17] also stimulated the 

establishment of new theories which are capable of explaining the extraordinary be­

havior of the systems in such small scales. Finally, the location of neutron stars 

and white dwarfs [18, 19] opened up a completely new area of research regarding 

the atomic and molecular physics in super-strong electric and magnetic fields. Since 

the Lorentz force becomes comparable to the Coulomb force in such circumstances, 

the Zeeman interaction can no longer be treated as a perturbation, and a new set 

of computational methods has to be constructed in order to study these heavily 

magnetized systems. The rationalization of the behavior of quantum systems under

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



such extreme conditions is essential to the analysis and identification of various in­

terstellar media and the composition of the atmospheres of planets. For the reviews 

of what has been accomplished, one can consult the reports by Jaskolski [20] and 

Karwowski [21].

In the present chapter, the formalism of confinement will be introduced by de­

scribing several confinement models tha t are widely used, and their correspondence 

with different areas of physics and chemistry. The details regarding the model of har­

monic oscillator, which is employed in the present research project, will be empha­

sized. The derivations of the one-electron confinement operator and the associated 

energy integrals will also be presented, together with some technical information 

concerning the program implementations and the actual computations.

2.2 Common M odels of Confinement

In the non-relativistic quantum mechanics, the Hamiltonian for a confined iV-electron 

system in the Born-Oppenheimer approximation can be written as a sum of several 

interaction terms:

f t ( r ) = T ( r )+ V ( r )  +  G(r)+W(r) (2.1)

where r =  {ri,r2 ,--- , r ^ } .  The first two terms, T  and V, describe the kinetic 

energy and nuclear attraction of the electrons respectively. The third term Q is 

the two-electron interactions where the electron correlation effect comes into play. 

The last term W(r) is a generic confinement potential tha t is applied to the system. 

Generally speaking, this potential is assumed to be a one-electron operator, tha t is, it 

is completely separable from the electron-electron Coulomb interaction. Therefore, 

no modification of the electron correlation methods is necessary when they are used 

in the calculations involving confinement effects.

The choice of the functional form of W  is arbitrary. Depending on the nature 

of the physical systems for which the model of confinement is employed, there are 

several different model potentials W  tha t have been proposed. Usually, the resulting 

Schrodinger equation is not analytically solvable, except for certain special systems 

with specific forms of the confinement potentials for which the closed-form energy
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expressions and wavefunctions can be obtained. In the following, only the systems 

where analytical solutions exist will be described. They include particle-in-a-box, 

cotangent and power potentials.

2 .2 .1  P a r t i c l e - I n - a - B o x

This is perhaps the most popular model system tha t is introduced in elementary 

quantum mechanics and physical chemistry. This model is conceptually straightfor­

ward, and the solution can be worked out very easily. Meanwhile, this is the model 

that best illustrates the idea of quantum confinement.

In the PIB model, the confinement potential is defined as

In other word, the particles are bound within the rectangular, infinite and impene­

trable potential with the width 2R. The solutions for such systems can be derived 

from the solutions for particles in free space, plus the additional boundary condition 

that the wavefunction should vanish at both r — —R  and r — R. The well-known 

time-independent solutions of PIB can be expressed as a linear combination of sine 

functions:

Though more for academic purposes, this simple example has been found very use-

molecules such as organic dyes in which 7r-electrons are assumed to be trapped 

within the conjugated orbitals [22].

Assuming the separability of the motion of particles in different orientation, 

this model can be easily extended to two and three-dimensions, giving rise to the 

so-called particle-in-a-plane and particle-in-a-cube models. The PIB model is not

( 2 .2 )

In this solution, a is the width of the box, and n is the param eter tha t specifies the 

energy level. The exact form of the energy associated with the wavefunction f ( x ) 

is:
^  n 27r2fi2

" =  “w -
(2.4)

ful in the first-approximation calculations of the electronic spectra of conjugated
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restricted to rectangular potentials. Calculations have recently been conducted by 

Jung and Alvarellos [23] in which they found the exact solution and investigated the 

strong correlations for the two interacting electrons confined in a spherical three- 

dimensional PIB model.

The situation becomes more complicated in the presence of a nucleus, in which 

the Coulomb attraction V is added to the PIB Hamiltonian. This equation has 

been solved, respectively, by Satpathy [24] and Kovalenko et al. [25] using pro­

late spheroidal coordinate transformation. Numerous interesting features have been 

found in this system that are completely different from those in the PIB. For exam­

ple, degeneracy is noticed at both asymptotes r  —» 0 and r  —>■ R, and more energy 

levels exist at r =  R  which correspond to higher symmetry orbitals of the free hy­

drogen atom. This Coulomb potential has been widely used in the studies of the 

effects of impurities inside the semiconductors and zeolite cages.

2 .2 .2  C o t a n g e n t - t y p e  P o t e n t i a l s

The PIB model is an ideal case, in which the particle is assumed to move freely 

inside the impenetrable potential well. However, it becomes unrealistic when the 

model is applied to the cases such as doping in semiconductors, or guest atoms in 

zeolites. In these cases, the potential inside the well is finite while the boundary 

conditions at the asymptotes are still fulfilled. Therefore, a cotangent potential has 

been proposed by Zicovich et al. [26] which takes the following form:

Z j C  T7T
W (r) =  ~  cot (2.5)

where Z  is the nuclear charge. The equation having this confinement potential 

possesses analytical solutions for the s states but not for I ^  0 [27]. Despite the 

absence of compact solutions, the energies for different values of n  can be written 

as:

(2'6)

where xi =  n =  0 , 1 , 2 , . . .  for I =  0 , and it equals to some non-integer number for 

I ^  0. A rather surprising observation in this model is that for the same parameter
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n,

E n,i+i{R) =  E n,l{R) (2-7)

which is a result of the spatial confinement effects tha t overwhelm the Coulomb 

interaction with the nucleus.

2.2.3 Pow er P o ten tia ls

Apart from the model potentials mentioned in the previous sections, the power-series 

potential is another popular model used in describing a variety of confinement effects 

because of its flexibility. Such potentials are mainly adopted in the modeling of

interactions in elementary particle physics. For example, the Cornell-type potential

[28]

W (r) =  \oJZ/2r  (2 .8 )

can be used to model the Stark effect and spectra of multiquark systems. Usually, 

the power potential is used in a combination with the Coulomb potential, giving 

rise to the combined potentials such as:

m r )  4 0 iM R c  +  fc r
3 r

or

W (r) =  -  +  4  (2.10)r  a1
which may be used to describe the strong interaction of quarks in hadrons in the

charmomium model [29]. Another popular type of combined potential is the one

constructed by Coulomb and Yukawa potentials [30]:

exp (—Tpr)
W (r) =  g- K r h ’ (2 .1 1 )

which describes the exchange of mesons of mass m  in the internuclear forces.

2.3 Hooke-law Potential

Recall tha t the general form of the power potentials can be written as [31]

W (r) =  \  E  < +1 ( f - M 2n‘ (2 -1 2 )
t = x , y , z
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where r  =  {x, y. z } ,  t  denotes the coordinate axes, u>t is the scaling coefficient, and 

bt is the position corresponding to the center of the power potential, is the power 

which defines the curvature of the potential. Often bt =  0 for all t  for simplicity. 

When rit =  1, the power potential is reduced to an anisotropic harmonic oscillator 

potential:

The potential can be further simplified by assuming that u x  =  w y  =  u j z  =  u j , leading 

to the symmetrical, isotropic, one-parameter harmonic oscillator potential:

where r 2 =  x2 +  y 2 +  z 2.

2.3.1 H arm onic O scillator

The Harmonic oscillator (HO), like the particle-in-a-box, is one of the simplest mod­

els tha t are introduced in the elementary quantum  mechanics. Despite its simplicity, 

this model is of great value in, among others, solid-state physics, nanotechnology, 

molecular spectroscopy, and electrodynamics.

The Hamiltonian for a free particle moving in a one-dimensional symmetric 

parabolic potential characterized by a parameter u j is given by

This second-order differential equation can be easily solved using either standard 

techniques or algebraic method [32]. W ith the constraint tha t the solutions be finite 

and square-integrable, the solutions have the following form [33]:

(2.13)

W (r) =  \u j2r 2 
z

(2.14)

+  - m w  x (2.15)

and the corresponding time-independent Schrodinger equation is

2 m dx2  l
muj2x2 ip(x) =  Etfj(x) (2.16)

(2.17)
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in which xq — and Hn is the Hermite polynomial:

(2.18)

The energy spectrum corresponding to the wavefunction ipn (x ) is surprisingly simple:

2.3.2 A p p lications o f T h e H arm onic O scillator P o ten tia ls

In the case of one-particle systems, the HO potential describes very well the far-

ally confined, small quantum dots without scattering states [35, 36]. For the systems 

of more than one electron, the model becomes so complicated tha t not all systems 

are solvable. System of interest is the two-electron system, called harmonium, for 

which the analytical solution can be obtained. This model offers the possibility 

that comparisons can be made with approximate methods in order to verify their 

correctness.

The exact solution for harmonium has been obtained by Singh, Biswas and D atta

[37], Znoil [38] and Taut [39], and recently reviewed by Karwowski [21]. The external 

harmonic potential of the following form was assumed:

where M  — m \ +  m 2  and fi is the reduced mass of the two-electron system. If 

the Hamiltonian is rearranged in terms of the center-of-mass coordinate R  and 

the relative coordinate r, then the resulting radial equation describing the relative 

motion will be

system, i.e., V(r) =  the above-mentioned radial equation is solvable, yielding the 

corresponding energy [40]

(2.19)

infrared spectral properties [34] and other electronic and optical properties of later-

W (r i , r 2) =  (mxr2 +  m 2 r 2) =  ^ 2  (M R 2 +  Mr 2) , (2.20)

+  ^ ( r )  <j>ni{r) =  E rnlct>nl{r). (2.21)

Assuming the Coulomb-type interaction between the two electrons in the harmonium

(2 .22 )
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for n =  2 ,3 ,__

The radial equation of harmonium is also exactly or quasi-analytically solvable 

for a number of different interaction potentials V (r). This is possible, for instance, 

for a positronium (V’(r) =  —1/r), confined helium-like atoms (V(r)  — —Z /r \  — 

Z /r 2  +  e2 / r i 2 ) [31], and atoms in plasma (V(r) =  e~dr/r )  [41].

2.3.3 C ylindrical H arm onic O scillator P o ten tia ls

In the present project, an isotropic HO potential (eq. (2.14)) for a multi-electron 

system is used; the potential is written as a sum of one-electron contribution:

W(v) = YJW(ri) = ^-Ylri- <2-23)
i i

Again, for simplicity, the center of the potential is assumed to overlap the origin of 

the Cartesian coordinate system, so tha t all coefficients bt in eq. (2.12) vanish. This 

type of HO potential has been extensively used in the recent studies of quantum dots 

and confined atoms by Diercksen and co-workers [42, 43, 44]. In those studies, the

electronic properties of several simple systems such as harmonium, hydrogen atom,

and helium atom confined by spherical and elliptical HO potentials were computed 

and compared. In the present work, however, the HO potential of cylindrical sym­

metry is employed; in other words, the three-dimensional HO potential is reduced 

to a two-dimensional, laterally confining parabolic potential. The final form of the 

cylindrical HO potential is thus given by

% )  =  y E  (®i + 1/<) - (2.24)
i

The orientation of the principal axis of the confining potential is chosen so that 

it always overlaps the molecular axis of the diatomic systems trapped inside the 

potential.

The rationale on which the HO potential of such symmetry is preferred is that 

the problem of non-homogeneous and uneven potential along the molecular bond 

can be avoided. In the cases where a spherical or elliptical HO potential centered 

at the origin of the coordinate system is used, the Coulomb interaction experienced
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by the electrons at the two ends of the diatomic molecule is stronger than those 

in the midpoint between the two nuclei. Since the confining potential is assumed 

acting on solely electrons, the applications of the potentials w ithout the tubular 

symmetry will cause a spurious accumulation of electron density in the bonding 

area, giving rise to the artificial shortening of the chemical bond. In contrast, 

the isotropic cylindrical potential eliminates this obstacle by ensuring that the HO 

potential is axially equivalent in all directions with respect to the principal axis, 

and is independent of its position along the molecular bond. It should be mentioned 

that Sako, Cernusak and Diercksen [45] argued that the Coulomb potential strong 

enough to penetrate the shielding electrons and be experienced by the nucleus will 

be outside the energy range of interest in physics and chemistry. This argument is 

apparently well justified for many-electron systems such as heavy-metal compounds, 

but not equally true for small molecules like hydrogen molecule which has only two 

electrons. Therefore, more detailed investigations are definitely necessary for the 

final judgment of the uses of the confining potentials of arbitrary shapes in the 

electronic structure calculations of confined polyatomic molecules.

2 .3 .4  C onfinem ent B asis Sets

As shown in eq. (2.17), the general solutions of HO model is a composite of Hermite 

polynomial and a Gaussian function, both expressed in terms of the displacement 

x. The resulting HO wavefunctions for a several values of n are given in Table 2.1:

Table 2.1: Wavefunctions of one-dimensional Harmonic Oscillator (A n are the nor­
malization constants).

n Vvi
0 A 0 exp |  |  (z /xo ) 2  j

1 A\(2x)  exp j - i  ( x /x 0 ) 2 j
2 A 2{4 .x 2  -  2 ) exp (z/zo)2}

3 A3 (8 a: 3 — 12x) exp j  — \  (x /zo)2}

4 A4(16x4 -  48x2 +  12) exp j —̂ ( x / x q ) 2 ^
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One can easily notice that the wavefunctions for one-dimensional HO are indeed 

the linear combinations of Gaussian basis functions. Consequently, using Gaussian 

basis functions in the calculations of confined atomic and molecular systems is jus­

tified as they are able to properly describe the distortion in electron density due to 

the presence of the external HO potential.

There are three criteria in choosing the good basis set for the calculations of 

confinement effects. As the applied HO potential is repulsive in nature, electron 

density in the atomic core region is expected to be larger; thus Gaussian basis 

functions with large exponents are required for the core electrons. Meanwhile, basis 

functions with small exponents are also needed so as to describe the diffuse electron 

density for the excited states of the confined systems which have a high probability 

of undergoing pressurized auto-ionization. Finally, a new set of basis functions, 

called confinement functions, should be included whose exponents are determined 

by the strength to of the confining potential. This set of new functions serves to more 

appropriately account for the contracted electron density within the bonding region, 

the task the normal atomic basis functions may fail to perform well. Diercksen 

and co-workers have demonstrated tha t the choices of the types and numbers of 

confinement basis functions are crucial in the convergence of the energy spectrum 

to the electronic states of appropriate order [42].

2.4 Confinement Integral Evaluation

According to the definitions of eqs. (2 .1 ) and (2.14), the confining potential is treated 

as a one-electron operator, and it is assumed transparent to the nuclei. Therefore, 

the inclusion of the confinement effects into all-electron ab initio calculations is 

straightforward; only the one-electron term h(r) in eq. (1.19) needs to be modified 

while the Coulomb and exchange terms retain their standard form. The formalism 

of confinement effects can be incorporated with all kinds of electron correlation 

methods which deal mainly with the two-electron terms, as well as relativistically 

transformed two-component Hamiltonians. It is worth-noting tha t the combined 

treatm ent of relativistic and confinement effects is by no means equivalent to the
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formal treatment for relativistic HO model as the exact solutions for the latter show 

a stronger dependence on the momentum due to the Lorentz contraction [46].

2 .4 .1  T r a n s f o r m a t io n  o f  C o n f in e m e n t O p e r a to r

The Schrodinger equation for an iV-electron confined system is:

[H{r) +  V(r)] tf( l , 2 , . . . ,  N ) =  £ * ( 1 ,2 , . . . ,  N )  (2.25)

where r  =  { f i , f 2 , . . . ,  r,y}• As defined in eq. (2.23), the confinement operator V(r) 

can be written as a sum of one-electron terms:

V (r) =  J > ( f * )  =  £ V i ,  (2.26)
i= 1 i=l

in which the one-electron operator is given explicitly by

V(?i) =  \  [uvxx+\ x i  -  Cx)2'” +  w ? + l {yi -  Cy)2vy +  c4 Z+I(zi ~  Cz)2v>] . (2.27)

In this expression, (Cx, Cy , Cz ) is the center of the confining potential, and (Xi,yi, z{) 

is the position of the i-th  electron. Eq. (2.27) is indeed equivalent to the power po­

tential in eq. (2.12). For an isotropic three-dimensional harmonic oscillator centered 

at the origin of the coordinate system, eq. (2.27) can be simplified to the following:

V{?i) =  (2-28)

since wx =  ojy =  u>z =  lj, vx =  vy =  vz =  1 and Cx — Cy =  Cz — 0. In general, the 

V(fi)  operator can be factorized into three Cartesian components:

V(?i) =  Vx(i) +  Vy (t) +  Vz (i), (2.29)

with each component (for example, the x component) given by

Vx(i) =  \u ,va? + l (xi - C x)2v* (2.30)

as shown in eq. (2.27). One may introduce a new parameter D x, which is defined 

as:
1 / I  \  l/2Vr

Wx -  ( 2 “ --+1)  • (2'31)
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Substituting D x into eq. (2.30) yields a more compact expression of Vx(i):

U (i) =  -  c y 2”« =  ( T ^ ) 2' ’ , (2-32)

and this operator is invariant under the translation with arbitrary displacement (x:

2Vx r{xi-(x)-(cx-<;x)l2Vxt r ( -\ I Xi
V =  ( - S T

Using the binomial expansion

Dx
(2.33)

(a -  b)n =  X J ( - l ) j  (  "  )  an~j V =  X j ( - 1 ) " -J’ (  "  )  aj bn~j  (2.34)j= i  '  '  j-i
where

n \  n\
(2.35)

2vx

j  J M n - j ) V

the confinement operator Vx{i) can be expressed in form of a series:

(-i \  2vx

„ - )  £  ( ° *  ~  c-)‘  ( - i ) ‘ ( ' kx' k= 0 '

Consequently, the Cartesian components of the one-electron confinement operator 

can be defined in binomial form in terms of the five parameters: x, Cx, £x, D x and

(2.36)

V‘ = VZ(x,Cx, tx,D„vx)

= ( ^ ) 2&E ( a,‘ - < - ) ‘ ( C , - < z ) ^ ‘ ( - l ) 2" - - * ( 2^  )■ (2.37)

This transformation allows the confinement operator to be written in the poly­

nomial form which facilitates the subsequent evaluations of the molecular integrals 

over Gaussian basis functions.

2 .4 .2  C onfinem ent Integrals

Let assume that two atoms are located at positions A  — (Ax,A y,A z) and B  =  

(Bx,B y ,B z ) which are defined, respectively, by the position vectors A  and B, as 

illustrated by figure 2.1. The center of the confining potential is assumed at the
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1st atom

center of 
confining 
potential

2nd atom

x

Figure 2.1: Molecular Coordinate System

position C  =  (Cx,C y,C z) with the corresponding position vector C .  The confine­

ment integral over the general, uncontracted Cartesian Gaussian basis functions (eq. 

(1.115)) that are centered at the atomic positions is:

VAB =  j  j f ( x -  Ax)n*{y  -  A y) < ( z  -  A z ) <  e ^ x~A^  e ~ ^ - A^  e- ^ z~A^  

x {x — Bx)n» (y -  By)ny (z -  B z ) n * e ~ ^ y - Bv)2e - ^ - S z ) 2 

x [Vx +  Vy +  Vz] dxdydz, (2.38)

which, using gf ( i ,  Ai, G) to denote the i-component Gaussian basis function of atom 

A, can be simplified and rearranged as follows:

Vab =  UJ 9 .  (*, , U )9 ^  (y, Ay, U )9 z  ( z ,A z , 6 i ) [V£ +  Vyc +  Vzc]

x g8 (x ,B x,^B)g8 (y ,B y ,^B)g8 ( z ,B z ,^B)dxdydz  (2.39)

=  III 9 x9 y 9 z  Vx9x 9y 9z dxdydz  +  HI g£g£g?V£g8  g8  g? dxdydz  

+  H I  9x 9y 9z v z9x  9y 9z dxdydz  (2.40)

=  1 9 x v x9xdx 1 9 y 9 y d y  j  g f g 8 dz +  j  gx g8 dx j  g £ v ° g 8 dy j  gz g8 dz

+  1 9x 9x dx 1 9 y 9 8 dy  J  g^Vzcg8 dz  (2.41)

Therefore, one can see tha t there are two types of integrals tha t have to be 

evaluated in order to determine the confinement integral: the overlap integral of
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two Gaussian basis functions, and the confinement potential integral which involves 

the confinement operator.

The explicit form of the overlap integral is:

/ oo roo
g£gBdx =  / { x -  A x)n* {x -  B x)n* e ~ ^ x~A^ e ~ ^ x- B^ d x .  (2.42)

-OO J — OO

Utilizing the Gaussian product theorem [47], the overlap integral can be rewritten

as:

r  gAgBdx =  [ ° ° { x -  A x)n* (x -  B x)n» e ~ & & {Ax~Bx)2 dx
J  —0 0  J —OO

(2.43)

where

Px = i AAx + ZB B \  (2.44)
6 t  +  £ b

Therefore, the overlap integral becomes

f  gAgBdx =  e Bx  ̂ f  (x — Ax)n* (x -  B x)n* e~^A+ B̂^x~Px 2̂dx.
J — oo J — OO

(2.45)

In order to simplify the exponential term in the integral, the following transforma­

tions are performed:

t  =  x — Px , A =  Px -  A x , B  =  Px -  B x , Z  =  £a +  £b , (2.46)

which lead to the new form of the overlap integral

r  gAgBdx =  e~ ^ ^ {Ax~Bx)2 f ° °  ( t  +  A )n* (t +  B ) n* e~2t2dt. (2.47)
J —oo J — OO

— A — B
Again, the binomial expansion is carried out for (t +  A)n* and (t +  B)"'x :

nx a

{t +  A)n* =  J 2  ( n- ) t iAn* (2.48)
i—1

B
(t +  B )n* =  ) t j B n* j . (2.49)

j=i '  3
Substituting these expressions back into the overlap integral yields

J ™ j AgBdx = e - ^ {Ax~Bx)2:£  E( ) ( "/ ) An*~iBn*~j
i= 1 j = 1

t i+ je~2t2

(2.50)
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The last integral is a standard integral whose solution is given by

% )  > * +  j  =  e v e n
roo f  9  (  l - 3 - 5 - ( t+ j - l )  r w \
/ t i+ie- z t 2di _  J  ̂^2(i+j)/2+i2 (i+j)/2 V 2 y

7-00 I 0 ■ ■ ^  ( 2 ' 5 1 ), i +  j  =  odd

The evaluation of the confinement potential integrals is slightly more compli­

cated. The integrals can be written explicitly as:

/OO

( x - A x)n* Vxc(x, CX,CX, D x, vx) ( x - B x)n- e - ^ x- A^ e - ^ x~B^ 2dx.
-OO

(2.52)

Using the transformed confinement operator in eq. (2.37), one can get, assuming 

Cx =  A x,

POO

’ —oo

/ OO rc

9 x v x 9 x dx  =  /
-OO J —i

\ 2 ^  2 3̂, / _

) E  ( - I ) 21" - 1  ( ^
x ' k=0 '

x (x -  A,.)"* (x -  B x) <  e - ^ x- B^  dx (2.53)

=  fJ  — (

1 \  2Ua; 2 3̂, /•

— J  J ]  (x< -  Ax)fc (Cx -  A x)2v* - k ^ ^\ 2 v x - k  I * uxyxj x\x ) Six) V 1
k = 0

x ( x - A x)n> ( x - B x)n° e - ^ x- A^ e - ^ x~B^ 2dx (2.54)

=  ( } - ) 2Vxh c * - ^ 2v°-k( - ^ - k( 2ix
'  x ' k=0 '

/ OO

(x -  Ax)n«+fc(x -  £ x)n* e - ^ - ^ V & ^ - ^ d x .  (2.55)
-OO

roo
X

'  — OO

Notice that the integral appearing in eq. (2.55) is in fact the overlap integral in eq. 

(2.42). Therefore, one can adopt the expression derived for the overlap integral and 

easily deduce the final expression of the confinement potential integral:

gAVxgBdx =  £  «7* -  A ,)2- *  ( -1 ) * " -*  (  ^
4 - 0 0  V x /  k=Q \

£ £ rix r A 7 \ /  R \
x e~*A+(B ( A x ~ B x ) 2 ^  ^  ( n x + k \ f n x \  ^ nA+k_i^ nB_j

i=o j=o '  1 /  \  9 J

( 0  if i +  j =  odd

X l i H ^ d ) 1 7 2  i f i + i  =  eve„ ■ <2'56>

The complete integral Vab  can thus be calculated by computing the integrals in eqs.

(2.50), (2.51) and (2.56) and substituting them into the expression in eq. (2.41).
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2.4.3 Im plem entation

Since the calculations of confinement effects require the evaluation of only one- 

electron molecular integrals, the implementation of this feature to ab initio quan­

tum  chemistry packages is straightforward, and only relatively small modification 

is needed. The code has been developed and added to the program GAM ESS-US

[4 8 ]. An independent coding of the confinement integrals was incorporated into the 

O p e n M o l  program [49] by his research group. Both programs were utilized in the 

present project.

In general, the procedure of performing a calculation including the confinement 

effects consists of the following steps:

1. Define the coordinates of the molecular system and the parameters of the 

confining potential (such as the geometry, strength, and the origin).

2. Calculate the required molecular integrals: overlap integrals Spq, one-electron 

integrals %pq and two-electron integrals {4>p4>q\4’r4ls)-

3. Calculate the one-electron confinement integrals

4 . Construct the density m atrix V.

5. Calculate the two-electron contributions Q from the density matrix and two- 

electron integrals: Gpq =  ]Tr ]C.S Ppq \{4>p4>q\<l>r<t>s) -  (4>P4>q\4>s<l>r)\

6 . Form the Fock matrix: T pq =  T-Lpq +  Vpq +  Qpq.

7. Perform the Unitary transformation and diagonalize the Fock matrix to find 

the orbital coefficient matrix C.

8 . Form a new density matrix and check for the convergence.

9. Use the optimized SCF wavefunctions in other post-Hartree-Fock calculations.
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Chapter 3

Low-lying Excited States of the  
Hydrogen M olecule in 
Cylindrical Harmonic 
Confinem ent

In the following seven chapters, the results of applications of the parabolic confine­

ment model to several diatomic molecules are presented. The results concerning 

the studies of hydrogen molecule confined by a cylindrical harmonic potential are 

discussed in this chapter first 1.

3.1 Introduction

The study of atoms and molecules in external fields is a fascinating area of research 

that has attracted much attention from different areas of science and engineering. 

Following the influential work of Loudon in 1959, in which he performed the quan­

tum  mechanical analysis of the behavior of a one-dimensional hydrogen atom in 

various Coulomb potentials [1], many studies have been carried out to understand 

the physics of excitons (hydrogen-like electron-hole pair) and some related systems 

(e.g. Refs.[2, 3, 4, 5]). The discovery of neutron stars and white dwarf stars fur­

ther motivated rapid development of this field since it stimulated the interest of

1A version of this chapter was published in A d v . Q uan tum  C hem . 48, 59 (2005).
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studying the variation of electronic structure and behavior of atomic and molec­

ular systems when they are under the magnetic field in which the Lorentz force 

outweighs the Coulombic interaction [6 , 7]. Besides the exploration of the process 

of star evolution, several areas of condensed-matter physics, in particular the stud­

ies of quantum Hall effects and quantum dots, also require an in-depth theoretical 

framework tha t explains the motion of electrons and particles in strong electric and 

magnetic fields [8 ]. Electrons, when being spatially localized in either quasizero-, 

one-, or two-dimensions by means of an applied electric or magnetic field, exhibit 

unique properties tha t are absent without external confinement [9]. Extensive inves­

tigations, both theoretical and experimental, have been performed, and some useful 

results have been obtained. The advances in the technology of lithographic etching

[1 0 ] allow for the facile creation of quantum dots, wires, and wells of various sizes 

and numbers of electrons, which greatly assist the intense experimental research of 

these intriguing objects. To date, quantum dots and wells have already been widely 

used in electronic and opto-electronic devices, such as compact discs and microwave 

antennas, as well as in medical science, for instance, as imaging biosensors of living 

cells [1 1 ],

Despite being the simplest neutral molecule, dihydrogen molecule (H2 ) is of 

great importance to astrophysics, atomic and molecular physics, solid-state physics, 

plasma physics, catalysis and fuel cell studies. Hydrogen is the first element syn­

thesized in the formation of a star, and is found to exist in the interstellar space 

and in a wide range of cosmic objects. It is the most abundant molecular species 

and constitutes approximately 92% of the m atter in the Universe [12, 13]. Hence, 

the studies of magnetized hydrogen provide a vital information for the mapping of 

the life-cycle of a star and the evolution of the Universe. From the theoretical view­

point, hydrogen molecule is the best candidate for the benchmarking calculations 

when testing new theories due to its structural simplicity and the availability of 

highly accurate experimental spectroscopic constants [14]. Since the first qualita­

tive quantum mechanical calculation performed in 1927 [15], hydrogen molecule has 

been extensively studied using various methods, in which the computation carried
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out by Kolos and Wolniewicz was the most remarkable [16].

In contrast to a large number of studies on H2  in field-free environment, the 

investigations of H2  in the presence of strong fields are rather limited. Most of these 

calculations center on the molecular ion (e.g. Refs [17, 18, 19, 20]). Recently, 

the behaviour of H2  in strong to superstrong magnetic fields has became a topic 

of considerable interest, and several calculations have been performed concerning 

the explanation of some unusual phenomena of hydrogen molecules in superstrong 

fields (B > 1011 G )[21, 22]. Calculations performed by Lai and co-workers using 

Hartree-Fock method suggested the existence of long-chain polymers of hydrogen 

on the surface of neutron stars where the magnetic field is as strong as 1012  G 

[23]. A subsequent study by Demeur et al. also supported the stability of finite 

chains of hydrogen in very intense magnetic fields [24]. In addition, a number of 

changes in both the electronic structure and geometry of H2  were proposed. Korolev 

and Liberman found that the total spin of the hydrogen molecule in an ultra-high 

magnetic field becomes one as a result of a triplet ground state [22]. The analysis by 

Ortiz and co-workers using variational quantum Monte Carlo method proved that 

the hydrogen molecule possesses the ground state symmetry of 3IIo in superstrong 

magnetic fields [25]. On the other hand, the studies conducted by Detmer and co­

workers using configuration interaction method predicted tha t the 3 S„ state would 

be the ground state when the magnetic field strength is moderate (B «  0.2 a.u.) 

[26]. These investigations also showed tha t both the ground and excited states of 

H2  will be more strongly bound and in certain circumstances local maxima appear 

at large internuclear distances which have no counterparts in the field-free situation 

[26, 27, 28]. Moreover, different vibrational excitation levels were obtained when 

the orientation of the applied magnetic field was changed, which gives rise to a 

continuum opacity in the photoionization of excited-state H2  on neutron star [29]. 

The chaotic behavior of the energy levels of H2  in Rydberg state may also result 

from the linear and quadratic Zeeman interaction induced by the application of a 

magnetic field [30].

The laterally confining potential of a small quantum dot can be approximated
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by a smooth parabolic well in the cases where the scattering states are to be ne­

glected due to the generalized Kohn theorem [31]. Maksym and Chakraborty [32], 

and Bakshi et al. [33] demonstrated, using far-infrared spectroscopy (FIR), that the 

resonance energy of a quantum dot is independent of the number of confined elec­

trons, which is a unique characteristic of a parabolic potential. The Hartree-Fock 

modeling of a GaAs quantum dot (300 x 300 nm) with IV < 10 electrons revealed 

that the parabolic confining potential that is approximately circularly symmetric, 

with the diameter of about 1 0 0  nm, leads to the observed magnetic-field-dependence 

of energy levels [34].

In the present work a cylindrical harmonic potential has been adopted as a model 

potential of a 2-dimensional quantum well. The potential energy curves (PEC) of 

the ground and low-lying excited states of H2  aligned along the axis of the potential 

have been calculated using the method of configuration interaction with single and 

double substitutions (CISD) (in the case of H2  this corresponds to full configuration 

interaction method) and the results of computations are reported below together 

with analysis of the associated wavefunctions. Comparison with the results from 

the studies of hydrogen molecule in a parallel magnetic field [22, 25, 26, 27] has 

been made. Several similarities as well as differences are observed for the excited 

states of hydrogen molecule when it is embedded in the two potentials and they are 

discussed in the following sections.

3.2 M ethod of Computation

The potential energy curves (PECs) of confined hydrogen molecule were calculated 

using the configuration interaction (Cl) method implemented in the modified version 

of GAMESS-US program [35]. Preliminary calculations were carried out using the 

object-oriented OpenMol program [36]. The configuration state functions (CSFs) 

were generated by the Graphical Unitary Group Approach (GUGA) [37] in which 

all possible single and double excitations from the occupied to virtual one-electron 

orbitals were included. The canonical orbitals obtained by solving the Hartree- 

Fock-Roothaan equations were used. The total energies of the molecule in different
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symmetry states were computed as the eigenvalues of the full Cl matrix. The virtual 

space was not truncated.

In the present work, the confining potential was assumed to be in form of a 

cylindrical, laterally parabolic potential as described in Chapter 2. This potential 

was co-axial to the hydrogen molecule aligned along the z-axis of the coordinate 

system. In addition, the center of confining potential was chosen to coincide with 

the center of mass of the molecule, i.e., the confining HO potential took the form of 

eq. (2.24).

The basis set adopted in the calculations was optimized to yield good values of 

both the ground and excited state energies of hydrogen atom. Detailed analysis of 

the basis set will be given in the following section. In addition to the atom-centered 

Gaussian basis set, a set of basis functions ( ls lp ld ) , with the exponents of w /2 , was 

added at the mid-bond position of the hydrogen molecule in order to appropriately 

account for the distortion of electron density due to the external harmonic potential. 

This mixed basis set strategy has been tested on numerous atomic systems such 

as confined two-electrons quantum dots, negative hydrogen ion, helium atom and 

lithium atom [38, 39], and satisfactory results have been obtained. It is expected 

that these confinement functions should behave equally well in the molecular cases. 

The recent study of lithium dimer confined in an ellipsoidal harmonic potential [40] 

showed that the use of the confinement functions ensures the proper description 

of avoided crossings between the electronic states and of their correct dissociation 

limits.

3.3 Results and Discussion

3.3.1 B asis set

One of the bottlenecks of the modern quantum chemical calculations is the large 

number of integrals that have to be evaluated. Depending on the nature of the 

formalism, the scaling may vary from K 5  to K w , where K  is the number of ba­

sis functions, which makes the calculations including explicit treatm ent of electron 

correlation very expensive computationally. The full Cl method, which is size-
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consistent, can yield the variationally exact eigenvalues within the space spanned 

by the given basis set. However, it suffers from the fact tha t a tremendous number 

of determinants will be generated and this number grows factorially with respect 

to the number of basis functions. Therefore, the application of full Cl calculations 

is limited to very small systems. As a two-electron system, hydrogen molecule is 

the best candidate for the benchmark calculation of different sophisticated post- 

Hartree-Fock methods because rather small number of integrals must be computed 

even when a comparatively large basis set is used. Another advantage of employing 

the hydrogen molecule in calculations is tha t experimental data of high precision 

are available that allow for verification of a method. Consequently, the hydrogen 

molecule has been extensively studied by various quantum chemical methods (e.g. 

Refs [16, 41, 42, 43, 44, 45, 46, 47]), and an enormous number of basis sets have 

been designed for accurate computations of structures and properties of hydrogen- 

containing compounds.

Recently, Tachikawa and Osamura have applied the fully variational molecular 

orbital method (FVMO), combined with the full Cl wavefunctions, to obtain very 

accurate geometries and excitation energies of the ground and excited states of 

hydrogen molecule [48]. Their study also showed tha t full Cl calculations using 

large correlation-consistent basis sets do not necessarily yield results tha t agree very 

well with the experiment. Severe problems appeared in the estimations of excitation 

energies Te, which for the 1 n u state was about 6325 cm' 1 (~  6.3 %) overestimated. 

Due to the limitations of the correlation-consistent basis sets for the excited state 

studies, a new atomic basis set has been designed in the present work for the accurate 

calculation of the PECs of the low-lying excited states as well as the ground state 

of hydrogen molecule. The exponents and coefficients of the basis set were obtained 

by the least-square fitting to the radial distribution functions of the Is, 2s, 2p, 3d, 

and 4f orbitals. The basis set, denoted by H-73, consists of 11 s-, 7 p-, 6  d- and 

4 f-type basis functions contracted to [Ils7p4d3f]. The s- and p-type functions are 

fully uncontracted to allow for the greatest flexibility in the molecular calculations. 

The exponents and coefficients are given in Table 3.1.
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Table 3.1: H-73 Basis set of hydrogen
Symmetry Exponent Coefficient

418.55081 1 . 0 0

62.745349 1 . 0 0

14.279584 1 . 0 0

4.0418170 1 . 0 0

1.3163895 1 . 0 0

0.47346186 1 . 0 0

0.18279991 1 . 0 0

0.072884362 1 . 0 0

0.039056541 1 . 0 0

0.019077672 1 . 0 0

0.0097350280 1 . 0 0

65.554593 1 . 0 0

4.4119074 1 . 0 0

1.4101801 1 . 0 0

0.31641648 1 . 0 0

0.10161790 1 . 0 0

0.038707113 1 . 0 0

0.015936506 1 . 0 0

22.213281 0.15854785
2.5916309 0.47406581
0.41870791 0.71413682
0.67153126 1 . 0 0

0.12927862 1 . 0 0

0.034247992 1 . 0 0

7.2151367 0.40231477
0.88389643 0.79963606
0.33897511 1 . 0 0

0.063826911 1 . 0 0
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Table 3.2: Equilibrium internuclear distances of selected electronic states of H2  (in
A) __________________________________

Basis set XxE+ c ̂ a 3 S+ c 3n„
6-31++G***a> 0.7389 1.1232 0.7846 0.9502 0.7215
6-311++G**(“) 0.7434 1.1567 0.8944 0.9726 0.8136
aug-cc-pVDZ(a) 0.7617 1.2670 0.9838 0.9884 1.0197
aug-cc-pVTZ(a) 0.7431 1.2822 0.9976 0.9870 1.0211
aug-cc-pVQZ*®) 0.7419 1.2845 1.0245 0.9874 1.0476
FV-OPT/[8s4p2d](a) 0.7417 1.2828 1.0330 0.9887 1.0375
H -36^ 0.7419 1.2747 1.0287 0.9857 1.0321
H-73 0.7414 1.2840 1.0319 0.9887 1.0375
Numerical limit 0.7408 1.2859 1.0330 0.9885
Experiment^) 0.7414 1.2928 1.0327 0.9887 1.0370

(°) Ref [48].W Ref [50]. W Ref [14].

The H-73 basis set has been tested in the atomic calculation for hydrogen. The 

total energy of hydrogen atom in 2S state was -0.4999951 a.u., which is superior to 

the results obtained by employing aug-cc-pVTZ and aug-cc-pVQZ basis sets, and 

comparable to the values from aug-cc-pV5Z and aug-cc-pV6 Z calculations.

To test the validity of the basis set in molecular calculations, Cl calculations for 

the ground and several low-lying excited states of the hydrogen molecule have been 

performed. Figure 3.1 depicts the a b initio PECs of H2  and H j  ion and Tables 3.2 

and 3.3 show the calculated equilibrium bond distances and excitation energies of 

different electronic states of the hydrogen molecule.

It may be seen that the bond distances calculated using H-73 basis set agree 

better with experiment than those obtained using aug-cc-pVQZ or aug-cc-pVTZ 

basis set, and are close to the highly accurate values computed using FVMO method.

It is noticeable that correlation-consistent basis sets are not able to accurately 

reproduce the bond distances and energies of the excited states in n  symmetry, 

which may be attributed to the relatively inadequate p-space. The problem was 

eliminated in the case of H-73 basis set. The polarization set tha t was purposefully 

optimized to correlate with the 2 p orbitals of hydrogen atoms greatly improved the 

bond lengths and excitation energies, and reduced the errors to be within 1 0 0  cm - 1
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I n t e r n u c l e a r  D i s t a n c e  ( A )

Figure 3.1: Potential energy curves of the ground and low-lying excited states of 
H2 and of the ground state of II.j'. Solid lines: E+ states; dotted lines: E+ states; 
short-dashed lines: Iig states; long-dashed lines: IIU state; dotted-short-dashed line: 
HiT ground state. For the IIS manifold, the 3 IIff state lies slightly above the 1 fl5 

state. The opposite is observed for the II?i manifold.
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Table 3.3: Excitation energies of selected electronic states of H2 (in cm 1)
Basis set c ̂ a 3 X+ c 3n„
aug-cc-pVQZ^ 91660.9 106414.5 95935.4 99095.4
FV-OPT /  [8s4p2d](a) 91670.1 100067.1 95884.3 95828.4
H -36^ 91372.4 99964.9 95437.5 95603.5
H-73 91612.4 99990.6 95844.3 95763.8
Numerical lim it^ 91694.2 100104.3 95981.4
Experiment^) 91700.0 100089.8 95936.1 95838.5

Ref [48], W Ref [50]. (c) Ref [51].

of exact values.

3.3 .2  G eneral features o f  th e  p o ten tia l energy curves

Due to the superior performance of the H-73 basis set in the Cl calculations of 

structures and energies for the excited states of hydrogen molecule, it was used in 

the subsequent studies of H2  enclosed in a cylindrical harmonic potential. The PECs 

of the ground and eight low-lying excited states of H2  encapsulated in a cylindrical 

potential have been calculated. Several confining potential strengths u  have been 

utilized: 0.00, 0.05, 0.10, 0.15 and 0.20 a.u. The mapping of PECs was done in the 

range from 0 . 6  A to 8 . 0  A so as to capture the dissociation limits.

Figs. 3.2(a) to 3.2(d) display the PECs of several electronic states of H2  and 

of the ground state of the ion in the presence of a confining potential. Several 

features may be observed when compared to the situation where no potential is 

applied. Firstly, the energy corresponding to a dissociation limit, Eum — E (r  —> 0 0 ), 

shifts up for all the states when the strength of the potential increases. For instance, 

in the dissociation channel for the X 1 S+ and b 3 X+ (channel I), Eum =  -1.0000 

a.u. for uj =  0 . 0 0  a.u.

This value increases to -0.9808 a.u. for a; =  0.10 a.u., and -0.9292 a.u. for oj 

— 0.20 a.u. In other words, all the dissociation channels are destabilized by the 

harmonic repulsive potential that acts on electrons. The electron density of H2  is 

compressed by the potential and the increased Coulomb interaction destabilizes the 

molecule. Secondly, the dissociation channel that leads to H(ls) +  H(2s or 2p) in
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Figure 3.2: Potential energy curves of H2  and in confinement. Solid lines: £+ 
states; dotted lines: states; short-dashed lines: Ilg states; long-dashed lines:
n.u state; dotted-short-dashed line: ground state. For the IT,, manifold, the 3 IIS
state lies slightly above the 1 II9  state. The opposite is observed for the IIM manifold.
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Table 3.4: Atomic calculations of hydrogen atom in confinement^)
Configuration u =  0 . 0 0 u  =  0.05 u  =  0 . 1 0 u =  0.15 ui =  0 . 2 0

Is -0.499995 -0.497521 -0.490376 -0.479179 -0.464588
2 s -0.124999 -0.097968 -0.047714 0.006649 0.062849

2 p z /2 py -0.124991 -0.100749 -0.050135 0.011405 0.081274
2 pz -0.124991 -0.112215 -0.084665 -0.050641 -0.012044

(“) All values in a.u.

a field-free environment (channel II) splits into two when the potential is turned 

on. The states of S  symmetry correlate to the channel, which is lower in energy, 

that corresponds to H(ls) +  H(2pz), while those of II symmetry correlate to the 

higher channel tha t leads to the limit of H (ls) +  H(2px/2 p y). The energy separa­

tion between these two channels becomes larger when a stronger potential is used. 

The peculiar nature of the channel II within the harmonic potential can be ratio­

nalized via the atomic calculations of hydrogen atom for various confining potential 

strengths. Figure 3.3 shows the energies corresponding to different configurations 

of the hydrogen atom (see also Table 3.4).

..“....
H (1 s )  —i—
H (2 s )  x -

H (2 Px/2 Py) -

■

H (2 p z ) e

0.00 0.05 0.1 0.15 0.2
co (in a .u .)

Figure 3.3: Atomic energies of hydrogen atom in confinement

The data show that H(2pz) configuration becomes more stable relative to the
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H(2pa:) and H(2pJ/) counterparts in the harmonic potential. It can be attributed 

to the fact tha t the potential is laterally circular about the z-axis which enhances 

the electrostatic interaction along the x-and y-directions. As a consequence, the 

p-shell degeneracy is removed, and the channel II splits, with the one corresponding 

to H(ls) and H(2pz) becoming lower in energy.

Finally, it should be noticed tha t the energy of the one-electron system ILj' 

increases less rapidly than the system of the states of the two-electron H2 . In 

consequence, for the larger values of ca, the energy of the ionized system will be 

lower than the energy of some of the excited electronic states of H2 . In cylindrical 

confinement, in contrast to spherical [49] or ellipsoidal [38] confinements, there is 

a possibility of escape of an electron when the repulsive influence of confinement 

exceeds the attractive interaction with the nuclei. In the following sections, in order 

to compare qualitative behaviour of our results with those previously published, we 

sometimes discuss the results obtained for very large values of lu. However, in the 

tables and the figures we show only those data that relate to the excited states 

whose energies are below the ground-state energy of in the confinement of a 

given strength w.

X 1H+ and b 3E+ states

Both the X 1 X+ and b 3 S+ states of the H2  molecule correlate to the limit of H(ls) 

+  H(ls) (channel I). The ground state X 1 E+ arises from the configuration | lag)  

while the b 3 E+ state results from the configuration \ lagl o u). The configurations 

of these states remain the same for the applied potential with various strengths. 

It has been suggested that the hydrogen molecule, under the influence of a parallel 

ultrastrong magnetic field, undergoes a transition of the ground state symmetry from 

to 3 n 0  (see e.g., Refs. [22, 23, 24, 25, 26]). In the intermediate regime, Detmer 

et al. [26] and Kravchenko and Liberman [52] showed, using numerical Hartree- 

Fock approach, that the 3 S U state would appear as the ground state, although the 

existence of this weakly bound Bose-particle superfluid phase is still controversial. 

Nevertheless, such transitions do not happen in the present case even up to the
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field strength of 0.20 a.u. The ground state retains the symmetry and the 

PECs of these two states still lead to the same dissociation limit of channel I. The 

difference between these two situations can be accounted for by considering the 

different nature of the external fields. The potential adopted in the present study 

is purely electrostatic and repulsive to the electrons. The first-order Stark effect 

will not split the species in channel I because it corresponds to a non-degenerate 

ground-state hydrogen atoms whose orbital angular momentum is zero. In the case 

of magnetic field, however, the spin-orbit interaction and the coupling between the 

canonical momentum and the vector field have to be taken into account. As a result, 

the influence of the magnetic field on the electronic structures of different states of 

H2 becomes orientation-dependent, and the Zeeman effects (linear and quadratic) 

split the dissociation channel I according to the different spin states of 1 S 9  and 3 S,U.

Despite the difference in the asymptotic limits, some features characteristic for 

molecules in magnetic fields can also be seen in the present work. Table 3.5 shows 

that the binding energy of the ground state H2  increases with the strength of the 

potential and the equilibrium internuclear distance re decreases. Meanwhile, the 

monotonically increasing ve suggests that the potential well becomes much steeper.

Similar observations have been made when H2  was placed in a parallel magnetic 

field [26]. The shorter bond distance and stronger binding interaction in the ground 

state H2 are the consequences of the increased electron density between the two 

nuclei that is induced by the potential.

The lowest triplet state, b 3 E+, possesses interesting characteristics that are 

worth noting. According to the early work of Kolos and Wolniewicz [53], the b 

3£+ state is predominantly repulsive except for a shallow van der Waals minimum 

around R  ss 7.8 a.u. (4.1 A) with the estimated binding energy of about 4 cm-1 . 

Other computations [54, 55, 56], tha t included electron correlation, confirmed the 

existence of a van der Waals minimum. In the present work a minimum was also 

found and its parameters are shown in Table 3.6. The analysis of the PEC in the 

region of 3.0 < R  < 5.0 A including the correction for the basis set superposition 

error (BSSE), which is significant for such a weak binding, yielded re =  4.1608 A
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Table 3.5: Spectroscopic parameters of X and b 3X+ states(a’b)
State Parameter c0  — 0 . 0 0 u  =  0.05 u  =  0 . 1 0 u =  0.15 u  =  0 . 2 0

X ‘E+ re 0.7414
(0.7414)^

0.7368 0.7273 0.7202 0.7156

4404.6
(4401.2)^

4428.4 4503.3 4635.5 4737.8

B e 60.857
(60.853)(c)

61.620 63.242 64.491 65.318

vexe 147.262
(121.336)^

145.819 150.791 233.272 123.788

a e 3.2393
(3.0622)(c)

3.2497 3.2325 4.1626 3.1167

Be 38111.9
(38292.8)^

38328.4 39103.2 40072.8 41328.1

b 3 E+ re 4.1608
(4.13)(e)

4.1379 4.0842 4.0305 3.9846

Ve 34.65 35.17 36.02 35.53 35.31
Be 1.932 1.954 2.005 2.059 2.107

uex e 102.005 106.100 110.776 116.817 122.854
Ole 3.8806 3.8700 3.8589 4.3257 4.4514
D e 4.148

(4.20)^
4.280 4.236 3.995 3.622

(“1 Experimental values in parentheses. ^  re in A ,  all other values in cm 1. p e f  [5 1 ] .

W Ref [16]. <e) Ref [55].
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Table 3.6: Spectroscopic parameters of van der Waals minima of selected states^0,6)

State Parameter uj =  0 . 0 0 u =  0.05 u =  0 . 1 0 u  =  0.15 u =  0 . 2 0

b 3£+ re 4.1608 (4.13)^ 4.1379 4.0842 4.0305 3.9846
ve 34.65 35.17 36.02 35.53 35.31
B e 1.932 1.954 2.005 2.059 2.107

vex e 102.005 106.100 110.776 116.817 122.854
a e 3.8806 3.8700 3.8589 4.3257 4.4514
De 4.148 (4.20)^ 4.280 4.236 3.995 3.622

a 3 S+ re 5.5335 5.0862 4.7692
Ve 83.21 104.68 129.09
B e 1.092 1.293 1.471
D e 94.1 156.6 194.2

1 % re 4.3089 (4.2)W 4.0112
Ve 123.1 154.2
Be 1.802 2.079
D e 173.3 (177)(d) 214.7

Experimental values in parentheses. ^  re in A, all other values in cm 1. *"c' Ref [55].
W Ref [8 8 ].

and D e — 4.15 cm-1 , as illustrated by Figure 3.4. The results are in good agreement 

with the available theoretical values. Similarly to the situation of the ground state, 

the application of an external potential causes the contraction of the internuclear 

distance. However, the change of dissociation energy is drastically different. Initially, 

the potential well depth increases when a potential of cv =  0.05 a.u. is imposed. 

However, the potential becomes shallower when the potential strength exceeds 0.10 

a.u. and the binding energy decreases monotonically. Same situation has also been 

seen for the hydrogen molecule in a magnetic field [26], in which the van der Waals 

minimum eventually vanished when the magnetic field strength became greater than 

100 a.u. (corresponding to about 1011 G).

B XE+ and a 3E+ states

Being the lowest stable excited state, the electronic structure of the B 1 E+ state of 

H2  has been of considerable interest. The calculation of Kolos and Wolniewicz using 

the variational method with elliptic coordinates [57] showed that the wavefunction
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Figure 3.4: b 3 E+ state in confinement
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is well represented by a mixture of three configurations: ionic, |l.s2 .s) and \l.s2p<J). 

The analysis of the wavefunction indicated tha t for the region of 3 < R  < 7 a.u. 

the nature of the B 1 S+ state is essentially ionic. For the small internuclear dis­

tances, however, the most im portant contribution comes from the Heitler-London 

type |1 s2pa) function. Yet for the large values of R  both the |l.s2.s) and \\s2pa) 

functions become important, leading to the asymptotic limit of H (ls) +  H(2p) in 

the field-free space. Because of the strong ionic character, the B state potential 

energy curve exhibits a very broad minimum. The dihydrogen molecule in the B 

1 S+ state is paramagnetic [58] and can form stable compounds with noble gases

[59]-
The spectroscopic constants obtained by polynomial fitting to the calculated ab 

initio  PECs for the B 1 S+ state are given in Table 3.7. The values are in a very good 

agreement with the experiment except for the binding energy being underestimated 

by about 1%. The relatively large discrepancy of re results from the flat minimum 

of the potential which increases the uncertainty in the evaluation of re. Change of 

configurations with R  was noticed in the wavefunction analysis. The contribution 

from the ionic wavefunction drops from about 80 % at R  «  4.00 a.u. to about 20 

% at R  «  12 a.u.; meanwhile, the contribution of \\s2pa) wavefunction grows from 

5 % to 62 %.

Under the influence of the external harmonic potential, two changes occur: an 

elongation of the internuclear distance and the accompanying reduction of the vibra­

tional constant. These variations could be attributed to the increasing contribution 

of | l s 2 s) wavefunction with the strength of the potential, which diminishes the ionic 

interaction and stretches the internuclear separation. Similar to the case where no 

potential is applied, when R  —> oo, the configuration of \\s2pa) dominates and leads 

to H(ls) +  H(2p2) as this is the function that gives non-vanishing dispersion at the 

dissociation limit. For uj >  0.15 a.u. unusual changes occur in the B state, in which 

the equilibrium internuclear distance starts to decrease and the vibrational constant 

increases. These unexpected differences have also been predicted for the hydrogen 

molecule placed in a parallel magnetic field of strength larger than 0 . 2 0  a.u. [26],
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Table 3.7: Spectroscopic parameters of B and a 3E+ s ta tes^ ’6)
State Parameter u> =  0 . 0 0 ui =  0.05 w =  0 . 1 0 u> =  0.15 w =  0 . 2 0

r e 1.2840
(1.2928)^

1.3163 1.3383 1.3469 1.3413

Ve 1365.8
(1358.1)(c)

1472.3 1360.4 1423.6 1507.0

B e 20.290
(20.015)(c)

19.305 18.675 18.438 18.593

vex e 24.330
(2 0 .8 8 8 ) ^

10.548 8.403 6.739

OLe 1.3219
(1.1845)^

0.9516 0.5665 0.3622 0.2584

D e 28812.3
(28852.7)(d)

29956.7 32331.8 34904.0 37630.0

Te 91612.4
(91700)(c)

92908.8 95710.5 99113.8 102927.2

a 3 S+ re 0.9887 0.9736 0.9625 0.9634
(0.9887)(c)

Ve 2664.8
(2664.8)^

2747.9 2778.7 2719.4

B e 34.219
(34.216)^

35.286 36.109 36.036

vex e 82.061
(71.65)(c)

80.943 96.870 99.888

a e 1.7192
(1.671)^

1.8673 2.0239 2.2410

De 24581.4
(24615.3)(e)

22246.5 18584.4 15727.3

Te 95844.3
(95936.1)^

100635.8 109471.3 118310.0

Experimental values in parentheses. W re in A, all other values in cm A (c-; Ref [51].
Ref [91]. {e) Ref [92],
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although the effect is more pronounced in the latter case. The shortening of re could 

be a consequence of the induced interaction due to the polarized electron density, 

within the internuclear vicinity, caused by the harmonic potential.

In contrast to channel I, which remains non-degenerate in the field, channel II 

splits into three dissociation branches due to the Stark effect. Atomic calculations of 

the H atom in a cylindrical potential oriented along the z-axis show tha t the energy 

levels of 2p-orbitals split and H(2pz) becomes more stable relative to H(2px) and 

H(2p2/). Because of the lateral symmetry of the potential, the degeneracy of H(2px) 

and H(2p!/) persists. For small values of u, H(2s) is slightly less stable than H(2px) 

and H(2py) while the ordering reverses when oj exceeds 0.15 a.u. As a result, there 

exist three dissociation limits for channel II, with a non-zero cylindrical potential, 

which correspond to H(2s), H(2pz), and H(2px)/H(2py).

Besides the B 1 EjJ' state, the a 3 E+ state also possesses the asymptotic limit of 

H(ls) +  H(2pz) in the presence of a harmonic electrostatic potential. The PEC of the 

a 3 S+ state has already been extensively studied (see e.g. Refs. [60, 61, 62, 63, 64]), 

and both highly accurate adiabatic and non-adiabatic a b initio  PECs have been 

calculated. The PEC and the corresponding spectroscopic constants determined in 

the present study are in very good agreement with the experiment except for the 

excitation energy where the calculated value is about 90 cm - 1  smaller than the 

experimental one. Zung and Duncan, using orthonormal molecular orbitals with 

variable orbital parameters, showed tha t the contribution of \ls2pz ) to the total en­

ergy near the potential minimum is negligible [61]. On the other hand, Mulliken has 

demonstrated that for R >  re the MO configuration becomes a mixture of |l.s2.s) and 

|ls2pz) and when R  —> oo the function \ls2pz) predominates and correlates to the 

dissociation of H(ls) +  H(2p) [65]. A detailed analysis of the relative contributions 

of various configurations in the a 3 E+ state wavefunction confirms their conclusions. 

It is found that the main component of the state at the region around the minimum 

is a mixture of |ls2s) and |l.s3s) which then changes to |ls2s) and |ls2pz) when R  

increases. For very large R, the predominant configuration is \ls2pz ) which leads to 

the appropriate dissociation limit of H(ls) +  H(2p).

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the presence of the confining harmonic potential, several interesting changes 

of the a 3 S+ state occur. In contrast to the other states, where the binding energy 

increases with the stronger potential strength, the dissociation energy for the a 

3£+  state exhibits a decreasing trend. The D e value reduces from 24578 cm - 1  for 

o j = 0.00 a.u. to 15727 cm - 1  for o j  =  0.15 a.u. For u j  =  0.20 a.u., the energy of the a 

3 E+ state is greater than the energy of the ground state of H^. Detmer et al. have 

observed similar behavior of the a 3 E* state of H2 in a parallel magnetic field with 

the strength below 0.5 a.u. [26] and they have found tha t upon further increasing the 

field, the well starts becoming deeper and more pronounced. In order to verify the 

existence of the same phenomenon in the present case, the dissociation energy has 

been evaluated for the potential strength of 1.0, 2.0 and 5.0 a.u., respectively. The 

calculations show tha t the binding energy further reduces to about 9060 cm - 1  when 

o j ~  1.0 a.u. However, a turnover appears for u j  >  1.0 a.u. in which the dissociation 

energy drastically increases to about 30000 cm - 1  for u j  =  2.0 a.u. and 68000 cm - 1  for 

o j =  5.0 a.u. The development of a 3 S+ state under an extremely strong potential can 

be rationalized by considering the variation of configurations with the confinement 

strength. For the field-free and weak-field regime (i.e., o j  <  1.0 a.u.) the contribution 

from the function |ls2,s) increases progressively from 60 % ( o j  =  0.00 a.u.) to 98 

%  ( c j  =  1 . 0  a.u.) while that from the function \ls2pz ) diminishes very rapidly. 

The domination of the configuration of |ls2s) weakens the exchange interaction 

between the two parallel-spin electrons in Is and 2 s orbital respectively [6 6 ], which 

counteracts the enhanced binding due to the applied potential. For the strong-held 

regime, however, the contribution from the function |l.s2 p2) suddenly increases and 

dominates the state wavefunction. The better orbital overlap between Is and 2pz 

orbitals under the influence of an applied potential increases the exchange energy 

[67] which in turn  strengthens the binding interaction. On the other hand, the main 

configuration for the a 3 S+ state at large R  is \ ls2pz ) and its contribution grows very 

rapidly when the potential strength increases. For u> > 0.20 a.u. the configuration 

becomes exclusively \ls2pz ). As mentioned, the larger involvement of the 2pz orbital 

can increase the binding interaction via the enhanced exchange energy contribution.
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Consequently, the dissociation limit of H (ls) +  H(2 pz) is stabilized relative to the 

potential minimum, and the binding energy is reduced.

Besides the abrupt change of binding energy, Detmer and coworkers have ob­

served the development of a second minimum at large R  which has no counterpart 

in the field-free space [26]. This additional minimum becomes more pronounced 

when the magnetic field increases to 1.0 a.u. The further increase in the field starts 

to diminish the potential well. The minimum eventually vanishes when the field is 

greater than 50.0 a.u. The calculated PEC of the a 3 E+ state in the present study 

also exhibits a shallow minimum. As shown in Table 3.6, for a confining potential 

of u j  =  0.05 a.u., the second minimum appears at about 5.5 A with the binding 

energy of 94.1 cm - 1  which accommodates one vibrational level. The position of 

this minimum moves towards a smaller value of R, accompanying the increase of 

the binding energy and number of vibrational levels when the potential strength 

increases. Using the above-mentioned argument, the existence of the second mini­

mum and the increase of its binding energy with the increasing w can be accounted 

for by the strong exchange interaction of Is and 2 pz orbitals which constitute the 

major contribution to the a 3 E+ state at large R.

C 1n„, c 3n„, I and i 3IIg states

Experimental studies of the II-manifold excited states of H2  began with the extensive 

investigations of the emission spectra of molecular hydrogen from the near infrared 

to extremely ultraviolet regions (e.g. Refs. [6 8 , 69, 70, 71]). After the observation 

by Lichten, using molecular beam resonance spectroscopy technique, tha t the c 3 IIU 

state is metastable [72, 73], a lot of work has been devoted to accurate theoretical 

calculations of the f lu PECs of H2  which helped to assist the assignments and 

confirmation of emission bands. Meanwhile, the studies of the I\.g counterparts 

emerged rapidly because of the problem of 3d EIIA complex of states that leads 

to the breakdown of Born-Oppenheimer approximation in the computation of the 

excited states involving 3d orbitals [74]. The wrong prediction of singlet-triplet 

splitting for IIg states also stimulated the calculations of reliable PECs that cover
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a very wide range of R  [75]. Up to now highly accurate PECs for these states have 

already been obtained (e.g. Refs. [75, 76, 77, 78]) and precise spectroscopic constants 

have been determined which are in excellent agreement w ith the experiment (e.g. 

Refs. [79, 80, 81]). All of these states correlate to the dissociation limit of H(ls) +  

H(2p) as R, —> oo. Despite the same asymptotic behavior, they exhibit very different 

characteristics for the small to medium-R  region tha t are of interest to discuss.

The C state has attracted much attention from spectroscopists because the 

state was believed to be the upper state of the ultraviolet absorption band which 

can help establish the accurate dissociation energy of the ground state of H2  [82], 

Therefore, several attem pts have been made to obtain the complete PEC for the 

C state [53, 76, 83, 84]. The calculations by Browne revealed that there exists a 

suspicious maximum at R  «  8  a.u. which is about 160 cm - 1  above the dissociation 

limit [76]. This observation was consistent with the conclusion of Herzberg and 

Monfils that a maximum might exist in the vicinity of R  w 13 a.u. [82]. The 

subsequent calculations by Kolos and Wolniewicz [53], and Namioka [77] refined the 

barrier to be about 105.5 cm - 1  at R  ss 9 a.u. The computed PEC for the C 1 IIU 

state and the fitted spectroscopic parameters (re, ve, uex e, a e) in the present study 

agree well with the experiment, as demonstrated by Table 3.8.

The hump is located at R  «  9.03 a.u. being 106.3 cm - 1  higher than the dis­

sociation limit, which differs by only 1 cm - 1  from the value determined by Kolos 

and Wolniewicz. The estimated excitation energy for the C state is far superior 

than the value obtained by Cl calculation using aug-cc-pVQZ basis set [48], which 

overestimated Te by 6300 cm-1 .

The PEC of the c 3 IIU state has been studied, although less thoroughly than the 

C state, in order to get insight into the metastable behavior of the v — 0 vibrational 

level that decays to the B 1E j  with the lifetime in the range of milliseconds [73]. 

Browne [76] and Hoyland [78] have computed the PEC for the c 3 IIU state and 

showed tha t it resembles very much that for the singlet counterpart except that 

there is no local maximum at large R. The same observations have been made in 

the present study where, due to the different electron-nuclear interaction [85], the

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.8: Spectroscopic param eters of C 1IIM and c 3II„ states*"’6)
State Parameter oj =  0 . 0 0 uj =  0.05 u  =  0 . 1 0 u  =  0.15
c  3 n„ re 1.0319 (1.0327)W 1 . 0 2 0 2 1.0033

ve 2445.3 (2443.8)^ 2497.0 2584.2
B e 31.346 (31.363)(c) 31.964 32.977

Vexe 79.039 (69.524)^ 79.113 96.862
a e 1.6616 (1.6647)(c) 1.7640 1.7889
D e 20435.1 (20488.6)(d) 19932.2 19383.7
Te 99990.6 (100089.8)(c) 105600.8 116397.0

c 3 n u Te 1.0358 (1.037)^ 1.0274 1.0105 0.9896
Ve 2466.7 (2466.9)(c) 2522.4 2633.1 2765.8
Be 31.077 (31.07)^ 31.545 31.583 33.968

Uexe 71.365 (63.51)^ 77.493 75.341 54.905
a e 1.525 (1.425)(c) 1.477 1.515 1.480
De 24666.6 (24816.8)^ 25604.0 27437.3 29437.1
Te 95763.8 (95838.5)^ 99836.9 108257.5 118264.0

Experimental values in parentheses. ^  re in A, all other values in cm 1. I[C! Ref [51].
Ref [91].

triplet state is lower in energy than  the singlet state by about 4232 cm - 1  at r e, which 

is comparable to the experimental value of 4251.3 cm - 1  [51]. The spectroscopic 

constants determined using the calculated PEC have excellent agreement with the 

experimental values. Similarly to the C 1 IIU state, the calculated Te for the c state 

is closer to the experiment than tha t obtained by using aug-cc-pVQZ basis set [48].

The natural orbital analysis indicated tha t the major configuration for both II,, 

states is \ ls ag2p^u) near the minimum [8 6 ]. While this configuration remains domi­

nant for the c 3 II,, state throughout the whole range of R, the C 1 n „  state undergoes 

a configuration mixing at large R  where the repulsive |ls<ru2p^9) dominates, result­

ing in the small potential maximum [87]. Wavefunction analysis in the present work 

corroborates these observations. A drastic change of the relative contributions of 

| l s CTs2p^B) and |l.svB2pffg) states along the potential curve is observed. The former 

one is paramount (~  50 %) while the latter one is absent in the region close to the 

minimum. For the region of large R, however, a sharp increase of the contribution 

from is noticed, especially at 7.00 < R  < 12.00 a.u. where its weight
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Table 3.9: Spectroscopic parameters of I 1n 9 and i 3IIfl s ta te s^ ’6)
State Parameter ai =  0 . 0 0 u =  0.05
I  xn g re 1.0658 (1.0693)^ 1.0839

Ve 2252.8 (2259.2)(c) 2114.8
B e 29.445 (29.259)W 28.473

uex e 91.675 (78.41)(c) 111.864
a e 1.919 (1.584)(c) 2.208
D e 7324.4 (7576.8)^ 2853.3
Te 113096.5 (113142)(c) 122523.8

i 3 n s re 1.0653 (1.0700)(c) 1.0805
Ve 2260.8 (2253.6)(c) 2154.9
Be 29.475 (29.221)^ 28.653

vexe 89.075 (67.05)^ 100.194
OLe 1.880 (1.506)tc> 2 . 0 2 1

D e 7373.5 (7493.4)(e) 2957.6
Te 113083.8 (113132)(c) 122502.4

Experimental values in parentheses. ^  re in A ,  all other values in cm 1. 1°) Ref [51].
W Ref [89], <e) Ref [93].

raises from 5 % to 20 %. Simultaneously, the contribution from the attractive term 

|1 s<yg P̂-Ku) drops rapidly to 25 %. Interestingly, the higher excitation terms, such as 

|ls3p,j), have a significant interaction with these states ( r*j 46 % at R  =  2 0 . 0 0  A ) .  

Therefore, a basis set tha t is optimized not only for 2 p space but also for 3p space is 

necessary for the proper description of the II states at large internuclear distances.

Accurate PECs of I 1 IIff and i 3 II9  states have been computed using highly 

flexible wavefunctions in elliptical coordinates containing explicit r \2  terms [8 8 ]. 

The presently calculated potential curves for these states, as illustrated by Figure 

3.1 and Table 3.9, are in good agreement with those results except for uex e which 

are all overestimated by 10 %. The estimated singlet-triplet splitting for the II9 

states at re is about 12.7 cm-1 , with the triplet state being lower in energy, which 

is consistent with the value of 10.8 cm - 1  determined by Kolos and Rychlewski. A 

crossing between the states is found at R  «  1.25 A  where the triplet state becomes 

higher in energy than the singlet state. For both states a maximum appears at 

2.25 < R  < 2.30 A  which are 1870 cm-1 , for the singlet state, and 2942 cm-1 , for
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the triplet state, above the asymptote. These values match the values estimated 

by Kolos and Rychlewski [8 8 ], Dressier and Wolniewicz [80] and Wolniewicz [89]. 

The existence of maxima for the two Hg states is a ttributed to the avoided crossing 

between the |1<t917t9) and |1ctu17tu) states where the latter one is repulsive [87]. To 

verify this argument the wavefunctions for the fl9  states have been analyzed. For 

the singlet state, the contribution of |lcrs l 7r9) function declines quickly from 73 % 

at re to 18 % at 6 . 0 0  A ,  while the tha t for the \ lo uln u) function increases from 0  to 

25 %. A similar variation of configurations is observed as well for the triplet state 

although the change is slightly more significant, which is anticipated due to the fact 

that the valence repulsion in the triplet state is enhanced by the repulsive resonance 

interaction, giving rise to the broader and higher hump at large R  [8 8 ]. Therefore, 

this strong configuration interaction at large internuclear distances is indicative of 

the crossing between \logliXg) and \ lo uliru) for the II9  states tha t leads to the local 

maxima.

The attractive resonance interaction for the 1 II9  state overcomes the valence 

repulsion at large R  and causes the formation of a second minimum, which is not 

found in the triplet state [8 8 ]. The resonance interaction in the triplet state is in­

stead repulsive which further strengthens the valence repulsion at large internuclear 

distances. The second minimum for the 1 II9  state is found at 8.14 a.u. which has 

the depth of 173 cm - 1  and accommodates several vibrational levels in the present 

study. These values are only moderately different from the values reported by Wol­

niewicz including the adiabatic corrections [89], who found the second minimum at 

R  «  8.25 a.u. with the depth of 178 cm-1 .

The four II states behave in substantially different ways in accordance to the 

applied confining potential. For these highly excited states, the II9  energies are 

above the energy of the 2 S+ state of already for ui =  0 . 1 0  a.u., while the lower 

n „  energies are placed above that of H[j" at uj =  0.15 a.u. For the potential strength 

o j < 0 . 1 0  a.u. the equilibrium internuclear distance of the state decreases 

from 1.0319 A  to 1.0033 A .  Simultaneously, the binding energy drops from 20435 

cm-1 , for u) =  0.00 a.u., to 19384 cm-1 , for u  =  0.10 a.u. On the other hand,
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a trend opposite to the change of binding energy is noticed for the well-known 

maximum at large R. While this hump is shifted towards smaller values of R, its 

height with respect to the dissociation limit increases rapidly for 0 . 0 0  < w < 0.15 

a.u. and then decreases. Detmer et al. have also observed similar behavior of the 

1 n „  state in the presence of a parallel magnetic field [27]. The inverse relation 

between w and D e could be accounted for by considering the deformation of n 

orbitals within a repulsive cylindrical potential. Due to the symmetry restriction 

exerted by the applied potential, the np  orbital sets loses the degeneracy, with 

Pa, and py components being more destabilized. The distorted l 7ru MO, which is 

more localized in the region between the two nuclei, has better overlap with the 

l a g MO, thus strongly enhancing the Coulomb interaction. However, the overlap 

between 1 ou and l 7rs is remarkably diminished. Consequently, the dissociation 

limit is greatly stabilized with respect to the potential minimum, giving rise to the 

decreasing binding energy for the 1 n u state. The induced stabilization effect on the 

repulsive \ la ul^ g) function also explains the larger barrier of the large-R  maximum 

for oj > 0.00 a.u. since it intensifies the coupling between the |lcr„l7r5) and |lcrgl 7ru) 

configurations, resulting in a higher potential hump. When uj increases, the single­

reference 11  cr?i 17rfy) potential curve is more stabilized and crosses the single-reference 

| lag liiy ) potential curve at smaller R. This explains the shift of the maximum 

towards smaller R  with the increasing co.

On the contrary, the PEC of the 3 n u state evolves in a way similar to that of the 

X state: the potential well becomes increasingly deeper, and the equilibrium 

internuclear distance contracts continuously. As in the case of the singlet C xn „  

state, the overlap between 1 ag and l 7T„ MOs is enhanced due to the distortion 

from the confining potential. Apart from the stronger Coulomb interaction, the 

exchange energy between the two parallel electrons is introduced which cancels out 

the Coulomb repulsion [65]. Therefore, the |l<7 s l 7ru) configuration, which dominates 

in the region near the minimum, is more stabilized than the | l c r „ l 7 r fl) configuration 

in which the orbital overlap is less efficient, and this exchange effect contributes 

towards the increasing well depth of the 3 n „  state when an external potential is
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applied.

The PECs of the highest states in the II manifold, 1 IIS and 3 IIg states, exhibit 

drastic changes in the presence of a cylindrical potential. The changes of the PECs 

of these states with confinement are shown in Figure 3.5 and Figure 3.6. For

0.04

0.03

co = 0 .0 0  
co = 0 .0 5

0.02

0.01

LU

LU
- 0.01

- 0.02

-0.03

-0.04

R (in Ang)

Figure 3.5: I lII9  state in confinement. The energy is shown with respect to the 
dissociation limit.

both cases, the equilibrium internuclear distances increase with u. Concurrently, 

the binding energies of both states decrease, with the change in the singlet state 

being more pronounced. Both of the II9  states correlate to the united-atom limit 

of He(ls3d) [65]. For R  ps r e, the wavefunctions of 1 11̂  and 3 IIg are composed of 

| l a 9 3d^9), which is treated as a Rydberg state, and \ la g2p^ ), respectively. The la t­

ter function becomes more important when R  is larger until eventually it dominates 

at very large R  and leads to the asymptote of H(ls) +  H(2p). When the hydrogen 

molecule is encapsulated in a cylindrical potential, not only the p-shell but also the 

d-shell orbital degeneracy is removed, and those involved in 3d%g MOs, i.e., 3dX2
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Figure 3.6: i 3 II9  state in confinement. The energy is shown with respect to the 
dissociation limit.

and 3dyz orbitals which are very diffuse, will be very intensely destabilized. As a 

consequence, in the region close to the minimum, their contribution to the 1 II9 and 

3 n 9  states, as measured by squares of coefficients in the Cl expansion, is reduced. 

The destabilization of 3d orbitals causes the attractive potential of \la g3dng) to be 

shifted upward in energy relative to the repulsive potential of |lcr9 2 p7r9), resulting 

in the decreasing binding energy. Simultaneously, the maximum is shifted towards 

smaller values of R  and becomes higher in energy with respect to the dissociation 

limit due to the fact that the two potential curves of \ la g2p7rg) and \lcrg'idng) cross 

at smaller R. The slight stretching of the equilibrium internuclear distances also 

reflects a larger contribution of the llc r^ p ^ ) function.

It may be seen from Figure 3.5 and Figure 3.6 that the 1 II5  state is more suscep­

tible to the influence of the external potential than the 3 II3  state. Unlike the first 

minimum at small R  the second van der Waals minimum of the 1 II9  becomes more
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pronounced with the increasing strength of the harmonic potential. The correspond­

ing binding energy (see Table 3.6) increases from 173 cm - 1  for ui =  0.00 a.u. to 215 

cm - 1  for oj =  0.05 a.u. and the minimum moves to smaller values of R. Detmer et 

al. have observed a similar trend [27] and they found tha t the second minimum will 

vanish when the magnetic field strength is larger than  10.0 a.u. Mulliken ascribed 

the second minimum to the first-order London dispersion interaction between H(ls) 

and H(2p„.) which yields a net stabilization for the 1I I5 state at large R  [90]. As the 

contribution of \ la g2p-Kg) function to the 1I I9 state increases with the application of 

a cylindrical confining potential, this long-range attraction is significantly enhanced, 

giving rise to a deeper potential well in the region 6  < R  <  8  a.u.

E ,F  s t a t e

The first excited 1 E+ state is characterized by the double-minimum potential which 

is manifested in a very complicated vibrational-rotational spectrum [94]. The PEC 

of the E,F state has been extensively studied by Davidson [95, 96], Gerhauser 

and Taylor [62], and Kolos and Wolniewicz [97]. The peculiar double minimum 

is the result of an avoided crossing of the potential curves for the, in MO nota­

tion, \lo g2(jg) and |1ct^) configurations. The inner minimum originates from the 

covalent \l<yg2ag) configuration while the outer minimum is composed mainly of 

ionic |1 er£) configuration. These configurational alterations along R  and multiple- 

minimum potential have also been observed for higher excited 1 E+ states, and were 

attributed to the H+H_ separate atom level tha t intervenes in all the |lsns) levels 

below |ls5s) [95]. The calculated PEC of E,F 1 E+ state is plotted in Figure 3.7 

and the corresponding spectroscopic constants are summarized in Table 3.10. Very 

good agreement with the experiment is achieved except tha t the discrepancies in 

vibrational frequencies are moderately large. The detailed analysis of the Cl wave- 

function has been performed in order to comprehend the nature of the state, and 

it reveals a complicated change of configurations with R. Figure 3.8(a) illustrates 

the variation of contributions of configurations involved in the E,F 1 E+ state. For 

R  <  1.5 A the state is well represented by the covalent \ la g2ag) configuration (~
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Table 3.10: Spectroscopic parameters of the E,F 1E+ s ta ted ’6)
State Parameter ui — 0 . 0 0 cu =  0.05

Oi—loII3 u  =  0.15 u  =  0 . 2 0

E 1 S+ re 1.0114 0.9966 0.9940 0.9986
(1 .0 1 1 )(c)

ve 2541.1
(2588.9)^

2626.8 2615.2 2542.9

Be 32.698
(32.68)^

32.679 33.853 33.542

vex e 124.879
(130.5)(c)

148.904 146.964 167.952

a e 1.909
(1.818)^

1.969 1.961 2.226

Te 100018.9
(100082)(c)

106018.4 115651.0 124419.7

F l E+ re 2.3227 2.3193 2.2913 2.2491 2.2039
(2.31)(c)

ve 1248.1
(1199)(c)

1289.1 1349.9 1419.9 1486.2

Be 6.198 6.218 6.372 6.613 6 . 8 8 6

uex e 30.365 26.909 26.993 27.574 27.957
Ot-e 0 . 1 2 0 2 0.1529 0.1657 0.1701 0.17841
Te 100879.7

(100911)^
102488.6 105999.7 110231.2 114884.1

Experimental values in parentheses. l-b'1 re in A ,  all other values in cm 1. ^  Ref [51].
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Figure 3.7: E,F *£+ state in confinement. The energy is shown with respect to the 
dissociation limit.

90 %) whose PEC rises very rapidly to the asymptote corresponding to H(ls) +  

H(2s). When R  approaches the point of avoided crossing (~  1. 65 A ) ,  an intrusion 

of the ionic potential happens that causes a drastic increase in the weight of | 1 <t„) 

and forms a deep minimum at fairly large R (~  2.3 A ) .

These observations confirm the molecular orbital analysis of the E,F x£+  state 

carried out by Kolos and Wolniewicz in which the ionic part of the total wavefunction 

dominates the region from 3 to 6  a.u. [97]. At still larger f?, the \ la g2ag) configura­

tion, which is a mixture of !l.s2 sCT) and \ls2pa), becomes predominant again due to 

a second avoided crossing with the ionic potential. This avoided crossing allows for 

the proper dissociation of the state into the separate atom limit of H(ls) and H(2s)

[65]-

The evolution of the PEC of E,F 1£+  state under the effect of a cylindrical 

harmonic potential is illustrated in Figure 3.7. The two minima have considerably 

different behavior in response to the applied potential, and several characteristics 

are noticeable. The inner minimum becomes less pronounced when the potential 

strength is increased from 0.00 a.u. to 0.15 a.u. However, this monotonic change
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Figure 3.8: Decomposition of wavefunction of E,F state in confinement

is not seen in r e, which first decreases for oj < 0 . 1 0  a.u. and then increases for 

larger u. On the other hand, the outer minimum is shifted monotonically towards 

the inner minimum accompanied by the increasing potential depth. Schmelcher 

et al. have studied the 1E excited states of the hydrogen molecule in a parallel 

magnetic field for the field strength ranging from 0 to 100 a.u. [98], and they 

observed qualitatively very similar trends of the inner and outer minima evolving in 

the field with strengths smaller than 0.5 a.u. The unusual behavior can be explained 

in terms of the different extent of configuration mixing with respect to the strength 

of confining potential. Figs. 3.8(b)-(d) display the weight of each configuration in 

the total Cl wavefunction that corresponds to the E,F 1 E+ state when a harmonic 

potential is present. At the region close to the inner minimum \\o g2ag) remains 

as the dominant configuration. However, the associated potential well becomes 

more shallow because the \ la g2ag) configuration is strongly destabilized due to the 

involvement of 2s orbitals and the PEC is shifted up relative to the ionic PEC. This 

PEC shifting leads to the transition point where the |l<792crs) PEC crosses the ionic
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PEC moving to smaller R, as implied by the observation tha t the contribution of 

\ la g2ag) configuration vanishes more rapidly for cj =  0.15 a.u. (Figure 3.8(d)) when 

compared to the field-free case (Figure 3.8(a)).

Another feature of the E,F 1 E+ state wavefunction is the increase in weight of 

the ionic character in the intermediate-R  region. The contribution of ionic wave­

function increases from 50 % to 70 % when a potential of the strength oj =  0.20 a.u. 

is applied. This is not unexpected because the competing |lcr9 2cr9) configuration 

becomes less and less im portant due to the 2s destabilization. Furthermore, the 

|lcr^) configuration is less destabilized as the smaller electron density within the 

internuclear vicinity reduces the repulsive interaction between electrons. Thus, the 

depth of the outer minimum which is formed from the |lcr^) configuration increases 

monotonically for u> < 0.15 a.u. The greater ionic character of the E,F state 

enhances the coupling with the G,K 1 S+ state, as shown in Figure 3.9, giving rise to 

a smaller energy difference between these two states at the point of avoided crossing, 

tha t may indicate a possibility of the failure of the Born-Oppenheimer approxima­

tion in the calculations of low-lying excited states in the presence of a confining 

potential. Shi and coworkers have shown recently tha t for a diatomic molecule two

E . F ' l J  —

G,K %  -----(a) co =  0 .00

,* •0 .6 2

R (in Ang)

-0.56
(b) to =  0 .05

-0.58

•0.60

W  -0.62c
o>•0.64
0)c
LU •0.66

•0.68

-0.70

•0.72

R (in Ang)

Figure 3.9: The E,F and G,K 1 S^" states in confinement

electronic states of the same spatial symmetry may intersect in multi-parameter 

space because additional symmetry elements appear in the perturbation operator 

in the adiabatic approximation tha t may result in zero off-diagonal matrix elements 

even though the two states have the same spatial symmetry [99]. In the present case,
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the external harmonic potential can be viewed as a perturbation to the Hamiltonian 

of the hydrogen molecule in free space. Hence, the perturbation operator will be 

expressed in terms of not only the internuclear distance R  but also the strength 

of confining potential co, and the assumption tha t the off-diagonal coupling matrix 

elements are zero if two states are of the same symmetry may no longer be valid. 

A thorough understanding of this phenomenon requires a more detailed analysis 

of conical intersection in both theoretical and experimental aspects, a subject of 

intensive recent studies [1 0 0 , 1 0 1 ].

Compared to the wavefunction in free space, the role of the |lcr9 2cr9) configu­

ration is of greater significance at large R  when confining potential is present. Its 

contribution progressively increases from 45 % to 80 % when co is increased from 

0.00 to 0.20 a.u. It suggests tha t the dissociation channel leading to H+ +  H_ will 

be strongly destabilized relative to the covalent channels and will lie higher in en­

ergy, which confirms the contention of Sako and Diercksen that negative hydrogen 

ion possesses a fragile electron density tha t is easily affected by the confinement

[38]. Surprisingly, a closer look at the composition of |lcrfl2 er9) configuration at 

large values of R  discloses that the configuration comprises l l^ s ^ )  and \ls2p„) (in 

Heitler-London convention) and the latter one predominates for co ^  0.00 a.u., in 

contrast to the situation without confinement, where the former one dominates the 

state throughout a wide range of R  till the asymptote. Concurrently, the dissoci­

ation limit of the E,F state merges to tha t of B LE ^ and a 3 E+ states that 

corresponds to H (ls)+  H(2pz) for co >  0.00 a.u. These observations can be explained 

by noting the fact tha t the 2 s and 2 p energy levels of the hydrogen atom, which are 

degenerate when there is no external field, split in a cylindrical harmonic potential, 

as depicted by Figure 3.3, and 2pz orbital becomes lower in energy relative to 2s 

orbital, resulting in the splitting of the channel II into three routes: ls2pz < ls2s < 

ls 2 px, ls 2 pr

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.3 M olecu les in  m agn etic  fields

The results of calculations carried out in the present study show similarity to the 

results obtained using the cylindrical harmonic potential and those obtained from 

the numerical calculations of hydrogen molecule in parallel magnetic field. On the 

other hand, there exist a number of differences between these two models such as 

the switch of ground state symmetry in an intermediate- to ultrahigh-field regime. 

In order to understand the origin of the interesting similarities, it is worthwhile to 

review the basic formalism of a molecule in magnetic field.

From the classical electrodynamics, the Dirac Hamiltonian of a hydrogen molecule 

moving in a constant magnetic field B  is [102]:

V '' 1 /_  e - A ] 2  ^  Ze2  e2  e2

{pi + -c A )_ + — m
i = l  i = l  a = l

where the adiabatic approximation is employed to assume tha t the kinetic energy 

of nuclei is zero. R  is the internuclear distance, r i 2  is the distance between the two 

electrons, and Ria is the distance between the i-th  electron and the a-th  nucleus. 

A  is the vector potential of the magnetic field tha t obeys the relation

B  =  V  x A, (3.2)

and ai is the Pauli spin matrix. It is assumed tha t the molecular axis is along the 

z-direction and B  =  B z  where z  is the corresponding unit vector. The Schrodinger 

equation is gauge-invariant and any gauge can be selected if eq. (3.2) is fulfilled. 

Hence, a symmetric Coulomb gauge, V • A  =  0, is used which is defined as A  =  

y  (—y, x,  0). The substitution of A  into eq. (3.1) yields the Hamiltonian

2 2 r, o 2 2 ^

+  ( « )
i=i j = i  J i = i

where the last term  deals with the interaction between an electron spin and the field 

B.  The simplification of eq. (3.3) is straightforward; expanding and rearranging the
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terms leads to the following

where 7  =  c • ^he first part of eq. (3.5) is the Hamiltonian of a hydrogen molecule 

in free space, while the second part deals with the interaction of the molecule with 

the field. Comparing eq. (3.5) and eqs. (1.4) and (2.24), it is seen that the two 

Hamiltonians are very similar except tha t eq. (3.5) contains two extra terms which 

constitute the longitudinal kinetic energy Hamiltonian [24]

that corresponds to the Zeeman effect [103]. The transverse magnetic Hamiltonian

is equivalent to eq. (2.24) when uj2 — 'y2 in atomic units.

Hence, the Hamiltonian constructed from eqs. (1.4) and (2.24) is suitable for 

the evaluation of the transverse magnetic effect on a hydrogen molecule, due to the 

presence of a parallel magnetic field, tha t gives rise to the fine features of PECs. 

Since eq. (3.6) commutes with the total Hamiltonian 'Hmag, the correction for 

the longitudinal component of the total magnetic effect on the molecule can be 

calculated as the energy eigenvalue of the Hamiltonian 1~L\ acting on the hydrogen 

molecular wavefunction, and the corrected total energy is given by:

2 2

(3.6)

(3.7)

E n  m a g  =  E ^ el +  A E ^ 1 (3.8)
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The GUGA-CI wavefunctions are spatial and spin symmetry-adapted, thus the pro­

jections of total orbital angular momentum and total spin of a hydrogen molecule 

in a particular electronic state are conserved for all the values of R. Therefore, 

the term A E ^ 1 remains constant for an electronic state, and it causes a shift of 

the corresponding PEC depending on the spin configuration. For the X states the 

orbital contribution to A E ni is zero since the total orbital angular momentum is 

zero. Similarly, for the singlet states the spin contribution is zero as Sz =  0. Ac­

cordingly, it is expected tha t the ground X 1 E+ state would be identical if either 

the Hamiltonian R  or R mag is used because the term  A E ^ 1 vanishes. However, 

the term becomes non-zero for the triplet states, and the spin configuration has to 

be taken into account. A triplet state will be split into three sub-levels since there 

are three possible values of Sz =  —1,0,1. If only the lowest state, i.e., Sz =  —1 is 

considered, the term A E ^ 1 will become negative, thus lowering the complete PEC. 

This explains the change of ground-state symmetry of the hydrogen molecule in 

a magnetic field. Since the term AE Hl is always negative for both b 3 X+ and c 

3 n u states, for a sufficiently strong magnetic field, these states would be lowered in 

energy until they cross successively the X 1 E+ state and become the ground state.

3.4 Final remarks and conclusions

Molecules exhibit versatile behavior in response to the application of various forms 

of external potentials. In the present study, different electronic states of a hydrogen 

molecule enclosed in a cylindrical harmonic potential have been investigated and 

it has been found that states with different spatial symmetry and spins behave 

in different manner. In general, the applied potential shrinks the molecule and 

makes the minima on the PECs more pronounced. However, the symmetries of 

atomic orbitals that constitute the configuration of an electronic state also play a 

crucial role, and some unexpected shallow van der Waals minima and interchanges 

of dissociation limits tha t are caused by the orbital reordering under the influence 

of confinement have been observed. Moreover, a near intersection has been seen 

between the excited XE+ states through which a possible breakdown of the Born-
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Oppenheimer approximation may occur. Interestingly, it is found that a hydrogen 

molecule, when confined in a cylindrical potential, behaves in a very similar way as 

it does under the influence of a parallel magnetic field, which stimulates a further 

study regarding the use of this model potential to the electrodynamic studies of 

molecules in external fields.
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Chapter 4

M C Q D PT Studies o f Beryllium  
M olecule in Cylindrical 
Harmonic Confining Potential

In Chapters 4 and 5, the observations in the studies of confinement effects on the 

spectral properties of unstable Be2 and its molecular ions are given, and rationaliza­

tions are proposed to account for the distinctive phenomena. Discussions about the 

neutral Be2 are presented in Chapter 4 1, followed by the analysis for the molecular 

ions in Chapter 5.

4.1 Introduction

Recent advances in solid state physics and semiconductor technology allow for the 

studies of the behavior of electrons confined in various forms of electric and mag­

netic fields. These confined electrons, known as quantum dots or artificial atoms, 

exhibit special electrical and optical properties which depend on the applied exter­

nal fields. By manipulating geometry and strengths of the fields, the energy levels 

of the artificial atoms can be fine-tuned, which opens a new avenue to the design 

of new materials with desired characteristics for nano-electronic devices and laser 

diodes [1 ],

In parallel to the rapid development in technology of creating quantum dots,

1A version of this chapter was published in Mol. P hys. 102, 2511 (2004).
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the theoretical research towards the understanding of these quantum  objects has 

been commenced and several models have been proposed for studying the effects of 

the confining potentials on the electronic properties [2, 3] and chemical reactivity

[4] of atoms. In most of the investigations the harmonic confining potential was 

adopted, and the calculations were restricted to the ground-state structures using 

the Hartree-Fock method [5]. Studies including electron correlation effects have been 

relatively limited until recently, when several calculations using density functional 

theory (DFT) and configuration interaction (Cl) methods have been reported [6 , 7, 

8],

In the present study the effects of the harmonic confining potential on the beryl­

lium dimer (Be2 ) were investigated. The theoretical analysis of Be2  has initiated 

in the early 1930s, when Furry and B artlett, using valence-bond method, first pre­

dicted that the ground state potential of Be2  is repulsive [9]. Thirty  years later the 

SCF-CI calculations of Ransil and Fraga [10], and of Bender and Davidson [11] also 

supported the repulsive ground state potential. However, subsequent calculations 

using DFT [12] and Mpller-Plesset (MP2) methods [13], and finally valence full Cl

[14] approach used by Harrison and Handy suggested that Be2  has a bound ground 

state, although the predicted equilibrium bond lengths and binding energies were 

not consistent - not surprisingly, given the various basis sets and methods used. The 

controversy about the existence of Be2  persisted until, following the very accurate 

theoretical calculations, the first experimental evidence of Be2 was found by Bondy- 

bey [15] using laser-induced fluorescence (LIF). The estimated small binding energy 

(~  790 cm-1 ) and relatively short equilibrium bond length (2.45 A) triggered a 

series of calculations employing various sophisticated electron correlation methods 

and large basis sets (for example, see [16, 17, 18]), resulting in the conclusion that 

Be2 stability could be attributed to the strong core-valence correlation effect due to 

the near degeneracy of 2s and 2p atomic orbitals of Be [19].

Experimental investigation of the excited states of Be2 is limited by the small 

binding energy, and, using LIF, only three singlet excited states have been detected 

[15, 20]. Recently, several extensive theoretical studies of the excited states of Be2
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have been reported. It was found tha t the results depend on the methods used 

[20, 21, 22, 23], and multi-reference techniques are necessary to deal with the non- 

dynamical correlation due to the interaction between the 2 s and 2 p orbitals.

Due to the near-degenerate nature of 2s and 2p orbitals, Be2  was chosen in the 

present study to demonstrate the effect of harmonic confining potential on molec­

ular geometries and electronic structures. Using perturbation theory, Vorontsova 

et al. have shown tha t the atomic S and P states split under the influence of 

one-dimensional non-uniform electric field [24]. Accordingly, a similar scenario is 

expected for beryllium as the s-p quasi-degeneracy of Be atom and dimer would be 

removed by the applied potential and significant changes in both ground and ex­

cited states should be observed. In order to deal with both the electron correlation 

and near-degeneracy, a multi-configurational quasi-degenerate perturbation theory 

(MCQDPT), developed by Nakano [25], was used in the present study. This method 

addresses the problem of degeneracy by employing several reference functions ob­

tained by multi-configuration self-consistent-field (MCSCF) calculations. The dy­

namical correlation is then included by perturbation calculations using the resulting 

reference wavefunctions. This method has shown to yield results in excellent agree­

ment with the ones obtained by full Cl or multi-reference Cl for diatomic molecules 

such as CO, NO, BN and LiF [25], and good accuracy compared to experimental 

data (e.g. InH [26] and 2-aminopurine [27]). One advantage of MCQDPT over 

other multi-reference methods is its efficiency. Traditional multi-configurational a b 

initio methods require reference wavefunctions with tremendous numbers of config­

urations, thus making them less applicable, in particular for large systems, while in 

MCQDPT the MCSCF reference wavefunctions are generated by complete-active- 

space configuration interaction (CAS-CI), in which only excitations within the de­

fined active space will be considered, leading to a smaller number of configurations, 

and higher computational efficiency. In addition, the capability of simultaneous 

calculations of several states, either degenerate or quasi-degenerate, and the char­

acteristic of size-consistency make this method ideal for the present study of the 

ground and excited states of Be2 -
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4.2 Com putational M ethodology

This project is mainly concerned with the computations of the potential energy 

curves of a diatomic Be2  molecule confined in a two-dimensional harmonic oscillator- 

type electrostatic potential whose axis coincides the molecular axis of the Be2 

molecule. The potential is defined a t the position of the center of mass of the 

molecule, i.e., the mid-point position. For further details regarding the model of 

confinement, see Chapter 2.

All the M CQDPT calculations in the present study were performed using the 

modified version of GAM ESS-US [28]. In the CASSCF calculations, the active 

space included all molecular orbitals constructed from Is, 2 s and 2 p atomic orbitals 

of Be atoms, making the CAS(8e,10o) combination. The chemical core l a g and 1 au 

orbitals were included to allow for the complete description of core-valence correla­

tion, which is significant in Bc2 - l 7rg and liru orbitals were also included to describe 

the experimentally observed singlet excited states which dissociate to XS and 'P  

atomic states. In the subsequent MP2 calculations all the 8  electrons were corre­

lated in order to yield the best correlation energies. Dunning’s correlation-consistent 

valence quadruple-zeta basis set (cc-pVQZ) [29] for Be was employed, augmented 

with a set of ( ls lp ld lf )  bond function derived from the contracted [lls,9p,6d,4f,2g] 

basis set of Rpeggen and Almlof [18]. In addition, ( ls lp ld )  confinement basis func­

tions, with exponents of w /2 , were added at the center of the potential in order 

to properly describe the wavefunction in the region of dominated by the harmonic 

potential [30].

4.3 Results and Discussion

4.3.1 B asis Sets

The Dunning’s correlation-consistent basis sets are designed so that results are com­

parable to using atomic natural orbitals (ANO) while keeping the to tal number of 

primitive functions minimum, and the problem of imbalanced polarization space 

could be avoided [31]. However, the s and p exponents were optimized for the
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Table 4.1: MCQDPT Results for X State of Be2

Basis set cc-pVQZ cc-pVQZ +  ( ls lp ld lf ) Expt
Number of basis functions 140 160
re/ao 4.6051 4.5958 4.6298
De/cm - 1 770 818
De (corr)/cm _ 1 597 622 790

Hartree-Fock ground state while the polarization exponents were obtained through 

configuration interaction with single and double excitations (SD-CI). As the pri­

mary goal of the present study is to investigate the effects of confinement on both 

ground and excited states, full Cl calculations of the singlet and triplet excited state 

energies of Be atom have been performed to test the performance of cc-pYQZ basis 

set in excited state studies. The calculated 3P state shows excellent agreement with 

experiment (21972 cm - 1  vs 21982 cm - 1  above the ground state) while the calculated 

1 S-1P transition reasonably matches the observed emission spectrum of Be (43283 

cm - 1  vs 42565 cm-1 ) [32]. These results indicate tha t cc-pVQZ basis set could 

accurately describe the excitation of 2s electrons in Be and be a suitable basis set 

for the studies of those excited states of Be2  whose electronic configurations involve 

2 s-2 p excitations.

A set of bond functions was added at the mid-point position of Be2  to improve 

the description of the weak interaction between two closed-shell Be atoms. The bond 

function set was derived from the basis set of R 0 eggen and Almlof [18], which was 

constructed from an even-tempered set of 20 Gaussian-type functions [33] with the 

expanded diffuse space, by extracting the most diffuse s-, p-, d- and f-type functions 

without the g-function. The corresponding exponents of the resulting ( ls lp ld lf)  

set are 0.0160584, 0.0353510, 0.0778218 and 0.1713171 respectively. Calculations 

have also been performed without bond functions, and the results are shown and 

compared in Table 4.1. The cc-pVQZ basis set yields the binding energy that is 

too small. A more reasonable value of De, after the counterpoise correction for 

the basis set superposition error (BSSE) was performed, could be obtained when 

bond functions were used. However, the internuclear distance re, calculated using
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cc-pVQZ basis set, agrees better with the experiment, and the addition of bond 

functions induces shorter bond lengths. The bond function set in general shows 

a good agreement in re and could yield fairly good binding energy. Consequently, 

it was used in the subsequent confinement calculations of the ground and excited 

states of Be2 .

4.3 .2  Spectroscop ic C onstan ts

Potential energy curves of four singlet states of Be2  have been calculated with three 

different strengths of the external harmonic potentials: ui =  0 .0 , 0 .1 , and 0 . 2  a.u., 

respectively. Energies were evaluated at about forty points covering the range from 

r — 2.0 a.u. to r  =  10 a.u. The harmonic potential was cylindrical, with its 

axis aligned along the molecular axis. Spectroscopic parameters were extracted by 

fitting the ab initio total energies into the Murrell-Sorbie (MS) potential function

[34]. The MS function is a modified Rydberg function [35], with the pre-exponential 

term replaced by a power series in (r-re):

V{r) =  - D e ^1 +  Y ^ ak(r ~  r e)fĉ  exp (—j ( r  -  re)) (4.1)

The MS potential behaves better than both Morse and Rydberg potentials in the 

repulsive and attractive regions. Zhu and Huxley demonstrated tha t the th ird  and 

fourth-order force constants derived from the MS potentials agreed very well with 

the spectroscopically determined values for more than a hundred diatomic molecules 

and ions [34, 36, 37]. In this study the five-parameter version of MS potential was 

used (i.e., k =  3 and 7  =  ai in eq. (4.1)). The resulting spectroscopic parameters are 

given in Table 4.2. Fairly good agreement is obtained for re and ve, while a e and uexe 

show big discrepancies from the experiment. As these values are strongly dependent 

on the quality of the potential energy curve, the relatively large differences in a e 

and uexe could be attributed to the insufficient accuracy of the ab initio potentials 

at the re region.

For weakly interacting systems such as Be2 , an accurate binding energy could be 

obtained only if BSSE correction is taken into account. Pecul and co-workers have
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Table 4.2: Spectroscopic parameters in the ground and some excited states^) of Be2

State Parameters LJ =  0 .0 ^ £ II o u j  =  0 . 2

X*E+ re 2.4320(2.4500) 2.2331 2.0784
Be 0.633(0.623) 0.750 0 . 8 6 6

V e 257.9(275.8) 419.6 665.6
O-e 0.037(0.028) 0.025 0 . 0 1 2

V e X e 17.3(26.0) 14.4 1 0 . 0

De 818(790) 2578 7978
Te 0 (0 ) 0 0

B 1̂ re 2.2063(2.1993) 2.2016 2.1696
Be 0.769(0.773) 0.772 0.794
V e 507.8(511.2) 510.4 515.4
a e 0.0146 0 . 0 1 2 1 0.0123

uexe 6.00(4.69) 5.42 5.07
De 16336(15666) 16569 18292
Te 27947(27738) 31329 36453

A’ % re 1.9893(2.0162) 1.9213 1.8667
Be 0.945(0.920) 1.014 1.074
V e 710.1(726.0) 756.5 810.7
a e 0.008(0.009) 0 . 0 1 0 0.007

vexe 3.7(4.4) 3.4 3.7
De 31106(29693) 32054 32497
Te 13163(13711) 15653 2 1 2 0 2

A ^ r e 1.9830(1.9781) 1.9404 1.8880
Be 0.951(0.956) 0.994 1.050
V e 701.4(685.7) 705.1 805.4
a e 0.0097 0.0104 0.0092

vexe 4.67(4.85) 2.48 3.93
De 24607(21936) 25480 27171
Te 21083(21468) 22056 25902

All constants in cm 1 except for re in A. ^  Experimental values in parentheses; Ref 
[15, 20].
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Table 4.3: Dissociation energies^  of of Be2  in the X 1£+  state
Harmonic Potential De De (corrected) Change % Change

e II o o 818 622 196 24.0%
u =  0 . 1 2578 2443 135 5.2%
oj =  0 . 2 7978 7800 178 2 .2 %

In cm 1

shown that the errors caused by BSSE in the values of the spectroscopic constants 

of the strongly-bound low-lying excited states of Be2  are negligible at the coupled- 

cluster (CCSD and CC3) levels with very large correlation-consistent basis sets [23]. 

On the other hand, the binding energy of the weakly-bound ground state of Be2  is 

susceptible to BSSE and 30% decrease of De was observed upon removal of the BSSE. 

Thus, the counterpoise (CP) correction [38, 39] was applied only to the ground state 

X 1 E (j\  The results are summarized in Table 4.3. The percentage change of De due 

to BSSE is decreased by the applied harmonic potential. However, the trend of 

the absolute change is not apparent, and approximately the same amount of BSSE 

error is observed for all the four cases. The BSSE-corrected binding energy of Be2 

is reduced to 622 cm-1 , which is about 180 cm - 1  smaller than the experimental 

binding energy.

The structures and spectroscopic constants of the four lowest singlet states of Be2 

are listed in table B.2. It may be seen that fairly good agreement with experiment 

is achieved (for cc =  0 .0 ). The largest discrepancy in re is 0.03 A for the 1 n s state, 

while that for ve is 18 cm - 1  for the 1 state. Nevertheless, the errors in uexe and 

a e are significant. The calculated and experimental values of a e and vexe differ 

by 36% and 35% respectively. While these errors are fairly large, the PEC should 

possess sufficiently good quality for the major purpose of this study, that is the 

general effects of confining potentials on the molecular geometry and spectroscopic 

constants of the ground and low-lying excited states of Be2 .

Some general trends of the effects of the applied harmonic potentials on the 

spectroscopic constants can be observed. The internuclear distance re decreases 

when the potential is present, which agrees with the observation of Bieliiiska-Wqz
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et al. that the H2  molecule shrinks in the confinement of a spherical potential [8 ]. 

The shortening of re is caused by the increase of electron density in the region 

between the Be nuclei due to the applied cylindrical potential. Mulliken population 

analysis reveals that larger electron density is found in the mid-bond region when uj 

is increased from 0.0 to 0.2 a.u. The accumulation of electron density strengthens 

the bonding interaction and results in the shorter equilibrium distance. The increase 

of ve with the strength of confinement is the direct consequence of this strengthened 

Be-Be bond. For the two sigma states (X 1 S+ and B x5]+) both a e and uex e 

decrease with increasing strength of the confinement. The decreasing trends of 

these parameters indicate that the potential energy curves become less anharmonic 

and more symmetrical [40].

4.3.3 E lectron ic S tructure

Figures 4.1(a)-(c) show the potential energy curves of the four singlet states studied 

in the present work. The ground state X 1 S+ of Be2  has the dominant configura­

tion of (lcr9 )2 (lcru)2 (2crfl)2 (2o-u ) 2  which correlates to two ground state *S Be atoms. 

The occupation (0.1829) of the 3ag MCSCF orbital, consistent with the results re­

ported by Heaven and co-workers [20], suggests significant contribution of this orbital 

to the bonding interaction between closed-shell Be atoms. When the confinement 

is turned on, this configuration becomes less dominant and a new configuration 

(lcr9 )2 (lcru)2 (2 er9 )2 (3 <7 9 ) 2  appears, which results from the double excitation of two 

electrons from 2cru orbital to 3<r9  orbital. This promotion is facilitated by the fact 

that the applied potential greatly reduces the 2au-3ag energy gap (from 0.2382 a.u. 

to 0.1268 a.u. when w is increased from 0.0 to 0.2 a.u.). In qualitative terms, the 

lowering of the 3<t9  orbital energy could be attributed to the effect of symmetry of 

the cylindrical potential, through which the 2pz orbital, coaxial with the repulsive 

potential, is no longer degenerate with the 2px and 2p9  orbitals. Therefore, both 

the 2pz orbital and the 3cr9  orbital which is composed of the two 2pz atomic orbitals 

of Be atoms, are stabilized and the energy gap between 2au and 3a g orbitals is 

reduced.
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Figure 4.1: Potential energy curves of the four singlet states of Be2 - (a) Top-left: w 
=  0.0; (b) Top-right: cj =  0.1; (c) Bottom: u =  0.2
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A similar situation appears also in the B XE+ state. In the absence of confin­

ing potential, the configuration is predominantly (l a g)2( la u)2(2ag)2(2au)1(3ag)x, 

which is derived from the single excitation from 2au orbital to 3ag orbital. When 

a harmonic potential is imposed, another excitation from 2a g orbital to 3ag orbital 

is induced due to the lowering of the 3ag orbital, giving rise to the increase of the 

weight of (lcr9 )2 (lcru)2 (2(T9 )1 (2cru)1 (3cr9)2. No change of dissociation limit is seen for 

the B XE+ state, and it still correlates to the ground-state XS Be and the excited LP 

(XS when confinement is present) Be whose configuration is (ls ) 2 (2s)1 (2pz)1. Very 

likely an avoided crossing would happen, if a stronger confining potential were used, 

in which the configuration ( la g)2 ( la u)2 (2ag)1 (2auy  (3ag)2 would become dominant, 

leading to the dissociation limit of two excited 3S [(ls)2 (2s)1 (2pz)1] Be atoms.

The two low-lying 1fl states of Be2 possess fundamentally different character­

istics from the XE states when enclosed in a cylindrical potential. The A' 1 II3  

state is well-characterized at the equilibrium internuclear separation by the config­

uration ( la g)2( la u)2(2ag)2(2au) l (lTTu)1, which results from the single excitation of 

2au —> l 7r7i. This configuration remains unchanged with various strengths of the 

confining harmonic potential. Note that the 2px and 2py orbitals, which constitute 

the l 7r„ and l7tg sets of molecular orbitals, are destabilized because of the increased 

electrostatic repulsion with the potential tha t encapsulates the molecule in the x- 

and y-directions. This interaction enlarges the 2s-2px/y separation and supresses 

the contribution from the configuration ( la g)2( la u)2(2ag)1(2au)2(l'Kg)1, as the re­

quired excitation 2ag —> lirg is less feasible. The larger 2s-2px/ y energy gap is also 

illustrated by the increase of the excitation energy T e of A' 1 IIff state when the 

potential is applied (see Table 4.2).

The A 1 n „  state, on the other hand, is a mixture of ( la g)2( la u)2(2ag)2(3ag)1(lTTu)1 

and ( la g)2( la u)2(2ag)2(2au)1 (lTTg)1, with the former being the dominant configu­

ration. The first configuration (~  70%) could be derived from the A' 1 II9  whose 

electron in 2au orbital is excited to 3ag orbital, while the second one (~  19%) results 

from the single excitation 2au —> \n g of the ground state Be2 - The weight ratio of 

these configurations is apparently independent of the strength of the harmonic po-
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tential, and approximately the same ratio (0.70:0.19) is found for the three different 

values of w.

Application of confinement leads to change of the characteristics of the dis­

sociation limit of the two low-lying II states. These two states correlate to the 

same dissociation limit of Be(xS) and Be(]P) without the influence of an exter­

nal potential. The two configurations of A 1 I1„ state interact strongly at large 

internuclear distances, and the avoided crossing causes the domination of the con­

figuration of (lcrs)2 (lcru)2 (2 crg)2 (2 cru) 1 ( l 7r9)1, leading to the Be(xS) and Be(xP) dis­

sociation limit. The A' XII9  state, however, retains the electronic configuration 

of (lcr9 )2 (leru)2 (2 cr9 )2 (2 cru)x( l 7ru)x until the dissociation limit, giving Be(xS) and 

Be(xP) atoms. When the molecule is placed in cylindrical harmonic potential, these 

two states switch to correlate to the 3 S(2s2pz) -1- 3 P(2s2px/9) limit. The MCQDPT 

calculations reveal that the configuration (lcr9 )2 (l<7 u)2 (2 (7 9 )2 (3 cr9 )x( l 7ru)x dominates 

the A XIIU state for the whole range of internuclear separations, and the avoided 

crossing with the other XI1„ states disappears. Elimination of the avoided crossing 

allows for the proper dissociation of this state to two singly excited Be atoms. In con­

trast with the single-configuration nature of the A XIIU state in a tubular confining 

environment, the A1 XII9  state shows variation of configuration with the internuclear 

distance. At distances close to the equilibrium separation the dominant configura­

tion remains ( la g)2 ( la u)2 (2ag)‘2 (2au)1 (1ttu)1 , while at larger distances the contribu­

tion from ( la g)2( la u)2(2ag)1 (2au)1 (3ag)1 (ItTu)1 grows very rapidly and leads to the 

3 S(2s2pz) +  3 P(2s2px//y) limit. The latter configuration represents a one-electron 

promotion, 2ag H> 3ag, of the A' XII9  state. The change of configurations at large 

internuclear separations suggests the existence of an avoided crossing between the 

A' xn 9  and 2 xn g states under the effect of the applied potential.

The peculiar asymptotic behavior has also been studied using the full CI/cc- 

pVQZ approach for beryllium atom encapsulated in the cylindrical potential. Se­

lected results are presented in Table 4.4 and Table 4.5. Several observations are 

noteworthy. Firstly, the singlet-triplet energy gaps for the P states (2 px, 2 py) and 

S state (2p2) become larger with a stronger potential. The effect is more pro-
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Table 4.4: Atomic energies^0) of Be using FCI/cc-pVQZ
U) 1 S(2s2) 1 S(2s2pz) S(2s2pz) 1P(2s2px) 3 P(2s2ps )

0 . 0 -14.640124 -14.442934 -14.540023 -14.442934 -14.540023
0 . 1 -14.589412 -14.387449 -14.497212 -14.370203 -14.478794
0 . 2 -14.463418 -14.255730 -14.390852 -14.215373 -14.331860

In atomic units

Table 4.5: Estimated asymptotic energ ies^  of Be2 using FCI/cc-pVQZ
LJ 1 S(2s2)

+ 1 S(2s2)
S(2s2)

+ 1 P(2s2Px)
i S(2 s2)

+ 1 S(2s2pz)
3 P(2s2px)

+ 3 S(2 s2 p 2 )
0 . 0 -29.280248 -29.083057 -29.083057 -29.080046
0 . 1 -29.178825 -28.959615 -28.976861 -28.976006
0 . 2 -28.926835 -28.678790 -28.719148 -28.722713

In atomic units

nounced for the 1 S(2s2p2) configuration. This observation can be rationalized by 

considering that px (as well as py) orbitals are more susceptible to the Coulomb 

repulsion induced by the potential than the p z orbitals. Similar conclusions have 

also been reached by Vorontsova and co-workers using perturbation theory [24]. The 

triplet state is more stable than the singlet state according to the Hund’s rule. In 

the present case, a particular configuration with either the singlet or triplet spin 

state experiences the same magnitude of Coulomb repulsion with the potential, but 

the triplet state gains extra stability due to the exchange interaction between two 

electrons with parallel spins tha t offsets the destabilization from the Coulomb re­

pulsion, resulting in the triplet state being more stable than the singlet counterpart. 

Secondly, the energy difference between 1 S(2s2) and 3 S(2 s2 pz) is reduced by the 

confinement. In the presence of a confining potential, the excitation energy of an 

electron from 2 s to 2pz orbital is slightly increased by two counteracting interac­

tions. The first one is the relaxation of Coulomb interaction between electrons in 

the Be atom when one electron is promoted to 2p;; orbital which overlaps less with 

the 2s orbital. The second one is the increased electrostatic repulsion between the 

2pz orbital and the potential. The greater energy gap with the stronger applied
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Table 4.6: Adiabatic electron affinities (AEA) and vertical electron affinities (VEA) 
of Be2 and vertical electron detachment energies (VEDE) and equilibrium internu­
clear distances r e of Be^ (“)

U! 0 . 0  0 . 1  0 . 2 Experim ent^)
AEA 0.360 -1.116 -3.775 0.450W, 0.398W, 0.324W, 0.337^
VEA 0.264 -1.138 -3.864 0 .442^, 0.392(c), 0 .3 1 6 ^ , 0.332(e)

VEDE 0.412 -1.095 -3.686 0 .467^, 0 .405^, 0.327^d), 0.34l(e)
re 2.2303 2.4076 2.2198 2.2384(9)

(“) Affinities in eV and r e in a.u. W MP2 (c) MP4(SDTQ) W CCSD(T) (e) 
CCSDT (/) Ref [41] W Ref [44]

potential indicates that the second interaction plays the major role in determining 

the relative stabilities of 1 S(2s2) and 1 S(2s2pz) states. On the other hand, Be atom 

with (2 s2 pz) configuration favors the triplet state and a large stability is gained 

from the exchange interaction between the unpaired electrons. The combined effect 

diminishes the separation of the 1 S(2s2) and 3 S(2s2pz) states, and causes the switch 

of the ordering of dissociation limits.

4 .3 .4  E lectron  A ffin ities

In addition to the electronic structure calculations of the neutral beryllium dimer, 

the computations of electron affinities of Be2  have also been performed. The po­

tential energy curves of the ground-state Bê T molecular ion were computed using 

CASSCF/MCQDPT with the active space identical to tha t used in the calculations 

of Be2  to maintain consistency. Three types of electron affinities have been evalu­

ated: (1) adiabatic electron affinity (AEA), (2) vertical electron affinity (VEA), and

(3) vertical electron detachment energy (VEDE). The results are collected in Table 

4.6. These quantities have recently been computed in the Mpller-Plesset perturba­

tion and coupled-cluster approaches using the 6-311+G(3d2f) basis set [41]. The 

results from the present study agree fairly well with those data but the computed 

AEA agrees better with the value calculated by Wright using multi-reference double 

Cl [42]. The positive electron affinities support the conclusion from previous calcu­

lations that Be2  binds an electron to form a stable Be.J [43]. However, the electron
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affinity values become negative when a potential is applied to the system, indicating 

that the molecular ion is less stable than the neutral species. This instability may 

be attributed to the fact that when the electrons are confined within the molecule 

by the potential, repulsion between electrons is enhanced. Accordingly, addition of 

an extra electron to Be2  further destabilizes the system and gives rise to a negative 

electron affinity. Interestingly, the studies of the Be,J ion show tha t the ground 

state symmetry switches from 2 IIU to 2 S+, and re increases. These observations are 

consistent with the results from atomic calculations on beryllium atom that show 

the set of 2 px and 2 py orbitals being strongly destabilized by the potential; in conse­

quence, the near-degeneracy of iru-ag molecular orbitals is removed and 3ag orbital 

becomes energetically lower than l 7ru orbitals.

4.4 Conclusion

Calculations for the ground and several low-lying singlet excited states of Be2  un­

der the influence of a cylindrical harmonic potential have been performed. The 

results demonstrate that the applied potential increases the binding energies of all 

the states, and shortens the bond lengths. In addition, the potential induces the 

re-ordering of the molecular orbitals, resulting in the change of dissociation lim­

its of the two II states. The electron affinities of Be2  have also been computed. 

The decrease of these quantities shows that Be2  is unlikely to bind an electron in 

the presence of the potential because of the increased electron-electron repulsion. 

The calculations indicate again a possibility to finely manipulate and adjust the 

properties of a molecule using external potentials.
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Chapter 5

Configuration Interaction  
Calculations on Beryllium  
M olecular Ion in Cylindrical 
Harmonic Confining Potential

This chapter1 is the continuation of the Chapter 4 in which the discussions are 

extended to the effects on the molecualr structure and properties of the low-lying 

electronic states of the molecular ion of Be2  due to the presence of the harmonic 

confining potential.

5.1 Introduction

Objects embedded in various forms of one-, two- and three-dimensional confinements 

are one of the major research areas in condensed-matter physics, nanotechnology and 

engineering. These systems exhibit novel characteristics with potential applications 

in such areas as solid-state devices [1 ], nano-electronics [2 ] and nonlinear optical 

materials [3]. A significant effort has been devoted to the syntheses of these materials 

and the experimental investigations of their properties. Simultaneously, theories 

have also been developed in order to understand the experimental observations (see 

e.g. [4, 5, 6 ]). Confinement effects have been demonstrated also in chemistry where

1A version of this chapter was published in M ol. P hys. 103 , 2599 (2005).
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they result in, for instance, the formation of the neon dimer in a fullerene [7], the 

increased electronegativity and decreased polarizability of the first-row elements in 

a spherical cavity [8 ], pressure-induced variation of the dipole moment of ammonia

[9], and the development of hyperpolarized 129Xe NMR technique as a probe to 

study the structures of mesoporous materials [1 0 ].

In most of the theoretical studies of confined systems, the harmonic potential 

was utilized because it allows the Hamiltonian of systems of two or more particles to 

become exactly or quasi-exactly solvable under appropriate coordinate transforma­

tions [1 1 ]; this potential also serves as an excellent model to approximate quantum 

dots [12]. A series of studies involving two-electron system, helium atom, hydrogen 

molecule and lithium dimer confined in 3-dimensional harmonic oscillator potentials 

has recently been conducted by Diercksen and coworkers [13, 14, 15, 16, 17], and 

some intriguing changes in electronic structures and spectral properties of these sys­

tems were observed. In the present work, the studies of the effects of confinement 

were extended to the molecular cation of beryllium (Be<j~).

Alkaline-earth dimers are one of the most challenging systems to be studied the­

oretically. They are formed from two closed s-shell atoms and predicted to have 

a zero bond-order according to the simple molecular orbital (MO) theory; on the 

other hand, they have been detected experimentally in the gas phase [18, 19]. Among 

these species beryllium is the most spectacular since it exhibits an irregularity in 

the trend of binding energy of Group IIA dimers. Extensive configuration inter­

action calculations show that satisfactory results could be obtained only if all the 

correlation effects are included [2 0 ].

Despite the extensive studies on Be2 , investigations on the corresponding Be^ 

are relatively limited. The experimental research on Be^ is to a very large ex­

tent restricted by the difficulty in generation and the instability of Be2 - Therefore, 

only very little is known experimentally about BeJ. However, this system has re­

cently been a subject of a number of theoretical studies [21, 22, 23, 24] for several 

reasons. Firstly, understanding the formation of charged metal clusters plays an 

important role in solid-state chemistry and condensed-matter physics. Accurate ex-
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perimental or ab initio dimer potentials are necessary in order to perform molecular 

dynamic simulations of charged clusters, and explain experimental phenomena such 

as Coulomb explosion [25] and meta-stability [26]. Secondly, BeJ is an interesting 

species in electron spin resonance (ESR) spectroscopy as it exists as a three valence- 

electron radical having low excitation energy. As the isotropic part of the hyperfine 

coupling constant depends on the s-character of the singly occupied molecular or­

bital, the strong s-p mixing may give rise to the molecular electron-spin g-factor 

very different from that of a free electron [27, 28]. Consequently, accurate determi­

nation of these parameters requires geometry and excitation energy obtained by the 

methods that can properly take into account the electron correlation effects.

In the present study we investigated the effects of an external potential on the 

electronic structure and spectrum of molecular ion. The ground and excited state 

potential energy curves (PECs) of Be^ enclosed in a harmonic confining potential 

were computed using valence full configuration interaction (Cl) method. The con­

fining harmonic potential is of cylindrical symmetry aligned along the molecular 

axis. Spectroscopic constants were determined from the computed PECs, and the 

electronic structures of these states were analyzed. Differences between the PECs 

in field-free environment and under the confinement were discussed.

5.2 Computational M ethod

The current model of confining potential is the two-dimensional harmonic poten­

tial of cylindrical symmetry as discussed in Chpater 2. This model has been found 

of great use in several aspects of condensed-matter physics, atomic and molecu­

lar physics, and nanotechnology. It has been shown tha t small, two-dimensional 

quantum dots can be adequately described using a parabolic potential well [2]. In 

addition, the Hamiltonian of a molecular system embedded in a cylindrical harmonic 

potential can be applied to the case of a molecule in a parallel magnetic field [29].

In all calculations a correlation-consistent triple-zeta basis set, cc-pVTZ, was 

used [30], with the contraction pattern of (10s5p2dlf)/[4s3p2dlf]. In order to prop­

erly describe the effects of the harmonic confining potential, a set of ( ls lp ld )  func-
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tions with orbital exponents of w/2  were added at the midpoint position between 

two Be nuclei. In all the calculations, the two Is orbitals of Be were frozen, the 

complete valence space was included, and the virtual space was not truncated. The 

MCQDPT2 calculations of Be2  revealed tha t the occupation numbers of the first two 

MOs are essentially 2 for the electronic states studied [31]. Therefore, the inclusion 

of only valence electrons in the Cl calculations should be able to yield qualitative 

and semi-quantitative description of the electronic states of B eJ tha t were studied 

in the present work.

All the Cl calculations were performed using a modified version of GAMESS-US

[32] and the configuration interaction code implemented by Ivanic and Ruedenberg

[33].

5.3 Results and Discussion

5.3.1 D isso c ia tio n  C hannels

Four dissociation channels (I-IV) were investigated. The first channel (channel I) 

correlates to the ground-state product of Be {l Sg) and Be+ (2Sg) and two molecular 

states are generated: X 2 E+ and 1 2 X+. The next channel (channel II) is formed by 

the pair of states Be (3 PU) and Be+ (2Sg) which result from the single excitation of 

Be atom from l s 2 2s2  to l s 2 2s2p, leading to four pairs of 2 2 S+„, 1 2 IISiU, 1 4 S+U 

and 1 4 n 9jU states. Channel III is composed of Be (l Sg) and an excited Be+ (2PU) 

due to the 2s —>■ 2p  excitation. Four states are associated with this channel: 3 2 

and 2 2 II9)U. Two possible atomic states can be obtained via 2s2  —> 2s2p excitation 

of ground-state Be atom. While the triplet Be (3 PU) and Be+ (2Sg) constitute the 

channel II, the singlet counterpart leads to the channel IV tha t correlates to the 

4 2 S+U and 3 2 n 9;U states.

The computed PECs of Be^ are plotted in Figures 5.1-5.4 and the corresponding 

spectroscopic constants are listed in Tables 5.1-5.3.

Diercksen et al. [15,17] and the present authors [31] predicted tha t an anisotropic 

confining potential would give rise to the differentiation of p-orbitals (which are de- 

negerate in field-free space) because prolate-type and cylindrical harmonic potentials
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Table 5.1: Spectroscopic Data for Doublet S States^)
Experiment^6) co — 0 . 0 0 u  =  0 . 1 0 io =  0 . 2 0 co — 0.30

X 2£+ re 4.22 4.2433 4.1507 3.9914 3.8347
Ve 502 518.66 555.35 628.20 712.35

VeXe 4.2 4.750 4.798 5.282 6.949
D e 1.97 1.99 2.27 2.85 3.53
Te 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

i 2£+ re 4.02 4.0792 4.0130 3.8858 3.7723
Ve 517 520.53 562.91 644.31 721.22

vex e 13.2 11.522 10.103 8.520 7.905
D e 0.39 0.43 0.72 1.53 2.56
Te 1.73 1.72 1.61 1.32 0.97

2 2£+ re 5.13 5.0980 4.8507 4.4448 4.2001
Ve 283 318.88 373.51 534.26 641.87

vexe 8.797 10.042 5.350 2.042
D e 0.78 0.84 0.84 1.05 1.62
Te 3.89 3.89 3.94 3.77 3.23

2 2 X+ re 4.80 4.8529 4.6386 4.3799 4.1768
Ve 326.56 430.83 539.22 617.70

vexe 38.725 6.515 3.501 2.079
D e 0 . 0 1 2 0.16 0.65 1.36
Te 5.49 5.49 5.35 4.83 4.01

3 2£+ re 5.71 5.7331 5.8008 5.9604 6.1824
Ve 415 424.46 494.36 497.01 525.02

Ve X e 9.767 6.796 4.711 7.482
De 0.14 0 . 2 0 0.24 0.40 0.51
Te 5.79 5.80 5.79 5.73 5.60

3 2 S+ re 3.89 3.8663 3.7694 3.6705
Ve 530 567.86 565.40 476.65

Ve X e 14.275 22.425 130.182
D e 0 . 2 2 0 . 1 2 0.013
Te 6.48 6.47 6.91 7.82

(“) re in atomic units, ve and vexe in cm-1 , D e and Te in eV.
S) Experimental values for X 2 X7|  and 1 2 S+ states from Ref [22], others from Ref 
[24] for field-free environment.
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Table 5.2: Spectroscopic Data for Doublet II States^)
Experiment^6) u> =  0 . 0 0 u =  0 . 1 0 oj =  0 . 2 0 u  =  0.30

i 2 n« re 3.56 3.5915 3.5283 3.4283 3.3490
Ve 818 812.69 849.58 914.48 963.70

vexe 6 . 2 5.975 6.029 6.520 7.272
De 3.33 3.35 3.69 4.27 4.85
Te 1.37 1.35 1.59 2.17 3.08

i 2 n g re 4.44 4.4378 4.3300 4.1323 3.9357
Ve 446 462.77 497.01 558.71 609.97

Vex e 3.5 4.336 4.181 3.949 3.141
De 1.03 1 . 1 0 1.42 2.05 2.87
Te 3.66 3.66 3.90 4.41 5.07

2  2 n g re 4.0618 4.0078 3.9666 4.2115
Ve 600.38 610.05 529.22 375.95

vex e 31.396 31.447 67.244 1.832
D e 0.08 0 . 2 2 0.59 1 . 2 0

Te 6 . 0 0 6 . 0 1 6.29 6.77 7.24
2  2 n u re 4.25 4.2477 4.1110 3.8890 3.7156

Ve 390 425.70 490.80 595.42 683.81
Ve x e 15.836 11.430 7.863 7.798
D e 0.13 0.28 0.90 1.80
Te 6.04 6.03 6.17 6.36 6.57

3  2 n s re 4.48 4.4771 4.3835 4.1767 3.9823
Ve 600 780.74 753.95 754.44 810.42

vexe 27.113 21.061 13.201 13.032
D e 1.03 1 . 1 2 1.60 2 . 0 0 2 . 0 2

Te 6.25 6.24 6.55 7.06 7.57
3  2 n„ re 5.45 5.3571 4.8182 4.3848 4.1739

Ve 2 0 0 197.69 321.42 515.19 619.03
Vex e 8.193 19.993 4.320 0.848
D e 0.16 0.31 0.75 1.30 1.60
Te 7.12 7.15 5.36 5.50 5.74

r e in atomic units, ue and vex e in cm-1 , D e and Te in eV.
(6) Experimental values for 1 2 n Siti states from Ref [22], others from Ref [24] for 
field-free environment.
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Figure 5.1: Potential energy curves of electronic states of Be^ without confinement.
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Figure 5.2: Selected 2S states of Be^ in confinement.
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Figure 5.3: Selected 2U states of BeJ in confinement.
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Figure 5.4: Selected quartet states of B e t in confinement.
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Table 5.3: Spectroscopic D ata for Selected Q uartet States^)
Experiment^) u) =  0 . 0 0 u =  0 . 1 0 u! =  0 . 2 0 oj =  0.30

1 4 S+ re 5.43 5.3814 5.2125 4.8668 4.5741
ve 278 284.61 304.33 371.38 439.63

UeXe 2 . 2 2.398 1.809 2.352 2.194
D e 1.39 1.40 1.55 1.91 2.41
Te 3.30 3.33 3.22 2.91 2.45

i 4 n fi re 4.57 4.5438 4.3241 4.0134 3.7817
ve 356 373.90 439.46 549.13 647.74

vexe 3.4 4.473 4.603 4.696 6.308
De 0.93 0.90 1.23 1 . 8 8 2.77
Te 3.76 3.78 4.04 4.55 5.17

1 4 n„ re 4.20 4.2213 4.0819 3.8790 3.7329
Ve 363.46 449.25 556.37 626.27

uexe 28.563 14.077 7.166 6 . 0 0 2

D e 0.05 0 . 2 0 0.98 2.23
Te 5.25 5.27 5.36 5.50 5.74

r e in atomic units, ve and uex e in cm D e and Te in eV. 
Experimental values from Ref [22] for field-free environment.

with the principal axis overlapping the molecular axis destabilize p x and py orbitals 

more strongly than the p z orbitals. Consequently, all the channels that correlate 

to the dissociation products involving Be or Be+ in Pu states should split into two 

subchannels, with the subchannel connected to the II states lying higher in energy 

than that connected to the E states.

The calculated excitation energies of Be and Be+ subjected to a confining po­

tential, as measured by the spacing between channels, are summarized in Table 

5.4.

Several trends are noticeable. Firstly, the channels II and III split into two 

subchannels, one corresponding to E states and the other II states. Secondly, the 

spacings between the channel I (ground-state Be and Be+) and II-subchannels in­

crease with increasing strengths of the confining potential, whereas the opposite 

trend is observed for the E-subchannels. These features suggest tha t the 2p z orbital 

of Be atom becomes more stable than the 2px and 2py orbitals when the molecule
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Table 5.4: Dissociation Channels of Be^(al
Channels Experiment a; =  0 . 0 0

Or*Hoil3 co =  0 . 2 0 oj =  0.30
Channel I 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

E-subchannel II 2.73 2.76 2.50 1.97 1.33
II-subchannel II 2.73 2.76 3.00 3.64 4.43
E-subchannel III 3.96 3.92 3.76 3.30 2.61
II-subchannel III 3.96 3.92 4.08 4.44 4.85
II-subchannel IV 5.28 5.35 5.88 6 . 2 2 6 . 2 1

(a) Experimental data  from Ref [34]; all values in eV.

is confined by a cylindrical repulsive potential. In addition, the 2s orbital is desta­

bilized more intensely than the 2 p z orbital, thus reducing the 2 s — 2 pz splitting.

5.3 .2  D ou b let E S tates

Several low-lying doublet E states of Beij" and their response to the change of w are 

depicted in Figure 5.2. The ground state of Be^ is of 2 E+ symmetry, as reported 

by Fischer et al. [22] and Hogreve [23]. The predominant configuration of this state 

is lagla^2ag2a l  throughout the entire range of the internuclear distance R. The 

presence of a confining potential increases both the well depth and the vibrational 

frequency, and shortens the equilibrium internuclear distance. These changes are ex­

pected, as the external potential enhances electron density within the space between 

nuclei, resulting in a strengthened bonding interaction.

The next 1 2 E ^ state is characterized by a small local maximum at about 6.50 

a.u. which is caused by the interaction between the l<72l<722cr23er,] and lcr2l<722cr^2(72 

states [23]. At small R  the former configuration is predominant while at R  >  8.00 

a.u. the latter becomes the most important contribution. As the confining poten­

tial is switched on, the local maximum moves towards larger values of R, and the 

l<TglCT22CT23(Tg state dominates over a larger range of R. This variation of config­

urations could be attributed to the lowering of 3ag MO which leads to a smaller 

2ou —> 3ag excitation energy and increased accessibility of the 3ag MO. The larger 

contribution of the 3ag MO increases the energy difference of the ler2lc722er23(7p and 

the l<7 2 lcr2 2 <7 g2 <7 2  potential energy curves by stabilizing the former configuration,
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thus shifting the avoided crossing towards larger R.

The 2 2£+ state in a field-free environment exhibits a broad potential minimum 

in the region around 5.10 a.u. Hogreve decided tha t the state is composed of the 

lagla^l7Tg2ag configuration [23] while Wright et al. suggested tha t the state arises 

from the lagla^2ag2a^ configuration with a strong mixing with the lcr2 lcr2 2 <7 2 3 cri 

configuration. The present study supports the latter conclusion tha t lcr2l<722crg2cr2 

is the predominant configuration at R  «  re while at large R  the state is determined 

by both the l<7 2 lcr2 2 cr2 3 <7 g and lcr2 lcr2 2 <7 2 3 cr* configurations.

A drastic change of the PEC of the 2 2£+  state was observed when the cylindrical 

harmonic potential is present. A potential hump appears at R  «  6.00 a.u. which 

may be caused by an avoided crossing with a higher 2£+  state. In addition, a 

second minimum (absent in the field-free case) is formed at about 8 . 0 0  a.u. when 

u> =  0.30 a.u., possibly due to the enhanced bonding interaction of 3ag MO, via 

configuration mixing, at large R. Besides the altered shape of PEC, the major 

configuration of the state at the region close to re changes from lcr2 lcr2 2 crg2 cr2 to a 

doubly-excited ler2 lcr2 2 <7 g3 cr2 in the presence of the external potential. The value 

of Te drops from 3.89 eV to 3.23 eV when u> increases from 0.00 to 0.30 a.u., in 

consequence of the smaller splitting between 3ag and the valence 2ag and 2<ru MOs 

that favours the 2cr2 2cr* —> 2alg3a^ double excitation.

For uj =  0.00 a.u., the states 2 2£+  and 3 2£+  are involved in an avoided 

crossing at about 5.7 a.u. which results in the metastability of the minimum of 

the 2 2£+' state at 4.85 a.u. whose binding energy is less than 100 cm-1 , and in 

the minimum of the 3 2£+  state. Very strong configuration interaction occurs for 

these states. For R  < 5.00 a.u., the predominant configuration of the 2 2£+ state is 

Iagla^2(jg2al3ag while the 3 2£+  state is composed of a mixture of lcr2 lcr2 2 <7 2 3 cql( 

and lcr2 la^2ag2a^3<jg. When R  exceeds the point of avoided crossing, these two 

states interchange the configurations. The lcr2 lcr2 2 cr2 3 (7 ^ configuration becomes the 

dominant one for the 2 2£+ state, and the 3 2£+ state possesses lCT2 l a 2 2cr*2ad3cr,] 

as the major component.

Both states become more strongly bound in the presence of the confining po-
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tential, and the metastable minimum of the 2  2 E+ state turns to a global mini­

mum. Furthermore, the point of avoided crossing shifts towards larger values of 

R. These phenomena may be accounted for by considering tha t the antibonding 

lcr2l<722<723cr4 structure is more destabilized by the applied potential than the bond­

ing lagla^2ag2a^3ag configuration. Hence, the repulsive PEC of lcr2 l<T2 2cr2 3er  ̂

configuration lifts in energy more rapidly and crosses the PEC of ler2 ler2 2 <Tj2 cr„3 od 

configuration at larger R. Meanwhile, as the 3ct9 MO is stabilized relative to the 2au 

MO, the local minimum of 2  2 S+ state, which is predominantly 1  ct 2 1  ct 2  2  2  ct,) 3 ct* ,

is significantly deepened, and becomes a global minimum for ui > 0 . 2 0  a.u.

The 3 2 E+ state is another state, besides the 2 2 S+ state, tha t possesses a 

metastable minimum. The minimum is characterized by the l<7 2 lcr2 2 <7 9 l 7r2 con­

figuration. The state crosses with other higher E+ states, yielding a local maxi­

mum at 4.85 a.u., which agrees well with the value reported by Wright et al. [24]. 

For R  > 5.00 a.u. the state is dominated by a mixture of a strongly bonding 

lcr2l(722<7g3<x2 and an antibonding 1 <x21 <t2 2ct9 2a}13all configurations. The latter 

configuration is of increasing importance for larger R  and eventually dominates the 

state and correlates to the dissociation products of Be ( ls 2 2s2) and Be+ ( ls 2 2p*) 

(E-subchannel III).

In contrast to the 2 2 E+ state, whose minimum becomes global and more strongly 

bound, the metastable minimum of the 3 2 E+ state gradually disappears when to 

increases, which suggests that the crossing between this state and other 2 E+ states 

at small R  is eliminated by the potential. As shown in the study of Be atom [31], 

the triple degeneracy of 2 p atomic orbitals is destroyed because of the symmetry 

of confining potential; the 2 px. and 2py orbitals lie at a higher energy than the 2 pz 

orbital. Accordingly, the dominant lcr2 lcr2 2ay l 7r2 configuration of the 3 2 S+ state 

at R  =  3 a.u. turns to be less stable compared to the repulsive lcr2lcr22<792<7*3<7* 

configuration, and the local minimum vanishes. Surprisingly, a second minimum, 

lying 1 0 0 0  cm - 1  above the dissociation limit, starts to appear at about 6 . 0 0  a.u., 

possibly resulting from a new crossing between the 3 2 E+ state and higher states. 

The new minimum arises from a strong mixing between the lcr2 lcr2 2cr9 3cr2 and
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lCTglcr„2<Tg2cr^3cri configurations, and the strongly bonding l a 2l a 22cr^3a2 charac­

ter contributes to the formation of the shallow minimum. At R >  7.50 a.u. the 

state turns to be repulsive again and is governed exclusively by the antibonding 

l a 1gla^2algcla\l Za\ structure.

5.3.3 D ou b let II S ta tes

The first II state, 1 2 IIU, is very strongly bound with the binding energy exceeding 

3.30 eV; this may be attributed to a large number of bonding electrons [24], The 

state arises from the 2au —> ln u excitation, and the ler2 ler2 2er2 l7r* configuration 

remains predominant throughout the entire range of R. The application of the 

confining potential shortens the bond length and increases the binding energy, as 

expected, due to the larger electron density between the two nuclei. However, no 

change of configurations is observed, and the state is still well described by the 

l(7 2 lo-2 2 cr2 l 7r„ configuration.

An interesting feature of the 1 2 n u state is the intersection with the ground- 

state X 2 X+ PEC at 3.00 a.u. which provides a possible pathway of 2HU —> 2 S+ 

predissociation. Hogreve showed tha t the predissociation can happen from the v =  7 

vibrational level of the 1 2 n u state with extra energy of about 0.006 eV [23]. He 

also showed tha t this 2HU — 2 X+ intersection allows for the excitation of Be (1 S) to 

Be (3 P) via a rotational coupling in an inelastic scattering reaction of Be (1 S') and 

Be+ (2 5). For uj > 0.00 a.u., this intersection remains but it shifts to higher energy. 

In other words, the predissociation occurs less readily and higher energy is required 

in the inelastic scattering process in order to rotationally excite the ground-state of 

the Be+ ion to its 3P  state. For instance, in the case of oj =  0.30 a.u., the system 

can predissociate from the v =  29 vibrational level of the 1 2 n „  state to the ground 

state with an excess energy of about 0.03 eV.

The 1 2Ug state lies about 2.3 eV above the 1 2 n„ state. Because of the configura­

tion mixing between lcr2 lcr2 2a2 In* and 1 cj2  1 cr2 2cr^2 (7  ̂1  nl  for R  w r e, the state has 

larger antibonding character (from the former configuration) and a smaller bind­

ing energy than the 1 2 n u state (1.10 eV vs 3.35 eV). The configuration mixing
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in the region around r e happens also when the external potential is applied. How­

ever, a new configuration, lcr^2 cr 3̂ cr^l7r^, appears to intervene, and becomes one 

of the major contributions at intermediate R. The increased contribution from the 

l<72 l<722crgSa^lir^ configuration is not unexpected, since the exerted potential raises 

the energies of both l 7rg and l 7ru MOs while simultaneously lowering the energies 

of 3ag and 3au MOs relative to the 2au HOMO. This results in smaller 2au —> 3au 

excitation energy and larger contribution to the 1  2Hg state.

Both the 2 2Iig and 2 2 HU states have very complex PECs. They are members 

of channel III and are metastable with respect to the dissociation limit. In addition, 

they all possess multiple minima. For the 2 2 n s state, three local minima could 

be found at about 4.1, 5.0, and 9.0 a.u., whereas two minima, at 4.2 and 8.0 a.u. 

are found for the 2 2 n u state. This peculiar behaviour could result from the strong 

interaction with the high-lying 3 2Ilg and 3 2 n„  states tha t are correlated to the 

dissociation channel IV. An avoided crossing takes place between the 2 2 n s and 

3 2Ug states at about 4.5 a.u. and leads to a small barrier on the 2 2Hg PEC, 

which lies 0.08 eV above the first minimum. At small R, the 2 2 n g state can be 

described by the lG ^ la \2a lg2a]l l'K]l configuration, with a small admixture from the 

l a 2 lcr2 2 cr2 l 7Tg configuration, while the 3 2 n g state comes almost entirely from the 

Ier2 l 0 -2 2 crg2 <7 „ l 7r^ configuration. When R  > 5.0 a.u., however, an interchange of 

composition occurs in which the 1  a 2 1  ct2 2 (7 ^2 cr̂  1  7r * configuration becomes predomi­

nant in the 2 2 n g state whereas the 3 2 n s state acquires a lcr2 lcr2 2 <x2 l 7rg character.

The changes of these states due to the influence of the confining potential are 

significant. Near equilibrium, the leading configuration l a gl a 22ag2all7rl of the 

3 2 n g state has a more diffuse electron density, and thus is more strongly destabilized 

by the cylindrical harmonic potential than the l a 2l a 22a2lTrg configuration which 

is the major constituent of the 2 2 n g state. Hence, the splitting of the states at 

the point of avoided crossing becomes larger when the strength of applied potential 

increases from 0.00 to 0.30 a.u. and the maximum of the 2 2 n s state gradually 

disappears. Meanwhile, the PEC of 2 2 n s state becomes very irregular and a second 

maximum and minimum exist on the 2 2Tig and 3 2Hg states, respectively, at about
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7.0 a.u., which are caused by a new avoided crossing.

Compared to the pair of 2 2 IIS and 3 2 II9  PECs, in which a serious mutual 

interference due to avoided crossings is observed, the PECs of 2 2 II„ and 3 2 II„ 

states are fairly well-separated. Both states are single-configurational at R  «  r e; 

the 2 2 IIU state arises from the 2ag2au —> 3agln u double excitation and the 3 2 IIU 

state results from a high-energy 2ag —> l 7rg excitation. The 2 2 IIU state has energy 

very similar to the 2 2 II9  state because of the small energy gap between the 2au and 

3ag MOs. The potential hump of 2 2 IIU state at 5.4 a.u. is caused by the interaction 

with the 3 2n u state. In the region of R  >  5.4 a.u., this avoided crossing switches 

the dominant configuration of the 2 2 IIU state to l o 2glo?^2oxg2a\Ll'KXg and the 3 2 IIU 

state to lcr2 lcr2 2 cr4 3 <T4 l 7r4.

In the presence of the cylindrical harmonic potential, the point of avoided cross­

ing between the 2 2 IIU and 3 2 II„ states shifts to larger R. In addition, the inner 

minimum of the 2 2 HU state becomes very strongly bound while the outer minimum 

disappears. Unlike the field-free case where there are three crossing points between 

the 2 2 n 9;U PECs, the entire 2 2 IIU PEC lies below that of the 2 2 IIfl state when the 

system is confined. This behavior could be anticipated, since the 2 2 HU state con­

tains more electrons in bonding orbitals (2 cr4 3 cr4 l 7r4) than the 2 2 II9  state (2aglirg)\ 

furthermore, the l 7rs and ln u MOs are so destabilized tha t the 2ag2au —> 3 cr9 l 7r„ 

double excitation happens more readily than the 2au —> l 7rs excitation. Therefore, 

the 2 2 n u state becomes energetically more stable than the 2 2 II9  state in a confined 

environment.

5 .3 .4  Q uartet S tates

Fischer et al. [22] and Wright et al. [24] computed the PECs for a number of 

quartet states of Be^" using multi-reference Cl method and extended basis sets. 

Spectroscopic constants as well as transition moments have been evaluated using 

the calculated PECs. In the present study, only three quartet states, 1 4 E+, 1 4 II9  

and 1 4 IIU were investigated since the other quartet states, except 1  4 S g , are fairly 

high-lying (above the dissociation channel IV), and they, including 1 4 E“ , are all
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correlated to channel V and channel VI [24] which are not discussed in the present 

work.

The lowest quartet state of Be^ is 1 4 S„ which lies about 3.3 eV above the 

ground state X 2 E+. This states has the same origin as the 2 2 E+ and 3 2 E+, i.e., it 

arises from the 2og —> ‘3a g excitation. It is far more stable than  the other two states 

because of the additional exchange interaction among the three unpaired electrons. 

On the other hand, the 1 4 S+ state has a reduced bonding character compared to 

that of the ground state, as indicated by larger r e, smaller D e and ue\ these effects 

may be attributed to the replacement of 2 ag orbital by the less bonding 3ag orbital. 

As shown in Figure 4, the effects of confinement on this state are fairly typical: 

reduction of equilibrium bond distance is accompanied by an increase of binding 

energy and vibrational frequency. These can be attributed to the enhanced electron 

density between the two nuclei induced by the potential. Although the 1 4 E+ state 

behaves differently from the 3 2 E+ state in the variation of re with respect to u, they, 

together with the 2 2 E+ state, exhibit a decreased Te in the presence of a confining 

potential. The changes of Te for the 1 4 E+ and 2 2 E+ states are comparatively large 

(~  27%) while tha t for the 3 2 E+ is minimal (~  3%) when the field strength goes 

up to w =  0.30 a.u. These results demonstrate tha t the 2ag — ‘3ag energy gap is 

reduced by the external potential which, due to its symmetry, selectively stabilizes 

the 3og MO.

The 1 4 n 9  state has a well-defined PEC which is slightly less bound than the 

1 2 n 9  state (0.90 eV vs 1.10 eV) despite the same dominating l<7 2 lcr2 2 cr4 2 cr4 l 7r4 

configuration and dissociation channel. Interestingly, these two states cross at two 

positions: 3.5 a.u and 5.3 a.u. At R  «  r e, the 1 4 II9  state lies 0.1 eV above the 

doublet counterpart but for R  >  5.3 a.u. 1 4 II9  state becomes more stable. The 

intersection at 5.3 a.u. could be rationalized by the fact tha t the increased contri­

bution of the antibonding lcr2 lcr2 2 <7 2 l 7r4 to the 1 2 IIg state weakens the attractive 

interaction at large R  and makes it less stable relative to the 1 4 II3  state. On the 

other hand, the intersection at 3.5 a.u. is possibly caused by the exchange inter­

action of the 1 4 n s state that partly overcomes the strong Coulomb repulsion at
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small R, thus making the 1 4 II(/ state slightly more stable than the 1 2 II9  state. For 

oj > 0.00 a.u., both  intersection points move towards larger R  until uj =  0.30 a.u. 

for which the outer intersection point disappears. For small and intermediate R, 

since the applied potential increases the electron density in the bonding region, the 

strengthened shielding effect on nuclei shrinks the internuclear distance. Simultane­

ously, however, the Coulomb repulsion between electrons is significantly increased. 

The 1 2Ug state is thus more destabilized than the 1 4 IIS state where the Coulomb 

interaction is compensated by the exchange effect. In the large R  region, the an­

tibonding lcr2 lcr2 2 <7 2 l 7r9  and ler2 lcr2 2cr4 3cr4 I tt4 configurations still dominate the 

1 2Ug and 1  4 n 9  states, respectively. However, the stronger interaction between the

1 2 n 9  and 2  2Iig states provides additional stability to the 1  2 n s state, making it 

somewhat more stable than the 1  4 n s state.

For both zero- and nonzero-field situations, the 1 4 n u state has an interesting 

PEC that parallels the PEC of the 2 2 n „  state, although they converge to two differ­

ent limits (channels II and III, respectively). Both states originate from the configu­

ration lcr2 lcr2 2cr4 3a9 l7r4 which results from the 2ag2au —> 3agln u double excitation, 

and are metastable with respect to the dissociation products. The 1 4 n u state also 

experiences a change of configuration, from 1 ct 21 <r2 2<r4 3 <741 7r4 to lcr2 lcr2 2<r4 2ct4 l 7r4, 

at large R  because of weak interaction with the 2 4 n fl state, which is 2 eV above it. 

The interaction forms a hump at 5.0 a.u. and the antibonding character turns the 

PEC to be repulsive for R  > 5.0 a.u. The stability of the 1 4 n u state relative to the

2  2 n u state could be attributed exclusively to the exchange interaction in the quar­

tet state. The evolution of the 1 4 n u state PEC in a harmonic confining potential 

is similar to that of the 2  2 n „  state, where the potential hump slowly disappears. 

This can be accounted for by the fact that the Icr2 lcr2 2 cr4 3 c7 4 l 7r4 configuration is 

stabilized by the reduced 2au —» 3 <7 9  energy gap. The stronger bonding character 

from 3ag MO lowers the energy of the local minimum and leads to the shift of the 

point of avoided crossing towards larger R. For u j  >  0.10 a.u. the state becomes 

very strongly bound, and the minimum becomes global. As in the case without any 

external field, the 1 4 n „  state at large R  arises from the 2og —> lirg excitation which
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Figure 5.5: Franck-Condon factors for X 2 S+ 1 2£ ^  transitions of B eJ•

is correlated to the II-subchannel II.

5.3 .5  V ibron ic Spectra

The effects of confinement could be manifested not only in the changes of equilibrium 

internuclear distances and binding energies, but also in the electronic spectra of Be^ 

confined in a potential. In order to elucidate the effects of confinement, the vibronic 

spectra of Be^ due to the transitions 2 E+ <-*■ 2 S~, 2 IIU -H- 2 II9, and 2 S+ <->■ 2 II9  

were calculated using LeRoy’s program L e v e l  [35], and the results were plotted in 

Figures 5.5-5.7. It was assumed that the transitions occur between the v" =  0 level 

of the initial electronic state and the v' vibrational level of the final electronic state. 

The initial rotational state was fixed to be 1, i.e., J" =  1, and only the P-branch, 

corresponding to A J  =  — 1, was included in each spectrum.
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The states involved in these transitions result from the one-electron transitions 

2ag —> 2(tu/ 1 ttu or 2au -* l 7r9 / l 7Tu/ 3 a 5. The spectra exhibit very distinct features, 

and the differences between them may be rationalized in terms of the variations of 

the PECs of the electronic states involved. Both the 2 E+ 2£ “ and 2 IIU -h- 2 II5

spectra became red-shifted (with the former one more pronounced) when confining 

potential was present. On the other hand, the 2 S+ «-» 2 II9  spectrum was remarkably 

blue-shifted by the potential. These opposite shifts could be attributed to different 

relative changes of excitation energies, Te, of these states (Tables 5.1 and 5.2). The 

reduction of Te for the 1 2 E+ state due to the confining potential induces a small red- 

shift (~  7000 cm-1 , 0.8 eV) in its vibronic spectrum; nevertheless, the 40% increase 

in Te for the 1 2 II9  state causes a considerable shift of the spectrum (~  12000 cm-1 ,

1.5 eV) towards high energies. On the other hand, the shift in the 2 IIU 2 11, 

spectrum is rather small, and this could be accounted for by the small change in the 

energy difference between the 1 2 fl9  and 1 2 IIU states, which decreased from 2.31 eV 

(for u j  =  0.00 a.u.) to 1.99 eV (for u j  =  0.30 a.u.).

The spectra involving both the 2 S+ •H- 2 E “ and 2£+  •<-> 2 IIS transitions show 

presence of intense 0 — 0 transitions. The electronic states involved in these tran­

sitions possess very similar r e, leading to excellent overlap of the v — 0 vibrational 

wavefunctions of the ground and excited electronic states. The disappearance of 

satellite peaks for u j  >  0 . 1 0  a.u. is related to the smaller difference in r e, which is, 

at u j  =  0.30 a.u. about 0.06 a.u. for 2£ + /2£+ and 0.11 a.u. for 2 II9/ 2£+.

The 2 I1U 2 IIg vibronic spectrum, in contrast to the two previous spectra 

which are essentially featureless, is very rich in detail. The numbers shown on 

Figure 6  indicate the v' values of the final electronic state. These values (for both 

absorption and emission bands) decrease with increasing u j , suggesting that the 

difference in re is gradually reduced. This conclusion is also supported by results of 

the spectroscopic analysis for these states, that shows the reduction of the difference 

in r e from 0.85 a.u., in the field-free case, to 0.59 a.u., for u j =  0.30 a.u. In addition, 

the larger peak separations in the emission band, as compared to the absorption 

band, reveal that the 2 IXU state is more strongly bound than the 2 IT9, as expected
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given the bonding la^luf/lOyl'K^ character of the former state. Interestingly, the 

fact that the peak spacings for the absorption band increase faster than  those for 

the emission band indicates tha t the confining potential affects the 2 II9  state more 

than the 2HU state; this observation again agrees with the greater changes in D e 

and r e for the 2 II9  state relative to the 2 IIU state.

5.4 Conclusion

The effects of external confining potential on the electronic states of the three- 

valence-electron BeJ molecular ion have been investigated, and in total 15 states 

have been studied. In contrast to the two-electron hydrogen molecule, the multi­

electron nature of Be^ leads to a more complex bahaviour because of the Coulomb 

and exchange interactions among the valence electrons, as well as the core-valence 

correlation effects that might play an im portant role in the evolution of these elec­

tronic states subjected to the external potential.

Due to the geometrical constraints imposed by the cylindrical harmonic repul­

sive potential, the E- and II-manifolds split at the dissociation limits, with the 

II-channels being more destabilized. In addition, the E and II electronic states be­

have in substantially different ways at R  <  10.00 a.u. While the avoided crossing 

between the states 2 and 3 2 E+ persists, an additional avoided crossing appears 

between 2 and 3 2 S+ states, and it leads to metastable minima. On the other hand, 

the strong coupling of the 2Iig states that causes several local minima on the PEC of 

the 2 2nfl state is, interestingly, slightly reduced by the confining potential. More­

over, the 2 n 9  and 2 II„ states show the tendency of becoming degenerate at R >

5.00 a.u. In contrast to the dramatic changes of the doublet counterparts, the quar­

tet E and II states demonstrate a typical response to the confining potential. The 

only significant variation is the disappearance of the barrier tha t occurs at 5 a.u. 

on the 4 IIU state when the applied potential is stronger than 0.10 a.u.
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Chapter 6

Structure and Spectra of a 
Confined HeH M olecule

Both Chapters 6  and 7 are concerned primarily with the interactions of weakly- 

bound molecular species and the environment. In particular, the autoionization of 

noble-gas hydrides induced by the confining electrostatic potential is investigated. 

The studies of HeH molecule are described in this chapter, and the next chapter 

deals with the heavier NeH molecule.

6.1 Introduction

Confining potentials are frequently used to model the effects of environmental factors 

on properties of atoms and molecules, as for example the influence of plasma [1 , 2 ], 

external magnetic fields [3], and surfaces [4, 5]. A good review of the subject has been 

written by Jaskolski [6 ] and recently by Karwowski [7]. The influence of confining 

potentials on properties of atoms has been analyzed extensively by several authors 

[8 , 9, 10], and several studies on confined molecules have also been published. One 

should mention a detailed study of the H2 molecule confined by a spherical harmonic 

potential [11] and another one on H[j~ and H2  in cylindrical confinements [12]. Effects 

of a cylindrical confining potential on the excited states of the H2  molecule were 

studied [13] and detailed studies of the Li2  in anisotropic harmonic potentials are 

available [14].

In the present work the influence of cylindrical harmonic confinement on the HeH
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molecule has been investigated. HeH is one of the smallest diatomic molecules that 

has been the subject of theoretical studies in past several decades. Early molecular 

orbital studies predicted tha t HeH should possess a repulsive ground state but bound 

excited states [15]. Subsequent multi-reference configuration interaction calculations 

by Theodorakopoulos et al. also yielded the same conclusion [16]. However, no 

experimental evidence was available for the existence of bound excited electronic 

states of HeH until the detection of B 2n  —> X 2 S + fluorescence of HeH via the 

reactive collision of excited H2  and He [17] in 1985. Following this observation, 

several studies were devoted to the measurement and analysis of bound-free radiative 

decay and predissociation of these states [18, 19, 20, 21]. Up to now, about 14 states, 

corresponding to n < 4, have been fully characterized [22, 23, 24, 25], and many 

high-lying states (11 < n < 34) have been detected employing the field ionization 

technique [26]. In addition, a series of bound states (for n =  5) was located by the 

scattering R-matrix method [27].

Despite its simplicity, HeH molecule possesses unique properties in powerful 

UV lasers [28]. Noble gas hydrides belong to the family of Rydberg (or excimer) 

molecules characterized by their unstable ground state and bound excited states

[29]. The stability of the excited states of HeH has been ascribed to the polarization 

of He by the H+ core when the H (ls) electron is excited. The resulting system can 

thus be regarded as a pair of HeH+ ion and an electron; the Coulombic interaction 

between the pair is rather weak, and the Rydberg electron is sensitive to any kind 

of external perturbation. Therefore, the effects of spatial confinement should be 

evident even when a relatively weak perturbation is applied.

Two particular effects were investigated in the present work. The first one is the 

influence of the confining potentials on the shapes of the potential energy curves,

i.e., the vibronic spectra. To obtain a better understanding of this effect the ground 

and first few singlet excited states of HeH were calculated for several values of 

the potential strength w, and wavefunction analysis in terms of orbital response to 

the external potentials was performed. The second effect is the ionization process 

induced by confinement. The values of the parameters defining the strength of con-
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finement, under which the molecule in a given electronic state becomes ionized due 

to the confinement, were determined. These values are closely related to the inten­

sity of external magnetic field that causes the field-induced ionization of magnetized 

molecules in the interstellar space.

The final problem addressed in this work is the applicability of the perturba­

tion theory to the studies on the influence of confinement on molecular properties. 

While all the calculations have been performed using variational self-consistent-field 

(SCF) Roothaan-Hartree-Fock configuration interaction (Cl) method, the analysis 

of results shows tha t the harmonic confining potentials can be treated as a pertur­

bation to the HeH molecule, and a much simpler perturbation theory is adequate 

for the description of the effects of confinement.

6.2 Perturbation Theory of The Effects of Confinement

The Hamiltonian of a confined iV-elcctron diatomic molecule is taken as

Hu(r,R) = H0( r ,R)+Wu(r), (6.1)

where

H 0(r, R) =  T (r )  +  Ven(r, R ) +  G (r) +  Vnn{R), (6.2)

is the Born-Oppenheimer Hamiltonian of the free system, T (r ) ,  Ven(r ,R ) ,  G(r),  

and Vnn(R) represent, respectively, the operators describing the kinetic energy, the 

nuclear attraction potential, the electron and nuclear repulsion potentials; r  =  

{ r i, J"2 , . . .  ,rjv} stands for the electron coordinates and R  denotes the internu­

clear distance. The IV-electron confining potential Ww(r) is defined as a sum of 

one-electron contributions:
N

(6.3)
i = l

where r* =  {x t . yi. z{\. In this work it is assumed that the molecular axis overlaps 

with the z-axis of the coordinate system, and tha t the confining potential is in the 

form of the cylindrical oscillator potential, i.e

Wu (rj) =  y  (:xf +  y ^ ,  (6.4)
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The confinement expressed in terms of x 2 +  y 2 may model an external magnetic 

field. The Hamiltonian of an electron in a uniform magnetic field is:

H  =  (p  -  - i f  +  V (r )  -  - { §  • B) (6.5)
I j J  \  C / jJLC

The magnetic field B and the vector potential A are related via:

A  =  i  [B x r ] . (6.6)

If B — (0,0, B ) then the following Coulomb gauge can be defined:

A =  \ B { - y , x ,  0), A 2 =  \ B 2(x2 +  y 2). (6.7)

Since

( p  ~  ~c A ) =  P2 +  ^ A2 -  ^  (xpy -  ypx) , (6 .8 )

substituting equation 6.7 into equation 6 . 8  yields

H  =  ~~ +  (x2 +  y2) — w ( l z +  2S^j +  V {f) ,  (6.9)
2 / i

where

u =  ^ ~ .  (6 .10)
2  fic v '

If V  is axially symmetric with respect to the z-axis, then H  commutes with L z and 

the two operators share a common set of eigenfunctions. Let

H^mnis Lz^ mma SẐ mms = ^s^m m s- (6-11)

Then

^ mma — mms i (6 .1 2 )

where

e =  E  +  Lu(m +  2m s). (6.13)

The final relationship in eq. (6.13) shows that the energies calculated using the 

harmonic confinement model and those obtained by solving the Schrodinger equation 

using the Hamiltonian of eq. (6.9) are related by an additional term  which depends
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on uj,m  and m s. Interestingly, this term  is independent of R, and induces solely the 

vertical shift of the potential energy curves. Accordingly, the present confinement 

model is able to provide the details of the fine structure of potential energy curves 

and their evolution in parallel magnetic fields.

The energy of the electronic states of a confined HeH molecule containing three 

electrons increases faster with the increasing strength of the confinement than the 

ground state energy of the positive two-electron ion HeH+ . Therefore there exists a 

critical confinement parameter u j c for each electronic state beyond which the energy 

of the neutral molecule is larger than tha t of the ion. For confinements stronger 

than the critical confinement, the corresponding electron is bound by the confining 

potential rather than by the nuclei and its energy spectrum is mainly determined 

by the form of the confinement. This behaviour of the energies is related to the 

phenomenon of autoionization of atoms by pressure [30] and was discovered already 

in the 1930s [31]. The theory developed in the present paper applies to the bound 

states only. Therefore the range of valid confinement parameters is determined by 

the inequality

As will be shown in the next section, in the cases considered here the critical 

confinement parameter u j c is much smaller than 1. In addition, the strengths of 

magnetic fields met in nature rarely exceed a fraction of atomic unit ( 105  T).

For such cases, when w 1, the effects of confinement may be studied using the 

perturbation theory.

The Schrodinger equation describing the confined molecule may be written as

i= 1

The zeroth-order Hamiltonian ( u j =  0) defined in eq. (6.2) satisfies the Schrodinger 

equation

0 < u j < u jc . (6.14)

H 0( r ,R ) + u j 2H '(r)  # ” (r, R) =  £7” ( i ? ) ^ ( r ,  R), (6.15)

where

(6.16)

(6.17)
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The perturbation expansion in u  can be written as

E%(R) -  ES(R) +  E ?{R )u 2 +  E ^ { R ) oja +  . . . ,  (6.18)

where the first-order correction coefficient is given by

£?(«) =  =  I E < * o lx? + W>- (6'19>
1 = 1

Note tha t H' may alternatively be expressed in terms of the quadrupole moment 

operator

H 1 — -  (Qxx +  Qyy) +  -^r2, (6 .2 0 )

where Qxx =  (3x2 -  r 2) and Qyy =  J2iLi (3Vi ~  rf)  are two components of

the quadrupole moment tensor. Consequently, the first-order perturbational treat­

ment of the confinement effects can be related to the quadrupole moment of the 

confined molecule via:

1 1 N  
E?(R) =  g W | Qxx +  QW|*S> +  3  J ] W \ r l m -  (6.21)

i= 1

6.3 Com putational M ethod

The electronic Schrodinger equation for the n-th  electronic state

Hu (r, R )* Z (r ,  R) =  E X ( r ,  R) (6 .2 2 )

was solved using full configuration interaction (FCI) method implemented in the 

systems of programs OpenMol [32] and GAMESS-US [33, 34]. In all the calculations 

several Gaussian basis sets were adopted. Two basis sets, He-21 and He-34, have 

been used for He. The first one is derived from the Romlet’s 7s2pld  basis set [35], 

contracted to 5s2pld, plus a set of 2 .sip diffuse functions (a =  0.08 and 0 . 0 2  for s 

and 0.08 for p), while the second one is constructed from H-21 with additional lp2d 

polarization functions [36].

In order to describe the Rydberg character of the first several low-lying excited 

states of HeH, three basis sets of hydrogen, H-18, H-36 and H-55, with different sizes

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the polarization and diffuse spaces have been utilized [36]. The smallest one, H- 

18, is the Huzinaga’s (6,s)/[4,s] basis set [37] augmented by 2s4p diffuse set whose 

exponents are optimized for the proper description of the long-range interaction 

of the excited states of H2  [35]. Both the H-36 and H-55 share the same (13s7p) 

set grouped into a (3,2,1,1,1,1,1,1,1,1/1,1,1,1,1,1,1) contraction. The former one 

possesses an extra d-function, leading to a 10s7pld  basis set, while in the latter one 

a group of l s lp 4 d  diffuse functions is added, giving rise to a Il.s8p4d basis set.

Potential energy curves E™(R), where n is the index of excited states, of the HeH 

molecule and the ground-state potential energy curve of HeH+ for various values of 

the confinement parameters uj, were calculated. In order to check the applicability 

of the perturbational approach to studies on the influence of confinement on the 

potential energy curves, a k - t h  order polynomial approximation of the energy for 

the n-th state was constructed:
k

Enk{u,R) = Y,Ci(R)“21 t6'23)
7=1

A quadratic approximation (k =  1) corresponds to the first-order perturbation ex­

pansion. The fourth-order one (k =  2) corresponds to the perturbation expansion 

up to second order. Coefficients C% of the approximations are estimated using the 

results for several values of or. uj =  0.0,0.05 for k  =  1 and uj =  0.0,0.05,0.10 for

Jfe =  2.

6.4 Results and Discussion

6.4.1 B asis Sets

Four different combinations of He and H basis sets, v i s .  He-21/H-18, He-21/H-36, 

He-21/H-55, and He-34/H-55, have been tested in order to determine the suitable 

basis set for the studies of confined HeH molecule. The calculated spectroscopic 

constants for the first six excited electronic states of HeH are shown in Table 6.1. In 

Table 6.2 are also included the spectroscopic constants for the cation HeH+ deduced 

using various combinations of He and H basis sets. In general, a very good agreement 

with the available experimental and theoretical data was achieved. The estimated
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Table 6.1: Spectroscopic constants of HeH without confinement (re in atomic units,
ue and vexe in cm-1 , D e in eV)

State Reference re "e uex e De
A 2E+ He-21/H-18 1.4077 3670 255 2.53

He-21/H-36 1.4118 3699 196 2.54
He-21/H-55 1.4149 3722 183 2.54
He-34/H-55 1.4120 3726 182 2.54

[27] 1.4040 3512
[38] 1.4115 3662 2.48
[39] 1.43 3701
[2 2 ] 1.4003 3718 161

b  2n He-21/H-18 1.4634 3364 199 2 . 2 1

He-21/H-36 1.4629 3330 205 2.18
He-21/H-55 1.4652 3367 2 0 1 2.19
He-34/H-55 1.4622 3372 199 2 . 2 0

[27] 1.4571 3158
[38] 1.4629 3302 2 . 2 0

c 2s+ He-21/H-18 1.5413 2928 2 1 0 1.64
He-21/H-36 1.5409 2930 190 1.61
He-21/H-55 1.5417 3007 199 1.61
He-34/H-55 1.5370 2957 2 1 1 1.61

[27] 1.5255 2788
[38] 1.5428 2872 1.65
[39] 1.57 2896
[2 2 ] 1.5324 2902 141

D 2 S+ He-21/H-18 1.4545 3418 196 2.18
He-21/H-36 1.4479 3467 289 2.16
He-21/H-55 1.4584 3402 2 0 2 2.15
He-34/H-55 1.4555 3405 2 0 1 2.16

[27] 1.4504 3187
[38] 1.4508 3383 2.14

e  2n He-21/H-18 1.4719 3296 204 2.09
He-21/H-36 1.4725 3258 193 2.08
He-21/H-55 1.4736 3297 207 2.07
He-34/H-55 1.4708 3299 207 2.08

[27] 1.4655 3083
[38] 1.4718 3233 2.09

F 2 E+ He-21/H-18 1.5518 3013 209 1.46
He-21/H-36 1.4696 3276 303 2.03
He-21/H-55 1.4801 3246 209 2.05
He-34/H-55 1.4771 3252 208 2.06

[27] 1.4693 3057
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Table 6.2: Spectroscopic constants of HeH+ without confinement (re in atomic units,
ve and uexe in cm-1 )

State Reference re ve uex e
HeH+ He-21/H-36 1.4770 3177 141

He-21/H-36 1.4694 3275 149
He-21/H-55 1.4765 3201 145
He-34/H-55 1.4732 3206 146

[15] 1.444 3379 314
[40] 1.4632 3233(“) 617(“)
[41] 1.4632 3220(“) 166(“)

(a) Calculated by fitting Wolniewicz’s and Kolos’ ab in itio  potential energy curves
to Dunham’s 4-th order polynomial.

re values deviate from the best values by at most 0 . 0 1  A, while the calculated ue 

agree with the experimental values with the average discrepancy of about 3%.

Despite the overall good performance of these four combinations of basis sets, 

several differences between the basis sets have been observed. A fairly big discrep­

ancy was seen for both the re and ue values of the F 2 S + state obtained using 

He-21/H-18 basis sets. This is not unexpected since H-18 lacks ci-type primitives 

which are essential for accurately describing the 3d character of the F state. In­

clusion of an additional d-type primitive and extra s- and p-type diffuse functions 

(basis H-36) slightly changed the equilibrium bond lengths and harmonic frequencies 

for A to E states, but greatly improved the re for the F state. Further expanding 

the d-space (basis H-55) led to the elongation of re and significant variation of ue 

for all states. The effects of increasing the diffuse space of He basis set have also 

been investigated (basis He-34). The resulting ue values remained approximately 

unaffected but re were decreased by about 0.003 A.

Since the low-lying excited states of HeH arise from the excitation of H Is elec­

tron, the estimated excitation energies of H atom using H-18, H-36 and H-55 basis 

sets can serve as an excellent indication of their qualities in the molecular studies 

of the Rydberg HeH molecules. Schreiner has performed a series of atomic calcula­

tions on hydrogen with these basis sets, and the results revealed tha t H-36 is among
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the best basis set which yielded the excitation energies up to n =  4, except for 

3d-orbitals, with the averaged error of 6  /iHartree [36].

In consequence, H-36 basis set was utilized in the subsequent full Cl calcula­

tions of the low-lying electronic states of HeH in the presence of a harmonic con­

fining potential. In order to enhance the flexibility of the basis set combination 

He-21/H-36 in the description of distorted electron density, an additional set of 

I s lp ld  Gaussian-type functions was added in the middle of the He-H bond; expo­

nents of these functions were equal to w/2. The use of such auxiliary basis functions 

has been justified in the calculations of a confined two-electron system [8 ], helium 

atom [10], and lithium molecule [14]. In the present study, potential energy curves 

of the ground and low-lying excited states of HeH molecules were calculated for the 

confinement param eter ranging from 0.0 to 0.4 au. However, the discussion would 

be focused only on small values of oj (i.e., ui <  0 . 2 0  au) due to the field-induced 

ionization, which will be discussed in the following section.

6.4 .2  P o ten tia l E nergy C urves o f  H eH

Figure 6.1 depicts the potential energy curves of the ground and several low-lying 

excited states of HeH. On the same diagram the ground state potential of HeH+ 

is also included for comparison. As shown, except for the ground state which is 

repulsive and only shows a van der Waals minimum at about 7.00 a.u., the excited 

states of HeH are all characterized by a deep potential well which is similar to 

the ground state potential of the molecular ion. An exception is the C 2 S + state 

potential where a barrier, which lies 0.6 eV above the dissociation limit, is present at 

about 4.00 au due to the interaction between the Rydberg electron and the He core 

electrons [16]. It has been predicted that the F 2 S + state potential energy curve of 

NeH also contains an energy barrier at 4.5 au [16] which is smaller than the one for 

the C state. However, an analogous feature is absent in HeH which could indicate 

weaker interaction between core and Rydberg electrons.

The excited states of HeH considered in the present work can essentially be 

described by a single reference configuration resulting from the excitation of the
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Figure 6.1: Potential energy curves of selected low-lying electronic states of HeH 
and the ground state of HeH+ .
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H-atom Is electron to the Rydberg orbitals. Unlike the case of NeH where a strong 

configuration mixing is observed between the 2S + states, Petsalakis et al. found 

that the non-adiabatic coupling m atrix elements between the A and C states are 

rather small [42]. The A state is dominated by the He +  H(2.s) configuration while 

the C state acquires mainly the H(2p) character for the whole range of R, and they 

both lead to the same dissociation limit of He +  H(2s2p).

The B state, which has the dominant H(2p) character, is also correlated to the 

dissociation products of He and excited H(n =  2) atoms. This state lies very closely 

to the A state potential energy curve yet is fairly well separated from tha t of the 

C state. This behavior can be attributed to the fact tha t the i t  molecular orbitals 

resulting from the hydrogen 2px and 2py atomic orbitals are less destabilized by 

the Coulombic interaction with the He core electron density compared to the a 

orbital which is formed from the hydrogen 2p z atomic orbital. As a result, the 

latter state potential energy curve is up-shifted for small and intermediate values of 

R. As I?, -» oo, these two states gradually become degenerate, leading to the same 

asymptotic limit of He +  H(n =  2).

The potential energy curves of the X to F states of HeH have been computed for 

a number of different values of the confinement param eter o j between 0.00 and 0.40 

au in order to investigate the effects of the harmonic confining potential on both the 

spectroscopic and electronic properties of HeH molecule. Figures 6.2-6.4 show the 

A, B and C states of HeH for o j smaller than 0.15 a.u. while Figure 6.5 illustrates the 

ground state potential energy curves of HeH+ for the same range of o j . As shown, 

these states behave in substantially different ways under the influence of an external 

potential. The potential energy curves of both the B state of HeH and the ground 

state of HeH+ retain the same shapes for o j  <  0.15 au; these states are only shifted 

to higher energies by the confining potential and become slightly more bound. These 

observations can be accounted for by the fact that the harmonic potential, which 

increases the electron density between nuclei through Coulomb interaction, does 

not significantly enhance the 7r-type bonding in HeH. Instead, the Rydberg H(2p) 

orbital will become distorted so tha t the B state is destabilized.
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Figure 6.2: Potential energy curves of the A 2E + state of HeH in confinement.
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Figure 6.3: Potential energy curves of the B 2II state of HeH in confinement.
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Figure 6.4: Potential energy curves of the C 2S + state of HeH in confinement.
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Figure 6.5: Potential energy curves of the X 1X+ state of HeH"1" in confinement.
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On the other hand, the 2S + state potential energy curves of HeH are strongly 

affected when the applied potential is present. The characteristic local barrier on 

the C state potential remains for u  > 0.00, but its height increases with u. For 

instance, the local maximum lies about 0.58 eV above the limit of He +  H(2p) when 

u) =  0.00; this barrier increases, for u  — 0.15 au, to 1.46 eV which is comparable 

to the binding energy (i.e., 1.61 eV) of the unconfined C state. Simultaneously, the 

binding energy with respect to the dissociation products increases from 1.01 eV to 

1.26 eV because of the greater cr-bonding electron density.

Two interesting and unexpected changes occur on the A state potential energy 

curve due to the confining potential. The first one is the presence of a potential 

barrier at 3.00 au when HeH is confined by a cylindrical harmonic potential. A sim­

ilar situation has also been observed in NeH molecule [43], The emerging potential 

maximum is possibly the consequence of an avoided crossing between the A and C 

2S + at the point where these two states interchange their configurations. At small 

R, the A state still possesses mainly the hydrogen 2s character as the free-held coun­

terpart. However, the dominant configuration of the state in the long range region 

turns to be He +  H(2p z). Previous studies have demonstrated tha t the orbital de­

generacy of a hydrogen atom embedded in a prolate-type potential will be partially 

removed, with the p z component being more stabilized with respect to s and other 

/^-components [8]. Accordingly, the dissociation channel of He +  H(n =  2) splits, 

giving rise to three sub-channels when a cylindrical confining potential is applied 

to HeH. The avoided crossing can thus allow the A and C states to exchange the 

configurations and dissociate to the proper limits.

The second feature of the A state potential energy curve is reduction of the 

binding energy with increasing w. The binding energy in the case of u  =  0.15 au 

is 1.70 eV while in the unconfined case it is equal to 2.53 eV. This change can be 

rationalized in terms of the avoided crossing: the larger shift of the H(2s) potential 

compared to that of H(2p2) potential causes the diminishing energy gap between 

these two states, and thus the binding energy of the A state potential energy curve.

In spite of the complicated changes of shapes of the potential energy curves of
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different states of HeH, the variation of r e, the equilibrium bond distances, is rather 

small, as shown in Figure 6.6. For u <  0.10 au the averaged deviation of re for these 

states is less than 3%. This behavior is different from the case of a confined H2 

molecule where the confinement led to a considerable reduction of the bond length

[44]. An intuitive explanation of this difference is fairly simple. The cylindrical 

confinement moves the electronic charge closer to the molecular bond. In the ground 

state of strongly bound molecules such as H2  and H j , the electronic cloud is compact 

and the compression along the molecular axis results in an increase of the electron 

density in the space between the nuclei and, consequently, to a decrease of r e. In a 

Rydberg molecule, however, the valence electronic cloud is diffuse. Therefore, the 

compression of electron cloud does not induce a considerable increment of electron 

density in the internuclear region, and, in effect, the internuclear distance does not 

change very much.

6.4 .3  T ransition  D ip o le  M om en ts and O scillator S trengths

It has been shown, from the molecular orbital analysis, tha t the application of a 

confining potential alters the configurations of both A and C states by introducing 

an avoided crossing at 2.5 to 3.0 au. This configuration interaction leads to the 

changes of r e and the binding energy of these states. In addition, this configuration 

mixing influences the intensities of the electronic transitions involving the A and C 

states. In order to examine the variation of the transition intensities with respect to 

u>, the transition dipole moments for the transitions between X, A, B, and C states 

and the associated oscillator strengths (or /-values) were calculated.

The electronic transition dipole moment for an n-electron system can be defined 

in two ways [45]: the dipole length approximation

HcJ i{r )d r , (6.24)

or the dipole velocity approximation

(V7 I / W  = J (6.25)
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Figure 6.6: Plot of equilibrium internuclear distances versus the confining parame­
ters.
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In these expressions ipi and ipf represent, respectively, the initial and final states of 

the transition, and Wj f  is the frequency of the radiation. The dimensionless oscillator 

strengths can be calculated from the following equation:

/;->/ =  8L > ^ 1 ^ ) I 2 (6-26)

This quantity constitutes the measure of the possibility of an electronic transition. 

Hence, the comparison of the /-values of different transitions can provide the infor­

mation regarding their intensity ratio, population densities, and lifetimes.

Chandrasekhar [46] proved tha t eqs. (6.24) and (6.25) will yield different values 

of dipole transition moments if an approximate wavefunction is used. Therefore, 

a test has been performed in which eqs. (6.24) and (6.25) were used, respectively, 

with the full Cl wavefunction computed in the present study. It is seen that both 

formulas give the dipole transition moments (and, in turn, the oscillator strength) 

which differ by only 1 to 2 % for 2E+ states. However, a larger difference of about 

10 % is found for 2n  states, which is possibly due to the deficiency in the basis sets 

describing the 7r-electron density.

In spite of the less satisfactory agreement for the 2n  states, the data from both 

calculations support the conclusion of the wavefunction analysis tha t the A and C 

states undergo the interchange of configurations when HeH molecule is confined. In 

the case of u  =  0.0 au the A -> B transition moment is greater than that of the B 

—> C transition for the range of R  (see figure 6.7). The B state can be characterized 

as 2p  state; therefore, it is expected tha t the A state, which is essentially the 2s 

state, should lead to a large dipole transition moment. The increasing B —>■ C dipole 

transition moment at large R  results from the enhanced 2s character of the C state, 

which has the dominant 2p  configuration at intermediate R, when approaching the 

asymptotic limit where the 2s and 2p  orbitals become degenerate.

Nevertheless, the A —> B dipole transition moment curve drops very rapidly when 

a confining potential is present, which suggests tha t the A state loses a significant 

amount of 2s character due to the confinement. Meanwhile, a crossing exists between 

the A —> B and B —> C transition moment curves and it shifts to a smaller R  with 

increasing ui. These phenomena indicate an im portant interaction between the A
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Figure 6.7: Transition dipole moments (in atomic units) of HeH as a function of 
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Figure 6.8: Oscillator strength of HeH as a function of R. Solid-lines: A-B transi­
tions. Dashed-lines: B-C transitions.

and C state at which the C state attains the hydrogen 2s character. Interestingly, 

the increased 2s character of the C state does not affect the B —> C dipole transition 

moment very much at large R , although its magnitude becomes larger than that of 

the A —> B transition moment.

Because of the configuration mixing of the A and C states, a prominent change 

in the peak intensities of the electronic spectrum is anticipated. Figure 6.8 shows 

the calculated oscillator strengths for both the A -> B and B —> C transitions 

with respect to R  and o j . Clearly, the oscillator strength, and thus the transition 

intensity, for the B -> C transition significantly increases with o j at large R, which 

may be attributed to the greater 2s character of the C state. On the other hand, the 

maximum for the A —> B transition decreases, which corresponds to the diminishing
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Figure 6.9: Oscillator strength of HeH as a function of R. Solid-lines: X-A transi­
tions. Dashed-lines: X-C transitions.

2s character of the A state.

For comparison purposes, the oscillator strengths for the X —> A and X -» C 

transitions were also computed and displayed in Figure 6.9. Since the ground state 

of HeH is composed of the ground-state H e(ls2) and H (ls), the evolution of the 

transition probabilities, which are proportional to the oscillator strengths, for the X 

—>■ A and X —> C transitions should be opposite to that for the A —> B and A -» C 

transitions. As expected, the oscillator strength for the X —>■ A transition increases 

at large R  for uj >  0.0 since the increased 2p  character of the A state brings about 

a stronger transition to the X state. Conversely, the 2s character on the C state 

reduces the X —>• C transition quite appreciably. A surprising feature is noticed at 

the small R  region where the transition probability for the X —> C sharply increases
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Table 6.3: Critical confinement toc for different electronic states of HeH
State 0JC /  eV

A 2E+ 0.178
b  2n 0.155
c 2S+ 0.111
D 2S+ 0.067
e  2n 0.055

F 2S+ 0.042

at R  =  1.0 au. This observation indicates tha t at small R  regime the 2pz orbitals 

are more destabilized and lie in a higher energy than  the 2s-orbital, in contrast to 

the situation in the intermediate R  regime where the 2p z orbital is more stable than 

the 2s orbital in the presence of a cylindrical confining potential.

6.4.4 C ritica l C onfinem ent and P ertu rb ation a l A nalysis

When an atom or molecule is excited into an energy level which lies above its first 

ionization limit, the system will become unstable, and a spontaneous ionization 

will occur in which an electron will be ejected. This process is referred to as the 

autoionization, or field-induced ionization [47]. As the valence electrons of Rydberg 

molecules are only weakly bound to the parent ion core, it is expected that they 

could be easily expelled by an external potential.

To determine the strength of confinement at which an electronic state of HeH 

undergoes the autoionization, the following quantities:

AE n(u) =  E nHeH{u -re) -  ^ eH+(W; r e), (6.27)

were computed where n is the index of the excited state, i.e., A (n =  1), B (n =  2) 

and so on. The critical confinement is defined by the value of w at which AE n =  0. 

The results are plotted in Figure 6.10 and summarized in Table 6.3. As might 

be expected, the higher the excitation, i.e., larger n, the smaller the confinement 

parameter ujc because of the more diffuse nature of the valence electron density. It is 

interesting to note that uic obtained in the present study for HeH are larger than the 

corresponding values for the analogous NeH molecule [43]. This observation reveals
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Figure 6.10: Plot of A E n(uj) (Eq. 24) versus lj for different electronic states of HeH.
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that the Rydberg electron in HeH is in fact more strongly bound by the HeH+ core 

than the one in NeH molecule; this is consistent with the earlier finding tha t the 

H(2p) Rydberg orbital of HeH, estimated by the location of the potential barrier of 

the C state potential, is slightly smaller than that of NeH. These two phenomena 

can all be accounted for by the weaker attraction between the NeH+ core and the 

Rydberg electron due to the screening effect of the Ne electron cloud. The less- 

effective shielding in HeH results in a stronger binding of the Rydberg electron and 

a smaller Rydberg orbital.

As illustrated by Figure 6.10, the critical confinement param eters under which 

the electronic states of HeH remain bound are rather small, not exceeding 0.2 au 

Therefore, the classical perturbation theory would be sufficient to describe the in­

dependence of the spectroscopic properties of the low-lying states of HeH.

The calculated potential energy curves for X to C states have been fitted to 

the first- and second-order polynomials in terms of a;2, respectively, derived from 

eq. (6.23), and the coefficients C f  were determined for different values of R. For 

the first-order approximation only C f was calculated while for the second-order 

approximation both C f and C$ were computed. The term  C r0l corresponds to the 

energy of unconfined HeH molecule in the state n. Figures 6.11-6.14 present the 

the first-order and second-order approximations to the first four electronic states of 

HeH, and figure 6.15 illustrates the dependence of the perturbation coefficients on 

R.

It is quite obvious that the first-order approximation is not sufficient when in 

exceeds 0.05 au, although it is still accurate enough for smaller values of in. The 

interpolated energies are too large, which may be attributed to over-estimation of the 

perturbation from the confining potential. To achieve a better agreement with the 

exact energies, the second-order correction is necessary; this point is well illustrated 

in Figures 6.11-6.14. For the ground state of HeH, an excellent agreement between 

the exact and interpolated energy values is observed. The discrepancy is in general 

in the order of 10~5 au. The performance of the perturbation treatment becomes 

poor for higher excited states. For instance, the error for the A state is about 0.001
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Figure 6.11: Potential energy curves of the ground X 2S + state of a confined HeH 
molecule (solid lines) and their approximations (crosses) resulting from the first- 
order (left, k =  1) and second-order (right, k =  2) interpolation. The consecutive 
curves correspond to the increment of 0.025 au in u.
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Figure 6.12: Potential energy curves of the ground A 2E+ state of a confined HeH 
molecule (solid lines) and their approximations (crosses) resulting from the first- 
order (left, k — 1) and second-order (right, k =  2) interpolation. The consecutive 
curves correspond to the increment of 0.025 au in o>.
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Figure 6.13: Potential energy curves of the ground B 2n  state of a confined HeH 
molecule (solid lines) and their approximations (crosses) resulting from the first- 
order (left, k =  1) and second-order (right, k =  2) interpolation. The consecutive 
curves correspond to the increment of 0.025 au in o j .
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Figure 6.14: Potential energy curves of the ground C 2S + state of a confined HeH 
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au, which is 100 times bigger than tha t for the ground state. This is not surprising as 

those states are strongly perturbed via the avoided crossing caused by the confining 

potential.

6.5 Final Remarks

A Rydberg molecule HeH confined by a cylindrical harmonic potential has been 

investigated. It has been found tha t this molecule behaves differently from the 

strongly-bound diatomic molecules. The effects of the confining potentials on the 

molecular properties of HeH have been studied. The confinement does not dram at­

ically vary the bond lengths for the low-lying electronic states of HeH, although the 

bond lengths could be either stretched or compressed. Besides, the states are not 

necessarily more strongly bound by the potential. It has been shown that some 

of the states become less bound when the potential is applied. While the X and 

B states retain their configurations for the whole range of R,  there exists a new 

avoided crossing between the A and C states where they interchange the dominant 

configurations. This configuration mixing is manifested in the variations of the 

dipole transition moments and the oscillator strengths of the electronic transitions 

involving these states.

It is predicted that this system will be easily ionized by even modestly strong 

applied potential. For higher excited states weaker potentials are required to trigger 

the process of autoionization. Because of the relatively small valid confinement pa­

rameters (i.e. for o j < u i c ) ,  perturbation theory may be applied to the studies of the 

confinement effects. The first-order correction is insufficient for correctly describ­

ing the changes in the potential energy curves of the confined HeH molecule. The 

second- or higher-order correction is definitely im portant in improving the accuracy. 

The present study shows that for o j  <  0.12 au the second-order perturbation the­

ory is an excellent alternative for calculating reliable potential energy curves of the 

low-lying excited states of Rydberg HeH molecule.
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Chapter 7

Effects of Confinement on the  
Rydberg M olecule N eH

In the present chapter1, the main focus is switched to a heavier noble-gas compound, 

NeH. As in the previous chapter, the influences due to the applied potential to a 

various structural and spectroscopic properties are explored and discussed using 

both variational Cl and perturbative techniques.

7.1 Introduction

In recent decades excimers (molecules with repulsive or very unstable ground state 

but stable excited states) have become one of the major areas of research in laser 

physics and spectroscopy [1]. In cases when the excited states are Rydberg states, 

the excimers are also known as Rydberg molecules [2]. Rydberg molecules are 

characterized by the Rydberg electron, which is far from the ion core, and a small 

ionization potential. Due to the large orbital radius of the Rydberg electron, its 

interaction with the parent core could be regarded as approximately Coulombic. 

The presence of the Rydberg electron gives rise to a series of lines in atomic and 

molecular spectra which can be described using the quantum defect theory [3].

The first Rydberg molecule, He2 , was discovered and investigated by Goldstein

[4] and Curtis [5] in 1913, and in the following years many Rydberg molecules were 

found and analyzed [6]. Among them, the noble-gas hydrides (NgH) have attracted

1A version of this chapter was published in J. P hys. B: A t. Mol. O pt. P hys. 38, 1143 (2005).
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significant attention from both theoreticians and experimentalists. Since the early 

work on HeH by Michels and Harris [7], Miller, Schaefer and Slocomb [8, 9], and by 

Das and Wahl [10], many studies have been focused on the spectroscopic observations 

of the electronic transitions of NgH (e.g. Refs. [11, 12, 13, 14]) and the theoretical 

computations of accurate potential energy curves (PECs) of the electronic states of 

these systems (see Refs. [15, 16, 17, 18, 19]). It is known tha t all these molecules 

possess a van der Waals minimum in the ground electronic and a series of Rydberg 

bound excited states. As the Rydberg electron does not interact strongly with 

the ion core, the potential energy curves of these states closely resemble those of 

the corresponding molecular ions. An interesting feature of these NgH Rydberg 

molecules appears in their bound-bound and bound-free fluorescence spectra. The 

A 2E+ state of HeH and ArH was found to decay preferably by predissociation via 

nonadiabatic radial coupling with the ground state at small internuclear distances 

while a continuous A 2E+ —> X 2S + emission spectrum could be observed for NeH 

and KrH [20] although line-broadening due to a small rate of predissociation was 

still detectable [21].

A number of experimental techniques have been developed to generate atoms and 

molecules in Rydberg states and to determine their properties (see, for example, 

Refs. [22, 23, 24, 25]). Field-ionization [26] is an efficient method for detecting 

Rydberg molecules and measuring their energy levels. Relying on the fact that 

the Rydberg electron with high principal quantum number possesses a very small 

ionization potential, a tunable pulsed field is applied to the system and used to 

determine the threshold amplitude, that corresponds to the ionization potential, 

at which the Rydberg electron is ejected [6]. By carefully adjusting the pulsed 

field, microwave transitions between fine-structure states could also be detected [27]. 

However, a serious technical problem arises because the electronic and spectroscopic 

properties of these systems are vulnerable to the variation of fields; a fast increase of 

field may give rise to the diabatic effects in which these systems transverse between 

states via the avoided crossing [28]. Therefore, a detailed understanding of the 

electronic structures and behavior of Rydberg molecules with respect to the external
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fields is desirable.

Field modulation of molecular properties has been a subject of extensive studies 

since the early stage of quantum physics. Hydrogen atom in electric and mag­

netic field is a typical example, demonstrating the influence of external fields on 

the spectroscopic properties of atomic systems. Following the rapid advancement 

of solid-state physics and laser technology, the concept of field-induced confinement 

has been applied to the creation of quantum dots [29], nano-scaled semi-conducting 

materials [30] and opto-electronic devices [31]. Meanwhile, theories have also been 

established to understand and explain, from the theoretical viewpoint, the experi­

mental observations of the special properties exhibited by these systems (for a recent 

review, see Ref. [32]).

Due to the diffuse distribution of the excited valence electron, the Rydberg 

molecules, as compared to other ground-state systems, will be very sensitive to the 

existence of external potentials and to their slight variations. Therefore, it is in­

triguing to explore the Rydberg molecules confined by an external potential and 

understand how they respond to the application of both weak and strong poten­

tials. In the present work, the influence of spatial confinement on NeH molecule was 

studied, in which a weak harmonic potential was adopted and treated as a perturba­

tion. The potential energy curves of the ground and the three lowest excited states 

of NeH were calculated, and the geometric parameters and vibrational constants 

were determined. Additionally, the process of field-induced ionization of the system 

at different electronic states was investigated and the threshold field strengths for 

autoionization were extrapolated.

7.2 Computational M ethodology

The basic ideas of the formulation of the model of confinement have been introduced 

and discussed in Chapter 2. In this work, the potential is again assumed taking the 

form of a cylindrical harmonic potential defined as eqs. (2.23) and (2.24). The 

present work can be treated as a model study in which the electron density, p(r), 

of the molecular system is modified due to the external potential. The choice of
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the harmonic-type model potential seems suitable, since such potentials have been 

found of great use in condensed-matter physics and nanotechnology. For instance, 

the lateral potential of a small, two-dimensional quantum dot, when the scattering 

states are neglected, can be adequately represented by a parabolic well [31]. This 

model potential can also explain the unexpected independence of the excitation 

energy and the number of particles in a quantum  dot [35]. On the other hand, the 

harmonic oscillator potential can be used as an approximate model for the studies 

of charged particles and molecules in parallel magnetic fields [36], and has recently 

been utilized in the studies of magnetized molecular hydrogen [37].

The calculations of the potential energy curves of four electronic states of NeH 

were performed using multi-reference configuration interaction (MRCI) method im­

plemented in the object-oriented O p e n M o l  program [38] for values of io ranging 

from 0.00 to 0.12 a.u. In all the calculations, Dunning’s cc-pVTZ basis set for neon

[39] and a (13s7pld) basis set, denoted by H-36, contracted to (10s7pld) for hydro­

gen atom [40] were used. In order to appropriately describe the distortion of electron 

density by the harmonic potential, a set of auxiliary basis functions with exponents 

of w/2 was added at the midpoint position between the nuclei [41]. These so-called 

confinement basis functions are the eigenfunctions of the harmonic oscillator with 

strength w.

7.3 Results and Discussion

7.3.1 B asis set

One of the characteristics of the Rydberg molecules is the valence electron that 

moves in an orbit with a large dimension. Consequently, the interaction between 

the Rydberg electron and the molecular core is purely electrostatic, and long-range 

interaction becomes significant. Accurate calculations of the interaction of the Ry­

dberg electron require basis sets with diffuse exponents tha t are able to properly 

describe electrons in the high-lying states and with large angular momentum. The 

H-36 basis set has been tested in atomic calculation of hydrogen atom, and it yielded 

superior excitation energies for 2s, 2p, 3s, 3p and 4s states [40] with the average error
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of only 0.2 microhartrees. Baer et al. have pointed out tha t the correlation effect 

between the Rydberg electron and the molecular core is very small and the excited 

states could be well described by a single configuration [42]. Previous calculations 

[16, 43, 44] and the present study also support the single dominant reference con­

figuration. Hence, the main contribution to the electron correlation arises from the 

core electrons in the parent ion, and correlation-consistent type basis sets such as cc- 

pVTZ should enable the recovery of most of the correlation energy. As the primary 

goal of the present work is to investigate the ground and first three excited states, 

which are correlated only to Is, 2s and 2p atomic orbitals of hydrogen, the H-36 

basis set is suitable and provides excellent description of the states in the presence 

of a confining potential.

In order to reduce the extremely large number of configurations tha t could arise 

in extensive Cl calculations, in the MRCI calculations the reference space is trun­

cated by selecting only the configurations for which the coefficient in the wavefunc- 

tion, Cj, is greater than 0.1, i.e., |c,| > 0.1. This leads to the reference space with 

less than eleven configurations and about 300000 determinants in the subsequent Cl 

calculations. The core Is orbital of Ne was kept frozen. Spectroscopic parameters 

for the ground and excited states of NeH for oj =  0.00 are presented in Table 7.1, 

and the potential energy curves are shown on Figure 7.1. The calculated values 

show good agreement with the data reported by Baer et al. [42] and Bondybey et al.

[43], except for the C 2n  state where the re value from Bondybey et al. is 0.1 a.u. 

longer than the value obtained in this work. The discrepancies in r e, ve and D e are 

acceptable, although the computed uex e are systematically about 26 ~  36% larger 

than the ones from Ref. [42]. Accordingly, the truncated MRCI method is still able 

to yield potential energy curves with good accuracy for the study of influence of 

confinement.

7.3 .2  Structural A lteration s in C onfinem ent

Similarly to the cases of other noble-gas hydrides [15, 18], the low-lying excited 

states of NeH strongly resemble the ground-state potential energy curve of NeH+ ,
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Table 7.1: Spectroscopic constants of NeH and NeH+ without confinement. (re in
atomic units, De in eV, and ve and vexe in cm-1 )___________________

State Reference re ve uex e D e
A 2E+ This work 1.8894 2869 136.7 2.03

[42] 1.9067 2855 108.4 2.04
[43] 1.8822 2801 1.53
[16] 1.9332 2727 2.01

b  2n This work 1.8681 2952 167.8 1.86
[42] 1.8671 2883 124.0 1.84
[43] 1.8671 2913 1.50
[16] 1.9162 2792 1.79

c  2S+ This work 1.9392 2780 129.0 1.50
[42] 1.9464 2646 95.6 1.37
[43] 2.0579 2737 1.51
[16] 1.9842 2596 1.79

NeH+ X XE+ This work 1.8628 2953 135.8 2.37
[43] 1.8689 2917 2.10

[45] (a) 1.876 2910 105.9 2.33
[45] (ft) 1.882 2894 116.9 2.27
[45] W 1.876 2892 114.5 2.29

Expt(d) 1.8727 2904 113.4 2.28
(o c) CCSD(T) +  BSSE with cc-pVTZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets

respectively. ^  Refs [46] and [47].
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Figure 7.1: Potential energy curves of selected low-lying states of NeH and the 
ground state of NeH+ . (w =  0.00 a.u.)
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which constitutes the parent ion core of the Rydberg states of NeH. However, the 

C 2E+ potential energy curve shows a local maximum at about 4.00 a.u., which is 

possibly caused by the interaction of the Rydberg electron (n=2) of the hydrogen 

atom with the neon core. A counterpart has also been found in HeH where its C 2E + 

potential energy curve possesses a small barrier at 3.8 a.u. [40]. Theodorakopoulos 

et al. showed tha t the large radial coupling between the A 2E+ and C 2E + states 

gives rise to the exchange of configurations between the states at intermediate R

[16]. At small R, the A 2E + state is characterized by the hydrogen 2p function while 

the C 2S + state is dominated by the Rydberg character of hydrogen’s 2s orbital. 

When R  increases, the A 2S + acquires more of the hydrogen 2s character. On the 

other hand, the C 2E+ state could be described by the hydrogen 2p function, with 

an admixture of ionic (Ne+ +  H~) character tha t gradually vanishes at very large 

R.

The effects of cylindrical confining potential on the ground and Rydberg states 

of NeH are diverse. Figures 7.2-7.5 depict the variations of potential energy curves 

for the X 2E + , A 2E+ , B 2n  and C 2S + states under the influence of external 

confinement. Calculations of molecular H2 and Li2 revealed tha t spherical and 

prolate-type confining harmonic-oscillator potentials always restrict electron density 

within the internuclear space, thus yielding a stronger bonding interaction, larger 

binding energy, and shorter bond distances [33, 34], In the case of cylindrical- 

type confinement, however, the above-mentioned conclusions are not necessarily 

appropriate. For instance, as shown in Figure 7.6, the A 2E + state is the only one 

that has a decreased re and a larger ve in the presence of confining potential, which 

could be ascribed to the enriched electron density in the internuclear region that 

consequently strengthens the bonding interaction. On the other hand, the B 2n  

and C 2E+ states exhibit the opposite trend with a stretched bond distances and 

reduced vibrational constants.

The different geometric variations of the states could be attributed to the changes 

of the electronic structures and the electron density distributions of the molecular 

orbitals due to the confining potential. For all the four states investigated here the
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Figure 7.2: Potential energy curves of X 2X+ state in confinement. Exact results 
from MRCI and approximate results from perturbation theory (first and second- 
order, respectively).
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Figure 7.3: Potential energy curves of A 2E + state in confinement. Exact results 
from MRCI and approximate results from perturbation theory (first and second- 
order, respectively).
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Figure 7.4: Potential energy curves of B 2II state in confinement. Exact results 
from MRCI and approximate results from perturbation theory (first and second- 
order, respectively).
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Figure 7.5: Potential energy curves of C 2E + state in confinement. Exact results 
from MRCI and approximate results from perturbation theory (first and second- 
order, respectively).
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Figure 7.6: Plots of equilibrium bond distances and vibrational frequencies versus 
the strengths of confinement for the first three low-lying electronic states of NeH.
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asymptotes are correlated to the ground state of neon and various states of hydrogen. 

Diercksen et al. have shown tha t orbitals of atoms and molecules reorder according 

to the strengths and types of the applied potentials [48]. Prolate-type confining 

potentials split the triply-degenerate 2p orbitals, giving rise to the 2pz < 2s < (2px, 

2py) ordering of orbital energies. Because of the additional relative stability of 2pz 

atomic orbitals, the dissociation limits associated with the A 2E + , B 2fl and C 2E + 

states change. The asymptote for the A 2E + state, which corresponds to Ne and 

H(2pz), is lowered while that for the B 2II state, leading to Ne and H(2px,2p:y). 

is shifted upward. These findings agree with the predicted ordering of 2s and 2p 

atomic orbitals embedded in prolate-type confining potentials.

Although there exists no avoided crossing between the low-lying 2E+ states in 

the case of uj =  0.00 a.u., for oj > 0.05 a.u. an explicit avoided crossing of the A and 

C 2S + states starts to appear at R  =  3.00 a.u., indicating a stronger interaction 

between the states due to the external potential. In addition, the applied potential 

suppresses the hydrogen 2p character in the A 2S + state while greatly enhancing it 

in the C 2S + state. Through the avoided crossing these states exchange their char­

acteristics: the A 2S + state acquires more hydrogen 2p character and the hydrogen 

2s orbital becomes dominant for the C 2E+ state. The new avoided crossing also 

leads to the formation of a local maximum in the A 2E + state, lying about 0.4 eV 

above the dissociation limit when u  =  0.12 a.u., since the relative stability of 2pz 

with respect to other 2p orbitals brings about the downward shift of the potential 

energy curve. Furthermore, this avoided crossing causes the reduction of the bind­

ing energy for this state, with D e changing from 2.0 eV (w =  0.00 a.u.) to 1.6 eV 

(a; =  0.12 a.u.).

The B 2n  state exhibits a monotonically increasing r e and decreasing ve for 

to > 0.00 a.u., even if the changes in re and ve are small (2% and 10% respectively). 

The relatively small variations might possibly result from the insignificant change of 

the shapes of 2px and 2py atomic orbitals, whose lobes along x- and y-directions are 

squeezed, thus enhancing the orbital overlap with the closed-shell neon at slightly 

larger R. The binding energy also exhibits a decreasing trend, indicating tha t the
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bonding interaction is weakened by the confining potential.

Despite the prominent effects of the confining potential on the A 2X+ potential 

energy curve, the potential energy curve of the C 2S + state remains essentially the 

same regardless of the strength of the applied potential. The only significant changes 

are observed in the barrier of the local maximum at the internuclear distance of 

about 4 a.u. and the potential minimum at small R. The increasing r e is apparently 

a consequence of the additional avoided crossing with the A 2S + state that shifts the 

potential well towards a larger R. Interestingly, the position and height of the energy 

barrier provide information about the orbital extent of the Rydberg electron and 

its interaction with the Ne core [49]. The maximum moves towards smaller R  when 

us > 0.00 a.u., suggesting that the orbital of the Rydberg electron is compressed by 

the external potential. This is not unexpected, because the potential is repulsive to 

electrons therefore contracting and deforming the orbitals. Apart from the reduced 

size of orbital, the Rydberg electron experiences a stronger interaction with the Ne 

core when the molecule is confined. As illustrated by Figure 7.5, the potential hump 

is enlarged by approximately 50% when us is increased to 0.12 a.u. This strengthened 

interaction is attributable to the larger confined electron density, which shields the 

Ne core, that gives rise to a stronger Coulomb repulsion.

Additional insights into the effect of confinement on the wavefunction at different 

internuclear distances may be obtained by analyzing contributions from dominant 

configurations. Figures 7.7 and 7.8 show the values of |c|2 for three configura­

tions that correspond to the excitations H (ls1) —> H(2s1), H (ls1) —>■ H(2p*), and 

Ne(2p2)H (ls1) —> Ne(2p^)H(ls2) (the latter is called ionic in the following discus­

sion). In the region of small R  (i.e., R  < 2.0 a.u.) the A 2E + state (Figure 7.7) 

is dominated by the Rydberg H(2p) character while the C 2S + state (Figure 7.8) 

is essentially of the Rydberg H(2s) character for all values of us. These results are 

consistent with the X 2X+ - A 2X+ coupling matrix element calculations performed 

by Theodorakopoulus et al. [16], in which the small X-A coupling matrix elements 

of NeH compared to those for HeH are due to the Rydberg H(2p) character of the 

A 2S + state.
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Figure 7.7: Decomposition of the A 2E + state wavefunction. Solid lines: Ne(ground- 
state) +  H(2s); dashed lines: Ne(ground-state) +  H(2pz); dotted-dashed lines: ionic 
Ne+ and H~ resulting from the excitation of Ne(2p) —>■ H(ls).

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.8 
™ _ 0.6 
— 0.4 

0.2

1
0.8 

^!_0.6 
— 0.4 

0.2

co = 0.09

1
0.8 

N -0.6  
— 0.4 

0.2

(o = 0.06

1
0.8

CM
co = 0.03o

0.4
0.2

T1
0.8

75-0-6
- 0 . 4

0.2
co = 0.00

Internuclear Distances (in a.u.)

Figure 7.8: Decomposition of the C 2S + state wavefunction. Solid lines: Ne(ground- 
state) +  H(2s); dashed lines: Ne(ground-state) +  H(2p0); dotted-dashed lines: ionic 
Ne+ and H_ resulting from the excitation of Ne(2p) —> H(ls).

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



At the point of avoided crossing, a sharp interchange of configurations is observed 

where the C 2S + state acquires the H(2pz) character from the A 2S + state, and 

this configuration becomes dominant for the range of intermediate R. Meanwhile, 

the small contribution from the ionic configuration appears in the C 2S + state 

wavefunction but it declines gradually for R  >  3.5 a.u. This may be attributed 

to the additional crossing of the C 2S + state and the Ne+ +  H-  ionic potential. 

On the other hand, the avoided crossing causes the increase in the H(2s) character 

of the A 2E + state, but, surprisingly, this character vanishes rapidly. Instead, the 

ionic configuration arises, possibly due to the crossing with the ionic potential, 

and dominates the state. Interestingly, the H(2s) character in the A 2S + state 

wavefunction at small R  increases with co, which can be accounted for in terms 

of the extent of the A 2S + - C 2S + avoided crossing. The stronger interaction 

between these states for uo «  0.09 a.u. gives rise to the larger contribution of the 

H(2s) configuration to the A 2S + state.

The situation at large R  (i.e., R  > 6 a.u.) is more complicated. The reorder­

ing of 2p orbitals induced by the confining potential suggests the differentiation 

of asymptotic limits of the A, B, and C states. This change is observed in the A 

2£+ state where the dissociation channel switches from H(2s) (free-space) to H(2pz) 

(a; =  0.12 a.u.). Similar change of dissociation limit is noticed in the C 2S + state 

where the asymptote correlates to Ne(ground-state) +  H(2s) when an external po­

tential is present. Nevertheless, it is also found tha t the contribution of the ionic 

configuration increases with co, which outweighs the H(2s) character in the region 

of 6.0 < R  < 8.0 a.u. when co >  0.06 a.u. Calculations for R  > 10.00 a.u. reveal 

that the ionic character diminishes gradually and the H(2s) character appears again, 

leading to the limit of Ne(ground-state) and H(2s); furthermore, the point where 

the H(2s) character reappears is dependent on co. This intrusion of ionic charac­

ter in the C 2S + potential energy curve indicates a possible existence of a strong 

configuration interaction between the C 2E+ state and the ionic potential which is 

caused by the destabilization of the C 2S + state. The upshift of the C 2S + potential 

energy curve with respect to the ionic potential results in the shift of this additional
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avoided crossing toward larger R.

7.3.3 P erturb ation a l A pproach to  T h e  S tud ies o f  T he E ffects o f  
C onfining P o ten tia l

In all the calculations performed in the present work, the values of ui remain very 

small, i.e., ui «  1. In addition, as may be seen in Figures 7.2-7.5 and 7.9, the 

influence of confinement on the properties of potential energy curves of the low- 

lying electronic states of NeH is rather small. It is therefore interesting to explore 

whether the effect of confinement may be treated via perturbation theory, while 

maintaining the full variational flexibility of the MRCI approach for the treatment 

of the electron correlation [50].

According to the definition in eq. (2.24), the confining potential that appears in 

eq. (2.1) can be rewritten as

W’(r) =  a,2 ^  i  (x2 +  y 2) =  u 2W {? ) , (7.1)
i=1

leading to the following form of eq. (2.1):

U(r-,R) =  n ^ ( f - ,R )  +  oj2W '(r). (7.2)

The perturbation approach to the confinement effects was introduced in Chapter 

6. Here, a more detailed exposition of the method is presented. Using the Rayleigh- 

Schrodinger perturbation theory, it is assumed tha t the unperturbed Hamiltonian 

(r; R) satisfies the Schrodinger equation:

^ ° ) ( r ; R ) ^ ° ) ( f ; R )  =  E ^ ( R ) ^ ( r ; R )  (7.3)

where n labels electronic states (i.e., n =  0, 1, 2, 3 for the states X 2X+ , A 2S + , B 

2n, and C 2S + , respectively) and the superscript represents the order of correction. 

The corrected total energy can be expanded in a power series of the perturbation 

parameter w2:

E n(R) =  E ^ ( R )  +  u 2e P ( R )  +  u 4E W (R ) +  ■ • ■ , (7.4)
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where the first and second-order energy corrections are

E ^ ( R )  =  (*Q \r;R )\W W \* < £ H ? -,R ))  (7.5)

E ^ ( R )  =  ( ^ ( r ^ R W i ^ H f - R ) ) .

To investigate the accuracy of the energies from perturbation theory, two poly­

nomial approximations to the energy E n(R) in eq. (7.4) were used:

En(R) =  A n(R) +  B n(R)ui2 (7.6)

En{R) =  A n(R) +  B n(R )u 2 +  C n{R)u>4. (7.7)

The first term A n(R) in these equations is the unperturbed energy corresponding 

to w =  0.00. The coefficients B n(R) and C n(R ) are determined by requiring that 

eqs. (7.6) and (7.7) are fitted exactly with the MRCI potential energy curves for

u  =  0.12 a.u. and both u  =  0.06 a.u. and u  =  0.12 a.u., respectively. Results

are displayed in Figures 7.2-7.5, in which the solid lines are the MRCI potential 

energy curves ( “exact”) and the points marked with x represent the approximate 

energy values computed using eqs. (7.6) and (7.7). The values of B n(R) and C n(R) 

are also plotted in Figure 7.10. Evidently, eq. (7.7) leads to results superior to 

those obtained with eq. (7.6), and the correction up to second-order is necessary 

to provide the energy values comparable to the MRCI results. For the X 2II state 

both approximate polynomials work equally well as the potential energy curve does 

not vary much when the confining potential is applied. For the other excited states, 

however, eq. (7.7) yields potential energy curves that indisputably match the exact 

potential energy curves better than those predicted using eq. (7.6). Parameters 

from eq. (7.6) systematically over-estimate the perturbation, resulting in potential 

energy curves that are lower in energy than the exact ones. The addition of the 

second-order term (i.e., C n,s) greatly improves the results but the perturbation 

effect becomes slightly under-estimated when w ss 0.09 a.u. As the A and C 2S + 

states are involved in the avoided crossing for 0.05 < w < 0.10 a.u., the perturbation 

treatm ent leads to very large errors in the approximate potential energy curves.
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Figure 7.10: Coefficients of the approximate polynomials for different electronic 
states of NeH: (a) for Eq. (10), (b)-(c) for Eq. (11).
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Table 7.2: Critical strength of confinement leading to autoionization ( o jc in atomic 
units).

State 0)c
A 2E+ 0.144
b  2n 0.106

c  2e+ 0.107

7.3 .4  A u to ion ization  P rocess

When enough energy is provided, an atomic system in its ground-state configuration 

could be excited to a bound excited state whose energy is above the first ionization 

limit and is embedded in the continuum. In this case, there exists a very high 

probability tha t the excited atom undergoes the process of autoionization and ejects 

an electron [51]. Similar process could also occur in molecular species. Since the 

electrons in Rydberg states interact less strongly with the parent core, they are very 

susceptible to the influence of external potentials and the autoionization process, or 

field-induced ionization, should happen more readily in Rydberg molecules.

The present study provides data to estimate the critical strengths of potential, 

uic, at which NeH in different electronic excited states becomes less stable relative to 

the electronic ground state of the NeH+ ion. The energy differences Emm (NeH+) - 

Emm (NeH) for the A 2S + , B 2n  and C 2E + states and the ground-state NeH+ are 

calculated for o j < 0.12 a.u. and the results are plotted in Figure 7.11. The critical 

strength of potential o j c could be estimated as the value of o j corresponding to the 

vanishing energy difference. The values of estimated o jc are tabulated in Table 7.2. 

Interestingly, the o j c associated with the B 2n  state is smaller than that of the C 2E+ 

state, indicating that the B 2n  state, compared to the C 2E + state, is destabilized 

by the confining potential more rapidly. The same conclusion could also be drawn 

from Figure 9, which shows that the B 2n  state lies above the C 2E+ state at R  ~  re 

for o j > 0.10 a.u.

For all the three excited states the values of o j c are smaller than 0.15 a.u. Previous 

calculations on molecular hydrogen [37] and beryllium dimer [52] yielded values of
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cjc tha t are larger than 0.20 a.u. The results from the present study support the 

proposed idea tha t the Rydberg molecules, in contrast to strongly bound species, 

could undergo the autoionization process more readily.

7.4 Conclusion

Studies of the behavior of the Rydberg molecule NeH have been carried out using 

MRCI method. The ground and first three low-lying electronic states of NeH, subject 

to the influence of a cylindrical harmonic potential, have been computed. While the 

A 2S+ and C 2S+ experience rather substantial changes due to the presence of a 

confining potential, neither the X 2E+ nor B 2n  respond very strongly to the applied 

potential. A new potential maximum appears on the A 2E + potential energy curve 

at the intermediate values of R. In addition, the results show that an avoided 

crossing exists between the A and C 2E+ states.

Suitability of the perturbation approach to the study of confinement effects has 

been studied, and it has been demonstrated tha t perturbational treatm ent up to the 

second-order correction could successfully yield the potential energy curves compa­

rable to those obtained from the MRCI calculations. The errors for o j  a  0.09 a.u. 

may be attributed to the possible strong diabatic coupling between the A and C 

2S + states.

Under the influence of confinement, the autoionization process of Rydberg NeH 

molecule could be facilitated, and the first three excited states would undergo field- 

induced autoionization for w < 0.15 a.u., which is definitely smaller than the values 

estimated previously for strongly bound diatomic molecules such as H2 and Bejjh
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Chapter 8

R elativistic Calculations on The 
Ground and Excited States of 
AgH and AuH  in Cylindrical 
Harmonic Confinement

This chapter1 focuses on the preliminary investigation of the interaction between the 

confinement effects, electron correlation and relativity, and their mutual dependence 

in the electronic structure calculations for field-captured heavy element-containing 

compounds in which all these effects have to be considered simultaneously.

8.1 Introduction

Calculations of molecular properties of compounds containing heavy transition- 

metal elements is one of the most challenging issues in computational quantum 

chemistry. On one hand, these calculations can provide information related to the 

development and applications of transition metal compounds in the areas such as 

materials science and catalysis [1]. On the other hand, the accuracy of the calcula­

tions involving heavy transition metals is very sensitive to the methods employed. 

Since there are a large number of electrons and possible electronic states which 

are quasi-degenerate, sophisticated methods including the extensive treatm ent of

1A version of this chapter was submitted to P hys. C hem . C hem . P hys.
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electron correlation effects are mandatory. In addition, the large relativistic effects 

experienced by both core and valence electrons often lead to failures of the conven­

tional non-relativistic quantum chemistry methods.

There are several promising approaches of incorporating the relativistic effects 

in quantum chemical calculations. The simplest one involves the use of pseudopo­

tentials that greatly reduce the number of electrons explicitly considered in the com­

putations by removing the chemical unreactive core electrons and replacing with an 

averaged potential operator [2]. Since the generation of pseudopotential parameters 

depends on the reference orbitals and energies from all-electron calculations, a rel­

ativistic pseudopotential can then be produced by utilizing the reference from the 

Dirac-Hartree-Fock (DHF) atomic calculation [3]. A proper all-electron approach 

is to perform the molecular calculations using directly the Dirac-Coulomb Hamil­

tonian. However, it suffers from a deficiency tha t the two-electron interaction term 

is not Lorentz-invariant. This problem can be partially solved by introducing the 

frequency-independent Breit operator to the two-electron Coulomb term [4], leading 

to a so-called Dirac-Coulomb-Breit (DCB) Hamiltonian. The resulting DHF equa­

tion is very complicated and the four-component wavefunctions are very difficult 

to interpret. Therefore, several schemes have been proposed to decouple the large 

component (which corresponds to the electronic solution) and the small component 

(which corresponds to the positronic solution) of the DHF solutions (for example, 

ref. [5, 6, 7, 8]).

Among these two-component methods, the Douglas-Kroll (DK) transformation

[9], further developed by Hefi and coworkers [10], is the one most successfully applied 

in relativistic molecular calculations. This method stems from the free-particle 

Foldy-Wouthuysen transformation where a unitary transformation is carried out 

on the Dirac Hamiltonian in the external field. It follows tha t subsequent unitary 

transformations are to be performed in order to eliminate the odd terms of arbitrary 

orders in the external potential to avoid the problem of singularity. The DKn (where 

n is the order of transformations) method has been tested on a number of atomic and 

molecular calculations of heavy metal compounds and satisfactory results have been
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obtained [11, 12, 13]. In consequence, in the present study of coinage metal hydrides, 

the third-order Douglas-Kroll transformation was chosen to recover the relativistic 

energy contributions. The spin-orbit effect was included in a perturbative fashion 

using the full one- and two-electron Breit-Pauli Hamiltonian [14].

Two coinage metal hydrides, AgH and AuH, were investigated in the present 

study. These two molecules have been often studied in quantum chemistry be­

cause of the profound effects of relativity. For instance, the strong relativistic effect 

experienced by the 6s electrons of Au atom causes the anomalously high first ion­

ization potential and the unusual order of the low-lying excited states [15]. Both 

non-relativistic and relativistic molecular calculations on these compounds, using 

extended all-electron basis sets and effective potentials, have been performed (for a 

summary, see ref [16]). Nevertheless, the majority of these studies was focused only 

on the ground state properties, such as re, uje and D e, and only a few was devoted 

to the excited states (for example, ref. [17, 18]).

In the present study the ground and excited state properties of AgH and AuH 

confined in a cylindrical harmonic potential were computed. Studies of confinement 

effects have become a major research topic [19], and confining potentials have been 

shown to be very useful models in the studies of plasma [20], external magnetic 

field [21], and quantum dots [22], The model of harmonic confining potential has 

been recently applied to several molecular systems [23, 24, 25], and the basic under­

standing of the confinement effects in terms of orbital response has been obtained. 

Therefore, the aim of the present work was to investigate the combined effects of 

external confinement and relativity on the molecular properties, in particular the 

spin-orbit coupling constants, of AgH and AuH.

8.2 Computational Details

An excellent review of the Douglas-Kroll (or Douglas-Kroll-Hefi) transformation 

could be found on the series of publications by Hefi et al. [26, 27] and Hirao et al. 

[28, 29]. In the present work, no transformation on the two-electron operators was 

considered, and the instantaneous non-relativistic Coulomb two-electron operator
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was used instead

^ ( r i»r i) =  X l r : -  (8-1)i<3 lJ
However, it is believed tha t the influence will be minimal [30].

The confining potential used in the present study is a parabolic, electrostatic 

repulsion operator acting solely on electrons. It is defined, for an IV-electron system, 

as a sum of one-electron terms:
N

W (r) =  5 ^ to ( r i) (8.2)
i = 1

in which r,; is the coordinates of the i-th electron. The potential has the axial 

symmetry with the principal axis overlapped the molecular axis of AgH and AuH 

molecules, and the center of the potential located at the origin of the coordinate 

system. Therefore, the resulting confining potential can thus be represented by

W (r ) =  £  \  +  =  E  5 w2ri ' 8̂'3^
i = 1 i —1

and the total spin-free Hamiltonian is given by adding eqs. (8.1) and (8.3) to the 

DK3 Hamiltonian.

To deal with the electron correlation effects, the recently developed spin-orbit 

second-order quasi-degenerate perturbation theory (SO-MCQDPT2) [31] was em­

ployed. This method makes use of the orbitals generated in the complete active 

space self-consistent field (CASSCF) calculations to obtain the zeroth-order states 

for the spin-free Hamiltonian. The spin-orbit coupling is calculated using the full mi­

croscopic Breit-Pauli spin-orbit Hamiltonian [32] which gives rise to the off-diagonal 

coupling terms between the zeroth-order states in the effective Hamiltonian. Sub­

sequently, the second-order perturbation is performed on both the spin-free and 

spin-orbit parts, and the resulting spin-mixed states (in terms of linear combination 

of the zeroth-order states) are produced via the diagonalization of the perturbed 

Hamiltonian [33]. This approach ensures the inclusion of the scalar relativistic 

effects from the spin-free wavefunctions obtained from the Douglas-Kroll Hamilto­

nian, and the proper treatment of the avoided crossing between states of the same 

symmetry [31].
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All-electron basis sets were used for Ag, Au, and H in all calculations. The 

primitive basis set for Ag is the 24sl7pl2d4/3g set developed by W itek et al. [34], 

with exponents optimized at the second-order Douglas-Kroll and averaged coupled- 

pair functional levels for the balance description of the 2S, 2D  and 2P  states. This 

basis set is contracted to 13sl0p8d4/3c? by contracting the tightest 14sl0p6d to 

3s3p2d. In the present work, the three ^-functions were dropped, yielding the final 

13sl0p8d4/ basis set. For Au, the first-order polarized 21,sT7pllri9/ basis set of 

Sadlej was used [35]. This basis set was designed for the relativistic calculations 

of molecular electric properties in the Douglas-Kroll no-pair approximation. The 

set of 13sl0p7d with the largest exponents are contracted to 5s4p3d, leaving all the 

other s, p  and d primitives uncontracted. For the /-functions they are contracted in 

the 3,2,2,2 pattern. These contraction schemes lead to the contracted 13sllp7d4/ 

Gaussian basis set. In both cases, the Dunning’s cc-pVQZ basis set was used for H

[36]. Spherical harmonic Gaussians were used in all calculations.

The orbitals required in the SO-MCQDPT2 calculations for AgH and AuH were 

generated using the CASSCF method, with the active space for both AgH and AuH 

consisting of ten orbitals: Is for H, 4d, 5s and 5p  for Ag and 5d, 6 s and 6 p  for 

Au; 12 electrons were explicitly correlated. In order to perform the spin-orbit cal­

culations, one common set of molecular orbitals was used to describe all the zeroth- 

order states. This set of orbitals was obtained from a state-averaged CASSCF over 

the lowest 18 electronic states which correlate to the first four dissociation chan­

nels. In the subsequent perturbation calculations, 18 core orbitals, corresponding to 

I.s2,s2p3,s3p.3d4.s4p orbitals, were frozen for AgH while 34 core orbitals composed of 

[Kr]4d4/5.s5p orbitals were uncorrelated for AuH. To eliminate the intruder states in 

the effective Hamiltonian, the intruder state avoidance (ISA) scheme [37] was used 

in which the energy denominators around the poles are shifted. The parameters of 

0 . 0 2  for the spin-free terms and 0 . 1  for the spin-orbit terms were used as suggested 

by W itek et al.

The spectroscopic parameters for different electronic states of AgH and AuH 

were calculated based on the computed SO-MCQDPT2 potential energy curves
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employing the Dunham ’s 4-th order polynomial [38]. All the CASSCF and SO- 

MCQDPT2 calculations were performed using the ab initio quantum chemical pro­

gram GAMESS-US [39] which has been modified to include the features for the 

calculations of confinement effects.

8.3 Results and Discussion

8.3.1 A gH  M olecu le

In the S0-MCQDPT2 calculations of AgH in C^u point group symmetry, 18 states 

(eight Ai, two A2 , four Bi, and four B2 ) have been calculated, corresponding to the 

following twelve electronic states for diatomics in Coov symmetry: four 1 E + , one 1 A, 

two 1n, two 3E+, one 3A, and two 3n. These states, except for the 4 1E+ which 

correlates to the asymptote of Ag(2 S, 6 s) -I- H(2 5), arise from the Ag(2S) +  H(2 S'), 

Ag(2 P) +  H(2 SI), and Ag(2D)  +  H (2S) atomic states and comprise the first three 

dissociation channels. The estimated excitation energies for Ag(2 5) —>• Ag(2P)  and 

Ag(2 S) —> Ag(2D) are 3.794 eV and 4.051 eV, respectively, which agree fairly well 

with the values of 3.740 eV and 3.971 eV recently measured by Fourier-transform 

spectrometry [40]. The systematically over-estimated excitation energies could be 

a consequence of using the CASSCF orbitals optimized for both the ground and 

excited states of AgH.

The spectroscopic constants for these states are summarized in Tables 8.1 and 

8.2. As indicated, in general the performance of the SO-MCQDPT2 is not excellent. 

For the ground and first several low-lying states the agreement with the available 

experimental data is acceptable. However, it becomes very poor for higher excited 

states; for example, the discrepancy in re is 0 . 2  A for the 3 1 E + state. This is not 

quite unexpected, since the orbitals utilized in the SO-MCQDPT2 calculations for 

different states were optimized at CASSCF level for states of E, n  and A symmetries 

and of different spins. Consequently, these orbitals might not be able to describe the 

rather high-lying states. Nevertheless, these state-averaged CASSCF orbitals were 

used in order to provide qualitatively correct zeroth-order states for the subsequent 

spin-orbit calculations with the purpose of understanding the general confinement
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Table 8.1: Spectroscopic constants of the singlet states of AgH (re in A, ve and B e
in cm-1 , Te in eV). Experimental data from ref. [41, 42, 43].

State re "e B e Te
1  XE+ This work 1.5635 2024 6.906 0 . 0 0

[18] 1.620 1901 6.43 0 . 0 0

[34] 1.564 2073 6.904 0 . 0 0

Experiment 1.618 1760 6.449 0 . 0 0

2  XE+ This work 1.7503 1166 5.511 4.03
[18] 1.604 1807 6.56 3.64
[34] 1.717 1422 5.730 3.99

Experiment 1.665 1664 6.265 3.71
3 x£+ This work 2.0669 1126 3.952 6.73

[18] 2 . 2 0 1 925 3.48 6.87
[34] 2.093 1026 3.856 6.72

Experiment 1.862 1 2 2 0 4.87 5.52
4 XE+ This work 1.7035 2682 5.817 7.80

[34] 4.596 433 0.7995 7.22
1  XA This work 1.7743 1303 5.362 6.31

[18] 1.790 1310 5.27 5.90
i xn This work 1.5763 1654 6.794 6.19

[18] 1.842 1240 4.98 5.65
Experiment 1.61 1589 6.54 5.11

2  xn This work 1.8119 1271 5.142 6.32
[18] 1.643 1720 6.25 5.87

Experiment 1.80 845 5.23 5.79
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Table 8.2: Spectroscopic constants of the triplet states of AgH (re in A, ue and Be
in cm-1 , Te in eV). Experimental data  from ref. [41, 42, 43].

State re Ve B e Te
2  3 S+ This work 1.9511 1326 4.435 6.17

[18] 1.953 1516 4.42 6.26
1 3 A This work 1.7726 1327 5.372 6 . 2 0

[18] 1.795 1276 5.24 5.78
Experiment 1.875 4.81

1 3n This work 1.5994 1530 6.599 5.59
[18] 1.582 1751 6.75 5.38
[34] 1.594 1620 6.644 5.49

Experiment 1.64 1450 6.3 5.17
2  3n This work 1.7954 1397 5.237 6.07

[18] 1.814 1329 5.13 5.39
[34] 1.845 1198 4.960 6 . 0 1

Experiment 1.85 4.95

effects on the spectral and structural properties of coinage metal hydrides.

The ground state 1 E+ of AgH is characterized exclusively by the og configuration 

composed of Ag 5s and H Is orbitals. The calculated bond length r e is 1.5635 A 
which is about 0.05 A shorter than  the experimental value; correspondingly, the 

vibrational frequency is over-estimated by 300 cm-1 . These deviations could be due 

to the deficiency of the MP2 method in recovering the dynamic correlation effects. 

Applying the same basis set, geometry optimizations for the ground state of AgH 

have been performed using RHF, MP2 and DFT methods. The results (Table 8.3) 

illustrate that the relativistic MP2 predicts the bond lengths generally shorter than 

the experiment by 0.04 to 0.05 A, but the relativistic B3LYP yields the values in an 

excellent agreement. The extension of MP2 to include multi-configuration references 

slightly contracts the bond distance by 0.006 A. The previous studies by Witek et 

al. using the multi-reference M P2  with 18,s8p5d2/ basis set predicted re =  1.620 A 
[18]. Therefore, the under-estimated re in the present work could result from the 

smaller s-space in the basis set, as well as the absence of 5 -type functions, that 

could not adequately describe the relativistic effects on the s-orbitals in Ag and 

their interaction with H ( 2  5).
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Table 8.3: Structural parameters for the ground state of AgH (re in A, ue in cm 1) 
using the W itek’s basis set. Experimental data from ref. [43].

Method re Ve
N R R H F 1.7872 1460

RESC RHF 1.6999 1603
DK1 RHF 1.6901 1619
DK2 RHF 1.6998 1603
DK3 RHF 1.6995 1604
NR MP2 1.6647 1661

RESC MP2 1.5788 1876
DK1 MP2 1.5693 1901
DK2 MP2 1.5788 1875
DK3 MP2 1.5785 1876

NR B3LYP 1.7042 1567
RESC B3LYP 1.6254 1750
DK1 B3LYP 1.6163 1772
DK2 B3LYP 1.6253 1750
DK3 B3LYP 1.6249 1751

This work 1.5635 2024
Experiment 1.618 1760
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The first triplet 3 S + state also dissociates to the ground state Ag(2S) and H(2 5). 

Although a metastable minimum was found at 1.5 A at the CASSCF level, the 

SO-MCQDPT2 calculations predicted a repulsive potential with a turning point at 

about 2  A, as depicted in Figure 8 .1 . This state possesses the Ag 5pz character 

at small R  but acquires more 5s character when approaching the asymptotic limit. 

The same configuration also gives rise to the 2 1 E+ state which has attracted much 

attention from the spectroscopists because of the peculiar 2 1 E + —> 1 1 E + emission 

spectra [41]. The Birge-Sponer plot indicated a strong perturbation which results 

in a plateau on the potential curve. Learner suggested tha t this unusual shape 

was due to the avoided crossing with the 3 1 E + state [44] but W itek et al. proved 

that the perturbation comes from the electrostatic interaction of the charge transfer 

between Ag 5s and H Is orbitals [34], The present study supports W itek’s idea; 

the 2 1 E+ state at the intermediate R  is dominated by the ionic Ag+H-  character. 

In contrast to the ground state, whose re is under-estimated, the computed bond 

length for the 2  1 E + is about 0.09 A longer than the experimental value. Similar 

effect has also been observed by Witek et al. [18, 34]. This rather poor agreement 

could be attributed to the state averaging of the CASSCF orbitals. In spite of this 

discrepancy, the calculated potential curve is still in a qualitative correspondence 

with experiment.

The picture for the second and third dissociation channels is very complicated, 

as many excited states with Te between 5.80 eV and 6.30 eV exist because of the 

near-degenerate electronic states arising from the Ag(2D)  and Ag(2 P ) atomic con­

figurations. Four II states have been investigated in the present work and they 

exhibit very interesting characteristics. The two 3II states lie below the correspond­

ing 1n  states but they correlate to the different dissociation limits. The 1 1II and 1 

3II states belong to the second dissociation channel leading to the Ag(2 P) +  H(2 S) 

while the 2 1II and 2 3II states have the asymptotic limit of Ag{2D) +  H(2 5). The 

spectroscopic parameters determined from the computed potential curves for these 

states agree very well with the experiment, the largest discrepancies in re being 0.05 

A and in ve being 2 0 0  cm-1 . Avoided crossings were found between these states at
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Figure 8.1: Relativistic spin-free MCQDPT2 potential energy curves for the selected 
low-lying states of AgH in free space.
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small R. At the equilibrium region, the 1 1II and 1 3II states are characterized by 

the configuration arising from the 4dxz —> 5s excitation of Ag, while the 2  Hi and 2  

3n  states are dominated by the Ag(5p) character. When R  increases, these states 

interchange their configurations; the contribution of Ag (5p) to the 1 1II and 1 3II 

states raises rapidly at large R, while the leading configurations of the 2 1II and 2 

3n  become the Rydberg Ag(4d). W itek et al. found an explicit crossing between the 

3n  potential curves at 1.5 A [18]. However, this avoided crossing was not observed 

in a recent multi-reference configuration-interaction calculation by Li et al. [45]. 

The present results agree with the latter study, and the avoided crossing was found 

at 2 . 0  A. On the other hand, an avoided crossing was observed at 1.5 A between the 

two xn  state potential curves, which was also identified by Witek et al. [18].

Both the 1 A and 3A states originate from the 4dxy —»• 5s excitation of Ag, and 

the Ag(4d) character remains dominant for the whole range of R. These states, 

similar to the xn  and 3n  states, are only weakly bound, and their binding energies 

are only 0.58 eV and 0.67 eV, respectively, approximately a quarter of that for the 

ground state. The unusually small binding energies can be accounted for by the 

ineffective overlap of the Ag Ad orbitals and the H Is orbital. The relatively poor 

bonding interaction can also explain the larger re of these states compared to the 

ground state.

The 2 3 E+ state, resulting from the Adz 2 —> 5s excitation of Ag, lies 6.17 eV 

above the ground state. Because of slightly better overlap between the Ag Adz 2 and 

H Is orbitals, this state possesses larger re (1.9511 A) and binding energy (0.70 eV) 

than the 2 xn  and 2 3n  states. There is a noticeable irregularity on the potential 

curve at 1.5 A which could possibly be caused by the avoided crossing with higher 

3 S + states.

The 3 and 4 XE+ states have also been studied in the present work. However, 

the strong interaction between these states gives rise to the potential curves that 

are difficult to interpret. Two minima were found for the 3 1 H+ at 2 . 0  and 2.7 A 
respectively, with the barrier between them is only 6 6  cm-1 ; this feature was not 

observed in the previous calculations [18, 34, 45]. The 4 1 S + state comes from the
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excitation of an electron from 5s to 6 s orbital of Ag. Due to the diffuse nature of the 

Rydberg Ag 6 s orbital, this state is very strongly perturbed by other l£ + states and 

several points of avoided crossing have been located. Witek et al. discovered that 

there is a second, flat minimum at 4.50 A with a very large binding energy (about 

1.25 eV) [34]. This minimum is absent in the present SO-MCQDPT2 calculations. 

As the basis set for Ag is not designed for properly describing the Rydberg character 

of AgH, the accuracy of the potential curve of 4 XS + is questionable. Therefore, 

this state would be ignored in the subsequent discussion concerning the spin-orbit 

and confinement effects.

8.3.2 A uH  M olecu le

The potential energy curves for a number of low-lying states of AuH were calculated 

using SO-MCQDPT2 method in C^v symmetry, and they are shown in Figure 8.2. 

Twelve electronic states were investigated which correspond to the following eight 

states in diatomics: two of 1 H+ , two of 3 S + , and one for each of xn, 3n , 1 A and 3 A. 

Spectroscopic parameters were obtained based on the calculated potentials, and they 

are listed in Table 8.4. The data from W itek et al. [34] and HefS et al. [17], together 

with available experimental values, are also included for comparison. In general, 

the results of the present work agree fairly well with the available experimental 

and computed values, with the largest error found for the 2  1 H+ state, where the 

calculated re is about 0.09 A shorter.

Only two dissociation channels were studied for AuH: Au(2 5) +  H(2 5) and 

A u ( 2 D )  + H(2 5). Contrary to the situation of AgH where the excited Ag(2 P ) lies 

about 0.2 eV below Ag(2 D), the first excited state of Au is 2 D, with excitation 

energy is 1.74 eV [17]. The atomic calculation of Au using the Sadlej’s basis set 

at SO-MCQDPT2 level yielded the excitation energy of 1.69 eV which differs from 

the experiment by only 0.05 eV. However, the value estimated in the molecular 

calculations of AuH at R  =  5 A was about 2 . 1  eV, closer to experiment than the 

value of 2.4 eV, deduced from the work of Witek et al [18].

The calculated re for the ground state of AuH using relativistic SO-MCQDPT2
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Figure 8.2: Relativistic spin-free MCQDPT2 potential energy curves for the selected 
low-lying states of AuH in free space.
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Table 8.4: Spectroscopic constants of the selected states of AuH (re in A, ve and B e
in cm-1 , Te in eV). Experimental data from ref. [43].

State re t'e B e Te
1  1£+ This work 1.4942 2480 7.53 0 . 0 0

[34] 1.493 2414 7.54 0 . 0 0

[17] 1.52 2381 7.36 0 . 0 0

Experiment 1.5238 2305 7.24 0 . 0 0

2  XE+ This work 1.5864 2118 6 . 6 8 3.71
[34] 1.572 2198 6.80 3.27
[17] 1.60 2029 6.62 3.31

Experiment 1.673 1670 6 . 0 1 3.43
1  XA This work 1.7116 1335 5.74 4.77

[34] 1.662 1658 6.09 4.65
[17] 1.64 1827 6.28 4.01

i *n This work 1.7704 1784 5.36 5.10
[34] 1.747 1342 5.51 5.12
[17] 1.73 1492 5.63 4.37

1  3 e+ This work 1.6224 1737 6.39 3.30
[34] 1.654 1715 6.14 3.31
[17] 1.63 1755 6.35 2.75

2  3 S+ This work 2.0312 1568 4.07 5.12
[34] 2 . 1 0 0 1693 3.81 6.82

1 3  A This work 1.7042 1339 5.79 4.67
[34] 1.656 1688 6.13 4.53
[17] 1 . 6 6 1503 6.16 3.91

1 3n This work 1.7234 1402 5.66 4.71
[34] 1.700 1598 5.81 4.64
[17] 1.72 1 2 2 1 5.72 3.90

Experiment 1.695 1545 5.85 4.78
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Table 8.5: Structural parameters for the ground state of AuH (re in A, ve in cm 1) 
using the Sadlej’s basis set. Experimental data from ref. [43].

Method r e Ve
RESC RHF 1.5583 2050
DK1 RHF 1.5156 2261
DK2 RHF 1.5502 2086
DK3 RHF 1.5479 2097

RESC M P 2 1.4723 2507
DK1 MP2 1.4467 2687
DK2 MP2 1.4673 2541
DK3 MP2 1.4659 2551

RESC B3LYP 1.5253 2235
DK1 B3LYP 1.4958 2397
DK2 B3LYP 1.5197 2264
DK3 B3LYP 1.5181 2273

This work 1.4942 2480
Experiment 1.5238 2305

method is about 0.03 A shorter than the experimental value. It is known that 

both relativistic and electron correlation effects are important for heavy transition 

metal compounds, in particular for gold compounds. However, as shown in the 

case of AgH, MP2 predicts a too strong binding and thus too small re. The multi­

configuration MP2 improves r e by better describing the non-dynamical correlation, 

but its performance is slightly inferior to the relativistic DFT methods (see Table 

8.5).

At large R, the ground state is correctly described by the Au(6 s) and H (ls) 

character which constitutes the first dissociation channel. At small R  regime, how­

ever, the ionic configuration is dominant. A partial charge transfer was observed 

between Au and H, which is caused by the avoided crossing between the ionic and 

covalent potential curves [46]. The Mulliken population analysis performed with the 

CASSCF wavefunction yielded -0.3 charge on H, which is consistent with the values 

reported by McLean (-0.42) [47] and Hefi et al. (-0.27) [17]. The too large bind­

ing energy is attributable to the over-evaluation of the stabilization of the Au+H“ 

configuration at the equilibrium region due to the relativistic contraction of Au 6 s
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orbital [48],

The first 3 S + is an interesting state of AuH: its non-relativistic potential energy 

curve is purely repulsive but the relativistic counterpart shows a minimum at about 

1 . 6  A and a hump at 2 . 0  A. Hefi et al. explained the change in terms of the reordering 

of the Au 5da and H l.sv orbitals with varying R  as a consequence of avoided crossing 

between the ionic and covalent configurations [17]. In the present work, a minimum 

was found that is 0.17 eV below the dissociation limit. This observation agrees with 

the conclusion of Hefi et al. but contradicts the finding of Witek et al. where they 

located a metastable minimum lying 0.44 eV above the asymptote. In spite of this 

inconsistency, their computed r e and ve agree very well with the values determined 

in the present calculations.

The second dissociation channel consists of six electronic states: 2 1 ,3 S + , 1 1,3n  

and 1 1 ,3 A. Except for the 2 1 E+ which possesses a relatively deep potential curve, 

all the other states are only weakly bound with respect to the dissociation products 

of Au(2D) +  H(2 S). Similarly to the second and th ird  dissociation channels of AgH, 

this phenomenon can be understood in terms of the destabilization of Au 5d orbitals 

that weakens the overlap with the H Is orbital, and thus the bonding interaction.

The 2 1 E + state, at the equilibrium bond distance, is only 0.40 eV higher than 

the 1 3 S+ state, and their re values are very similar. These two states share the 

same ionic configuration arising from the Au(5d) —» H (ls) excitation at small R. 

The difference in Te thus indicates the stabilization of the triplet state over the 

singlet state due to relativistic effect. At larger R, the covalent contribution of 

Au(5d6s2) +  H (ls) rises rapidly, leading to the correct dissociation limit of Au(2 D) 

+  H(2 S).

Unlike the other E+ states, which are characterized by the ionic Au+II-  config­

uration at small R, the 2 3 E+ state is described by the covalent character for the 

whole range of R. At very small R, this state acquires the Rydberg Au 7 s charac­

ter which changes to the Au 6 s character when it interacts with the 3 3 E + state 

at about 1.5 A. The very shallow minimum is formed possibly due to the cross­

ing with the ionic Au+H~ potential. Another avoided crossing appears at large R
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which enhances the contribution of the Au 5da configuration tha t originated from 

the 5 <fj2 -» 6 s excitation.

All of the 1 1,3II and 1 1,3A states exhibit ionic character at the region around 

r e, and are dominated by the covalent A u(2D)  +  H(2 5) configuration at the long 

range region. The ionic configurations for the II and E states originate from the 

excitations of, respectively, 5dn and 5d«s orbitals to the 6 s orbital of Au. Therefore, 

their equilibrium bond distances, excitation energies and binding energies are very 

similar. Due to the expanded, via the secondary relativistic effect, 5d-shell of Au, 

the Coulomb interaction in these states is relatively weak which, in consequence, 

stretches re and reduces the binding energies.

8.3.3 Spin-O rbit C oupling

The potential energy curves for the ground and excited states of AgH and AuH, cal­

culated including the spin-orbit coupling interaction, are plotted in Figures 8.3 and 

8.4 respectively. Spectroscopic parameters were extracted using these potentials, 

and are compared with the available experimental data in Tables 8 . 6  and 8.7.

When the spin-orbit coupling is included in the calculations, the A — S  scheme 

for the state symmetry assignment is no longer valid, and the u  — o j scheme has been 

used. According to the double group analysis, the following relativistic state symme­

tries will be obtained from the non-relativistic classifications of diatomic electronic 

states: 0+ from 1 E + and 3 n ; 0“ from 3 E + and 3 n ; 1 from 1,3n  and 1 ,3 A; 2 from 3n  

and 1 ,3  A and 3 from 3  A [49]. Accordingly, 22 relativistic states will be generated 

from the 12 electronic states of AgH while 15 relativistic states are derived from the 

8  electronic states of AuH.

The first three dissociation channels for the excited states of AgH in the spin- 

free calculations split into five channels due to the spin-orbit coupling. While the 

first channel does not split because of the non-degenerate Ag(2 5’1/2) state, the other 

two give rise to Ag(2 P 1/2) +  H(2 S1/2) and Ag(2 P 3/2) +  H(2 S1/2), and Ag(2 P>5/2) +  

H(2 5 i/2) and Ag(2D 3/2) +  H(2 5 i/2), respectively. The energy differences between 

these limits allow for the measurement of the fine structure splitting. The estimated
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Figure 8.3: Relativistic spin-orbit MCQDPT2 potential energy curves for the se­
lected low-lying states of AgH in free space. Energies are plotted with respect to 
Emin of the 0+ (I) state.
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Table 8.6: Spectroscopic constants of the spin-orbit states of AgH (re in A, ue and
Be in cm-1 , Te in eV). Experimental data from ref. [43].

State r e B e Te
0+(I) calc. 1.5614 2078 6,92 0 . 0 0

expt. 1.618 1760 6.45 0 . 0 0

0+(II) calc. 1.7549 1194 5.48 4.03
expt. 1.665 1490 6.09 3.71

0+(III) calc. 1.5745 1661 6.81 5.54
expt. 1.64 1450 6.3 5.17

0+(IV) calc. 1.8284 1251 5.05 6.14
expt. 1 . 8 6 1089 4.87 5.52

0+(V) calc. 2.0669 1126 3.95 6.89
expt. 2 . 1 0 3.83

0+(VI) calc. 1.7134 2575 5.75 7.82
O-(II) calc. 1.5717 1673 6.83 5.54

expt. 1.64 1450 6.3 5.17
O-(III) calc. 1.8645 1138 4.86 6.06
O-(IV) calc. 1.9511 1326 4.44 6.64

1 (1 1 ) calc. 1.5763 1654 6.79 5.58
expt. 1.61 1589 6.54 5.11

l(III) calc. 1.7956 1321 5.24 5.93
expt. 1.875 4.81

1(IV) calc. 1.7822 882 5.32 6.08
expt. 1.85 4.95

1(V) calc. 1.9116 907 4.62 6.28
expt. 1.80 845 5.23 5.79

1(VI) calc. 1.8120 1282 5.14 6.56
expt. 1.82 5.10

l(VII) calc. 1.9181 1382 4.59 6.72
2 (1 ) calc. 1.5785 1650 6.78 5.61

expt. 1.64 1450 6.3 5.17
2 (1 1 ) calc. 1.7917 1379 5.26 5.89

2 (1 1 1 ) calc. 1.7726 1327 5.37 6.05
2 (IV) calc. 1.7746 1330 5.36 6.58
3(1) calc. 1.7709 1337 5.38 5.99
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Table 8.7: Spectroscopic constants of the spin-orbit states of AuH (re in A, ve and
Be in cm-1 , Te in eV). Experimental data  from ref. [43].

State re Ve B e Te
0+(I) calc. 1.4827 2504 7.65 0 . 0 0

expt. 1.524 2305 7.24 0 . 0 0

0+(II) calc. 1.6692 1621 6.03 3.88
expt. 1.673 1670 6 . 0 1 3.43

0+ (III) calc. 1.7165 2008 5.71 5.40
expt. 1.695 1545 5.85 4.78

0 -(I) calc. 1.6324 1573 6.31 3.34
O-(II) calc. 1.9327 784 4.50 4.91
O-(III) calc. 1.9436 1244 4.45 6.34

expt. 1 . 6 8 1229 5.96 5.32
1 (1 ) calc. 1.6304 1579 6.32 3.34

1 (1 1 ) calc. 1.7453 2074 5.52 4.41
l(III) calc. 2.0386 715 4.05 5.03
1(IV) calc. 1.7376 1619 5.57 5.88

expt. 1.728 1076 5.63 5.32
1(V) calc. 1.9388 1186 4.47 6.41
2 (1) calc. 1.7327 2052 5.60 4.28

2 (1 1 ) calc. 1.7237 1754 5.66 4.34
2 (1 1 1 ) calc. 1.7228 1633 5.66 5.86

expt. 1.745 1 0 2 0 5.52 5.30
3(1) calc. 1.7032 1335 5.80 4.28
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Ag(2S i / 2  - 2-Pl/2 ) and Ag(2D 5 / 2  - 2-03/2) splittings are 3.73 eV and 0.56 eV which 

agree with the experimental values within 2% of error [40]. However, the value for 

the Ag(2P1//2 - 2 Pzj 2 ) splitting determined by this method is only 0.06 eV which 

is 48 % smaller than the experimental data (0.1142 eV). Atomic SO-MCQDPT2 

calculations of Ag employing the same basis set increased the spin-orbit splitting to 

0.1061 eV, but the discrepancy is still remarkably large (~  10 %). There are two 

possible reasons to account for the observed large error in the spin-orbit splitting 

for the P  term. On one hand, the imbalanced spin-orbit interaction and electron 

correlations treatm ent of the atomic Ag p-orbitals during the state-averaged MCSCF 

calculations causes the spin-polarization [2] tha t stabilizes the P3/2 component more 

than the P \j2 component, leading to the reduced Ag(2P 1/2 - 2Pz/2 ) splitting. On 

the other hand, in the computer code implementation, the neglect of the screening 

effect by the contracted Ag 5s orbital provides extra contribution to the core-valence 

correlation on the 5p3/2 orbital which diminishes the spin-orbit splitting of the P  

state [29].

The potential energy curves including spin-orbit for the excited states of AgH 

are very similar to the corresponding spin-free potentials. For the 0+ and 0“ states 

the values of re differ by about 0.05 A, and ve by 100 to 200 cm-1 . The rather small 

changes are due to the large separation of the 1E + , 3S + and 3n  states which results 

in a weak coupling. Nonetheless, a complicated situation occurs in the 1 states, 

where a prominent avoided crossing due to spin-orbit coupling exists between the 

1 (III) and 1(IV) states. These two states originate from the non-relativistic 1 xn  

and 2 3n  states which cross at 2.1 A due to spin selection rule. At the point of 

avoided crossing, a state mixing of xn  and 3n  states was detected. For small R  the 

1 (III) state is well described by xn  while the 1(IV) state is dominated by 3n ; for 

large R, however, these contributions interchange, and the 3n  configuration becomes 

the major one for the 1 (III) state yet the 1(IV) possesses the singlet 7r character. 

In addition to the 1 (III) and 1(IV) states, the higher 1 states are also mixtures of 

the closely spaced 1,3n  and 1,3A. Their equilibrium bond lengths and vibrational 

constants are largely dependent of the dominant configurations of these states in
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the region. An exception is the 1(V) state, which can be classified as the 2 1n  state, 

whose re is shifted by 0 . 1  A due to the interaction with the 3 S + states.

An interesting feature was found between the 2(111) and 3(1) states where the 

3(1) potential curve lies only 450 cm - 1  below tha t for the 2(111) state at re. Both 

states arise from the 1 3  A state which has the inverted splitting due to the spin-orbit 

effect. The calculated spin-orbit coupling constant for the 3A state is 2520 cm - 1  at 

r e. However, the strong second-order coupling with the 1A state, which comprises 

the 2 (IV) state, lowers the fl =  2 component of the 3A state by 1776 cm-1 . This 

perturbation, together with the coupling with the 3n  state, significantly lowers the 

2(111) state and reduces the energy separation between the 2(111) and 3(1) states.

The influence of spin-orbit interaction on the spectroscopic parameters and elec­

tronic structure of AuH molecule is more pronounced compared to AgH. This strong 

effect is clearly manifested in the order of electronic states of Au and in their fine 

structure splitting constants. Contrary to the case of Ag where the 2P  states are 

slightly lower in energy than the 2D  states, the 2D  and 2P  states of Au are well sep­

arated, and the 2D  states are in fact lower than the 2P  states by 3.20 eV [43], when 

averaged over all the fine structure components. This is a direct consequence of the 

relativistic contraction of Au 6 s orbital which favors the 5d —> 6 s over the 6 s -» 6 p  

excitations. In addition to the different ordering of atomic states, the 2 D 5 / 2  - 2D ?J/2 

splitting is three times larger than the corresponding value in Ag. The computed 

value in the present work is 1.494 eV which shows a very good agreement with the 

experiment (1.522 eV); however, the calculated 2 5'i/ 2  - 2 -Ds/ 2  splitting is 1.712 eV 

which is 51 % larger than the value deduced by Ehrhardt and Davis [50]. Because 

the spin-polarization effect is small for d-shell orbitals, the over-estimated 2S]/2 - 

2 D 5 / 2  gap could possibly be due to the excessive stabilization of the 6 s-orbital by 

the use of the atomic charge of 79 for Au, instead of an effective nuclear charge.

The first relativistic 0+ (I) state of AuH, which is derived from the 1 1 E+ state, 

was not much affected when spin-orbit coupling was considered because of the wide 

separation from other 0+ states. Meanwhile, the 3(1) state resembles the parent 3A 

state in terms of re and ue since only one 3 state was calculated. A small increase
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in the binding energy for the 0+ (I) state was observed; this effect is expected since 

the spin-orbit coupling induces the decrease of the overlap-related kinetic energy at 

re [51]. A similar effect was also seen in the 3(1) state, whose binding energy was 

also increased by 0.06 eV, compared to th a t for the 3II state.

In general, the effect of spin-orbit interaction on re for these states is small, ex­

cept for the 0 ~(II) and 1  (III) states where the bond lengths were stretched by 0 . 2 1  A 
and 0.30 A, respectively. While vibrational constants are normally increased due to 

the relativistic effects, the calculated values of ue for some states of AuH decreased 

when spin-orbit interaction was added. Furthermore, the magnitude of changes in 

ve was large, ranging from 200 cm - 1  to 600 cm-1 . It was also observed tha t the 

states arising from the second dissociation channel, i.e., Au(2 D) +  Ii( 2 5), were more 

susceptible to the influence of the spin-orbit interaction. In contrast to AgH, the 

relativistic states of AuH with Q =  1 or 2 contain large contributions from 1;3n  and

1 ,3  A states. The off-diagonal spin-orbit coupling constants between the n  and A 

states, and A and A states are, as measured at the SO-MCQDPT2 level, approx­

imately 3000 cm - 1  and 5000 cm-1 , respectively. Therefore, their potential curves 

are strongly distorted from the corresponding non-relativistic potentials, giving rise 

to relatively large and irregular changes in re and ve.

The effects of spin-orbit interaction on the 2 states are unique: their bond lengths 

were stretched by 0 . 0 1  to 0 . 0 2  A but the vibrational constants were raised by 400 to 

600 cm-1 . The 2(1) state is characterized almost exclusively by the 3n  state while 

the 2(11) and 2(111) states are composed of the XA and 3A states. These states 

possess very strong ionic character of Au+H~ arising from the charge transfer from 

Au 5d orbitals to H Is orbital at re. Hence, the spin-orbit coupling destabilizes these 

states and lifts their potential curves at the region around re. Simultaneously, the 

covalent lsu h da%s2a character, that intervenes and leads these states to the correct 

dissociation limit of Au(2 T>) +  H(2 5), is stabilized at large R. In consequence, the 

resulting potential curves for these states are deepened and shifted towards larger 

R.
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8.3.4 Effects o f Confinem ent

In order to investigate the combined effects of relativity and external confining 

potentials on the structural and electronic properties of AgH and AuH, the SO- 

MCQDPT2 calculations incorporating eq. 3 have been performed. Several values 

of the confinement parameters u  were used: 0.025, 0.050, 0.075 and 0.100 au, and 

both spin-free and spin-orbit potential energy curves for the low-lying excited states 

of these molecules were computed. In order to better describe the electron density 

distorted by the harmonic electrostatic potential, a set of l s l p l d  basis functions 

with the exponent of cu/2 were utilized and located at mid-bond position. Previous 

studies have demonstrated that the use of these so-called confinement functions can 

yield more realistic molecular orbitals and energy levels [52].

Generally, the electron density, enhanced between the nuclei due to confining 

potential, leads to a stronger bonding interaction, a shorter bond length, and a 

larger vibrational constant. However, the situation becomes more complicated in 

AgH where a serious mixing of configurations occurred when the confining potential 

was applied, as illustrated in Tables 8 . 8  and 8.9. The ground state of AgH, which 

is essentially formed by the covalent interaction of Ag 5s and H Is orbitals, is mixed 

with the Ag Adz 2 configuration. In consequence, the bonding orbital is elongated, 

giving rise to an increased re and a smaller ve. The 1 3 S + state remains unbound 

regardless the strengths of the applied potential. However, a small plateau starts to 

appear at about 2 . 0  A, which is possibly due to the confinement-induced, increased 

relative stability of Ag 5p z orbital over the Ag 5s orbital: the more stable Ag 5p z 

character lowers the 1 3 S + potential at small R. An evidence for the downshift of 

the 1 3 E + potential is also found in its Te, measured at the r e of the ground state 

of AgH, which decreases from 3.47 eV for w  =  0.00 to 3.04 eV for o j  =  0.10 au. 

Figure 8.5 shows that under the influence of the harmonic confining potential, the 

second and th ird  dissociation channels gradually merge and split into several new 

channels. This phenomenon is ascribed to the complex multiplet splitting of quasi­

degenerate Ag(2 P ) and Ag(2D)  states. The axially symmetrical geometry of the 

applied potential removes the degeneracy within the d-shell and p-shell; in confine-
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Table 8.8: Spectroscopic constants of the singlet states of AgH with confinement.
in A, ue in cm Te in eV)

State o j =  0.000 o j =  0.025 u  = 0.050 u  = 0.075 u  =  0.100
1 *E+ re 1.5635 1.5596 1.5680 1.5825 1.5904

V e 2024 2237 1939 1968 1923
Te 0.00 0.00 0.00 0.00 0.00

2 *£+ re 1.7503 1.7599 1.7329 1.7201 1.6884
ve 1166 1298 1269 1266 1546
Te 4.03 4.01 3.94 3.89 3.85

3 XE+ re 2.0669 2.1416 2.1334 2.1284 2.1237
V e 1126 814 824 861 870
Te 6.73 6.76 6.77 6.80 6.87

4 *£+ re 1.7035 1.6407 1.6522 1.6468 1.8590
V e 2682 2917 898 1378 1383
Te 7.80 8.09 8.50 8.95 9.05

1 re 1.7743 1.7717 1.7669 1.7600 1.7495
V e 1303 1316 1339 1369 1436
Te 6.31 6.34 6.33 6.36 6.40

i  xn re 1.5763 1.7125 1.7672 1.7890 1.7856
V e 841 911 1151 1308 1419
Te 6.19 6.14 6.28 6.37 6.45

2 xn re 1.8119 1.8464 1.8440 1.8126 1.7829
V e 1271 1136 894 753 750
Te 6.32 6.47 6.58 6.81 7.15
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Table 8.9: Spectroscopic constants of the triplet states of AgH in confinement. (re
in A, ue in cm-1 , Te in eV)

State o j =  0 . 0 0 0 o j  =  0.025 w =  0.050 ui =  0.075 o j  =  0 . 1 0 0

2  3 E+ re 1.9511 2.0420 2.0199 2.0088 1.9919
V e 1326 1 0 2 2 1160 1203 1250
Te 6.17 6.46 6.48 6.52 6.60

1 3A re 1.7726 1.7690 1.7651 1.7595 1.7513
V e 1327 1346 1367 1394 1462
Te 6 . 2 0 6 . 2 2 6 . 2 1 6 . 2 2 6.25

1 3n re 1.5994 1.5490 1.4957 1.5673 1.7736
V e 1530 2 1 0 1 3521 1721 1513
Te 5.59 5.62 5.79 6 . 1 0 6.15

2  3n re 1.7954 1.7918 1.7890 1.6932 1.5914
V e 1397 1395 1430 2298 2497
Te 6.07 6.09 6.09 6.17 6.45

- 5 3 1 2 . 9

- 5 3 1 2  .

(b)- 5 3 1 3

- 5 3 1 2 . 9

- 5 3 1 3 . 1d■H
- 5 3 1 3

&Sh(1)
d - 5 3 1 3 . 2  w

- 5 3 1 3 . 1

- 5 3 1 3 . 3

- 5 3 1 3 . 2

2 3 4 52 3 54

R ( i n  A n g s t r o m )  R ( i n  A n g s t r o m )

Figure 8.5: Relativistic spin-free potential energy curves for the selected low-lying 
states of confined AgH molecule, (a) o j =  0.050 au (b) o j =  0.100 au
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ment of cylindrical symmetry, the subshells th a t spread along the molecular bond 

axis are more stabilized compared to the ones perpendicular to the axis. Therefore, 

the p-shell is split into two subsets {pz } and {px ,p y } while the d-shell is split into 

{dxy,d x2 _y2 }, {d z2 }, and {dyz,d xz}, with the energy of the last two sets being very 

similar. The resulting new atomic energy levels of Ag lead to a very complicated 

excited state potentials of AgH which are difficult to interpret.

A marked change for the confined AgH molecule is that the 1 1 E+ potential curve 

departs from the second and third channels with increasing u>, which is reflected in 

its Te decreasing from 4.03 eV to 3.85 eV when oj increases to 0.10 au. On the other 

hand, a local minimum appears at 3.5 A which is formed due to the lowering of the 

ionic Ag+H_ potential at intermediate R. The depth of this minimum is about 465 

cm-1 , which may allow to accommodate a single vibrational level.

Both the 1 ,3  A states respond to the confining potential in a typical way: their 

equilibrium bond distances turn  shorter for a stronger applied potential. As these 

states are formed by the 4ds —> 5s excitation of Ag, this behavior can be understood 

in terms of the distorted Ads orbitals along the molecular axis tha t favors the bonding 

interaction with the H is  orbital. The change of re is accompanied by the increasing 

ue, which implies stronger bonding and thus steeper potential curves for the A states.

The picture for the n  states is intricate, as re and ve of these states do not 

vary monotonically in the presence of the confining potential. The 1 1,3n  states are 

first compressed when a small potential is exerted; when the strength of potential 

exceeds 0.05 au their bonds start to stretch very rapidly. However, the opposite trend 

is observed for the 2  xn  state, while the 2  3n  state exhibits the same behavior as the 

A states. These unusual variations can be rationalized in terms of orbital responses 

to the external confinement. As the 1,3n  states arise from the Adn —> 5s excitation 

of Ag, the deformation of the Adn orbitals of Ag due to the cylindrical confining 

potential enhances their 7r-interaction with the H Is orbital, thus strengthening the 

n  states and reducing r e. On the other hand, the centripetal compression on the 5pv 

orbitals of Ag leads to the angular distortion of the orbital towards the molecular 

axis and the increase in re of the 2 1,3n  states which are dominated by the Ag(5p z)
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Figure 8 .6 : Relativistic spin-free potential energy curves for the selected low-lying 
states of confined AuH molecule, (a) o j  — 0.050 au (b) o j =  0.100 au

+  H(l,s) bonding character. For o j > 0.05 au the avoided crossing between the 1 n  

states vanishes, while a new avoided crossing appears between the 3n  states, and 

these state interactions result in the marked distortion of the potential curves, and 

hence r e and ue, of these states.

The effects of spatial confinement on AuH, in contrast to the case of AgH, are 

rather simple, as illustrated in Figure 8 .6 . Again, the dissociation channel leading 

to the asymptotes of Ag(2D) +  H(2 S) splits into two small channels corresponding 

to the {dxy, dx2_y2 } and {dz2 ,d yz,d xz} sets. The d-shell splitting for AuH is slightly 

smaller than tha t of AgH because of the more diffuse character of the 5d orbitals 

compared to the more contracted 4d counterparts in Ag. Another difference between 

these two systems is that the entanglement of the second and third channels of AgH, 

induced by the confining potential, is not found in AuH. The states that constitute 

the second channel remain fairly separated even at o j =  0.10 au. In addition, an 

interesting feature is observed solely in AuH: the excitation energies Te for different 

low-lying states of AuH are hardly affected by the confining potential, the biggest
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change in Te being 0.17 eV for the 2 1 E + state.

The ground state geometry of AuH does not change significantly when the con­

fining potential is applied. The variation in re is negligibly small, within 0 . 0 1  A. 

However, its binding energy is increased by almost 1 eV, which suggests that, in 

confinement, the stability of the ionic Au+H-  configuration is greater than tha t of 

the covalent Ag(6 .s) +  H(l.s) configuration. This difference also causes the reduction 

in Te of the 2 1 E+ and 1 3 E+ states, which are described by the excited Ag+H~ 

arising from Ag 5d —> 6 s excitation. The amplified Coulomb attraction results in 

the shorter bond lengths for these states.

Additional interaction is found at intermediate fi, for u  < 0.05 au, where both 

the 1  1 E + and 1  3 S+ are strongly mixed, leading to a wiggle on both potential 

curves. This configuration interaction induces not only the irregularity of the po­

tential curves, but also the shift of re towards smaller R. The mixing of states 

diminishes when a; increases further until 0 . 1 0  au at which the second minimum 

on the 1  3 E + potential energy curve disappears, and the global minimum starts to 

increase.

Although they are formed via the charge transfer process from Ag 5d  orbitals to H 

Is orbital, the 1,3A and 1,3n  states exhibit slightly different behavior in confinement. 

The changes in the spectroscopic parameters of the A states caused by the applied 

potential are as expected: the equilibrium bond lengths shrink and the vibrational 

frequencies increase with increasing o j . The change of re for the n states also follows 

the anticipated trend; however, the variations in ue for these two states are entirely 

opposite (Table 8.10). The anomaly for the :n  state is a consequence of a possible 

avoided crossing with higher 1n  states that also produces a small potential barrier 

on the potential curve at about 3.0 A.

The relativistic spin-orbit states of the confined AgH and AuH inherit the char­

acteristics of the A — S  states from which they are derived. Figures 8.7 and 8 . 8  

display the resulting states of AgH at o j  =  0.050 au and 0.100 a.u respectively. 

The corresponding plots for AuH are depicted on figures 8.9 and 8.10. The spec­

troscopic parameters deduced from these states are summarized in Tables 8.11 to
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Table 8.10: Spectroscopic constants of the selected states of AuH in confinement.
(re in A, ve in cm-1 , Te in eV)

State a> =  0.000 u) = 0.025 w =  0.050 u  =  0.075 u = 0.100
1 1E+ re 1.4942 1.4790 1.4783 1.4806 1.4849

Ve 2480 2512 2479 2425 2354
Te 0.00 0.00 0.00 0.00 0.00

2 XE+ re 1.5864 1.5861 1.5615 1.5595 1.5411
Ve 2118 2191 2069 2112 2083
Te 3.71 3.81 3.69 3.67 3.64

1 *A re 1.7116 1.6785 1.6676 1.6722 1.6641
Ve 1335 1471 1461 1545 1512

• Te 4.77 4.72 4.76 4.74 4.70
i  xn re 1.7704 1.7922 1.7555 1.7534 1.7466

Ve 1784 885 948 1252 1254
Te 5.10 5.05 5.12 5.11 5.12

1 3s + r e 1.6224 1.6027 1.5912 1.6025 1.6117
Ve 1737 1682 1695 1842 1697
Te 3.30 3.33 3.32 3.25 3.16

2 3S+ re 2.0312 2.1456 2.1252 2.1375 2.1377
Ve 1568 1185 1262 1399 1321
Te 5.12 5.02 5.07 5.08 5.15

1 3A re 1.7042 1.6739 1.6609 1.6673 1.6599
Ve 1339 1550 1512 1576 1563
Te 4.67 4.62 4.65 4.62 4.58

1 3n re 1.7234 1.7210 1.7105 1.7113 1.6987
ve 1402 1721 1667 1651 1569
Te 4.71 4.65 4.69 4.68 4.67
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Figure 8.7: Relativistic spin-orbit states of AgH in confinement for o j = 0.050 au 
Energies are plotted with respect to E min of the 0+ (I) state.
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8.14. Similarly to the spin-free case, the spin-orbit states for AgH are in general 

more complicated than those of AuH. W hen the confining potential is applied, only 

the states tha t originated from the first two 1 E + and 1  3 S + states are essentially 

unaffected. For f2 =  0+ , 0~, 1 and 2, the applied potential causes a numerous new 

avoided crossings because of the close proximity of the parent n  and A states. Con­

sequently, the re and ue values for different Q states, determined for different values 

of o j , do not evolve in the same way as their parent spin-free states, and fluctuations 

of these quantities are observed.

Since only the first two dissociation channels were studied, the resulting spin- 

orbit state diagram for AuH is much simpler than tha t of AgH. These states, because 

of their rather large separations, do not interfere with each other strongly, and thus 

the changes of re and ve with respect to oj correlate nicely to the corresponding A — 5  

states. Even so, there are still several intriguing features tha t have been observed 

in the H states of the confined AuH. Due to the wiggling potential curves the 0 

and 1 components of the 1 3 E+ state, i.e., 0- (I) and 1(1) states, also exhibit this 

character at large R. Through the spin-orbit interaction, the potential energy curves 

for the higher 0 ~ and 1  states are slightly distorted and a small potential hump is 

formed on the potential curves of these states. Another noticeable new feature is 

the double-minimum potential for the H states derived from the 2 3 E + state. For 

small values of oj, a new global minimum is formed at about 1.5 A via the avoided 

crossing of the 1(V) and 1(IV) states, the latter being the 1 component of the 3A 

and 3n  states. This minimum shifts up in energy relative to the outer minimum 

when oj increases. For oj exceeding 0.050 au the outer minimum becomes the global 

minimum again while the inner one starts disappearing. There is no counterpart in 

the spin-free potentials, and this feature can be considered entirely due to spin-orbit 

interaction.

An interesting effect of confinement is the variation of spin-orbit coupling con­

stants with respect to the strength of the confining potential. Since the magnitude 

of spin-orbit coupling between two electronic states is closely related to their elec­

tronic structure, the application of an external potential to a molecular system,
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Table 8.11: Spectroscopic constants of the spin-orbit 0 states of AgH in confinement.
in A, v e in cm - \ T e in eV)

State oj =  0 .0 0 0 oj = 0.025 oj =  0.050 oj = 0.075 u  = 0.100
0+(I) re 1.5614 1.5582 1.5679 1.5825 1.5903

Ve 2078 2095 1940 1968 1923
Te 0.00 0.00 0.00 0.00 0.00

0+(II) re 1.7549 1.7496 1.7308 1.7182 1.6874
Ve 1194 1544 1281 1277 1554
Te 4.03 4.00 3.94 3.89 3.84

0+(III) re 1.5745 1.5481 1.5094 1.5671 1.7983
Ve 1661 2108 2041 1662 1385
Te 5.54 5.59 5.78 6.05 6.21

0+(IV) re 1.8284 1.8247 1.8174 1.7527 1.6194
Ve 1251 1250 1282 2698 2935
Te 6.14 6.15 6.14 6.18 6.41

0+(V) re 2.0669 2.0563 2.0491 2.0485 2.0285
Ve 1126 1146 1150 1223 1151
Te 6.89 6.90 6.90 6.94 7.00

0+(VI) re 1.7134 1.6449 1.6371 1.6469 1.8595
Ve 2575 2643 1324 1379 1368
Te 7.82 8.12 8.50 8.95 9.05

O-(II) re 1.5717 1.5607 1.5079 1.5685 1.8210
Ve 1673 1862 2062 1658 1299
Te 5.54 5.60 5.78 6.05 6.15

o -  (III) re 1.8645 1.8583 1.8507 1.7362 1.6162
Ve 1138 1153 1178 2649 2797
Te 6.06 6.08 6.08 6.16 6.41

O-(IV) Te 1.9511 1.9529 1.9477 1.9414 1.9244
Ve 1326 1309 1350 1388 1426
Te 6.64 6.66 6.67 6.71 6.78
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Table 8.12: Spectroscopic constants of the spin-orbit 1,2, and 3 states of AgH
confinement. (re in A, ve in cm-1 , Te in eV)

State o j  = 0.000 o j  — 0.025 w =  0.050 u  = 0.075 u j  = 0.100
1(H) re 1.5763 1.5641 1.5120 1.7868 1.7769

Ve 1654 1857 1976 1386 1468
Te 5.58 5.63 5,82 5.97 6.02

1(111) re 1.7956 1.7953 1.7509 1.6380 1.8494
Ve 1321 1347 2030 2470 1143
Te 5.93 5.95 5.96 6.13 6.31

1(IV) re 1.7822 1.8098 1.8672 1.7927 1.6613
Ve 882 851 1042 1928 2570
Te 608 6.13 6.19 6.27 6.48

1(V) re 1.9116 1.8827 1.7657 1.7653 1.7582
Ve 907 876 1108 1323 1604
Te 6.28 6.33 6.47 6.56 6.61

1(VI) re 1.8120 1.8122 1.8400 1.9242 1.9055
Ve 1282 1293 1254 1291 1454
Te 6.56 6.58 6.59 6.73 6.83

l(VII) re 1.9181 1.9207 1.9146 1.8804 1.7911
Ve 1382 1371 1380 1208 821
Te 6.72 6.74 6.76 6.85 7.16

2(1) re 1.5785 1.5520 1.5527 1.7792 1.7703
Ve 1650 1931 1477 1426 1510
Te 5,61 5.67 5.86 5.91 5.95

2(11) re 1.7917 1.7903 1.7018 1.7609 1.7520
Ve 1379 1386 2236 1385 1456
Te 5.89 5.90 5.95 6.06 6.10

2(111) re 1.7726 1.7710 1.7644 1.6300 1.5712
Ve 1327 1334 1459 2500 1770
Te 6.05 6.05 6.05 6.17 6.50

2 (IV) re 1.7746 1.7730 1.7688 1.7627 1.7526
Ve 1330 1338 1360 1388 1491
Te 6.58 6.58 6.58 6.60 6.64

3(1) re 1.7709 1.7659 1.7655 1.7599 1.7516
Ve 1337 1343 1365 1392 1460
Te 5.99 6.00 5.99 6.00 6.03
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Table 8.13: Spectroscopic constants of the spin-orbit 0 states of AuH in confinement.
in A, ve in  cm'~ \ T e in  eV)

State ui =  0 . 0 0 0 oj =  0.025 oj =  0.050 oj =  0.075 u  =  0 . 1 0 0

0+(I) re 1.4827 1.4482 1.4765 1.4775 1.4793
Ve 2504 3671 2451 2571 2592
Te 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

0+(II) re 1.6692 1.6219 1.6078 1.6086 1.6042
Ve 1621 1793 1678 1823 1860
Te 3.88 3.93 3.89 3.81 3.71

0+ (III) r e 1.7165 1.6907 1.6907 1.6904 1.6752
Ve 2008 1575 1540 1716 1641
Te 5.40 5.43 5.41 5.35 5.30

0 -(I) re 1.6324 1.6169 1.6064 1.6142 1.6173
Ve 1573 1645 1603 1590 1676
Te 3.34 3.43 3.39 3.30 3.17

O-(II) re 1.9327 2.0171 2.0549 1.9361 1.9149
Ve 784 1169 884 1087 1077
Te 4.91 4.87 4.91 4.89 4.89

O-(III) re 1.9436 1.4908 1.4862 1.9362 1.9299
Ve 1244 3275 2799 1509 1592
Te 6.34 6 . 0 2 6 . 1 1 6.30 6.30
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Table 8.14: Spectroscopic constants of the spin-orbit 1,2 and 3 states of AuH
confinement. (re in A, ve in cm-1 , Te in eV)

State o j  = 0.000 o j =  0.025 o j =  0.050 o j  = 0.075 o j  = 0.100
1(1) re 1.6304 1.6153 1.6041 1.6121 1.6156

Ve 1579 1654 1619 1596 1681
Te 3.34 3.33 3.40 3.31 3.18

1(H) re 1.7453 1.7256 1.7101 1.7090 1.6976
Ve 2074 1465 1557 1552 1522
Te 4.41 4.42 4.42 4.38 4.34

l(III) re 2.0386 2.0496 2.0324 2.0003 1.9670
Ve 715 1202 1066 828 1144
Te 5.03 4.97 5.02 5.01 5.02

1(IV) re 1.7376 1.7097 1.6986 1.7011 1.6955
Ve 1619 1458 1459 1529 1374
Te 5.88 5.88 5.88 5.83 5.79

1(V) re 1.9388 1.5330 1.4983 1.9295 1.9237
Ve 1186 4103 3459 1457 1462
Te 6.41 6.12 6.26 6.37 6.38

2(1) re 1.7327 1.7003 1.6813 1.6814 1.6676
Ve 2052 1369 1457 1544 1515
Te 4.28 4.29 4.28 4.23 4.18

2(11) re 1.7237 1.6938 1.6846 1.6884 1.6859
Ve 1754 1490 1519 1636 1575
Te 4.34 4.35 4.34 4.29 4.25

2(111) re 1.7228 1.6879 1.6702 1.6750 1.6697
Ve 1633 1417 1463 1543 1535
Te 5.86 5.86 5.85 5.80 5.76

3(1) re 1.7032 1.6742 1.6616 1.6680 1.6595
Ve 1335 1480 1500 1591 1576
Te 4.28 4.28 4.26 4.20 4.14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 5 7 0
0 . 0 0  

0 .  0 5  

0 . 1 02 5 6 0

2 5 5 0 (b)

2 5 4 0

2 5 3 0

2 5 2 0

2 5 1 0

2 5 0 0
2 3 4 5

1 6 0 0
0 . 0 0  

0  . 0 5  

0 . 1 0
—  1 4 0 0

c 1 20 0

8 0 0

6 0 0

4 0 0

2 0 0

- 2 0 0
2 3 4 5

1 0 0 0
. 0 0

9 0 0
. 1 0

8 0 0

7 0 0

6 0 0

5 0 0

4 0 0

3 0 0

2 0 0

1 0 0

2 3 4 5

R (in Angstrom) R (in Angstrom) R (in Angstrom)

Figure 8.11: Spin-orbit coupling constants for selected states of AgH in confinement,
(a) 2  3 S + and 1 3n  states; (b) 1  3A and 1 3 A; (c) 1  xn  and 2 3n  states.

which alters the wavefunction composition of the different electronic states, should 

give rise to the changes of the spin-orbit coupling constants. To demonstrate this, 

the calculated diagonal and off-diagonal spin-orbit coupling constants for some of 

the excited states of AgH and AuH are plotted in Figures 8.11 and 8.12, respectively.

Surprisingly, the effects of confinement on the magnitude of spin-orbit interaction 

is fairly small. Generally, the confining potential increases the coupling constants, 

but their variations with respect to the internuclear distances remain very similar 

compared to the unconfined cases.

More detailed information regarding the spin-orbit interaction can be extracted 

from these plots. For instance, the Figures 8.11(b) and 8.12(b) illustrate the com­

puted diagonal spin-orbit coupling constants for the 3A state at various R. Since the 

3 A state transforms into A \ and A<i irreducible representations in Civ symmetry, this 

3  A spin-orbit coupling constant will be dependent on both the interaction between 

different components of the d-shell and, in turn, the splitting of the 4d-shell and 

5d-shell of AgH and AuH, respectively, due to the presence of the confining poten-
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Figure 8.12: Spin-orbit coupling constants for selected states of AuH in confinement,
(a) 1  3 E+ and 1 3n  states; (b) 1 3A and 1 3 A; (c) 1 and 1 3A states.

tial. As seen, the coupling constants increase with this observation is consistent 

with the molecular calculations showing that the confining potential increases the 

fine structure splittings of 2 -D5 / 2  - 2 -^3 / 2  ° f Ag and Au.

The second-order spin-orbit interactions on AgH, as revealed by Figures 8.11(a) 

and 8.11(c), are not significant. The applied potential only increases the coupling 

constants by about 100 cm-1 . The larger coupling constants result from the smaller 

energy separation between these state potential curves tha t gives rise to a larger 

second-order perturbation contribution. A noticeable drop of the coupling constant 

in Figure 8.11(a) can be accounted for by strong interaction between the two 3n  

states for the confined AgH molecule. The enhanced p  character in the 1 3n  state 

sharply reduces the spin-orbit interaction with the 2  1 E+ which is also dominated 

by the Ag 5p  character at large R.

On the other hand, the influence of the second-order spin-orbit coupling on AuH 

is more pronounced; in some cases, the coupling constants are of the same order of 

magnitude as the binding energies of certain H states. Moreover, fluctuations in the
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variations of the coupling constants with respect to w are observed, especially for 

uj ft; 0.05 au, indicating possibly the insufficient treatm ent of the double perturba­

tion from both the confinement effects and the spin-orbit interaction. The sudden 

decline of the coupling constant for u j =  0.05 au in Figure 8.12(a) is likely caused by 

the configuration mixing of the 1  3 S + state, in which the additional anti-bonding 

character diminishes the spin-orbit interaction with the 1 3II state. The 1 1II and 1 

3A states are the major components of both the 1  (III) and 1(IV) spin-orbit states. 

For small values of w, a significant mixing of these states with the higher 1 states 

leads to the irregular shapes of these potential curves at intermediate R, and is 

responsible for the abnormal increment in the 1 II-3A spin-orbit coupling constant 

(Figure 8.12(c)).

8.4 Conclusions

In the studies of combined effects of relativity, electron correlation, and confine­

ment, the potential energy curves for the low-lying excited states of coinage metal 

hydrides AgH and AuH were calculated employing the second-order spin-orbit quasi­

degenerate perturbation theory with the third-order Douglas-Kroll Hamiltonian. It 

was found that, with the application of the confining potential, the spin-free chan­

nels connected to the excited dissociation products of these molecular systems split 

due to the symmetry restriction imposed by the cylindrical geometry of the applied 

potential on the p-shells and ri-shclls of Ag and Au atoms. While the 2P  states of 

these atoms divide into two subsets, {pz } and {px,p y}, the 2D  states partition into 

three subsets, {d z2 }, {dx2_y2 ,d xy} and {dxz,d yz}, the first two being very close in 

energy. An unusual feature discovered in AgH is tha t the second and third dissocia­

tion channels merge and redistribute when ui increases, which could possibly result 

from the complex re-ordering of the atomic orbitals of the confined Ag atom. The 

responses of different electronic states of AgH and AuH to the confining potential 

are not always typical; several abnormal changes in r e, ve and binding energies have 

been noticed and are accounted for by the induced avoided crossing between the 

excited states.
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The tl state potential curves of these molecules have also been calculated for a 

several values of u j . More complicated pictures have been obtained because of the sig­

nificant configuration mixing among the states possessing the same f1 components. 

As a result, the changes of the deduced spectroscopic parameters for these states are 

not in parallel to the trends observed for the spin-free counterparts. Both diagonal 

and off-diagonal spin-orbit coupling constants for different states of AgH and AuH 

molecules have been computed. It was found tha t the dependence of the spin-orbit 

coupling constants on the strengths of the confining potential is very small. Instead, 

the configuration mixing in the excited state wavefunctions plays a more important 

role in determining the resultant magnitude of the spin-orbit interactions.
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Chapter 9

Com putational Studies of 
One-Electron Properties o f  
Confined LiH M olecule

The main objective of Chapter 9 is to investigate a variety of one-electron properties 

of polar LiH molecule in the presence of a confining potential, and to try to reveal 

the principles with which these electric and optical properties can be manipulated 

by the strength and geometry of the applied electrostatic potential.

9.1 Introduction

The studies of systems confined by various forms of external potentials has com­

menced as of the beginning of quantum mechanics. Following the early work of 

Fock [1] on the confinement by magnetic fields, the concept of confinement has been 

utilized in several branches of science such as nuclear physics [2 ], condensed-matter 

physics [3], and surface chemistry [4]. The breakthrough in semi-conductors and 

nanotechnology in the past two decades, where artificial atoms and molecules [5] 

can be constructed in experiments, provides a platform for verifying the validity of 

the developed confinement models and stimulates the advancement of the theory of 

confinement.

Recently, Diercksen and co-workers have extensively investigated the spectral 

and structural properties of quantum dots and closely related confined atoms using
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three-dimensional harmonic oscillator potentials of spherical, elliptical, prolate, and 

oblate symmetries [6 , 7, 8 ]. Meanwhile, similar studies have been performed on 

molecular systems such as H2  [9], Li2 [10], and NeH [11]. These works concluded that 

the changes of geometries and spectral properties of the confined systems, caused 

by the spatial restriction imposed by the symmetry and strength of the confining 

potentials on the electronic wavefunctions, results in the lifted orbital degeneracy, 

the shifts of equilibrium bond distances, and existence of new points of avoided 

crossing.

Due to the fact tha t the distorted electron density of a molecule gives rise to the 

variations of the electronic and magnetic properties of the molecule, the measure­

ment of these quantities and comparison with the values for the reference system 

in free space can serve as a probe to provide the structural information of the en­

vironment. An excellent example demonstrating the usefulness of this concept is 

provided by the TDHF and CASPT2 studies of auride ion by Sadlej et al. [12] who 

successfully accounted for the lack of colour of the tetramethylammonium auride 

crystal using the Helium cluster confinement model.

As the simplest neutral heterodiatomic molecule, LiH has been the subject for 

numerous benchmarking theoretical studies due to the small number of electrons 

that makes the calculations employing highly sophisticated methods and extended 

basis sets feasible. Hence, in the present study, the electric dipoles, dipole polar- 

izabilities, and electric field gradients of the LiH molecule embedded in an axially 

symmetrical harmonic oscillator potential were calculated. The electric dipole mo­

ments and dipole polarizabilities for the ground X 1 E+ and A 1 E+ states, as well 

as the dissociative a 3 X+ state, were computed for several values of the confinement 

parameter w. However, the electric field gradient (EFG) components were calcu­

lated only for the X and A XE+ states. The dependence of these quantities on the 

internuclear distances was also investigated.
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9.2 Computational Details

The confining potential W (r;) adopts the form of an isotropic two-dimensional har­

monic oscillator centered at the origin of the coordinate system as used in the 

previous parts of the present work, i.e.,

W (ri) =  ^u?vj =  ^u? (xf +  y f)  (9.1)

It is assumed, in all the calculations, that the principal axis of the cylindrical har­

monic oscillator, i.e., the z-axis, overlaps with the molecular axis of LiH. The con­

fining parameter u j defines the strength of the applied harmonic oscillator potential.

The dipole moments, polarizabilities and EFGs of the ground and first two ex­

cited states of LiH were calculated using the full second-order configuration in­

teraction (FSOCI) method implemented in the program GAMESS-US [13, 14]. 

The zeroth-order configurations were generated by CASSCF with the active space 

composed of the Is, 2s and 2p  orbitals of Li and the Is  orbital of H. All the 

electrons were correlated. In the subsequent SOCI calculations, with the same 

CASSCF active space except tha t the lcr MO was frozen, all possible configura­

tions were generated by the single and double excitations from the CASSCF refer­

ence functions. The Davidson correction [15] was added to include the estimated 

quadruple-excitation contributions. This CASSCF/SOCI technique has been exten­

sively used in the molecular calculations involving heavy metal atoms (for example, 

Refs. [16, 17, 18, 19]), and very satisfactory performance was observed when com­

pared to the multi-reference Cl method.

The accuracy of the calculations of dipole moments and polarizabilities is strongly 

dependent on the quality of the basis sets in terms of the size of valence space and 

the diffuseness of the orbital exponents [20]. Therefore, two fairly large basis sets 

were employed in the present calculations. The basis set of Jaszunski and Roos 

[21] for H, derived from the Huzinaga’s 10s basis set [22], was used and augmented 

by an additional 2s6p3d set and contracted in a (411111111/111111/111) scheme. 

A diffuse p  function of exponent 0.01 was added to this basis set, leading to the 

resulting 9s7p3d set. Its performance has been verified in the calculations of the
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static polarizability and hyperpolarizability of H2  molecule, and an excellent agree­

ment was found with the accurate results from Kolos and Wolniewicz [23] who used 

explicitly correlated wavefunctions.

The basis set for Li is the (10s6p4d)/[5s3p2d] set of Sadlej [24] optimized for the 

calculations of molecular electric properties. An extra I s lp ld  set of exponents with 

values 0.03, 0.03 and 0.02, respectively, was added, giving rise to a 6s4p3d basis. 

At the midpoint position between the Li and H nuclei, a set of confining functions 

consisting of 4s4p4d Gaussian primitives was added in order to properly describe 

the distorted electron density at this region due to the harmonic oscillator potential

[6 ]. Their exponents, i.e., 0.025, 0.050, 0.075 and 0.100, were determined by the 

expression w/ 2  where u  are the confinement parameters adopted in the present 

calculations.

Unlike the electric dipole moments and electric field gradients, which were eval­

uated directly from the electron densities derived from the CASSCF/SOCI wave­

functions, the components of the dipole polarizabilities were calculated using the 

energy-based finite field method developed from the many-body perturbation the­

ory [25]. Kurtz, Stewart and Dieter have shown that the numerical accuracy of 

the finite field method is sensitive to the precision in the energy calculations [26]. 

Therefore, a very high convergence criterion, 10- 2 0  a.u., was selected in all the en­

ergy evaluations. A small electric field, 0.001 a.u., as suggested by Kurtz et al. [26], 

was used so as to avoid the unnecessary significant configurational changes of LiH.

9.3 Results and Discussion

9.3.1 D ip ole  M om ents

Initially, the potential energy curves for the first several low-lying states of LiH were 

calculated to confirm the performance of the method and basis sets. Figure 9.1 

contains the plots for LiH molecule in both free space (9.1(a)) and in a cylindrical 

confining potential of w 0.100 a.u. (9.1(b)). As can be seen from Table 9.1, the 

calculated binding energies and excitation energies of free LiH are in very good 

agreement with the experimental values. In spite of the fact that the estimated
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Figure 9.1: CASSCF/SOCI potential energy curves for several low-lying electronic 
states of LiH (a) for the zero field (w =  0.00 a.u.), and (b) for ui — 0.10 a.u. Energies 
are plotted with respect to the potential minimum of the ground X 1 E + state.

Table 9.1: Calculated excitation energies Te (in cm *) and binding energies D e (in 
eV) of LiH in free space

Parameter State Calc. Expt. [27]
D e X : E+ 2.4692 2.5154

A 1 E+ 1.0619 1.0765
b  xn 0.0314 0.035

Te X -» A 26031 26510
X -> B 34371 34912
A -> B 8339 8402
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equilibrium distance of the ground-state LiH (1.6102 A) is slightly longer than the 

measured value of 1.5949 A [28], the CASSCF/SOCI method, in general, is able 

to provide reliable wavefunctions and energies for the subsequent calculations of 

various one-electron properties of LiH.

There are several remarkable changes of the potential curves when the confining 

potential is applied. Compared to field-free situation (Figure 9.1(a)), the binding 

energies for the X state increases while tha t for the A state declines. Meanwhile, 

the dissociation channel that leads to the asymptotic products of Li(2 P ) +  H(2 S) 

split into two branches; the lower branch is in a  symmetry and connects with the 

2pz configuration of Li while the upper branch is in exclusively 7r symmetry, giving 

rise to the Li(2px) and \Ji(2py) products. These phenomena can be attributed to the 

geometric constraint imposed by the confining potential as the axially symmetric 

potential lifts the triple degeneracy of the p-shell and brings about two subsets: 

{px,Py} and {pz}, the latter one being more stabilized and lower in energy [29]. As 

a consequence, the reformation of the second dissociation channel upshifts the two n  

states and greatly increases their Te values. In addition, the relative stability of 2p z 

orbital with respect to 2 px and 2 py orbitals leads to variation of the configuration 

of the A state which is manifested in its electric properties.

Electric dipole moments for the first three electronic states of LiH were com­

puted based on the SOCI wavefunctions for a range of internuclear distances. The 

calculated dipole moments for the X state for several values of ui are depicted in 

Figure 9.2. Since the Li atom in LiH molecule was defined at the positive z-axis, the 

positive values of the dipole moment indicates the accumulation of electron density 

on the more electronegative H atom. The large magnitude of the electic dipole mo­

ments reveals the strong ionic character of the ground state of LiH molecule, which 

results from the partial charge transfer from Li to H. The CASSCF/SOCI dipole 

moment at the experimental equilibrium distance of 1.5957 A is 5.897 Debye which 

agrees very well (within 0.3%) with the experimental value of 5.882 Debye [30]. The 

dipole moment reaches a maximum at R  «  2.7 A where the ground state potential 

energy curve crosses the Li+H_ ionic potential curve [31]. For larger R  the electric
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Figure 9.2: Electric dipole moments for the X 1 £ + state of LiH.
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dipole moment gradually vanishes because of the increasing covalent bond character 

that leads the X state to the correct dissociation limit of the ground-state Li and H 

atoms.

Compared to that of the ground state configuration, the dipole moments for 

the a 3 X+ and A 1 S + states exhibit substantially different behaviour for the whole 

range of R. At small internuclear distances, both a and A states possess negative 

dipole moments, contrary to the positive dipole moment for the X state. Despite 

the significant ionic character, the excited lcr2 2er3cr configuration, resulting from 

the electron promotion 2a —> 3cr, induces a polarized electron density residing on 

Li atom, and thus reverses the dipole orientation. Similarly to the ground state 

scenario, the dipole moment for the a 3 S + state converges to 0  when /?, —> oo due 

to the increasing covalent character.

The R  dependence of the dipole moment for the A 1 E+ state, however, is more 

complex. As shown in Figure 9.3, the dipole moment increases rapidly when R  

increases from 1 . 0  A, until its maximum value appears at 4.8 A. This observation is 

consistent with the MCSCF studies of Docken and Hinze in which the ionic potential 

intersects the A state potential at 8.0 a.u. [31]. Similarly to the X and a states, 

the configuration mixing with the covalent Li(2pz) +  H (ls) configuration diminishes 

the dipole moment for the A state at larger R  and yields an anticipated zero dipole 

moment at the asymptotic limit.

The confinement effects on the electric dipole moments of these states are fairly 

distinct, as illustrated in figures 9.2 and 9.3. A more profound effect is found on 

the X state in which the magnitude of the dipole moment is increased by 50% 

for u j =  0.20 a.u. Meanwhile, the internuclear distance rmax, at which the dipole 

moment reaches its maximum, is shifted to larger values of R. On the other hand, 

the extreme values of the dipole moments for the a and A states are not prominently 

affected by the presence of confining potential; in both cases, the values are only 

slightly increased by 0.3 a.u. The plot of the dipole moment for the A state is also 

shifted towards larger values of R  as in the X state. This shift could be accounted 

for by the fact that the cylindrical confining potential upshifts both the covalent
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and ionic potentials of LiH in terms of energy, but to a lesser extent for the latter 

one. Accordingly, the X and A state potentials cross the ionic potential at larger 

internuclear distances and lead to the shifts of maximum dipole moments toward 

larger R. The stability of the ionic character can also explain the larger dipole 

moments for the confined LiH molecule.

9.3 .2  D ip o le  P olarizab ilities

The dipole polarizabilities of LiH for the X, a and A states, computed by the finite 

field method at the CASSCF/SOCI level, are plotted in Figure 9.4 as a function 

of internuclear distances. Recently these values have been calculated by Merawa, 

Begue and Dargelos [32] using the time-dependent gauge invariant (TDGI) approach 

and the CCSD(T) method. Their values are, although slightly smaller, in good 

agreement with the results obtained in the present work. These deviations can be 

attributed to the differences between the TDGI and the energy-based finite field 

methods where the latter one is very sensitive to the accuracy of the computed 

energies of LiH in the static electric fields. The smaller polarization and diffuse sets 

in the Sadlej’s 5s3p2d basis compared to Jeung’s 7s5p3dl/ basis set [33] and the 

confinement functions at the mid-bond position may also contribute to the larger 

dipole polarizability, although the actual basis set dependence is not certain [34].

Despite the systematically larger magnitude, the characteristics of the dipole 

polarizability components for the X and A states are the same as the ones predicted 

by Merawa et al. The a xx components for both states are small compared to the 

a zz counterparts because of the dominant <7 -type bonding character. A maximum 

is noticed at 4.0 A for a zz for the X state which is due, as suggested by Kolos and 

Wolniewicz [23], to the dipole-induced dipole interaction. A similar feature is also 

found for the A state where the maximum of a zz occurs at about 5.8 A. Interestingly, 

the A state exhibits a minimum at R  where the maximum a zz for the X state is 

present, which is caused by the largest negative contribution of the X state to the 

polarizability for the A state [32].

At very large internuclear distances, the a xx and a zz components of the polariz-
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abilities for these three states converge to two distinct values corresponding to the 

sum of the atomic polarizabilities of H(2 S') and Li(2£), for the X and a states, and 

II(2 5') and Li(2 P ), for the A state. The finite field calculations yielded the limiting 

values of, respectively, 177.5 a.u. and 140.5 a.u. which are larger, in particular the 

latter one, than the TDGI and CCSD(T) values deduced by Merawa et al. [32].

Due to the cylindrical symmetry of the confining potential, it is anticipated 

that the effects of spatial confinement on the xx  and z z  components of the dipole 

polarizabilities of LiH molecule would be different, and the anisotropy A « — a zz — 

a xx should be increased. These are justified by the plots in Figure 9.5, in which 

the a xx (the top panel) and a zz (the bottom panel) for the X, a and A states 

demonstrate completely different responses to the presence of the confining potential. 

As expected, the a xx components are suppressed because of the radial compression 

of the electron density. The a zz components, however, are dramatically increased 

by the confining potential as the 2 -axis is the only unconfined degree of freedom that 

allows for the distortion of electron density when a weak electric field is applied.

The enhancement of a zz is more pronounced for the X state due to the larger 

contribution from the A state by the induced configuration mixing of the 2s and 

2pz orbitals of Li. Furthermore, its maximum is shifted toward larger R, in contrast 

to the case of the A state, where the maximum appears at approximately the same 

internuclear distance regardless the strength of the confining potential. One intrigu­

ing feature concerning the evolution of the a zz for the a 3 S + state is noteworthy. 

An isosbestic point is found at 2.60 A, indicating a switch of configurations of the 

state. The reduction of azz at R  <  2.60 A is caused by the strong electrostatic 

interaction of the ionic configuration. For the value of R  greater than 2.60 A, the 

inclusion of covalent 2s and 2p z character relaxes the Coulomb attraction along the 

molecular axis and thus increases the dipole polarizability a zz.

9.3 .3  E lectric  F ield  G radients

As a measure of the second derivatives of the external electric potential arising 

from the surrounding nuclei and electrons, the electric field gradients (EFGs) at the
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Table 9.2: Electric field gradients (in a.u.) of the ground state LiH at 1.60 A.
Li H

UJ Vxx Vyy Vzz Vxx Vyy Vzz
0 . 0 0 -0.021841 -0.021841 0.043681 0.026709 0.026709 -0.053417
0.05 -0.023369 -0.023369 0.046739 0.025898 0.025898 -0.051796
0 . 1 0 -0.027167 -0.027167 0.054333 0.023594 0.023594 -0.047188
0.15 -0.032142 -0.032142 0.064284 0.020051 0.020051 -0.040102
0 . 2 0 -0.037648 -0.037648 0.075296 0.015537 0.015537 -0.031073

nuclei of a molecule are expected to be vulnerable to the applied confining potential 

because of the induced distortion of the electron density of the entire molecule.

The computed EFGs at Li and H nuclei at R  =  1.60 A for several values of u j  

are listed in Table 9.2. Due to the linear symmetry of the molecule and the traceless 

property of the EFG tensor, Vxx +  Vyy + Vzz =  0 and Vxx =  Vyy. The details of the 

charge distribution around the nucleus of interest can therefore be determined solely 

by Vzz. As seen in Table 9.2, the magnitudes of Vzz for both Li and H are small, 

indicating the ionic character of ground state LiH as inferred from the enormous 

electric dipole moment. The closed-shell Li+ (l,s2) and H ~ (ls2) do not contribute to 

the EFG because of the spherical symmetry [35]. Yet, the non-zero EFGs of Li and 

H reveal that the polarization of the electron distribution by the bonding electrons 

of 2 cr molecular orbital located in the region between the two nuclei, and tha t the 

spherical symmetry is not perfect in a molecular environment.

The variations of EFGs of Li and H due to the confinement effects, although 

not very remarkable in magnitude, are very informative concerning the changes of 

the electron distribution caused by the external harmonic potential. Two opposite 

trends are observed for the EFGs of Li and H. The Vzz of H is reduced by 60% when 

the confinement parameter u j  is increased from zero to 0.20 a.u. Simultaneously, the 

Vzz of Li is incremented by 70%. The vanishing EFGs of H is apparently consistent 

with the conclusion from the wavefunction analysis that the ionic Li+H_ character 

becomes more dominant in the ground state of confined LiH molecule. The larger 

extent of charge transfer to H results in the closed s-shell Is 2  configuration which
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always has zero contribution to the EFG.

The situation of Li is more complicated, and two effects play the role in deter­

mining the Vzz. On one hand, the transfer of electron density towards H turns the 

electronic configuration of Li to be more l s 2 -like, and decreases the EFG. On the 

other hand, the confining potential enhances the hybridization of the 2 a  molecular 

orbital with the Li 2pz atomic orbital, which modifies the valence electron density 

of Li and provides a positive contribution to the EFG. Because of the 1 /r 3  depen­

dence of Vzz, the former effect is less important, and the deformation of the valence 

electron distribution predominates the change of EFG, leading to the net increase 

of Vzz in the presence of the confining potential.

9.4 Conclusions

In the present work, several of one-electron properties for the ground and first two 

excited states of LiH molecule, as well as their responses to the application of a 

harmonic confining potential of cylindrical symmetry were studied. It was observed 

that the ground state dipole moment is significantly increased by the confining 

potential due to enhanced ionic character. The effects are less profound in the 

excited states, but the configuration interactions prompted by the external potential 

result in subtle changes of the /?,-dependence of the dipole moments in these states.

The influence of the confining potential on the components of dipole polariz­

abilities of LiH, compared to the dipole moments, is more drastic. The geometric 

restriction imposed by the cylindrical potential gives rise to the anisotropic behavior 

of the axial and equatorial components of the polarizability tensor of the confined 

LiH. The compressed electron density in the equatorial directions results in the di­

minishing a xx and a yy\ the a zz, however, is more enhanced by the polarization of 

the 2a molecular orbital.

The EFGs of LiH molecule are also affected by the alteration of its electronic 

configuration. The more important ionic character causes the reduction of the EFG 

of H as it possesses a larger extent of the closed-shell configuration. On the other 

hand, the confining potential induces the lowering of the Li 2p z orbital and its mixing
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with the 2 a  molecular orbital, which brings forth the positive contribution to the 

EFG of Li.
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Chapter 10

Final Remarks

10.1 Summary of the Thesis

This thesis presents the development of the model of confinement effects using a 

harmonic-type electrostatic potentials and its applications in the studies of elec­

tronic, structural, and spectral properties of a variety of diatomic molecules ranging 

from the simplest hydrogen molecule to the heavy coinage-metal hydrides such as 

AgH and AuH.

In this project, several classes of diatomic molecules have been used as probes 

of the influence of the axial parabolic potential on the chemical properties of the 

confined systems. The reason of choosing the diatomic molecules, as discussed in the 

previous chapters, is the fact tha t this arrangement assures the balanced Coulombic 

interaction between the confined linear diatomic molecule and the applied potential, 

with the molecule oriented so that its axis and the axis of the confining potential 

are collinear.

The series of studies started with the hydrogen molecule, which, because of its 

simplicity, allows for both the calculations employing highly sophisticated methods 

and very detailed wavefunction analysis, from which orbital responses to the con­

fining potential can be understood. Then, the studies switched to an interesting 

system, Be2 , and its ions, whose HOMOs and LUMOs are nearly degenerate. Based 

on the understanding of the confinement effects on the hydrogenic atomic orbitals, 

it is anticipated that the orbital degeneracy in Be2  molecule will be removed by the
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cylindrical confining potential, and very interesting phenomena such as the changes 

of dissociation channels, the switch of ground-state symmetry, and induced ioniza­

tion would likely be observed. To further explore the phenomenon of field-induced 

ionization due to the applied potential, the ionization of the valence electrons of the 

Rydberg noble-gas hydrides, which are only weakly bound, in the presence of the 

confining potential, was studies in details.

The interaction between the external confining potential and relativity, and their 

combined effects on many-electron molecular systems are not clearly understood be­

cause of the difficulties in terms of both experiment and computation. In order to 

shed light on this area, heavy coinage-metal hydrides, AgH and AuH, were cho­

sen, whose relativistic properties are well known. In particular, the confinement 

effects on the spin-orbit coupling interaction were analyzed. Finally, a polar di­

atomic LiH molecule was selected as a candidate in the study of confinement effects 

on the dipole-induced electric and optical properties. This project aimed at the 

understanding of the influence of the distorted electron density due to the applied 

electrostatic potential on the measured polarizability of materials, and how this 

influence could be used in the design of new electronic materials with desirable 

non-linear optical properties.

Despite the popularity in the computational modeling of the electronic structures 

of multi-electron quantum dots and artificial atoms and molecules [1, 2, 3, 4, 5, 

6 , 7, 8 ], the applications of harmonic oscillator potential in the investigations of 

spatial confinement effects on molecular systems are still fairly limited. Hence, the 

present project should be considered as one of the first relatively systematic and 

comprehensive analyses in this area.

There are a number of interesting features of the model of harmonic-type con­

fining potential tha t have been observed in the studies of confined molecules. As in 

the case of artificial atoms embedded in a magnetic field, the parabolic confinement 

with circular symmetry serves as a excellent model for the study of molecules in 

strong magnetic field. The analysis of the hydrogen molecule confined by a cylindri­

cal two-dimension harmonic potential revealed that the results exhibit qualitative
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and semi-quantitative agreement with those predicted for a magnetized hydrogen 

molecule on the surface of a neutron star by Detmer and co-workers using the numer­

ical Hartree-Fock method [9, 10, 11, 12]. As shown in Chapter 3, the Hamiltonian 

used in the model of parabolic confinement is indeed closely related to that for a 

quantum system in a magnetic field; small modification may be performed in the 

confinement model so tha t it can be extended to the studies of magnetized objects.

Due to the geometry of the confining potential, the differentiation of orbitals 

which are degenerate in the field-free environment is achieved. Except for the s- 

orbitals which are spherically symmetric, the components of p  and d-shell orbitals 

split according to the orientation of the applied harmonic potential. The induced 

reordering of atomic and molecular orbitals results in unusual changes in the physi­

cal and chemical properties of the confined systems. For example, the ground-state 

symmetry of Be.J molecular ion switches from 2UU to 2 E+ because of the destabi­

lization of the n  orbitals. In addition to the change of the molecular state symmetry, 

the presence of confining potentials causes the redistribution of dissociation channels 

and the existence of unprecedent avoided crossings between potential energy curves.

The effects of spatial confinement on the properties of Rydberg molecules have 

been investigated for two noble-gas compounds: HeH and NeH. Particular attention 

has been paid to the process of field-induced autoionization of the weakly-bound va­

lence electrons of these systems. It was observed tha t this process can be facilitated 

by even a relatively weak confining potentials, and tha t the heavier the noble-gas 

element, the smaller the critical strength of the potential would be required. As 

an alternative theoretical treatment, the perturbative approach has been tested for 

these systems. Satisfactory results have been found; apparently, the perturbation 

theory up to the second-order would be sufficient for the studies of the low-lying 

excited states of Rydberg molecules in confinement.

The influence of the external harmonic oscillator was studied not only in the 

light main-group diatomic molecules but also in the transition-metal diatomics. The 

combined effects of relativity, electron correlation, and spatial confinement have been 

studied in the SO-MCQDPT2 calculations of the potential energy curves of the low-
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lying electronic states of AgH and AuH. Like the previous examples, the presence of 

the confining potential alters the electronic configurations of these systems, giving 

rise to changes in various geometric and energetic parameters. Surprisingly, the 

influence is not as significant as could be seen in lighter species. In particular, only 

a very weak dependence of the spin-orbit coupling constants upon the strength of 

the confining potential is noticed.

Finally, the variations of electric properties of small molecules enclosed in a 

harmonic potential have been examined, as this may lead to a better understanding 

of the field modulation of molecular properties in nanomaterial electronics. For 

this purpose, dipole moments, dipole polarizabilities, and electric field gradients of 

several low-lying electronic states of LiH molecules confined by a parabolic potential 

were computed and their relation to the strength of the potential were analyzed. It 

has been found that the anisotropic spatial constraints can selectively enhance or 

suppress these electric properties in different orientations. This may allow for the 

fine-tuning of the molecular properties tha t suit the needs in the development of 

nanoscaled opto-electronic materials.

10.2 Future Work

The investigations of the model employed in this work are by no means complete, 

and further development is necessary. Among the required tasks, the derivation 

of analytic gradients is the most im portant as the current implementation allows 

only for the evaluation of single-point energies, and no geometry optimization is 

yet available. This restriction limited the present project to diatomic molecules 

whose potential energy curves could be mapped in a rather straightforward way. In 

order to perform geometry optimization, one has to utilize less accurate numerical 

techniques such as finite-difference methods.

An interesting project involving the confining potential is to investigate if the 

two-dimensional harmonic oscillator potential could be useful in the modeling of 

chemical reactions inside a confinement. To achieve this task, some preliminary 

calculations of collinear hydrogen exchange reactions have been performed using
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both the current model and a helium nanotube.

An interesting future project would involve the modification of the present for­

malism so tha t it could be utilized in the studies of the effects of magnetic fields 

on molecular properties. As pointed out by Detmer et al. [9], the computations for 

molecules in magnetic field are very complicated, and so far most of the research has 

been focused on and H2  only. Based on the comparison and analysis carried out 

in Chapter 3, the current model of confinement, with a small modification, offers a 

promising potential as an alternative method of looking into the magnetic effects on 

multi-electron molecules. As only small computer resources are required for the cal­

culations including the confinement effects, the harmonic confining potential model 

would be an excellent means for the computational studies of the exotic molecular 

species in the outer space where magnetic field is a crucial factor determining their 

molecular properties.
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Appendix A

Non-Crossing Rules

A .l  Introduction

The Born-Oppenheimer approximation [1] is among one of the best known and most 

widely used approximations in molecular physics and chemistry. This approxima­

tion is of great importance in the studies of chemical reaction dynamics in which the 

potential energy hypersurface of the system is required. This energy surface is usu­

ally constructed from the ab initio calculations of the involved atoms and molecules 

with the invocation of the Born-Oppenheimer approximation. By using it, the nu­

clear and electronic coordinates can be separated, and thus energies for different 

nuclear configurations can be computed and linked together to form the complete 

energy surface. However, recent studies have revealed that this approximation is 

not always valid; under certain circumstances the nuclear and electronic motions 

are not entirely uncoupled, and the simultaneous treatm ent of both the nuclear and 

electronic motions is mandatory. One typical example of such violation of the Born- 

Oppenheimer approximation is the conical intersection between electronic states of 

polyatomic molecules. For good reviews on the topic of conical intersections and 

vibronic coupling, see ref. [2, 3].

In most of the cases, the breakdown of Born-Oppenheimer approximation and 

the existence of conical intersection are not serious problems for diatomic molecules, 

especially for their ground-state potential energy curves. The situation, however, 

changes when one goes to studying the excited states of the diatomic molecules
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where the energies of these states now become close to each other. In such scenario, 

it is possible to encounter a situation in which two states have same energy acciden­

tally. The Born-Oppenheimer approximation guarantees the non-crossing property 

of different electronic states of the same spin and spatial symmetry according to the 

perturbation theory. Unfortunately, this analysis fails when there is another source 

of coupling, different from the spatial symmetry of the electronic states, coming into 

play.

Such situation has been observed in the cases of the E, F, G, and K 1 E+ states 

of cylindrically confined hydrogen molecule as described in Chapter 3. The figures
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Figure A .l: The E,F and G,K States of H2 in confinement.

A .l show the potential energy curves of the E,F and G,K states of the hydrogen 

molecule confined by the harmonic potential of several different strengths u>. An 

avoided crossing is present between these states in the free space, which has been 

attributed to the interchange of the ionic |lcr„) and covalent \ la g2ag) configura­

tions. At large internuclear distances, these states converge to the same dissociation 

limit of H (ls) and H(n =  2). When the confining potential is turned on, an ad-
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ditional avoided crossing starts to appear at about 6  to 7 A which is caused by 

the splitting of the second dissociation channel. These states have to undergo the 

second configuration interaction such tha t they could dissociate to the appropriate 

asymptotes. Surprisingly, it is found tha t the energy difference between the E,F 

and G,K states at the first avoided crossing dimishes with increasing o>, until at oj 

=  0.09 a.u. where the E,F and G,K states are only separated by about 500 cm - 1  

(as shown in figure A.2). Obviously, the strength of the applied potential oj has an
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Figure A.2: Energy gap at the point of avoided crossing between the E,F and G,K 
states of H2 .

important role in the formation of the avoided crossings for confined molecules, and 

the Born-Oppenheimer approximation and degenerate perturbation theory are not 

sufficient to explain this phenomenon.

In the following sections, the derivation of the non-crossing rule from the tra­

ditional perturbation theory will be presented, and some of the breakdowns of this 

rule will be discussed.

A .2 Quasi-Degenerate Perturbation Theory

The treatment of quasi-degenerate energy levels using the perturbation theory can 

be found in many standard quantum mechanics textbooks. The derivation shown
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below follows the approach of Bransden and Joachain [4].

Consider a two-level system in which the energy levels are not truly degenerate, 

but are separated by a small energy 2e. Then,

E (S>) =  E (0) _ e

E f f l )  =  E ( 0 )  +  €  (A .2)

where E ^  is the zeroth-order reference energy. Using the approach of the degen­

erate perturbation theory, the perturbed wavefunction can be expressed as a linear

combination of the unperturbed wavefunctions:

■i/v =  ^ a rfc^ 0) =  ari ^ 0) +  a r2'i/’2°) +  Y 2  arki’k>'>• (A -3)
k 1,2

Substituting ipr into the Schrodinger equation

{Ho +  XH') if>r =  Eripr , (A.4)

where H  and %' are the unperturbed and perturbing Hamiltonians respectively, 

yields the following expression

+  \ Y , ar k U ' ^ ) =  E r Y ^ a r k ^ . (A.5)
k k k

Recall that H ip ^  =  E ^ i p ^ . In Dirac notation, left-multiplying eq. (A.5) by 

{ i p i | yields

O - r k E ^  (V’i ° ] I V ^ }  +  A Y 2  a r k ( ^ i 0) \ H ' \ V»fc0 ) ) ^ E r Y Y  a n f c ( W 0) l ^ i 0 ) )-  ( A - 6 )
k k k

This expression will be simplified when assuming that =  0 for I ^  k:

arlE f ] -  arlEr =  - A ^  arfc< ^ 0)| f t ' |^ 0)>. (A.7)
k

When I =  1:

arlE[0)- a rlEr = - X a n ^ ^ H ' ^ - X a ^ ^ H ' ^ - X  £
k ^  1,2

(A.8 )
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For clarity, the notation H'lk =  (V,j'°') is used. Hence, the above expression 

can be rewritten as:

ctj'iEjj' — Afl̂ 2 -Fi2  A ^A.9j
fc# 1,2

a n  ( e ^  +  AH'u  -  Er ĵ +  \ a r2H'12 =  -A  ^  arkH'lk. (A.10)
1,2

Similarly, the expression for I =  2 can be worked out:

a r 2  ( ^ 0) +  AH2 2  -  Fr'j +  Aar l i? 2 i =  -A  ^  arfĉ fe. (A .ll)
fc#l,2

Because the coupling between these two states is small, it is anticipated tha t the 

terms on the right-hand side of eqs. (A.10) and (A .ll) will be negligible. Therefore, 

these equations can be expressed as a matrix equation:

( e ^ + X H ' u - B r AH'a A /  «rl \  /  0 A
\  x h '21 ri:": + \H 'a  -  E, )  \  0.2 )  V 0 J  '

This homogeneous matrix equation can be solved easily, and the energies E r are 

given by:

E r =  i { ^ 0)+ 4 0)+ A ( H [ 1 + H y }

±  i  |  [e {0) -  4 0) +  A {H'n  -  ^ 2 ) ] 2 +4A 2  |H ( 2 | 2 } 1 / 2  • (A.13)

A .3 Non-Crossing Rule

The eq. (A.13) gives the energies for a quasi-degenerate two-level systems. It is 

straightforward to determine the energy difference between the two energy levels:

fr  2 'I1/ 2
A E  =  j  [ 4 0) -  4 0) +  A (H'u  -  H'n)] + 4 X 2 \H[2\2j  . (A.14)

Again, A is set to be unity for clarity. This expression can be used to evaluate the 

energy difference between two Born-Oppenheimer potentials. When two states are 

well separated, they can be treated as if they were two isolated electronic states, and 

no perturbation technique is required. However, when they are approaching each
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other, the perturbation starts to take place, and the perturbation theory should be 

used in order to determine the coupling between the two states. In this situation, 

eq. (A.14) can serve as the probe indicating how the potential energy curves of 

these states respond to the mutual perturbation.

When two potential energy curves cross, A E  =  0, and

Since both terms inside the square root are always positive, the only way to have 

eq. (A.15) fulfilled is that both terms vanish simultaneously. T hat is,

Obviously, the first part of eq. (A. 16) is fulfilled. However, the second one is not 

since H'l2 =  0 only if |'</q) and \ip2 ) are in different spatial symmetries. Consequently,

for any two states possessing the same symmetry, they can never become degenerate 

in energies, and their potential energy curves cannot cross.

A .4 Violation of the Non-Crossing Rule

The above-mentioned argument has been mathematically illustrated by von Neu­

mann and Wigner [5] several decades ago, and this rule has worked very nicely for 

diatomic systems. Unfortunately, this rule does not hold for polyatomic molecules as 

there are more than one degree of freedom, and conical intersections can be formed 

on their potential energy surfaces.

Over the years, many researchers have noticed that even in the cases of diatomic 

molecules, the non-crossing rule is not necessarily valid. Gershtein and Krivchenkov

[6 ], Power [7], and Hatton, Lichten and Ostrove [8 ] have shown the violation of the 

non-crossing rule in one-electron diatomics. Recently, Shi and co-workers generalized 

the results from previous studies and presented a thorough analysis of the non­

crossing rule in high-order multi-dimensional spaces [9].

(A.16)

Assume that the two states \ipi) and j ^ )  are of the same symmetry and degenerate.

eq. (A. 15) is not true for two states which have the same symmetry. In other words,
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In all these analyses, it is argued tha t an assumption in the treatm ent of von 

Neumann and Wigner tha t the Hamiltonian operator for a diatomic molecule be 

determined solely by a single parameter, say the internuclear distance, is not appro­

priate. Recall tha t in the Born-Oppenheimer approximation, the molecular Hamil­

tonian can be w ritten in terms of the internuclear distance R,  and can be expanded 

as a Taylor series in R q:

The second term in the Taylor series can be treated as a perturbation, yielding the 

off-diagonal matrix element H[2 in eq. (A. 12):

are of different symmetry.

For a more general case in which % is dependent upon more than one parameter, 

the Taylor series expansion on R. will generate

Obviously, now H'12 depends on R, Z,  and other parameters, and there will be a 

number of ways H[2 can vanish. In the case of polyatomic molecules, R  and Z  can 

correspond to different structural parameters such as bond lengths and bond angles. 

As a result, the non-crossing rule fails for polyatomic molecules whose potential 

energy surfaces are characterized by more than one parameter.

Even though the electronic Hamiltonian for a diatomic molecule possesses one 

parameter R  according to the Born-Oppenheimer approximation, indeed the wave- 

function \tp) can be written in terms of other quantities such as the charge density

(A.17)

H 12 =  ( i’ll \ip2)6R.
R — R q

(A.18)

As shown above, this off-diagonal matrix element will disappear when |^>i) and \ip2 )

BR BR
R (R 0 +  6 R , Z 0 +  SZ , . . . )  = H ( R o , Z 0, . . . ) +  —  AR-i — SZ +  - - - .

which will give the following off-diagonal matrix element:

(A.20)
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under prolate spheroidal coordinate transformation [10]. In such a case, some spe­

cific combinations of charges will lead to the so-called second-order crossings.

In the present project, the strength of the confining potential a; can be considered 

as a parameter tha t defines the molecular Hamiltonian of the confined diatomic 

molecule. Accordingly, it is expected that the wavefunctions and the associated 

potential energy curves for different electronic states of the confined molecule should 

be dependent on ui as well, although the analytical expressions of the wavefunctions 

and energies in terms of w are not known. Consequently, the variation of the energy 

gap between the E,F and G,K potential energy curves at the inner avoided crossing 

can be ascribed to the second-order crossing induced by the presence of the applied 

harmonic potential.

A.5 Summary

As a closing remark of this chapter, the short list of five experimentally observable 

situations concering the crossing of potential energy surfaces is given below.

1. No crossing: The two Born-Oppenheimer potentials do not cross because of 

the well-separated energies.

2. Non-conical crossing: Two states of different symmetries can cross as long as 

both requirements in eq. (A.16) are satisfieded simultaneously.

3. Conical crossing: Due to accidental circumstances, both conditions in eq. 

(A.16) are fulfilled without the consideration of spatial symmetry. This case 

happens most often on polyatomic molecules.

4. The Jahn-Teller effect: Both conditions in eq. (A. 16) are satisfied by symme­

try. This is accomplished by the distortion of the molecular symmetry so as to 

reduce the total energy of the molecule. The Jahn-Teller effect happens when 

the highest-occupied molecular orbitals (HOMO) of the molecule are degen­

erate, and the direct product of the irreducible representations of the HOMO 

and LUMO belongs to the irreducible representations of the vibrations modes,
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r  H O M O  <S> I ' m  MO  S (A.21)

5. Pseudo-Jahn-Teller effect: When two states approach, the mutual distortion 

of the electronic configurations will lead to, instead of a crossing, the deviation 

of the potential energy curves from each other (e.g. vibronic coupling). This 

is in fact the typical response deduced by the quasi-degenerate perturbation 

theory.
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Appendix B

Double Group Sym m etry

B .l  Introduction

It has been shown in Chapter 8  th a t a new set of symmetry labels, which are 

completely different from the conventional symbols A and S  deduced in the Russell- 

Saunders coupling or jj-coupling schemes, are used to assign the symmetry of elec­

tronic states in relativistic calculations. This new set of designation, called the 

double group, was first introduced by Bethe [1] in order to take into account the 

spin-orbit coupling effect that may lead to the electronic states in point-group sym­

metry of the crystalline field corresponding to half-integral angular momenta.

The derivations in the theory of double groups are complicated and tedious. For 

more information concerning comprehensive details of the theory, one is referred to 

the original reference by Bethe [1] and some excellent reviews by Cotton [2], Bunker 

and Jensen [3], and Balasubramanian [4]. In this appendix, only the simplified 

procedures for the determination of the relativistic term symbol for an electronic 

state of a diatomic molecule will be outlined.

The relativistic term  symbol of an electronic state for a diatomic molecule is 

composed of both the spin and spatial parts. The designation for the spin part is 

determined according to the table B .l. s in the double-group label D s is the spin 

quantum number of the electronic state of an diatomic molecule.

The symmetry assignment for the spatial part is identical to tha t for the non- 

relativistic counterpart. Once these symbols are determined, the final relativistic
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Table B .l: Spin states correlation for diatomics
~ P ^  D ' U  ° r  C L ,  ~

D 0  £+
D 1/2 £ 1/2
z?1 £ - © n

Z )3/ 2 E l / 2  ©  -^ 3/2

Z)2 £ + © n © A
Z )5/ 2 Z ? i/2 ©  E 3/ 2  ©  ■S'5/2
z>3 £ -  © n ©  a © $

term labels can be deduced as the direct product of the two representations based 

on the following multiplication rules:

£~(spin) 2  n(spatial) =  II (B.l)

Il(spin) 2  Il(spatial) =  £~  ffi £ + ffi A (B.2)

£~(spin) <2 £~(spatial) =  £ + (B.3)

II(spin) 2  £ _ (spatial) =  II (B.4)

£̂ 1 / 2  (spin) 2 II(spatial) =  E i/ 2 ©Z? 3 / 2  (B-5)

Z^3 / 2  (spin) 2 II(spatial) =  E i/ 2 ® E 5/ 2 (B.6 )

Note that the direct multiplication of any irreducible representation and E + will 

generate the original irreducible representation.

£ + 2  IT  =  £~  (B.7)

£ + 2 1 1  =  n  (B.8 )

£ + 2  A =  A (B.9)

The double-group irreducible representations of diatomic molecules are translated 

to their corresponding — u) state representations as listed in table B.2.

As an illustrative example, let’s consider the 3II state of AgH. The spin part of 

this state is transformed to, according to table B .l, £ ” © n, and the spatial part 

is transformed to n . Therefore, the direct products of these two sets of irreducible
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Table B.2: Irreducible representations of double groups of diatomics and their ui — ui 
state designation _____________________________

Irreducible
Representation

10  — uj State 
Designation

£+ 0+
£~ 0-
n 1

A 2

$ 3
r 4

El/2 1 / 2

E 3/2 3/2
E 5/2 5/2

representations are:

(£- © n)  <g>n = £ + © x r ® n © A  (b .io)

which correspond, respectively, to 0+ , 0“ , 1 and 2 states i n w - w  scheme. Note that 

both 1 and 2 states are doubly degenerate. Therefore, when the spin-orbit coupling 

is taken into account in the calculations, the 3II state will split into six energy levels, 

among which two pairs are degenerate.
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